forked from tatz1101/Edge-AI-Platform-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.prototxt
44 lines (35 loc) · 1.36 KB
/
config.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# directory where saving the output files
workspace: "deephi/miniVggNet/pruning"
gpu: "0"
# the number of iterations to run in test phase: Max num =validation set / batch_size = 9000 / 50
test_iter: 180
# the accuracy name of the model output you care about
acc_name: "top-1"
# model for the training
model: "deephi/miniVggNet/pruning/train_val.prototxt"
## first run
weights: "deephi/miniVggNet/pruning/float.caffemodel"
## second run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.1/snapshots/_iter_40000.caffemodel"
## third run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.2/snapshots/_iter_40000.caffemodel"
## 4-th run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.3/snapshots/_iter_40000.caffemodel"
## 5-th run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.4/snapshots/_iter_40000.caffemodel"
## 6-th run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.5/snapshots/_iter_40000.caffemodel"
## 7-th run
#weights: "deephi/miniVggNet/pruning/regular_rate_0.6/snapshots/_iter_40000.caffemodel"
# solver used for fine tuning
solver: "deephi/miniVggNet/pruning/solver.prototxt"
# expected compression ratio: 0.1 means 10%
rate: 0.1 #first run
#rate: 0.2 #second run
#rate: 0.3 #third run
#rate: 0.4 # 4-th run
#rate: 0.5 # 5-th run
#rate: 0.6 # 6-th run
#rate: 0.7 # 7-th run
#compression method used (only REGULAR is available)
pruner { method: REGULAR }