forked from cleardusk/3DDFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·205 lines (180 loc) · 9.29 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
# coding: utf-8
__author__ = 'cleardusk'
"""
The pipeline of 3DDFA prediction: given one image, predict the 3d face vertices, 68 landmarks and visualization.
[todo]
1. CPU optimization: https://pmchojnacki.wordpress.com/2018/10/07/slow-pytorch-cpu-performance
"""
import torch
import torchvision.transforms as transforms
import mobilenet_v1
import numpy as np
import cv2
import dlib
from utils.ddfa import ToTensorGjz, NormalizeGjz, str2bool
import scipy.io as sio
from utils.inference import get_suffix, parse_roi_box_from_landmark, crop_img, predict_68pts, dump_to_ply, dump_vertex, \
draw_landmarks, predict_dense, parse_roi_box_from_bbox, get_colors, write_obj_with_colors
from utils.cv_plot import plot_pose_box
from utils.estimate_pose import parse_pose
from utils.render import get_depths_image, cget_depths_image, cpncc
from utils.paf import gen_img_paf
import argparse
import torch.backends.cudnn as cudnn
STD_SIZE = 120
def main(args):
# 1. load pre-tained model
checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
arch = 'mobilenet_1'
checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
model = getattr(mobilenet_v1, arch)(num_classes=62) # 62 = 12(pose) + 40(shape) +10(expression)
model_dict = model.state_dict()
# because the model is trained by multiple gpus, prefix module should be removed
for k in checkpoint.keys():
model_dict[k.replace('module.', '')] = checkpoint[k]
model.load_state_dict(model_dict)
if args.mode == 'gpu':
cudnn.benchmark = True
model = model.cuda()
model.eval()
# 2. load dlib model for face detection and landmark used for face cropping
if args.dlib_landmark:
dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
face_regressor = dlib.shape_predictor(dlib_landmark_model)
if args.dlib_bbox:
face_detector = dlib.get_frontal_face_detector()
# 3. forward
tri = sio.loadmat('visualize/tri.mat')['tri']
transform = transforms.Compose([ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
for img_fp in args.files:
img_ori = cv2.imread(img_fp)
if args.dlib_bbox:
rects = face_detector(img_ori, 1)
else:
rects = []
if len(rects) == 0:
rects = dlib.rectangles()
rect_fp = img_fp + '.bbox'
lines = open(rect_fp).read().strip().split('\n')[1:]
for l in lines:
l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
rect = dlib.rectangle(l, r, t, b)
rects.append(rect)
pts_res = []
Ps = [] # Camera matrix collection
poses = [] # pose collection, [todo: validate it]
vertices_lst = [] # store multiple face vertices
ind = 0
suffix = get_suffix(img_fp)
for rect in rects:
# whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
if args.dlib_landmark:
# - use landmark for cropping
pts = face_regressor(img_ori, rect).parts()
pts = np.array([[pt.x, pt.y] for pt in pts]).T
roi_box = parse_roi_box_from_landmark(pts)
else:
# - use detected face bbox
bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
roi_box = parse_roi_box_from_bbox(bbox)
img = crop_img(img_ori, roi_box)
# forward: one step
img = cv2.resize(img, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
input = transform(img).unsqueeze(0)
with torch.no_grad():
if args.mode == 'gpu':
input = input.cuda()
param = model(input)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
# 68 pts
pts68 = predict_68pts(param, roi_box)
# two-step for more accurate bbox to crop face
if args.bbox_init == 'two':
roi_box = parse_roi_box_from_landmark(pts68)
img_step2 = crop_img(img_ori, roi_box)
img_step2 = cv2.resize(img_step2, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
input = transform(img_step2).unsqueeze(0)
with torch.no_grad():
if args.mode == 'gpu':
input = input.cuda()
param = model(input)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
pts68 = predict_68pts(param, roi_box)
pts_res.append(pts68)
P, pose = parse_pose(param)
Ps.append(P)
poses.append(pose)
# dense face 3d vertices
if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj:
vertices = predict_dense(param, roi_box)
vertices_lst.append(vertices)
if args.dump_ply:
dump_to_ply(vertices, tri, '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
if args.dump_vertex:
dump_vertex(vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''), ind))
if args.dump_pts:
wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
np.savetxt(wfp, pts68, fmt='%.3f')
print('Save 68 3d landmarks to {}'.format(wfp))
if args.dump_roi_box:
wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
np.savetxt(wfp, roi_box, fmt='%.3f')
print('Save roi box to {}'.format(wfp))
if args.dump_paf:
wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''), ind)
wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''), ind)
paf_feature = gen_img_paf(img_crop=img, param=param, kernel_size=args.paf_size)
cv2.imwrite(wfp_paf, paf_feature)
cv2.imwrite(wfp_crop, img)
print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
if args.dump_obj:
wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
colors = get_colors(img_ori, vertices)
write_obj_with_colors(wfp, vertices, tri, colors)
print('Dump obj with sampled texture to {}'.format(wfp))
ind += 1
if args.dump_pose:
# P, pose = parse_pose(param) # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
img_pose = plot_pose_box(img_ori, Ps, pts_res)
wfp = img_fp.replace(suffix, '_pose.jpg')
cv2.imwrite(wfp, img_pose)
print('Dump to {}'.format(wfp))
if args.dump_depth:
wfp = img_fp.replace(suffix, '_depth.png')
# depths_img = get_depths_image(img_ori, vertices_lst, tri-1) # python version
depths_img = cget_depths_image(img_ori, vertices_lst, tri - 1) # cython version
cv2.imwrite(wfp, depths_img)
print('Dump to {}'.format(wfp))
if args.dump_pncc:
wfp = img_fp.replace(suffix, '_pncc.png')
pncc_feature = cpncc(img_ori, vertices_lst, tri - 1) # cython version
cv2.imwrite(wfp, pncc_feature[:, :, ::-1]) # cv2.imwrite will swap RGB -> BGR
print('Dump to {}'.format(wfp))
if args.dump_res:
draw_landmarks(img_ori, pts_res, wfp=img_fp.replace(suffix, '_3DDFA.jpg'), show_flg=args.show_flg)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='3DDFA inference pipeline')
parser.add_argument('-f', '--files', nargs='+',
help='image files paths fed into network, single or multiple images')
parser.add_argument('-m', '--mode', default='cpu', type=str, help='gpu or cpu mode')
parser.add_argument('--show_flg', default='true', type=str2bool, help='whether show the visualization result')
parser.add_argument('--bbox_init', default='one', type=str,
help='one|two: one-step bbox initialization or two-step')
parser.add_argument('--dump_res', default='true', type=str2bool, help='whether write out the visualization image')
parser.add_argument('--dump_vertex', default='false', type=str2bool,
help='whether write out the dense face vertices to mat')
parser.add_argument('--dump_ply', default='true', type=str2bool)
parser.add_argument('--dump_pts', default='true', type=str2bool)
parser.add_argument('--dump_roi_box', default='false', type=str2bool)
parser.add_argument('--dump_pose', default='true', type=str2bool)
parser.add_argument('--dump_depth', default='true', type=str2bool)
parser.add_argument('--dump_pncc', default='true', type=str2bool)
parser.add_argument('--dump_paf', default='false', type=str2bool)
parser.add_argument('--paf_size', default=3, type=int, help='PAF feature kernel size')
parser.add_argument('--dump_obj', default='true', type=str2bool)
parser.add_argument('--dlib_bbox', default='true', type=str2bool, help='whether use dlib to predict bbox')
parser.add_argument('--dlib_landmark', default='true', type=str2bool,
help='whether use dlib landmark to crop image')
args = parser.parse_args()
main(args)