-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinteract_adapter.py
185 lines (155 loc) · 6.47 KB
/
interact_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from tabulate import tabulate
tabulate.PRESERVE_WHITESPACE = True
from utils.helper import load_classifier
from utils.helper import EOS_ID
from utils.utils_sample import scorer
import torch.nn.functional as F
import torch
from nltk import tokenize
#CUDA_VISIBLE_DEVICES=2 python main.py -D sentiment --label_class 3 --length 30 --num_samples 1 --interact --verbose --speaker DGPT --load_check_point_adapter runs/SENT_very_negative_Mar30_13-59-53/pytorch_model.bin
def top_k_logits(logits, k, probs=False):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
if probs:
return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
def sample(model, args, context=None, past=None, device='cuda',
sample=True, repetition_penalty=1.0):
output = torch.tensor(context, device=device, dtype=torch.long) if context else None
output_response = output.new_zeros([output.size(0),0])
stopped = [0 for _ in range(output.size(0))]
for i in range(args.length):
if past is None and output is not None:
prev = output[:, -1:]
_, past = model(output[:, :-1])
logits, past = model(prev, past=past)
logits = logits[:, -1, :] / args.temperature # + SmallConst
for i_o, o_ in enumerate(output):
for token_idx in set(o_.tolist()):
if logits[i_o, token_idx] < 0:
logits[i_o, token_idx] *= repetition_penalty
else:
logits[i_o, token_idx] /= repetition_penalty
logits = top_k_logits(logits, k=args.top_k) # + SmallConst
log_probs = F.softmax(logits, dim=-1)
if sample:
prev = torch.multinomial(log_probs, num_samples=1)
else:
_, prev = torch.topk(log_probs, k=1, dim=-1)
output = prev if output is None else torch.cat((output, prev), dim=1) # update output
output_response = torch.cat((output_response, prev), dim=1)
for i_p, p in enumerate(prev.tolist()):
if(p[0]) == EOS_ID:
stopped[i_p] = 1
if(all(x == 1 for x in stopped)): break
return output_response
def get_rankers(args,model):
classifiers = {}
args.discrim = 'sentiment'
args.label_class = 2
classifier, class2idx = load_classifier(args, model)
classifiers['a'] = [classifier, class2idx]
args.discrim = 'sentiment'
args.label_class = 3
classifier, class2idx = load_classifier(args, model)
classifiers['b'] = [classifier, class2idx]
args.discrim = 'daily_dialogue_act'
args.label_class = 1
classifier, class2idx = load_classifier(args, model)
classifiers['c'] = [classifier, class2idx]
args.discrim = 'toxicity'
args.label_class = 1
classifier, class2idx = load_classifier(args, model)
classifiers['d'] = [classifier, class2idx]
args.discrim = 'AG_NEWS'
args.label_class = 0
classifier, class2idx = load_classifier(args, model)
classifiers['e'] = [classifier, class2idx]
args.discrim = 'AG_NEWS'
args.label_class = 1
classifier, class2idx = load_classifier(args, model)
classifiers['f'] = [classifier, class2idx]
args.discrim = 'AG_NEWS'
args.label_class = 2
classifier, class2idx = load_classifier(args, model)
classifiers['g'] = [classifier, class2idx]
args.discrim = 'AG_NEWS'
args.label_class = 3
classifier, class2idx = load_classifier(args, model)
classifiers['h'] = [classifier, class2idx]
return classifiers
def interact(args,model,enc,classifier,class2idx,device):
classifiers = get_rankers(args,model)
history = []
while True:
raw_text = input("USR >>> ")
while not raw_text:
print('Prompt should not be empty!')
raw_text = input("USR >>>")
style = input("Choose a style \n (a) Positive (b) Negative (c) Question (d) Toxic (e) World (f) Sports (g) Business (h) Sci/Tech (i) DGPT \n >>> ")
if(style == "a"):
classifier,class2idx = classifiers["a"]
args.num_samples = 10
task_id = 1
args.label_class = 2
elif(style == "b"):
classifier,class2idx = classifiers["b"]
args.num_samples = 10
task_id = 0
args.label_class = 3
elif(style == "c"):
classifier,class2idx = classifiers["c"]
args.num_samples = 10
task_id = 3
args.label_class = 1
elif(style == "d"):
classifier,class2idx = classifiers["d"]
args.num_samples = 10
task_id = 2
args.label_class = 1
elif(style == "e"):
classifier,class2idx = classifiers["e"]
args.num_samples = 10
task_id = 7
args.label_class = 0
elif(style == "f"):
classifier,class2idx = classifiers["f"]
args.num_samples = 10
task_id = 6
args.label_class = 1
elif(style == "g"):
classifier,class2idx = classifiers["g"]
args.num_samples = 10
task_id = 4
args.label_class = 2
elif(style == "h"):
classifier,class2idx = classifiers["h"]
args.num_samples = 10
task_id = 5
args.label_class = 3
else:
args.num_samples = 1
args.label_class = 0
task_id = -1
history.append(raw_text)
context_tokens = sum([enc.encode(h) + [EOS_ID] for h in history],[])
context_tokens = [context_tokens for _ in range(args.num_samples)]
original_sentence = sample(model=model,args=args, context=context_tokens, device=device,
repetition_penalty=args.repetition_penalty)
spk_turn = {"text":original_sentence.tolist()}
hypotesis, _, _ = scorer(args,spk_turn,classifier,enc,class2idx,knowledge=None,plot=False)
text = hypotesis[0][-1]
text = " ".join(tokenize.sent_tokenize(text)[:2])
# print(text_sent)
# print(text_sent[0])
print(f"SYS >>> {text}")
history.append(text)
history = history[-(2*args.max_history+1):]