forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
permute_cols.cu
88 lines (70 loc) · 2.84 KB
/
permute_cols.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp16.h>
static constexpr int default_threads = 256;
static constexpr int div_ceil(int a, int b) { return (a + b - 1) / b; }
// For a given "a" of size [M,K] performs a permutation of the K columns based
// on the given "perm" indices.
// Currently only supports 16bit types (since we permute half types)
__global__ void permute_cols_kernel(int4 const* __restrict__ a_int4_ptr,
int const* __restrict__ perm_int_ptr,
int4* __restrict__ out_int4_ptr, int size_m,
int size_k, int block_rows) {
int start_row = block_rows * blockIdx.x;
int finish_row = start_row + block_rows;
if (finish_row > size_m) {
finish_row = size_m;
}
int cur_block_rows = std::max(finish_row - start_row, 0);
int row_stride = size_k * sizeof(half) / 16;
auto permute_row = [&](int row) {
int iters = size_k / default_threads;
int rest = size_k % default_threads;
int offset = row * row_stride;
half const* a_row_half = reinterpret_cast<half const*>(a_int4_ptr + offset);
half* out_half = reinterpret_cast<half*>(out_int4_ptr + offset);
int base_k = 0;
for (int i = 0; i < iters; i++) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
base_k += default_threads;
}
if (rest) {
if (threadIdx.x < rest) {
int cur_k = base_k + threadIdx.x;
int src_pos = perm_int_ptr[cur_k];
out_half[cur_k] = a_row_half[src_pos];
}
}
};
for (int i = 0; i < cur_block_rows; i++) {
int cur_row = start_row + i;
if (cur_row < size_m) {
permute_row(cur_row);
}
}
}
// More efficient version of A[..., perm]
// taken from gptq_marlin.cu
torch::Tensor permute_cols(torch::Tensor const& A, torch::Tensor const& perm) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(A));
auto dev = A.get_device();
auto stream = at::cuda::getCurrentCUDAStream(dev);
TORCH_CHECK(A.scalar_type() == at::kHalf || A.scalar_type() == at::kBFloat16,
"Currently only 16bit types are supported");
TORCH_CHECK(A.is_contiguous(), "A must be contiguous");
TORCH_CHECK(A.size(-1) % 8 == 0,
"A columns must be a multiple of 8 (128bits)");
auto A_2d = A.view({-1, A.size(-1)});
torch::Tensor D = torch::empty_like(A);
int sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev);
int block_rows = div_ceil(A_2d.size(0), sms);
permute_cols_kernel<<<sms, default_threads, 0, stream>>>(
reinterpret_cast<int4 const*>(A_2d.const_data_ptr()),
perm.const_data_ptr<int>(), reinterpret_cast<int4*>(D.mutable_data_ptr()),
A_2d.size(0), A_2d.size(1), block_rows);
return D;
}