Skip to content

Files

Latest commit

 

History

History
255 lines (202 loc) · 6.96 KB

dnncTensorFunctions.md

File metadata and controls

255 lines (202 loc) · 6.96 KB

DNNC functions to mimic numpy using Eigen


Most remarkable fluid features (Array creation):

Legends ✔️: ToBeDone, ✅:Done, 🚫:Rejected

a = numpy.array([1,2,3])

✅numpy.array([1,2]) #1Dnumpy.array([[1,2],[10,20]]) #2D

# For complex types
🚫numpy.array([1,2], dtype=complex) #1D complex

# For randomized 3d array
🚫Array3d = numpy.random.randint(10, size=(3, 4, 5))

# generate uniformly distributed numbersa = numpy.random.rand(3,2)   #(3 rows, 2 cols)

# Create empty 2D array (2 rows, 3 columns)a_empty = numpy.empty(2,3)

# Create 0 initiallized 2D array (3 rows, 2 columns)numpy.zeros(3,2) 

# Create 1 initiallized 2D array (3 rows, 2 columns)numpy.ones(3,2) 

# Create a range of elementsarray = numpy.arange(3) # array will contain 0,1,2

# Create a Numpy array from Python sequence of elements
✔️a = numpy.asarray([1,2])

# Create an array with values that are evenly spaced
✔️a = numpy.array(0,6,2) # create 0-5, 2 apart, returns [0,2,4]

# Ccreate an array where the values are linearly spaced between an interval    numpy.linspace(first, last, number)
✔️a = numpy.linspace(0,10,5) # returns [0,2.5,5,7.5,10]

Some advanced features (Array manipulation)

# Add
a = [3,4,5]
a = numpy.append(a, [1,2]) #returns [3,4,5,1,2]

#Join
numpy.concatenate(a,b)
numpy.stack(a,b)
numpy.hstack(a,b)
numpy.vstack(a,b)

# Delete
a = numpy.delete(array,2) # 2 is going to be deleted from the array

# Sort
numpy.sort(array1, axis=1, kind = 'quicksort', order ='column name')

# Deep copy
new_array = numpy.copy(array)

Array functions and attributes

Shape and Dimension
# Shape
array = numpy.array([[..],[..]])
array.shape

# Reshape by setting shape property
array.shape = (1,2) # (1 row, 2 columns)
# resize(x,y) can also be used to resize an array

# Dimensions of an array:
array.dim

# Find length of each element of an array:
array.itemsize
Slicing
array = numpy.arange(100)

# Get 3rd element:
array[2]

# Get items within indexes
array[3:5] #3 is start, 5 is end

# Get 3-10 element, step size 4 increments:
array[2:9:4]

# Get all elements from 2nd element onwards
array[1:]

# Can also pass in N-Dimensional Index
array[[0,1],[1,2]]

# Get all NAN elements
array[numpy.isnan(array)]

# Using where()
numpy.where(array > 5) # will return all elements that meet the criteria
Broadcasting
# 5 rows, 3 columns array
bigger_array = arange(5,3) 

# 5 rows, 1 column array
smaller_array = arange(5)

final_array = bigger_array + smaller_array

Mathematical functions


Can be done through DNNC opearators:

  • ✔️ numpy.sin()
  • ✔️ numpy.cos()
  • ✔️ numpy.tan()
  • ✔️ numpy.sinh()
  • ✔️ numpy.cosh()
  • ✔️ numpy.tanh()
  • ✔️ numpy.arcsin()
  • ✔️ numpy.arccos()
  • ✔️ numpy.arctan()
  • ✔️ numpy.arcsinh()
  • ✔️ numpy.arccosh()
  • ✔️ numpy.arctanh()
  • ✔️ numpy.add()
  • ✔️ numpy.subtract()
  • ✔️ numpy.cross()
  • ✔️ numpy.divide()
  • ❌ numpy.power()
  • ✔️ numpy.round()
  • ✔️ numpy.floor()
  • ✔️ numpy.ceil()
  • ✔️ numpy.exp()
  • ✔️ numpy.log()
  • ✔️ numpy.sqrt()
  • ✔️ numpy.absolute()
  • ❌ numpy.clip()
  • ❌ numpy.convolve()

Have to be implemented:

  • numpy.dot()

    dot product of 2 arrays

  • numpy.inner()

    inner product of 2 arrays

  • numpy.determinant()

    determinant of an array

  • numpy.transpose()

    permute the dimensions of matrix

  • numpy.inverse()

    inverse of a matrix

  • numpy.solve()

    solves matrix equation

  • numpy.multiply()

    element wise multiplication of 2 arrays (not to be confused with matrix multiplication)

  • numpy.true_divide()

    element wise division of 2 arrays (uses / in python)

  • numpy.floor_divide()

    element wise division of 2 arrays (uses // in python)

  • numpy.degrees() / numpy.rad2deg()

    radian to degree converter

  • numpy.radians() / numpy.deg2rad()

    degree to radian converter

  • numpy.median()

    Finds the median

  • numpy.average()

    Finds average

  • numpy.mean()

    Finds mean

  • numpy.var()

    Finds variance

  • numpy.rint()

    round elements of the array to the nearest integer

  • numpy.fix()

    round elements of the array to the nearest integer towards zero

  • numpy.trunc()

    returns the truncated value of the elements of array

  • numpy.log10()

    return the base 10 logarithm of the input array, element-wise

  • numpy.log2()

    return the base 10 logarithm of the input array, element-wise

  • numpy.expm1()

    calculate exp(x) – 1 for all elements in the array

  • numpy.exp2()

    calculate (2^p) for all p in the input array

  • numpy.logaddexp()

    logarithm of the sum of exponentiations of the inputs

  • numpy.logaddexp2()

    logarithm of the sum of exponentiations of the inputs in base-2

  • numpy.reciprocal()

    calculate (1/x) for all x in the input array

  • numpy.positive()

    make every element positive

  • numpy.negetive()

    make every element negetive

  • numpy.remainder()

    return element wise remainder of division

  • numpy.divmod()

    return element-wise quotient and remainder simultaneously

  • numpy.isreal()

    test element-wise whether it is a real number or not(not infinity or not Not a Number) and return the result as a boolean array

  • numpy.conj()

    The conjugate of a complex number is obtained by changing the sign of its imaginary part. If the complex number is (2+5j) then its conjugate is (2-5j)

  • numpy.cbrt()

    mathematical function helps user to calculate cube root of x for all x being the array elements

  • numpy.square()

    return the non-negative square-root of an array, element-wise

  • numpy.maximum()

    find the element-wise maximum of array elements

  • numpy.minimum()

    find the element-wise minimum of array elements

  • numpy.interp()

    returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x

  • numpy.nan_to_num()

    replace NaN with zero and infinity with large finite numbers

  • numpy.real_if_close()

    if complex input returns a real array if complex parts are close to zero

  • numpy.heaviside()

    heaviside(x1, x2) = {0 if x1 < 0}, {x2 if x1 == 0}. {1 if x1 > 0}


Resource: