diff --git a/presentaciones/pwl_mecanica_cuantica/pwl-30-ene-2020/introduccion_a_mc.ipynb b/presentaciones/pwl_mecanica_cuantica/pwl-30-ene-2020/introduccion_a_mc.ipynb
index 044b42a..84a2ed5 100644
--- a/presentaciones/pwl_mecanica_cuantica/pwl-30-ene-2020/introduccion_a_mc.ipynb
+++ b/presentaciones/pwl_mecanica_cuantica/pwl-30-ene-2020/introduccion_a_mc.ipynb
@@ -1,1558 +1,1583 @@
-{
- "cells": [
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "# Advertencia"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "skip"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "import utils"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "# Parte I\n",
-    "\n",
-    "### El origen de la Mecánica Cuántica"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Episodio I : Old quantum mechanics"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "\n",
-       "        <iframe\n",
-       "            width=\"600px\"\n",
-       "            height=\"400px\"\n",
-       "            src=\"https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html\"\n",
-       "            frameborder=\"0\"\n",
-       "            allowfullscreen\n",
-       "        ></iframe>\n",
-       "        "
-      ],
-      "text/plain": [
-       "<IPython.lib.display.IFrame at 0x7f7c71f121c0>"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.IFrame(src='https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html',\n",
-    "       width='600px',\n",
-    "    height='400px')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "### Radiación del Cuerpo Negro y cuantización de la energía"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "![](https://upload.wikimedia.org/wikipedia/commons/1/19/Black_body.svg)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/47/8747-004-A1104E40/Wien.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Wien')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "$${\\displaystyle B_{\\nu }(T)\\approx {\\frac {2h\\nu ^{3}}{c^{2}}}e^{-{\\frac {h\\nu }{k_{\\mathrm {B} }T}}}}$$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/s:300x1000/73/20973-050-F6EEBFF1/Max-Planck.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Plank')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "![](https://upload.wikimedia.org/wikipedia/commons/1/18/Mplwp_blackbody_nu_planck-wien-rj_5800K.svg)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "$${\\displaystyle B_{\\nu }(\\nu ,T)={\\frac {2h\\nu ^{3}}{c^{2}}}{\\frac {1}{e^{\\frac {h\\nu }{k_{\\mathrm {B} }T}}-1}}}$$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "$${\\displaystyle B_{\\nu }(T)={\\frac {2\\nu ^{2}k_{\\mathrm {B} }T}{c^{2}}}}$$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "\n",
-       "        <iframe\n",
-       "            width=\"600px\"\n",
-       "            height=\"400px\"\n",
-       "            src=\"https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_en.html\"\n",
-       "            frameborder=\"0\"\n",
-       "            allowfullscreen\n",
-       "        ></iframe>\n",
-       "        "
-      ],
-      "text/plain": [
-       "<IPython.lib.display.IFrame at 0x7f7c71f127c0>"
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.IFrame(src='https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_en.html',\n",
-    "       width='600px',\n",
-    "    height='400px')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "![](https://media2.giphy.com/media/12CWaR2xae1LLa/giphy.gif)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "### Efecto Fotoeléctrico"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/09/75509-050-86D8CBBF/Albert-Einstein.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 4,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Einstein')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "![](https://i.ytimg.com/vi/n28mmVeKNhs/maxresdefault.jpg)\n",
-    "\n",
-    "[Simulación interactiva](https://phet.colorado.edu/en/simulation/legacy/photoelectric)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "![](http://3.bp.blogspot.com/-JRndd4JJMS0/VvJH737DUBI/AAAAAAAAB74/l-HFmZMubRwsSiV90Hwzzf1PlLjgQMDBQ/s1600/spec_proper_orientation.gif)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/43/102243-050-15D49DEF/Ernest-Rutherford.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Rutherford')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "utils.IFrame(src='https://phet.colorado.edu/sims/html/rutherford-scattering/latest/rutherford-scattering_en.html',\n",
-    "       width='600px',\n",
-    "       height='400px')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "![](https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fqph.fs.quoracdn.net%2Fmain-qimg-f28c70f2b44bef49c688d851ade47f04-c&f=1&nofb=1)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "### Espectro Atómico (Bohr, DeBroglie, Sommerfeld, Kramer)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/s:300x1000/14/21114-004-FA0334F4/Niels-Bohr.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 6,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Bohr')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/s:1500x700,q:85/09/21109-004-2172F5F5/Louis-Victor-Broglie-1958.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 7,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('de Broglie')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$ E=n\\hbar \\omega \\, $$\n",
-    "$$ \\int p\\,dx=\\hbar \\int k\\,dx=2\\pi \\hbar n $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/7/74/Sommerfeld1897.gif\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 8,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Sommerfeld')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$ \\oint \\limits _{H(p,q)=E}p_{i}\\,dq_{i}=n_{i}h $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b4/Kramers_1928.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 9,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Kramers')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$ X_{n}(t)=\\sum _{k=-\\infty }^{\\infty }e^{ik\\omega t}X_{n;k} $$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "### Momento angular de los electrones / Spin (Stern-Gerlach)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/06/134706-050-755B4B38/Otto-Stern-presentation-Nobel-Prizes-New-York-1943.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 10,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Stern')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 11,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://upload.wikimedia.org/wikipedia/en/9/9e/Walther_Gerlach.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 11,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Gerlach')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "![](http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/imgqua/steger.png)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "![](https://plato.stanford.edu/entries/physics-experiment/figure13.jpg)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "#### Simulación y comparación del modelo clásico y cuántico del momento mágnetico de un átomo\n",
-    "https://nbviewer.jupyter.org/github/qutip/qutip-notebooks/blob/master/examples/stern-gerlach-tutorial.ipynb"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Episodio II\n",
-    "\n",
-    "### Modelos matemáticos de la MC"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 12,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/67/43167-004-A4FAD96F/Werner-Heisenberg.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 12,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Heisenberg')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "### Mecánica matricial de Heisenberg \n",
-    "    \n",
-    "$$X_{{nm}}(t)=e^{{2\\pi i(E_{n}-E_{m})t/h}}X_{{nm}}(0)$$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$ {\\sqrt  {2}}X(0)={\\sqrt  {{\\frac  {h}{2\\pi }}}}\\;{\\begin{bmatrix}0&{\\sqrt  {1}}&0&0&0&\\cdots \\\\{\\sqrt  {1}}&0&{\\sqrt  {2}}&0&0&\\cdots \\\\0&{\\sqrt  {2}}&0&{\\sqrt  {3}}&0&\\cdots \\\\0&0&{\\sqrt  {3}}&0&{\\sqrt  {4}}&\\cdots \\\\\\vdots &\\vdots &\\vdots &\\vdots &\\vdots &\\ddots \\\\\\end{bmatrix}} $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 13,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/24/13124-004-E329BF69/Max-Born.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 13,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Born')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/a/a6/Pascual_Jordan_1920s.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 14,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Jordan')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "$$ (XP)_{{mn}}=\\sum _{{k=0}}^{\\infty }X_{{mk}}P_{{kn}} $$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "$$ \\sum _{k}(X_{{nk}}P_{{km}}-P_{{nk}}X_{{km}})={ih \\over 2\\pi }~\\delta _{{nm}} $$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "$$ \\frac{dA}{dt} = {i \\over \\hbar } [ H  , A ]  + \\frac{\\partial A}{\\partial t} $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/16/198816-050-AF8B7B3C/Erwin-Schrodinger.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 5,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Schrodinger')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "### Mecánica ondulatoria de Schrodinger"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$i{\\partial \\over \\partial t}\\psi _{t}(x)=\\left[-{1 \\over 2m}{\\partial ^{2} \\over \\partial x^{2}}+V(x)\\right]\\psi _{t}(x)$$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "### Formalización y notación de Bra-Ket"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 16,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/66/91766-004-CE5A2E61/PAM-Dirac.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 16,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('Dirac')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 17,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<img src=\"https://cdn.britannica.com/23/26823-050-E778F3DF/John-von-Neumann.jpg\" width=\"200\" height=\"200\"/>"
-      ],
-      "text/plain": [
-       "<utils.Photo object>"
-      ]
-     },
-     "execution_count": 17,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "utils.Photo('von Neumann')"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "$$ |\\psi\\rangle $$\n",
-    "\n",
-    "$${\\displaystyle \\Psi (\\mathbf {r} )\\ {\\stackrel {\\text{def}}{=}}\\ \\langle \\mathbf {r} |\\Psi \\rangle }$$"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "![](https://upload.wikimedia.org/wikipedia/commons/6/6e/Solvay_conference_1927.jpg)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "# Parte II"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "## Introducción a la matemática de la MC"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "    A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "![fleabag_what](https://image.tmdb.org/t/p/original/95bYYYGZbSxBR0FFjiEKJXF7GDB.jpg)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "### A little Aaronson time"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "# QM = Prob + \"-\""
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "# Probabilidad\n",
-    "\n",
-    "Sea un conjunto de eventos posibles $\\Omega$\n",
-    "\n",
-    "$$f(x)\\in [0,1]{\\mbox{ para todo }}x\\in \\Omega$$\n",
-    "$$\\sum _{x\\in \\Omega }f(x)=1 $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 18,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "from sympy import Matrix, init_printing\n",
-    "init_printing(use_latex=True)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 32,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\left[\\begin{matrix}0.5 & 0.5\\\\0.5 & 0.5\\end{matrix}\\right]$"
-      ],
-      "text/plain": [
-       "⎡0.5  0.5⎤\n",
-       "⎢        ⎥\n",
-       "⎣0.5  0.5⎦"
-      ]
-     },
-     "execution_count": 32,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Ma"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 19,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\left( \\left[\\begin{matrix}0.5\\\\0.5\\end{matrix}\\right], \\  \\left[\\begin{matrix}0.333333333333333\\\\0.666666666666667\\end{matrix}\\right], \\  \\left[\\begin{matrix}0.99\\\\0.01\\end{matrix}\\right]\\right)$"
-      ],
-      "text/plain": [
-       "⎛⎡0.5⎤  ⎡0.333333333333333⎤  ⎡0.99⎤⎞\n",
-       "⎜⎢   ⎥, ⎢                 ⎥, ⎢    ⎥⎟\n",
-       "⎝⎣0.5⎦  ⎣0.666666666666667⎦  ⎣0.01⎦⎠"
-      ]
-     },
-     "execution_count": 19,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Ma, Mb, Mc = Matrix([[1/2,1/2],[1/2,1/2]]), Matrix([[1/3,1/5],[2/3,4/5]]), Matrix([[99/100,0],[1/100,1]])\n",
-    "s = Matrix([[1],[0]])\n",
-    "Ma*s, Mb*s, Mc*s"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 20,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\left[\\begin{matrix}0.230769230769232\\\\0.769230769230774\\end{matrix}\\right]$"
-      ],
-      "text/plain": [
-       "⎡0.230769230769232⎤\n",
-       "⎢                 ⎥\n",
-       "⎣0.769230769230774⎦"
-      ]
-     },
-     "execution_count": 20,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Mb**200 * s"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "# ¿Qué obtendríamos si en vez de la Norma 1 imponemos la condición de normalización con la Norma 2?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "source": [
-    "$$f(x)\\in \\mathbb {C} {\\mbox{ para todo }}x\\in \\Omega$$\n",
-    "$$\\sum _{x\\in \\Omega }\\overline {f(x)}* f(x) =1 $$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 21,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "from sympy import sqrt, symbols, Symbol, init_printing\n",
-    "from sympy.physics.quantum import Bra, Ket, Dagger, Operator"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulados de la MC"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulado 1\n",
-    "\n",
-    "El estado de todo sistema físico está representado por un vector (de norma unidad) en un espacio de Hilbert $\\mathcal{H}$ "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 22,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\alpha {\\left|\\psi\\right\\rangle } + \\beta {\\left|\\phi\\right\\rangle }$"
-      ],
-      "text/plain": [
-       "α⋅❘ψ⟩ + β⋅❘φ⟩"
-      ]
-     },
-     "execution_count": 22,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "a, b = symbols('alpha beta',complex=True)\n",
-    "psi, phi = Ket('psi'),Ket('phi')\n",
-    "\n",
-    "estado = a * psi + b * phi\n",
-    "estado"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 23,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\overline{\\alpha} {\\left\\langle \\psi\\right|} + \\overline{\\beta} {\\left\\langle \\phi\\right|}$"
-      ],
-      "text/plain": [
-       "_       _    \n",
-       "α⋅⟨ψ❘ + β⋅⟨φ❘"
-      ]
-     },
-     "execution_count": 23,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "Dagger(estado)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 24,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\left(\\overline{\\alpha} {\\left\\langle \\psi\\right|} + \\overline{\\beta} {\\left\\langle \\phi\\right|}\\right) \\left(\\alpha {\\left|\\psi\\right\\rangle } + \\beta {\\left|\\phi\\right\\rangle }\\right)$"
-      ],
-      "text/plain": [
-       "⎛_       _    ⎞                \n",
-       "⎝α⋅⟨ψ❘ + β⋅⟨φ❘⎠⋅(α⋅❘ψ⟩ + β⋅❘φ⟩)"
-      ]
-     },
-     "execution_count": 24,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "( Dagger(estado) * estado ).doit()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulado 2\n",
-    "\n",
-    "Todas las propiedades observables de un sistema físico se prepresentan por un operador lineal hermítico que actúa sobre $\\mathcal{H}$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulado 3\n",
-    "\n",
-    "Los resultados posibles de la medición de cualquier observable $A$ son sus autovalores $a_n$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulado 4 ( Regla de Born )\n",
-    "\n",
-    "\n",
-    "\n",
-    "Si el estado de un sistema es $\\left|\\Psi\\right\\rangle$, la probabilidad de obtener el resultado $a_n$ en la medición del observable $A$ es siempre\n",
-    "\n",
-    "$$ Prob\\left(a_n | \\left|\\Psi\\right\\rangle \\right) = \\left\\langle \\Psi\\right| P_n \\left|\\Psi\\right\\rangle $$\n",
-    "\n",
-    "donde $P_n$ es el proyector asociado al autovalor $a_n$. Si $A$ es no degenerado entonce $P_n = {\\left|\\phi_{n}\\right\\rangle }{\\left\\langle \\phi_{n}\\right|}$ y la probabilidad resulta ser $$Prob\\left( a_n | \\left|\\Psi\\right\\rangle \\right) = \\left|  \\left\\langle \\phi_{n} |\\Psi\\right\\rangle \\right|^2$$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "fragment"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Postulado 5 ( Postulado de proyección o colapso )\n",
-    "\n",
-    "Si el estado de un sistema es ${\\left|\\Psi\\right\\rangle }$ y medimos el observable $A$ y detectamos el autovalor $a_n$, entonces el estado del sistema después \n",
-    "de la medición es la proyección de ${\\left|\\Psi\\right\\rangle }$ sobre el subespacio asociado al autovalor $a_n$\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "# Parte III\n",
-    "\n",
-    "## Sistemas compuestos"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 25,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "from sympy.physics.quantum import TensorProduct"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 26,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "j,k,l = Ket('j'), Ket('k'), Ket('l')\n",
-    "A, B = Operator('A'), Operator('B')"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 27,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle {{\\left|j\\right\\rangle }}\\otimes {{\\left|k\\right\\rangle }}$"
-      ],
-      "text/plain": [
-       "❘j⟩⨂ ❘k⟩"
-      ]
-     },
-     "execution_count": 27,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "jk = TensorProduct(j,k)\n",
-    "jk"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Partículas idénticas "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Paradoja de EPR\n",
-    "\n",
-    "$$|\\Phi ^{+}\\rangle ={\\frac  {1}{{\\sqrt  {2}}}}(|0\\rangle _{A}\\otimes |0\\rangle _{B}+|1\\rangle _{A}\\otimes |1\\rangle _{B})$$"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 28,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [],
-   "source": [
-    "from sympy.physics.quantum.qubit import Qubit"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 29,
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "outputs": [
-    {
-     "data": {
-      "text/latex": [
-       "$\\displaystyle \\frac{\\sqrt{2} \\left({\\left|00\\right\\rangle } + {\\left|11\\right\\rangle }\\right)}{2}$"
-      ],
-      "text/plain": [
-       "√2⋅(❘00⟩ + ❘11⟩)\n",
-       "────────────────\n",
-       "       2        "
-      ]
-     },
-     "execution_count": 29,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "( Qubit('00') + Qubit('11') )/sqrt(2)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "slide"
-    }
-   },
-   "source": [
-    "## Desigualdad de Bell"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {
-    "slideshow": {
-     "slide_type": "subslide"
-    }
-   },
-   "source": [
-    "Ejemplo de [Teleportación](https://hub.gke.mybinder.org/user/sympy-quantum_notebooks-alf8r713/notebooks/notebooks/teleportation.ipynb)"
-   ]
-  }
- ],
- "metadata": {
-  "celltoolbar": "Slideshow",
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.8.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Advertencia"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "skip"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import utils"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Parte I\n",
+    "\n",
+    "### El origen de la Mecánica Cuántica"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Episodio I : Old quantum mechanics"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "        <iframe\n",
+       "            width=\"600px\"\n",
+       "            height=\"400px\"\n",
+       "            src=\"https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html\"\n",
+       "            frameborder=\"0\"\n",
+       "            allowfullscreen\n",
+       "            \n",
+       "        ></iframe>\n",
+       "        "
+      ],
+      "text/plain": [
+       "<IPython.lib.display.IFrame at 0x1d13d356630>"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.IFrame(src='https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html',\n",
+    "       width='600px',\n",
+    "    height='400px')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### Radiación del Cuerpo Negro y cuantización de la energía"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "![](https://upload.wikimedia.org/wikipedia/commons/1/19/Black_body.svg)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/47/8747-004-A1104E40/Wien.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Wien')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "$${\\displaystyle B_{\\nu }(T)\\approx {\\frac {2h\\nu ^{3}}{c^{2}}}e^{-{\\frac {h\\nu }{k_{\\mathrm {B} }T}}}}$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/s:300x1000/73/20973-050-F6EEBFF1/Max-Planck.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Plank')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "![](https://upload.wikimedia.org/wikipedia/commons/1/18/Mplwp_blackbody_nu_planck-wien-rj_5800K.svg)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "$${\\displaystyle B_{\\nu }(\\nu ,T)={\\frac {2h\\nu ^{3}}{c^{2}}}{\\frac {1}{e^{\\frac {h\\nu }{k_{\\mathrm {B} }T}}-1}}}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "$${\\displaystyle B_{\\nu }(T)={\\frac {2\\nu ^{2}k_{\\mathrm {B} }T}{c^{2}}}}$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "        <iframe\n",
+       "            width=\"600px\"\n",
+       "            height=\"400px\"\n",
+       "            src=\"https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_en.html\"\n",
+       "            frameborder=\"0\"\n",
+       "            allowfullscreen\n",
+       "            \n",
+       "        ></iframe>\n",
+       "        "
+      ],
+      "text/plain": [
+       "<IPython.lib.display.IFrame at 0x1d13e901520>"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.IFrame(src='https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_en.html',\n",
+    "       width='600px',\n",
+    "    height='400px')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "![](https://media2.giphy.com/media/12CWaR2xae1LLa/giphy.gif)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "### Efecto Fotoeléctrico"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/09/75509-050-86D8CBBF/Albert-Einstein.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Einstein')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "![](https://i.ytimg.com/vi/n28mmVeKNhs/maxresdefault.jpg)\n",
+    "\n",
+    "[Simulación interactiva](https://phet.colorado.edu/en/simulation/legacy/photoelectric)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "![](http://3.bp.blogspot.com/-JRndd4JJMS0/VvJH737DUBI/AAAAAAAAB74/l-HFmZMubRwsSiV90Hwzzf1PlLjgQMDBQ/s1600/spec_proper_orientation.gif)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/43/102243-050-15D49DEF/Ernest-Rutherford.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Rutherford')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "        <iframe\n",
+       "            width=\"600px\"\n",
+       "            height=\"400px\"\n",
+       "            src=\"https://phet.colorado.edu/sims/html/rutherford-scattering/latest/rutherford-scattering_en.html\"\n",
+       "            frameborder=\"0\"\n",
+       "            allowfullscreen\n",
+       "            \n",
+       "        ></iframe>\n",
+       "        "
+      ],
+      "text/plain": [
+       "<IPython.lib.display.IFrame at 0x1d13e9218e0>"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.IFrame(src='https://phet.colorado.edu/sims/html/rutherford-scattering/latest/rutherford-scattering_en.html',\n",
+    "       width='600px',\n",
+    "       height='400px')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "![](https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fqph.fs.quoracdn.net%2Fmain-qimg-f28c70f2b44bef49c688d851ade47f04-c&f=1&nofb=1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### Espectro Atómico (Bohr, DeBroglie, Sommerfeld, Kramer)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/s:300x1000/14/21114-004-FA0334F4/Niels-Bohr.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Bohr')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/s:1500x700,q:85/09/21109-004-2172F5F5/Louis-Victor-Broglie-1958.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('de Broglie')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$ E=n\\hbar \\omega \\, $$\n",
+    "$$ \\int p\\,dx=\\hbar \\int k\\,dx=2\\pi \\hbar n $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/7/74/Sommerfeld1897.gif\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Sommerfeld')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$ \\oint \\limits _{H(p,q)=E}p_{i}\\,dq_{i}=n_{i}h $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b4/Kramers_1928.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Kramers')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$ X_{n}(t)=\\sum _{k=-\\infty }^{\\infty }e^{ik\\omega t}X_{n;k} $$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### Momento angular de los electrones / Spin (Stern-Gerlach)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/06/134706-050-755B4B38/Otto-Stern-presentation-Nobel-Prizes-New-York-1943.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 13,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Stern')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://upload.wikimedia.org/wikipedia/en/9/9e/Walther_Gerlach.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 14,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Gerlach')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "![](http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/imgqua/steger.png)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "![](https://plato.stanford.edu/entries/physics-experiment/figure13.jpg)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "#### Simulación y comparación del modelo clásico y cuántico del momento mágnetico de un átomo\n",
+    "https://nbviewer.jupyter.org/github/qutip/qutip-notebooks/blob/master/examples/stern-gerlach-tutorial.ipynb"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Episodio II\n",
+    "\n",
+    "### Modelos matemáticos de la MC"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/67/43167-004-A4FAD96F/Werner-Heisenberg.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 15,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Heisenberg')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "### Mecánica matricial de Heisenberg \n",
+    "    \n",
+    "$$X_{{nm}}(t)=e^{{2\\pi i(E_{n}-E_{m})t/h}}X_{{nm}}(0)$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$ {\\sqrt  {2}}X(0)={\\sqrt  {{\\frac  {h}{2\\pi }}}}\\;{\\begin{bmatrix}0&{\\sqrt  {1}}&0&0&0&\\cdots \\\\{\\sqrt  {1}}&0&{\\sqrt  {2}}&0&0&\\cdots \\\\0&{\\sqrt  {2}}&0&{\\sqrt  {3}}&0&\\cdots \\\\0&0&{\\sqrt  {3}}&0&{\\sqrt  {4}}&\\cdots \\\\\\vdots &\\vdots &\\vdots &\\vdots &\\vdots &\\ddots \\\\\\end{bmatrix}} $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/24/13124-004-E329BF69/Max-Born.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Born')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://upload.wikimedia.org/wikipedia/commons/a/a6/Pascual_Jordan_1920s.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 17,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Jordan')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "$$ (XP)_{{mn}}=\\sum _{{k=0}}^{\\infty }X_{{mk}}P_{{kn}} $$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "$$ \\sum _{k}(X_{{nk}}P_{{km}}-P_{{nk}}X_{{km}})={ih \\over 2\\pi }~\\delta _{{nm}} $$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "$$ \\frac{dA}{dt} = {i \\over \\hbar } [ H  , A ]  + \\frac{\\partial A}{\\partial t} $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/16/198816-050-AF8B7B3C/Erwin-Schrodinger.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Schrodinger')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "### Mecánica ondulatoria de Schrodinger"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$i{\\partial \\over \\partial t}\\psi _{t}(x)=\\left[-{1 \\over 2m}{\\partial ^{2} \\over \\partial x^{2}}+V(x)\\right]\\psi _{t}(x)$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### Formalización y notación de Bra-Ket"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/66/91766-004-CE5A2E61/PAM-Dirac.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 19,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('Dirac')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"https://cdn.britannica.com/23/26823-050-E778F3DF/John-von-Neumann.jpg\" width=\"200\" height=\"200\"/>"
+      ],
+      "text/plain": [
+       "<utils.Photo object>"
+      ]
+     },
+     "execution_count": 20,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "utils.Photo('von Neumann')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "$$ |\\psi\\rangle $$\n",
+    "\n",
+    "$${\\displaystyle \\Psi (\\mathbf {r} )\\ {\\stackrel {\\text{def}}{=}}\\ \\langle \\mathbf {r} |\\Psi \\rangle }$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "![](https://upload.wikimedia.org/wikipedia/commons/6/6e/Solvay_conference_1927.jpg)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Parte II"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "## Introducción a la matemática de la MC"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "    A Hilbert space H is a real or complex inner product space that is also a complete metric space with respect to the distance function induced by the inner product"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "![fleabag_what](https://image.tmdb.org/t/p/original/95bYYYGZbSxBR0FFjiEKJXF7GDB.jpg)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "### A little Aaronson time"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "# QM = Prob + \"-\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "# Probabilidad\n",
+    "\n",
+    "Sea un conjunto de eventos posibles $\\Omega$\n",
+    "\n",
+    "$$f(x)\\in [0,1]{\\mbox{ para todo }}x\\in \\Omega$$\n",
+    "$$\\sum _{x\\in \\Omega }f(x)=1 $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from sympy import Matrix, init_printing\n",
+    "init_printing(use_latex=True)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\left( \\left[\\begin{matrix}0.5\\\\0.5\\end{matrix}\\right], \\  \\left[\\begin{matrix}0.333333333333333\\\\0.666666666666667\\end{matrix}\\right], \\  \\left[\\begin{matrix}0.99\\\\0.01\\end{matrix}\\right]\\right)$"
+      ],
+      "text/plain": [
+       "⎛⎡0.5⎤  ⎡0.333333333333333⎤  ⎡0.99⎤⎞\n",
+       "⎜⎢   ⎥, ⎢                 ⎥, ⎢    ⎥⎟\n",
+       "⎝⎣0.5⎦  ⎣0.666666666666667⎦  ⎣0.01⎦⎠"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Ma, Mb, Mc = Matrix([[1/2,1/2],[1/2,1/2]]), Matrix([[1/3,1/5],[2/3,4/5]]), Matrix([[99/100,0],[1/100,1]])\n",
+    "s = Matrix([[1],[0]])\n",
+    "Ma*s, Mb*s, Mc*s"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}0.5 & 0.5\\\\0.5 & 0.5\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "⎡0.5  0.5⎤\n",
+       "⎢        ⎥\n",
+       "⎣0.5  0.5⎦"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Ma"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\left[\\begin{matrix}0.230769230769232\\\\0.769230769230774\\end{matrix}\\right]$"
+      ],
+      "text/plain": [
+       "⎡0.230769230769232⎤\n",
+       "⎢                 ⎥\n",
+       "⎣0.769230769230774⎦"
+      ]
+     },
+     "execution_count": 24,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Mb**200 * s"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# ¿Qué obtendríamos si en vez de la Norma 1 imponemos la condición de normalización con la Norma 2?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "source": [
+    "$$f(x)\\in \\mathbb {C} {\\mbox{ para todo }}x\\in \\Omega$$\n",
+    "$$\\sum _{x\\in \\Omega }\\overline {f(x)}* f(x) =1 $$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from sympy import sqrt, symbols, Symbol, init_printing\n",
+    "from sympy.physics.quantum import Bra, Ket, Dagger, Operator"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulados de la MC"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulado 1\n",
+    "\n",
+    "El estado de todo sistema físico está representado por un vector (de norma unidad) en un espacio de Hilbert $\\mathcal{H}$ "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\alpha {\\left|\\psi\\right\\rangle } + \\beta {\\left|\\phi\\right\\rangle }$"
+      ],
+      "text/plain": [
+       "α⋅❘ψ⟩ + β⋅❘φ⟩"
+      ]
+     },
+     "execution_count": 26,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "a, b = symbols('alpha beta',complex=True)\n",
+    "psi, phi = Ket('psi'),Ket('phi')\n",
+    "\n",
+    "estado = a * psi + b * phi\n",
+    "estado"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\overline{\\alpha} {\\left\\langle \\psi\\right|} + \\overline{\\beta} {\\left\\langle \\phi\\right|}$"
+      ],
+      "text/plain": [
+       "_       _    \n",
+       "α⋅⟨ψ❘ + β⋅⟨φ❘"
+      ]
+     },
+     "execution_count": 27,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Dagger(estado)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\left(\\overline{\\alpha} {\\left\\langle \\psi\\right|} + \\overline{\\beta} {\\left\\langle \\phi\\right|}\\right) \\left(\\alpha {\\left|\\psi\\right\\rangle } + \\beta {\\left|\\phi\\right\\rangle }\\right)$"
+      ],
+      "text/plain": [
+       "⎛_       _    ⎞                \n",
+       "⎝α⋅⟨ψ❘ + β⋅⟨φ❘⎠⋅(α⋅❘ψ⟩ + β⋅❘φ⟩)"
+      ]
+     },
+     "execution_count": 28,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "( Dagger(estado) * estado ).doit()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulado 2\n",
+    "\n",
+    "Todas las propiedades observables de un sistema físico se prepresentan por un operador lineal hermítico que actúa sobre $\\mathcal{H}$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulado 3\n",
+    "\n",
+    "Los resultados posibles de la medición de cualquier observable $A$ son sus autovalores $a_n$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulado 4 ( Regla de Born )\n",
+    "\n",
+    "\n",
+    "\n",
+    "Si el estado de un sistema es $\\left|\\Psi\\right\\rangle$, la probabilidad de obtener el resultado $a_n$ en la medición del observable $A$ es siempre\n",
+    "\n",
+    "$$ Prob\\left(a_n | \\left|\\Psi\\right\\rangle \\right) = \\left\\langle \\Psi\\right| P_n \\left|\\Psi\\right\\rangle $$\n",
+    "\n",
+    "donde $P_n$ es el proyector asociado al autovalor $a_n$. Si $A$ es no degenerado entonce $P_n = {\\left|\\phi_{n}\\right\\rangle }{\\left\\langle \\phi_{n}\\right|}$ y la probabilidad resulta ser $$Prob\\left( a_n | \\left|\\Psi\\right\\rangle \\right) = \\left|  \\left\\langle \\phi_{n} |\\Psi\\right\\rangle \\right|^2$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "fragment"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Postulado 5 ( Postulado de proyección o colapso )\n",
+    "\n",
+    "Si el estado de un sistema es ${\\left|\\Psi\\right\\rangle }$ y medimos el observable $A$ y detectamos el autovalor $a_n$, entonces el estado del sistema después \n",
+    "de la medición es la proyección de ${\\left|\\Psi\\right\\rangle }$ sobre el subespacio asociado al autovalor $a_n$\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "# Parte III\n",
+    "\n",
+    "## Sistemas compuestos"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from sympy.physics.quantum import TensorProduct"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "j,k,l = Ket('j'), Ket('k'), Ket('l')\n",
+    "A, B = Operator('A'), Operator('B')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle {{\\left|j\\right\\rangle }}\\otimes {{\\left|k\\right\\rangle }}$"
+      ],
+      "text/plain": [
+       "❘j⟩⨂ ❘k⟩"
+      ]
+     },
+     "execution_count": 31,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "jk = TensorProduct(j,k)\n",
+    "jk"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Partículas idénticas "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Paradoja de EPR\n",
+    "\n",
+    "$$|\\Phi ^{+}\\rangle ={\\frac  {1}{{\\sqrt  {2}}}}(|0\\rangle _{A}\\otimes |0\\rangle _{B}+|1\\rangle _{A}\\otimes |1\\rangle _{B})$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from sympy.physics.quantum.qubit import Qubit"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "text/latex": [
+       "$\\displaystyle \\frac{\\sqrt{2} \\left({\\left|00\\right\\rangle } + {\\left|11\\right\\rangle }\\right)}{2}$"
+      ],
+      "text/plain": [
+       "√2⋅(❘00⟩ + ❘11⟩)\n",
+       "────────────────\n",
+       "       2        "
+      ]
+     },
+     "execution_count": 33,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "( Qubit('00') + Qubit('11') )/sqrt(2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "slide"
+    }
+   },
+   "source": [
+    "## Desigualdad de Bell"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "slideshow": {
+     "slide_type": "subslide"
+    }
+   },
+   "source": [
+    "Ejemplo de [Teleportación](https://hub.gke.mybinder.org/user/sympy-quantum_notebooks-alf8r713/notebooks/notebooks/teleportation.ipynb)"
+   ]
+  }
+ ],
+ "metadata": {
+  "celltoolbar": "Slideshow",
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.1"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/presentaciones/pyar_hypotesis/pyar-28-ago-2019/presentation.ipynb b/presentaciones/pyar_hypotesis/pyar-28-ago-2019/presentation.ipynb
index aac3a36..b1eb0d9 100644
--- a/presentaciones/pyar_hypotesis/pyar-28-ago-2019/presentation.ipynb
+++ b/presentaciones/pyar_hypotesis/pyar-28-ago-2019/presentation.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 1,
    "metadata": {
     "scrolled": true,
     "slideshow": {
@@ -898,7 +898,7 @@
  "metadata": {
   "celltoolbar": "Slideshow",
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -912,9 +912,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.4"
+   "version": "3.12.1"
   }
  },
  "nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 4
 }
diff --git a/presentaciones/pyconar_2019/widgets-presentation.ipynb b/presentaciones/pyconar_2019/widgets-presentation.ipynb
index 420c5c3..b6b3ae7 100644
--- a/presentaciones/pyconar_2019/widgets-presentation.ipynb
+++ b/presentaciones/pyconar_2019/widgets-presentation.ipynb
@@ -213,7 +213,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "<__main__.Cosito object at 0x7fc2b159ff10>\n"
+      "<__main__.Cosito object at 0x000002664553B920>\n"
      ]
     }
    ],
@@ -240,13 +240,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Esto es str: ruflete\n",
+      "Esto es repr: Cosito(\"ruflete\")\n"
+     ]
+    }
+   ],
    "source": [
     "class Cosito:\n",
     "    \n",
@@ -288,7 +297,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 3,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -312,7 +321,7 @@
        "Cosito(\"ruflete\")"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -342,7 +351,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 4,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -356,7 +365,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 5,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -389,7 +398,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 6,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -407,7 +416,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "cb8fa4f9b73a48c4a7ad5ea185543b69",
+       "model_id": "f55c4846eb8a48e796ae486afd3af851",
        "version_major": 2,
        "version_minor": 0
       },
@@ -439,7 +448,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 7,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -452,8 +461,9 @@
        "Cosito()"
       ]
      },
+     "execution_count": 7,
      "metadata": {},
-     "output_type": "display_data"
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -515,13 +525,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 8,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Ring ring!\n"
+     ]
+    }
+   ],
    "source": [
     "def llamado(cambio):\n",
     "    print('Ring ring!')\n",
@@ -577,7 +595,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -628,13 +646,39 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Ring ring!\n"
+     ]
+    },
+    {
+     "ename": "ValueError",
+     "evalue": "No deberías hacer eso",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
+      "Cell \u001b[1;32mIn[10], line 5\u001b[0m\n\u001b[0;32m      2\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo deberías hacer eso\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m      4\u001b[0m ruflete\u001b[38;5;241m.\u001b[39mobserve(intentar_encastrar)\n\u001b[1;32m----> 5\u001b[0m \u001b[43mruflete\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtamanio\u001b[49m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m      6\u001b[0m ruflete\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\traitlets\\traitlets.py:716\u001b[0m, in \u001b[0;36mTraitType.__set__\u001b[1;34m(self, obj, value)\u001b[0m\n\u001b[0;32m    714\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mread_only:\n\u001b[0;32m    715\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m TraitError(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mThe \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m trait is read-only.\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m%\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname)\n\u001b[1;32m--> 716\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\traitlets\\traitlets.py:706\u001b[0m, in \u001b[0;36mTraitType.set\u001b[1;34m(self, obj, value)\u001b[0m\n\u001b[0;32m    702\u001b[0m     silent \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m    703\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m silent \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m    704\u001b[0m     \u001b[38;5;66;03m# we explicitly compare silent to True just in case the equality\u001b[39;00m\n\u001b[0;32m    705\u001b[0m     \u001b[38;5;66;03m# comparison above returns something other than True/False\u001b[39;00m\n\u001b[1;32m--> 706\u001b[0m     \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_notify_trait\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mold_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_value\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\traitlets\\traitlets.py:1513\u001b[0m, in \u001b[0;36mHasTraits._notify_trait\u001b[1;34m(self, name, old_value, new_value)\u001b[0m\n\u001b[0;32m   1512\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_notify_trait\u001b[39m(\u001b[38;5;28mself\u001b[39m, name: \u001b[38;5;28mstr\u001b[39m, old_value: t\u001b[38;5;241m.\u001b[39mAny, new_value: t\u001b[38;5;241m.\u001b[39mAny) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m-> 1513\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnotify_change\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1514\u001b[0m \u001b[43m        \u001b[49m\u001b[43mBunch\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1515\u001b[0m \u001b[43m            \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1516\u001b[0m \u001b[43m            \u001b[49m\u001b[43mold\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mold_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1517\u001b[0m \u001b[43m            \u001b[49m\u001b[43mnew\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1518\u001b[0m \u001b[43m            \u001b[49m\u001b[43mowner\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1519\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mchange\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1520\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1521\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\ipywidgets\\widgets\\widget.py:701\u001b[0m, in \u001b[0;36mWidget.notify_change\u001b[1;34m(self, change)\u001b[0m\n\u001b[0;32m    698\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkeys \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_send_property(name, \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, name)):\n\u001b[0;32m    699\u001b[0m         \u001b[38;5;66;03m# Send new state to front-end\u001b[39;00m\n\u001b[0;32m    700\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msend_state(key\u001b[38;5;241m=\u001b[39mname)\n\u001b[1;32m--> 701\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnotify_change\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchange\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\traitlets\\traitlets.py:1525\u001b[0m, in \u001b[0;36mHasTraits.notify_change\u001b[1;34m(self, change)\u001b[0m\n\u001b[0;32m   1523\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnotify_change\u001b[39m(\u001b[38;5;28mself\u001b[39m, change: Bunch) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m   1524\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"Notify observers of a change event\"\"\"\u001b[39;00m\n\u001b[1;32m-> 1525\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_notify_observers\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchange\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\dev\\gh\\akielbowicz\\presentations\\.venv\\Lib\\site-packages\\traitlets\\traitlets.py:1568\u001b[0m, in \u001b[0;36mHasTraits._notify_observers\u001b[1;34m(self, event)\u001b[0m\n\u001b[0;32m   1565\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(c, EventHandler) \u001b[38;5;129;01mand\u001b[39;00m c\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m   1566\u001b[0m     c \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, c\u001b[38;5;241m.\u001b[39mname)\n\u001b[1;32m-> 1568\u001b[0m \u001b[43mc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mevent\u001b[49m\u001b[43m)\u001b[49m\n",
+      "Cell \u001b[1;32mIn[10], line 2\u001b[0m, in \u001b[0;36mintentar_encastrar\u001b[1;34m(cambio)\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mintentar_encastrar\u001b[39m(cambio):\n\u001b[1;32m----> 2\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mNo deberías hacer eso\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
+      "\u001b[1;31mValueError\u001b[0m: No deberías hacer eso"
+     ]
+    }
+   ],
    "source": [
     "def intentar_encastrar(cambio):\n",
     "    raise ValueError('No deberías hacer eso')\n",
@@ -646,13 +690,29 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 11,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2cebb87554b74f9a9052a86daf43f2ce",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Output(layout=Layout(border_bottom='1px solid black', border_left='1px solid black', border_right='1px solid b…"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "from ipywidgets import Output\n",
     "output = Output(layout={'border': '1px solid black'})\n",
@@ -689,7 +749,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 12,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -824,17 +884,17 @@
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": null,
+   "cell_type": "markdown",
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
    "source": [
-    "class Reloj(DomWidget):\n",
-    "    value = Date(None, allow_none=True).tag(sync=True, **date_serialization)"
+    "```python\n",
+    "class Reloj(DOMWidget):\n",
+    "    value = Date(None, allow_none=True).tag(sync=True, **date_serialization)\n",
+    "```"
    ]
   },
   {
@@ -907,7 +967,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 13,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -968,7 +1028,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 14,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -998,7 +1058,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 15,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -1098,7 +1158,7 @@
  "metadata": {
   "celltoolbar": "Slideshow",
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1112,7 +1172,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.0"
+   "version": "3.12.1"
   }
  },
  "nbformat": 4,
diff --git a/presentaciones/pyconar_2020/diapositivas.ipynb b/presentaciones/pyconar_2020/diapositivas.ipynb
index e78488e..7a09b47 100644
--- a/presentaciones/pyconar_2020/diapositivas.ipynb
+++ b/presentaciones/pyconar_2020/diapositivas.ipynb
@@ -361,7 +361,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 3,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -383,7 +383,7 @@
        "'22'"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -411,7 +411,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 4,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -428,7 +428,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 5,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -444,7 +444,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 6,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -466,7 +466,7 @@
        "'Este llamado fue interceptado con otra_funcion_usual(2)'"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 6,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -477,7 +477,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 7,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -493,7 +493,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 8,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -515,7 +515,7 @@
        "'Este llamado fue interceptado con otra_funcion_usual(2)'"
       ]
      },
-     "execution_count": 9,
+     "execution_count": 8,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -550,7 +550,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 9,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -559,12 +559,13 @@
    "outputs": [],
    "source": [
     "def imprimir_y_nada_mas(objeto_a_decorar):\n",
-    "    print(objeto_a_decorar)"
+    "    print(objeto_a_decorar)\n",
+    "    return objeto_a_decorar"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 10,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -575,7 +576,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "<function funcion_que_transforma_su_argumento at 0x7f1b7813db80>\n"
+      "<function funcion_que_transforma_su_argumento at 0x00000175664C3600>\n"
      ]
     }
    ],
@@ -587,7 +588,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 11,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -595,19 +596,18 @@
    },
    "outputs": [
     {
-     "ename": "TypeError",
-     "evalue": "'NoneType' object is not callable",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
-      "\u001b[0;32m<ipython-input-13-448d641bdd6e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfuncion_que_transforma_su_argumento\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[0;31mTypeError\u001b[0m: 'NoneType' object is not callable"
-     ]
+     "data": {
+      "text/plain": [
+       "'2222222222'"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
-    "funcion_que_transforma_su_argumento(1)"
+    "funcion_que_transforma_su_argumento(2)"
    ]
   },
   {
@@ -624,7 +624,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 12,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -646,7 +646,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 13,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -661,7 +661,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 14,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -674,7 +674,7 @@
        "'Si me lo permite, su respuesta es 1'"
       ]
      },
-     "execution_count": 16,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -685,7 +685,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 15,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -698,7 +698,7 @@
        "'Si me lo permite, su respuesta es 100'"
       ]
      },
-     "execution_count": 17,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -709,7 +709,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 16,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -722,7 +722,7 @@
        "['1', 100]"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 16,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -745,7 +745,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 17,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -759,7 +759,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 18,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -775,7 +775,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 19,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -788,7 +788,7 @@
        "2"
       ]
      },
-     "execution_count": 21,
+     "execution_count": 19,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -834,7 +834,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 20,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -847,7 +847,7 @@
      "text": [
       ".s\n",
       "----------------------------------------------------------------------\n",
-      "Ran 2 tests in 0.073s\n",
+      "Ran 1 test in 0.001s\n",
       "\n",
       "OK (skipped=1)\n"
      ]
@@ -855,10 +855,10 @@
     {
      "data": {
       "text/plain": [
-       "<unittest.runner.TextTestResult run=2 errors=0 failures=0>"
+       "<unittest.runner.TextTestResult run=1 errors=0 failures=0>"
       ]
      },
-     "execution_count": 23,
+     "execution_count": 20,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -899,22 +899,22 @@
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 24,
+   "cell_type": "markdown",
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
    "source": [
+    "```python\n",
     "import discard\n",
     "\n",
     "@discard.Statistics.register\n",
     "class CountPosts:\n",
     "    \n",
     "    def __call__(self,posts):\n",
-    "        return len(posts)"
+    "        return len(posts)\n",
+    "```"
    ]
   },
   {
@@ -929,20 +929,20 @@
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": 25,
+   "cell_type": "markdown",
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
     }
    },
-   "outputs": [],
    "source": [
+    "```python\n",
     "import discard\n",
     "\n",
     "@discard.Validate.clear_emails\n",
     "class Content(discard.Data):\n",
-    "    pass"
+    "    pass\n",
+    "```"
    ]
   },
   {
@@ -958,7 +958,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 21,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -977,7 +977,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 22,
    "metadata": {
     "slideshow": {
      "slide_type": "fragment"
@@ -990,7 +990,7 @@
        "['Entero(1)', 'Flotante(0.99)', 'Entero(False)']"
       ]
      },
-     "execution_count": 27,
+     "execution_count": 22,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1001,7 +1001,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 23,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -1030,7 +1030,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 24,
    "metadata": {
     "slideshow": {
      "slide_type": "subslide"
@@ -1043,7 +1043,7 @@
        "['Entero(100)', 'Flotante(99.90)', 'Bool(1)']"
       ]
      },
-     "execution_count": 29,
+     "execution_count": 24,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1249,10 +1249,8 @@
    ]
   },
   {
-   "cell_type": "code",
-   "execution_count": null,
+   "cell_type": "markdown",
    "metadata": {},
-   "outputs": [],
    "source": [
     "Conozco un grupo de objetos que resuelven problemas\n",
     "\n",
@@ -1303,7 +1301,7 @@
  "metadata": {
   "celltoolbar": "Slideshow",
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Python 3 (ipykernel)",
    "language": "python",
    "name": "python3"
   },
@@ -1317,7 +1315,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.6"
+   "version": "3.12.1"
   }
  },
  "nbformat": 4,