-
Notifications
You must be signed in to change notification settings - Fork 0
/
variational_mean_field.py
244 lines (182 loc) · 8.49 KB
/
variational_mean_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import gamma
from sklearn.preprocessing import MinMaxScaler
columns = ['user', 'item', 'score']
train_data = pd.read_csv('dataset/train_user_item_score.txt', header=None, names=columns).drop_duplicates(columns[0:1])
validation_data = pd.read_csv('dataset/validation_user_item_score.txt', header=None, names=columns).drop_duplicates(
columns[0:1])
users_items_train_matrix = train_data.pivot(index='user', columns='item', values='score')
users_graph = pd.read_csv('dataset/users_connections.txt', header=None, names=['user1', 'user2']).drop_duplicates(
['user1', 'user2'])
n_users = users_items_train_matrix.shape[0]
n_items = users_items_train_matrix.shape[1]
R = users_items_train_matrix.fillna(0).values
users_adjacency_list = defaultdict(list)
for _, connection in users_graph.iterrows():
if connection['user1'] < n_users and connection['user2'] < n_users:
users_adjacency_list[connection['user1']].append(connection['user2'])
n_epochs = 20
n_latent = 2
class VariationalMeanField:
def __init__(self, sigma=1, alpha_U=1, beta_U=1, alpha_V=1, beta_V=1):
self.sigma = sigma
self.alpha_U = alpha_U
self.beta_U = beta_U
self.alpha_V = alpha_V
self.beta_V = beta_V
self.sigma_U: float = 1 / gamma.rvs(self.alpha_U, self.beta_U)
self.sigma_V: float = 1 / gamma.rvs(self.alpha_V, self.beta_V)
self.sigma_U = 1
self.sigma_V = 1
self.U = np.random.normal(0.0, self.sigma_U, (n_latent, n_users))
self.V = np.random.normal(0.0, self.sigma_V, (n_latent, n_items))
self.mean_U = np.random.normal(0.0, self.sigma_U, (n_latent, n_users))
self.covs_U = [self.sigma_U * np.identity(n_latent) for _ in range(n_users)]
self.mean_V = np.random.normal(0.0, self.sigma_V, (n_latent, n_items))
self.covs_V = [self.sigma_V * np.identity(n_latent) for _ in range(n_items)]
self.W = np.zeros((n_users, n_users))
self.mean_W = np.zeros((n_users, n_users))
self.sigmas_W = np.zeros((n_users, n_users))
@staticmethod
def _neighbors_R(user, item) -> np.array:
neighbors = users_adjacency_list[user]
return np.array([R[neighbor, item] for neighbor in neighbors])
def _weighted_sum_of_neighbors(self, user, item):
neighbors = users_adjacency_list[user]
W_user = self.mean_W[user, neighbors]
neighbors_R = self._neighbors_R(user, item)
assert len(W_user) == len(neighbors_R)
neighbor_has_R = neighbors_R > 0
wighted_R = np.where(neighbor_has_R, np.multiply(neighbors_R, W_user), 0)
return wighted_R[neighbor_has_R].sum()
def _sample_U(self):
for i in range(n_users):
items_has_R = np.where(R[i, :] > 0)[0]
cov = ((self.alpha_U - 1) / self.beta_U) * np.identity(n_latent) + (1 / self.sigma) * (
sum([self.covs_V[j] + np.dot(np.array([self.mean_V[:, j]]).T, np.array([self.mean_V[:, j]])) for j in
items_has_R]))
self.covs_U[i] = cov
weighted_R_items = []
for item in items_has_R:
weighted_R_items.append(self._weighted_sum_of_neighbors(user=i, item=item))
mean = np.dot(cov, (
(1 / self.sigma) *
((np.dot(R[i, R[i, :] > 0], self.mean_V[:, R[i, :] > 0].T))
+
(sum(weighted_R_items) * np.sum(self.mean_V[:, R[i, :] > 0], axis=1)))
))
self.mean_U[:, i] = mean
self.U[:, i] = np.random.multivariate_normal(mean, cov, 1)
def _sample_V(self):
for j in range(n_items):
users_has_R = np.where(R[:, j] > 0)[0]
cov = ((self.alpha_V - 1) / self.beta_V) * np.identity(n_latent) + (1 / self.sigma) * (
sum([self.covs_U[i] + np.dot(np.array([self.mean_U[:, i]]).T, np.array([self.mean_U[:, i]])) for i in
users_has_R]))
cov = ((self.alpha_V - 1) / self.beta_V) * np.identity(n_latent) + (1 / self.sigma) * (
sum([self.covs_U[i] for i in
users_has_R]))
self.covs_V[j] = cov
weighted_R_users = []
for user in users_has_R:
weighted_R_users.append(self._weighted_sum_of_neighbors(user=user, item=j))
mean = np.dot(cov, (
(1 / self.sigma) *
((np.dot(R[R[:, j] > 0, j], self.mean_U[:, R[:, j] > 0].T))
+
(sum(weighted_R_users) * np.sum(self.mean_U[:, R[:, j] > 0], axis=1)))
))
self.mean_V[:, j] = mean
self.V[:, j] = np.random.multivariate_normal(mean, cov, 1)
def _sample_sigma_U(self):
self.alpha_U += (n_users * n_latent) / 2
for i in range(n_users):
for d in range(n_latent):
self.beta_U += 0.5 * (self.mean_U[d, i] ** 2 + self.covs_U[i][d, d])
self.sigma_U = 1 / gamma.rvs(self.alpha_U, self.beta_U)
self.sigma_U = 1
def _sample_sigma_V(self):
self.alpha_V += (n_items * n_latent) / 2
for j in range(n_items):
for d in range(n_latent):
self.beta_V += 0.5 * (self.mean_V[d, j] ** 2 + self.covs_U[j][d, d])
self.sigma_V = 1 / gamma.rvs(self.alpha_V, self.beta_V)
self.sigma_V = 1
def _sample_W(self):
for user in range(n_users):
neighbors = users_adjacency_list[user]
for neighbor in neighbors:
items_has_R = np.where(R[user, :] > 0)[0]
R_kj = sum([R[neighbor, item] ** 2 for item in items_has_R])
if R_kj != 0:
sigma_inv = ((1 / self.sigma) * R_kj)
sigma = 1 / sigma_inv
mean = sigma * (
sum([R[user, item] * R[neighbor, item] - np.dot(self.mean_U[:, user].T, self.mean_V[:, item]) *
R[
neighbor, item] for
item in items_has_R]))
self.W[user, neighbor] = np.random.normal(mean, sigma)
else:
self.W[user, neighbor] = 0
def sample(self):
self._sample_U()
self._sample_V()
self._sample_sigma_U()
self._sample_sigma_V()
self._sample_W()
self.mean_U = np.random.normal(0.0, self.sigma_U, (n_latent, n_users))
self.covs_U = [self.sigma_U * np.identity(n_latent) for _ in range(n_users)]
self.mean_V = np.random.normal(0.0, self.sigma_V, (n_latent, n_items))
self.covs_V = [self.sigma_V * np.identity(n_latent) for _ in range(n_items)]
# self.W = np.random.random(size=(n_users, n_users))
self.mean_W = np.zeros((n_users, n_users))
self.sigmas_W = np.zeros((n_users, n_users))
Ut_V: np.ndarray = np.matmul(self.U.T, self.V)
r_hat = np.random.normal(Ut_V, self.sigma, size=Ut_V.shape)
return r_hat
def normalize(a):
return MinMaxScaler().fit_transform(a) * 5
def compute_training_loss(a, b):
training = a > 0
squared_error = np.power(np.where(training, a - b, 0), 2)
return squared_error[training].mean()
variational_sampler = VariationalMeanField(sigma=np.var(R[R > 0]))
training_loss = []
Ut_V: np.ndarray = np.matmul(variational_sampler.U.T, variational_sampler.V)
r_hat = np.random.normal(Ut_V, variational_sampler.sigma, size=Ut_V.shape)
normalized_r_hat = normalize(r_hat)
loss = compute_training_loss(R, normalized_r_hat)
print(-1, loss)
training_loss.append(loss)
for k in range(n_epochs):
r_hat = variational_sampler.sample()
normalized_r_hat = normalize(r_hat)
loss = compute_training_loss(R, normalized_r_hat)
training_loss.append(loss)
print(k, loss)
print('#' * 20)
def mse(y_pred, y_true):
return np.power(np.subtract(y_true, y_pred), 2).mean()
def predict(user_id, item_id):
return normalized_r_hat[user_id, item_id]
ground_truths = []
predictions = []
false_data_count = 0
for _, row in validation_data.iterrows():
try:
predictions.append(predict(row.loc['user'], row.loc['item']))
ground_truths.append(row.loc['score'])
except IndexError as e:
false_data_count += 1
continue
print('mse: ', mse(ground_truths, predictions))
print('false data count: ', false_data_count)
plt.plot(training_loss)
plt.title('training loss')
plt.xlabel('iteration')
plt.ylabel('RMSE')
plt.show()