forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Topological_Sorting_DFS.cpp
91 lines (76 loc) · 1.86 KB
/
Topological_Sorting_DFS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
// A C++ program to print topological sorting of a DAG (Directed Acyclic Graph)
// using DFS approach
#include<iostream>
#include <list>
#include <stack>
#include <conio.h>
using namespace std;
class Graph
{
int V; // V = number of vertices
list<int> *adj;
void topologicalSortUtil(int v, bool visited[], stack<int> &Stack);
public:
Graph(int V);
void addEdge(int v, int w);
void topologicalSort();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // directed connection between 2 nodes in the graph
}
void Graph::topologicalSortUtil(int v, bool visited[], stack<int> &Stack)
{
visited[v] = true;
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
topologicalSortUtil(*i, visited, Stack);
Stack.push(v);
}
// The function is used to do Topological Sort. It uses recursive topologicalSortUtil()
void Graph::topologicalSort()
{
stack<int> Stack;
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, Stack);
// Print contents of stack
while (Stack.empty() == false)
{
cout << Stack.top() << " ";
Stack.pop();
}
}
int main()
{
/*
int nodes, x, y;
cout << "Enter the number of nodes in the graph: ";
cin >> nodes;
Graph g(nodes);
cout << "Enter the edges of the graph: \n";
for(int i = 0; i < nodes; i++){
cin >> x >> y;
g.addEdge(x, y);
}
*/
Graph g(6);
g.addEdge(5, 2);
g.addEdge(5, 0);
g.addEdge(4, 0);
g.addEdge(4, 1);
g.addEdge(2, 3);
g.addEdge(3, 1);
cout << "\nFollowing is a Topological Sort of the given graph \n";
g.topologicalSort();
return 0;
}