-
Notifications
You must be signed in to change notification settings - Fork 0
/
drive.py
140 lines (112 loc) · 3.83 KB
/
drive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import base64
from datetime import datetime
import os
import shutil
import numpy as np
import socketio
import eventlet
import eventlet.wsgi
from PIL import Image
from flask import Flask
from io import BytesIO
import cv2
from keras.models import load_model
import h5py
from keras import __version__ as keras_version
sio = socketio.Server()
app = Flask(__name__)
model = None
prev_image_array = None
class SimplePIController:
def __init__(self, Kp, Ki):
self.Kp = Kp
self.Ki = Ki
self.set_point = 0.
self.error = 0.
self.integral = 0.
def set_desired(self, desired):
self.set_point = desired
def update(self, measurement):
# proportional error
self.error = self.set_point - measurement
# integral error
self.integral += self.error
return self.Kp * self.error + self.Ki * self.integral
controller = SimplePIController(0.1, 0.002)
set_speed = 9
controller.set_desired(set_speed)
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = data["steering_angle"]
# The current throttle of the car
throttle = data["throttle"]
# The current speed of the car
speed = data["speed"]
# The current image from the center camera of the car
imgString = data["image"]
image = Image.open(BytesIO(base64.b64decode(imgString)))
image_array = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1))
throttle = controller.update(float(speed))
print(steering_angle, throttle)
send_control(steering_angle, throttle)
# save frame
if args.image_folder != '':
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(args.image_folder, timestamp)
image.save('{}.jpg'.format(image_filename))
else:
# NOTE: DON'T EDIT THIS.
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'model',
type=str,
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'image_folder',
type=str,
nargs='?',
default='',
help='Path to image folder. This is where the images from the run will be saved.'
)
args = parser.parse_args()
# check that model Keras version is same as local Keras version
f = h5py.File(args.model, mode='r')
model_version = f.attrs.get('keras_version')
keras_version = str(keras_version).encode('utf8')
if model_version != keras_version:
print('You are using Keras version ', keras_version,
', but the model was built using ', model_version)
model = load_model(args.model)
if args.image_folder != '':
print("Creating image folder at {}".format(args.image_folder))
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
print("RECORDING THIS RUN ...")
else:
print("NOT RECORDING THIS RUN ...")
# wrap Flask application with engineio's middleware
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)