forked from tatz1101/Edge-AI-Platform-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2b_compute_mean.py
80 lines (56 loc) · 2.74 KB
/
2b_compute_mean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# ##################################################################################################
# USAGE
# python 2b_compute_mean.py
# It reads the images from LMDB training database and create the mean file
# by [email protected]
# ##################################################################################################
import os
import glob
import random
import warnings
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
import numpy as np
from config import cifar10_config as config
import cv2
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import caffe
from caffe.proto import caffe_pb2
import lmdb
import argparse
# ##################################################################################################
# working directories
INP_DIR = config.INPUT_DIR # "/home/ML/cifar10/input"
INP_LMDB = config.LMDB_DIR + "/train_lmdb" # "/home/ML/cifar10/input/lmdb/train_lmdb"
# ##################################################################################################
# MEAN of all training dataset images
print ('\nGenerating mean image of all training data')
mean_command = config.CAFFE_TOOLS_DIR + "/bin/compute_image_mean.bin -backend=lmdb "
os.system(mean_command + INP_LMDB + ' ' + config.MEAN_FILE)
# ##################################################################################################
# show the mean image
blob = caffe.proto.caffe_pb2.BlobProto()
data = open(config.MEAN_FILE).read()
blob.ParseFromString(data)
mean_array = np.asarray(blob.data, dtype=np.float32).reshape((blob.channels, blob.height, blob.width))
print " mean value channel 0: ", np.mean(mean_array[0,:,:])
print " mean value channel 1: ", np.mean(mean_array[1,:,:])
print " mean value channel 2: ", np.mean(mean_array[2,:,:])
'''
# display image of mean values
arr = np.array(caffe.io.blobproto_to_array(blob))[0, :, :, :].mean(0)
plt.imshow(arr, cmap=cm.Greys_r)
#plt.imshow(arr, cmap=cm.brg)
plt.show()
'''
# ##################################################################################################
# THE RESULT SHOULD BE SOMETHING LIKE THIS IN CASE OF HISTOGRAM EQUALIZATION:
# I0809 14:48:51.925524 336 compute_image_mean.cpp:114] Number of channels: 3
# I0809 14:48:51.925531 336 compute_image_mean.cpp:119] mean_value channel [0]: 128.473
# I0809 14:48:51.925547 336 compute_image_mean.cpp:119] mean_value channel [1]: 128.708
# I0809 14:48:51.925551 336 compute_image_mean.cpp:119] mean_value channel [2]: 128.355
# THE RESULT SHOULD BE SOMETHING LIKE THIS:
# mean value channel 0: 125.28421 = 125
# mean value channel 1: 122.94682 = 123
# mean value channel 2: 113.860016 = 114