forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_for_diffusion.py
418 lines (378 loc) · 14.6 KB
/
transformer_for_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
from typing import Union, Optional, Tuple
import logging
import torch
import torch.nn as nn
from diffusion_policy.model.diffusion.positional_embedding import SinusoidalPosEmb
from diffusion_policy.model.common.module_attr_mixin import ModuleAttrMixin
logger = logging.getLogger(__name__)
class TransformerForDiffusion(ModuleAttrMixin):
def __init__(self,
input_dim: int,
output_dim: int,
horizon: int,
n_obs_steps: int = None,
cond_dim: int = 0,
n_layer: int = 12,
n_head: int = 12,
n_emb: int = 768,
p_drop_emb: float = 0.1,
p_drop_attn: float = 0.1,
causal_attn: bool=False,
time_as_cond: bool=True,
obs_as_cond: bool=False,
n_cond_layers: int = 0
) -> None:
super().__init__()
# compute number of tokens for main trunk and condition encoder
if n_obs_steps is None:
n_obs_steps = horizon
T = horizon
T_cond = 1
if not time_as_cond:
T += 1
T_cond -= 1
obs_as_cond = cond_dim > 0
if obs_as_cond:
assert time_as_cond
T_cond += n_obs_steps
# input embedding stem
self.input_emb = nn.Linear(input_dim, n_emb)
self.pos_emb = nn.Parameter(torch.zeros(1, T, n_emb))
self.drop = nn.Dropout(p_drop_emb)
# cond encoder
self.time_emb = SinusoidalPosEmb(n_emb)
self.cond_obs_emb = None
if obs_as_cond:
self.cond_obs_emb = nn.Linear(cond_dim, n_emb)
self.cond_pos_emb = None
self.encoder = None
self.decoder = None
encoder_only = False
if T_cond > 0:
self.cond_pos_emb = nn.Parameter(torch.zeros(1, T_cond, n_emb))
if n_cond_layers > 0:
encoder_layer = nn.TransformerEncoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=n_cond_layers
)
else:
self.encoder = nn.Sequential(
nn.Linear(n_emb, 4 * n_emb),
nn.Mish(),
nn.Linear(4 * n_emb, n_emb)
)
# decoder
decoder_layer = nn.TransformerDecoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True # important for stability
)
self.decoder = nn.TransformerDecoder(
decoder_layer=decoder_layer,
num_layers=n_layer
)
else:
# encoder only BERT
encoder_only = True
encoder_layer = nn.TransformerEncoderLayer(
d_model=n_emb,
nhead=n_head,
dim_feedforward=4*n_emb,
dropout=p_drop_attn,
activation='gelu',
batch_first=True,
norm_first=True
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=n_layer
)
# attention mask
if causal_attn:
# causal mask to ensure that attention is only applied to the left in the input sequence
# torch.nn.Transformer uses additive mask as opposed to multiplicative mask in minGPT
# therefore, the upper triangle should be -inf and others (including diag) should be 0.
sz = T
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
self.register_buffer("mask", mask)
if time_as_cond and obs_as_cond:
S = T_cond
t, s = torch.meshgrid(
torch.arange(T),
torch.arange(S),
indexing='ij'
)
mask = t >= (s-1) # add one dimension since time is the first token in cond
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
self.register_buffer('memory_mask', mask)
else:
self.memory_mask = None
else:
self.mask = None
self.memory_mask = None
# decoder head
self.ln_f = nn.LayerNorm(n_emb)
self.head = nn.Linear(n_emb, output_dim)
# constants
self.T = T
self.T_cond = T_cond
self.horizon = horizon
self.time_as_cond = time_as_cond
self.obs_as_cond = obs_as_cond
self.encoder_only = encoder_only
# init
self.apply(self._init_weights)
logger.info(
"number of parameters: %e", sum(p.numel() for p in self.parameters())
)
def _init_weights(self, module):
ignore_types = (nn.Dropout,
SinusoidalPosEmb,
nn.TransformerEncoderLayer,
nn.TransformerDecoderLayer,
nn.TransformerEncoder,
nn.TransformerDecoder,
nn.ModuleList,
nn.Mish,
nn.Sequential)
if isinstance(module, (nn.Linear, nn.Embedding)):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.MultiheadAttention):
weight_names = [
'in_proj_weight', 'q_proj_weight', 'k_proj_weight', 'v_proj_weight']
for name in weight_names:
weight = getattr(module, name)
if weight is not None:
torch.nn.init.normal_(weight, mean=0.0, std=0.02)
bias_names = ['in_proj_bias', 'bias_k', 'bias_v']
for name in bias_names:
bias = getattr(module, name)
if bias is not None:
torch.nn.init.zeros_(bias)
elif isinstance(module, nn.LayerNorm):
torch.nn.init.zeros_(module.bias)
torch.nn.init.ones_(module.weight)
elif isinstance(module, TransformerForDiffusion):
torch.nn.init.normal_(module.pos_emb, mean=0.0, std=0.02)
if module.cond_obs_emb is not None:
torch.nn.init.normal_(module.cond_pos_emb, mean=0.0, std=0.02)
elif isinstance(module, ignore_types):
# no param
pass
else:
raise RuntimeError("Unaccounted module {}".format(module))
def get_optim_groups(self, weight_decay: float=1e-3):
"""
This long function is unfortunately doing something very simple and is being very defensive:
We are separating out all parameters of the model into two buckets: those that will experience
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
We are then returning the PyTorch optimizer object.
"""
# separate out all parameters to those that will and won't experience regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, torch.nn.MultiheadAttention)
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = "%s.%s" % (mn, pn) if mn else pn # full param name
if pn.endswith("bias"):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.startswith("bias"):
# MultiheadAttention bias starts with "bias"
no_decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith("weight") and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
# special case the position embedding parameter in the root GPT module as not decayed
no_decay.add("pos_emb")
no_decay.add("_dummy_variable")
if self.cond_pos_emb is not None:
no_decay.add("cond_pos_emb")
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = decay & no_decay
union_params = decay | no_decay
assert (
len(inter_params) == 0
), "parameters %s made it into both decay/no_decay sets!" % (str(inter_params),)
assert (
len(param_dict.keys() - union_params) == 0
), "parameters %s were not separated into either decay/no_decay set!" % (
str(param_dict.keys() - union_params),
)
# create the pytorch optimizer object
optim_groups = [
{
"params": [param_dict[pn] for pn in sorted(list(decay))],
"weight_decay": weight_decay,
},
{
"params": [param_dict[pn] for pn in sorted(list(no_decay))],
"weight_decay": 0.0,
},
]
return optim_groups
def configure_optimizers(self,
learning_rate: float=1e-4,
weight_decay: float=1e-3,
betas: Tuple[float, float]=(0.9,0.95)):
optim_groups = self.get_optim_groups(weight_decay=weight_decay)
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas
)
return optimizer
def forward(self,
sample: torch.Tensor,
timestep: Union[torch.Tensor, float, int],
cond: Optional[torch.Tensor]=None, **kwargs):
"""
x: (B,T,input_dim)
timestep: (B,) or int, diffusion step
cond: (B,T',cond_dim)
output: (B,T,input_dim)
"""
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
time_emb = self.time_emb(timesteps).unsqueeze(1)
# (B,1,n_emb)
# process input
input_emb = self.input_emb(sample)
if self.encoder_only:
# BERT
token_embeddings = torch.cat([time_emb, input_emb], dim=1)
t = token_embeddings.shape[1]
position_embeddings = self.pos_emb[
:, :t, :
] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
# (B,T+1,n_emb)
x = self.encoder(src=x, mask=self.mask)
# (B,T+1,n_emb)
x = x[:,1:,:]
# (B,T,n_emb)
else:
# encoder
cond_embeddings = time_emb
if self.obs_as_cond:
cond_obs_emb = self.cond_obs_emb(cond)
# (B,To,n_emb)
cond_embeddings = torch.cat([cond_embeddings, cond_obs_emb], dim=1)
tc = cond_embeddings.shape[1]
position_embeddings = self.cond_pos_emb[
:, :tc, :
] # each position maps to a (learnable) vector
x = self.drop(cond_embeddings + position_embeddings)
x = self.encoder(x)
memory = x
# (B,T_cond,n_emb)
# decoder
token_embeddings = input_emb
t = token_embeddings.shape[1]
position_embeddings = self.pos_emb[
:, :t, :
] # each position maps to a (learnable) vector
x = self.drop(token_embeddings + position_embeddings)
# (B,T,n_emb)
x = self.decoder(
tgt=x,
memory=memory,
tgt_mask=self.mask,
memory_mask=self.memory_mask
)
# (B,T,n_emb)
# head
x = self.ln_f(x)
x = self.head(x)
# (B,T,n_out)
return x
def test():
# GPT with time embedding
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
# cond_dim=10,
causal_attn=True,
# time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
out = transformer(sample, timestep)
# GPT with time embedding and obs cond
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
cond_dim=10,
causal_attn=True,
# time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
cond = torch.zeros((4,4,10))
out = transformer(sample, timestep, cond)
# GPT with time embedding and obs cond and encoder
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
cond_dim=10,
causal_attn=True,
# time_as_cond=False,
n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
cond = torch.zeros((4,4,10))
out = transformer(sample, timestep, cond)
# BERT with time embedding token
transformer = TransformerForDiffusion(
input_dim=16,
output_dim=16,
horizon=8,
n_obs_steps=4,
# cond_dim=10,
# causal_attn=True,
time_as_cond=False,
# n_cond_layers=4
)
opt = transformer.configure_optimizers()
timestep = torch.tensor(0)
sample = torch.zeros((4,8,16))
out = transformer(sample, timestep)