-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
51 lines (37 loc) · 1.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
import pytesseract
from PIL import Image
from gtts import gTTS
import os
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
# Path of working folder on Disk
src_path = './'
def get_string(img_path):
# Read image with opencv
img = cv2.imread(img_path)
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
cv2.imwrite(src_path + "removed_noise.png", img)
# Apply threshold to get image with only black and white
img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite(src_path + "thres.png", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open(src_path + "thres.png"))
# Remove template file
#os.remove(temp)
return result
print('--- Recognizing text from image ---')
img2txt = get_string(src_path + "2.png")
print(img2txt)
myobj = gTTS(text=img2txt, lang='en', slow=False)
myobj.save('output1.mp3')
#os.system('mpg321 output1.mp3')
os.system('output1.mp3')
print("------ Done -------")