From be67e7035f67704f9e04f1b316029dae0f4940ab Mon Sep 17 00:00:00 2001 From: PatReis Date: Mon, 1 Jan 2024 12:13:59 +0100 Subject: [PATCH] update training results. --- .../PAiNN/PAiNN_QM9Dataset_score_H.yaml | 139 ++++++++++++++++++ .../PAiNN/PAiNN_QM9Dataset_score_LUMO.yaml | 139 ++++++++++++++++++ .../QM9Dataset/PAiNN/PAiNN_hyper_H.json | 1 + .../QM9Dataset/PAiNN/PAiNN_hyper_LUMO.json | 1 + 4 files changed, 280 insertions(+) create mode 100644 training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_H.yaml create mode 100644 training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_LUMO.yaml create mode 100644 training/results/QM9Dataset/PAiNN/PAiNN_hyper_H.json create mode 100644 training/results/QM9Dataset/PAiNN/PAiNN_hyper_LUMO.json diff --git a/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_H.yaml b/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_H.yaml new file mode 100644 index 00000000..e0843dac --- /dev/null +++ b/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_H.yaml @@ -0,0 +1,139 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: '[''eV'']' +date_time: '2023-12-30 14:40:05' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (7, 0), ''device_name'': ''Tesla V100-SXM2-32GB''}]' +epochs: +- 872 +- 872 +- 872 +- 872 +- 872 +execute_folds: +- 3 +kgcnn_version: 4.0.0 +loss: +- 0.0019955458119511604 +- 0.002024617977440357 +- 0.0019782360177487135 +- 0.0019529580604285002 +- 0.0019817312713712454 +max_loss: +- 0.18526189029216766 +- 0.18828505277633667 +- 0.18873144686222076 +- 0.1903804987668991 +- 0.18624798953533173 +max_scaled_mean_absolute_error: +- 0.20193131268024445 +- 0.2055528163909912 +- 0.20597510039806366 +- 0.20785720646381378 +- 0.20349407196044922 +max_scaled_root_mean_squared_error: +- 0.3394524157047272 +- 0.3438010513782501 +- 0.3476903438568115 +- 0.3472926616668701 +- 0.34120410680770874 +max_val_loss: +- 0.03188300132751465 +- 0.029626354575157166 +- 0.03657916933298111 +- 0.047557979822158813 +- 0.04267334192991257 +max_val_scaled_mean_absolute_error: +- 0.03464236482977867 +- 0.032236188650131226 +- 0.03979366645216942 +- 0.05186860263347626 +- 0.046537794172763824 +max_val_scaled_root_mean_squared_error: +- 0.05618090182542801 +- 0.05501886457204819 +- 0.06330189853906631 +- 0.07451926171779633 +- 0.0724678486585617 +min_loss: +- 0.0019673604983836412 +- 0.0019799822475761175 +- 0.0019443101482465863 +- 0.0019377947319298983 +- 0.0019342212472110987 +min_scaled_mean_absolute_error: +- 0.0021442738361656666 +- 0.0021614376455545425 +- 0.0021219186019152403 +- 0.0021156545262783766 +- 0.002113256836310029 +min_scaled_root_mean_squared_error: +- 0.0028910746332257986 +- 0.0029227002523839474 +- 0.0028797462582588196 +- 0.002844379749149084 +- 0.002818490844219923 +min_val_loss: +- 0.009148568846285343 +- 0.008913757279515266 +- 0.009337415918707848 +- 0.008778532966971397 +- 0.00909003708511591 +min_val_scaled_mean_absolute_error: +- 0.009881334379315376 +- 0.009660759940743446 +- 0.010099595412611961 +- 0.009524621069431305 +- 0.009874518029391766 +min_val_scaled_root_mean_squared_error: +- 0.029311876744031906 +- 0.02768424153327942 +- 0.030961958691477776 +- 0.02643650770187378 +- 0.028908340260386467 +model_class: make_model +model_name: PAiNN +model_version: '2023-10-04' +multi_target_indices: +- 12 +number_histories: 5 +scaled_mean_absolute_error: +- 0.0021750417072325945 +- 0.0022102019283920527 +- 0.0021589179523289204 +- 0.0021322108805179596 +- 0.0021651547867804766 +scaled_root_mean_squared_error: +- 0.002943216124549508 +- 0.0029651967342942953 +- 0.0029119839891791344 +- 0.0028563514351844788 +- 0.0028814643155783415 +seed: 42 +time_list: +- '15:51:51.633536' +- '15:45:18.577087' +- '15:40:21.663428' +- '15:49:08.423918' +- '15:31:42.287163' +val_loss: +- 0.009798742830753326 +- 0.009327730163931847 +- 0.009464696981012821 +- 0.008801082149147987 +- 0.009116045199334621 +val_scaled_mean_absolute_error: +- 0.01059046946465969 +- 0.010111944749951363 +- 0.010241112671792507 +- 0.009549328126013279 +- 0.009903214871883392 +val_scaled_root_mean_squared_error: +- 0.029764937236905098 +- 0.028448030352592468 +- 0.034340400248765945 +- 0.026546387001872063 +- 0.029275482520461082 diff --git a/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_LUMO.yaml b/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_LUMO.yaml new file mode 100644 index 00000000..ac8822ba --- /dev/null +++ b/training/results/QM9Dataset/PAiNN/PAiNN_QM9Dataset_score_LUMO.yaml @@ -0,0 +1,139 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: '[''eV'']' +date_time: '2024-01-01 09:57:09' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (7, 0), ''device_name'': ''Tesla V100-SXM2-32GB''}]' +epochs: +- 872 +- 872 +- 872 +- 872 +- 872 +execute_folds: +- 4 +kgcnn_version: 4.0.0 +loss: +- 0.0020861534867435694 +- 0.0019487738609313965 +- 0.0019303049193695188 +- 0.0019613842014223337 +- 0.001908505568280816 +max_loss: +- 0.20696552097797394 +- 0.20219039916992188 +- 0.20419193804264069 +- 0.20342102646827698 +- 0.20268265902996063 +max_scaled_mean_absolute_error: +- 0.2640361785888672 +- 0.25833627581596375 +- 0.2610222399234772 +- 0.25960054993629456 +- 0.2590479850769043 +max_scaled_root_mean_squared_error: +- 0.39627182483673096 +- 0.3863120377063751 +- 0.39248400926589966 +- 0.3890867829322815 +- 0.3875385522842407 +max_val_loss: +- 0.047063447535037994 +- 0.05677426606416702 +- 0.04467691853642464 +- 0.050913263112306595 +- 0.054120130836963654 +max_val_scaled_mean_absolute_error: +- 0.05994651839137077 +- 0.07244302332401276 +- 0.05697048082947731 +- 0.06481605023145676 +- 0.06905586272478104 +max_val_scaled_root_mean_squared_error: +- 0.08429275453090668 +- 0.09583966434001923 +- 0.08529383689165115 +- 0.09227821975946426 +- 0.10410711169242859 +min_loss: +- 0.0020580007694661617 +- 0.0019487738609313965 +- 0.001929765217937529 +- 0.001947144977748394 +- 0.001908505568280816 +min_scaled_mean_absolute_error: +- 0.002625466324388981 +- 0.0024898583069443703 +- 0.0024668066762387753 +- 0.002484900178387761 +- 0.002439181786030531 +min_scaled_root_mean_squared_error: +- 0.003604347351938486 +- 0.003451655153185129 +- 0.003394855884835124 +- 0.003470573341473937 +- 0.003339767688885331 +min_val_loss: +- 0.020965995267033577 +- 0.020821647718548775 +- 0.02085803635418415 +- 0.020851779729127884 +- 0.020947162061929703 +min_val_scaled_mean_absolute_error: +- 0.02664823830127716 +- 0.026541169732809067 +- 0.026546595618128777 +- 0.026502860710024834 +- 0.026716047897934914 +min_val_scaled_root_mean_squared_error: +- 0.0506107471883297 +- 0.047274112701416016 +- 0.04923555999994278 +- 0.05022411420941353 +- 0.055102452635765076 +model_class: make_model +model_name: PAiNN +model_version: '2023-10-04' +multi_target_indices: +- 6 +number_histories: 5 +scaled_mean_absolute_error: +- 0.0026613834779709578 +- 0.0024898583069443703 +- 0.0024674590677022934 +- 0.002503048861399293 +- 0.002439181786030531 +scaled_root_mean_squared_error: +- 0.0036517123226076365 +- 0.003451655153185129 +- 0.003394855884835124 +- 0.003490382805466652 +- 0.003339767688885331 +seed: 42 +time_list: +- '15:24:04.894363' +- '15:57:32.449881' +- '15:35:41.391352' +- '14:49:24.468281' +- '15:15:03.458031' +val_loss: +- 0.02117057330906391 +- 0.020858103409409523 +- 0.02085803635418415 +- 0.02103325165808201 +- 0.021233005449175835 +val_scaled_mean_absolute_error: +- 0.026909509673714638 +- 0.02658955752849579 +- 0.026546595618128777 +- 0.02673463709652424 +- 0.027080604806542397 +val_scaled_root_mean_squared_error: +- 0.05089842155575752 +- 0.04728246480226517 +- 0.04927689954638481 +- 0.0504501610994339 +- 0.05542372912168503 diff --git a/training/results/QM9Dataset/PAiNN/PAiNN_hyper_H.json b/training/results/QM9Dataset/PAiNN/PAiNN_hyper_H.json new file mode 100644 index 00000000..692b2899 --- /dev/null +++ b/training/results/QM9Dataset/PAiNN/PAiNN_hyper_H.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_model", "module_name": "kgcnn.literature.PAiNN", "config": {"name": "PAiNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}], "input_tensor_type": "ragged", "input_embedding": null, "equiv_initialize_kwargs": {"dim": 3, "method": "eps", "units": 128}, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "pooling_args": {"pooling_method": "sum"}, "conv_args": {"units": 128, "cutoff": null}, "update_args": {"units": 128, "add_eps": true}, "depth": 3, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 872, "validation_freq": 10, "verbose": 2, "callbacks": []}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>LinearWarmupExponentialDecay", "config": {"learning_rate": 0.001, "warmup_steps": 3000.0, "decay_steps": 4000000.0, "decay_rate": 0.01}}, "amsgrad": true, "use_ema": true}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "QMGraphLabelScaler", "config": {"atomic_number": "node_number", "scaler": [{"class_name": "ExtensiveMolecularScaler", "config": {}}]}}, "multi_target_indices": [12]}, "dataset": {"class_name": "QM9Dataset", "module_name": "kgcnn.data.datasets.QM9Dataset", "config": {}, "methods": [{"map_list": {"method": "set_range", "max_distance": 5, "max_neighbours": 10000}}]}, "data": {}, "info": {"postfix": "", "postfix_file": "_H", "kgcnn_version": "4.0.0"}} \ No newline at end of file diff --git a/training/results/QM9Dataset/PAiNN/PAiNN_hyper_LUMO.json b/training/results/QM9Dataset/PAiNN/PAiNN_hyper_LUMO.json new file mode 100644 index 00000000..680f0fdc --- /dev/null +++ b/training/results/QM9Dataset/PAiNN/PAiNN_hyper_LUMO.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_model", "module_name": "kgcnn.literature.PAiNN", "config": {"name": "PAiNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "pooling_args": {"pooling_method": "sum"}, "conv_args": {"units": 128, "cutoff": null}, "update_args": {"units": 128}, "depth": 3, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 872, "validation_freq": 10, "verbose": 2, "callbacks": []}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>LinearWarmupExponentialDecay", "config": {"learning_rate": 0.001, "warmup_steps": 3000.0, "decay_steps": 4000000.0, "decay_rate": 0.01}}, "amsgrad": true, "use_ema": true}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "QMGraphLabelScaler", "config": {"atomic_number": "node_number", "scaler": [{"class_name": "StandardLabelScaler", "config": {"with_std": true, "with_mean": true, "copy": true}}]}}, "multi_target_indices": [6]}, "data": {}, "info": {"postfix": "", "postfix_file": "_LUMO", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "QM9Dataset", "module_name": "kgcnn.data.datasets.QM9Dataset", "config": {}, "methods": [{"map_list": {"method": "set_range", "max_distance": 5, "max_neighbours": 10000}}]}} \ No newline at end of file