forked from tatz1101/Edge-AI-Platform-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
6_make_predictions.py
254 lines (196 loc) · 8.41 KB
/
6_make_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
'''
Title :make_predictions_1.py
Description :This script makes predictions using the 1st trained model and generates a submission file.
Author :Adil Moujahid
Date Created :20160623
Date Modified :20160625
version :0.2
usage :python make_predictions_1.py
python_version :2.7.11
'''
# highly modified by [email protected]
# date 19 September 2018
# ##################################################################################################
# USAGE
# python ./code/6_make_predictions.py -d ./models/miniVggNet/m3/deploy_3_miniVggNet.prototxt -w ./models/miniVggNet/m3/snapshot_3_miniVggNet__iter_40000.caffemodel
# it computes the prediction accuracy for the CNN trainined on CIFAR10 by using a 1000 JPEG images in
# the test directory (not belonging to the trainining or validation LMDB datasets)
# ##################################################################################################
import os
import glob
import sys
#sys.path.append('/home/danieleb/.virtualenvs/caffe_py27/local/lib/python2.7/site-packages/')
import cv2
import caffe
import lmdb
import warnings
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
import numpy as np
from config import cifar10_config as config
import argparse
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--description", required=True, help="description model")
ap.add_argument("-w", "--weights", required=True, help="weights caffemodel")
args = vars(ap.parse_args())
from caffe.proto import caffe_pb2
caffe.set_mode_gpu()
# ##################################################################################################
#Size of images
IMAGE_WIDTH = 32
IMAGE_HEIGHT = 32
# mean file for CIFAR10 training dataset
MEAN_FILE = config.MEAN_FILE # i.e. "/home/ML/cifar10/input/mean.binaryproto"
# test dataset
TEST_DATASET = config.CIFAR10_JPG_DIR + "/test/*.jpg" # i.e. "/home/ML/cifar10/input/cifar10_jpg/test/*.jpg"
# ##################################################################################################
'''
Image processing helper function
'''
def transform_img(img, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT):
#Histogram Equalization
#img[:, :, 0] = cv2.equalizeHist(img[:, :, 0])
#img[:, :, 1] = cv2.equalizeHist(img[:, :, 1])
#img[:, :, 2] = cv2.equalizeHist(img[:, :, 2])
#Image Resizing
img = cv2.resize(img, (img_width, img_height), interpolation = cv2.INTER_CUBIC)
return img
# ##################################################################################################
'''
Reading mean image, caffe model and its weights
'''
#Read mean image
mean_blob = caffe_pb2.BlobProto()
with open(MEAN_FILE) as f:
mean_blob.ParseFromString(f.read())
mean_array = np.asarray(mean_blob.data, dtype=np.float32).reshape(
(mean_blob.channels, mean_blob.height, mean_blob.width))
#Read model architecture and trained model's weights
caffe_description = args["description"]
caffe_model = args["weights"]
net = caffe.Net(caffe_description, caffe_model, caffe.TEST)
#Define image transformers
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) # input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer.set_mean('data', mean_array)
'''
- The set_transpose transforms an image from (256,256,3) to (3,256,256).
- The set_channel_swap function will change the channel ordering. Caffe uses BGR image format, so we need to
change the image from RGB to BGR. If you are using OpenCV to load the image, then this step is not necessary
since OpenCV also uses the BGR format
- The set_raw_scale is needed only if you load images with caffe.io.load_image(). You do not need it if using OpenCV.
It means that the reference model operates on images in [0,255] range instead of [0,1].
'''
transformer.set_transpose('data', (2,0,1))
#transformer.set_raw_scale('data', 255) # use only with caffe.io.load_image()
#transformer.set_channel_swap('data', (2,1,0)) # do not need to use it with OpenCV
# reshape the blobs so that they match the image shape.
#net.blobs['data'].reshape(1,3,32,32)
# ##################################################################################################
'''
Making predictions
'''
#Reading image paths
test_img_paths = [img_path for img_path in glob.glob(TEST_DATASET)]
NUMEL = len(test_img_paths)
#Making predictions
test_ids = np.zeros(([NUMEL,1]))
preds = np.zeros(([NUMEL, 10]))
idx = 0
tot_true = 0
tot_false = 0
top5_true = 0
top5_false= 0
for img_path in test_img_paths:
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
#img = transform_img(img, img_width=IMAGE_WIDTH, img_height=IMAGE_HEIGHT)
#cv2.imshow('img_path', img)
#cv2.waitKey(0)
#img = caffe.io.load_image(img_path) # alternative way
net.blobs['data'].data[...] = transformer.preprocess('data', img)
out = net.forward()
best_n = net.blobs['prob'].data[0].flatten().argsort()[-1: -6:-1]
#print("DBG INFO: ", best_n)
pred_probas = out['prob'] # returns the probabilities of the 10 classes
# compute top-5: take the last 5 elements [-5:] and reverse them [::-1]
top5 = pred_probas.argsort()[-5:][::-1]
if 'airplane' in img_path:
label = 0
elif 'automobile' in img_path:
label = 1
elif 'bird' in img_path:
label = 2
elif 'cat' in img_path:
label = 3
elif 'deer' in img_path:
label = 4
elif 'dog' in img_path:
label = 5
elif 'frog' in img_path:
label = 6
elif 'horse' in img_path:
label = 7
elif 'ship' in img_path:
label = 8
elif 'truck' in img_path:
label = 9
else:
label = -1 # non existing
if label in top5 :
top5_true = top5_true + 1
else :
top5_false = top5_false + 1
#print "DBG INFO ", label, top5
test_ids[idx] = label
preds[idx] = pred_probas
#print("DBG INFO ", pred_probas)
print("IMAGE: " + img_path)
print("PREDICTED: %d" % preds[idx].argmax())
print("EXPECTED : %d" % test_ids[idx])
print '-------'
idx = idx+1
# if idx==100 :
# break
# ##################################################################################################
# SKLEARN REPORT
'''
precision = tp / (tp+fp) = ability of the classifier to not label as positive a sample that is negative
recall = tp / (tp+fn) = ability of the classifier to find all positive samples
F1-score = weighter harmonic mean of precision and recall. Best value approaches 1 and worst 0
support = number of occurrences
'''
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
lb = LabelBinarizer()
testY = lb.fit_transform(test_ids)
labelNames = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
report=classification_report(testY.argmax(axis=1), preds.argmax(axis=1), target_names=labelNames)
print(report)
from sklearn.metrics import accuracy_score
print('SKLEARN Accuracy = %.2f' % accuracy_score(testY.argmax(axis=1), preds.argmax(axis=1)) )
# ##################################################################################################
# CHECK MANUALLY THE ACCURACY: false and positive predictions
list_predictions = np.array(preds.argmax(axis=1)) # actual predictions
list_str_num = np.array(testY.argmax(axis=1)) # ground truth
for ii in range(0, NUMEL) :
n1 = list_str_num[ii]
n2 = list_predictions[ii]
diff = n1 - n2
if diff == 0 :
tot_true = tot_true + 1
else:
tot_false = tot_false+1
top5_accuracy = float(top5_true) / (top5_true + top5_false)
print("\n")
print('TOP-5 ACCURACY = %.2f ' % top5_accuracy)
print 'TOP-5 FALSE = ', top5_false
print 'TOP-5 TRUE = ', top5_true
print("\n")
print 'TOTAL NUMBER OF TRUE PREDICTIONS = ', tot_true
print 'TOTAL NUMBER OF FALSE PREDICTIONS = ', tot_false
if (tot_true+tot_false) != NUMEL :
print 'ERROR: number of total false and positive is not equal to the number of processed images'
if (top5_true+top5_false) != NUMEL :
print 'ERROR: number of top5 total false and positive is not equal to the number of processed images'
recall = float(tot_true)/(tot_true+tot_false)
print('MANUALLY COMPUTED RECALL = %.2f ' % recall)