@@ -8,24 +8,25 @@ Very partial port of scikit-learn to [go](http://golang.org)
8
8
[ ![ GoDoc] ( https://godoc.org/github.com/pa-m/sklearn?status.svg )] ( https://godoc.org/github.com/pa-m/sklearn )
9
9
10
10
11
- for now, ported only some estimators including
12
-
13
- - LinearRegression
14
- - LogisticRegression
15
- - [ bayesian ridge regression] ( http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html )
16
- - MLPRegressor
17
- - MLPClassifier
18
-
19
- You'll also find
20
-
21
- - some metrics MeanSquaredError,MeanAbsoluteError,R2Score,AccuracyScore, ...
22
- - some preprocessing MinMaxScaler,StandardScaler,OneHotEncoder,PolynomialFeatures
23
- - Pipeline and MakePipeline
24
- - some interpolation stuff like in scipy.interpolate: interp1d,interp2d,CubicSpline
25
- - all estimators can use following
26
- - solvers: sgd,adagrad,rmsprop,adadelta,adam + all gonum/optimize methods
27
- - loss functions: square,cross-entropy
28
- - activation functions: identity,logistic,tanh,relu
11
+ ## Examples
12
+ ### cluster
13
+ [ DBSCAN] ( https://godoc.org/github.com/pa-m/sklearn/cluster#example-DBSCAN ) [ KMeans] ( https://godoc.org/github.com/pa-m/sklearn/cluster#example-KMeans )
14
+ ### datasets
15
+ [ LoadIris] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadIris ) [ LoadBreastCancer] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadBreastCancer ) [ LoadDiabetes] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadDiabetes ) [ LoadBoston] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadBoston ) [ LoadExamScore] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadExamScore ) [ LoadMicroChipTest] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMicroChipTest ) [ LoadMnist] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMnist ) [ LoadMnistWeights] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-LoadMnistWeights ) [ MakeRegression] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-MakeRegression ) [ MakeBlobs] ( https://godoc.org/github.com/pa-m/sklearn/datasets#example-MakeBlobs )
16
+ ### interpolate
17
+ [ CubicSpline] ( https://godoc.org/github.com/pa-m/sklearn/interpolate#example-CubicSpline ) [ Interp1d] ( https://godoc.org/github.com/pa-m/sklearn/interpolate#example-Interp1d ) [ Interp2d] ( https://godoc.org/github.com/pa-m/sklearn/interpolate#example-Interp2d )
18
+ ### linear_model
19
+ [ LinearRegression] ( https://godoc.org/github.com/pa-m/sklearn/linear_model#example-LinearRegression ) [ NewElasticNet] ( https://godoc.org/github.com/pa-m/sklearn/linear_model#example-NewElasticNet ) [ BayesianRidge] ( https://godoc.org/github.com/pa-m/sklearn/linear_model#example-BayesianRidge ) [ LogisticRegression] ( https://godoc.org/github.com/pa-m/sklearn/linear_model#example-LogisticRegression )
20
+ ### metrics
21
+ [ AccuracyScore] ( https://godoc.org/github.com/pa-m/sklearn/metrics#example-AccuracyScore )
22
+ ### neighbors
23
+ [ KNeighborsClassifier] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KNeighborsClassifier ) [ MinkowskiDistance] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-MinkowskiDistance ) [ EuclideanDistance] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-EuclideanDistance ) [ KDTree] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KDTree ) [ NearestCentroid] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestCentroid ) [ KNeighborsRegressor] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-KNeighborsRegressor ) [ NearestNeighbors] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors ) [ NearestNeighbors_KNeighborsGraph] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors_KNeighborsGraph ) [ NearestNeighbors_Tree] ( https://godoc.org/github.com/pa-m/sklearn/neighbors#example-NearestNeighbors_Tree )
24
+ ### neural_network
25
+ [ MLPClassifier] ( https://godoc.org/github.com/pa-m/sklearn/neural_network#example-MLPClassifier )
26
+ ### pipeline
27
+ [ Pipeline] ( https://godoc.org/github.com/pa-m/sklearn/pipeline#example-Pipeline )
28
+ ### preprocessing
29
+ [ InsertOnes] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-InsertOnes ) [ OneHotEncoder] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-OneHotEncoder ) [ Shuffler] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-Shuffler ) [ LabelBinarizer] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-LabelBinarizer ) [ FunctionTransformer] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-FunctionTransformer ) [ PCA] ( https://godoc.org/github.com/pa-m/sklearn/preprocessing#example-PCA )
29
30
30
31
All of this is
31
32
- a personal project to get a deeper understanding of how all of this magic works
0 commit comments