-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathREADME.txt
105 lines (78 loc) · 3.58 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
============
csvvalidator
============
This module provides some simple utilities for validating data contained in CSV
files, or other similar data sources.
The source code for this module lives at:
https://github.com/alimanfoo/csvvalidator
Please report any bugs or feature requests via the issue tracker there.
Installation
============
This module is registered with the Python package index, so you can do::
$ easy_install csvvalidator
... or download from http://pypi.python.org/pypi/csvvalidator and
install in the usual way::
$ python setup.py install
If you want the bleeding edge, clone the source code repository::
$ git clone git://github.com/alimanfoo/csvvalidator.git
$ cd csvvalidator
$ python setup.py install
Usage
=====
The `CSVValidator` class is the foundation for all validator objects that are
capable of validating CSV data.
You can use the CSVValidator class to dynamically construct a validator, e.g.::
import sys
import csv
from csvvalidator import *
field_names = (
'study_id',
'patient_id',
'gender',
'age_years',
'age_months',
'date_inclusion'
)
validator = CSVValidator(field_names)
# basic header and record length checks
validator.add_header_check('EX1', 'bad header')
validator.add_record_length_check('EX2', 'unexpected record length')
# some simple value checks
validator.add_value_check('study_id', int,
'EX3', 'study id must be an integer')
validator.add_value_check('patient_id', int,
'EX4', 'patient id must be an integer')
validator.add_value_check('gender', enumeration('M', 'F'),
'EX5', 'invalid gender')
validator.add_value_check('age_years', number_range_inclusive(0, 120, int),
'EX6', 'invalid age in years')
validator.add_value_check('date_inclusion', datetime_string('%Y-%m-%d'),
'EX7', 'invalid date')
# a more complicated record check
def check_age_variables(r):
age_years = int(r['age_years'])
age_months = int(r['age_months'])
valid = (age_months >= age_years * 12 and
age_months % age_years < 12)
if not valid:
raise RecordError('EX8', 'invalid age variables')
validator.add_record_check(check_age_variables)
# validate the data and write problems to stdout
data = csv.reader('/path/to/data.csv', delimiter='\t')
problems = validator.validate(data)
write_problems(problems, sys.stdout)
For more complex use cases you can also sub-class `CSVValidator` to define
re-usable validator classes for specific data sources.
For a complete account of all of the functionality available from this module,
see the example.py and tests.py modules in the source code repository.
Notes
=====
Note that the `csvvalidator` module is intended to be used in combination with
the standard Python `csv` module. The `csvvalidator` module **will not**
validate the *syntax* of a CSV file. Rather, the `csvvalidator` module can be
used to validate any source of row-oriented data, such as is provided by a
`csv.reader` object.
I.e., if you want to validate data from a CSV file, you have to first construct
a CSV reader using the standard Python `csv` module, specifying the appropriate
dialect, and then pass the CSV reader as the source of data to either the
`CSVValidator.validate` or the `CSVValidator.ivalidate` method.