-
Notifications
You must be signed in to change notification settings - Fork 5
/
run.py
116 lines (86 loc) · 3.52 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from typing import List, Optional, Tuple
import hydra
import lightning as L
import pyrootutils
import torch
from lightning import Callback, LightningModule
from lightning.pytorch.loggers import Logger
from omegaconf import DictConfig
from rl4co import utils
from rl4co.utils import RL4COTrainer
pyrootutils.setup_root(__file__, indicator=".gitignore", pythonpath=True)
log = utils.get_pylogger(__name__)
@utils.task_wrapper
def run(cfg: DictConfig) -> Tuple[dict, dict]:
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during
training.
This method is wrapped in optional @task_wrapper decorator, that controls the behavior during
failure. Useful for multiruns, saving info about the crash, etc.
Args:
cfg (DictConfig): Configuration composed by Hydra.
Returns:
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects.
"""
# set seed for random number generators in pytorch, numpy and python.random
if cfg.get("seed"):
L.seed_everything(cfg.seed, workers=True)
# We instantiate the environment separately and then pass it to the model
log.info(f"Instantiating environment <{cfg.env._target_}>")
env = hydra.utils.instantiate(cfg.env)
# Note that the RL environment is instantiated inside the model
log.info(f"Instantiating model <{cfg.model._target_}>")
model: LightningModule = hydra.utils.instantiate(cfg.model, env)
log.info("Instantiating callbacks...")
callbacks: List[Callback] = utils.instantiate_callbacks(cfg.get("callbacks"))
log.info("Instantiating loggers...")
logger: List[Logger] = utils.instantiate_loggers(cfg.get("logger"), model=model)
log.info("Instantiating trainer...")
trainer: RL4COTrainer = hydra.utils.instantiate(
cfg.trainer,
callbacks=callbacks,
logger=logger,
)
object_dict = {
"cfg": cfg,
"model": model,
"callbacks": callbacks,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
if cfg.get("compile", False):
log.info("Compiling model!")
model = torch.compile(model)
if cfg.get("train"):
log.info("Starting training!")
trainer.fit(model=model, ckpt_path=cfg.get("ckpt_path"))
train_metrics = trainer.callback_metrics
if cfg.get("test"):
log.info("Starting testing!")
ckpt_path = trainer.checkpoint_callback.best_model_path
if ckpt_path == "":
log.warning("Best ckpt not found! Using current weights for testing...")
ckpt_path = None
trainer.test(model=model, ckpt_path=ckpt_path)
log.info(f"Best ckpt path: {ckpt_path}")
test_metrics = trainer.callback_metrics
# merge train and test metrics
metric_dict = {**train_metrics, **test_metrics}
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="configs", config_name="main.yaml")
def train(cfg: DictConfig) -> Optional[float]:
# apply extra utilities
# (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.)
utils.extras(cfg)
# train the model
metric_dict, _ = run(cfg)
# safely retrieve metric value for hydra-based hyperparameter optimization
metric_value = utils.get_metric_value(
metric_dict=metric_dict, metric_name=cfg.get("optimized_metric")
)
# return optimized metric
return metric_value
if __name__ == "__main__":
train()