From 984f094134654cdaa58030170029867a282ac87e Mon Sep 17 00:00:00 2001 From: PatReis Date: Wed, 3 Jan 2024 16:21:34 +0100 Subject: [PATCH] Update training results. --- ...iNN_MatProjectDielectricDataset_score.yaml | 156 ++++++++++++++++++ .../PAiNN_make_crystal_model/PAiNN_hyper.json | 1 + ...PN_MatProjectPerovskitesDataset_score.yaml | 156 ++++++++++++++++++ .../NMPN_make_crystal_model/NMPN_hyper.json | 1 + .../CGCNN_MatProjectPhononsDataset_score.yaml | 156 ++++++++++++++++++ .../CGCNN_make_crystal_model/CGCNN_hyper.json | 1 + ...eNetPP_MatProjectPhononsDataset_score.yaml | 138 ++++++++++++++++ .../DimeNetPP_hyper.json | 1 + ...Megnet_MatProjectPhononsDataset_score.yaml | 156 ++++++++++++++++++ .../Megnet_hyper.json | 1 + .../NMPN_MatProjectPhononsDataset_score.yaml | 156 ++++++++++++++++++ .../NMPN_make_crystal_model/NMPN_hyper.json | 1 + .../PAiNN_MatProjectPhononsDataset_score.yaml | 156 ++++++++++++++++++ .../PAiNN_make_crystal_model/PAiNN_hyper.json | 1 + 14 files changed, 1081 insertions(+) create mode 100644 training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_MatProjectDielectricDataset_score.yaml create mode 100644 training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_hyper.json create mode 100644 training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_MatProjectPerovskitesDataset_score.yaml create mode 100644 training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_hyper.json create mode 100644 training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_MatProjectPhononsDataset_score.yaml create mode 100644 training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_hyper.json create mode 100644 training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_MatProjectPhononsDataset_score.yaml create mode 100644 training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_hyper.json create mode 100644 training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_MatProjectPhononsDataset_score.yaml create mode 100644 training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_hyper.json create mode 100644 training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_MatProjectPhononsDataset_score.yaml create mode 100644 training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_hyper.json create mode 100644 training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_MatProjectPhononsDataset_score.yaml create mode 100644 training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_hyper.json diff --git a/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_MatProjectDielectricDataset_score.yaml b/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_MatProjectDielectricDataset_score.yaml new file mode 100644 index 00000000..f6a7db88 --- /dev/null +++ b/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_MatProjectDielectricDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: '' +date_time: '2024-01-02 16:13:43' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 800 +- 800 +- 800 +- 800 +- 800 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +loss: +- 0.008343053050339222 +- 0.007415709085762501 +- 0.010438678786158562 +- 0.006397827062755823 +- 0.006797634530812502 +max_learning_rate: +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +max_loss: +- 0.3743226230144501 +- 0.3785216212272644 +- 0.3962166905403137 +- 0.4328046143054962 +- 0.35603174567222595 +max_scaled_mean_absolute_error: +- 0.832730770111084 +- 0.8200618028640747 +- 0.7539911866188049 +- 0.8445661067962646 +- 0.7975484728813171 +max_scaled_root_mean_squared_error: +- 2.241159439086914 +- 2.168581485748291 +- 1.9145407676696777 +- 1.9570283889770508 +- 2.2431771755218506 +max_val_loss: +- 0.1483222395181656 +- 0.1832215040922165 +- 0.20100706815719604 +- 0.23863278329372406 +- 0.17070074379444122 +max_val_scaled_mean_absolute_error: +- 0.3327166736125946 +- 0.3960125148296356 +- 0.38261353969573975 +- 0.4667319357395172 +- 0.3815496861934662 +max_val_scaled_root_mean_squared_error: +- 1.2442364692687988 +- 1.7240126132965088 +- 2.6579506397247314 +- 2.520660400390625 +- 1.3745040893554688 +min_learning_rate: +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +min_loss: +- 0.006864224560558796 +- 0.0067525943741202354 +- 0.007798410952091217 +- 0.006203407421708107 +- 0.006412183865904808 +min_scaled_mean_absolute_error: +- 0.015403984114527702 +- 0.014682323671877384 +- 0.014871788211166859 +- 0.012126419693231583 +- 0.014398567378520966 +min_scaled_root_mean_squared_error: +- 0.07728196680545807 +- 0.05676349997520447 +- 0.06881851702928543 +- 0.07449829578399658 +- 0.07499721646308899 +min_val_loss: +- 0.10685255378484726 +- 0.1370280534029007 +- 0.16552644968032837 +- 0.19828854501247406 +- 0.13007348775863647 +min_val_scaled_mean_absolute_error: +- 0.239999920129776 +- 0.29708120226860046 +- 0.31591737270355225 +- 0.3882957696914673 +- 0.2904556095600128 +min_val_scaled_root_mean_squared_error: +- 1.1581988334655762 +- 1.5400705337524414 +- 2.608130931854248 +- 2.4554412364959717 +- 1.1494797468185425 +model_class: make_crystal_model +model_name: PAiNN +model_version: '2023-10-04' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 0.01876545511186123 +- 0.01617487147450447 +- 0.0198748130351305 +- 0.012547771446406841 +- 0.015281754545867443 +scaled_root_mean_squared_error: +- 0.08240760117769241 +- 0.06557603180408478 +- 0.07439026981592178 +- 0.08728229254484177 +- 0.0879431739449501 +seed: 42 +time_list: +- '0:20:49.277263' +- '0:20:51.259861' +- '0:21:07.760770' +- '0:20:45.797749' +- '0:20:35.374779' +val_loss: +- 0.12743614614009857 +- 0.1601962298154831 +- 0.19087393581867218 +- 0.21565459668636322 +- 0.15698392689228058 +val_scaled_mean_absolute_error: +- 0.2856501042842865 +- 0.34770697355270386 +- 0.3635082244873047 +- 0.42160239815711975 +- 0.35084113478660583 +val_scaled_root_mean_squared_error: +- 1.2183345556259155 +- 1.704131841659546 +- 2.6451714038848877 +- 2.4885034561157227 +- 1.2744284868240356 diff --git a/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_hyper.json b/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_hyper.json new file mode 100644 index 00000000..109527cc --- /dev/null +++ b/training/results/MatProjectDielectricDataset/PAiNN_make_crystal_model/PAiNN_hyper.json @@ -0,0 +1 @@ +{"model": {"module_name": "kgcnn.literature.PAiNN", "class_name": "make_crystal_model", "config": {"name": "PAiNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "equiv_initialize_kwargs": {"dim": 3, "method": "eye"}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "pooling_args": {"pooling_method": "mean"}, "conv_args": {"units": 128, "cutoff": null, "conv_pool": "sum"}, "update_args": {"units": 128}, "depth": 2, "verbose": 10, "equiv_normalization": false, "node_normalization": false, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 800, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearWarmupLinearLearningRateScheduler", "config": {"learning_rate_start": 0.0001, "learning_rate_stop": 1e-06, "epo_warmup": 25, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": ""}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectDielectricDataset", "module_name": "kgcnn.data.datasets.MatProjectDielectricDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_MatProjectPerovskitesDataset_score.yaml b/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_MatProjectPerovskitesDataset_score.yaml new file mode 100644 index 00000000..a5413241 --- /dev/null +++ b/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_MatProjectPerovskitesDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: eV/unit_cell +date_time: '2024-01-03 15:52:10' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 700 +- 700 +- 700 +- 700 +- 700 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +loss: +- 0.006932865362614393 +- 0.005952408537268639 +- 0.0054324958473443985 +- 0.005202374421060085 +- 0.005437558051198721 +max_learning_rate: +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +max_loss: +- 0.4531893730163574 +- 0.4429142475128174 +- 0.4406983554363251 +- 0.4538939893245697 +- 0.47312670946121216 +max_scaled_mean_absolute_error: +- 0.335816890001297 +- 0.3273136615753174 +- 0.32770025730133057 +- 0.33756428956985474 +- 0.35288602113723755 +max_scaled_root_mean_squared_error: +- 0.4639325737953186 +- 0.456274151802063 +- 0.4510149657726288 +- 0.46401575207710266 +- 0.480268269777298 +max_val_loss: +- 0.15461614727973938 +- 0.16434505581855774 +- 0.17289485037326813 +- 0.15996496379375458 +- 0.16088221967220306 +max_val_scaled_mean_absolute_error: +- 0.11454213410615921 +- 0.12140224874019623 +- 0.12856562435626984 +- 0.11897993087768555 +- 0.12006698548793793 +max_val_scaled_root_mean_squared_error: +- 0.1518266499042511 +- 0.16154775023460388 +- 0.16712376475334167 +- 0.1560198813676834 +- 0.15944355726242065 +min_learning_rate: +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +min_loss: +- 0.006682931911200285 +- 0.005884940270334482 +- 0.0054324958473443985 +- 0.005202374421060085 +- 0.005429239012300968 +min_scaled_mean_absolute_error: +- 0.004952264484018087 +- 0.0043501476757228374 +- 0.004039786756038666 +- 0.003869774052873254 +- 0.004050583578646183 +min_scaled_root_mean_squared_error: +- 0.013786262832581997 +- 0.010175243020057678 +- 0.00982213020324707 +- 0.008825990371406078 +- 0.011821199208498001 +min_val_loss: +- 0.0513911098241806 +- 0.05351201072335243 +- 0.04997345060110092 +- 0.04981572926044464 +- 0.05114368349313736 +min_val_scaled_mean_absolute_error: +- 0.038059163838624954 +- 0.03956983610987663 +- 0.037180110812187195 +- 0.03702397644519806 +- 0.03810892999172211 +min_val_scaled_root_mean_squared_error: +- 0.06310626864433289 +- 0.06860072910785675 +- 0.06758585572242737 +- 0.06064404174685478 +- 0.06464245170354843 +model_class: make_crystal_model +model_name: NMPN +model_version: '2023-11-22' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 0.0051377518102526665 +- 0.004398857243359089 +- 0.004039786756038666 +- 0.003869774052873254 +- 0.0040563964284956455 +scaled_root_mean_squared_error: +- 0.013905107975006104 +- 0.010181010700762272 +- 0.00982213020324707 +- 0.008825990371406078 +- 0.011821199208498001 +seed: 42 +time_list: +- '5:24:52.913470' +- '5:26:28.538504' +- '5:24:54.249343' +- '5:26:42.453377' +- '5:23:43.570943' +val_loss: +- 0.0513911098241806 +- 0.053858283907175064 +- 0.05017431080341339 +- 0.049983710050582886 +- 0.05114368349313736 +val_scaled_mean_absolute_error: +- 0.038059163838624954 +- 0.03982764855027199 +- 0.03732907399535179 +- 0.037146057933568954 +- 0.03810892999172211 +val_scaled_root_mean_squared_error: +- 0.06339479982852936 +- 0.06905113905668259 +- 0.06779690831899643 +- 0.061015576124191284 +- 0.06472626328468323 diff --git a/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_hyper.json b/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_hyper.json new file mode 100644 index 00000000..b8674a01 --- /dev/null +++ b/training/results/MatProjectPerovskitesDataset/NMPN_make_crystal_model/NMPN_hyper.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.NMPN", "config": {"name": "NMPN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "input_edge_embedding": {"input_dim": 5, "output_dim": 64}, "set2set_args": {"channels": 32, "T": 3, "pooling_method": "sum", "init_qstar": "0"}, "pooling_args": {"pooling_method": "mean"}, "use_set2set": true, "depth": 3, "node_dim": 128, "verbose": 10, "geometric_edge": true, "make_distance": true, "expand_distance": true, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true, false], "units": [25, 25, 1], "activation": ["selu", "selu", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 16, "epochs": 700, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0001, "learning_rate_stop": 1e-05, "epo_min": 50, "epo": 700, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPerovskitesDataset", "module_name": "kgcnn.data.datasets.MatProjectPerovskitesDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_MatProjectPhononsDataset_score.yaml b/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_MatProjectPhononsDataset_score.yaml new file mode 100644 index 00000000..725e36f9 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_MatProjectPhononsDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: eV/atom +date_time: '2024-01-02 12:43:43' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 1000 +- 1000 +- 1000 +- 1000 +- 1000 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +loss: +- 0.004317963030189276 +- 0.004601033870130777 +- 0.004553907085210085 +- 0.00346244964748621 +- 0.004772838670760393 +max_learning_rate: +- 0.0010000000474974513 +- 0.0010000000474974513 +- 0.0010000000474974513 +- 0.0010000000474974513 +- 0.0010000000474974513 +max_loss: +- 0.6415535807609558 +- 0.6290432214736938 +- 0.631635308265686 +- 0.6275734901428223 +- 0.6211722493171692 +max_scaled_mean_absolute_error: +- 315.7041015625 +- 310.7929382324219 +- 306.69293212890625 +- 299.6334228515625 +- 321.651123046875 +max_scaled_root_mean_squared_error: +- 501.0257263183594 +- 503.564208984375 +- 493.1729736328125 +- 482.9405517578125 +- 524.8811645507812 +max_val_loss: +- 0.23609495162963867 +- 0.25098127126693726 +- 0.27506160736083984 +- 0.30150172114372253 +- 0.19292637705802917 +max_val_scaled_mean_absolute_error: +- 116.31764221191406 +- 124.20046997070312 +- 133.51927185058594 +- 143.6338653564453 +- 99.8260269165039 +max_val_scaled_root_mean_squared_error: +- 303.0132141113281 +- 302.0243225097656 +- 316.3451843261719 +- 335.3147277832031 +- 200.20040893554688 +min_learning_rate: +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +- 1.1979999726463575e-05 +min_loss: +- 0.004317963030189276 +- 0.004601033870130777 +- 0.004553907085210085 +- 0.003436138154938817 +- 0.004772838670760393 +min_scaled_mean_absolute_error: +- 2.1319825649261475 +- 2.2878987789154053 +- 2.2219271659851074 +- 1.6424767971038818 +- 2.4791715145111084 +min_scaled_root_mean_squared_error: +- 7.3439226150512695 +- 8.690505027770996 +- 6.702782154083252 +- 5.027475833892822 +- 7.077595233917236 +min_val_loss: +- 0.07277223467826843 +- 0.08435291051864624 +- 0.09066420048475266 +- 0.09786166995763779 +- 0.0737776979804039 +min_val_scaled_mean_absolute_error: +- 35.93081283569336 +- 41.74771499633789 +- 44.029117584228516 +- 46.60277557373047 +- 38.213836669921875 +min_val_scaled_root_mean_squared_error: +- 61.992671966552734 +- 93.23509979248047 +- 83.88030242919922 +- 113.3333740234375 +- 82.26461791992188 +model_class: make_crystal_model +model_name: CGCNN +model_version: '2023-11-28' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 2.1319825649261475 +- 2.2878987789154053 +- 2.2219271659851074 +- 1.6550911664962769 +- 2.4791715145111084 +scaled_root_mean_squared_error: +- 7.3439226150512695 +- 8.690505027770996 +- 6.702782154083252 +- 5.027475833892822 +- 7.077595233917236 +seed: 42 +time_list: +- '0:03:49.164667' +- '0:03:43.402438' +- '0:03:43.143548' +- '0:03:44.756334' +- '0:03:46.732962' +val_loss: +- 0.0742277055978775 +- 0.08452695608139038 +- 0.09299201518297195 +- 0.10481196641921997 +- 0.07657171785831451 +val_scaled_mean_absolute_error: +- 36.64948654174805 +- 41.84267044067383 +- 45.15475082397461 +- 49.90903854370117 +- 39.667606353759766 +val_scaled_root_mean_squared_error: +- 65.66608428955078 +- 94.41028594970703 +- 84.87903594970703 +- 130.73086547851562 +- 85.12699127197266 diff --git a/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_hyper.json b/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_hyper.json new file mode 100644 index 00000000..0dfabe67 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/CGCNN_make_crystal_model/CGCNN_hyper.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.CGCNN", "config": {"name": "CGCNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_frac_coordinates", "dtype": "float64", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "float32", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float64", "ragged": false}], "input_tensor_type": "ragged", "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "representation": "unit", "expand_distance": true, "make_distances": true, "gauss_args": {"bins": 60, "distance": 6, "offset": 0.0, "sigma": 0.4}, "conv_layer_args": {"units": 128, "activation_s": "kgcnn>shifted_softplus", "activation_out": "kgcnn>shifted_softplus", "batch_normalization": true}, "node_pooling_args": {"pooling_method": "mean"}, "depth": 4, "output_mlp": {"use_bias": [true, true, false], "units": [128, 64, 1], "activation": ["kgcnn>shifted_softplus", "kgcnn>shifted_softplus", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 128, "epochs": 1000, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.001, "learning_rate_stop": 1e-05, "epo_min": 500, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPhononsDataset", "module_name": "kgcnn.data.datasets.MatProjectPhononsDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 6.0}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_MatProjectPhononsDataset_score.yaml b/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_MatProjectPhononsDataset_score.yaml new file mode 100644 index 00000000..1c701240 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_MatProjectPhononsDataset_score.yaml @@ -0,0 +1,138 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: 1/cm +date_time: '2024-01-02 17:47:33' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 780 +- 780 +- 780 +- 780 +- 780 +execute_folds: null +kgcnn_version: 4.0.0 +loss: +- 0.012277409434318542 +- 0.01385531947016716 +- 0.019343309104442596 +- 0.014073886908590794 +- 0.015026000328361988 +max_loss: +- 0.6322934031486511 +- 0.615519106388092 +- 0.6325305104255676 +- 0.6393851637840271 +- 0.6236222982406616 +max_scaled_mean_absolute_error: +- 312.4471740722656 +- 304.6333312988281 +- 308.8045349121094 +- 306.36981201171875 +- 324.79498291015625 +max_scaled_root_mean_squared_error: +- 470.322998046875 +- 456.9356384277344 +- 621.3822021484375 +- 462.42425537109375 +- 500.4608459472656 +max_val_loss: +- 0.20502236485481262 +- 0.18209712207317352 +- 0.20234858989715576 +- 0.18142670392990112 +- 0.12047617882490158 +max_val_scaled_mean_absolute_error: +- 101.62972259521484 +- 90.70671844482422 +- 97.42705535888672 +- 87.16777038574219 +- 62.73728561401367 +max_val_scaled_root_mean_squared_error: +- 244.14108276367188 +- 211.4296417236328 +- 196.45420837402344 +- 169.61941528320312 +- 122.7680435180664 +min_loss: +- 0.011091659776866436 +- 0.009510353207588196 +- 0.009329065680503845 +- 0.009968476369976997 +- 0.01010506134480238 +min_scaled_mean_absolute_error: +- 5.477519512176514 +- 4.7192254066467285 +- 4.521144390106201 +- 4.771760940551758 +- 5.224360466003418 +min_scaled_root_mean_squared_error: +- 10.803009986877441 +- 9.056629180908203 +- 8.040586471557617 +- 9.325139999389648 +- 9.207273483276367 +min_val_loss: +- 0.0681871622800827 +- 0.07989278435707092 +- 0.0734875500202179 +- 0.0802382230758667 +- 0.06757279485464096 +min_val_scaled_mean_absolute_error: +- 33.69609069824219 +- 39.410888671875 +- 34.75796890258789 +- 37.913761138916016 +- 35.12447738647461 +min_val_scaled_root_mean_squared_error: +- 58.737186431884766 +- 82.2968521118164 +- 64.97298431396484 +- 69.51397705078125 +- 64.42816925048828 +model_class: make_crystal_model +model_name: DimeNetPP +model_version: '2023-12-04' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 6.082247734069824 +- 6.8491363525390625 +- 9.405601501464844 +- 6.747756481170654 +- 7.801123142242432 +scaled_root_mean_squared_error: +- 11.646354675292969 +- 11.611915588378906 +- 17.117422103881836 +- 12.880290031433105 +- 13.191210746765137 +seed: 42 +time_list: +- '0:41:59.891056' +- '0:42:11.136256' +- '0:42:05.184558' +- '0:41:49.355133' +- '0:42:12.683356' +val_loss: +- 0.0717245489358902 +- 0.09114867448806763 +- 0.08039277791976929 +- 0.08655380457639694 +- 0.07680327445268631 +val_scaled_mean_absolute_error: +- 35.41286849975586 +- 44.99383544921875 +- 38.379112243652344 +- 40.610862731933594 +- 40.049747467041016 +val_scaled_root_mean_squared_error: +- 63.584259033203125 +- 108.71158599853516 +- 68.31204223632812 +- 76.1466293334961 +- 71.13330078125 diff --git a/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_hyper.json b/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_hyper.json new file mode 100644 index 00000000..c8f23e38 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/DimeNetPP_make_crystal_model/DimeNetPP_hyper.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.DimeNetPP", "config": {"name": "DimeNetPP", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 2], "name": "angle_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128, "embeddings_initializer": {"class_name": "RandomUniform", "config": {"minval": -1.7320508075688772, "maxval": 1.7320508075688772}}}, "emb_size": 128, "out_emb_size": 256, "int_emb_size": 64, "basis_emb_size": 8, "num_blocks": 4, "num_spherical": 7, "num_radial": 6, "cutoff": 5.0, "envelope_exponent": 5, "num_before_skip": 1, "num_after_skip": 2, "num_dense_output": 3, "num_targets": 1, "extensive": false, "output_init": "zeros", "activation": "swish", "verbose": 10, "output_embedding": "graph", "use_output_mlp": false, "output_mlp": {}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 16, "epochs": 780, "validation_freq": 10, "verbose": 2, "callbacks": [], "validation_batch_size": 8}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>LinearWarmupExponentialDecay", "config": {"learning_rate": 0.001, "warmup_steps": 3000.0, "decay_steps": 4000000.0, "decay_rate": 0.01}}, "use_ema": true, "amsgrad": true}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPhononsDataset", "module_name": "kgcnn.data.datasets.MatProjectPhononsDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0, "max_neighbours": 17}}, {"map_list": {"method": "set_angle", "allow_multi_edges": true, "allow_reverse_edges": true}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_MatProjectPhononsDataset_score.yaml b/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_MatProjectPhononsDataset_score.yaml new file mode 100644 index 00000000..8a682cfa --- /dev/null +++ b/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_MatProjectPhononsDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: eV/atom +date_time: '2024-01-02 14:13:32' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 1000 +- 1000 +- 1000 +- 1000 +- 1000 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +loss: +- 0.007051141932606697 +- 0.009602206759154797 +- 0.00854513980448246 +- 0.00923719722777605 +- 0.005817021243274212 +max_learning_rate: +- 0.0005000000237487257 +- 0.0005000000237487257 +- 0.0005000000237487257 +- 0.0005000000237487257 +- 0.0005000000237487257 +max_loss: +- 0.6134491562843323 +- 0.5803906917572021 +- 0.5985342860221863 +- 0.5868727564811707 +- 0.5833007097244263 +max_scaled_mean_absolute_error: +- 304.2678527832031 +- 288.7700500488281 +- 292.4873352050781 +- 280.8934020996094 +- 303.9534912109375 +max_scaled_root_mean_squared_error: +- 501.2316589355469 +- 497.31817626953125 +- 495.1467590332031 +- 479.2837219238281 +- 522.7138061523438 +max_val_loss: +- 0.23284803330898285 +- 0.2586619257926941 +- 0.27771422266960144 +- 0.19908109307289124 +- 0.16109409928321838 +max_val_scaled_mean_absolute_error: +- 115.29080963134766 +- 128.34786987304688 +- 134.52682495117188 +- 94.76787567138672 +- 83.42739868164062 +max_val_scaled_root_mean_squared_error: +- 284.72662353515625 +- 286.8963623046875 +- 315.0444641113281 +- 169.9178924560547 +- 129.64157104492188 +min_learning_rate: +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +- 5.549999968934571e-06 +min_loss: +- 0.007051141932606697 +- 0.009540339931845665 +- 0.008533337153494358 +- 0.009215925820171833 +- 0.005817021243274212 +min_scaled_mean_absolute_error: +- 3.4444379806518555 +- 4.760561943054199 +- 4.182170391082764 +- 4.397786617279053 +- 3.041186571121216 +min_scaled_root_mean_squared_error: +- 8.007569313049316 +- 11.406128883361816 +- 9.011688232421875 +- 11.438080787658691 +- 7.548813819885254 +min_val_loss: +- 0.05744650959968567 +- 0.05399136245250702 +- 0.062204014509916306 +- 0.07156132906675339 +- 0.049049001187086105 +min_val_scaled_mean_absolute_error: +- 28.383956909179688 +- 26.74627113342285 +- 30.11005210876465 +- 34.17634582519531 +- 25.217519760131836 +min_val_scaled_root_mean_squared_error: +- 48.88201141357422 +- 50.5336799621582 +- 49.440189361572266 +- 81.16988372802734 +- 42.893272399902344 +model_class: make_crystal_model +model_name: Megnet +model_version: '2023-12-05' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 3.4444379806518555 +- 4.79186487197876 +- 4.186429023742676 +- 4.410150527954102 +- 3.041186571121216 +scaled_root_mean_squared_error: +- 8.007569313049316 +- 11.433576583862305 +- 9.016125679016113 +- 11.438080787658691 +- 7.548813819885254 +seed: 42 +time_list: +- '0:17:38.652550' +- '0:17:42.397000' +- '0:17:53.701224' +- '0:18:06.680776' +- '0:17:47.542460' +val_loss: +- 0.062438301742076874 +- 0.055045727640390396 +- 0.06562171131372452 +- 0.07418853044509888 +- 0.0547359362244606 +val_scaled_mean_absolute_error: +- 30.832012176513672 +- 27.21445655822754 +- 31.73149871826172 +- 35.41242218017578 +- 28.119686126708984 +val_scaled_root_mean_squared_error: +- 53.64649200439453 +- 51.25674057006836 +- 51.920631408691406 +- 95.12718200683594 +- 52.415287017822266 diff --git a/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_hyper.json b/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_hyper.json new file mode 100644 index 00000000..34ead4a9 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/Megnet_make_crystal_model/Megnet_hyper.json @@ -0,0 +1 @@ +{"model": {"module_name": "kgcnn.literature.Megnet", "class_name": "make_crystal_model", "config": {"name": "Megnet", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [1], "name": "charge", "dtype": "float32", "ragged": false}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "make_distance": true, "expand_distance": true, "gauss_args": {"bins": 25, "distance": 5, "offset": 0.0, "sigma": 0.4}, "meg_block_args": {"node_embed": [64, 32, 32], "edge_embed": [64, 32, 32], "env_embed": [64, 32, 32], "activation": "kgcnn>softplus2"}, "set2set_args": {"channels": 16, "T": 3, "pooling_method": "sum", "init_qstar": "0"}, "node_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "edge_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "state_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "nblocks": 3, "has_ff": true, "dropout": null, "use_set2set": true, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true, true], "units": [32, 16, 1], "activation": ["kgcnn>softplus2", "kgcnn>softplus2", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 1000, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0005, "learning_rate_stop": 5e-06, "epo_min": 100, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0005}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPhononsDataset", "module_name": "kgcnn.data.datasets.MatProjectPhononsDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_MatProjectPhononsDataset_score.yaml b/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_MatProjectPhononsDataset_score.yaml new file mode 100644 index 00000000..c11a85b3 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_MatProjectPhononsDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: 1/cm +date_time: '2024-01-02 19:44:44' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 700 +- 700 +- 700 +- 700 +- 700 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +loss: +- 0.011240478605031967 +- 0.01135521661490202 +- 0.01068913470953703 +- 0.01464301347732544 +- 0.012074829079210758 +max_learning_rate: +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +max_loss: +- 0.5252755284309387 +- 0.5278866291046143 +- 0.5016384720802307 +- 0.5231746435165405 +- 0.5447894334793091 +max_scaled_mean_absolute_error: +- 261.10833740234375 +- 261.7176513671875 +- 244.8987274169922 +- 251.96005249023438 +- 284.8509521484375 +max_scaled_root_mean_squared_error: +- 461.8035583496094 +- 462.7295227050781 +- 442.5904846191406 +- 454.0846252441406 +- 493.5726318359375 +max_val_loss: +- 0.23471783101558685 +- 0.20613442361354828 +- 0.2521932125091553 +- 0.24380601942539215 +- 0.18002869188785553 +max_val_scaled_mean_absolute_error: +- 116.41321563720703 +- 102.25064849853516 +- 121.46511840820312 +- 116.7855224609375 +- 92.20838928222656 +max_val_scaled_root_mean_squared_error: +- 247.02659606933594 +- 246.50315856933594 +- 283.7269592285156 +- 266.7782897949219 +- 169.81996154785156 +min_learning_rate: +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +- 1.0138461220776662e-05 +min_loss: +- 0.010836868546903133 +- 0.011228089220821857 +- 0.010414326563477516 +- 0.010236614383757114 +- 0.011111585423350334 +min_scaled_mean_absolute_error: +- 5.4036664962768555 +- 5.598155975341797 +- 5.104133129119873 +- 4.929957866668701 +- 5.790292739868164 +min_scaled_root_mean_squared_error: +- 12.43932056427002 +- 11.011140823364258 +- 11.540196418762207 +- 9.847919464111328 +- 10.739884376525879 +min_val_loss: +- 0.0835016742348671 +- 0.0997324213385582 +- 0.07729791104793549 +- 0.0937688946723938 +- 0.08318553119897842 +min_val_scaled_mean_absolute_error: +- 41.303497314453125 +- 49.47216033935547 +- 36.99313735961914 +- 44.808956146240234 +- 42.592247009277344 +min_val_scaled_root_mean_squared_error: +- 66.61461639404297 +- 134.93089294433594 +- 58.05101013183594 +- 69.99772644042969 +- 67.9945297241211 +model_class: make_crystal_model +model_name: NMPN +model_version: '2023-11-22' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 5.596348285675049 +- 5.660562992095947 +- 5.23421573638916 +- 7.0644073486328125 +- 6.307378768920898 +scaled_root_mean_squared_error: +- 13.267243385314941 +- 11.09382438659668 +- 11.595282554626465 +- 13.245494842529297 +- 12.46053409576416 +seed: 42 +time_list: +- '0:22:58.522592' +- '0:22:39.200175' +- '0:22:43.748137' +- '0:22:43.774024' +- '0:22:51.267943' +val_loss: +- 0.08612626791000366 +- 0.10601252317428589 +- 0.07954733073711395 +- 0.11053717136383057 +- 0.08570077270269394 +val_scaled_mean_absolute_error: +- 42.48737716674805 +- 52.634765625 +- 38.10020446777344 +- 52.6419563293457 +- 43.807823181152344 +val_scaled_root_mean_squared_error: +- 70.30423736572266 +- 152.85496520996094 +- 59.05069351196289 +- 120.39775848388672 +- 74.46055603027344 diff --git a/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_hyper.json b/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_hyper.json new file mode 100644 index 00000000..1c0c64ac --- /dev/null +++ b/training/results/MatProjectPhononsDataset/NMPN_make_crystal_model/NMPN_hyper.json @@ -0,0 +1 @@ +{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.NMPN", "config": {"name": "NMPN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "input_edge_embedding": {"input_dim": 5, "output_dim": 64}, "set2set_args": {"channels": 32, "T": 3, "pooling_method": "sum", "init_qstar": "0"}, "pooling_args": {"pooling_method": "mean"}, "use_set2set": true, "depth": 3, "node_dim": 128, "verbose": 10, "geometric_edge": true, "make_distance": true, "expand_distance": true, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true, false], "units": [25, 25, 1], "activation": ["selu", "selu", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 16, "epochs": 700, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0001, "learning_rate_stop": 1e-05, "epo_min": 50, "epo": 700, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPhononsDataset", "module_name": "kgcnn.data.datasets.MatProjectPhononsDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} \ No newline at end of file diff --git a/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_MatProjectPhononsDataset_score.yaml b/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_MatProjectPhononsDataset_score.yaml new file mode 100644 index 00000000..2c4a1a53 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_MatProjectPhononsDataset_score.yaml @@ -0,0 +1,156 @@ +OS: posix_linux +backend: tensorflow +cuda_available: 'True' +data_unit: eV/atom +date_time: '2024-01-02 20:12:13' +device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', + device_type=''GPU'')]' +device_memory: '[]' +device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 + 80GB PCIe''}]' +epochs: +- 800 +- 800 +- 800 +- 800 +- 800 +execute_folds: null +kgcnn_version: 4.0.0 +learning_rate: +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +- 2.1409230612334795e-05 +loss: +- 0.0055278511717915535 +- 0.0072767785750329494 +- 0.00712193176150322 +- 0.0062205614522099495 +- 0.008396235294640064 +max_learning_rate: +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +- 9.999999747378752e-05 +max_loss: +- 0.6675980091094971 +- 0.6629428863525391 +- 0.6438276171684265 +- 0.6672660112380981 +- 0.640181839466095 +max_scaled_mean_absolute_error: +- 329.9678955078125 +- 328.1170349121094 +- 313.96929931640625 +- 318.2744445800781 +- 332.281005859375 +max_scaled_root_mean_squared_error: +- 494.1748046875 +- 496.2298583984375 +- 489.6683654785156 +- 475.0299987792969 +- 517.6914672851562 +max_val_loss: +- 0.3671025335788727 +- 0.3719519376754761 +- 0.405499130487442 +- 0.41305091977119446 +- 0.281227171421051 +max_val_scaled_mean_absolute_error: +- 181.3706817626953 +- 184.23060607910156 +- 196.57406616210938 +- 197.11764526367188 +- 144.72190856933594 +max_val_scaled_root_mean_squared_error: +- 425.63348388671875 +- 421.9683837890625 +- 445.6359558105469 +- 468.8248291015625 +- 285.4482727050781 +min_learning_rate: +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +- 9.99999993922529e-09 +min_loss: +- 0.004942178260535002 +- 0.0058270408771932125 +- 0.005243499297648668 +- 0.004984413273632526 +- 0.004854170139878988 +min_scaled_mean_absolute_error: +- 2.4532408714294434 +- 2.8922152519226074 +- 2.5533878803253174 +- 2.381584405899048 +- 2.525848865509033 +min_scaled_root_mean_squared_error: +- 3.769523859024048 +- 4.939443588256836 +- 4.518595218658447 +- 4.153464317321777 +- 4.756457805633545 +min_val_loss: +- 0.10081253945827484 +- 0.08820636570453644 +- 0.09802473336458206 +- 0.10101944208145142 +- 0.0784723162651062 +min_val_scaled_mean_absolute_error: +- 49.828487396240234 +- 43.7837028503418 +- 47.4171257019043 +- 48.22115707397461 +- 40.60641860961914 +min_val_scaled_root_mean_squared_error: +- 88.82009887695312 +- 75.73857879638672 +- 89.9002685546875 +- 77.46703338623047 +- 66.94725799560547 +model_class: make_crystal_model +model_name: PAiNN +model_version: '2023-10-04' +multi_target_indices: null +number_histories: 5 +scaled_mean_absolute_error: +- 2.7291693687438965 +- 3.6199584007263184 +- 3.4664037227630615 +- 2.9799866676330566 +- 4.366907596588135 +scaled_root_mean_squared_error: +- 4.5592827796936035 +- 6.416913032531738 +- 6.861203193664551 +- 5.636130332946777 +- 6.797721862792969 +seed: 42 +time_list: +- '0:05:01.414360' +- '0:04:59.256798' +- '0:04:55.463463' +- '0:04:57.663193' +- '0:04:54.369220' +val_loss: +- 0.10528594255447388 +- 0.08849219232797623 +- 0.10516093671321869 +- 0.10397224873304367 +- 0.07939893007278442 +val_scaled_mean_absolute_error: +- 52.09183883666992 +- 43.92694091796875 +- 50.87977981567383 +- 49.738311767578125 +- 41.06735610961914 +val_scaled_root_mean_squared_error: +- 96.38106536865234 +- 78.48509979248047 +- 99.47772216796875 +- 91.41462707519531 +- 67.6219711303711 diff --git a/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_hyper.json b/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_hyper.json new file mode 100644 index 00000000..82b05af3 --- /dev/null +++ b/training/results/MatProjectPhononsDataset/PAiNN_make_crystal_model/PAiNN_hyper.json @@ -0,0 +1 @@ +{"model": {"module_name": "kgcnn.literature.PAiNN", "class_name": "make_crystal_model", "config": {"name": "PAiNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "equiv_initialize_kwargs": {"dim": 3, "method": "eye"}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "pooling_args": {"pooling_method": "mean"}, "conv_args": {"units": 128, "cutoff": null, "conv_pool": "sum"}, "update_args": {"units": 128}, "depth": 2, "verbose": 10, "equiv_normalization": false, "node_normalization": false, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 800, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearWarmupLinearLearningRateScheduler", "config": {"learning_rate_start": 0.0001, "learning_rate_stop": 1e-06, "epo_warmup": 25, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV/atom"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectPhononsDataset", "module_name": "kgcnn.data.datasets.MatProjectPhononsDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} \ No newline at end of file