-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathmandel.hpp
267 lines (239 loc) · 8.67 KB
/
mandel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#ifndef cxxmatrix_mandel_hpp
#define cxxmatrix_mandel_hpp
#include <cstddef>
#include <cmath>
#include <vector>
#include <algorithm>
#include <complex>
#include <numeric>
#include "cxxmatrix.hpp"
namespace cxxmatrix {
class mandelbrot_t {
int cols = 0, rows = 0;
std::vector<double> data;
double scale;
double theta;
bool prev_avail = false;
std::vector<double> data_new;
public:
void resize(int cols, int rows) {
if (cols == this->cols && rows == this->rows) return;
this->cols = cols;
this->rows = rows;
this->data.resize(cols * rows);
this->data_new.resize(cols * rows);
this->prev_avail = false;
std::fill(data.begin(), data.end(), -1.0);
}
double& get(int x, int y) {
return data[y * cols + x];
}
double const& get(int x, int y) const {
return const_cast<mandelbrot_t*>(this)->data[y * cols + x];
}
private:
static constexpr int max_iterate = 5000;
static int mandel(double u, double v) {
std::complex<double> const c(u, v);
std::complex<double> z = c;
int count = 0;
while (count < max_iterate) {
if (std::abs(z) > 2.0) break;
z = z * z + c;
count++;
}
return std::max(0, count - 5);
}
double get_nearest(double x, double y) const {
x = std::round(x);
y = std::round(y);
if (x < 0 || cols <= x) return -1.0;
if (y < 0 || rows <= y) return -1.0;
return data[y * cols + x];
}
double get_average(double x, double y, int R) const {
int x0 = std::round(x);
int y0 = std::round(y);
double sum = 0.0;
int count = 0;
int const a0 = std::max(x0 - R, 0);
int const aN = std::min(x0 + R, cols - 1);
int const b0 = std::max(y0 - R, 0);
int const bN = std::min(y0 + R, rows - 1);
for (int a = a0; a <= aN; a++) {
for (int b = b0; b <= bN; b++) {
double const v =data[b * cols + a];
sum += v;
count++;
}
}
if (count == 0) return -1.0;
return sum / count;
}
void resample_prev(double theta, double scale) {
if (!prev_avail) return;
double const dtheta = theta - this->theta;
double const dscale = scale / this->scale;
int const ox = cols / 2, oy = rows / 2;
double const u_x = +dscale * std::cos(dtheta) * 0.5 * 2.0;
double const u_y = -dscale * std::sin(dtheta) * 2.0;
double const v_x = +dscale * std::sin(dtheta) * 0.5;
double const v_y = +dscale * std::cos(dtheta);
int const Na = 5, Nb = 5;
for (int y = 0; y < rows; y++) {
for (int x = 0; x < cols; x++) {
double const u = ox + (u_x * (x - ox) + u_y * (oy - y));
double const v = oy - (v_x * (x - ox) + v_y * (oy - y));
int count = 0;
double sum = 0.0;
for (int a = 0; a < Na; a++) {
for (int b = 0; b < Nb; b++) {
double const dx = (a + 0.5) / Na - 0.5;
double const dy = (b + 0.5) / Nb - 0.5;
double const u1 = u + u_x * dx + u_y * dy;
double const v1 = v + v_x * dx + v_y * dy;
double const value = get_nearest(u1, v1);
if (value >= 0.0) sum += value, count++;
}
}
data_new[y * cols + x] = count ? sum / count : -1.0;
}
}
data.swap(data_new);
}
bool is_close(double a, double b) const {
return std::abs(a - b) / std::abs(a + b) < range * 0.01;
}
bool resample_safe(int x, int y) const {
if (!prev_avail) return false;
if (x <= 0 || cols - 1 <= x) return false;
if (y <= 0 || rows - 1 <= y) return false;
double const value = get(x, y);
if (value == min_power || value < 0.0) return false;
if (!is_close(value, get(x + 1, y))) return false;
if (!is_close(value, get(x - 1, y))) return false;
if (!is_close(value, get(x, y + 1))) return false;
if (!is_close(value, get(x, y - 1))) return false;
if (!is_close(value, get(x + 1, y + 1))) return false;
if (!is_close(value, get(x + 1, y - 1))) return false;
if (!is_close(value, get(x - 1, y + 1))) return false;
if (!is_close(value, get(x - 1, y - 1))) return false;
return true;
}
std::vector<int> positions;
static constexpr double u0 = -0.743643887037158704752191506114774;
static constexpr double v0 = +0.131825904205311970493132056385139;
double u_x;
double u_y;
double v_x;
double v_y;
double calculate_power_at(int x, int y, int* iterate_count) const {
int const ox = cols / 2, oy = rows / 2;
double const u = u0 + (u_x * (x - ox) + u_y * (oy - y));
double const v = v0 + (v_x * (x - ox) + v_y * (oy - y));
int sum = 0;
int const Na = 1, Nb = 1;
for (int a = 0; a < Na; a++) {
for (int b = 0; b < Nb; b++) {
double const dx = (a + 0.5) / Na;
double const dy = (b + 0.5) / Nb;
double const u1 = u + u_x * dx + u_y * dy;
double const v1 = v + v_x * dx + v_y * dy;
sum += mandel(u1, v1);
}
}
if (iterate_count) *iterate_count += sum;
return (1.0 / max_iterate / Na / Nb) * sum;
}
public:
void update_frame(double theta, double scale) {
this->resample_prev(theta, scale);
this->theta = theta;
this->scale = scale;
this->u_x = +scale * std::cos(theta) * 0.5;
this->u_y = -scale * std::sin(theta);
this->v_x = +scale * std::sin(theta) * 0.5;
this->v_y = +scale * std::cos(theta);
positions.resize(cols * rows);
std::iota(positions.begin(), positions.end(), 0);
std::shuffle(positions.begin(), positions.end(), util::rand_engine());
int total_iterate = 0, processed = 0;
double min_value = 1.0;
double max_value = 0.0;
for (int pos: positions) {
processed++;
int const x = pos % cols;
int const y = pos / cols;
if (resample_safe(x, y)) continue;
double const power = calculate_power_at(x, y, &total_iterate);
get(x, y) = power;
min_value = std::min(min_value, power);
max_value = std::max(max_value, power);
if ((total_iterate > 1000000 && (double) processed / positions.size() > 0.2) ||
total_iterate > 1000000 * 5) break;
}
this->prev_avail = true;
this->update_range(min_value, max_value);
}
private:
static constexpr double mix_ratio = 0.2;
double min_power = 0.0;
double max_power = 1.0;
double range = 1.0;
static constexpr std::size_t level_bins = 100;
std::vector<double> level_mapping;
std::vector<int> histogram;
public:
void update_range(double min_value, double max_value) {
this->min_power = (1.0 - mix_ratio) * min_power + mix_ratio * min_value;
this->max_power = (1.0 - mix_ratio) * max_power + mix_ratio * max_value;
this->range = std::max(max_power - min_power, 1.0 / max_iterate);
histogram.resize(level_bins);
level_mapping.resize(level_bins + 1);
std::fill(histogram.begin(), histogram.end(), 0);
int const max_bin_content = cols * rows / 10;
int count = 0;
for (double power: data) {
double const value = (power - min_power) / range;
if (value < 0.0 || 1.0 < value) continue;
auto& bin = histogram[std::min<int>(value * level_bins, level_bins - 1)];
if (bin < max_bin_content) bin++, count++;
}
int accum = 0, index = 0;
for (int h: histogram) {
level_mapping[index] = count ? (double) accum / count : (double) index / level_bins;
index++;
accum += h;
}
level_mapping.back() = 1.0;
}
double operator()(int x, int y) {
double power = data[y * cols + x];
if (power < 0) {
if (util::rand() % 10 == 0) {
power = calculate_power_at(x, y, nullptr);
data[y * cols + x] = power;
} else {
power = get_average(x, y, 3);
}
// power = get_average(x, y, 2);
// if (power >= 0.0) {
// power += range * 0.2 * (util::randf() - 0.5);
// } else {
// power = calculate_power_at(x, y, nullptr);
// data[y * cols + x] = power;
// }
}
double const value = std::clamp((power - min_power) / range, 0.0, 1.0);
// level_mapping 線形補間
double const frac = value * level_bins;
int const index = std::min<int>(std::ceil(frac), level_bins - 1);
double const p1 = level_mapping[index];
double const p2 = level_mapping[index + 1];
double const p = p1 + (frac - index) * (p2 - p1);
double const pscale = std::clamp(p - 0.2, 0.0, 0.7) / 0.7;
return value + 0.5 * (pscale * pscale - value);
}
};
}
#endif