-
Notifications
You must be signed in to change notification settings - Fork 0
/
h2o_byor_CPU.py
80 lines (72 loc) · 3.17 KB
/
h2o_byor_CPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""Random Forest (RandomForest) model from sklearn"""
import datatable as dt
import numpy as np
from h2oaicore.models import CustomModel
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.preprocessing import LabelEncoder
from h2oaicore.systemutils import physical_cores_count
class RandomForestModel(CustomModel):
_regression = True
_binary = True
_multiclass = True
_display_name = "RandomForest"
_description = "Random Forest Model based on sklearn"
def set_default_params(self, accuracy=None, time_tolerance=None,
interpretability=None, **kwargs):
# Fill up parameters we care about
self.params = dict(random_state=kwargs.get("random_state", 1234),
n_estimators=min(kwargs.get("n_estimators", 100), 1000),
criterion="gini" if self.num_classes >= 2 else "mse",
n_jobs=self.params_base.get('n_jobs', max(1, physical_cores_count)))
def mutate_params(self, accuracy=10, **kwargs):
if accuracy > 8:
estimators_list = [100, 200, 300, 500, 1000, 2000]
elif accuracy >= 5:
estimators_list = [50, 100, 200, 300, 400, 500]
else:
estimators_list = [10, 50, 100, 150, 200, 250, 300]
# Modify certain parameters for tuning
self.params["n_estimators"] = int(np.random.choice(estimators_list))
self.params["criterion"] = np.random.choice(["gini", "entropy"]) if self.num_classes >= 2 \
else np.random.choice(["mse", "mae"])
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
orig_cols = list(X.names)
if self.num_classes >= 2:
lb = LabelEncoder()
lb.fit(self.labels)
y = lb.transform(y)
model = RandomForestClassifier(**self.params)
else:
model = RandomForestRegressor(**self.params)
# Replace missing values with a value smaller than all observed values
self.min = dict()
for col in X.names:
XX = X[:, col]
self.min[col] = XX.min1()
if self.min[col] is None or np.isnan(self.min[col]):
self.min[col] = -1e10
else:
self.min[col] -= 1
XX.replace(None, self.min[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
X = X.to_numpy()
model.fit(X, y)
importances = np.array(model.feature_importances_)
self.set_model_properties(model=model,
features=orig_cols,
importances=importances.tolist(),
iterations=self.params['n_estimators'])
def predict(self, X, **kwargs):
X = dt.Frame(X)
for col in X.names:
XX = X[:, col]
XX.replace(None, self.min[col])
X[:, col] = XX
model, _, _, _ = self.get_model_properties()
X = X.to_numpy()
if self.num_classes == 1:
preds = model.predict(X)
else:
preds = model.predict_proba(X)
return preds