hello, I am Andy, an backend engineer in Shopee, a e-commerce company. When I were an university student, I used to intern at Baidu and Bytedance. I have worked for three companies in positions that use golang to develop. I have used go language to develop api gate way, wiki website using micro service. Now I maintain and develop a time series database. I improve the performance of databases, and develop the new feature. I also do some work related with availability for example driving the migration of our services to kubernetes.
Below are the Chinese and English versions of my resume
- 姓名:Andy Wu
- 电话:189-xxx-xxx
- 邮箱:[email protected]
- 求职意向:后端研发工程师
- 后端:Golang, mysql, gorm, redis, kafka
- 云原生:kubernetes, kubernetes operator/crd
- 监控相关:Victoria Metrics, Prometheus, Grafana
- 前端:Javascript, vue.js
- 大数据:Hive, Spark
- 2019ACM-ICPC国际大学生程序设计竞赛 亚洲区域赛银川站 铜奖
- 第十届蓝桥杯C/C++程序设计 大学B组 全国二等奖
- 2019ACM-ICPC国际大学生程序设计竞赛 全国邀请赛(西安)铜奖
- 英语四级 535分
在Shopee工作期间,我参与了短链接项目和时序数据库项目的方案设计与工作,使用go语言作为主要开发,技术栈包括http server、k8s、Victoria Metrics,TiDB,redis,kafka。有时候需要和不同语种的同事沟通,因此在这段经历中我提升了英语交流能力,能够处理日常的听说读写。
项目介绍
Victoria Metrics(vm)是一个开源的高性能分布式时序数据库,是监控平台的核心组件之一。主要包括采集、写入、存储、查询、告警等模块,这些模块分开部署,有着很强的横向拓展能力。我们基于vm的社区版本开发和优化了一系列用于提升vm可靠性的服务,同时修复社区版本存在的bug、基于业务开发新功能以及优化性能。
项目难点
作为一个公司级别的基础组件,主要难点在于服务的可用性以及时序数据的存储。为了提高服务整体的可用性和更容易运维,我们针对大部分组件开发了kubernetes operator,使得这些组件能够更好地按照租户来进行资源限制,以及提高服务可用性。为了处理时序写入时的高并发问题,我们将原来的写入组件拆分成“生产者+消息队列+消费者”的模式。为了提高告警的响应速度,我们基于otel collector和prometheus开发了实时告警链路。
主要职责
- 定期查看并且将社区提的issue在我们的版本中修复。
- 排查并修复SRE反馈的问题。
- 开发新功能,优化查询、告警等组件的性能。
- 开发kubernetes operator,推动各个组件容器化。
项目介绍
全公司范围使用的一个将长URL转换成短URL的项目,在内部的使用场景比如监控平台在内部IM发出的告警链接,在外部用于各种活动推广、分享时将长URL转换成短URL。本项目是一个用golang原生库开发的http服务,用redis做缓存,TiDB做持久化存储,同时还有Click House对短链的访问数据进行解析。在大促期间QPS峰值为2w。
项目难点
这个项目的难点在于短链key的不重复生成,这里使用的snowflake算法生成ID然后做字符串映射,为了兼容历史数据、使用redis来做重复校验的、同时还有TiDB兜底。
主要职责
负责核心模块short url(长链转短链,短链转长链的一个REST API服务)以及短链portal(通过调用short url来生成短链,同时提供一个可视化界面给用户生成短链以及显示历史记录)的开发。
项目介绍
为了更方便运维、更好灵活地扩缩容以及提升服务可用性,我们针对Victoria Metrics时序数据库的各个组件开发了CRD(Custom Resource Definitions和kubernetes operator)。让我们的数据库组件运行在k8s上。
项目难点
在项目前期需要学习很多k8s和operator开发相关的知识。后期主要需要和监控平台站点的同事沟通,做好租户信息的定义,以便能够定时按照站点里的租户信息创建相关资源。在这期间遇到了http长链接在加pod副本在无法负载均衡的问题,在了解了service的负载均衡后,通过自定义golang的http库的listener接口解决。
主要职责
为VictoriaMetrics的查询组件vmselect, 告警组件vmalert和其他内部自研组件开发operator。
在字节跳动实习期间主要参与大数据相关和golang微服务相关的工作。初步了解了微服务架构、大数据技术。参与了数据质量提升、数据看板搭建、以及数据仓库建设等工作。
项目介绍
这个项目的目的是通过程序筛选出低质量的词条,然后按照pv排序作为任务分发到用户创作社区,通过奖励机制让用户领取任务改善词条质量。低质量词条有这些:无摘要图,摘要图尺寸小,无基本信息等。
数据处理处理流程大致如下:
通过Spark筛选出低质词条并对其进行归类导入到Hive表,如:无摘要图、摘要图尺寸小、无基本信息、摘要或正文包含无用信息等。将要下放的词条与不宜下放词条进行过滤之后形成任务表,通过Hive -> Kafka与线上服务对接进行任务下放。
项目难点
第一个难点在于用pySpark来解析词条JSON数据,形成任务表。第二个难点在于任务的下放基于用户创作社区的消费进度做调整,因此Hive SQL任务需要做相应的优化。通过这个项目初步学习了大数据技术,比如Hive,Spark。
主要职责
负责离线数据的处理,比如用Spark筛选地址词条,编写Hive SQL生成任务表,用公司内部的数据平台将Hive传送到Kafka。消费Kafka生成线上任务的流程由其他同事开发。
项目介绍
在一个百科词条里存在另外一个词条的链接,我们称之为【内链】,内链在用户编辑时添加。但是随着词条状态的变更,比如一个词条下架,那么原来指向这个词条的内链就会失效,我们称之为【无效内链】。这个项目要做的定时地将无效内链剔除。
通过Spark并行对全量词条进行JSON解析,可以得到一张内链表,关键列是from ID和to ID,from表示存在内链的词条ID,to表示内链所指向的词条ID。然后通过hive sql来得到每个词条内链所指向的词条的状态,从而筛选出来已经下架的to ID。通过内部数据平台将数据从hive送到Kafka,在golang服务消费,把无效内链去除。
项目难点
难点在于解析词条的JSON数据,形成内链表。
主要职责
负责离线数据处理部分,用spark解析百科词条,将解析结果存到Hive。再用Hive筛选出来任务传送到Kafka,消费Kafka的部分由其他同事开发。
A back-end engineer who has worked at Shopee and interned at Baidu and Bytedance. Mainly using go language. Have done micro services, web, big data, monitoring platform related work.
- Backend: Golang, mysql, gorm, redis, kafka
- Cloud Native: kubernetes, kubernetes operator/crd
- Monitoring related: Victoria Metrics, Prometheus, Grafana
- Front-end: Javascript, vue.js
- Big Data: Hive, Spark
During my work in Shopee, I was involved in the design and work of URLShortener project and time series database project, using go language as the main development, the technology stack includes http server, k8s, Victoria Metrics, TiDB, redis, kafka. sometimes need to communicate with colleagues of different languages, so in this experience I Improved my English communication skills and was able to handle daily listening, speaking, reading and writing.
Introduction:
Victoria Metrics (vm) is an open source high performance distributed time series database, is one of the core components of the monitoring platform. It mainly includes modules for scraping, inserting, storage, query, and alerting, which are deployed separately and have strong horizontal expansion capabilities. We have developed and optimized a series of services to improve the reliability of vm based on the community version of vm, while fixing bugs in the community version, developing new features based on business and optimizing performance.
Difficulties:
As a company-level base component, the main difficulty is the availability of the service and the storage of time-series data. In order to improve the overall availability of the service and make it easier to operate and maintain, we developed kubernetes operators for most of the components, so that they can better limit resources by tenant and improve service availability. In order to handle the high concurrency problem of high writes, we split the original write component into a "producer + message queue + consumer" model. To improve the response time of alerts, we developed a real-time alert link based on otel collector and prometheus.
Responsibilities:
Daily bug fixes, new version development.
Introduction:
We developed CRD (Custom Resource Definitions and kubernetes operator) for each component of Victoria Metrics temporal database for easier operation and maintenance, better flexibility to scale up and down, and improved service availability. Let our database components run on k8s.
Difficulties:
Needed to learn a lot of k8s and operator development related knowledge in the early stage. In the later stage, we mainly need to communicate with our colleagues in the monitoring platform site to define the tenant information well so that we can create related resources regularly according to the tenant information in the site.
Responsibilities:
Develop controllers for VMalert, VMselect, OtelColltor and Prometheus.
During the internship in ByteDance, I was mainly involved in big data related and golang microservices related work. Initial understanding of microservice architecture, big data technology. Participated in data quality improvement, data kanban building, and data warehouse construction.
Introduction:
The purpose of this project is to filter out low quality words through the program, and then distribute them as tasks to the user creation community in order of pv, so that users can receive tasks to improve the quality of words through a reward mechanism. Low-quality entries have these: no summary image, small size of summary image, no basic information, etc.
Difficulties:
The first difficulty is to use pySpark to parse the word JSON data and form the task table. The second difficulty is that the task delegation is adjusted based on the consumption progress of the user creation community, so the Hive SQL tasks need to be optimized accordingly.
Responsibilities:
All offline data processing work, including spark task development, hive data table construction and hive task development.
- Major: Computer Science
- Education: Bachelor's degree
- The 2019 ICPC Asia Regional Ningxia Broze Medal