Skip to content

Commit 2709e61

Browse files
author
pascal
committed
add example list in README
1 parent 67af2f8 commit 2709e61

File tree

2 files changed

+21
-19
lines changed

2 files changed

+21
-19
lines changed

.gitignore

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,5 @@ coverage.txt
33
.idea
44
.vscode
55
*.bak
6-
*.test
6+
*.test
7+
_*.sh

README.md

Lines changed: 19 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -8,24 +8,25 @@ Very partial port of scikit-learn to [go](http://golang.org)
88
[![GoDoc](https://godoc.org/github.com/pa-m/sklearn?status.svg)](https://godoc.org/github.com/pa-m/sklearn)
99

1010

11-
for now, ported only some estimators including
12-
13-
- LinearRegression
14-
- LogisticRegression
15-
- [bayesian ridge regression](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html)
16-
- MLPRegressor
17-
- MLPClassifier
18-
19-
You'll also find
20-
21-
- some metrics MeanSquaredError,MeanAbsoluteError,R2Score,AccuracyScore, ...
22-
- some preprocessing MinMaxScaler,StandardScaler,OneHotEncoder,PolynomialFeatures
23-
- Pipeline and MakePipeline
24-
- some interpolation stuff like in scipy.interpolate: interp1d,interp2d,CubicSpline
25-
- all estimators can use following
26-
- solvers: sgd,adagrad,rmsprop,adadelta,adam + all gonum/optimize methods
27-
- loss functions: square,cross-entropy
28-
- activation functions: identity,logistic,tanh,relu
11+
## Examples
12+
### cluster
13+
[DBSCAN](https://godoc.org/github.com/pa-m/sklearn/cluster#example-DBSCAN) [KMeans](https://godoc.org/github.com/pa-m/sklearn/cluster#example-KMeans)
14+
### datasets
15+
[LoadIris](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadIris) [LoadBreastCancer](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadBreastCancer) [LoadDiabetes](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadDiabetes) [LoadBoston](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadBoston) [LoadExamScore](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadExamScore) [LoadMicroChipTest](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMicroChipTest) [LoadMnist](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMnist) [LoadMnistWeights](https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMnistWeights) [MakeRegression](https://godoc.org/github.com/pa-m/sklearn/datasets#example-MakeRegression) [MakeBlobs](https://godoc.org/github.com/pa-m/sklearn/datasets#example-MakeBlobs)
16+
### interpolate
17+
[CubicSpline](https://godoc.org/github.com/pa-m/sklearn/interpolate#example-CubicSpline) [Interp1d](https://godoc.org/github.com/pa-m/sklearn/interpolate#example-Interp1d) [Interp2d](https://godoc.org/github.com/pa-m/sklearn/interpolate#example-Interp2d)
18+
### linear_model
19+
[LinearRegression](https://godoc.org/github.com/pa-m/sklearn/linear_model#example-LinearRegression) [NewElasticNet](https://godoc.org/github.com/pa-m/sklearn/linear_model#example-NewElasticNet) [BayesianRidge](https://godoc.org/github.com/pa-m/sklearn/linear_model#example-BayesianRidge) [LogisticRegression](https://godoc.org/github.com/pa-m/sklearn/linear_model#example-LogisticRegression)
20+
### metrics
21+
[AccuracyScore](https://godoc.org/github.com/pa-m/sklearn/metrics#example-AccuracyScore)
22+
### neighbors
23+
[KNeighborsClassifier](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KNeighborsClassifier) [MinkowskiDistance](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-MinkowskiDistance) [EuclideanDistance](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-EuclideanDistance) [KDTree](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KDTree) [NearestCentroid](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestCentroid) [KNeighborsRegressor](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KNeighborsRegressor) [NearestNeighbors](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors) [NearestNeighbors_KNeighborsGraph](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors_KNeighborsGraph) [NearestNeighbors_Tree](https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors_Tree)
24+
### neural_network
25+
[MLPClassifier](https://godoc.org/github.com/pa-m/sklearn/neural_network#example-MLPClassifier)
26+
### pipeline
27+
[Pipeline](https://godoc.org/github.com/pa-m/sklearn/pipeline#example-Pipeline)
28+
### preprocessing
29+
[InsertOnes](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-InsertOnes) [OneHotEncoder](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-OneHotEncoder) [Shuffler](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-Shuffler) [LabelBinarizer](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-LabelBinarizer) [FunctionTransformer](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-FunctionTransformer) [PCA](https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-PCA)
2930

3031
All of this is
3132
- a personal project to get a deeper understanding of how all of this magic works

0 commit comments

Comments
 (0)