-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCKO_bank_track_with_gradients_final.sage
234 lines (201 loc) · 8.95 KB
/
CKO_bank_track_with_gradients_final.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def gradient_plot_polar(fun, track_surface, x_0, range_x, range_y, plot_points=10, color="black", radius=1/10, scale=1):
r"""
Plot gradient vectors of a bivariate function on points of its graph.
Arguments:
- fun: a symbolic expression corresponding to the function
- range_x and range_y: tuples of the form (var, min_value, max_value); the variables of fun should be
the first elements of these tuples
Options:
- plot_points: number of points in each direction; it can be a number or a list or a tuple
- color: a specific color for all vectors or "gradient"; in this case, vectors are colored depending
on their norms
- radius: radius of the arrow
- scale: a factor to increase or decrease the length of the arrows
Example:
f(u,v) = u^2-v^2
g = gradient_plot(f(u,v), (u,-1,1), (v,-1,1), scale=0.5)
s = plot3d(f(u,v), (u,-1,1), (v,-1,1), mesh=True)
show(g+s)
Another example:
var("x,y")
fun = cos(x+y)*sin(x-y)
x1, x2, y1, y2 = 0, pi, 0, pi
surface = plot3d(fun, (x,x1,x2), (y,y1,y2), mesh=True, color="green", plot_points=21)
gradients = gradient_plot(fun, (x,x1,x2), (y,y1,y2), plot_points=11,
scale=0.5, color="gradient", radius=0.02)
show(surface+gradients)
"""
# Process arguments
# -----------------
# fun
fr, fphi = fun.gradient()[:]
G=(track_surface).function(r,phi)
#fx = fr*cos(phi)
#fy = fr*sin(phi)
# ranges
var_x, xmin, xmax = range_x
var_y, ymin, ymax = range_y
# plot_points
if isinstance(plot_points, (list, tuple)):
nx, ny = plot_points
else:
nx = ny = plot_points
# color
if color=="gradient":
color = "red"
gradient_colors = True
else:
gradient_colors = False
# Compute gradient vectors at surface points and obtain the
# corresponding arrows to be plotted
# Gradient norms are also stored
norms = []
arrows = []
dx, dy = (xmax-xmin)/(nx-1), (ymax-ymin)/(ny-1)
iter_x = [xmin+dx,xmin+dx+dx,..,xmax]
iter_y = [ymin,ymin+dy,..,ymax]
for xx in iter_x:
for yy in iter_y:
#dic = {var_x: xx, var_y: yy}
#p = [xx*cos(yy), xx*sin(yy), fun(dic)]
p = [x_0+xx*cos(yy), xx*sin(yy), G(xx,yy)]
#v = vector([fr(xx,yy)*cos(yy), fr(xx,yy)*sin(yy), 0])
v = vector([fr(xx,yy)*cos(yy), fr(xx,yy)*sin(yy), (fr(xx,yy))**2])
#v = vector([fx(dic), fy(dic), ((fx(dic))^2+(fy(dic))^2)])
nv = norm(v).n()
norms.append(nv)
v = scale*v/nv*(-1)
arrows.append(arrow((0,0,0),v, color=color, radius=radius).translate(p))
# If required, modify arrow colors depending on the gradient norm.
# Colors range from dark blue (small norm) to dark red (big norm)
if gradient_colors:
nvmin, nvmax = min(norms), max(norms)
if nvmin==nvmax: nvmin = 0
for i in range(len(arrows)):
icol = (norms[i]-nvmin)/(nvmax-nvmin)
vcol = colormaps.jet(icol)[:-1]
arrows[i].set_texture(color=vcol)
# End
return sum(arrows)
def gradient_plot(fun, range_x, range_y, plot_points=10, color="black", radius=1/10, scale=1):
r"""
Plot gradient vectors of a bivariate function on points of its graph.
Arguments:
- fun: a symbolic expression corresponding to the function
- range_x and range_y: tuples of the form (var, min_value, max_value); the variables of fun should be
the first elements of these tuples
Options:
- plot_points: number of points in each direction; it can be a number or a list or a tuple
- color: a specific color for all vectors or "gradient"; in this case, vectors are colored depending
on their norms
- radius: radius of the arrow
- scale: a factor to increase or decrease the length of the arrows
Example:
f(u,v) = u^2-v^2
g = gradient_plot(f(u,v), (u,-1,1), (v,-1,1), scale=0.5)
s = plot3d(f(u,v), (u,-1,1), (v,-1,1), mesh=True)
show(g+s)
Another example:
var("x,y")
fun = cos(x+y)*sin(x-y)
x1, x2, y1, y2 = 0, pi, 0, pi
surface = plot3d(fun, (x,x1,x2), (y,y1,y2), mesh=True, color="green", plot_points=21)
gradients = gradient_plot(fun, (x,x1,x2), (y,y1,y2), plot_points=11,
scale=0.5, color="gradient", radius=0.02)
show(surface+gradients)
"""
# Process arguments
# -----------------
# fun
fx, fy = fun.gradient()
# ranges
var_x, xmin, xmax = range_x
var_y, ymin, ymax = range_y
# plot_points
if isinstance(plot_points, (list, tuple)):
nx, ny = plot_points
else:
nx = ny = plot_points
# color
if color=="gradient":
color = "red"
gradient_colors = True
else:
gradient_colors = False
# Compute gradient vectors at surface points and obtain the
# corresponding arrows to be plotted
# Gradient norms are also stored
norms = []
arrows = []
dx, dy = (xmax-xmin)/(nx-1), (ymax-ymin)/(ny-1)
iter_x = [xmin,xmin+dx,..,xmax]
iter_y = [ymin+dy,ymin+dy+dy,..,ymax]
for xx in iter_x:
for yy in iter_y:
dic = {var_x: xx, var_y: yy}
p = [xx, yy, fun(dic)]
v = vector([fx(dic), fy(dic), ((fx(dic))^2+(fy(dic))^2)])
nv = norm(v).n()
norms.append(nv)
v = scale*v/nv*(-1)
arrows.append(arrow((0,0,0),v, color=color, radius=radius).translate(p))
# If required, modify arrow colors depending on the gradient norm.
# Colors range from dark blue (small norm) to dark red (big norm)
if gradient_colors:
nvmin, nvmax = min(norms), max(norms)
if nvmin==nvmax: nvmin = 0
for i in range(len(arrows)):
icol = (norms[i]-nvmin)/(nvmax-nvmin)
vcol = colormaps.jet(icol)[:-1]
arrows[i].set_texture(color=vcol)
# End
return sum(arrows)
M.<r,phi> = EuclideanSpace(coordinates='polar')
#Red Curve
f1_x = 21+r*cos(phi)
f1_y = r*sin(phi)
J1_phi = 8+(14/pi)*(phi+pi/2)
f1_z = (((r-16)/12)*(12*cos((pi/11)*(8+(14/pi)*(phi+pi/2) - 17)) + 39.5))/12
#f1_z(u, v) = (((v-16)/12)*(12*cos((pi/11)*(J1_u - 17)) + 39.5))/12
S1=parametric_plot3d([f1_x, f1_y, f1_z], (phi,-pi/2,pi/2), (r,16,28), color="red", opacity=0.75, axes=True, mesh=False)
B1_inside=parametric_plot3d([f1_x, f1_y, 0], (phi,-pi/2,pi/2), (r,15.8,16), color="black", opacity=1, axes=True, mesh=False, scale=1)
B1_outside=parametric_plot3d([f1_x, f1_y, 0], (phi,-pi/2,pi/2), (r,27.9,28.1), color="black", opacity=1, axes=True, mesh=False, scale=1)
f1 = M.scalar_field(f1_z, name='f')
#show(f1.gradient()[:])
g1 = gradient_plot_polar(f1, f1_z, 21, (r,16,28), (phi,-pi/2,pi/2), plot_points=[5,16], scale=3)
#Blue Straight
u, v = var('u, v')
f2_x(u, v) = u
f2_y(u, v) = v
J2_u(u) = 22-(8/42)*(u-21)
f2_z(u, v) = (((v-16)/12)*(12*cos((pi/11)*(J2_u - 17)) + 39.5))/12
S2=parametric_plot3d([f2_x, f2_y, f2_z], (u, -21, 21), (v, 16, 28), color="blue", opacity=0.75, axes=True, mesh=False)
B2_inside=parametric_plot3d([f2_x, f2_y, 0], (u,-21,21), (v,15.8,16), color="black", opacity=1, axes=True, mesh=False, scale=1)
B2_outside=parametric_plot3d([f2_x, f2_y, 0], (u,-21,21), (v,27.9,28.1), color="black", opacity=1, axes=True, mesh=False, scale=1)
#show(f2_z.gradient()[:])
g2 = gradient_plot(f2_z(u,v), (u,-21,21), (v,16,28), plot_points=[8,4], scale=3)
#Purple Curved
f3_x = -21+r*cos(phi)
f3_y = r*sin(phi)
J3_phi = 30+(14/pi)*(phi-pi/2)
f3_z = (((r-16)/12)*(12*cos((pi/11)*(J3_phi - 17)) + 39.5))/12
S3=parametric_plot3d([f3_x, f3_y, f3_z], (phi,pi/2,3*pi/2), (r,16,28), color="purple", opacity=0.75, axes=True, mesh=False)
B3_inside=parametric_plot3d([f3_x, f3_y, 0], (phi,pi/2,3*pi/2), (r,15.8,16), color="black", opacity=1, axes=True, mesh=False, scale=1)
B3_outside=parametric_plot3d([f3_x, f3_y, 0], (phi,pi/2,3*pi/2), (r,27.9,28.1), color="black", opacity=1, axes=True, mesh=False, scale=1)
f3 = M.scalar_field(f3_z, name='f')
#show(f3.gradient()[:])
g3 = gradient_plot_polar(f3, f3_z, -21, (r,16,28), (phi,pi/2,3*pi/2), plot_points=[5,16], scale=3)
#Green Straight
f4_x(u, v) = u
f4_y(u, v) = v
J4_u(u) = 44+(8/42)*(u+21)
f4_z(u, v) = ((-1*(v+16)/12)*(12*cos((pi/11)*(J4_u - 17)) + 39.5))/12
S4=parametric_plot3d([f4_x, f4_y, f4_z], (u,-21,21), (v,-28,-16), color="green", opacity=0.75, axes=True, mesh=False, scale=1)
B4_inside=parametric_plot3d([f4_x, f4_y, 0], (u,-21,21), (v,-16,-15.8), color="black", opacity=1, axes=True, mesh=False, scale=1)
B4_outside=parametric_plot3d([f4_x, f4_y, 0], (u,-21,21), (v,-28.1,-27.9), color="black", opacity=1, axes=True, mesh=False, scale=1)
#show(f4_z.gradient()[:])
g4 = gradient_plot(f4_z(u,v), (u,-21,21), (v,-32,-20), plot_points=[8,4], scale=3)
#Floor
f(u,v) = 0
floor = plot3d(f(u,v), (u,-50,50), (v,-30,30), mesh=False, color="gray", opacity=0.5, plot_points=20)
show(S1+B1_inside+B1_outside+g1+S2+B2_inside+B2_outside+g2+S3+B3_inside+B3_outside+g3+S4+B4_inside+B4_outside+g4+floor)