Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).
For example:
Given binary tree [3,9,20,null,null,15,7]
,
3
/ \
9 20
/ \
15 7
return its level order traversal as:
[
[3],
[9,20],
[15,7]
]
使用一个队列。先压入根节点和一个空白节点,然后依次弹出节点:
- 如果节点不为空,把当前值加到列表,然后把节点的左右孩子节点压入队列尾部(如果孩子节点不为空)
- 如果节点为空,并且队列不为空,则添加当前列表
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> list = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
queue.offer(null);
TreeNode node;
List<Integer> level = new ArrayList<>();
while ((node = queue.poll()) != null || queue.peek() != null) {
if (node == null) {
queue.offer(null);
list.add(level);
level = new ArrayList<>();
continue;
}
level.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
if (level.size() > 0) {
list.add(level);
}
return list;
}
}
在思路一的基础上进行优化。思路一通过往队列里添加空白节点作为每一层的分隔。 其实当前队列的长度就是该层节点的个数,通过 for 循环往队列里压入下一层节点。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> list = new ArrayList<>();
if (root == null) return list;
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
while (!queue.isEmpty()) {
List<Integer> temp = new ArrayList<>();
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.peek();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
temp.add(queue.poll().val);
}
list.add(temp);
}
return list;
}
}
使用递归。
递归函数带上参数,包括要返回的列表,当前节点,当前层次。 每一层对应一个列表,取到当前层对应的那个列表,添加当前节点的值, 然后递归操作当前节点的左右孩子节点。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) return res;
helper(res, root, 0);
return res;
}
public void helper(List<List<Integer>> res, TreeNode root, int level) {
if (root == null) return;
if (level >= res.size()) {
res.add(new ArrayList<Integer>());
}
res.get(level).add(root.val);
helper(res, root.left, level + 1);
helper(res, root.right, level + 1);
}
}