forked from keleog/PidginUNMT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
398 lines (360 loc) · 20.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import time
import json
import argparse
import warnings
warnings.simplefilter("ignore")
from src.data.loader import check_all_data_params, load_data
from src.utils import bool_flag, initialize_exp
from src.model import check_mt_model_params, build_mt_model
from src.trainer import TrainerMT
from src.evaluator import EvaluatorMT
def get_parser():
# parse parameters
parser = argparse.ArgumentParser(description='Language transfer')
parser.add_argument("--exp_name", type=str, default="",
help="Experiment name")
parser.add_argument("--exp_id", type=str, default="",
help="Experiment ID")
parser.add_argument("--dump_path", type=str, default="./dumped/",
help="Experiment dump path")
parser.add_argument("--save_periodic", type=bool_flag, default=False,
help="Save the model periodically")
parser.add_argument("--seed", type=int, default=-1,
help="Random generator seed (-1 for random)")
# autoencoder parameters
parser.add_argument("--emb_dim", type=int, default=300,
help="Embedding layer size")
parser.add_argument("--n_enc_layers", type=int, default=4,
help="Number of layers in the encoders")
parser.add_argument("--n_dec_layers", type=int, default=4,
help="Number of layers in the decoders")
parser.add_argument("--hidden_dim", type=int, default=300,
help="Hidden layer size")
parser.add_argument("--lstm_proj", type=bool_flag, default=False,
help="Projection layer between decoder LSTM and output layer")
parser.add_argument("--dropout", type=float, default=0,
help="Dropout")
parser.add_argument("--label-smoothing", type=float, default=0,
help="Label smoothing")
parser.add_argument("--attention", type=bool_flag, default=True,
help="Use an attention mechanism")
if not parser.parse_known_args()[0].attention:
parser.add_argument("--enc_dim", type=int, default=300,
help="Latent space dimension")
parser.add_argument("--proj_mode", type=str, default="last",
help="Projection mode (proj / pool / last)")
parser.add_argument("--init_encoded", type=bool_flag, default=False,
help="Initialize the decoder with the encoded state. Append it to each input embedding otherwise.")
else:
parser.add_argument("--transformer", type=bool_flag, default=True,
help="Use transformer architecture + attention mechanism")
if parser.parse_known_args()[0].transformer:
parser.add_argument("--transformer_ffn_emb_dim", type=int, default=2048,
help="Transformer fully-connected hidden dim size")
parser.add_argument("--attention_dropout", type=float, default=0,
help="attention_dropout")
parser.add_argument("--relu_dropout", type=float, default=0,
help="relu_dropout")
parser.add_argument("--encoder_attention_heads", type=int, default=10,
help="encoder_attention_heads")
parser.add_argument("--decoder_attention_heads", type=int, default=10,
help="decoder_attention_heads")
parser.add_argument("--encoder_normalize_before", type=bool_flag, default=False,
help="encoder_normalize_before")
parser.add_argument("--decoder_normalize_before", type=bool_flag, default=False,
help="decoder_normalize_before")
else:
parser.add_argument("--input_feeding", type=bool_flag, default=False,
help="Input feeding")
parser.add_argument("--share_att_proj", type=bool_flag, default=False,
help="Share attention projetion layer")
parser.add_argument("--share_lang_emb", type=bool_flag, default=True,
help="Share embedding layers between languages (enc / dec / proj)")
parser.add_argument("--share_encdec_emb", type=bool_flag, default=True,
help="Share encoder embeddings / decoder embeddings")
parser.add_argument("--share_decpro_emb", type=bool_flag, default=True,
help="Share decoder embeddings / decoder output projection")
parser.add_argument("--share_output_emb", type=bool_flag, default=True,
help="Share decoder output embeddings")
parser.add_argument("--share_lstm_proj", type=bool_flag, default=False,
help="Share projection layer between decoder LSTM and output layer)")
parser.add_argument("--share_enc", type=int, default=0,
help="Number of layers to share in the encoders")
parser.add_argument("--share_dec", type=int, default=0,
help="Number of layers to share in the decoders")
# encoder input perturbation
parser.add_argument("--word_shuffle", type=float, default=0,
help="Randomly shuffle input words (0 to disable)")
parser.add_argument("--word_dropout", type=float, default=0,
help="Randomly dropout input words (0 to disable)")
parser.add_argument("--word_blank", type=float, default=0,
help="Randomly blank input words (0 to disable)")
# discriminator parameters
parser.add_argument("--dis_layers", type=int, default=3,
help="Number of hidden layers in the discriminator")
parser.add_argument("--dis_hidden_dim", type=int, default=128,
help="Discriminator hidden layers dimension")
parser.add_argument("--dis_dropout", type=float, default=0,
help="Discriminator dropout")
parser.add_argument("--dis_clip", type=float, default=0,
help="Clip discriminator weights (0 to disable)")
parser.add_argument("--dis_smooth", type=float, default=0,
help="GAN smooth predictions")
parser.add_argument("--dis_input_proj", type=bool_flag, default=True,
help="Feed the discriminator with the projected output (attention only)")
# dataset
parser.add_argument("--langs", type=str, default="",
help="Languages (lang1,lang2)")
parser.add_argument("--vocab", type=str, default="",
help="Vocabulary (lang1:path1;lang2:path2)")
parser.add_argument("--vocab_min_count", type=int, default=0,
help="Vocabulary minimum word count")
parser.add_argument("--mono_dataset", type=str, default="",
help="Monolingual dataset (lang1:train1,valid1,test1;lang2:train2,valid2,test2)")
parser.add_argument("--para_dataset", type=str, default="",
help="Parallel dataset (lang1-lang2:train12,valid12,test12;lang1-lang3:train13,valid13,test13)")
parser.add_argument("--back_dataset", type=str, default="",
help="Back-parallel dataset, with noisy source and clean target (lang1-lang2:train121,train122;lang2-lang1:train212,train211)")
parser.add_argument("--n_mono", type=int, default=0,
help="Number of monolingual sentences (-1 for everything)")
parser.add_argument("--n_para", type=int, default=0,
help="Number of parallel sentences (-1 for everything)")
parser.add_argument("--n_back", type=int, default=0,
help="Number of back-parallel sentences (-1 for everything)")
parser.add_argument("--max_len", type=int, default=175,
help="Maximum length of sentences")
parser.add_argument("--max_vocab", type=int, default=-1,
help="Maximum vocabulary size (-1 to disable)")
# training steps
parser.add_argument("--n_dis", type=int, default=0,
help="Number of discriminator training iterations")
parser.add_argument("--mono_directions", type=str, default="",
help="Training directions (lang1,lang2)")
parser.add_argument("--para_directions", type=str, default="",
help="Training directions (lang1-lang2,lang2-lang1)")
parser.add_argument("--pivo_directions", type=str, default="",
help="Training directions with online back-translation, using a pivot (lang1-lang3-lang1,lang1-lang3-lang2)]")
parser.add_argument("--back_directions", type=str, default="",
help="Training directions with back-translation dataset (lang1-lang2)")
parser.add_argument("--otf_sample", type=float, default=-1,
help="Temperature for sampling back-translations (-1 for greedy decoding)")
parser.add_argument("--otf_backprop_temperature", type=float, default=-1,
help="Back-propagate through the encoder (-1 to disable, temperature otherwise)")
parser.add_argument("--otf_sync_params_every", type=int, default=1000, metavar="N",
help="Number of updates between synchronizing params")
parser.add_argument("--otf_num_processes", type=int, default=30, metavar="N",
help="Number of processes to use for OTF generation")
parser.add_argument("--otf_update_enc", type=bool_flag, default=True,
help="Update the encoder during back-translation training")
parser.add_argument("--otf_update_dec", type=bool_flag, default=True,
help="Update the decoder during back-translation training")
# language model training
parser.add_argument("--lm_before", type=int, default=0,
help="Training steps with language model pretraining (0 to disable)")
parser.add_argument("--lm_after", type=int, default=0,
help="Keep training the language model during MT training (0 to disable)")
parser.add_argument("--lm_share_enc", type=int, default=0,
help="Number of shared LSTM layers in the encoder")
parser.add_argument("--lm_share_dec", type=int, default=0,
help="Number of shared LSTM layers in the decoder")
parser.add_argument("--lm_share_emb", type=bool_flag, default=False,
help="Share language model lookup tables")
parser.add_argument("--lm_share_proj", type=bool_flag, default=False,
help="Share language model projection layers")
# training parameters
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size")
parser.add_argument("--group_by_size", type=bool_flag, default=True,
help="Sort sentences by size during the training")
parser.add_argument("--lambda_xe_mono", type=str, default="0",
help="Cross-entropy reconstruction coefficient (autoencoding)")
parser.add_argument("--lambda_xe_para", type=str, default="0",
help="Cross-entropy reconstruction coefficient (parallel data)")
parser.add_argument("--lambda_xe_back", type=str, default="0",
help="Cross-entropy reconstruction coefficient (back-parallel data)")
parser.add_argument("--lambda_xe_otfd", type=str, default="0",
help="Cross-entropy reconstruction coefficient (on-the-fly back-translation parallel data)")
parser.add_argument("--lambda_xe_otfa", type=str, default="0",
help="Cross-entropy reconstruction coefficient (on-the-fly back-translation autoencoding data)")
parser.add_argument("--lambda_dis", type=str, default="0",
help="Discriminator loss coefficient")
parser.add_argument("--lambda_lm", type=str, default="0",
help="Language model loss coefficient")
parser.add_argument("--enc_optimizer", type=str, default="adam,lr=0.0003",
help="Encoder optimizer (SGD / RMSprop / Adam, etc.)")
parser.add_argument("--dec_optimizer", type=str, default="enc_optimizer",
help="Decoder optimizer (SGD / RMSprop / Adam, etc.)")
parser.add_argument("--dis_optimizer", type=str, default="rmsprop,lr=0.0005",
help="Discriminator optimizer (SGD / RMSprop / Adam, etc.)")
parser.add_argument("--clip_grad_norm", type=float, default=5,
help="Clip gradients norm (0 to disable)")
parser.add_argument("--epoch_size", type=int, default=100000,
help="Epoch size / evaluation frequency")
parser.add_argument("--max_epoch", type=int, default=100000,
help="Maximum epoch size")
parser.add_argument("--stopping_criterion", type=str, default="",
help="Stopping criterion, and number of non-increase before stopping the experiment")
# reload models
parser.add_argument("--pretrained_emb", type=str, default="",
help="Reload pre-trained source and target word embeddings")
parser.add_argument("--pretrained_out", type=bool_flag, default=False,
help="Pretrain the decoder output projection matrix")
parser.add_argument("--reload_model", type=str, default="",
help="Reload a pre-trained model")
parser.add_argument("--reload_enc", type=bool_flag, default=False,
help="Reload a pre-trained encoder")
parser.add_argument("--reload_dec", type=bool_flag, default=False,
help="Reload a pre-trained decoder")
parser.add_argument("--reload_dis", type=bool_flag, default=False,
help="Reload a pre-trained discriminator")
# freeze network parameters
parser.add_argument("--freeze_enc_emb", type=bool_flag, default=False,
help="Freeze encoder embeddings")
parser.add_argument("--freeze_dec_emb", type=bool_flag, default=False,
help="Freeze decoder embeddings")
# evaluation
parser.add_argument("--eval_only", type=bool_flag, default=False,
help="Only run evaluations")
parser.add_argument("--beam_size", type=int, default=0,
help="Beam width (<= 0 means greedy)")
parser.add_argument("--length_penalty", type=float, default=1.0,
help="Length penalty: <1.0 favors shorter, >1.0 favors longer sentences")
return parser
def main(params):
# check parameters
assert params.exp_name
check_all_data_params(params)
check_mt_model_params(params)
# initialize experiment / load data / build model
logger = initialize_exp(params)
data = load_data(params, mono_only = False)
encoder, decoder, discriminator, lm = build_mt_model(params, data)
# initialize trainer / reload checkpoint / initialize evaluator
trainer = TrainerMT(encoder, decoder, discriminator, lm, data, params)
trainer.reload_checkpoint()
trainer.test_sharing() # check parameters sharing
evaluator = EvaluatorMT(trainer, data, params)
# evaluation mode
if params.eval_only:
evaluator.run_all_evals(0)
exit()
# language model pretraining
if params.lm_before > 0:
logger.info("Pretraining language model for %i iterations ..." % params.lm_before)
trainer.n_sentences = 0
for _ in range(params.lm_before):
for lang in params.langs:
trainer.lm_step(lang)
trainer.iter()
# define epoch size
if params.epoch_size == -1:
params.epoch_size = params.n_para
assert params.epoch_size > 0
# start training
for _ in range(trainer.epoch, params.max_epoch):
logger.info("====================== Starting epoch %i ... ======================" % trainer.epoch)
trainer.n_sentences = 0
while trainer.n_sentences < params.epoch_size:
# discriminator training
for _ in range(params.n_dis):
trainer.discriminator_step()
# language model training
if params.lambda_lm > 0:
for _ in range(params.lm_after):
for lang in params.langs:
trainer.lm_step(lang)
# MT training (parallel data)
if params.lambda_xe_para > 0:
for lang1, lang2 in params.para_directions:
trainer.enc_dec_step(lang1, lang2, params.lambda_xe_para)
# MT training (back-parallel data)
if params.lambda_xe_back > 0:
for lang1, lang2 in params.back_directions:
trainer.enc_dec_step(lang1, lang2, params.lambda_xe_back, back=True)
# autoencoder training (monolingual data)
if params.lambda_xe_mono > 0:
for lang in params.mono_directions:
trainer.enc_dec_step(lang, lang, params.lambda_xe_mono)
# AE - MT training (on the fly back-translation)
if params.lambda_xe_otfd > 0 or params.lambda_xe_otfa > 0:
# start on-the-fly batch generations
if not getattr(params, 'started_otf_batch_gen', False):
otf_iterator = trainer.otf_bt_gen_async()
params.started_otf_batch_gen = True
# update model parameters on subprocesses
if trainer.n_iter % params.otf_sync_params_every == 0:
trainer.otf_sync_params()
# get training batch from CPU
before_gen = time.time()
batches = next(otf_iterator)
trainer.gen_time += time.time() - before_gen
# training
for batch in batches:
lang1, lang2, lang3 = batch['lang1'], batch['lang2'], batch['lang3']
# 2-lang back-translation - autoencoding
if lang1 != lang2 == lang3:
trainer.otf_bt(batch, params.lambda_xe_otfa, params.otf_backprop_temperature)
# 2-lang back-translation - parallel data
elif lang1 == lang3 != lang2:
trainer.otf_bt(batch, params.lambda_xe_otfd, params.otf_backprop_temperature)
# 3-lang back-translation - parallel data
elif lang1 != lang2 and lang2 != lang3 and lang1 != lang3:
trainer.otf_bt(batch, params.lambda_xe_otfd, params.otf_backprop_temperature)
trainer.iter()
# end of epoch
logger.info("====================== End of epoch %i ======================" % trainer.epoch)
# evaluate discriminator / perplexity / BLEU
scores = evaluator.run_all_evals(trainer.epoch)
# print / JSON log
for k, v in scores.items():
logger.info('%s -> %.6f' % (k, v))
logger.info("__log__:%s" % json.dumps(scores))
# save best / save periodic / end epoch
trainer.save_best_model(scores)
trainer.save_periodic()
trainer.end_epoch(scores)
trainer.test_sharing()
if __name__ == '__main__':
parser = get_parser()
params, unknown = parser.parse_known_args()
#Model params
params.emb_dim = 300
params.hidden_dim = 300
params.n_enc_layers = 4
params.n_dec_layers = 4
params.share_enc = 3
params.share_dec = 3
params.encoder_attention_heads = 10
params.decoder_attention_heads = 10
params.share_lang_emb = True
params.share_encdec_emb = True
params.share_output_emb = True
params.share_decpro_emb = True
#Training params
params.exp_name = 'en_pd_exp'
params.word_shuffle = 3
params.word_dropout = 0.1
params.word_blank = 0.2
params.n_dis = 2
params.mono_directions = 'en,pd'
params.pivo_directions = 'en-pd-en,pd-en-pd'
params.lambda_xe_mono = '0:1,100000:0.1,300000:0'
params.lambda_xe_otfd = '1'
params.lambda_dis = '1'
params.stopping_criterion = 'bleu_en_pd_valid,10'
params.epoch_size = 500000
params.enc_optimizer = 'adam,lr=0.0001'
params.otf_num_processes = 30
params.batch_size = 16
params.max_len = 100
params.save_periodic = True
#Data params
params.langs = 'en,pd'
params.mono_dataset = 'en:en_train.pt,en_valid.pt,en_test.pt;pd:pd_train.pt,pd_valid.pt,pd_test.pt'
params.para_dataset = 'en-pd:,XX_para_valid.pt,XX_para_test.pt'
params.n_mono = -1
params.pretrained_emb = 'pidg_vect_RCSLS.txt'
main(params)