-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim_initialization.m
941 lines (820 loc) · 47.9 KB
/
sim_initialization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
% This simulation varys the number of random initializations
addpath('tools/');
% clc;
clear all;
% close all;
% diary off;
% diary(['diary_',datestr(date,'yyyy-mm-dd'),'.txt']);
rng('default');
format compact;
% PRECISION = 1e-9;
% specify spatial mixer type
spatialMixerTypeList = {
'no';
'gauss';
'random_phase'; % 3: each entry of spatial mixing matrix has unit norm and uniform random phase
'cdp_binary'; % 4: coded diffraction pattern with binary mask
'cdp_ternary'; % 5: coded diffraction pattern with ternary mask
'cdp_complex'; % 6: coded diffraction pattern with complex mask
'dft';
};
spatialMixerTypeNumber = 2;
spatialMixerType = spatialMixerTypeList{spatialMixerTypeNumber};
% specify temporal mixer type
temporalMixerTypeList = {
'no';
'gauss';
'stcdp_binary' % 3: short-time coded diffraction pattern with binary mask
'stcdp_ternary' % 4: short-time coded diffraction pattern with ternary mask
'stcdp_complex' % 5: short-time coded diffraction pattern with complex mask
'stft' % 6: short-time fourier transform
};
temporalMixerTypeNumber = 1;
temporalMixerType = temporalMixerTypeList{temporalMixerTypeNumber};
% specify channel type
channelTypeList = {
'gauss'; % 1: each entry of ground-truth D i.i.d. follows CN(0,1)
'los'; % 2: D is LOS of ULA
};
channelTypeNumber = 1;
channelType = channelTypeList{channelTypeNumber};
% specify measurement model
measurementModelList = {
'gauss';
'pois'; % disabled
};
measurementModelNumber = 1;
measurementModel = measurementModelList{measurementModelNumber};
N = 16; %100; % no. of Rx antennas
I = 16*N; % no. of snapshots
P = N/2; % no. of users
L = 2;%0.1*P; % sparsity level
% parameters for short-time cdp temporal mixing
len_stcdp = I; % length of short-time coded diffraction pattern
% parameters for STFT temporal mixing
stft_window_len = I/2; % length of sliding window in STFT; rectangular window
stft_hopsize = I/4; % hop size in STFT
stft_fft_len = I; % no. of fft measurements in stft
% sptial and temporal oversampling rates
spatialSampleRate = 4;
temporalSampleRate = 4;
if strcmpi(spatialMixerType,'no')
spatialSampleRate = 1;
end
if strcmpi(temporalMixerType,'no')
temporalSampleRate = 1;
elseif strcmpi(temporalMixerType,'stft')
temporalSampleRate = ( (I + stft_window_len) / stft_hopsize - 1 ) * stft_fft_len / I;
end
% measurement size
M1 = spatialSampleRate * N;
M2 = temporalSampleRate * I;
SNR = 15;
% mu_factor = 10^1.5; % for sampling rate 2 x 2
mu_factor = 1;
% regularization parameters for the case without temporal mixing
lambda_factor = 0.75^14;
rho_factor = 0.75^14;
% regularization parameters for the case with temporal mixing
% lambda_factor = 0.75^21;
% rho_factor = 0.75^23;
nInstance = 1; % no. of random instances
initialSet = 1; % [1:5,10,20,30,50]; % test set of no. of random initializations for each instance
initialSize = length(initialSet); % size of set of no. of random initializations to test
maxInitial = max(initialSet); % max no. of random initializations to test
% set of testing algorithms
algoSet = {
@FUN_PRDLsca;
@FUN_PRDLscaX;
@scPRIME;
};
nAlgo = length(algoSet); % no. of algorithms to test
blockRule = zeros(nAlgo,1); % indicates block update rule, represents no. of blocks NOT to update in each iteration
debiasingOn = 0;
% regularization parameters
approxParamSet = ones(nAlgo,1);
if length(approxParamSet) < nAlgo
fprintf('Inconsistent simulation parameters. Aborting.\n');
return;
end
sparsityParamSet = [
0.75^17;
0.75^14;
0.75^14
];
if length(sparsityParamSet) < nAlgo
fprintf('Inconsistent simulation parameters. Aborting.\n');
return;
end
% set parameters for algorithms
params.maxIter = 2000;
params.tol = 1e-4;
params.verb = 0; % show information in each iteration if verb = 1
params.N = N;
params.I = I;
params.P = P;
params.L = L;
% varying parameters
paramList = {
'P'; % 1: no. of users P
'L'; % 2: sparsity level L
'M1'; % 3: no. of spatial measurements M1
'SNR'; % 4: SNR in dB for Gaussian observation model
'I'; % 5: no. of time-slots I
};
paramSetList = {
N; % [N/2 N N*2]; % test set of P
[2]; % test set of L
[2 4 8] * N; % test set of M1
[10,15,20,40,inf]; % test set of SNR
[4,8,16,32,64] * N; % test set of I
};
paramNumber1 = 1;
paramNumber2 = 2;
paramName1 = paramList{paramNumber1};
paramName2 = paramList{paramNumber2};
paramSet1 = paramSetList{paramNumber1};
paramSet2 = paramSetList{paramNumber2};
nParam1 = length(paramSet1);
nParam2 = length(paramSet2);
disp(datetime);
fprintf('Simulation Parameters:\n');
fprintf('Varying parameters: %s = %s, %s = %s, no. of random initializations = %s\n',paramName1,mat2str(paramSet1),paramName2,mat2str(paramSet2),mat2str(initialSet));
fprintf('P = %d, L = %d, N = %d, I = %d, M1 = %d, M2 = %d, SNR = %d dB\n',P,L,N,I,M1,M2,SNR);
fprintf('lambda factor = 0.75^%.0f, ', log(lambda_factor)/log(0.75) );
fprintf('mu factor = %.2e, rho factor = 0.75^%.0f\n', mu_factor, log(rho_factor)/log(0.75));
fprintf('Tolerance = %1.0e, max no. iterations = %d, Monte-Carlo runs = %d\n',params.tol,params.maxIter,nInstance);
fprintf('Channel type: %s\n', channelType);
fprintf('Measurement type: spatial mixer = %s, temporal mixer = %s\n', spatialMixerType, temporalMixerType);
fprintf('spatial oversampling rate = %.2f, temporal oversampling rate = %.2f\n',spatialSampleRate,temporalSampleRate);
if contains(temporalMixerType,'stft','IgnoreCase',true)
fprintf('Window length = %d, hop size = %d, no. FFT samples = %d\n\n',stft_window_len,stft_hopsize,stft_fft_len);
end
disp('Algorithms:');
disp(algoSet);
%% Data to record
sparsityZ = cell(nParam1,nParam2,nAlgo);
rmse_sparsityZ = cell(nParam1,nParam2,nAlgo);
precisionZ = cell(nParam1,nParam2,nAlgo);
recallZ = cell(nParam1,nParam2,nAlgo);
FmeasureZ = cell(nParam1,nParam2,nAlgo);
errorD = cell(nParam1,nParam2,nAlgo);
errorZ = cell(nParam1,nParam2,nAlgo);
errorAbsZ = cell(nParam1,nParam2,nAlgo);
errorX = cell(nParam1,nParam2,nAlgo);
errorDZ = cell(nParam1,nParam2,nAlgo);
Niter = cell(nParam1,nParam2,nAlgo);
runtime = cell(nParam1,nParam2,nAlgo);
optInitial = cell(nParam1,nParam2,nAlgo);
best.sparsityZ = cell(nParam1,nParam2,nAlgo);
best.rmse_sparsityZ = cell(nParam1,nParam2,nAlgo);
best.precisionZ = cell(nParam1,nParam2,nAlgo);
best.recallZ = cell(nParam1,nParam2,nAlgo);
best.FmeasureZ = cell(nParam1,nParam2,nAlgo);
best.errorD = cell(nParam1,nParam2,nAlgo);
best.errorZ = cell(nParam1,nParam2,nAlgo);
best.errorAbsZ = cell(nParam1,nParam2,nAlgo);
best.errorX = cell(nParam1,nParam2,nAlgo);
best.errorDZ = cell(nParam1,nParam2,nAlgo);
best.debiasedErrorD = cell(nParam1,nParam2,nAlgo);
best.debiasedErrorZ = cell(nParam1,nParam2,nAlgo);
best.debiasedErrorAbsZ = cell(nParam1,nParam2,nAlgo);
best.debiasedErrorX = cell(nParam1,nParam2,nAlgo);
best.debiasedErrorDZ = cell(nParam1,nParam2,nAlgo);
best.Niter = cell(nParam1,nParam2,nAlgo);
best.runtime = cell(nParam1,nParam2,nAlgo);
%% Average results
avgResults.pattern.sparsityZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.pattern.rmse_sparsityZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.pattern.precisionZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.pattern.recallZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.pattern.FmeasureZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.pattern.FmeasureZ_ref = zeros(nParam1,nParam2);
avgResults.error.D = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.error.Z = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.error.AbsZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.error.X = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.error.DZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.debiasedError.D = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.debiasedError.Z = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.debiasedError.AbsZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.debiasedError.X = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.debiasedError.DZ = zeros(nParam1,nParam2,nAlgo,initialSize);
avgResults.complexity.Niter = zeros(nParam1,nParam2,nAlgo,2,initialSize);
avgResults.complexity.runtime = zeros(nParam1,nParam2,nAlgo,2,initialSize);
%% Simulation starts
for iParam1 = 1:nParam1
switch paramName1
case 'P'
P = paramSet1(iParam1);
params.P = P;
case 'L'
L = paramSet1(iParam1);
params.L = L;
case 'M1'
M1 = paramSet1(iParam1);
spatialSampleRate = M1/N;
case 'SNR'
SNR = paramSet1(iParam1);
case 'I'
I = paramSet1(iParam1);
params.I = I;
M2 = temporalSampleRate * I;
end
for iParam2 = 1:nParam2
switch paramName2
case 'P'
P = paramSet2(iParam2);
params.P = P;
case 'L'
L = paramSet2(iParam2);
params.L = L;
case 'M1'
M1 = paramSet2(iParam2);
spatialSampleRate = M1/N;
case 'SNR'
SNR = paramSet2(iParam2);
case 'I'
I = paramSet2(iParam2);
params.I = I;
M2 = temporalSampleRate * I;
end
fprintf('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n');
fprintf('>>>>>> P = %2d, L = %2d, N = %2d, I = %d, M1 = %d, M2 = %d, SNR = %2d dB <<<<<<\n',P,L,N,I,M1,M2,SNR);
fprintf('>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n');
% initialize arrays to record results
for iAlgo = 1:nAlgo
errorD{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
sparsityZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
rmse_sparsityZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
precisionZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
recallZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
FmeasureZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
errorZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
errorAbsZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
errorX{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
errorDZ{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
Niter{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
runtime{iParam1,iParam2,iAlgo} = zeros(nInstance,maxInitial);
optInitial{iParam1,iParam2,iAlgo} = zeros(nInstance,initialSize);
best.sparsityZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.rmse_sparsityZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.precisionZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.recallZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.FmeasureZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.errorD{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.errorZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.errorAbsZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.errorX{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.errorDZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.debiasedErrorD{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.debiasedErrorZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.debiasedErrorAbsZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.debiasedErrorX{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.debiasedErrorDZ{iParam1,iParam2,iAlgo} = zeros(nInstance,1);
best.Niter{iParam1,iParam2,iAlgo} = zeros(nInstance,2);
best.runtime{iParam1,iParam2,iAlgo} = zeros(nInstance,2);
end
for iInstance = 1:nInstance
fprintf('=============================================================================================================================================================================\n');
fprintf('>>>>>>>>>> Instance %d <<<<<<<<<<\n', iInstance);
%% Measuremt matrix
% spatial mixer A
if strcmpi(spatialMixerType,'no')
A = @(XX,forward) XX;
sigmaA_min = 1; % smallest singular value of A
sigmaA_max = 1; % largest singular value of A
sigmaA_minnz = 1; % smallest nonzero singular value of A
elseif contains(spatialMixerType,'cdp','IgnoreCase',true)
mask = squeeze( create_cdp_masks(N,1,spatialSampleRate,spatialMixerType) );
A = @(XX,forward) op_cdp(XX,mask,forward);
A_mat = A(eye(N),1); % spatial mixer A in matrix version
sigmaA_min = svds(A_mat,1,'smallest'); % smallest singular value of A
sigmaA_max = svds(A_mat,1); % largest singular value of A
sigmaA_minnz = svds(A_mat,1,'smallestnz'); % smallest nonzero singular value of A
else
if strcmpi(spatialMixerType,'gauss') % spatial mixer A is gaussian random
A = (randn(M1,N) + 1i*randn(M1,N)) / sqrt(2);
% A = A ./ sqrt(sum(abs(A).^2,1)); % normalize columns
elseif strcmpi(spatialMixerType,'random_phase')
A = (randn(M1,N) + 1i*randn(M1,N));
A = sign(A);
A(abs(A) <= eps) = 1;
else % spatial mixer A is dft
A = exp(-2i*pi*[0:M1-1].'*[0:N-1]/M1); % First N columns of M1xM1 DFT matrix. Equivalent to extending length of RX signal to M1 by padding zeros at the end, when M1 > N
end
sigmaA_min = svds(A,1,'smallest'); % smallest singular value of A
sigmaA_max = svds(A,1); % largest singular value of A
sigmaA_minnz = svds(A,1,'smallestnz'); % smallest nonzero singular value of A
A = @(XX,forward) op_general_mat(XX,A,forward,1); % make function handle
end
% temporal mixer B
if strcmpi(temporalMixerType,'no') % no temporal mixer, B is identity
B = @(XX,forward) XX;
sigmaB_min = 1; % smallest singular value of B
sigmaB_max = 1; % largest singular value of B
sigmaB_minnz = 1; % smallest nonzero singular value of B
elseif strcmpi(temporalMixerType,'gauss') % temporal mixer B is gaussian random
B = (randn(I,M2) + 1i*randn(I,M2)) / sqrt(2);
% B = B ./ sqrt(sum(abs(B).^2,2)); % normalize rows
sigmaB_min = svds(B,1,'smallest'); % smallest singular value of B
sigmaB_max = svds(B,1); % largest singular value of B
sigmaB_minnz = svds(B,1,'smallestnz'); % smallest nonzero singular value of B
B = @(XX,forward) op_general_mat(XX,B,forward,0); % make funciton handle
elseif contains(temporalMixerType,'stcdp','IgnoreCase',true) % temporal mixer B is short-time cdp
mask = squeeze( create_cdp_masks(len_stcdp,1,temporalSampleRate,temporalMixerType) );
% mask = [ ones(8,1), [zeros(2,1);ones(6,1)], [zeros(4,1);ones(4,1)], [zeros(6,1);ones(2,1)] ];
B = @(XX,forward) op_stcdp(XX,mask,forward);
B_short = op_cdp(eye(len_stcdp),mask,1);
sigmaB_min = svds(B_short,1,'smallest');
sigmaB_max = svds(B_short,1);
sigmaB_minnz = svds(B_short,1,'smallestnz');
else % temporal mixer B is short-time fourier transform
B = @(XX,forward) op_stft(XX,stft_window_len,stft_hopsize,stft_fft_len,forward);
B_mat = B(eye(I),1);
sigmaB = svd(B_mat);
sigmaB_max = sigmaB(1);
sigmaB_min = sigmaB(end);
sigmaB_minnz = min( sigmaB( sigmaB > eps ) );
end
%% Generate random channel matrix
if contains(channelType,'gauss','IgnoreCase',true)
% 1. Spatial independent Gaussian channel
D_true = (randn(N,P) + 1i*randn(N,P)) / sqrt(2);
% D_true = D_true ./ sqrt( sum(abs(D_true).^2,1) ); % normalize columns
else
% 2. Users with equally spaced DoAs, only LOS and equal gain
direction = linspace(0,180,P+2); % angle of users (in degree), equally placed
direction = direction(2:end-1);
phase = -pi*bsxfun(@times,[0:1:(N-1)]',cos(direction/180*pi)); % ULA with half-wavelength spacing
D_true = exp(1i*phase);
end
% Corr_true = abs(bsxfun(@rdivide,bsxfun(@rdivide,D_true'*D_true,sqrt(sum(abs(D_true).^2,1))),sqrt(sum(abs(D_true).^2,1))')); % normalized correlation among columns of D_true
%% Generate sparse TX signal
Z_true = zeros(P,I); % TX signal
% for ind = 1 : I/len_stcdp
% supvec = randperm(P,L);% support vector
% Z_true(supvec,((ind-1)*len_stcdp+1):(ind*len_stcdp)) = ( randn(L,len_stcdp) + 1i*randn(L,len_stcdp) ) / sqrt(2);
% end
for ind = 1 : I
supvec = randperm(P,L);% support vector
Z_true(supvec,ind) = ( randn(L,1) + 1i*randn(L,1) ) / sqrt(2);
% Z_true(supvec,ind) = ( 10 + randn(L,1) ) .* exp(1i*2*pi*rand(L,1)); % magnitude ~ N(10,1), uniformly distributed phase
% Z_true(supvec,ind) = ( 1 ) .* exp(1i*2*pi*rand(L,1));
end
% Z_true = ( rand(P,I) <= L/P );
% zeroColInd = true(1,I);
% while any(zeroColInd)
% Z_true(:,zeroColInd) = ( rand(P,sum(zeroColInd)) <= L/P );
% % Z_true = ( rand(P,I) <= L/P );
% zeroColInd = ( sum(Z_true) == 0 );
% end
patternZ_true = (abs(Z_true)>eps); % sparsity pattern of TX signal
Z_true(~patternZ_true) = 0; % remove non-zero values below eps
% Z_true_normalized = bsxfun( @rdivide, Z_true, sqrt( sum(abs(Z_true).^2,2)./sum(pattern_true,2) ) );
%% RX signal
X_true = D_true*Z_true; % RX signal
%% Magnitude measurements
if isinf(SNR)
Y = abs( B( A(X_true,1), 1) );
else
Y = max(awgn(abs( B( A(X_true,1), 1) ),SNR,'measured','dB'),0); % noisy magnitude-only measurements
end
% groundtruth values and measurement parameters
data.D = D_true;
data.Z = Z_true;
data.X = X_true;
data.normD = norm(D_true,'fro');
data.normZ = norm(Z_true,'fro');
data.normX = norm(X_true,'fro');
data.A = A;
data.B = B;
data.L = L; % groundtruth sparsity level
data.len_stcdp = len_stcdp;
data.spatialMixerType = spatialMixerType;
data.temporalMixerType = temporalMixerType;
data.Y = Y;
%% Try several random initializations
% for recording solutions
X_sol = cell(nAlgo,maxInitial);
D_sol = cell(nAlgo,maxInitial);
Z_sol = cell(nAlgo,maxInitial);
patternZ_sol = cell(nAlgo,maxInitial);
optVal = zeros(nAlgo,maxInitial); % store the returned optimal value
for iInitial = 1:maxInitial
% Generate random initialization
D0 = (randn(N,P) + 1i * randn(N,P)) / sqrt(2);
D0 = D0 ./ sqrt(sum(abs(D0).^2,1)); % normalize each column
X0 = (randn(N,I) + 1i*randn(N,I)) / sqrt(2);
Z0 = D0 \ X0; % sparsiest solution; = pinv(D0)*X0 in overdetermined case
% Z0 = pinv(D0)*X0;
% Z0 = (randn(P,I) + 1i * randn(P,I))/sqrt(2);
% initialize as ground-truth
% D0 = D_true ./ sqrt(sum(abs(D_true).^2,1));
% Z0 = Z_true .* sqrt(sum(abs(D_true).^2,1)).';
%% Perform estimation using different algorithms
for iAlgo = 1:nAlgo
algoFunc = algoSet{iAlgo};
algoName = func2str(algoFunc);
params.blockRule = blockRule(iAlgo);
mu = mu_factor * sigmaA_minnz^2 * sigmaB_minnz^2;
params.mu = mu;
% compute upper bound of sparsity parameter
switch algoName
case 'FUN_PRDLsca'
% algorithm w/o variable X, Gaussian observation
% model
if strcmpi(temporalMixerType,'no')
lambda_max = sigmaA_max * sqrt(max(sum(abs(Y).^2)));
else
lambda_max = sigmaA_max * max( sum( abs(B(eye(I),1)) .* sqrt( sum(abs(Y).^2) ), 2 ) );
end
case {'FUN_PRDLscaX','scPRIME'}
% algorithm with variable X, Gaussian
% observation model
if strcmpi(temporalMixerType,'no')
if M1 >= N
lambda_max = mu/(sigmaA_min^2 + mu) * sigmaA_max * sqrt(max(sum(abs(Y).^2)));
else
lambda_max = sigmaA_max * sqrt(max(sum(abs(Y).^2)));
end
else
if M1 >= N && M2 >= I
lambda_max = mu/(sigmaA_min^2 * sigmaB_min^2 + mu) * sigmaA_max * sigmaB_max * norm(Y,'fro');
else
lambda_max = sigmaA_max * sigmaB_max * norm(Y,'fro');
end
end
end
lambda = lambda_factor * lambda_max;
params.lambda = lambda;
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
% fprintf('>>>>>> Algorithm %d: %s <<<<<<\n',iAlgo,algoName);
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
% fprintf(' mu factor | mu | lambda factor | lambda \n');
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
% fprintf(' %9f | %.2e | %13f | %.2e \n',...
% mu_factor, mu, lambda_factor, lambda);
% fprintf(' No. | mu factor | mu | lambda factor | lambda | Error X | Error DZ | Error D | Avg. Code Sparsity | RMSE Sparsity | FmeasureZ | Error Z | # iter | Runtime \n');
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
if nargout(algoFunc) == 4
[D,Z,patternZ,stat] = algoFunc(data,params,D0,Z0);
X = D*Z;
else
[X,D,Z,patternZ,stat] = algoFunc(data,params,X0,D0,Z0);
end
% record solution
X_sol{iAlgo,iInitial} = X;
D_sol{iAlgo,iInitial} = D;
Z_sol{iAlgo,iInitial} = Z;
patternZ_sol{iAlgo,iInitial} = patternZ;
optVal(iAlgo,iInitial) = stat.optVal;
% evaluate and record estimation quality
clear sol;
sol.D = D;
sol.Z = Z;
sol.X = X;
quality = eval_quality(sol,data);
precisionZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.precisionZ;
recallZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.recallZ;
FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.FmeasureZ;
errorX{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.errorX;
errorD{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.errorD;
errorZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.errorZ;
errorAbsZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.errorAbsZ;
errorDZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.errorDZ;
sparsityZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.sparsityZ;
rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,iInitial) = quality.rmse_sparsityZ;
% record other statistics
Niter{iParam1,iParam2,iAlgo}(iInstance,iInitial) = stat.Niter;
runtime{iParam1,iParam2,iAlgo}(iInstance,iInitial) = stat.runtime(end);
% print simulation info
% fprintf(' %3d | %9f | %.2e | %13f | %.2e | %6.5f | %7.6f | %6.5f | %18f | %13f | %9f | %6.5f | %6d | %5.1f s \n',...
% iInitial, mu_factor, mu, lambda_factor, lambda, errorX{iParam1,iParam2,iAlgo}(iInstance,iInitial), ...
% errorDZ{iParam1,iParam2,iAlgo}(iInstance,iInitial), errorD{iParam1,iParam2,iAlgo}(iInstance,iInitial), ...
% sparsityZ{iParam1,iParam2,iAlgo}(iInstance,iInitial), rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,iInitial), FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,iInitial),...
% errorZ{iParam1,iParam2,iAlgo}(iInstance,iInitial), Niter{iParam1,iParam2,iAlgo}(iInstance,iInitial), runtime{iParam1,iParam2,iAlgo}(iInstance,iInitial));
end
end
%% Find the best solution from random initializations and perform debiasing step
for ii = 1:initialSize
nInitial = initialSet(ii);
for iAlgo = 1:nAlgo
algoFunc = algoSet{iAlgo};
algoName = func2str(algoFunc);
% find the best one among the solutions from the frist
% nInitial random initializations according to
% objective function value
[~, optInitialInd] = min( optVal(iAlgo,1:nInitial) );
best.FmeasureZ{iParam1,iParam2,iAlgo}(iInstance) = FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.precisionZ{iParam1,iParam2,iAlgo}(iInstance) = precisionZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.recallZ{iParam1,iParam2,iAlgo}(iInstance) = recallZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.sparsityZ{iParam1,iParam2,iAlgo}(iInstance) = sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance) = rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.Niter{iParam1,iParam2,iAlgo}(iInstance,1) = Niter{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.runtime{iParam1,iParam2,iAlgo}(iInstance,1) = runtime{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.errorX{iParam1,iParam2,iAlgo}(iInstance) = errorX{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.errorDZ{iParam1,iParam2,iAlgo}(iInstance) = errorDZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.errorD{iParam1,iParam2,iAlgo}(iInstance) = errorD{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.errorZ{iParam1,iParam2,iAlgo}(iInstance) = errorZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.errorAbsZ{iParam1,iParam2,iAlgo}(iInstance) = errorAbsZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
optInitial{iParam1,iParam2,iAlgo}(iInstance) = optInitialInd;
% perform debiasing if optimal lambda > 0 and support of Z is not empty
if debiasingOn && (lambda_factor > 0) && (best.sparsityZ{iParam1,iParam2,iAlgo}(iInstance) > 0)
params.blockRule = blockRule(iAlgo);
mu = mu_factor * sigmaA_minnz^2 * sigmaB_minnz^2;
params.mu = mu;
params.lambda = -1; %params.verb = 1;
if nargout(algoFunc) == 4
[D,Z,~,stat] = algoFunc(data,params,D_sol{iAlgo,optInitialInd},Z_sol{iAlgo,optInitialInd});
X = D*Z;
else
[X,D,Z,~,stat] = algoFunc(data,params,X_sol{iAlgo,optInitialInd},D_sol{iAlgo,optInitialInd},Z_sol{iAlgo,optInitialInd});
end
clear sol;
sol.X = X;
sol.D = D;
sol.Z = Z;
quality = eval_quality(sol,data);
best.debiasedErrorX{iParam1,iParam2,iAlgo}(iInstance) = quality.errorX;
best.debiasedErrorDZ{iParam1,iParam2,iAlgo}(iInstance) = quality.errorDZ;
best.debiasedErrorD{iParam1,iParam2,iAlgo}(iInstance) = quality.errorD;
best.debiasedErrorZ{iParam1,iParam2,iAlgo}(iInstance) = quality.errorZ;
best.debiasedErrorAbsZ{iParam1,iParam2,iAlgo}(iInstance) = quality.errorAbsZ;
% record other statistics
best.Niter{iParam1,iParam2,iAlgo}(iInstance,2) = stat.Niter;
best.runtime{iParam1,iParam2,iAlgo}(iInstance,2) = stat.runtime(end);
else
best.debiasedErrorX{iParam1,iParam2,iAlgo}(iInstance) = errorX{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.debiasedErrorDZ{iParam1,iParam2,iAlgo}(iInstance) = errorDZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.debiasedErrorD{iParam1,iParam2,iAlgo}(iInstance) = errorD{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.debiasedErrorZ{iParam1,iParam2,iAlgo}(iInstance) = errorZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
best.debiasedErrorAbsZ{iParam1,iParam2,iAlgo}(iInstance) = errorAbsZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd);
% precisionZ{iParam1,iParam2,iAlgo}(iInstance,nLambda+1) = precisionZ{iParam1,iParam2,iAlgo}(iInstance,optLambdaInd);
% recallZ{iParam1,iParam2,iAlgo}(iInstance,nLambda+1) = recallZ{iParam1,iParam2,iAlgo}(iInstance,optLambdaInd);
% FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,nLambda+1) = FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,optLambdaInd);
% sparsityZ{iParam1,iParam2,iAlgo}(iInstance,nLambda+1) = sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optLambdaInd);
% rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,nLambda+1) = rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optLambdaInd);
% Niter{i_P,i_L}(i_instance,N_lambda+2) = 0;
% runtime{i_P,i_L}(i_instance,N_lambda+2) = 0;
end
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf('Algorithm %d: %s: best among %d random initializations\n',iAlgo,algoName,initialSet(ii));
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
% fprintf(' No. initial | mu factor | mu | lambda factor | lambda \n');
% fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
% fprintf(' %11d | %9f | %.2e | %13f | %.2e \n',...
% optInitialInd, mu_factor, mu, lambda_factor, lambda);
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' No. initial | Avg. Code Sparsity | RMSE Sparsity | FmeasureZ | Error X | Error DZ | Error D | Error Z | Error AbsZ | # iter | Runtime \n');
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' %11d | %18f | %13f | %9f | %6.5f | %7.6f | %6.5f | %6.5f | %10.5f | %4.0f + %4.0f | %3.1f + %3.1f s \n',...
optInitialInd,sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), rmse_sparsityZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd),...
FmeasureZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), errorX{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), ...
errorDZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), errorD{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), ...
errorZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd), errorAbsZ{iParam1,iParam2,iAlgo}(iInstance,optInitialInd),...
best.Niter{iParam1,iParam2,iAlgo}(iInstance,1), best.Niter{iParam1,iParam2,iAlgo}(iInstance,2), ...
best.runtime{iParam1,iParam2,iAlgo}(iInstance,1), best.runtime{iParam1,iParam2,iAlgo}(iInstance,2));
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' Debiased Errors:\n Error X | Error DZ | Error D | Error Z | Error AbsZ \n');
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' %6.5f | %7.6f | %6.5f | %6.5f | %10.5f \n',...
best.debiasedErrorX{iParam1,iParam2,iAlgo}(iInstance), best.debiasedErrorDZ{iParam1,iParam2,iAlgo}(iInstance), ...
best.debiasedErrorD{iParam1,iParam2,iAlgo}(iInstance),...
best.debiasedErrorZ{iParam1,iParam2,iAlgo}(iInstance), best.debiasedErrorAbsZ{iParam1,iParam2,iAlgo}(iInstance));
end
end
end
%% Average results over random instances
fprintf('=============================================================================================================================================================================\n');
fprintf('>>>>>>>>>> Average Results over %d Instances <<<<<<<<<<\n',nInstance);
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
for iAlgo = 1:nAlgo
avgResults.pattern.sparsityZ(iParam1,iParam2,iAlgo) = mean(best.sparsityZ{iParam1,iParam2,iAlgo});
avgResults.pattern.rmse_sparsityZ(iParam1,iParam2,iAlgo) = mean(best.rmse_sparsityZ{iParam1,iParam2,iAlgo});
avgResults.pattern.precisionZ(iParam1,iParam2,iAlgo) = mean(best.precisionZ{iParam1,iParam2,iAlgo});
avgResults.pattern.recallZ(iParam1,iParam2,iAlgo) = mean(best.recallZ{iParam1,iParam2,iAlgo});
avgResults.pattern.FmeasureZ(iParam1,iParam2,iAlgo) = mean(best.FmeasureZ{iParam1,iParam2,iAlgo});
avgResults.error.D(iParam1,iParam2,iAlgo) = mean(best.errorD{iParam1,iParam2,iAlgo});
avgResults.error.Z(iParam1,iParam2,iAlgo) = mean(best.errorZ{iParam1,iParam2,iAlgo});
avgResults.error.AbsZ(iParam1,iParam2,iAlgo) = mean(best.errorAbsZ{iParam1,iParam2,iAlgo});
avgResults.error.X(iParam1,iParam2,iAlgo) = mean(best.errorX{iParam1,iParam2,iAlgo});
avgResults.error.DZ(iParam1,iParam2,iAlgo) = mean(best.errorDZ{iParam1,iParam2,iAlgo});
avgResults.debiasedError.D(iParam1,iParam2,iAlgo) = mean(best.debiasedErrorD{iParam1,iParam2,iAlgo});
avgResults.debiasedError.Z(iParam1,iParam2,iAlgo) = mean(best.debiasedErrorZ{iParam1,iParam2,iAlgo});
avgResults.debiasedError.AbsZ(iParam1,iParam2,iAlgo) = mean(best.debiasedErrorAbsZ{iParam1,iParam2,iAlgo});
avgResults.debiasedError.X(iParam1,iParam2,iAlgo) = mean(best.debiasedErrorX{iParam1,iParam2,iAlgo});
avgResults.debiasedError.DZ(iParam1,iParam2,iAlgo) = mean(best.debiasedErrorDZ{iParam1,iParam2,iAlgo});
avgResults.complexity.Niter(iParam1,iParam2,iAlgo,1) = mean( sum(Niter{iParam1,iParam2,iAlgo},2), 1 );
avgResults.complexity.Niter(iParam1,iParam2,iAlgo,2) = mean(best.Niter{iParam1,iParam2,iAlgo}(:,2),1);
avgResults.complexity.runtime(iParam1,iParam2,iAlgo,1) = mean( sum(runtime{iParam1,iParam2,iAlgo},2), 1);
avgResults.complexity.runtime(iParam1,iParam2,iAlgo,2) = mean(best.runtime{iParam1,iParam2,iAlgo}(:,2),1);
fprintf('>>>>>> Algorithm %d: %s <<<<<<\n',iAlgo,func2str(algoSet{iAlgo}));
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' Avg. Code Sparsity | RMSE Sparsity | FmeasureZ | Error X | Error DZ | Error D | Error Z | Error AbsZ | # iter | Runtime \n');
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' %18f | %13f | %9f | %6.5f | %7.6f | %6.5f | %6.5f | %10.5f | %4.0f + %4.0f | %3.1f + %3.1f s \n',...
avgResults.pattern.sparsityZ(iParam1,iParam2,iAlgo), avgResults.pattern.rmse_sparsityZ(iParam1,iParam2,iAlgo), avgResults.pattern.FmeasureZ(iParam1,iParam2,iAlgo), ...
avgResults.error.X(iParam1,iParam2,iAlgo), avgResults.error.DZ(iParam1,iParam2,iAlgo), avgResults.error.D(iParam1,iParam2,iAlgo),...
avgResults.error.Z(iParam1,iParam2,iAlgo), avgResults.error.AbsZ(iParam1,iParam2,iAlgo), ...
avgResults.complexity.Niter(iParam1,iParam2,iAlgo,1), avgResults.complexity.Niter(iParam1,iParam2,iAlgo,2), avgResults.complexity.runtime(iParam1,iParam2,iAlgo,1), avgResults.complexity.runtime(iParam1,iParam2,iAlgo,2));
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' Debiased Errors:\n Error X | Error DZ | Error D | Error Z | Error AbsZ \n');
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
fprintf(' %6.5f | %7.6f | %6.5f | %6.5f | %10.5f \n',...
avgResults.debiasedError.X(iParam1,iParam2,iAlgo), avgResults.debiasedError.DZ(iParam1,iParam2,iAlgo),...
avgResults.debiasedError.D(iParam1,iParam2,iAlgo), avgResults.debiasedError.Z(iParam1,iParam2,iAlgo), avgResults.debiasedError.AbsZ(iParam1,iParam2,iAlgo) );
fprintf('-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n');
end
avgResults.pattern.FmeasureZ_ref(iParam1,iParam2) = harmmean([1,L/P]); % Fmeasure of a full matrix as a reference
end
% save(sprintf('N=%d_I=%d_M1=%d_M2=%d_SNR=%d_P=%s_L=%s_GaussianChannel_measurementType_spatial=%s_temporal=%s_MCruns=%d_%s.mat',...
% N,I,M1,M2,SNR,mat2str(P_set(1:i_P)),mat2str(L_set),spatialMixerType,temporalMixerType,N_instance,datestr(datetime,30)));
end
diary off;
%% Save data
% save([datestr(datetime,30),'.mat']);
fileName = sprintf('%s=%s_%s=%s_Ninitial=%s_N=%d_channel=%s_measurementType_spatial=%s_temporal=%s_MCruns=%d_%s.mat',...
paramName1,mat2str(paramSet1),paramName2,mat2str(paramSet2),mat2str(initialSet),N,channelType,spatialMixerType,temporalMixerType,nInstance,datestr(datetime,30));
save(fileName);
%% Plot results
% if strcmpi(paramName2,'M1')
% paramName2 = 'oversampling rate';
% paramSet2 = paramSet2 / N;
% end
%
% % create string for legend
% legend_str = cell(N_param1*N_param2,1);
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% legend_str{(i_param1-1)*N_param2 + i_param2} = sprintf('%s=%d, %s=%d',paramName1,paramSet1(i_param1),paramName2,paramSet2(i_param2));
% end
% end
%
% %% Complexity
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( sum(avgResults.complexity.Niter(i_param1,i_param2,1,:,:),4) ));
% hold on;
% end
% end
% % plot results of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( sum(avgResults.complexity.Niter(i_param1,i_param2,2,:,:),4) ),'--');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('number of iterations');
% legend(legend_str);
% matlab2tikz('Niter_varyInitial.tikz');
%
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( sum(avgResults.complexity.runtime(i_param1,i_param2,1,:,:),4) ));
% hold on;
% end
% end
% % plot results of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( sum(avgResults.complexity.runtime(i_param1,i_param2,2,:,:),4) ),'--');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('CPU time (seconds)');
% legend(legend_str);
% matlab2tikz('cputime_varyInitial.tikz');
%
% % figure;
% % plot(sum(avgResults.complexity.Niter(:,:,1,:),4).');
% % hold on;
% % plot(sum(avgResults.complexity.Niter(:,:,2,:),4).','--');
% % hold off;
% % grid on;
% % xlabel(paramName2);
% % title('Number of iterations');
% %
% % figure;
% % plot(sum(avgResults.complexity.runtime(:,:,1,:),4).');
% % hold on;
% % plot(sum(avgResults.complexity.runtime(:,:,2,:),4).','--');
% % hold off;
% % grid on;
% % xlabel(paramName2);
% % title('CPU time');
%
%
% %% Fmeasure
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( avgResults.pattern.FmeasureZ(i_param1,i_param2,1,:) ));
% hold on;
% end
% end
% % plot results of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( avgResults.pattern.FmeasureZ(i_param1,i_param2,2,:) ),'--');
% hold on;
% end
% end
% % plot reference Fmeasure of Z
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, squeeze( avgResults.pattern.FmeasureZ_ref(i_param1,i_param2)*ones(initial_size,1)),'-.');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('F-measure(Z)');
% legend(legend_str);
% matlab2tikz('FmeasureZ_varyInitial.tikz');
%
% %% Debiased Error
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.X(i_param1,i_param2,1,:) )) );
% hold on;
% end
% end
% % plot results of DZ of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.DZ(i_param1,i_param2,:) )),'--');
% hold on;
% end
% end
% % plot results of X of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.X(i_param1,i_param2,2,:))),'-.');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('MNSE(X) (dB)');
% legend(legend_str);
% matlab2tikz('errorX_varyInitial.tikz');
%
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.D(i_param1,i_param2,1,:) )) );
% hold on;
% end
% end
% % plot results of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.D(i_param1,i_param2,2,:) )),'--');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('MNSE(D) (dB)');
% legend(legend_str);
% matlab2tikz('errorD_varyInitial.tikz');
%
% figure;
% % plot results of algorithm 1
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.Z(i_param1,i_param2,1,:) )));
% hold on;
% end
% end
% % plot results of algorithm 2
% for i_param1 = 1:N_param1
% for i_param2 = 1:N_param2
% plot(initial_set, 20*log10(squeeze( avgResults.debiasedError.Z(i_param1,i_param2,2,:) )),'--');
% hold on;
% end
% end
% hold off;
% grid on;
% xlabel('number of initializations');
% ylabel('MNSE(Z) (dB)');
% legend(legend_str);
% matlab2tikz('errorZ_varyInitial.tikz');