-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine-tune.py
378 lines (285 loc) · 12.4 KB
/
fine-tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import random
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
from torch.nn import MSELoss, BCEWithLogitsLoss
from torch.nn.utils import clip_grad_norm_
from torch.optim import Adafactor
from torch.amp import autocast
from torch.cuda import is_available as cuda_is_available, is_bf16_supported
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms.v2 import (
Compose,
RandomResizedCrop,
RandomHorizontalFlip,
ColorJitter,
)
from torchmetrics.image import (
PeakSignalNoiseRatio,
StructuralSimilarityIndexMeasure,
VisualInformationFidelity,
)
from data import ImageFolder
from model import SuperCool, Bouncer
from loss import TVLoss
from tqdm import tqdm
def main():
parser = ArgumentParser(description="Generative adversarial fine-tuning script.")
parser.add_argument(
"--base_model_path", default="./checkpoints/checkpoint.pt", type=str
)
parser.add_argument("--train_images_path", default="./dataset/train", type=str)
parser.add_argument("--test_images_path", default="./dataset/test", type=str)
parser.add_argument("--num_dataset_processes", default=4, type=int)
parser.add_argument("--target_resolution", default=256, type=int)
parser.add_argument("--brightness_jitter", default=0.1, type=float)
parser.add_argument("--contrast_jitter", default=0.1, type=float)
parser.add_argument("--saturation_jitter", default=0.1, type=float)
parser.add_argument("--hue_jitter", default=0.1, type=float)
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--gradient_accumulation_steps", default=8, type=int)
parser.add_argument("--critic_warmup_epochs", default=3, type=int)
parser.add_argument("--num_epochs", default=100, type=int)
parser.add_argument("--learning_rate", default=1e-2, type=float)
parser.add_argument("--rms_decay", default=-0.8, type=float)
parser.add_argument("--tv_penalty", default=0.5, type=float)
parser.add_argument("--low_memory_optimizer", action="store_true")
parser.add_argument("--max_gradient_norm", default=1.0, type=float)
parser.add_argument(
"--critic_model_size", default="small", choices=("small", "medium", "large")
)
parser.add_argument("--eval_interval", default=5, type=int)
parser.add_argument("--checkpoint_interval", default=10, type=int)
parser.add_argument(
"--checkpoint_path", default="./checkpoints/fine-tuned.pt", type=str
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--run_dir_path", default="./runs/fine-tune", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=None, type=int)
args = parser.parse_args()
if args.batch_size < 1:
raise ValueError(f"Batch size must be greater than 0, {args.batch_size} given.")
if args.learning_rate < 0:
raise ValueError(
f"Learning rate must be a positive value, {args.learning_rate} given."
)
if args.num_epochs < 1:
raise ValueError(f"Must train for at least 1 epoch, {args.num_epochs} given.")
if args.eval_interval < 1:
raise ValueError(
f"Eval interval must be greater than 0, {args.eval_interval} given."
)
if args.checkpoint_interval < 1:
raise ValueError(
f"Checkpoint interval must be greater than 0, {args.checkpoint_interval} given."
)
if "cuda" in args.device and not cuda_is_available():
raise RuntimeError("Cuda is not available.")
dtype = (
torch.bfloat16
if args.device == "cuda" and is_bf16_supported()
else torch.float32
)
amp_context = autocast(device_type=args.device, dtype=dtype)
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
logger = SummaryWriter(args.run_dir_path)
checkpoint = torch.load(
args.base_model_path, map_location=args.device, weights_only=True
)
model_args = checkpoint["model_args"]
pre_transformer = Compose(
[
RandomResizedCrop(args.target_resolution),
RandomHorizontalFlip(),
ColorJitter(
brightness=args.brightness_jitter,
contrast=args.contrast_jitter,
saturation=args.saturation_jitter,
hue=args.hue_jitter,
),
]
)
training = ImageFolder(
root_path=args.train_images_path,
upscale_ratio=model_args["upscale_ratio"],
target_resolution=args.target_resolution,
pre_transformer=pre_transformer,
)
testing = ImageFolder(
root_path=args.test_images_path,
upscale_ratio=model_args["upscale_ratio"],
target_resolution=args.target_resolution,
)
train_loader = DataLoader(
training,
batch_size=args.batch_size,
pin_memory="cpu" not in args.device,
shuffle=True,
num_workers=args.num_dataset_processes,
)
test_loader = DataLoader(
testing,
batch_size=args.batch_size,
pin_memory="cpu" not in args.device,
shuffle=False,
num_workers=args.num_dataset_processes,
)
upscaler = SuperCool(**model_args)
upscaler = torch.compile(upscaler)
upscaler.load_state_dict(checkpoint["model"])
print("Model checkpoint loaded")
critic_args = {
"model_size": args.critic_model_size,
}
critic = Bouncer(**critic_args)
critic = torch.compile(critic)
upscaler = upscaler.to(args.device)
critic = critic.to(args.device)
l2_loss_function = MSELoss()
tv_loss_function = TVLoss()
bce_loss_function = BCEWithLogitsLoss()
upscaler_optimizer = Adafactor(
upscaler.parameters(),
lr=args.learning_rate,
beta2_decay=args.rms_decay,
foreach=not args.low_memory_optimizer,
)
critic_optimizer = Adafactor(
critic.parameters(),
lr=args.learning_rate,
beta2_decay=args.rms_decay,
foreach=not args.low_memory_optimizer,
)
starting_epoch = 1
if args.resume:
checkpoint = torch.load(
args.checkpoint_path, map_location="cpu", weights_only=True
) # Always load into CPU RAM first to prevent CUDA out-of-memory errors.
upscaler.load_state_dict(checkpoint["model"])
upscaler_optimizer.load_state_dict(checkpoint["optimizer"])
critic.load_state_dict(checkpoint["critic"])
critic_optimizer.load_state_dict(checkpoint["critic_optimizer"])
starting_epoch += checkpoint["epoch"]
upscaler = upscaler.to(args.device)
critic = critic.to(args.device)
print("Previous checkpoint resumed successfully")
print(f"Upscaler has {upscaler.num_trainable_params:,} trainable parameters")
print(f"Critic has {critic.num_trainable_params:,} trainable parameters")
psnr_metric = PeakSignalNoiseRatio().to(args.device)
ssim_metric = StructuralSimilarityIndexMeasure().to(args.device)
vif_metric = VisualInformationFidelity().to(args.device)
print("Training ...")
upscaler.train()
critic.train()
for epoch in range(starting_epoch, args.num_epochs + 1):
total_l2_loss, total_tv_loss = 0.0, 0.0
total_u_bce_loss, total_c_bce_loss = 0.0, 0.0
total_u_gradient_norm, total_c_gradient_norm = 0.0, 0.0
total_batches, total_steps = 0, 0
for step, (x, y) in enumerate(
tqdm(train_loader, desc=f"Epoch {epoch}", leave=False), start=1
):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
real_labels = torch.full((x.size(0), 1), 1.0).to(args.device)
fake_labels = torch.full((x.size(0), 1), 0.0).to(args.device)
with amp_context:
c_pred_real = critic(y)
u_pred = upscaler(x)
c_pred_fake = critic(u_pred.detach())
c_pred = torch.cat((c_pred_real, c_pred_fake), dim=0)
labels = torch.cat((real_labels, fake_labels), dim=0)
c_bce_loss = bce_loss_function(c_pred, labels)
c_loss = c_bce_loss
c_loss /= args.gradient_accumulation_steps
c_loss.backward()
update_this_step = step % args.gradient_accumulation_steps == 0
if update_this_step:
norm = clip_grad_norm_(critic.parameters(), args.max_gradient_norm)
critic_optimizer.step()
critic_optimizer.zero_grad()
total_c_gradient_norm += norm.item()
total_steps += 1
total_c_bce_loss += c_bce_loss.item()
if epoch > args.critic_warmup_epochs:
with amp_context:
l2_loss = l2_loss_function(u_pred, y)
tv_loss = tv_loss_function(u_pred)
reconstruction_loss = l2_loss + args.tv_penalty * tv_loss
c_pred = critic(u_pred)
u_bce_loss = bce_loss_function(c_pred, real_labels)
u_loss = (
reconstruction_loss / reconstruction_loss.detach()
+ u_bce_loss / u_bce_loss.detach()
) # Dynamically weight the losses
u_loss /= args.gradient_accumulation_steps
u_loss.backward()
if update_this_step:
norm = clip_grad_norm_(
upscaler.parameters(), args.max_gradient_norm
)
upscaler_optimizer.step()
total_u_gradient_norm += norm.item()
total_l2_loss += l2_loss.item()
total_tv_loss += tv_loss.item()
total_u_bce_loss += u_bce_loss.item()
if update_this_step:
upscaler_optimizer.zero_grad(set_to_none=True)
critic_optimizer.zero_grad(set_to_none=True)
total_batches += 1
average_l2_loss = total_l2_loss / total_batches
average_tv_loss = total_tv_loss / total_batches
average_u_bce_loss = total_u_bce_loss / total_batches
average_c_bce_loss = total_c_bce_loss / total_batches
average_u_gradient_norm = total_u_gradient_norm / total_steps
average_c_gradient_norm = total_c_gradient_norm / total_steps
logger.add_scalar("L2 Loss", average_l2_loss, epoch)
logger.add_scalar("TV Loss", average_tv_loss, epoch)
logger.add_scalar("BCE Loss", average_u_bce_loss, epoch)
logger.add_scalar("Gradient Norm", average_u_gradient_norm, epoch)
logger.add_scalar("Critic BCE", average_c_bce_loss, epoch)
logger.add_scalar("Critic Norm", average_c_gradient_norm, epoch)
print(
f"Epoch {epoch}:",
f"L2 Loss: {average_l2_loss:.5},",
f"TV Loss: {average_tv_loss:.5},",
f"BCE Loss: {average_u_bce_loss:.5},",
f"Gradient Norm: {average_u_gradient_norm:.4},",
f"Critic BCE: {average_c_bce_loss:.5},",
f"Critic Norm: {average_c_gradient_norm:.4}",
)
if epoch % args.eval_interval == 0:
upscaler.eval()
for x, y in tqdm(test_loader, desc="Testing", leave=False):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with torch.no_grad():
y_pred = upscaler(x)
psnr_metric.update(y_pred, y)
ssim_metric.update(y_pred, y)
vif_metric.update(y_pred, y)
psnr = psnr_metric.compute()
ssim = ssim_metric.compute()
vif = vif_metric.compute()
logger.add_scalar("PSNR", psnr, epoch)
logger.add_scalar("SSIM", ssim, epoch)
logger.add_scalar("VIF", vif, epoch)
print(f"PSNR: {psnr:.5}, SSIM: {ssim:.5}, VIF: {vif:.5}")
upscaler.train()
if epoch % args.checkpoint_interval == 0:
checkpoint = {
"epoch": epoch,
"model_args": model_args,
"model": upscaler.state_dict(),
"optimizer": upscaler_optimizer.state_dict(),
"critic_args": critic_args,
"critic": critic.state_dict(),
"critic_optimizer": critic_optimizer.state_dict(),
}
torch.save(checkpoint, args.checkpoint_path)
print("Checkpoint saved")
if __name__ == "__main__":
main()