|
| 1 | +_base_ = [ |
| 2 | + '../_base_/datasets/coco_detection.py', |
| 3 | + '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
| 4 | +] |
| 5 | +# model settings |
| 6 | +model = dict( |
| 7 | + type='FCOS', |
| 8 | + pretrained='open-mmlab://detectron/resnet50_caffe', |
| 9 | + backbone=dict( |
| 10 | + type='ResNet', |
| 11 | + depth=50, |
| 12 | + num_stages=4, |
| 13 | + out_indices=(0, 1, 2, 3), |
| 14 | + frozen_stages=1, |
| 15 | + norm_cfg=dict(type='BN', requires_grad=False), |
| 16 | + norm_eval=True, |
| 17 | + style='caffe'), |
| 18 | + neck=dict( |
| 19 | + type='FPN', |
| 20 | + in_channels=[256, 512, 1024, 2048], |
| 21 | + out_channels=256, |
| 22 | + start_level=1, |
| 23 | + add_extra_convs=True, |
| 24 | + extra_convs_on_inputs=False, # use P5 |
| 25 | + num_outs=5, |
| 26 | + relu_before_extra_convs=True), |
| 27 | + bbox_head=dict( |
| 28 | + type='FCOSHead', |
| 29 | + num_classes=80, |
| 30 | + in_channels=256, |
| 31 | + stacked_convs=4, |
| 32 | + feat_channels=256, |
| 33 | + strides=[8, 16, 32, 64, 128], |
| 34 | + loss_cls=dict( |
| 35 | + type='FocalLoss', |
| 36 | + use_sigmoid=True, |
| 37 | + gamma=2.0, |
| 38 | + alpha=0.25, |
| 39 | + loss_weight=1.0), |
| 40 | + loss_bbox=dict(type='IoULoss', loss_weight=1.0), |
| 41 | + loss_centerness=dict( |
| 42 | + type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), |
| 43 | + # training and testing settings |
| 44 | + train_cfg=dict( |
| 45 | + assigner=dict( |
| 46 | + type='MaxIoUAssigner', |
| 47 | + pos_iou_thr=0.5, |
| 48 | + neg_iou_thr=0.4, |
| 49 | + min_pos_iou=0, |
| 50 | + ignore_iof_thr=-1), |
| 51 | + allowed_border=-1, |
| 52 | + pos_weight=-1, |
| 53 | + debug=False), |
| 54 | + test_cfg=dict( |
| 55 | + nms_pre=1000, |
| 56 | + min_bbox_size=0, |
| 57 | + score_thr=0.05, |
| 58 | + nms=dict(type='nms', iou_threshold=0.5), |
| 59 | + max_per_img=100)) |
| 60 | +img_norm_cfg = dict( |
| 61 | + mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) |
| 62 | +train_pipeline = [ |
| 63 | + dict(type='LoadImageFromFile'), |
| 64 | + dict(type='LoadAnnotations', with_bbox=True), |
| 65 | + dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), |
| 66 | + dict(type='RandomFlip', flip_ratio=0.5), |
| 67 | + dict(type='Normalize', **img_norm_cfg), |
| 68 | + dict(type='Pad', size_divisor=32), |
| 69 | + dict(type='DefaultFormatBundle'), |
| 70 | + dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
| 71 | +] |
| 72 | +test_pipeline = [ |
| 73 | + dict(type='LoadImageFromFile'), |
| 74 | + dict( |
| 75 | + type='MultiScaleFlipAug', |
| 76 | + img_scale=(1333, 800), |
| 77 | + flip=False, |
| 78 | + transforms=[ |
| 79 | + dict(type='Resize', keep_ratio=True), |
| 80 | + dict(type='RandomFlip'), |
| 81 | + dict(type='Normalize', **img_norm_cfg), |
| 82 | + dict(type='Pad', size_divisor=32), |
| 83 | + dict(type='ImageToTensor', keys=['img']), |
| 84 | + dict(type='Collect', keys=['img']), |
| 85 | + ]) |
| 86 | +] |
| 87 | +data = dict( |
| 88 | + samples_per_gpu=2, |
| 89 | + workers_per_gpu=2, |
| 90 | + train=dict(pipeline=train_pipeline), |
| 91 | + val=dict(pipeline=test_pipeline), |
| 92 | + test=dict(pipeline=test_pipeline)) |
| 93 | +# optimizer |
| 94 | +optimizer = dict( |
| 95 | + lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) |
| 96 | +optimizer_config = dict( |
| 97 | + _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) |
| 98 | +# learning policy |
| 99 | +lr_config = dict( |
| 100 | + policy='step', |
| 101 | + warmup='constant', |
| 102 | + warmup_iters=500, |
| 103 | + warmup_ratio=1.0 / 3, |
| 104 | + step=[8, 11]) |
| 105 | +runner = dict(type='EpochBasedRunner', max_epochs=12) |
0 commit comments