forked from BellmanTimeHut/DIPO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
163 lines (127 loc) · 5.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import numpy as np
import torch
from agent.DiPo import DiPo
from agent.replay_memory import ReplayMemory, DiffusionMemory
from tensorboardX import SummaryWriter
import gym
import os
def readParser():
parser = argparse.ArgumentParser(description='Diffusion Policy')
parser.add_argument('--env_name', default="Hopper-v3",
help='Mujoco Gym environment (default: Hopper-v3)')
parser.add_argument('--seed', type=int, default=0, metavar='N',
help='random seed (default: 0)')
parser.add_argument('--num_steps', type=int, default=1000000, metavar='N',
help='env timesteps (default: 1000000)')
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='batch size (default: 256)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau', type=float, default=0.005, metavar='G',
help='target smoothing coefficient(τ) (default: 0.005)')
parser.add_argument('--update_actor_target_every', type=int, default=1, metavar='N',
help='update actor target per iteration (default: 1)')
parser.add_argument("--policy_type", type=str, default="Diffusion", metavar='S',
help="Diffusion, VAE or MLP")
parser.add_argument("--beta_schedule", type=str, default="cosine", metavar='S',
help="linear, cosine or vp")
parser.add_argument('--n_timesteps', type=int, default=100, metavar='N',
help='diffusion timesteps (default: 100)')
parser.add_argument('--diffusion_lr', type=float, default=0.0003, metavar='G',
help='diffusion learning rate (default: 0.0003)')
parser.add_argument('--critic_lr', type=float, default=0.0003, metavar='G',
help='critic learning rate (default: 0.0003)')
parser.add_argument('--action_lr', type=float, default=0.03, metavar='G',
help='diffusion learning rate (default: 0.03)')
parser.add_argument('--noise_ratio', type=float, default=1.0, metavar='G',
help='noise ratio in sample process (default: 1.0)')
parser.add_argument('--action_gradient_steps', type=int, default=20, metavar='N',
help='action gradient steps (default: 20)')
parser.add_argument('--ratio', type=float, default=0.1, metavar='G',
help='the ratio of action grad norm to action_dim (default: 0.1)')
parser.add_argument('--ac_grad_norm', type=float, default=2.0, metavar='G',
help='actor and critic grad norm (default: 1.0)')
parser.add_argument('--cuda', default='cuda:0',
help='run on CUDA (default: cuda:0)')
return parser.parse_args()
def evaluate(env, agent, writer, steps):
episodes = 10
returns = np.zeros((episodes,), dtype=np.float32)
for i in range(episodes):
state = env.reset()
episode_reward = 0.
done = False
while not done:
action = agent.sample_action(state, eval=True)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
state = next_state
returns[i] = episode_reward
mean_return = np.mean(returns)
writer.add_scalar(
'reward/test', mean_return, steps)
print('-' * 60)
print(f'Num steps: {steps:<5} '
f'reward: {mean_return:<5.1f}')
print('-' * 60)
def main(args=None):
if args is None:
args = readParser()
device = torch.device(args.cuda)
dir = "record"
# dir = "test"
log_dir = os.path.join(dir, f'{args.env_name}', f'policy_type={args.policy_type}', f'ratio={args.ratio}', f'seed={args.seed}')
writer = SummaryWriter(log_dir)
# Initial environment
env = gym.make(args.env_name)
state_size = int(np.prod(env.observation_space.shape))
action_size = int(np.prod(env.action_space.shape))
print(action_size)
# Set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env.seed(args.seed)
memory_size = 1e6
num_steps = args.num_steps
start_steps = 10000
eval_interval = 10000
updates_per_step = 1
batch_size = args.batch_size
log_interval = 10
memory = ReplayMemory(state_size, action_size, memory_size, device)
diffusion_memory = DiffusionMemory(state_size, action_size, memory_size, device)
agent = DiPo(args, state_size, env.action_space, memory, diffusion_memory, device)
steps = 0
episodes = 0
while steps < num_steps:
episode_reward = 0.
episode_steps = 0
done = False
state = env.reset()
episodes += 1
while not done:
if start_steps > steps:
action = env.action_space.sample()
else:
action = agent.sample_action(state, eval=False)
next_state, reward, done, _ = env.step(action)
mask = 0.0 if done else args.gamma
steps += 1
episode_steps += 1
episode_reward += reward
agent.append_memory(state, action, reward, next_state, mask)
if steps >= start_steps:
agent.train(updates_per_step, batch_size=batch_size, log_writer=writer)
if steps % eval_interval == 0:
evaluate(env, agent, writer, steps)
# self.save_models()
done =True
state = next_state
# if episodes % log_interval == 0:
# writer.add_scalar('reward/train', episode_reward, steps)
print(f'episode: {episodes:<4} '
f'episode steps: {episode_steps:<4} '
f'reward: {episode_reward:<5.1f}')
if __name__ == "__main__":
main()