diff --git a/.github/release_workflow.md b/.github/release_workflow.md index 7afa24a6d6..8a032b9f9a 100644 --- a/.github/release_workflow.md +++ b/.github/release_workflow.md @@ -1,6 +1,6 @@ # Release workflow -This file contains the workflow required to make a `PyBaMM` release on GitHub and PyPI by the maintainers. +This file contains the workflow required to make a `PyBaMM` release on GitHub, PyPI, and conda-forge by the maintainers. ## rc0 releases (automated) @@ -9,6 +9,7 @@ This file contains the workflow required to make a `PyBaMM` release on GitHub an - `pybamm/version.py` - `docs/conf.py` - `CITATION.cff` + - `pyproject.toml` - `vcpkg.json` - `docs/_static/versions.json` - `CHANGELOG.md` @@ -32,6 +33,7 @@ If a new release candidate is required after the release of `rc0` - - `pybamm/version.py` - `docs/conf.py` - `CITATION.cff` + - `pyproject.toml` - `vcpkg.json` - `docs/_static/versions.json` - `CHANGELOG.md` @@ -53,6 +55,7 @@ Once satisfied with the release candidates - - `pybamm/version.py` - `docs/conf.py` - `CITATION.cff` + - `pyproject.toml` - `vcpkg.json` - `docs/_static/versions.json` - `CHANGELOG.md` @@ -70,10 +73,12 @@ Once satisfied with the release candidates - Some other essential things to check throughout the release process - - If updating our custom vcpkg registory entries [pybamm-team/sundials-vcpkg-registry](https://github.com/pybamm-team/sundials-vcpkg-registry) or [pybamm-team/casadi-vcpkg-registry](https://github.com/pybamm-team/casadi-vcpkg-registry) (used to build Windows wheels), make sure to update the baseline of the registories in vcpkg-configuration.json to the latest commit id. -- Update jax and jaxlib to the latest version in `pybamm.util` and `setup.py`, fixing any bugs that arise +- Update jax and jaxlib to the latest version in `pybamm.util` and `pyproject.toml`, fixing any bugs that arise - Make sure the URLs in `docs/_static/versions.json` are valid - As the release workflow is initiated by the `release` event, it's important to note that the default `GITHUB_REF` used by `actions/checkout` during the checkout process will correspond to the tag created during the release process. Consequently, the workflows will consistently build PyBaMM based on the commit associated with this tag. Should new commits be introduced to the `vYY.MM` branch, such as those addressing build issues, it becomes necessary to manually update this tag to point to the most recent commit - ``` git tag -f git push -f # can only be carried out by the maintainers ``` +- If changes are made to the API, console scripts, entry points, new optional dependencies are added, support for major Python versions is dropped or added, or core project information and metadata are modified at the time of the release, make sure to update the `meta.yaml` file in the `recipe/` folder of the [conda-forge/pybamm-feedstock](https://github.com/conda-forge/pybamm-feedstock) repository accordingly by following the instructions in the [conda-forge documentation](https://conda-forge.org/docs/maintainer/updating_pkgs.html#updating-the-feedstock-repository) and re-rendering the recipe +- The conda-forge release workflow will automatically be triggered following a stable PyPI release, and the aforementioned updates should be carried out directly in the main repository by pushing changes to the automated PR created by the conda-forge-bot. A manual PR can also be created if the updates are not included in the automated PR for some reason. This manual PR **must** bump the build number in `meta.yaml` and **must** be from a personal fork of the repository. diff --git a/.github/workflows/lychee_url_checker.yml b/.github/workflows/lychee_url_checker.yml index 4282b8f83d..93dde63845 100644 --- a/.github/workflows/lychee_url_checker.yml +++ b/.github/workflows/lychee_url_checker.yml @@ -45,13 +45,18 @@ jobs: --accept 200,429 --exclude-path ./CHANGELOG.md --exclude-path ./scripts/update_version.py + --exclude-path asv.conf.json --exclude-path docs/conf.py './**/*.rst' './**/*.md' './**/*.py' './**/*.ipynb' + './**/*.json' + './**/*.toml' # fail the action on broken links fail: true + jobSummary: true + format: markdown env: # to be used in case rate limits are surpassed GITHUB_TOKEN: ${{secrets.GITHUB_TOKEN}} diff --git a/.github/workflows/publish_pypi.yml b/.github/workflows/publish_pypi.yml index 7d01fe0bee..3073c95f09 100644 --- a/.github/workflows/publish_pypi.yml +++ b/.github/workflows/publish_pypi.yml @@ -1,5 +1,4 @@ name: Build and publish package to PyPI - on: release: types: [published] @@ -27,14 +26,10 @@ jobs: with: python-version: 3.8 - - name: Install cibuildwheel - run: python -m pip install cibuildwheel==2.12.3 - - name: Clone pybind11 repo (no history) - run: git clone --depth 1 --branch v2.10.4 https://github.com/pybind/pybind11.git + run: git clone --depth 1 --branch v2.11.1 https://github.com/pybind/pybind11.git - # remove when a new vcpkg version is released - - name: Install the latest commit of vcpkg on windows + - name: Install vcpkg on Windows run: | cd C:\ rm -r -fo 'C:\vcpkg' @@ -42,7 +37,7 @@ jobs: cd vcpkg .\bootstrap-vcpkg.bat - - name: Cache packages installed through vcpkg on windows + - name: Cache packages installed through vcpkg on Windows uses: actions/cache@v3 env: cache-name: vckpg_binary_cache @@ -55,14 +50,13 @@ jobs: uses: mxschmitt/action-tmate@v3 if: ${{ github.event_name == 'workflow_dispatch' && inputs.debug_enabled }} - - name: Build 64 bits wheels on Windows - run: | - python -m cibuildwheel --output-dir wheelhouse + - name: Build 64-bit wheels on Windows + run: pipx run cibuildwheel --output-dir wheelhouse env: CIBW_ENVIRONMENT: 'PYBAMM_USE_VCPKG=ON VCPKG_ROOT_DIR=C:\vcpkg VCPKG_DEFAULT_TRIPLET=x64-windows-static-md VCPKG_FEATURE_FLAGS=manifests,registries CMAKE_GENERATOR="Visual Studio 17 2022" CMAKE_GENERATOR_PLATFORM=x64' CIBW_ARCHS: "AMD64" - - name: Upload windows wheels + - name: Upload Windows wheels uses: actions/upload-artifact@v3 with: name: windows_wheels @@ -82,42 +76,34 @@ jobs: with: python-version: 3.8 - - name: Install cibuildwheel - run: python -m pip install cibuildwheel==2.12.3 - - name: Clone pybind11 repo (no history) - run: git clone --depth 1 --branch v2.10.4 https://github.com/pybind/pybind11.git + run: git clone --depth 1 --branch v2.11.1 https://github.com/pybind/pybind11.git - - name: Install SUNDIALS on macOS + # sometimes gfortran cannot be found, so reinstall gcc just to be sure + - name: Install SuiteSparse and SUNDIALS on macOS if: matrix.os == 'macos-latest' run: | - # https://github.com/actions/virtual-environments/issues/1280 - rm -f /usr/local/bin/2to3* - rm -f /usr/local/bin/idle3* - rm -f /usr/local/bin/pydoc3* - rm -f /usr/local/bin/python3* - brew update + brew install graphviz openblas libomp brew reinstall gcc - brew install libomp python -m pip install cmake wget python scripts/install_KLU_Sundials.py - - name: Build wheels on Linux and MacOS - run: python -m cibuildwheel --output-dir wheelhouse + - name: Build wheels on ${{ matrix.os }} + run: pipx run cibuildwheel --output-dir wheelhouse env: CIBW_ARCHS_LINUX: x86_64 CIBW_BEFORE_ALL_LINUX: > yum -y install openblas-devel lapack-devel && - bash build_manylinux_wheels/install_sundials.sh 6.0.3 6.5.0 - - CIBW_BEFORE_BUILD_LINUX: "python -m pip install cmake casadi numpy" + bash scripts/install_sundials.sh 6.0.3 6.5.0 + CIBW_BEFORE_BUILD_LINUX: > + python -m pip install cmake casadi numpy + # override; point to casadi install path so that it can be found by the repair command + CIBW_REPAIR_WHEEL_COMMAND_LINUX: > + LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:$(python -c 'import casadi; print(casadi.__path__[0])')" auditwheel repair -w {dest_dir} {wheel} CIBW_BEFORE_BUILD_MACOS: > python -m pip install cmake casadi numpy && - python scripts/fix_casadi_rpath_mac.py && - scripts/fix_suitesparse_rpath_mac.sh - # got error "re.error: multiple repeat at position 104" on python 3.7 when --require-archs added, so remove - # it for mac + python scripts/fix_casadi_rpath_mac.py && scripts/fix_suitesparse_rpath_mac.sh CIBW_REPAIR_WHEEL_COMMAND_MACOS: > delocate-listdeps {wheel} && delocate-wheel -v -w {dest_dir} {wheel} @@ -131,7 +117,7 @@ jobs: if-no-files-found: error build_sdist: - name: Build sdist + name: Build SDist runs-on: ubuntu-latest steps: @@ -141,12 +127,12 @@ jobs: python-version: 3.11 - name: Install dependencies - run: pip install --upgrade pip setuptools wheel build + run: pip install --upgrade pip setuptools wheel - - name: Build sdist - run: python -m build --sdist + - name: Build SDist + run: pipx run build --sdist - - name: Upload sdist + - name: Upload SDist uses: actions/upload-artifact@v3 with: name: sdist diff --git a/.github/workflows/run_periodic_tests.yml b/.github/workflows/run_periodic_tests.yml index f6e51bc11b..4545dc26df 100644 --- a/.github/workflows/run_periodic_tests.yml +++ b/.github/workflows/run_periodic_tests.yml @@ -12,24 +12,19 @@ on: schedule: - cron: "0 3 * * *" -jobs: - pre_job: - runs-on: ubuntu-latest - # Map a step output to a job output - outputs: - should_skip: ${{ steps.skip_check.outputs.should_skip }} - steps: - - id: skip_check - uses: fkirc/skip-duplicate-actions@master - with: - # All of these options are optional, so you can remove them if you are happy with the defaults - concurrent_skipping: "never" - cancel_others: "true" - paths_ignore: '["**/README.md"]' +env: + FORCE_COLOR: 3 +concurrency: + # github.workflow: name of the workflow, so that we don't cancel other workflows + # github.event.pull_request.number || github.ref: pull request number or branch name if not a pull request + group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }} + # Cancel in-progress runs when a new workflow with the same group name is triggered + # This avoids workflow runs on both pushes and PRs + cancel-in-progress: true + +jobs: style: - needs: pre_job - if: ${{ needs.pre_job.outputs.should_skip != 'true' }} runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 @@ -66,62 +61,54 @@ jobs: sudo apt install gfortran gcc libopenblas-dev graphviz pandoc sudo apt install texlive-full - # Added fixes to homebrew installs: - # rm -f /usr/local/bin/2to3 - # (see https://github.com/actions/virtual-environments/issues/2322) - - name: Install MacOS system dependencies + - name: Install macOS system dependencies if: matrix.os == 'macos-latest' run: | - rm -f /usr/local/bin/2to3* - rm -f /usr/local/bin/idle3* - rm -f /usr/local/bin/pydoc3* - rm -f /usr/local/bin/python3* - brew update - brew install graphviz - brew install openblas + brew analytics off + brew install graphviz openblas libomp + brew reinstall gcc - name: Install Windows system dependencies if: matrix.os == 'windows-latest' run: choco install graphviz --version=2.38.0.20190211 - - name: Install standard Python dependencies - run: | - python -m pip install --upgrade pip wheel setuptools + - name: Install nox + run: python -m pip install nox - - name: Install SuiteSparse and SUNDIALS on GNU/Linux - if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s pybamm-requires + - name: Install SuiteSparse and SUNDIALS on GNU/Linux and macOS + if: matrix.os != 'windows-latest' + run: python -m nox -s pybamm-requires - name: Run unit tests for GNU/Linux with Python 3.8, 3.9, and 3.10, and for macOS and Windows with all Python versions if: (matrix.os == 'ubuntu-latest' && matrix.python-version != 3.11) || (matrix.os != 'ubuntu-latest') - run: pipx run nox -s unit + run: python -m nox -s unit - name: Run unit tests for GNU/Linux with Python 3.11 and generate coverage report if: matrix.os == 'ubuntu-latest' && matrix.python-version == 3.11 - run: pipx run nox -s coverage + run: python -m nox -s coverage - name: Upload coverage report if: matrix.os == 'ubuntu-latest' && matrix.python-version == 3.11 uses: codecov/codecov-action@v3.1.4 - name: Run integration tests - run: pipx run nox -s integration + run: python -m nox -s integration - name: Install docs dependencies and run doctests if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s doctests + run: python -m nox -s doctests - name: Check if the documentation can be built if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s docs + run: python -m nox -s docs - name: Install dev dependencies and run example tests if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s examples + run: python -m nox -s examples - name: Run example scripts tests if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s scripts + run: python -m nox -s scripts #M-series Mac Mini build-apple-mseries: diff --git a/.github/workflows/test_on_push.yml b/.github/workflows/test_on_push.yml index cb22fb87f7..2f7f94c9bc 100644 --- a/.github/workflows/test_on_push.yml +++ b/.github/workflows/test_on_push.yml @@ -50,7 +50,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 if: matrix.os == 'ubuntu-latest' with: packages: gfortran gcc graphviz pandoc @@ -73,10 +73,11 @@ jobs: HOMEBREW_NO_COLOR: 1 # Speed up CI NONINTERACTIVE: 1 + # sometimes gfortran cannot be found, so reinstall gcc just to be sure run: | brew analytics off - brew update - brew install graphviz openblas + brew install graphviz openblas libomp + brew reinstall gcc - name: Install Windows system dependencies if: matrix.os == 'windows-latest' @@ -88,16 +89,13 @@ jobs: with: python-version: ${{ matrix.python-version }} cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - - name: Cache pybamm-requires nox environment for GNU/Linux + - name: Cache pybamm-requires nox environment for GNU/Linux and macOS uses: actions/cache@v3 - if: matrix.os == 'ubuntu-latest' + if: matrix.os != 'windows-latest' with: path: | # Repository files @@ -107,14 +105,14 @@ jobs: ${{ env.HOME }}/.local/lib/ ${{ env.HOME }}/.local/include/ ${{ env.HOME }}/.local/examples/ - key: nox-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py') }} + key: nox-${{ matrix.os }}-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py', '**/noxfile.py') }} - - name: Install SuiteSparse and SUNDIALS on GNU/Linux - if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s pybamm-requires + - name: Install SuiteSparse and SUNDIALS on GNU/Linux and macOS + if: matrix.os != 'windows-latest' + run: python -m nox -s pybamm-requires - name: Run unit tests for ${{ matrix.os }} with Python ${{ matrix.python-version }} - run: pipx run nox -s unit + run: python -m nox -s unit # Runs only on Ubuntu with Python 3.11 check_coverage: @@ -130,7 +128,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 with: packages: gfortran gcc graphviz pandoc execute_install_scripts: true @@ -148,12 +146,9 @@ jobs: with: python-version: 3.11 cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools nox - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - name: Cache pybamm-requires nox environment for GNU/Linux uses: actions/cache@v3 @@ -166,13 +161,13 @@ jobs: ${{ env.HOME }}/.local/lib/ ${{ env.HOME }}/.local/include/ ${{ env.HOME }}/.local/examples/ - key: nox-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py') }} + key: nox-${{ matrix.os }}-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py', '**/noxfile.py') }} - name: Install SuiteSparse and SUNDIALS on GNU/Linux - run: pipx run nox -s pybamm-requires + run: python -m nox -s pybamm-requires - name: Run unit tests for Ubuntu with Python 3.11 and generate coverage report - run: pipx run nox -s coverage + run: python -m nox -s coverage - name: Upload coverage report uses: codecov/codecov-action@v3.1.4 @@ -193,7 +188,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 if: matrix.os == 'ubuntu-latest' with: packages: gfortran gcc graphviz pandoc @@ -216,10 +211,11 @@ jobs: HOMEBREW_NO_COLOR: 1 # Speed up CI NONINTERACTIVE: 1 + # sometimes gfortran cannot be found, so reinstall gcc just to be sure run: | brew analytics off - brew update - brew install graphviz openblas + brew install graphviz openblas libomp + brew reinstall gcc - name: Install Windows system dependencies if: matrix.os == 'windows-latest' @@ -231,16 +227,13 @@ jobs: with: python-version: ${{ matrix.python-version }} cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - - name: Cache pybamm-requires nox environment for GNU/Linux + - name: Cache pybamm-requires nox environment for GNU/Linux and macOS uses: actions/cache@v3 - if: matrix.os == 'ubuntu-latest' + if: matrix.os != 'windows-latest' with: path: | # Repository files @@ -250,14 +243,14 @@ jobs: ${{ env.HOME }}/.local/lib/ ${{ env.HOME }}/.local/include/ ${{ env.HOME }}/.local/examples/ - key: nox-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py') }} + key: nox-${{ matrix.os }}-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py', '**/noxfile.py') }} - - name: Install SuiteSparse and SUNDIALS on GNU/Linux - if: matrix.os == 'ubuntu-latest' - run: pipx run nox -s pybamm-requires + - name: Install SuiteSparse and SUNDIALS on GNU/Linux and macOS + if: matrix.os != 'windows-latest' + run: python -m nox -s pybamm-requires - name: Run integration tests for ${{ matrix.os }} with Python ${{ matrix.python-version }} - run: pipx run nox -s integration + run: python -m nox -s integration # Runs only on Ubuntu with Python 3.11. Skips IDAKLU module compilation # for speedups, which is already tested in other jobs. @@ -274,7 +267,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 with: packages: gfortran gcc graphviz pandoc execute_install_scripts: true @@ -292,18 +285,15 @@ jobs: with: python-version: 3.11 cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - name: Install docs dependencies and run doctests for GNU/Linux with Python 3.11 - run: pipx run nox -s doctests + run: python -m nox -s doctests - name: Check if the documentation can be built for GNU/Linux with Python 3.11 - run: pipx run nox -s docs + run: python -m nox -s docs # Runs only on Ubuntu with Python 3.11 run_example_tests: @@ -319,7 +309,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 with: packages: gfortran gcc graphviz pandoc execute_install_scripts: true @@ -337,12 +327,9 @@ jobs: with: python-version: 3.11 cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - name: Cache pybamm-requires nox environment for GNU/Linux uses: actions/cache@v3 @@ -355,13 +342,13 @@ jobs: ${{ env.HOME }}/.local/lib/ ${{ env.HOME }}/.local/include/ ${{ env.HOME }}/.local/examples/ - key: nox-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py') }} + key: nox-${{ matrix.os }}-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py', '**/noxfile.py') }} - name: Install SuiteSparse and SUNDIALS on GNU/Linux - run: pipx run nox -s pybamm-requires + run: python -m nox -s pybamm-requires - - name: Install dev dependencies and run example tests for GNU/Linux with Python 3.11 - run: pipx run nox -s examples + - name: Run example notebooks tests for GNU/Linux with Python 3.11 + run: python -m nox -s examples # Runs only on Ubuntu with Python 3.11 run_scripts_tests: @@ -377,7 +364,7 @@ jobs: # Install and cache apt packages - name: Install Linux system dependencies - uses: awalsh128/cache-apt-pkgs-action@v1.3.0 + uses: awalsh128/cache-apt-pkgs-action@v1.3.1 with: packages: gfortran gcc graphviz execute_install_scripts: true @@ -395,12 +382,9 @@ jobs: with: python-version: 3.11 cache: 'pip' - cache-dependency-path: setup.py - - name: Install PyBaMM dependencies - run: | - pip install --upgrade pip wheel setuptools - pip install -e .[all,docs] + - name: Install nox + run: python -m pip install nox - name: Cache pybamm-requires nox environment for GNU/Linux uses: actions/cache@v3 @@ -413,10 +397,10 @@ jobs: ${{ env.HOME }}/.local/lib/ ${{ env.HOME }}/.local/include/ ${{ env.HOME }}/.local/examples/ - key: nox-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py') }} + key: nox-${{ matrix.os }}-pybamm-requires-${{ steps.setup-python.outputs.python-version }}-${{ hashFiles('**/install_KLU_Sundials.py', '**/noxfile.py') }} - name: Install SuiteSparse and SUNDIALS on GNU/Linux - run: pipx run nox -s pybamm-requires + run: python -m nox -s pybamm-requires - - name: Install dev dependencies and run example scripts tests for GNU/Linux with Python 3.11 - run: pipx run nox -s scripts + - name: Run example scripts tests for GNU/Linux with Python 3.11 + run: python -m nox -s scripts diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 5d7c85492f..ed837e6fdb 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -4,7 +4,7 @@ ci: repos: - repo: https://github.com/astral-sh/ruff-pre-commit - rev: "v0.1.3" + rev: "v0.1.6" hooks: - id: ruff args: [--fix, --show-fixes] diff --git a/CHANGELOG.md b/CHANGELOG.md index 873f2171be..12c6ad8c84 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -3,9 +3,11 @@ ## Bug fixes - Fixed a bug where simulations using the CasADi-based solvers would fail randomly with the half-cell model ([#3494](https://github.com/pybamm-team/PyBaMM/pull/3494)) -- Fixed a bug where the JaxSolver would fails when using GPU support with no input parameters ([#3423](https://github.com/pybamm-team/PyBaMM/pull/3423)) +- Fixed bug that made identical Experiment steps with different end times crash ([#3516](https://github.com/pybamm-team/PyBaMM/pull/3516)) +- Fixed bug in calculation of theoretical energy that made it very slow ([#3506](https://github.com/pybamm-team/PyBaMM/pull/3506)) +- The irreversible plating model now increments `f"{Domain} dead lithium concentration [mol.m-3]"`, not `f"{Domain} lithium plating concentration [mol.m-3]"` as it did previously. ([#3485](https://github.com/pybamm-team/PyBaMM/pull/3485)) -# [v23.9rc0](https://github.com/pybamm-team/PyBaMM/tree/v23.9rc0) - 2023-10-31 +# [v23.9](https://github.com/pybamm-team/PyBaMM/tree/v23.9) - 2023-10-31 ## Features @@ -24,6 +26,9 @@ ## Bug fixes +- Fixed a bug where the JaxSolver would fails when using GPU support with no input parameters ([#3423](https://github.com/pybamm-team/PyBaMM/pull/3423)) +- Make pybamm importable with minimal dependencies ([#3044](https://github.com/pybamm-team/PyBaMM/pull/3044), [#3475](https://github.com/pybamm-team/PyBaMM/pull/3475)) +- Fixed a bug where supplying an initial soc did not work with half cell models ([#3456](https://github.com/pybamm-team/PyBaMM/pull/3456)) - Fixed a bug where empty lists passed to QuickPlot resulted in an IndexError and did not return a meaningful error message ([#3359](https://github.com/pybamm-team/PyBaMM/pull/3359)) - Fixed a bug where there was a missing thermal conductivity in the thermal pouch cell models ([#3330](https://github.com/pybamm-team/PyBaMM/pull/3330)) - Fixed a bug that caused incorrect results of “{Domain} electrode thickness change [m]” due to the absence of dimension for the variable `electrode_thickness_change`([#3329](https://github.com/pybamm-team/PyBaMM/pull/3329)). @@ -42,7 +47,6 @@ - Error generated when invalid parameter values are passed ([#3132](https://github.com/pybamm-team/PyBaMM/pull/3132)) - Parameters in `Prada2013` have been updated to better match those given in the paper, which is a 2.3 Ah cell, instead of the mix-and-match with the 1.1 Ah cell from Lain2019 ([#3096](https://github.com/pybamm-team/PyBaMM/pull/3096)) - The `OneDimensionalX` thermal model has been updated to account for edge/tab cooling and account for the current collector volumetric heat capacity. It now gives the correct behaviour compared with a lumped model with the correct total heat transfer coefficient and surface area for cooling. ([#3042](https://github.com/pybamm-team/PyBaMM/pull/3042)) -- Fixed a bug where supplying an initial soc did not work with half cell models ([#3456](https://github.com/pybamm-team/PyBaMM/pull/3456)) ## Optimizations @@ -62,7 +66,7 @@ - Added option to use an empirical hysteresis model for the diffusivity and exchange-current density ([#3194](https://github.com/pybamm-team/PyBaMM/pull/3194)) - Double-layer capacity can now be provided as a function of temperature ([#3174](https://github.com/pybamm-team/PyBaMM/pull/3174)) - `pybamm_install_jax` is deprecated. It is now replaced with `pip install pybamm[jax]` ([#3163](https://github.com/pybamm-team/PyBaMM/pull/3163)) -- PyBaMM now has optional dependencies that can be installed with the pattern `pip install pybamm[option]` e.g. `pybamm[plot]` ([#3044](https://github.com/pybamm-team/PyBaMM/pull/3044)) +- PyBaMM now has optional dependencies that can be installed with the pattern `pip install pybamm[option]` e.g. `pybamm[plot]` ([#3044](https://github.com/pybamm-team/PyBaMM/pull/3044), [#3475](https://github.com/pybamm-team/PyBaMM/pull/3475)) # [v23.5](https://github.com/pybamm-team/PyBaMM/tree/v23.5) - 2023-06-18 diff --git a/CITATION.cff b/CITATION.cff index 5a9e1e2ddc..44f1c5d407 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -24,6 +24,6 @@ keywords: - "expression tree" - "python" - "symbolic differentiation" -version: "23.9rc0" +version: "23.9" repository-code: "https://github.com/pybamm-team/PyBaMM" title: "Python Battery Mathematical Modelling (PyBaMM)" diff --git a/CMakeBuild.py b/CMakeBuild.py deleted file mode 100644 index 5b34bb27df..0000000000 --- a/CMakeBuild.py +++ /dev/null @@ -1,162 +0,0 @@ -import os -import sys -import subprocess -from pathlib import Path -from platform import system - -try: - from setuptools.command.build_ext import build_ext -except ImportError: - from distutils.command.build_ext import build_ext - -default_lib_dir = ( - "" if system() == "Windows" else os.path.join(os.getenv("HOME"), ".local") -) - - -def set_vcpkg_environment_variables(): - if not os.getenv("VCPKG_ROOT_DIR"): - raise EnvironmentError("Environment variable 'VCPKG_ROOT_DIR' is undefined.") - if not os.getenv("VCPKG_DEFAULT_TRIPLET"): - raise EnvironmentError( - "Environment variable 'VCPKG_DEFAULT_TRIPLET' is undefined." - ) - if not os.getenv("VCPKG_FEATURE_FLAGS"): - raise EnvironmentError( - "Environment variable 'VCPKG_FEATURE_FLAGS' is undefined." - ) - return ( - os.getenv("VCPKG_ROOT_DIR"), - os.getenv("VCPKG_DEFAULT_TRIPLET"), - os.getenv("VCPKG_FEATURE_FLAGS"), - ) - - -class CMakeBuild(build_ext): - user_options = build_ext.user_options + [ - ("suitesparse-root=", None, "suitesparse source location"), - ("sundials-root=", None, "sundials source location"), - ] - - def initialize_options(self): - build_ext.initialize_options(self) - self.suitesparse_root = None - self.sundials_root = None - - def finalize_options(self): - build_ext.finalize_options(self) - # Determine the calling command to get the - # undefined options from. - # If build_ext was called directly then this - # doesn't matter. - try: - self.get_finalized_command("install", create=0) - calling_cmd = "install" - except AttributeError: - calling_cmd = "bdist_wheel" - self.set_undefined_options( - calling_cmd, - ("suitesparse_root", "suitesparse_root"), - ("sundials_root", "sundials_root"), - ) - if not self.suitesparse_root: - self.suitesparse_root = os.path.join(default_lib_dir) - if not self.sundials_root: - self.sundials_root = os.path.join(default_lib_dir) - - def get_build_directory(self): - # distutils outputs object files in directory self.build_temp - # (typically build/temp.*). This is our CMake build directory. - # On Windows, distutils is too smart and appends "Release" or - # "Debug" to self.build_temp. So in this case we want the - # build directory to be the parent directory. - if system() == "Windows": - return Path(self.build_temp).parents[0] - return self.build_temp - - def run(self): - if not self.extensions: - return - - if system() == "Windows": - use_python_casadi = False - else: - use_python_casadi = True - - build_type = os.getenv("PYBAMM_CPP_BUILD_TYPE", "RELEASE") - cmake_args = [ - "-DCMAKE_BUILD_TYPE={}".format(build_type), - "-DPYTHON_EXECUTABLE={}".format(sys.executable), - "-DUSE_PYTHON_CASADI={}".format("TRUE" if use_python_casadi else "FALSE"), - ] - if self.suitesparse_root: - cmake_args.append( - "-DSuiteSparse_ROOT={}".format(os.path.abspath(self.suitesparse_root)) - ) - if self.sundials_root: - cmake_args.append( - "-DSUNDIALS_ROOT={}".format(os.path.abspath(self.sundials_root)) - ) - - build_dir = self.get_build_directory() - if not os.path.exists(build_dir): - os.makedirs(build_dir) - - # The CMakeError.log file is generated by cmake is the configure step - # encounters error. In the following the existence of this file is used - # to determine whether or not the cmake configure step went smoothly. - # So must make sure this file does not remain from a previous failed build. - if os.path.isfile(os.path.join(build_dir, "CMakeError.log")): - os.remove(os.path.join(build_dir, "CMakeError.log")) - - build_env = os.environ - if os.getenv("PYBAMM_USE_VCPKG"): - ( - vcpkg_root_dir, - vcpkg_default_triplet, - vcpkg_feature_flags, - ) = set_vcpkg_environment_variables() - build_env["vcpkg_root_dir"] = vcpkg_root_dir - build_env["vcpkg_default_triplet"] = vcpkg_default_triplet - build_env["vcpkg_feature_flags"] = vcpkg_feature_flags - - cmake_list_dir = os.path.abspath(os.path.dirname(__file__)) - print("-" * 10, "Running CMake for idaklu solver", "-" * 40) - subprocess.run( - ["cmake", cmake_list_dir] + cmake_args, cwd=build_dir, env=build_env - ) - - if os.path.isfile(os.path.join(build_dir, "CMakeError.log")): - msg = ( - "cmake configuration steps encountered errors, and the idaklu module" - " could not be built. Make sure dependencies are correctly " - "installed. See " - "https://github.com/pybamm-team/PyBaMM/tree/develop" - "INSTALL-LINUX-MAC.md" - ) - raise RuntimeError(msg) - else: - print("-" * 10, "Building idaklu module", "-" * 40) - subprocess.run( - ["cmake", "--build", ".", "--config", "Release"], - cwd=build_dir, - env=build_env, - ) - - # Move from build temp to final position - for ext in self.extensions: - self.move_output(ext) - - def move_output(self, ext): - # Copy built module to dist/ directory - build_temp = Path(self.build_temp).resolve() - # Get destination location - # self.get_ext_fullpath(ext.name) --> - # build/lib.linux-x86_64-3.5/idaklu.cpython-37m-x86_64-linux-gnu.so - # using resolve() with python < 3.6 will result in a FileNotFoundError - # since the location does not yet exists. - dest_path = Path(self.get_ext_fullpath(ext.name)).resolve() - source_path = build_temp / os.path.basename(self.get_ext_filename(ext.name)) - dest_directory = dest_path.parents[0] - dest_directory.mkdir(parents=True, exist_ok=True) - self.copy_file(source_path, dest_path) diff --git a/CMakeLists.txt b/CMakeLists.txt index 2a78ee9d62..182fd489f3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -72,8 +72,8 @@ execute_process( if (CASADI_DIR) file(TO_CMAKE_PATH ${CASADI_DIR} CASADI_DIR) + message("Found python casadi path: ${CASADI_DIR}") endif() -message("Found python casadi path: ${CASADI_DIR}") if(${USE_PYTHON_CASADI}) message("Trying to link against python casadi package") @@ -87,7 +87,7 @@ endif() set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${PROJECT_SOURCE_DIR}) # Sundials find_package(SUNDIALS REQUIRED) -message("sundials ${SUNDIALS_INCLUDE_DIR} ${SUNDIALS_LIBRARIES}") +message("SUNDIALS found in ${SUNDIALS_INCLUDE_DIR}: ${SUNDIALS_LIBRARIES}") target_include_directories(idaklu PRIVATE ${SUNDIALS_INCLUDE_DIR}) target_link_libraries(idaklu PRIVATE ${SUNDIALS_LIBRARIES} casadi) @@ -98,6 +98,7 @@ if(DEFINED VCPKG_ROOT_DIR) find_package(SuiteSparse CONFIG REQUIRED) else() find_package(SuiteSparse REQUIRED) + message("SuiteSparse found in ${SuiteSparse_INCLUDE_DIRS}: ${SuiteSparse_LIBRARIES}") endif() include_directories(${SuiteSparse_INCLUDE_DIRS}) target_link_libraries(idaklu PRIVATE ${SuiteSparse_LIBRARIES}) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index bec0fee02a..b9800dcd61 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -100,21 +100,52 @@ On the other hand... We _do_ want to compare several tools, to generate document Only 'core pybamm' is installed by default. The others have to be specified explicitly when running the installation command. -### Matplotlib +### Managing Optional Dependencies and Their Imports -We use Matplotlib in PyBaMM, but with two caveats: +PyBaMM utilizes optional dependencies to allow users to choose which additional libraries they want to use. Managing these optional dependencies and their imports is essential to provide flexibility to PyBaMM users. -First, Matplotlib should only be used in plotting methods, and these should _never_ be called by other PyBaMM methods. So users who don't like Matplotlib will not be forced to use it in any way. Use in notebooks is OK and encouraged. +PyBaMM provides a utility function `have_optional_dependency`, to check for the availability of optional dependencies within methods. This function can be used to conditionally import optional dependencies only if they are available. Here's how to use it: -Second, Matplotlib should never be imported at the module level, but always inside methods. For example: +Optional dependencies should never be imported at the module level, but always inside methods. For example: ``` -def plot_great_things(self, x, y, z): - import matplotlib.pyplot as pl +def use_pybtex(x,y,z): + pybtex = have_optional_dependency("pybtex") ... ``` -This allows people to (1) use PyBaMM without ever importing Matplotlib and (2) configure Matplotlib's back-end in their scripts, which _must_ be done before e.g. `pyplot` is first imported. +While importing a specific module instead of an entire package/library: + +```python +def use_parse_file(x, y, z): + parse_file = have_optional_dependency("pybtex.database", "parse_file") + ... +``` + +This allows people to (1) use PyBaMM without importing optional dependencies by default and (2) configure module-dependent functionalities in their scripts, which _must_ be done before e.g. `print_citations` method is first imported. + +**Writing Tests for Optional Dependencies** + +Whenever a new optional dependency is added for optional functionality, it is recommended to write a corresponding unit test in `test_util.py`. This ensures that an error is raised upon the absence of said dependency. Here's an example: + +```python +from tests import TestCase +import pybamm + + +class TestUtil(TestCase): + def test_optional_dependency(self): + # Test that an error is raised when pybtex is not available + with self.assertRaisesRegex( + ModuleNotFoundError, "Optional dependency pybtex is not available" + ): + sys.modules["pybtex"] = None + pybamm.function_using_pybtex(x, y, z) + + # Test that the function works when pybtex is available + sys.modules["pybtex"] = pybamm.util.have_optional_dependency("pybtex") + pybamm.function_using_pybtex(x, y, z) +``` ## Testing @@ -266,7 +297,6 @@ This also means that, if you can't fix the bug yourself, it will be much easier ``` This will start the debugger at the point where the `ValueError` was raised, and allow you to investigate further. Sometimes, it is more informative to put the try-except block further up the call stack than exactly where the error is raised. - 2. Warnings. If functions are raising warnings instead of errors, it can be hard to pinpoint where this is coming from. Here, you can use the `warnings` module to convert warnings to errors: ```python @@ -276,7 +306,6 @@ This also means that, if you can't fix the bug yourself, it will be much easier ``` Then you can use a try-except block, as in a., but with, for example, `RuntimeWarning` instead of `ValueError`. - 3. Stepping through the expression tree. Most calls in PyBaMM are operations on [expression trees](https://github.com/pybamm-team/PyBaMM/blob/develop/docs/source/examples/notebooks/expression_tree/expression-tree.ipynb). To view an expression tree in ipython, you can use the `render` command: ```python @@ -284,11 +313,8 @@ This also means that, if you can't fix the bug yourself, it will be much easier ``` You can then step through the expression tree, using the `children` attribute, to pinpoint exactly where a bug is coming from. For example, if `expression_tree.jac(y)` is failing, you can check `expression_tree.children[0].jac(y)`, then `expression_tree.children[0].children[0].jac(y)`, etc. - 3. To isolate whether a bug is in a model, its Jacobian or its simplified version, you can set the `use_jacobian` and/or `use_simplify` attributes of the model to `False` (they are both `True` by default for most models). - 4. If a model isn't giving the answer you expect, you can try comparing it to other models. For example, you can investigate parameter limits in which two models should give the same answer by setting some parameters to be small or zero. The `StandardOutputComparison` class can be used to compare some standard outputs from battery models. - 5. To get more information about what is going on under the hood, and hence understand what is causing the bug, you can set the [logging](https://realpython.com/python-logging/) level to `DEBUG` by adding the following line to your test or script: ```python3 @@ -385,21 +411,23 @@ wherever code is called that uses that citation (for example, in functions or in ## Infrastructure -### Setuptools +### Installation -Installation of PyBaMM _and dependencies_ is handled via [setuptools](http://setuptools.readthedocs.io/) +Installation of PyBaMM and its dependencies is handled via [pip](https://pip.pypa.io/en/stable/) and [setuptools](http://setuptools.readthedocs.io/). It uses `CMake` to compile C++ extensions using [`pybind11`](https://pybind11.readthedocs.io/en/stable/) and [`casadi`](https://web.casadi.org/). The installation process is described in detail in the [source installation](https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html) page and is configured through the `CMakeLists.txt` file. Configuration files: ``` setup.py +pyproject.toml +MANIFEST.in ``` -Note that this file must be kept in sync with the version number in [pybamm/**init**.py](https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/__init__.py). +Note: `MANIFEST.in` is used to include and exclude non-Python files and auxiliary package data for PyBaMM when distributing it. If a file is not included in `MANIFEST.in`, it will not be included in the source distribution (SDist) and subsequently not be included in the binary distribution (wheel). -### Continuous Integration using GitHub actions +### Continuous Integration using GitHub Actions -Each change pushed to the PyBaMM GitHub repository will trigger the test and benchmark suites to be run, using [GitHub actions](https://github.com/features/actions). +Each change pushed to the PyBaMM GitHub repository will trigger the test and benchmark suites to be run, using [GitHub Actions](https://github.com/features/actions). Tests are run for different operating systems, and for all Python versions officially supported by PyBaMM. If you opened a Pull Request, feedback is directly available on the corresponding page. If all tests pass, a green tick will be displayed next to the corresponding test run. If one or more test(s) fail, a red cross will be displayed instead. diff --git a/GOVERNANCE.md b/GOVERNANCE.md index f11b785106..aa97669187 100644 --- a/GOVERNANCE.md +++ b/GOVERNANCE.md @@ -23,6 +23,7 @@ handled on a case-by-case basis. - Scott Marquis - [Gregory Offer](https://www.imperial.ac.uk/people/gregory.offer) - [Valentin Sulzer](https://sites.google.com/view/valentinsulzer) +- [Martin Robinson](https://www.sabsr3.ox.ac.uk/people/dr-martin-robinson) ## Advisory Committee diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000000..bfc9d0e718 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,7 @@ +graft pybamm +include CITATION.cff +prune tests + +exclude CHANGELOG.md CODE-OF-CONDUCT.md CONTRIBUTING.md GOVERNANCE.md CMakeLists.txt + +global-exclude __pycache__ *.py[cod] .venv diff --git a/README.md b/README.md index c7ca111873..474b528bb6 100644 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ explore the effect of different battery designs and modeling assumptions under a [//]: # "numfocus-fiscal-sponsor-attribution" -PyBaMM uses an [open governance model](./GOVERNANCE.md) +PyBaMM uses an [open governance model](https://pybamm.org/governance/) and is fiscally sponsored by [NumFOCUS](https://numfocus.org/). Consider making a [tax-deductible donation](https://numfocus.org/donate-for-pybamm) to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs. diff --git a/build_manylinux_wheels/Dockerfile b/build_manylinux_wheels/Dockerfile deleted file mode 100644 index a6c2dcc41c..0000000000 --- a/build_manylinux_wheels/Dockerfile +++ /dev/null @@ -1,18 +0,0 @@ -FROM quay.io/pypa/manylinux2014_x86_64:2020-11-11-bc8ce45 - -ENV PLAT manylinux2014_x86_64 - -RUN yum -y update -RUN yum -y remove cmake -RUN yum -y install wget openblas-devel -RUN /opt/python/cp37-cp37m/bin/pip install --upgrade pip cmake -RUN ln -s /opt/python/cp37-cp37m/bin/cmake /usr/bin/cmake - -COPY install_sundials.sh /install_sundials.sh -RUN chmod +x /install_sundials.sh -COPY entrypoint.sh /entrypoint.sh -RUN chmod +x /entrypoint.sh - -RUN ./install_sundials.sh - -ENTRYPOINT ["/entrypoint.sh"] diff --git a/build_manylinux_wheels/action.yml b/build_manylinux_wheels/action.yml deleted file mode 100644 index 7264606b30..0000000000 --- a/build_manylinux_wheels/action.yml +++ /dev/null @@ -1,17 +0,0 @@ -# action.yml -# Based on RalfG/python-wheels-manylinux-build/action.yml by Ralf Gabriels - -name: "Python wheels manylinux build" -author: "Thibault Lestang" -description: "Build manylinux wheels for PyBaMM" -inputs: - python-versions: - description: "Python versions to target, space-separated" - required: true - default: "cp36-cp36m cp37-cp37m" - -runs: - using: "docker" - image: "Dockerfile" - args: - - ${{ inputs.python-versions }} diff --git a/build_manylinux_wheels/entrypoint.sh b/build_manylinux_wheels/entrypoint.sh deleted file mode 100644 index 203e5471d3..0000000000 --- a/build_manylinux_wheels/entrypoint.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash -set -e -x - -# GitHub runners add "-e LD_LIBRARY_PATH" option to "docker run", -# overriding default value of LD_LIBRARY_PATH in manylinux image. This -# causes libcrypt.so.2 to be missing (it lives in /usr/local/lib) -export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH - -# CLI arguments -PY_VERSIONS=$1 - -git clone https://github.com/pybind/pybind11.git /github/workspace/pybind11 -# Compile wheels -arrPY_VERSIONS=(${PY_VERSIONS// / }) -for PY_VER in "${arrPY_VERSIONS[@]}"; do - # Update pip - /opt/python/"${PY_VER}"/bin/pip install --upgrade --no-cache-dir pip - - # Build wheels - /opt/python/"${PY_VER}"/bin/pip wheel /github/workspace/ -w /github/workspace/wheelhouse/ --no-deps || { echo "Building wheels failed."; exit 1; } -done -ls -l /github/workspace/wheelhouse/ - -# Bundle external shared libraries into the wheels -for whl in /github/workspace/wheelhouse/*-linux*.whl; do - auditwheel repair "$whl" --plat "${PLAT}" -w /github/workspace/dist/ || { echo "Repairing wheels failed."; auditwheel show "$whl"; exit 1; } -done - -echo "Succesfully built wheels:" -ls -l /github/workspace/dist/ diff --git a/docs/_static/versions.json b/docs/_static/versions.json index 5c9bba7c17..675ecbcf88 100644 --- a/docs/_static/versions.json +++ b/docs/_static/versions.json @@ -9,6 +9,11 @@ "version": "stable", "url": "https://docs.pybamm.org/en/stable/" }, + { + "name": "v23.9", + "version": "23.9", + "url": "https://docs.pybamm.org/en/v23.9_a/" + }, { "name": "v23.5", "version": "23.5", diff --git a/docs/source/examples/notebooks/models/lithium-plating.ipynb b/docs/source/examples/notebooks/models/lithium-plating.ipynb index a7329b0b70..1e14513620 100644 --- a/docs/source/examples/notebooks/models/lithium-plating.ipynb +++ b/docs/source/examples/notebooks/models/lithium-plating.ipynb @@ -13,23 +13,11 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ "%pip install \"pybamm[plot,cite]\" -q # install PyBaMM if it is not installed\n", "import pybamm\n", "import os\n", - "import matplotlib.pyplot as plt\n", "os.chdir(pybamm.__path__[0]+'/..')" ] }, @@ -71,17 +59,7 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The linesearch algorithm failed with too small a step.\n", - "The linesearch algorithm failed with too small a step.\n", - "The linesearch algorithm failed with too small a step.\n" - ] - } - ], + "outputs": [], "source": [ "# specify experiments\n", "pybamm.citations.register(\"Ren2018\")\n", @@ -160,18 +138,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbA4d+elkmb9B5IQg8lhN6bVBERxIK99969937Wa7967deGimIXxQqKIgjSW+g1ECAQ0nudsr8/JoyEhBAgIZT1Pk8ecs7Z55w1I3Jmzd57baW1RgghhBBCCCGEaGqG5g5ACCGEEEIIIcSZQRJQIYQQQgghhBAnhCSgQgghhBBCCCFOCElAhRBCCCGEEEKcEJKACiGEEEIIIYQ4IUzNHUBjCQ0N1fHx8c0dhhBCiFPMypUrc7TWYc0dx8lKnq9CCCGOxeGer6dNAhofH8+KFSuaOwwhhBCnGKXUruaO4WQmz1chhBDH4nDPVxmCK4QQQgghhBDihJAEVAghhBBCCCHECSEJqBBCCCGEEEKIE6LJ54AqpYzACmCv1nrcIccGA68AScBkrfX0g469AJyDO0n+DbhLa62bOl4hhBB/s9vtpKenU1FR0dyhHDer1UpsbCxms7m5QxFCiBPudPr3XJxcjvb5eiKKEN0FbAJsdRzbDVwN3H/wTqVUf2AA7sQU4C9gCDCvqYIUQghRW3p6Ov7+/sTHx6OUau5wjpnWmtzcXNLT00lISGjucIQQ4oQ7Xf49FyeXY3m+NukQXKVULO5ezCl1Hddap2mt1wKuQw8BVsACeAFmILMJQxVCCFGHiooKQkJCTvkPK0opQkJC5Jt/IcQZ63T591ycXI7l+drUc0BfAR6kdoJZL631YmAukFH986vWetOh7ZRSNyqlViilVmRnZzdCuEIIIQ51unxYOV1ehxBCHCv5d1A0haP9e9VkCahSahyQpbVeeQzntgESgVggBjhLKTXo0HZa63e11j211j3DwmQNcSGEEEIIIYQ4mTVlD+gAYLxSKg34AncS+UkDz50ILNFal2itS4BZQL+mCVMIIcTJas+ePQwbNoyOHTvSqVMnXn31Vc+xF198kQ4dOpCcnEyvXr34+OOPmzFSIYQQR2I0GklOTqZTp0507dqVl156CZer/oGS+/bt44ILLjjitZ955pnGCvOwpk6dyu23315vm3nz5rFo0SLP9ttvv33aPJ8a6z1usgRUa/0PrXWs1joemAz8obW+vIGn7waGKKVMSikz7gJEtYbgCiGEOL2ZTCZeeuklNm7cyJIlS3jzzTfZuHEjb7/9Nr/99hvLli0jJSWFOXPmIIXShRDi5Obt7U1KSgobNmzgt99+Y9asWTzxxBP1nhMdHc306dPrbQPHlhw5nc6jPudIDk1Ab775Zq688spGv8/RcDgc9W431EmfgB6OUupJpdT46t97KaXSgQuBd5RSG6qbTQdSgXXAGmCN1vrHpo6tKKecr59dTtq6nKa+lRBCiAaIioqie/fuAPj7+5OYmMjevXt55plneOutt7DZ3AXWbTYbV111VXOGKuqhtWbNnD1UlR/bhx4hxOknPDycd999lzfeeAOtNU6nkwceeIBevXqRlJTEO++8A0BaWhqdO3cG3D2Q559/PmPGjKFt27Y8+OCDADz88MOUl5eTnJzMZZddBsAnn3xC7969SU5O5qabbvIkm35+ftx333107dqVxYsX8/HHH5OUlETXrl254oorAPjxxx/p06cP3bp1Y8SIEWRm1q6FWlebtLQ03n77bV5++WWSk5NZsGABjz/+OC+++CIAKSkp9O3bl6SkJCZOnEh+fj4AQ4cO5aGHHqJ37960a9eOBQsW1PmePf/883Tp0oWuXbvy8MMPe85dsWIFADk5OcTHx3veq/Hjx3PWWWcxfPjwWtulpaVce+219O7dm27duvH9998f9Xt8rE7EMixoredRvYSK1vrRg/Yvxz3P89D2TuCmExHbwfaXF/OLcyXFG6u4tkvoib69EEKc1BZ8tZWcPSWNes3QFn4Muqhdg9qmpaWxevVq+vTpQ3FxMa1atWrUWETTyUwrYuH0bZitRjoOiG7ucIQQwIyXVtXa16ZHOF2GxmKvcvLT62tqHe/QL4rE/lGUl1TxyzvraxybeF/3o46hVatWOJ1OsrKy+P777wkICGD58uVUVlYyYMAARo0aVavATUpKCqtXr8bLy4v27dtzxx138Nxzz/HGG2+QkpICwKZNm/jyyy9ZuHAhZrOZW2+9lU8//ZQrr7yS0tJS+vTpw0svvcSGDRt46qmnWLRoEaGhoeTl5QEwcOBAlixZglKKKVOm8MILL/DSSy/ViONwbW6++Wb8/Py4/373KpNz5szxnHPllVfy+uuvM2TIEB599FGeeOIJXnnlFcDdK7ls2TJmzpzJE088we+//17jfrNmzeL7779n6dKl+Pj4eGKtz6pVq1i7di3BwcFMnTq1xvY///lPzjrrLD744AMKCgro3bs3I0aMaPB7fDxOSAJ6qvC3FzH+j1dJrbwSLh7Q3OEIIYSoVlJSwqRJkzwP6tORUqoF8DEQgXs5sne11q8qpYKBL4F4IA24SGudr9yfyl4FxgJlwNVa61XV17oK+L/qSz+ltf6oen8PYCrgDcwE7tInYOxyZEIAF/9fb4KjfQHISS/GFuqNxSofQ4QQbrNnz2bt2rWe4baFhYVs27aNdu1qfkk5fPhwAgICAOjYsSO7du2iRYsWNdrMmTOHlStX0qtXLwDKy8sJDw8H3PNQJ02aBMAff/zBhRdeSGiou+MpODgYcK+ZevHFF5ORkUFVVVWd61s2pM3BCgsLKSgoYMiQIQBcddVVXHjhhZ7j559/PgA9evQgLS2t1vm///4711xzDT4+PjVirc/IkSNrtDt4e/bs2fzwww+e3tmKigp2794NNOw9Ph7yL/9BqoKN/N9VJoZvXX/kxkIIcYZpaE9lY7Pb7UyaNInLLrvM84D28/Njx44dp1svqAO4T2u9SinlD6xUSv0GXA3M0Vo/p5R6GHgYeAg4G2hb/dMHeAvoU52wPgb0xJ3IrlRK/aC1zq9ucwOwFHcCOgZ3ob8mFxLjB4DT4eLnN9cSEuvHuNu6nohbCyHqUF+PpdlirPe4t5/lmHo8D7Vjxw6MRiPh4eForXn99dcZPXp0jTaHJmNeXl6e341GY53zGbXWXHXVVTz77LO1jlmtVoxGY71x3XHHHdx7772MHz+eefPm8fjjjx9Tm6Nx4HUd7jUdjslk8hRyOnQtTl9f38Nua6355ptvaN++fY02S5cubdB7fDxO+BzQk1m0LRaDC8rIau5QhBBC4H5AXnfddSQmJnLvvfd69v/jH//gtttuo6ioCHD3kJ7qVQa11hkHejC11sW4i+/FAOcBH1U3+wiYUP37ecDH2m0JEKiUigJGA79prfOqk87fgDHVx2xa6yXVvZ4fH3StE8ZoMjDquk70Odf95YF2aZzOo1ouXAhxGsjOzubmm2/m9ttvRynF6NGjeeutt7Db7QBs3bqV0tLSBl/PbDZ7zh0+fDjTp08nK8v9mT4vL49du3bVOuess87i66+/Jjc319MO3L2VMTExAHz00Ue1zquvjb+/P8XFxbXaBwQEEBQU5JnfOW3aNE9vaEOMHDmSDz/8kLKyshqxxsfHs3Kle9XLhhRrOmD06NG8/vrrngJ+q1evPuI5B7/Hx0MS0IOYDWYCyy2UmQtxVDV+VSwhhBBHZ+HChUybNo0//viD5ORkkpOTmTlzJrfccgvDhg2jV69edO7cmUGDBmEwnD6PNKVUPNANd09lhNY6o/rQftxDdMGdnO456LT06n317U+vY39d979RKbVCKbUiOzv7+F5MHaLaBBLW0h+AJT/s4MfXUuS5K8QZ4EARm06dOjFixAhGjRrFY489BsD1119Px44d6d69O507d+amm246qp63G2+8kaSkJC677DI6duzIU089xahRo0hKSmLkyJFkZGTUOqdTp07861//YsiQIXTt2tXzRefjjz/OhRdeSI8ePTzDcw91uDbnnnsuM2bM8BQhOthHH33EAw88QFJSEikpKTz66KOHXvawxowZw/jx4+nZsyfJycmeobP3338/b731Ft26dSMnp+GFVB955BHsdjtJSUl06tSJRx555IjnHPweHw91upSt79mzpz5QAepY7cotZeR/ZxBl/ZHPrn6XmBYBjRSdEEKcmjZt2kRiYmJzh9Fo6no9SqmVWuuezRRSLUopP+BP4Gmt9bdKqQKtdeBBx/O11kFKqZ+A57TWf1Xvn4N7aO5QwKq1fqp6/yNAOe5igM9prUdU7x8EPKS1HldfPI3xfK3P5iUZZO0qZtBFbWsVGxFCNJ7T7d9zcXI5mufr6fN1cSMI9rVQ5Qwi1xLKtm17jnyCEEII0Yiq177+BvhUa/1t9e7M6uGzVP95YJ7IXuDgqhCx1fvq2x9bx/4TYlVRaZ1rtXboG8Xgi9uhlKI4r4K0tbIUmhBCnM4kAT2Iv9WM1WSnUoewfduGI58ghBBCNJLqqrbvA5u01v896NAPwIFFTq8Cvj9o/5XKrS9QWD1U91dglFIqSCkVBIwCfq0+VqSU6lt9rysPulaTWl5YytiV2/hif/3LBiz7aSe/T91IZdnxzzESQghxcpIquIeI8FekV4awL3tjc4cihBDizDIAuAJYp5RKqd73T+A54Cul1HXALuCi6mMzcS/Bsh33MizXAGit85RS/waWV7d7Umt9IPO7lb+XYZnFCaqA293mw/PtYpkQHgSAU2uMdQy3HTK5HV2GxODlYwbcBYqUQYblCiHE6UQS0EO0jghgd2oIha7ai/MKIYQQTaV6Lufhsq3hdbTXwG2HudYHwAd17F8BdD6OMI+JUSmuinEX6ahyuTh/9XbOjwji2tiwGu1MFiPhcTYAti7bz/r5exl7SxJWX/OJDlkIIUQTkSG4h+gQFYa2B1DsbPyqf0IIIcSZrsqlifQyE+lVf1KpDAqzxYjZUv96fUIIIU4t0gN6iNahAYCBfDM47E5MZnnwCSGEEMfLWVCAMTAQP5ORKZ0TPPtn5xQS5WWmi79PjfZte0bQpkc4SinsVU7yM0o9vaNCCCFOXdIDeoi4EPcDMM/kQ052eTNHI4QQ4tprryU8PJzOnWuOHH3xxRfp0KEDycnJ9OrVi48//riZIhRHUr52LduHj6B47twa+x0uzZOp+/h36r46zzuwLMuS71KZ8dIqSgsrmzxWIUTTefrpp+nUqRNJSUkkJyezdOlSAF555RXKysoOe97111/Pxo3HVp/lhx9+4Lnnnjumc0828+bNY9GiRc0dxnGTHtBDtDyQgHoFs237XiKj2zdzREIIcWa7+uqruf3227nyyis9+95++21+++03li1bhs1mo6ioiBkzZjRjlKI+loQEbGPH4p2cXGO/yaD4JrkNB+oMHa44Uc+x8US2CsA3wOsERCuEaAqLFy/mp59+YtWqVXh5eZGTk0NVVRXgTkAvv/xyfHx8ap3ndDqZMmXKMd93/PjxjB8//pjPbyxOpxOj0XjY7YaYN28efn5+9O/fv7HDO6GkB/QQYX5emAwOSlQIO7Ztau5whBDijDd48GCCg4Nr7HvmmWd46623sNncQzJtNhtXXXVVXaeLk4DR35+ofz+JKSgI7XKR+8GHuEpLAYjwMhNmMaO15o5Nu/nX1vRa64V6+1lo2zMCgKxdRfz19TZcTtcJfx1CiGOXkZFBaGgoXl7uL5JCQ0OJjo7mtddeY9++fQwbNoxhw4YB4Ofnx3333UfXrl1ZvHgxQ4cOZcWKFZ5j99xzD506dWL48OFkZ7vrtgwdOpS77rqL5ORkOnfuzLJlywCYOnUqt99+O+D+QvPOO++kf//+tGrViunTpwPgcrm49dZb6dChAyNHjmTs2LGeYwfbvn07I0aMoGvXrnTv3p3U1FTmzZvHuHHjPG1uv/12pk6dCkB8fDwPPfQQ3bt35+uvv661PXv2bPr160f37t258MILKSkp8Zz32GOP0b17d7p06cLmzZtJS0vj7bff5uWXXyY5OZkFCxY09n+iE0Z6QA+hlCLUV5NtDyF9/wZgQnOHJIQQJ4VHtqWzvqRxpyZ09vPm321jj+qcoqIiiouLadWqVaPGciRKqaIjNQEytNbtTkQ8p6ryNWvIevFFjEFBBE6c4NmvgXCLiWCzyTP0ti57NuWxY3U2PcbE4e1vafqAhThNzXhpFR36RZHYPwqn08UPr6TQcWA07ftEYq9y8tPra+g8JIa2PSOoLHcw839rSTorltbdwikvqeKXd9aTPLIlCUmhlBZWHnGEwqhRo3jyySdp164dI0aM4OKLL2bIkCHceeed/Pe//2Xu3LmEhrqrZZeWltKnTx9eeumlWtcpLS2lZ8+evPzyyzz55JM88cQTvPHGGwCUlZWRkpLC/Pnzufbaa1m/fn2t8zMyMvjrr7/YvHkz48eP54ILLuDbb78lLS2NjRs3kpWVRWJiItdee22tcy+77DIefvhhJk6cSEVFBS6Xiz179tT7ukNCQli1yr26xsMPP+zZzsnJ4fzzz+f333/H19eX559/nv/+9788+uijgDtBX7VqFf/73/948cUXmTJlCjfffDN+fn7cf//99d7zZCcJaB3iw/zISg+mwLmwuUMRQghx8kjVWnerr4FSavWJCuZU5dOtGwkzZuDVri0A2uFAmUwYlOLxNjGe3s+tpRXYTMZa1XJ7jImn82D3WqFaayrLHLJMixCnAD8/P1auXMmCBQuYO3cuF198Mc899xxXX311rbZGo5FJkybVeR2DwcDFF18MwOWXX87555/vOXbJJZcA7pEzRUVFFBQU1Dp/woQJGAwGOnbsSGZmJgB//fUXF154IQaDgcjISE9P7MGKi4vZu3cvEydOBMBqtTbodR+I9dDtJUuWsHHjRgYMGABAVVUV/fr187Q78Lp69OjBt99+26B7nSokAa1D+8hQluwsoURnNncoQghx0jjansqmYrPZ8PPzY8eOHSe6F7TuT0NH3+aMU+Go4NVVr3Jz15sJ8ArA2t7dSWzft4/d11xLxCOP4DfQ/SFMKYVTa65bv5MAk5Efu7et1SPq5eNOOFfO2sXGhfu44KGe+NikN1SIozHxvu6e341GQ41ts8VYY9vL21Rj29vPUmO7ofOzjUYjQ4cOZejQoXTp0oWPPvqozgTUarU2eH7kwf8+HPpvRV2jKQ4MAQZqDfc/FiaTCZfr7ykBFRUVNY77+vrWua21ZuTIkXz++ed1XvdAnEajEYfDcdxxnkxkDmgd2oYHgTZTYLTjtMscEyGEONn84x//4LbbbqOoyD0qtqSkpMmr4Gqtdxy6TykVfKQ2AtbnrOfrrV+zJntNjf3KbMYUFYUpLKzGfqNSvNkxjufbt6h3OG6LjsG07haGt7/0gApxstuyZQvbtm3zbKekpBAXFweAv78/xcXFDbqOy+XyzM/87LPPGDhwoOfYl19+Cbh7NAMCAggICGjQNQcMGMA333yDy+UiMzOTefPm1Wrj7+9PbGws3333HQCVlZWUlZURFxfHxo0bqayspKCggDlz5jTonn379mXhwoVs374dcA8t3rp1a73nHM37dDKTBLQOnqVYzN7k5Ry+JLQQQoimd8kll9CvXz+2bNlCbGws77//PrfccgvDhg2jV69edO7cmUGDBmEwNO0jTSk1QCm1SSm1QSnVRyn1G7BcKbVHKdXviBc4g/WM7Mms82cxOHYwAGV297PVFBZG3NQPPT2i5Skpnh6JJH8fOvl5A/Dunix+yiqodd2IeBsDLnD3kJYWVpK6OusEvBohxLEoKSnhqquuomPHjiQlJbFx40Yef/xxAG688UbGjBlT59DXQ/n6+rJs2TI6d+7MH3/84ZkzCe6e027dunHzzTfz/vvvNzi2SZMmERsbS8eOHbn88svp3r17ncnrtGnTeO2110hKSqJ///7s37+fFi1acNFFF9G5c2cuuugiunWrd6aGR1hYGFOnTuWSSy4hKSmJfv36sXnz5nrPOffcc5kxY8YpX4RINUbX88mgZ8+e+kB1rOO1J6+MQS/MJcw2nVeHPkL//ie20IUQQpwsNm3aRGJiYnOH0Wjqej1KqZVa655HOlcptQy4DvADfgQmaK3/Ukp1B17XWg9oipibW2M+XwE25W7i5t9v5rlBz9Ev+u+8vWz5cnZdcSVRzz1L4IQJnv0Ol+b8lO1Ee5l5u1P8Ya/75+db2LJkP1c81U+KEwlRh9Pl33M/Pz9PtdiDDR06lBdffJGePY/4z3mdSkpK8PPzIzc3l969e7Nw4UIiIyOPN9wzxtE8X2UOaB2iAqwoXBSagknbukUSUCGEEABmrfU6AKVUttb6LwCt9SqllHfzhnbqCPcJp0dED9oEtqmx37tHDyIffxzb2LE19psMii+7tubAQNwShxMfowHDIUNzB1zQhg79ojzJp9a63uG7QghxsHHjxlFQUEBVVRWPPPKIJJ9NSBLQOpiMBoJ8nBTZQ9iTsR44u7lDEkII0fwOHuP7j0OOSZdbA4V4h/Dfof8F3EniL2m/MDp+NAaDgaDJ7uqQrvJysl5+mbDbb8dos+FtdL/1VS4Xl6zZQWsfL15JbFnjuiazkYh497qwqauy2Lw4g5HXdcJilY86QpxO6ur9BOqct3k0jvd80XAyB/QwWoR447KHkFci9SSEEEIA8IhSygdAa/3dgZ1KqdZA01ZAOk0t2reIB+c/yOy02TX2l69ZS8GXX1G+pmbRIrNSjAq1MTzEVu91K8scVJY7MBikB1QIIU428rXgYbSLCGbN3mJKXfuaOxQhhBAnAa31D4fuU0pFaq1TgReaIaRTXv/o/rw5/E0GxQyqsd+3bx9a/zYbc3g4ANpuR5nNKKW4Iy7C025hfjHx3l7EWGt2QHccGE2H/lEYDAqH3UlxbgVBkTWXQhBCCNE8pAf0MNqFB4PLmyJVhtMhS7EIIYSo08zmDuBUppRicOxglFLklOfw4PwHKawsBPAkn+Vr15I65mwqNm2qcW6F08VtG3fz8Nb0Oq99oPdz8bepTH9uBeXFVU34SoQQQjSU9IAeRnyoHwB5Fi8Kc8oJlm9OhRBC1CZjPBvJ1rytLNq3iPTidAK8/l7+wGizYYlriSk0tEZ7q9HAZ11bEWKu/6NMt1EtCYn1k8q4QghxkpAe0MPwrAVqCWD77pxmjkYIIc5c+/fvZ/LkybRu3ZoePXowduxYz2LdZ599Nunp6Vx22WW0b9+ezp07c+2112K3209UeO+dqBud7vrH9OfXSb/SKbQT8PdaoZb4eFp+8AGmsDC01pSnpHjO6ejnTYSXGa01D23Zwzf782pd1y/ISscB0QDkpJew9IcdaNfpsQSdEKeS3NxckpOTSU5OJjIykpiYGM92VVXNEQqvvPIKZWVlR7zm0KFDacxlohrLd999x8aNG5s7jJOWJKCH0TLYnYDmW0LYuSW1maMRQogzk9aaiRMnMnToUFJTU1m5ciXPPvssmZmZlJeXk5ubS2xsLJdddhmbN29m3bp1lJeXM2XKlCaNSykVpJRKApYopbpXrwUq6lFe5TxiG1+ze7TRnN1zGPvtWFILaj5/C77+mrTJl1C2enXNa7s028oq2V5WWe/1d6zOYtOiDMpLTtgXFEKIaiEhIaSkpJCSksLNN9/MPffc49m2WGqOUGhoAtoUnE5nvdsNIQlo/SQBPQyr2YifxY7dEcqefRuaOxwhhDgjzZ07F7PZzM033+zZ17VrVwYNGsS8efMYOnQoAGPHjkUphVKK3r17k55e97zAxqCU+jewFngNeKn658Umu+FpYP3eQga98AeLtjdsRFGbwDb0juxNlG9Ujf0B551H5JNP4J2cXGO/j9HAF11b8WCCe92+fRVV2Ovo5ew1LoGL/9ULH5sFrTWVZZKICtGc5syZQ7du3ejSpQvXXnstlZWVvPbaa+zbt49hw4YxbNgwAG655RZ69uxJp06deOyxx4543eXLl9O/f3+6du1K7969KS4uZurUqdx+++2eNuPGjfMsveLn58d9991H165dWbx4ca3tTz75hN69e5OcnMxNN93kSUr9/Pz417/+RdeuXenbty+ZmZksWrSIH374gQceeIDk5GRSU6Uj61AyB7QeMUEWthcFk1e1tblDEUKIZrf/mWeo3LS5Ua/pldiByH/+87DH169fT48ePeo8NmvWLCZMmFBjn91uZ9q0abz66quNGeahLgJaa62lqk0DRdis9IwLpk24X4Pax9nieGGIu7BwlbOKNdlr6BXZC4OXF0EXXQSAPTOLvKlTCb/nbpTFgsXg/k69zOliwurt9A7w5Y2OcTWuq5TyzAVN+X0Pa+fu4YKHeuIb4NVYL1WIU8KCr7aSs6fu9TSPVWgLPwZd1K7B7SsqKrj66quZM2cO7dq148orr+Stt97i7rvv5r///S9z584ltHru99NPP01wcDBOp5Phw4ezdu1akpKS6rxuVVUVF198MV9++SW9evWiqKgIb2/vemMpLS2lT58+vPTSS7W2N23axPPPP8/ChQsxm83ceuutfPrpp1x55ZWUlpbSt29fnn76aR588EHee+89/u///o/x48czbtw4Lrjggga/H2cS6QGtR5vIIFz2EEode5s7FCGEEIdYuHAhAwcOrLHv1ltvZfDgwQwaNOgwZzWK9UBgU97gdBPm78XbV/Qg3GZFa81vGzPRumHzMN9f9z43zL6B3UW7a+wvXTCfgi+/pGp3zf0+RgN3x0VwXWxYvdeNaRdIq65h+NikOJEQzcHpdJKQkEC7du6k9aqrrmL+/Pl1tv3qq6/o3r073bp1Y8OGDfUOb92yZQtRUVH06tULAJvNhslUf5+b0Whk0qRJdW7PmTOHlStX0qtXL5KTk5kzZw47duwAwGKxMG7cOAB69OhBWlpaw178GU56QOvRPjyEn9fkUaoKcDpdGI2Srwshzlz19VQ2lU6dOjF9+vRa+3fs2EGLFi1qzBt64oknyM7O5p133mnqsJ4FViul1gOeSYda6/FNfePTwW8bM7lx2krevrwHYzpHHrH91Z2vpm1QW1raWtbYH3jBBfgOHuxZrsVVVYWh+u/DpdEhnnafZ+TS1d+Hjn41e0DC42yEx9kAKC+uYufaHBL7R6GUFDYWp7+j6alsbjt37uTFF19k+fLlBAUFcfXVV1NRUXHU1zGZTLhcfy+tePA1rFYrRqOxzm2tNVdddRXPPvtsrWuaq9cnBnfS6nA4jjquM5FkVPU4sBRLrtlMUXZ5M0cjhBBnnrPOOovKykreffddz761a9cybdo0xowZ49k3ZcoUfv31Vz7//HMMhiZ/tH0EPA88x99zQF9q6pueLkZ2jODty7szulNEg9p7m7wZETcCgK35W3lt1Wu4tPtD5IHks+iXX9h57njs+/bVOLfM6eLFnfv53+6seu+xdl4687/YSnHu0X+oFUIcG6PRSFpaGtu3bwdg2rRpDBkyBAB/f3+Ki4sBKCoqwtfXl4CAADIzM5k1a1a9123fvj0ZGRksX74cgOLiYhwOB/Hx8aSkpOByudizZw/Lli1rUJzDhw9n+vTpZGW5/x3Jy8tj165d9Z5zcPyiNukBrUdcdSXcXC8bO/cVECRrgQohxAmllGLGjBncfffdPP/881itVuLj43G5XLz11luedjfffDNxcXH069cPgPPPP59HH320qcIq01q/1lQXP90ppRjT2V1cKKu4gid+3MiT4zsR4nfkeZhzds3h+9TvuTTxUkK9/14X1BwVhaVNG4zBwTXa+xgN/NyjHf4m95cSlS4XXnV8QdH7nARaJYdhC3X3krqcLgwy6kmIJmW1Wvnwww+58MILcTgc9OrVy1Nw7sYbb2TMmDFER0czd+5cunXrRocOHWjRogUDBgyo97oWi4Uvv/ySO+64g/Lycry9vfn9998ZMGAACQkJdOzYkcTERLp3b1jx8o4dO/LUU08xatQoXC4XZrOZN998k7i4uMOeM3nyZG644QZee+01pk+fTuvWrRv+xpwBVEPnYBzzDZQyAiuAvVrrcYccGwy8AiQBk7XW06v3DwNePqhph+rj3x3uPj179tSNvQ5QQVkVyU/+hl/wTzze8hIumDy4Ua8vhBAnu02bNpGYmNjcYdRQWVnJgAEDjmntt7pej1Jqpda6Z0OvoZT6L+6htz9QcwjuqqMO6BTQFM/XAxZuz+GOz1cz9ZpeJMUGHrG91pr8ynyCrcForalyVeFlrJm4uiorKU9Zg2+f3jX2V7lcXLJmB8k2Hx5pHX3Ye6Sty2HxjFTG3d4V/2DrMb0uIU5GJ+O/5+L0cTTP1xPRA3oXsAmw1XFsN3A1cP/BO7XWc4FkAKVUMLAdmN2UQdYl0MeCl8lBpSuE9D2bAElAhRCiuXl5eTX3wuPdqv/se9A+DZzVDLGc0ga0CWXBg8Pw9XJ/HCkstxPgbT5se6UUwVZ3L+eHGz7k17RfmTJqCv4Wf0+b3HfeIeedd2n9yywsLVp49huVItHPSqJv/UmlxWrEN9ALq+/h4xBCCHHsmjQBVUrFAucATwP3Hnpca51W3c516LGDXADM0lo3y2q0kTYj6ZUh5BTLUixCCCFAaz2suWM4nRxIPn/fmMl9X6/h0+v70Dkm4IjntQlsw67gXfiaa06PCbn+erwSE2skn+BOQJ9qG+vZXlpQQktvC1FeNavgRrcNYnzbIACcDhdp63Jo3S38mF6bEEKI2pp6gsMrwINAfQnmkUwGPq/rgFLqRqXUCqXUiuzs7OO4xeG1igjAVRVMqaPpFjUXQghxalNKNWwykTisTjE2RnWMoHVYw9YKHRw7mCf6P4FBGSioKGBL3hYADD4+2EaOBKBi0yYyHn0MV1XNJVurXC5u3biLezfvqfceGxbs45d31pOZVnQMr0iIk09TT70TZ6aj/XvVZAmoUmockKW1Xnkc14gCugC/1nVca/2u1rqn1rpnWFj9630dq/bhIWh7EGUqF5fzePJoIYQQp7FbmjuAU11UgDf/ubAr3hYjlQ4ns9ZlNPjcJ5c8yY2/3UiZveZgqbKVqyhZsABnQUGN/RaDgU+SWvFCe3cv6eE+PHUeEsO427sSEW+rt50QpwKr1Upubq78PRaNSmtNbm4uVmvD58w35RDcAcB4pdRYwArYlFKfaK0vP4prXATM0FrbmyTCBmgV6g8YKTApinLLCQyXSrhCCCFqubW5AzidfLJkN//+aSM/3TGwQcNxH+z1IKkFqfiYfWrsD778MgImTMDo54vWGmdeHqYQ9xqhiQetC/rPbXsJMZu4Lz6ixjqgBoMirrO7ff7+Un77YCMjr+0oVfHFKSk2Npb09HSaatSgOHNZrVZiY2OP3LBakyWgWut/AP8AUEoNBe4/yuQT4JID12guLUPcD7Mcix+79xVJAiqEEAIA5c5UzgIuBcYBDVvYUhzR1f3jaRvu16DkEyDSN5JI30gA5qfPZ2v+Vq7rfB1KKYx+7ud23odTyZ0yhYSvv8IcE+M516k1JU4n3gZDjeTzUFXlTlxOjcliPGwbIU5mZrOZhISE5g5DiCafA1qLUupJpdT46t97KaXSgQuBd5RSGw5qFw+0AP480TEeLO5AAuoVwrYtac0ZihBCnJH279/P5MmTad26NT169GDs2LFs3eouDHf22WeTnv73HP0777wTP7+GzSE8Vkqpvkqp14BdwPfAfNzLhYlGYjQoBrdzT63ZvL+IGz9eQVFFwwZDzd0zl9lps6l0VtbY7zdsKIGTzscUXXMJFqNSvNahJf/X2r026c6ySvZX1r5XRIKNi//VC/9gK1pr0tblyFBGIYQ4BickAdVazzuwBqjW+lGt9Q/Vvy/XWsdqrX211iFa604HnZOmtY7RWjfrxMsIfytG5aJMhZC2dWNzhiKEEGccrTUTJ05k6NChpKamsnLlSp599lkyMzMpLy8nNzfXM+xnxYoV5OfnN1ksSqlnlFLbcFd2X4t7OZZsrfVHWuumu/EZLjWrlI0ZRZRUOBrU/pG+j/D+6PexmqzYXXbKHeUAeCUkEH7ffSilcOTmkv/5554EUimFQSm01ty8MY3L1qbiqiO5VAZ3D2n6pnx+fnMtW5dlNtKrFEKIM8eJWAf0lGYwKML8NTlVIewv2oTD7sRkluE3QghxIsydOxez2czNN9/s2de1a1cAZs2axdChQwFwOp088MADfPbZZ8yYMaOpwrke2Aq8Bfyota5USkkXWBM7JymK4YnhWM1GtNZkFVcSYTt8sQuDMnjWBX16ydNsy9/Gh2M+xGL8e7mV/C++IPe9KfgOHFhjuRalFK90aEmxw4mhnuG4sYlBjL6hM626uXtptdb1Dt8VQgjxN0lAGyAuzJ+s9BAMlX+Rsb2QFonBzR2SEEKccM8ve57NeZsb9ZodgjvwUO+HDnt8/fr19OjRo85js2bNYsKECQC88cYbjB8/nqioqEaN7xBRwEjc9QleUUrNBbyVUiatdcO658QxsVZ/8fvRojRe+m0r3982gFYNWK5lcOxgYvxiaiSfAKG33IL/iJGe5FPb7SizGahZnOjjvTmkllXySOtoTIa/E0ylFG16uNcGrSyz8+Pra+hzXitadJDPB0IIcSQnfA7oqah9eDCuqmC0azfLN+xv7nCEEEIACxcuZODAgezbt4+vv/6aO+64o0nvp7V2aq1/0VpfBbQGvgMWAnuVUp816c0FACM7RXJF3zjiQxpWEPCslmdxQ9INAOwo2MHSjKUAKIMBa/t2ABT/MZcd48+jKn1vrfN3lFeyrayC+jo3K8sd7uJEJvlIJYQQDSE9oA3QOiwAtIUN0d74bVjL+Rd0bO6QhBDihKuvp7KpdOrUienTp9fav2PHDlq0aIHFYmH16tVs376dNm3aAFBWVkabNm3Yvn17k8Wlta4EvgG+UUrZgAlNdjPhERPozYNj3PWe8kqr+HZVOtcNTGjQ8NeXV77MprxN/Hz+z3gZvTz7jUGBmFu2wBRSu/fy8TYxVLlcGJWi0O5gf5WD9r41h//aQry58OGenvmhu9bnEtUmAItVPmIJIURd5Ou6BjiwFMvOwBB01kpK8iuaOSIhhDgznHXWWVRWVvLuu+969q1du5Zp06YxZswYAM455xz2799PWloaaWlp+Pj4NEnyqZQaV9d+rXWR1vrj+tqIxvfNynRe+HULqdmlDWr/zKBn+N+I/3mSzwMFiHy6daPlO+9g8PZGV1VR9NtvNc6zGNwflR7dvo/zVm2jyOGsde0DyWdpYSWz3l7H0h92HPPrEkKI0518PdcAB4b6uOyhaMdqdmzIJWlgzBHOEkIIcbyUUsyYMYO7776b559/HqvVSnx8PC6Xi7feeutEh/MfpdReoL7utmeAn05QPGe06wclMKxDGG3C3XNBHU4XJuPhv1f3t/h7ihN9uulTUrJSeHrg0zWLE335FZlPP415+nS8O3eqcf4/WkUxOtSGzXT4QoS+AV6Mv6srIbHu+7icLgz1xCSEEGciSUAboEWQN35eJhxl8eT5rmD+pnRJQIUQ4gSJjo7mq6++8mxXVlYyYMAA4uPj62xfUlLSVKFkAv89QpttTXVzUZNSijbh7kRv7pYsnv55Ex9e3YsWwT5HPNfutONwOTAZan4MCrr0EizxcZ7k8+DqtpFeZsaGBQKwuKCE13Zl8mbHOILNNa8R3TYIAJdL8/Oba4loFUDvcQnH9VqFEOJ0IgloA5iMBvq1DuGv7YmsjYPAbStxOXvJt5pCCNEMvLy8WLFixQm/r9Z66Am/qWgQm9VEVICVYF/LkRsDV3e+Gpd2YVAGCisLySjNoENwB5TRiN+gQQBUbt/O3vsfIObF/+BVPb/4gP2VdrKq7JjrmXuqXRq/ECt+gV6HbSOEEGciyaAaaFDbUMqr/Mj2CcVUvIKsXcXNHZIQQgghgB5xwUy7rg++XibsThe/rD9yxXqDcn8Een7Z81z363UUV9V8rrvKK1AGAwbf2hV3J0YEMbtne/xNRpxaMzunsFYbo8nAsMs60HFgNADpW/LJSK3dTgghzjSSgDbQwDahADhK2+BwbWDdhuxmjkgIIYQQh/p82W5u/mQlKXsKGtT+3p738uygZz3zQw/w7tKZ+G+mY46KQmtN8dy5nsJFAMbq3s8vMvK4ct1OlhQcfui31pol36Uy/4staJc+bDshhDgTSALaQAmhvsQEemMq6cjusBKWbpJpPkIIIcTJ5rI+cXx4dS+SWwQC1Ega6xLqHcrg2MEALN63mIcXPEy5oxzAM/+zdOEi0m+5laKffq51/uSoYD7sHE/fwOpiSHUkmEopzr2jK2ff1AVlUDidLqrKHcf8GoUQ4lQmCWgDKaUY2CaUqorWrG9hxJ6+mooSe3OHJYQQ4gRTSq1USt2mlApq7lhEbUaDYliHcAC2Z5Vw/luLSMtp2FItOwp3sC1/W62k1XdAf2JeexXbOWMB0C7X3/dTirOrixPtqahiwNJN/JlXe5qOl48ZW6g3AEu+28GXzyynUpJQIcQZSBLQozCwbSh2h4kyHYuxcgW7N+Y2d0hCCCFOvIuBaGC5UuoLpdRopeqpRiOaTUFZFSUVDkzGhv3nuSzxMj4/53N8zD7YXXY25GwA3F9C20aNQhkMOAsL2TnpAornzq11vgJaeltoYa2/GFKrrqG07x2Bl7fUghRCnHkkAT0KA9qEohQ4S9pSbkxl0dbM5g5JCCFOe/v372fy5Mm0bt2aHj16MHbsWLZu3QrA2WefTXp6OnPmzKF79+4kJyczcOBAtm/f3mTxaK23a63/BbQDPgM+AHYppZ5QSgU32Y3FUesZH8yvdw8mNsi9NMu8LVlHHJJ7YF3QqeunctnMy9hZuLPGcVdFJQYfH4yBgbXOjbVa+Dq5Da183JVvp6Rns7eiqla7qDaB9D63FQCF2WX88fEmGZIrhDhjSAJ6FIJ9LXSODsBc1pktsU62b1l/xAeZEEKIY6e1ZuLEiQwdOpTU1FRWrlzJs88+S2ZmJuXl5eTm5hIbG8stt9zCp59+SkpKCpdeeilPPfVUk8allEoCXgL+A3wDXAgUAX806Y3FUTMY3L2fC7Zlc/WHy/lhzb4GnXdJh0t4rN9jJATUXMPTHBFO3CfT8OnWDYDi33/HkZ9f6/z9lXae25HBx/vqHy2VkVpI2rocKspkWo8Q4swgCehRGtg2lLLyKLZFWDDnriJ3b5MteC6EEGe8uXPnYjabufnmmz37unbtyqBBg5g3bx5Dhw4F3EMki4qKACgsLCQ6OrrJYlJKrQReBpYDSVrrO7XWS7XWLwE7muzG4rgMbBPK65d0Y1yS++/Gkb5A9rP4MbHtRAB2F+3mpt9uYn+pe3mXAyOuHXl57H3gQXJef73W+ZFeZub0as998REAZFRWUXXQ3NEDOvSN4vIn+2ELcc8P3b0xV77cFkKc1mTywVEa1CaUt+al4ihvjbKnsHVDLqGx/kc+UQghTnFP/LiBjfuKGvWaHaNtPHZup8MeX79+PT169Kjz2KxZs5gwYQIAU6ZMYezYsXh7e2Oz2ViyZEmjxnmIC7XWNRJNpVSC1nqn1vr8pryxOHZKKc7t6k4+C8vtXDt1OfeObMeA6mXW6pNeks6uol04tbPGflNwMHHTpmGJawmAq6wM5e3tSVDjvN1DcR0uzaVrdhBjtfBJUqta17dUzwVN35LPj6+tYcTVibTvG3XsL1YIIU5i0gN6lHrEB2E1G6CkPXm++/lr257mDkkIIc5ICxcuZODAgQC8/PLLzJw5k/T0dK655hruvffeprz19AbuEyeponI7FXYnFlPDPgb1j+7PjxN/JMYvBoD56fNxaXdvpnfnThj9/dFOJ3tuu42Mf/1frfNNBsX9CZFcH1t/shvTLpBR13eibS93r6nD7qy3vRBCnIqkB/QoeZmM9E4IYeXuTqxN+A6ftBSqKvphscpbKYQ4vdXXU9lUOnXqxPTptXO7HTt20KJFCywWC9nZ2axZs4Y+ffoAcPHFFzNmzJhGj0Up1QHoBAQopQ7u6bQB1ka6xwfAOCBLa925el8w8CUQD6QBF2mt86sr774KjAXKgKu11quqz7kKOJAJPaW1/qh6fw9gKuANzATu0mfgeM8WwT78ePtAz/zQ3zdm0is+mAAf82HPMRvcx5bvX85tc27jyf5PeoboAqAUvv36Ywqpuw7VOdVLtQB8ti+X5UWlPNs2Fqvx7yRYKUXbnu7ks6rCwfTnVpA4IJpuI1se60sVQoiTjvSAHoNBbUIprbCR6RuAtWQ1e7cWNHdIQghxWjrrrLOorKzk3Xff9exbu3Yt06ZN8ySZQUFBFBYWeirj/vbbbyQmJjZFOO1xJ4eBwLkH/XQHbmike0wFDs2eHwbmaK3bAnOqtwHOBtpW/9wIvAWehPUxoA/QG3jsoDVL36qO9cB5jZ+pnyIOJJ95pVXc8flq/jN7c4PO6xnRk5eHvsy5rc8FwOly91Iqg4HQG28gcNIkAEr+WkjBtzPqnM+ZVWVnX4Udi+Hwy8MogyKqTSBhLWWajxDi9CLddsdgYFv3EBpnaVu0cz1LV2WQkHTkOSRCCCGOjlKKGTNmcPfdd/P8889jtVqJj4/H5XLx1ltvAWAymXjvvfeYNGkSBoOBoKAgPvjgg0aPRWv9PfC9Uqqf1npxo9/AfY/5Sqn4Q3afBwyt/v0jYB7wUPX+j6t7MJcopQKVUlHVbX/TWucBKKV+A8YopeYBNq31kur9HwMTgFlN8VpOFcG+Fj6/sS8Job4AVDqceJmMh22vlGJE3AgASu2lXP3L1VzZ8UpPQnpAwfTpVO3YQcC4c8BSc13Qu+MjuUNrDEpRaHfwTWY+V8eEYjhoOVmzxciwyzt4ttf/mY4yKDoOjPbMMRVCiFORJKDHoEOkP6F+FspLO7IrbDklqduZUNoBq+/hh+4IIYQ4NtHR0Xz11Vee7crKSgYMGEB8fLxn38SJE5k4cWIdZzcepdSDWusXgEuVUpccelxrfWcT3TpCa51R/ft+IKL69xjg4EIE6dX76tufXsf+WpRSN+LuVaVly9N/+Gdyi0AAnC7NDR+vpGWwN09N6HLE8+xOO2HeYUT6RtY6FvPSizjz81EWC7qqisqdaVjbt/McN1YnkV/tz+fx1L30C/Qj0c+7zvtorUlbn4tS7gRUCCFOZTIE9xgopRjYJhRneVvWtTRgLFnPliX7mzssIYQ4I3h5ebFixYrmuPWm6j9XACvr+Gly1b2dTT5nU2v9rta6p9a6Z1hYWFPf7qSSHBtAx6iABrUNtAbyvxH/o1dkLwB+TP2RDTkbAFBGI6ZQ9+ionHffI+2CC6hKT691jetjQ5nds70n+dxaWlGrjVKKc25JYuS1HVFKUV5cxa4N9a8vKoQQJytJQI/RwLZhVNgtlKooorL+ZN6qDFm3SwghTmNa6x+r//zowA8wDZhxoMhPE8msHlpL9Z9Z1fv3Ai0Oahdbva++/bF17BfVjAbFvaPac2kfd6/vwu05fLl8d4Oe73annbfXvM2UdVNqHQu67FIiHn0ES6z77dfOv6vbKqXoVJ18biwpZ9jyzUzdm1PrGsqgPAUPV/66i1lvraO0sPLoX6QQQjQzSUCP0aDqeaCukrbk+GWwuXwn+3c07vp4QghxMjhdvlxrrNehlPpMKWVTSvkC64GNSqkHGuXidfsBuKr696uA7w/af6Vy6wsUVg/V/RUYpZQKqi4+NAr4tfpYkVKqb3UF3SsPupaow5fL9zBlwU4qHa4jtjUbzXx2zmc83v9xAAorCymoKADAFBRE0IUXAlC1ezc7xp5D2erVta7RzsfKI62imRgeCIDdVfff2b7ntWLcHV3xDXCvM1qUU36Ur0wIIZqPJKDHKMJmpV2EH36OnvzZxUDLPX+xdkHtoTVCCHEqs1qt5ObmnvJJqNaa3NxcrNZGWS2lo9a6iL8L+CQAVzTGhZVSnwOLgfZKqXSl1HXAc8BIpdQ2YET1NriXUdkBbAfeA24FqC4+9G9gefXPkwcKElW3mVJ9TipneAGiI3n54mQ+vaEPVrORKoeLzfvr/6I5wCuAAC/38N3HFz3OJT9fQpWzqkYbXVWFMTQUc2TteaMmg+LmluEEmE24tObytTt4KnVf7XZmI7Ht3YWNM1IL+eTRJaSuyqrVTgghTkZShOg4DGwTxrQlJVSEmwjN/YtZ6ZMYUmqXYkRCiNNGbGws6enpZGdnN3cox81qtRIbG3vkhkdmVkqZcSegb2it7UqpRsnQtda1ihtVG15HWw3cdpjrfADUKgWstV4BdD6eGM8kRoMi3N/9pcW781N5dc42fr93CHEhvkc898akG9lesB2L0V0B16VdGJQBrzZtiP/0E0+77NffwH/kCKwdOtQ436E17X2txHt71Xuf0Fg/eoyJo0VH9/qjLqcLg1H6F4QQJy9JQI/DoLahfLBwJ4GViSzpsAb/srVsXdaGpGGN8gFHCCGandlsJiEhobnDONm8A6QBa4D5Sqk4QOZgnOYu7xtHsK+XJ/m0O12Y60n0EkMSSQxxr0e7fP9y/rP8P7wy7BWi/f6uYuvIzSX/qy8BaiWgFoOBJ9v+XaT4t5xC/swv5l+tovE+6L5mLyN9xrcCwOXSfPfyauI6h9BjTPzxvWAhhGgi8hXZcejTKhiLyUCk8WxWtjXQcfsfLFi+95QfqiaEEOLwtNavaa1jtNZjtdsuYFhzxyWaVqCPxVOcaE9eGcNenMei7bWLBdXF7rRjNVkJ9Aqssd8UEkKrH34g9OabAKjYsoWqPXvquAKsLS5nUX4JxnqWAHU6XARF+OAX1ChDzYUQoklID+hx8LGYGN0pknlbQMeZyLduZbt9P5k7i4hs1bAS7kIIIU4tSikvYBIQT83n6JPNEpA44bSGhFBfWgT7NKh9/5j+9Ivuh1IKh8vByytf5oqOVxDpG4kpKKj6mpr9jz6Gs6SEVj/+gDLU7CO4LyGSW1uGYzEYqHS5+N/uLG6MDcPXZPS0MVuMDLsi0bO9bUUm+7YWMOCCNpgsRoQQ4mQgPaDH6aKesRRXuIh2jeKPrgaiMxax9i+pai+EEKex74HzAAdQetCPOEO0DPFh2nV9PAnof37dzKLU+ntD3YWHYWv+Vr7e+jWrs1bXOh7z8n+JfuZplMGAdrmwZ9YsLHRg6O2C/BJe2Lmf5UX1/7UryCwje08xhvq6TYUQ4gSTHtDjNKB1KDGB3lA6kH2hM0mYP49fIscypNyBl7e8vUIIcRqK1VqPae4gxMmhqMLOzHX7USj6tw49YvuOIR2Zef5MQqwhgHt+aLwtnjCfMMzR0Zij3XNE8z/7nOyXXyZ++td4HTIPe0SIjQV9OtDGxz3Udl5eEZ38vAmz1CyC2OucBLqPjsNgNGCvcrL0+x10Hx2Hj83SGC9dCCGOifSAHieDQXFBj1i2ZRiw2MNY1bqECvsWti7d39yhCSGEaBqLlFJdmjsIcXKwWc3MvHMQdw5vC8CGfYWs3JVX7zmh3qEopbA77Tw8/2EeW/RYrTZ+Q4cQdOUVWOLjAdB2e43jB5LPMqeLWzfu4p9b6x59ZTS5P+plbC9g3Z/pFGRKZ70Qonk1eQKqlDIqpVYrpX6q49hgpdQqpZRDKXXBIcdaKqVmK6U2KaU2KqXimzrWY3VBD3fV21h1EYs6Gui0bR4Ll+6TYkRCCHF6GgisVEptUUqtVUqtU0qtbe6gRPPxthixVCd6L83eyh2frabS4TzieWajmSmjp/Bw74cBKLWXklXmHnZriY0l/K673PNG8/NJPXssRTNn1rqGj9HAd93a8mib6p5Tu4PUsopa7Vp2DOHKp/sT3dY953Trsv3k7i05thcshBDH4UT0gN4FbDrMsd3A1cBndRz7GPiP1joR6A2ctCsstwj2YUDrUPZlxlNhUrhca1iuc8lKK27u0IQQQjS+s4G2wCjgXGBc9Z9C8Nol3ZhyVS+8TEZcLs269MJ62ycEJNDS5q6u+8bqN5j4/UQKKw85x+HAq317LK1a1XmNdr5WWljdw2qf25HByBVbybc7arXzDXCvKeq0u1g8I5XlP6cd5asTQojj16QJqFIqFjgHmFLXca11mtZ6LeA65LyOgElr/Vt1uxKtdVlTxnq8LuwZS3aRkzBHH+Z1UYRlL2P1H7ubOywhhBCNrHrZlRbAWdW/lyFTWkQ1Py8THaNtAMxYvZdz3/iL5Wn1D8k94JIOl3BX97sI8HJX0i+pcvdQmsLCaPHmG561QrNefoWsV1+tc6TVffGR/Ld9C4LM7joUm0vLa7Uxmg1c9K9eDJ7czn2f/EpSV2XJyC0hxAnR1A/MV4AHOSTBbIB2QIFS6tvq4bv/UUqd1PXDR3eKxGY14esYw9ZYRaetvzN7Tx4FmSd13iyEEOIoKaUeAx4C/lG9ywx80nwRiZPV2C5R/HtCZ3rGuYe9ZhdX1tu+pa0lF7W/CIAdBTsYOX0kf+z+o0YbrTWO3BycObmeyroHC/cyMyHCfb+NJeWctWwLU/fWrtDr7WfxFCNaN28Pv32wkdKCqqN/kUIIcZSaLAFVSo0DsrTWK4/hdBMwCLgf6AW0wj1U99B73KiUWqGUWpGdnX084R43q9nIhG4xbN3jjXL6sLFFHnnWXayYldascQkhhGh0E4HxVC+9orXeB/g3a0TipORtMXJF3ziUUhSW2znntQU8/8vmBp1r87IxIm4ESWFJANhd7iJESimin3qKyMfdhYuqdu1i7733Yc+qPVOprY+VJ9rEMCE8EICMyirKnLX7BPqMb8WE+7rhF+QeorttRSZV5bWH8AohRGNoyh7QAcB4pVQa8AVwllKqod8QpwMpWusdWmsH8B3Q/dBGWut3tdY9tdY9w8LCGinsY3dRzxZUOTVx6gLmdzHQa+1s/tieQ0GW9IIKIcRppEq7xypqAKWUbzPHI04BPhYj1wxI4OzOkQBU2J3Y60gGDwj1DuXfA/5NqLd7aZd7593Lvxf/23NcGd0Dwyo2baJ02bI6r2E2KG5oEUZg9XDcuzbt5txVW2sNtTUYDUQmuIf9FuWU89v7G0j5XaYRCSGaRpMloFrrf2itY7XW8cBk4A+t9eUNPH05EKiUOpBVngVsbIIwG1XnmAA6RtkozutMkQ/4lK5ke1geK3/Z1dyhCSGEaDxfKaXewf2cugH4HXivmWMSJzmz0cAtQ1uTFBsIwBt/bGfca39RVnXknkany0m7oHbEB8R79rm0O3m1jRlDm99/wxweDkDWiy8eNiG9Jz6Su+IiUUqhtWZbae1qubZQbyY91JPkke7CSDnpxezbln80L1UIIep1wosmKKWeVEqNr/69l1IqHbgQeEcptQFAa+3EPfx2jlJqHaA4RR7uF/WMJS3bRZCrEz/3NjJg5c/M3ZxNYXbtIgBCCCFOPVrrF4HpwDdAe+BRrfXrzRuVONV0axnIWYnh+FjcvZNVjsP3hhoNRu7odgdXdLwCgCUZS5j802T2lewDwGB1rwnqyM+naNYvlK9aXed1+gX6Mb56OO7vuUUMWraZublFtdpFxNuwWN1xrZy1i1/eXY+j6sjLygghREOckARUaz1Paz2u+vdHtdY/VP++vLqX1FdrHaK17nTQOb9prZO01l201ldrrU+JmfETusVgMRqIURexJRai9y9kU1QRq35Ja+7QhBBCNJLqZ9QDWuv7D1RsF+JoDE+M4KEx7qq2e/LKGPj8H8zb0rAV5+xOO94mb0K8Q4C/e0NNQUG0+vkngq+9BoDSpcvIeuklXGW1pwL1DfTjX62iGBjknr68ubSc4jrWLh1+VSLn3pGMyWJEa82aOXuoKLUf/QsWQohqUja+kQX6WBjVKYKNu3wJMoXwXX8jfVNmMm9jNkU50gsqhBCnKqVUsVKq6HA/zR2fOLUlxQbSLsKdDFbYnfUuiTIodhAfnf0RXkYvnC4nV8y6gk83fQq4e0MNFnd127KVKyia9QsYan/c8zcZuSMuArNB4dKaG9anccXaHbXamSxGwlq648reXcxf07exI6V5Cz8KIU5tkoA2gYt7taCw3EGvgBtYmwBt0uazPqaUVb/KXFAhhDhVaa39tdY24FXgYSAGiMW9JMsrzRiaOMW1CPZhylU9iQ70BuChb9Zy47SVDVqXs8xRRoxfjKdYkUu7PD2iYbfeSsJ332GwWtFOJ3vvf6DO+aEGpXgtMY6HW0UBYHdpfskurHX/8Dgbk/+vNx36ugsp7Vybw/r5e3HVU0xJCCEOJQloExjQOpQWwd5sTWuBv9GPH/pB9/W/8Of6TIrzak/4F0IIcUoZr7X+n9a6WGtdpLV+CzivuYMSpwetNd1aBNIzLsizzmdxxeGHvPpb/Hlh8AuMjh8NwIxtM5j802TyK9yFg4x+7iLN9oz9lKek4DjMsnXdbD70DfRzXyMrn6vX72RJYWmtdiExfhiM7o+PqSuzWDcvHepYj1QIIQ5HEtAmYDAobh7SmnXpxQwKvYEVbRVdN/9BSmyl9IIKIcSpr1QpdZlSyqiUMiilLqN6TVAhjpdSiqsHJHDTkNYApOwpoN+zf7BkR26Dzg/0CiTeFk+gVyAAhZWFAFhiY2g982dsZ58NQME335J+zz24Smv/1Z0UEcRHXRLoG+BOXr/Pyuev/OJa7YZfnciEe7phMCicdhc//2+tVMwVQhyRJKBN5IIesUTYvEhNa4eP0Zsf+2i6bvqN+Wv3U5IvvaBCCHEKuxS4CMis/rmwep8QjS7Ix8zZnSPpHONep3NfQTmVdRQLOmB43HBeGPICSinK7GWc9915vLPmHQCUxYKqng/qKi3FWVCA8vFxb1f9XevRqBSjQwM8y7W8sSuLN3bVLpCklMLb3z3ftCi3nPyMUpx297Bdp9PVoCHEQogzjySgTcTLZOSGQa1YkVbIoLBrWJyo6L1uNitbOFgxS3pBhRDiVKW1TtNan6e1DtVah2mtJ2it05o7LnF6igvx5T8XdsXPy4TWmjs+X81l7y1t8PkXtb+IftH9ACiqKiK9OB2A4CuvoOUHH6CUwlVWRuroMeR99lmt85VS/Ni9LS8ntgAg3+7g2nU72VRSs7BiUKQvlz7eh9jEIADW/L6Hr59dQVXFkdc5FUKcWSQBbUKX9mlJsK+FfXu6YDFamNXDQeK2P/hrdQa5e0uaOzwhhBBCnGLuGt6WGwa3AsDl0szesB+nq+6eRh+zD7cm30pSWBIAH2/4mHO/O5esMndv5oE5pq7KSvwGDcLawb0sjLO4GHvm3z2eVqOBKC93T+eW0gqWF/09bLf8oJ5Og9HguaYt1Jvwg9YTzUkvwXWYOIUQZxZJQJuQj8XEdQMTWLS9kMHhV7Cgi5HBK2exvB0snL5NhqYIIYQQosGUUgxuF8boTu4qtH9uzebGaSuZvWF/g86/sN2FPNL3EcJ9wgH4ZecvpBenYwoKIurJJ/Dp3h2AvA8/JHX0aBw5ObWu0TfQj1X9OpHo567Y+1TqPs5ZtQ3HIcllmx7hDL20PQAVpXa+/c9KFk3ffmwvXAhxWpEEtIld0S8Of6uJ/IxeKKOB35Mrabf1D5ZmFrFrfcMKCgghhDh5KKUSGrJPiKY2pF0Y713Zk1HVCensDfv5bvXew/Y0RvhGcH7b8wEod5Tz5JIneXftu7XaBUyYQPgD92MKdS/tUvjjj1Tu+HuNULPh76q3yTYfhgb7Y6reNz+vmIpDlmWxeJsYflUiHQdGA1CcV8Hq2btleK4QZyhJQJuYzWrmqn7xzNtSwJCIycztZuTshT+wPNHFX9O345S1s4QQ4lTzTR37pp/wKMQZz2BQjOwYgbE6+ft6ZTpT/trhWRWlvpFW3iZvZoyfwe3dbgdgV9Eu7vrjLvYU78HSsiXBl10GgKuigsynnyH3/ffrvM6FkcE8mOBeP3RvRRWT16Ty2u7MWnG27h5OcLS7qu7ONTks+S6VyjJ3AqplaK4QZxRJQE+AawcmYDUZKc8ehNOg+LWHg+Hzv2GRxcH6eXubOzwhhBANoJTqoJSaBAQopc4/6OdqwNrM4QnBO5f34IOre6GUosLu5OxXF/DT2n2HbR/hG+EZjruzcCfrc9bjbXIPrS2uKkZrjcFqpdXMnwm76y4AqnbvZtc111CZmlrretFeZr5Kbs2V0e6e05SiMh7csoecqpo9nUnDYrnsyb74B7v/t5nz8SbmfrL5+N8AIcQpQRLQEyDY18KlfVry+8ZChkdfzOweRnqun8uO6HwWzdpJRcnhF5gWQghx0mgPjAMCgXMP+ukO3NB8YQnhZjAowv3dSV1+WRWRAVZCfL0AKCy3k55fdthzh7YYyq8X/Eqotzt5fHTho1zz6zVorTEFB2MOdyeqVXv2YN+7D6PNBoB9/36cJe6iREopBgb5E+llBmB9STkzswvxqu6hza6y46zulbWFuhNdrTV+gV74Blg8sezZlIfTISPEhDhdSQJ6gtw4uBVGpdD5IzCbvPhshIlLfvyE+S1NLPtpZ3OHJ4QQ4gi01t9rra8Bxmmtrzno506t9aLmjk+Ig0UFeDP1mt70ax0CwMeL0hjyn3lkFh1+LXKTweT5fXjccMYmjPVUtf1006dklGTgN2AArX/9BVNYGACZzzzLzvPOQ7tqJ4yXR4ewol9H/E1GAG7asIsLU2r2nCql6DuhNb3PdVf2zd1bwg+vprB+vowQE+J0ZTpyE9EYImxWLuwZy9cr0rlh3A187HyNcxavpZKtLF5WRefBMZ65EUIIIU5q25VS/wTiOeg5qrW+ttkiEuIIzu8RS5i/FxE2dw/p23+mEurnxQU9YutsP67VOM/ve4r28J/l/wHgssTL0GjQ7uQx5PrrsKenowzuPo3MZ5/Db9gwfPv2AdxLuBxwTUyopwfUpTVPpWYwKTKITtUVdQGCo3wZd3tXIhLcPay7NuSyfl46Qy/vgG+AV2O9HUKIZnTYBFQp9VoDzi/SWv9fI8ZzWrt5SGu+WL6HgszehHuH8/HZ+dzw3Se8dcW/6Th9G+Pu6Or5plEIIcRJ63tgAfA74GzmWIRokJhAbyb3bgm4h73O2ZRJXIivJwHdV1BOdKB3nee2sLVg1vmzCPAKAGDu7rm8suoV3hrxFrFJSXgnudcZdeTnU/TLL5hjYvDt2wftcODIzcUcEQHAueGBnmumllUydV8OnfysdPLzptzpotTpItRiIq5ziKddZamdkoJKrL7uYb2ZO4vwtpmxhdQdqxDi5FdfD+h5wKNHOP9hQBLQBmoR7MPFvVrw5bI9PDzpLl4t/xd7g/YRtXshSyt60WV9LvFdQps7TCGEEPXz0Vo/1NxBCHGslFJ8dVM/KuzuYbN78soY/J+5PDOxC5dUJ6mHivKL8vzua/GldWBrIn3dy78sSF+A2WimT2Qf2sz5He10fy9TMn8+6XfcSdwn0/Dp1q3G9dr6WlnXv5Nn+ZbvsvJ5cEs6f/RqT1vfv2t6tesdSdteEZ4v6P/8fAsAF/2zF+CuoKsM8uW9EKeS+hLQl7XWH9V3slIqqJHjOe3dM6IdP6TsY+mGMBKDE/l85HaemPoVj9/Vl3ZfbSO2fRAmi7G5wxRCCHF4PymlxmqtZzZ3IEIcK6UU3tWfN2xWMw+P6cDgdu55nSt35fN9yl7uGdGOIF9LrXP7RvWlb1Rfz/aUdVNwuBz0PacvmEwUOUsJwAtrhw6E3nIL3p07A1DwzbdUbNlMxAMPoMxmfE1/f97pE+DHffERtPFxD7N9e3cWWVUOHmkdVWN02JibOlNe5C7e6HS4+PzJpXQfHUfHAdGN/A4JIZpKfUWIFh7pZK31K40XypkhzN+LW4e15reNWZwdeRc53nYWJJbQf8lPLPNysHxmWnOHKIQQon534U5CK5RSRUqpYqVUUXMHJcSxCvAxc9OQ1sRUD8HdlFHET2szsJqNnu19BeWHPf/dUe/y3KDnAKhyVjH227H8L+V/mKOjCbv9NpTZPXy2atcuKtat92yXLl2GPdO9ZmgrHy/ujo/0JJt7KqrYXlbh2Z6VXcCeiipsId6e+aFVFQ4iEwLwDXQnrWVFVSz6djvFeYcvtCSEaH71JaDvKqW2KaX+rZTqeMIiOgNcOyCBmEBvvl7kYljsWXw/yMKoJT+zrm0FS//YTU56SXOHKIQQ4jC01v5aa4PW2qq1tlVv25o7LiEay+V941j08FmeHtInftzA5e8vRVcXEHK6dI32XkYvWthaAOBwObi287WeHtKssizunXcv2/O3E37vPcR9Mg0A7XCw9+67yXzuOc91DiznAvB0u1imdkkAoNzp4taNu3lzd5bn+P5KO95+FkZc05G4Tu45o/t3FLLm9z3YK9xDgItyyynIPPzSM0KI5nHYBFRr3Q33emcOYLpSao1S6mGlVPyJCu50ZTUbeejsDmzMKCLRcg12E3w7UDH5+0+Zn+zLvE834zrkH3chhBAnB+V2uVLqkertFkqp3s0dlxCN6UDvJ8Dzk5J4dmIXlFJorRn53z95449tdZ7nY/bhui7X0T2iOwA7C3eyKnMVRoP7eqlFO/l91+84lCbu008Ju/12ABy5uWzr35+Cb771XMtQ3fvpbTQwr3d7bmnhHiK8o6yS5EUb+GZ/Xo17t0oO45r/DPSsKrB2Tjpf/HsZVRUOwN1jeiCJFkI0n3rXAdVab9FaP6G17ghcCQQAc5RSRxyeK+p3blIU3VoG8uH8HCa1uYy5XaDVnqW4SjewqrCU9X/K+ldCCHGS+h/QD7i0ersEeLP5whGiacWF+NKnlbuXsdzuZGj7cNpG+ANQVGHnho9XsGZPQZ3n9onqw5wL55AQ4O7N/D71ex5e8DB2lx2vVglkhVkoqSoBrQm+6iq8k7u677N2LbuuuprKne610uO8vYjzdg+19TcZ+GerKPoF+gHwW04hI5ZvYVf539VyAZJHtmD0DZ2wWN0lT2a/v4EfXk1p3DdHCHHU6k1AD1BKGYBwIALwBbLqP0MciVKK/zunI1nFlRgLR+Pn5c/Uc32554sP+LOXFwu/T5U5DEIIcXLqo7W+DagA0FrnA7UrtQhxGvKxmHj03I6M7uSugLs7t4yN+4pwVI/cSs0u4f2/dlJYZvecc6D3E+Cu7nfx6dhP8TH7APD00qe5fOblmEJDCb/vXpwt3dV2nYVFOAsKMIW4E9+S+fPJefttXFVVhFnM3BkXQbTV/b+dSSmCzUYivdzJ5xcZuTy0ZQ9eAV4kdA3z3Lt1t3Da9nQvCaO1ZvrzK0j5fXeTvE9CiMOrNwFVSg1SSv0PSAfux73uWXut9cQTEdzprkdcEOOSovho0V6uan836yMq2Ridy4g537ColYX5X2yVoSJCCHHysSuljIAGUEqFAa7mDUmI5tE5JoC/HhpG95aBACzYms1TP2/E7nL/L7FxXxEr0vI8U4tMBhPtg9t7zr+5683c0+MewJ0UTvphEs8vex6/QQNp9f13KH93L2fZsmXkf/Glp4BR0ezZFP/xBwDDQmx8ldwGL4P7Y+3uiirWl5Rjrl6eZUp6Np/uyyWxfxQdB7qr5TrtLgLDffD2c1/PXunkh1dXk74lv8neKyGE22ETUKXUHuBZYCOQrLUerbX+UGtdeMKiOwM8NKYDLg2bt7WlW3g3pp1tZczimaQHZLIqNY8dKdnNHaIQQoiaXgNmAOFKqaeBv4BnmjckIZqPUspTrfbqAQksfng4oX7u4bLvLdjBTdNWetquTS9gT97fhYGSw5MZ0mIIAA7t4IJ2F9Ar0r3GZ5m9jKFfDuX77d8Tfv/9tJ75s+c+eR9OJe+jjz3XKZo5k4pNmwB4MCGKn7q39Rz7NaeQP/L+LlT95u4slpSWMeKajrTv6+5xLcmvoKyoCl2dKOdllPLrlPVSxEiIJlBfD+hArfVArfUbWmsZcttEWgT7cO2ABL5dvZfJ8Q9SbtJ8MsaLuz+fwpz+fvz5xVYqyx3NHaYQQgg8U1J2Ag/i/pI2A5igtf66WQMT4iQSGWD1/P74uZ2YclVPDNW9kY98t567v0zxHF+5K4/ckkoAzAYz13W5jrNangVAmaOMs1qeRZwtDoDtlemc/c3ZpGSlEPfxR0Q9/zwA2ukk49HHyP/yS891C7/9lqr0dAC+Tm7Dm4nua1S6XLyxK5P5ecUAuLTmye372OWjmPxIH1okBgNQnFfBvq0FGM3Vvaobcpk7bRMVpX8PLRZCHJv6EtBrjnSyUurxxgvlzHXrsNaE+FqYMreQazpfy/x2dirYQeKa31kWCIu/3d7cIQohhAC01i7gTa31Zq31m9Vf0m5q7riEOFkF+Jjp1jLIs/3SRcn83zmJALhcmmunruD5XzZ7js/dkkV+aRUAod6hPN7/cZLDk93ttYu2QW2J8IlAmc3Mq1jD+O/Gk1GeSevZvxJw4/VorbHv30/Gv/6Pkjlz3OeVlVH60UfY9+7Fy2Bg3YDO3Bnnngu6p6KKD/dms6XUXXcju8rOg1v2UBHvy9XPD8A/2J1MF+VWsHtjHmarez7r+vl7mfvJZk+PqRCi4epLQK9XSt1bz899wOQTFejpzGY188+xiazaXYBf+dnE+cfx/gQfrv75C9a0rWT50gx2b8ht7jCFEEK4zVFKTVIHxgIKIRqsTbhfjYT0g6t7ce1Ad4XcrOIKrvlwOV+v3ANAhd3J58t2k1nkTg47BHfgtbNeI8rPPWzW3+JPgi2BMJ8wTMHBfJz9E6O+GYUrLIjWv/+Oa8wQ7C47FRs3kvXCC1Tu2AGAa/cuyt58A3tmJnHeXmwZ1IXzwgMBSC2r5NvMfEocTpRSrCoq5cYNaQT0DuPKZ/pjNLo/OpcVVlKQWYaq7tmd//kW/pj293dRLqdMCxficOpLQN8D/Ov58atuIxrB+d1jGNgmlP/OTuW2Lv8kw7uSn/u4uHb6R8zrb+OPj2XYhxBCnCRuAr4GKpVSRUqpYqVU0ZFOEkLUZDAoesQF0SHSBkCwj4VvbunPuCR3oaD1ewv5x7frWJvuLj+yO7eMl2ZvYV9BOQD9ovvx6lmvYja4CwklBicyJn4MXkYvLLExvLj1bcbPGI9Pz560+fNPdrT2ZXfRbio2bSL33ffQVe6e1qqFC8l98EEc+fn0DfRj88DOdLO5q/RmVTpYVVSKj8GAUorPMnIZsXwLbca0ZOJ93SlyOKlyubB4m7B4mzyv7Zv/rKqRkOZllOKwO5v4HRXi1GA63AGt9RMnMpAznVKKpyd2ZvQr85mx2MJ5rc/jB/0jz09ZjnX/albZOhD9xVZGXdepuUMVQogzVvUc0DFaa1kPW4hGZjIa6BH3d+9oj7gg5t0/lDB/d0GjjRlF/G9eKuclxwDw59ZsPl6UxrPndyHcZqVv1EAGxw72nH9Owjn0iewDgDkinGd/ugtvszcfnP0BfkOG8OWu74lJjyEpO5fydesw+rkr7ha88w6FP/9MqxkzGBMWwHBnOaq0GCxBBJmMtLRaCDK5h+K+lLafzzNy2XReF4zVPaZaQ0LXUPwC3XFrl+ab51fQrnckQy51VwBeNy+dmHZBBEf7NvG7KsTJp0HrgIoTIy7El7tHtGP2xky6+16DzWrjvfN9ue+L91nYBVavzWL7SqkHJYQQzaV6DugbzR2HEGcCpRTxob74ern7S8Z0jmT946NpFepO2koqHOwtKMfm7e4BnbJgJ0lPzKa8yt3TGGFOpqVliGdJu38P+Df39rgXAIOPD++vf5+5e+YSeP5E2sz+lVv/vJOvtnyFJT4en169yKzKxaVdZP33v+yc4F6B8OywQF7Zu5XiX2cDMDLExoMJURirR+S/kpbJPZv30PPseDr0i+KNXZm8tSeL4Vd1JHFAFE6tKSuqYv4XW9mzKQ+AqnIHP76+xrMEjMvpoqpCClCK05ckoCeZ6wYmkBhl4/lZO7m964NsCalkeZsSrv/qA34bEsC8z7ZQWljZ3GEKIcSZTOaACtFMvC1GT0Xdc5Ki+OXuwVjN7t7I5BaBXNE3Dm+Le3vKgh3c+PFKz9ItCzeZ+GWl2XOtb8f9zL3d3Qmp3Wn3JKq2s88m8F8PMmr6KN5d+y5Bl1xC0D8e5L2177E9fzt5n0wj/9NPARgY5M/Zr/6HzOdfAOCF9i14w8uOI9+dTK4qKmNlcRmtuoURHmfjnJXbeGhvBte8MJD2fSOZlV3A6qxiSgsqcTrc80Zz95by3t3z2bk2B4CS/ErW/5lOWVFV072xQpxAkoCeZMxGA8+d34Xs4krWbo6nX1Q/Ph1hJnH7YsK2L2FZlNFddU1L1TUhhGgmMgdUiJPQgDahPDimg2f77hHtePfKHp7tLZnFrN6T79m+/fM1XPPBOgDMRjOjQv6PEJd7TVKtNY/0fZShLYbi060bxf0SeW31a2zK20Tc1Kk4n7mfMd+MYdHeRRj9/SnxMzJn9xysuhTve+4i89lnAfigSwJPzfiEolmzABgXFsBQZyXevka8fEzcs3kP31aUMPmR3sR1CmHS6u18W1FCn/EJhMb6sSi/hE2pefz5+VZKC9wdELs25PLFU8sozHavUVqUU86ejXkyx1ScMo6YgCql2iml5iil1ldvJyml/q/pQztzdW0RyNX9E/hk6W4mtXwQk8WL/11s496vPmBlqwpSduSzaWFGc4cphBBnJK21v9baoLW2aK1t1du25o5LCFFTdKA3PeKCPdvPTOzCp9f39Wyf3y2GS3q39Gy/MXc701e61w71MfvwwS8RfDLfXQAyISCBe9p8i83VA2UyYQwIoHNwEsHewUQ++giZE/tx99y72Vawjagnn2D3eT255KdL2Ja7hbJFi9mzYy3z0+dzTbg3HS8+n+zXXgdgdvc23DDtXUqXLsPu0ngrCCnKpvuIGAwBZs5P2c7CEMVVz/bHO8KbCau2sdBejl+QF1iN/JFbxOo1WfzwWgr2CncCunlJBt++uNIzjDdvXym7N+bKkjHipNGQHtD3gH8AdgCt9Vpk+ZUmd9+odsQEevPizL3c3/OfbAou4/dkO/d8+h6/DLEx/+ttFOWUN3eYQghxxlFKDa7rp7njEkIcnQndYpjUI9az/ctdg3n2/C6e7ZEdI+hevWSM1poXf01l/pYCAFr6t+TXecP5eYV7eG9yWDJDrW9SWBCF36BBWFq3hqoYDMqP1rNmsnVUO26bcxu55TlEPvJ/LOzmxfjvxmPJ34NrzhzWpC7kqy2f8VaYmU6XX0zGN1/icFbwTWwAZz/7OIYdGyhFYykrI3rPOsZc2pJso+bStTtIb+3NhHu7kWFwMXjpZlbrKgxGA/m4mJKezfwl6cx8ax1V2kWJw8mSH1P56pnlnteZti6HDQv2erYrSu3Yq6Q3VTSdhiSgPlrrZYfsa/DMaKWUUSm1Win1Ux3HBiulVimlHEqpCw455lRKpVT//NDQ+50ufL1MPDWhM9uySti9qz0j40by1SAIyU4hMeUPFrex8PvUjbLOlBBCnHgPHPTzCPAj8HhzBiSEOH4Wk4FAH4tn+96R7Ti/uztBVUqx6pGR3DWiLQBOl+aagQn0jHf3sGqXhQVbKtiZ5Z6n2caWxOJlw5i7wT1stlfYEMJzX2LDPi+CJk/GPy4JCkaQbwqj3eJFrO7gwzN/vYvTy4eoZ55hRlQ6gz7vR7JyYM7K5IesP3h+8UNM9XUR8cC9LF/2HZv2z+Mnczk9LpmAOX89la5K+uRn0uWXqYy9MIytZZX8Z9UmQrz3MeHWRJYUltFmwTp2B5uISLCxqrCUK9fuYMGq/ayevZtd5ZV8tT+PmV9s5qunl1PmdFFod7D4++3M/3Kr531JW5tD2rocz3Z5SZUkrOKoNCQBzVFKtQY0QHWieDTjP+8CNh3m2G7gauCzOo6Va62Tq3/GH8X9ThvDOoQzvms0b8zdzqQW9xDoHcz/Lvbnpu+msTm8kDXZJSyfmdbcYQohxBlFa33uQT8jgc5A/pHOE0Kc2qxmIzaru4iRyWjg3pHtGNIuDHB3HKQ8OorrByUA4GU28Oal3RnWIRwAs8GHFkGB+FrcCW4L7yTWbWlDapZ7NNvQyIspTX2QJfsdBJ4/kdiwEXjt+zcbTSG0+m4GGYFRLF3XkoyQWOI++4wZpPHv37+hZXAIAaNG8d+877nlx0v5P28w//Qjb26awvfrnuQPQzGh99zKorwf2LD3e17fvYmkOycR0HkP63M34L9iGb2XvcPo66P4Ky+fV39bQMv8xfQ4K4LvMvPp+/Nf5O3dgaO8iu+z8hm3cisLft9Fyu+7WZRfwnM7Mpjxv7XMemstO8oq+TOvmFlT1rHwm+2UOp2UOV2snJ3GtuWZnvcxfXMeeftKPdsVpXac0qFyRjnsOqAHuQ14F+iglNoL7AQub8jFlVKxwDnA08C9hx7XWqdVt5O/dYfx7/M6s2xnHo98l8q/zn+Ce+bfxoxBJh7++G2eu/0xgn9KI6ZdELHtg458MSGEEE0hHUhs7iAaSik1BngVMAJTtNbPNXNIQpw2DlTctZqNnJMU5dkfYbMy9Zrenu12EX5seGI0xuqKvlEBPrx4YVeSYgMB6BzWgZ4tDPhVL0HTJ3wMH+SupBATrbt3Y8DaAL6au4mMs8Pp+sTjRM2fR9qfw0gfmkynlSt4b+bH/LLYl1su60aL96fwZPqvbNkTwQ9DBmC+YBJ3bJzJ/rwwvoxJomznDm5b9jwlFUG8W5qAYcrLvNFpG+UpQbyw1YdWH7zDTx9eS84OG6Nn5dDrx29ZMeVeFu7cTeFP2zkvZTWb7r6cd1NLSf1tIw+tTyNz4jie31bF0r/WctfCDPKGjGRmGCxbu4Hzfs4gdGB39g8PZ2NGFm2n7Saudzz2UZHsrbTjPXUHbXtGYOgXRonTSfl3u4nvEopv5yCcQObcfcS0DSS0VQBGrUlbl0tIjC8BYT5ol6YgqwyfAC+8vE1ordEujcEodVdPJkdMQLXWO4ARSilfwKC1Lj6K678CPAj4H0NsVqXUCtzDfZ/TWn93aAOl1I3AjQAtW7Y89PBpIcDHzEsXdeWyKUv5c00cF7a7kOlMp/vGLfT/8wf+7HcOAR9s4OL/6423v+XIFxRCCHFclFKvUz0qCPdIomRgVbMFdBSUUkbgTWAk7sR5uVLqB631xuaNTIgzi1LKs74pQLCvhQsOmo/aJtyfty7/u4Jv/9ahrHt8tGd7ePuW/HRHCK3D/AA4r2MvAoxZxAR6AzC54zgcRbsIjAjBr3U0V65rxUvpW7AmJhLaK5k+c1bw+upMrFeOJGr8ObT4bibfrNS0+OcwfCZNIH/2TBauC+Xl6xMhqQO/rdvE1h2xrBnXiQpfC68t2kRpbjILOrSgJG0Tz66bgypL5j1nAT5pS7g5vRjvXd14YudmYrcuYnLvDQT81os7V2+k48YUbuzdCcsfPbhq7gq6b9nCg92SKf8jmcm/LCJ5515eaJlE3ryunDN7KcnbsnnZksjuvE4MnbOCDik5fHNVIhv2tKfPghQ6LM9j51UdSGnRlm4L1xKzMI/yazqS0jKeDss24vdbFv7XJbE2Lpa4lC1Y5+URdXkSa6JDiNq4A8uSIlpd2IU1IT4E79iHaVUxHcd1Ya2/Ab/9OZg2lNJ+aBs2WzU+hWWoraUk9Igk3QssFS70zhJi2geRZwFzhQv7/jLC4mxUmhVUOqnKryIw3Buj2YDD7qKy1I63zYLRaMDpdOFyakwmA8pw5qzspY60nIdSqlbPJVAIrNRap9Rz3jhgrNb6VqXUUOB+rfW4w7SdCvyktZ5+0L4YrfVepVQr4A9guNY69XD369mzp16xYkW9r+VU9u+fNvL+Xzt5+4okXttyE1U52Tz7VjkP3v4YXTKjGWXz45zbkjzfvAkhhGgYpdRKrXXPo2h/1UGbDiBNa72w8SNrfEqpfsDjWuvR1dv/ANBaP3u4cxrj+frP994nt6TkuK4hhGhcLl09F0+B3WWgwmnC31QFCkodZoocFqK8SkFBfpWVvCpvWvu5Zxvsr/Ahp9KHzgHuuaDby6zkV9roFZQFwNpSL4orghgYuBfldLCkMpCyyhCG+25FOaqY54rCXhXMSMt6DI4qZpvi0fYgRrEag72KWT7tUI4ARlYux+Cq5Ge/Lpic/owqXoRSDn62dcesfRid+ydOg4tZwf2xaC/GZPxGpZeBX4IH46WMjNn7O2XeRn4LGozVAGP2zKHQz8y8wIFYDZoxu+aSZ7MyP6Av3kbNmB3zyAryZmFAH7yNTs7e9icZIb4sDuiNr8nJmK1/sjfUj6W23viaHIzZ+ie7wwNY4dcTX7OdUVv+Yle4jdX+3fEx2Rm5bTFp4TbW+nbF12RnWOoy0sIC2OjTCT9zFQN3rGZnWABbvNthM9jpt3stO0ICSPVug83goFv6JnYF29hljSPYUEW3vZvYHhzALms8Idhpvz+VtCB/MrxiCFOVJO7fRmpIAPtMLQjVdhKyd5MW5E+2OZxIXUKr3DRSg4PIMsYQ7qwiNjeDXUG+5BlDidJ5tCjYhz0kkgcuvZJOrROO++/Y4Z6vDUlAPwN64i6yADAOWAvEA19rrV84zHnPAlfgfjhbARvwrda61vDduhLQozkOp38CWmF3ct4bC8krq+LFy4K4889rGbLdwsVzfbjl4We4aK6dcWe3InnE6dkTLIQQTeUYElBfoEJr7azeNgJeWuuypoqxsVTXcRijtb6+evsKoI/W+vZD2h08wqjHrl27juu+if/3NuWOFsd1DSGEECfG/T2ruP2Cicd9ncM9XxsyBzQW6K61Lqm+0GPAz8BgYCVQZwKqtf4H7uVbOKgHtKFzR4OAMq11pVIqFBhwuPucKaxmI69MTua8Nxby6XzN9V1u4F3eodOWCu7+9B3eu/weAr9LJbptIOFxshydEEI0oTnACOBAl543MBvo32wRNTKt9bu46z/Qs2fP41488ME+LcmTHtD6HaZDQIOMbhKNzu6CMrvC7lLYXeBwgV1DSz8XJgPsLzOwt8SIo/qYQyscTugfXQpGOxtzzews9AaXCYcLyl12nFoxsNV6XK4qNufEsS8/En1QvVOFg45RX+HESXrxIEpK4mvEpFQ5gTFTcClNac44HOWtagZtKsCnxccAVGRMwFXh7nQxuBy4DBplycE75uvq4+dCVRQ+lXYUDoq9weiVhVf4rwBUZo5B2aMIKSpD4yA3QGOy7MfbthCFoqRgNLjCic0uwGF0kh2osZgysHmnoA0mckuGo1UY8ZnZVJmcZNtceJsyCDBvxaksZFcOwmEKo/W+/ZRbXOT5OfAxZRJoSsOOL1mOnriMIcTvz6bM6qDIx46vMZMAYyZ2/MnSndCEEpOdRbmXgxJvO37GLGyGPCoNNrJpi8EVQmRuDiVeVZRb7fgbs7CpYiqNwWTTEosjiKCCXEq8Kqm0OLCZcvBXpVSYQsnWUVirAgkozqPEXEGlVRNozMamKojwb8t5A65umr94B/5TNqBNOFB50LYdiNBalyulKg9zzmEppZ4EVmitf1BK9QJmAEHAuUqpJ7TWnXAXc3inujiRAfcc0DN+fkpilI0HRrfn6ZmbGNZhHD0jVjJlbArPvLecrstmM7/HMAKmbODif/bC4t2Q/7RCCCGOgfXAl7IAWusSpZRPcwZ0FPYCB3dFxlbva1LXnDu2qW8hxGlNa01JpQOLyYCXyUh2cSWrdudTUuGguMJOcYWD4koHl/eJo2WIDwu2ZfP6nO2UVDoorXK3Ka9y8tJl0YQGVPLdynw++6v2qoqje81FGfazpagjOzO6AmBRGqeqxGWoZFfVaxhMZVQ5++BtHERrhx/GjL2sjyrDbnGwWH2LMjmx+3Yk2n8AnXcYidqykZm9XbgMDlz2NXg5FbHRoZRqRfKyTJK3b2BmLxcG7SI4PRd/l5WsqCy2x/rTdfNe4vfuYlPLfJRD4bvHn6hsC9nBZaS0raTt3nRCCnIpDCrE4uuDf9UAwlY7KAoIZm2bAEIL9uNlr8A3wkhQVALBxrsIWl6JDo5ldbARU0U+JoOBqPhAwloEYuNavNYWY2ztzTaTE21UeBkNxCQEEBzmg1elC9euUgwmRbHSmE0GLCYDIRE++PlZcFW5KCuqRBkURqMBg1FhMCrMXkYMRgNaa/lCiYYNwX0EmAh8X73rXOAH4CXgXa31ZU0aYQOd7kNwD3C5NJdNWcqa9AI+ubEjd/91Obb8Sp54p4y773mSnmmhnB0TxMjrOslfcCGEaIBjGIK7ELhDa72qersH8IbWul9TxdhYlFImYCswHHfiuRy4VGu94XDnnCnPVyFOpCqHi125peSUVJFbWkl+aRX5ZXaGJ4bTKTqADfsK+ee36ygst1NYbqeowoHTpfnf5V3pFm/kl43pPPFtVo1rGo0uBvRIwWLdwZ4cfzL2JtMjqC3WojzWOreSZczBErwQg7kQZ2UYQSRzjxpExVef81WfMvaH2LHpTHyrHNjaJxMUmEifJd50/+g9fuploNDPhBELQQZvAsZfyVJDKIUpGfTekML+QAcVFisOkzejin3JCxjM7Fhv9nnlEJ6fj8Hbm4CoQEze3vT9pYjicm82xZjJCDZhdUFMjB/J/aLxNRowTd8DQL6vAZfVgK/ZSMv4ANonhWE1KHYuz8JkMWC2GDF5GTFbjPgEWPAN8EJrjcPuOuOK+pysjnkOaPXJvfh7aNFCrfVJ9yQ6kx6Q+wrKGf3KfFqH+XHvuXD73FsYttXC+X/ZuPPBp5n8ewXnjG9L0rDYI19MCCHOcMeQgPYCvgD2AQqIBC7WWq9sohAblVJqLO4q9UbgA6310/W1P5Oer0Icj9JKB06tsVnNlFY6+HzZbrKKK8k+6OeaAfFM7t2SbZnFjHx5fq1rXDPUi06tCti8P59ZK3zpFtmeIB8vthWsZkPBSly+KRgsuWinFexhTO/6NFUfvs9HkWtZElWAX5nGr1wT2i6JsOi2XJTTE/NDD5LSSpFvM2JW3gR52Wh7x31sCm/F53PW0335Iop9fCmp/rnSFo7Vux2/eimm28rwrXJhMlpJaBlIgNlIvzl5lG0sICPQ6E4g7S6iw3w5e3J7bCYj6T/toqrYgdXXjJePCS8fE4ERPsR3CQUgf38pRpMBi7cJs9WIUZZIOW0dVwJafYFw3MWEANBa72688I7fmfaAnLkug1s/XcU1A+IJjv2Dd9e+y20/ucDal08vvp2LZxUw6d7uRLUOaO5QhRDipHa0CWj1OWagffXmFq21vfEjOzmcac9XIepSYXeyr6Acg1LEh/ricLr4x7fr2F9Uwf7CCvYXVVBc4eCmIa34x9mJFFfY6fL4bCwmA+H+XgT6GDCaS+kYX0Rg8G72FmWzOd3M3b2uJ94vgJ83f8RHGdNQyum5Z5BXEF92eYmia+9gcUQRm1oqAko1AaXQctLlBA8eTf62SsL+8zxFAYHk+QeQ5etPz7gYekwczzJvG1cs24CttIRCX38qvLwIMJt4oMqHgGV5bHPYWRxhwKfChb9LMf7SRILNRnJn7CJ7Qx7e/hZ8bRa8/S0EhHnTd0JrAPbvLMTl0Fj9zHj7mfHyNWOQ3kZRh2MuQqSUGo97uG00kAW0BDYDnRo7SNFwY7tEcc2AeD5cmMZrl0ykZ8Qq3j8nhWfeW0S71R35s/cQ/N5dx0X/6o2PTdYHFUKIxlSdcK5v7jiEEI3D6dLsKyin0uGkTbh7+fqHv1nL5v3FpOeXkVNSBcB5ydG8OrkbJqOB1XsK8PUy0SrMlx7xftgN2VR5reTJxV+zt3gfHXtk88LQJ+gU0pHvVk3j0Q0vsiMTrPtNRJiDiYtuRUe/EspHj6NbMISHKIJKNUEl0Pamewm4/Dp+2rYTv8FDwRaEn38AW339GZnYlnO6dyZNG5jk3Az3PoEvilgfC9FWC/4FBrb9bzfZpVWcG2LEv8KCb3kFdzzVHX9fC2vm7GG3r5m+QX4MD/DCN8CCT4AXCWEBKKXQ19Q/jSsyQTo3xPFpyBzQNcBZwO9a625KqWHA5Vrr605EgA11Jn5DW+VwcfG7i9m6v5ip13fk/sVX4JdbxhNTKrj3zsdJyoxkuMmb8+5OxiDDG4QQok7H0gN6JjkTn6/i9FVW5cDH4u5/mbJgB8t25pGWW0pabhlVDhe94oP4+mb3rLNrPlxGldNFiyAfogO9sHiVYfHOQVt2k1aURlphGjck3cDg2MEszVjK9bOvB8CGN9GmUFrEdOCGztdjGH0lha5S8vwgtAh8HEZCrr6K8PvvZ2l+MSVTppAeFMIO/yA2+tno1TaBh9rHUeF0ET9/LQoINxpp6eNFnI8XfcsMmGbtIy+3giyLxlbmwssBkx/pTUiMHztSskldnYV/sBX/YCu2EG/8gr0ICPeRnkpxQh3POqArtNY9qxPRblprl1Jqjda6a1MFeyzO1AfkvoJyznltAeH+Vh4+38hd825h6HYLk/+wcvODTzNhEYzuHcOASW2aO1QhhDgpSQJavzP1+SpOfev3FrJqdz7bMkvYllXM9qwSrGYjfz10FgA3T1vJ9uwSEkJ9aRXqS3yoLwmhVoIC80ktSGV7wXaSw5MZHDuYtMI0zv3uXM+1Q8yBJAS34bou1xH//NfkrFzCXlMRkQXgUwm+gwfR8t130Vqz8623ybT6sCM0gk0BIdiio3iwrbtOR+e/1pNjd2BRijhvCwneXgy2eNN6eQF5GWWkFpVhzbNjdMG427sS1zmEfdsKWP3bbgJCvbGFeRNQ/WMLtUqHgzipHM86oAVKKT9gPvCpUioLKG3sAMWxiQ705pXJ3bj6w2X8uDSGm5Ju5m3eIn53FY9+8DpP3/JPbD/vITLBRuvu4c0drhBCnLKUUt3rO36gKq4Q4sRxuTRpuaVszChiU0YR2zJLeOvyHhgNis+W7eazpbvx9zLRJsKPszqE0y7C37MUxlOT4ih3lNPC1gK7086FP15I2uY0nNo9D9OojNyQdAPdtjowL17EfYXxhG/OImJXEYHR/rSe9SEAmTGLiAg6m4iEeDKiYtkVE8voju0AmLB6O0sT/y6QHW4yMdzhJGtXETnpJdyz34hzXyWklTJgYms69Ykhd28J36VsJzjal96JYQRG+BAY4UNEgnud9+i2gUS3DTyxb7QQjaghCeh5QDlwD3AZEAA80ZRBiaMzpF0Yd57VllfnbOPZ+HMY2mITH581n399upFJP37KrBGX4ffRJoKjfQmK9G3ucIUQ4lT1Uj3HNO7pKkKIJqK1ZndeGRE2K1azka9W7OHJHzdSUulez9JoULQJ8yO3tJJwfyt3nNWGO89qS4TNC6UUi/YtIiVrIbfNWc/mvM1kl2czNHYorw9/HaPDRWdjC/oTQUxGJdE7i+n/xqd4ma3s+9e/KJ71C0PatsHadRReF7TDq4O7BtlPWQX8NO4i1peUk1pWiQYC8+1sqp5DeVFYEGcpL0LyHHQO8iW5ewQVpXbev28BAGYvIyExfoT0CCco0r2ccHC0L9e+OFCW0xOnrYYkoI9qrR8CXMBHAEqp54GHmjIwcXTuHN6WVbvzeeyHjXx6wz/ZXbSbVyan88w7M9ncMoH5nXphe3sdkx7qiZd3Q/6zCyGEOJjWelhzxyDEmaS8ysmq3fms3JXPqt35rN5dQGG5nc9u6EP/1qG0CvVlYrcYusQE0DHaRtsIP7xMRiqdlazOWk1KVgqFlYXc3eNuAN5e8zZrsteQEJBAb1tnOnRIJjmyO3nTPiHzhRe4zO4uZm0MDMTaqROm8iowWwl6+GH2P/AwC0sqWF1Uxtricmb1aAvAmuIylheW0sXfmwnhQXTx96aznzfzv9hCxvZCCveVYtJQCOT2i4TuEVh9zYy9NYngKB9sId611quUxFOc7hoyB3SV1rr7IfvWaq2TmjSyoyRzVCC3pJJzXvsLk1HxxpUtuXXuFYTmOfi/D6q49+7H6bUrjOHB/oy9JUkmoQshRLVjXIalM9CRmsuTfdzYsZ0M5PkqTpSs4gqW7sgjPsSXLrEBrNlTwHlvLkQpaBfuT7eWgXRtEcjwDuGE26y1zv8h9Qe+3vI1G3I3YHe5k8n/Z+++w+MozgeOf+d6Ue+W1d17r4DpHQyh9xp6S2gBkh+QBAKBEEIndBJ6qKZX041777bcJKt36frd/P64kyxZckVd7+d59tnd2dndWfms0XszO5Mbm8t7x/0P3+o1bFzwDZbFa2HBUoLV1WS/+gqOCRNwLVpE/ezZ2EaPxj5yJLWJSdiNRhxGA++WVPG71VvxRf5eTraYGB/j4L5BGSRqA9s3VlO6qZbijTUYDIoTrx8LwMdPLiMU1KTkRJOSHUNKdjTOWGun/SyF6A72+R1QpdRVwNVAnlJqWbND0cBP7V9E8WslRll5+vwJnPHvOfxtVhl/O/YBrp99DS+caOa+Z/7JdX/4G7E/VJHw/kamnyKDEgkhxP5QSt0FHEI4AP0EOBb4EeiVAagQHSUY0nyyvIhf8iv4Jb+CjWXhIUYuOyiXURnhVs2XL5nM2Mw4Yu3mpvNqvDV8veUn5hbPZX7xfF44+gXibfFUe6rRaM4ZfBYj6mMZ238y/YaOw7VwIVvOPQ8jYMjOwnHoodjHjcWSnQ1A3YhR/NQ/l5+q6pi3tZr1a0p4bkQOJ6TEMcxp49KMJCbEOBlpsZAda0cpxQ9vruO9bwtAg1KQmBFF/8HxTWU8/upu1U4jRLeyu76YrwGfAvcBtzVLr9NaV3ZoqcR+G5sZx4OnjeaGN5aQNz+T68fdwCP8i+xCP7e/8Bh/v+IPOD/ZRmK6kyFT+3V1cYUQoic6DRgDLNZaX6yUSgVe6eIyCdHtefxB5m2qpM4T4PjR/TAo+POHq/D4g0zKieeMiZlMzUtkRHp4sB2z0cDBg5Obzl9SuoR7597L2sq1aDQ2o41xKeOo9lZjzy/i+F8CHDLHjmvhG2i3G8Oll8DQcdhGjaL/vx7GPn485pQUyn0B6kMh4m0Wtri9TPllNQCxJiOTYp2cnpbA8Cg7Pk8A+6YGDl/tonB9IZ8U1HPxgwdij7LQb2AcVqeZ9IGxpOTEYLHJ601C7K3d/W8xArXANTsfUEolSBDafZ00tj/rSup4YvZG7kw9lGNz1vI6n/GHt1Zwzjsv8cEJF2N/dS2xqQ6ZTFgIIfadOzIlWUApFQOUApldXSghuqP8snq+Xl3K9+vLmLepEm8gRG6Sk+NH90MpxbtXTSc9zoap2fQhWmvya/L5qfAnfir8iZMGnsSxuccSb4snxhLD1WOvZoJzGEMaYokZMxYdCrH+4ukEa2qw5OURd8opOKdNxTF5MgBBk5mVUw9kdkUt325Zy7J6N6enxfPYsGyybBbuGdSfybFOhjlsGDQYTQbyF5fx/HMrCAU1RrOBtLxYJp2Q21TGgRNkZgEh9tfuAtCFhEf1A9j5hUEN5HVIiUS7uOnIIWworeeej1fz7wuuZ1PtJh47bSN/fv4rtqSk8fnUo3E8vZwzbptEVLy8kyCEEPtggVIqDniWcF1ZD8zp0hIJ0U0EgiEWba1mUk48Sin+/V0+by7YxqCUKM6dks2MwUlMyU1syp+V6Gja9of8/H3e3/mh4Ae2N2wHICcmh0AogA6FSNlSx/0bxlP/wmw8yx6lNCuTmM8/RxkM9H/sUSzZ2ZhTUwGoCwQxmowAHL9wHcvq3RgVTIpxcltuGocnhltZva4AM4qCbP58E/NWVXDAqYMYNr0fSZlRjDk8k8xhCfQbGIvJbOysH6EQvd4eByHqKWSQhNYavAFOe3oOBVUunr14CHfMvQRqavnLMy4ePvdGogwjOKHBxG9uGo/JIr9YhRB90/4MQtTs3BwgRmu9bE95eyqpX8WeuHwBvl1bxhcri5m9towat5+PrjuQkf1j2VbpwmBQ9I+ztzqv1lfLjwU/UuWt4txh5wJw9kdnk+RI4qD+BzE9ZQoZ8eH3NIvuvpvqN94EpbCNHkXUjBlEzZiBbeRIlFJorVlZ7+bz8lo+L6+hwOtj2fSRmAyK90uqsBgUB8ZHExMJSgO+IB8+tpSijTXokMYWZSZ7ZCIjDkyn38C4TvvZCdGb7ap+3asAVCk1E5gR2f1Wa/1RO5fvV5MKsm2F1W5OevxHoqwmHjg7mWu/u4T0Cs0d//Fx83V3M25LEsenx3PkpSNk2G8hRJ+0twGoUmqo1nqNUmp8W8e11ovav3RdT+pXsTuLtlZx7rNzcfuDJDgtHDY0hSOGpTJjcBIOS+uOdjXeGr7Z+g2fb/6cuUVzCegAWdFZfPSbj1BKEXS5aPjxR+q++or6b78j543Xsebl4Vq0GP+2rTgPOghTQkKLa35YWs3dGwop9PpRwIQYB0cnxXJpRjIOowGtNeXb6tm4uJRQQDP91PBAjJ89s4K4FDs5o5NIyYmRGQKEaGf7PApusxPvByYBr0aSblBKTdda39HOZRQdoH+cnX+fP5Gzn/mFhz+p5/6jH+T3317Pkyeb+Nu/H+R3N/2V2HkVxH64iSkzpVe1EELsxo3A5cBDbRzTwGGdWxwhOpfHH+Sr1SV8tLSICdnxXDYjj2FpMZwxMYOjR6YxJTcRYxtBXK2vFofJgclg4vnlz/PiyhfpH9Wf84efz2FZhzEqaRSB4mJKH/ondd98g3a5MMbGEn344eEhZgHH+HEwfhyBkObHqjpmlVZzTr9ExsY4SDSbGBlt56bcNI5MjCHZEh4xt2xrHYvnFZO/pIzacg9KQfaoJLTWKKU45vKRnfrzE0KE7c2QXccBY7XWIQCl1MvAYkAC0B5iQnY8D5w2mt+9uYTkn9O5fcofuZe/kjgtwJ+ffpC7brgbx1dbiEmyMWx6elcXVwghuiWt9eWR9aFdXRYhOtPc/AreWVTAp8uLqfMGSIm2Mj47DgC7xcifT2odyPmCPn4o+IFZG2fxQ+EPPHH4E0xLn8aZQ8/k6JyjGRY3BPe8ebDBhTHFCE4nrnnziD3hBGKOPQbHpEkoU/jP1JDWzKtp4N2SKj4pq6HcH8BuMDAhxsnYGAfT46OYHh8FQEVhPcE0I0ajgQ2LSlk2u4CMoQlMODaH3DFJ2KMsnfZzE0K0bW/HjI4DGke9lWFTe6CTx/WnuNbD/Z+uISV6JBePuJgXeZGU8m1c+/JjPHXB77G9sZaoeBuZwxL2fEEhhOijlFLXAK9qrasj+/HA2VrrJ7u0YEK0o+3VbtIj720+/d1G5m2q5JiR/ThlfH+m5rXd0glQ56vjkUWP8Nnmz6jx1pBkT+KsoWeRHhX+gjupxIP5/c/Y+MHVBEpLcUydinP6dIwxMQz8djbKsGM03NpAkBiTEV9Ic/6yfAIajkyK4cTkOA5LjMZpDL/PWVvuZv2CEtbNK6FyewMnXDeG7BGJjD0ik/FHZ2O1yxQpQnQne/M/8j5gsVJqNuHRcGfQcl5Q0UNcMSOP4hoPz/24iTuOO4mjsgt55bAvuPHdxZzx3gu8d/yl2J5Zzuk3TyCxf1RXF1cIIbqry7TWTzTuaK2rlFKXARKAih7N7QvyyfIi3pi/lQVbqvjxD4fRP87OPb8ZRYLDgn0XAxaWu8vZXLOZiWkTsZvs/FT4E9PTpzNzwEym9puKyRD+c7NpICGjkagZM4i94w6iDjm46TrKYKDM5+e9kireLq7CHQrx/eSh2IwG3hgzgKFOG07TjjK4an18/uwKtq+vBqDfgFhmnDWY1OzwCLfS2ilE97TLAFQp9QTwmtb6daXUt4TfAwX4g9a6uDMKJ9qXUoo7TxhOWZ2Xv32yhgdPv47S5FIe+81y7njtWw74IZYPJp6C7fGlnP6HiTjjZHoWIYRog1EppXRkFD+llBGQv3RFj1VS6+GJ2Rt4b3EhdZ4AuUlO/nDMUKIigwi1NYJtSIeYs30Ob697m2+3fUuCLYEvTvsCk8HEh7/5EKMy4l64kJJH7iD19tsxxccTdeCBWLJziD3xBExJSS2ut6i2gSe3lvJ5eS1+rRkdbef89ESCGkwKJsQ60VpTtKGahhofAyekYIsyowyKKSflMXhSKjFJrcsphOh+dtcCug74h1KqH/AW8LrWenHnFEt0FINB8dAZY6ho8HLHu6t47Jy/8rTvdzx49hb+7+X3qYqJ5ZPsQ3A8uYyTbxyHxSbdVoQQYiefAW8qpf4d2b8ikiZEj+ELhCiv95IeZ0cpeGdhAUcMT+WsSVlMzUvY7cj4X2/5mgfmP8D2hu3EW+M5b/h5nDLoFIwGI8HaWmrf/4CqN9/Et3Ejhuho4k47DdPkyUQfcUSL62zz+HAaDSSYTWzz+Pi5up5LM5I4u18iQ5y2pnyeej+rfy5i1U/bqS5xEZNsZ8D4ZAwGxcm/H9dhPyMhRMfY4zQsSqls4KzIYgdeJxyMruv44u09GSZ+39R6/Jzx9By2Vbp46oIh3LvkSuqrS7nrJS8vzrwWhxrDbxxRHHflKAxGw54vKIQQPdS+zgOqlDIQDjoPjyR9CTyntQ52RPm6mtSvvUtprYdX5m7ltblbyUt28tYV04Bw99tddbEFWFa2jBRHCmnONOZsn8PzK57ntMGncVjmYViM4Q4AgaoqNhx2ONrtxjZ6NPFnnknMccdisO9omQxpzTeVdbxYUM43lbX8ITeN3+Wk4Q9pNBqLoeXfHCu+L+THt9YTDIToNzCWYdPTGTA+Wb4gF6IH+FXzgDa7yDjgBWC01nrXv6W6gFSQ+664xsOpT/2MNxDk4XOy+b/5l6Oqa7nzJT//PP8W8spzmZmTxGHnD5U5QoUQvda+BqB9jdSvvcOKwhqe/SGfj5cVEdSaQ4ekcOH0HA4enLzLc/xBP19s+YJXV7/K8vLlXDTiIm6aeFPTcR0IUPf1N3g3rCf5mmsAqHjxJRyTJ2EfMaLV9Z7ZVsoLheVsdvtIsZg4Lz2Rs/slkmnb0YPd5wmwbl4J/QfHEZ/mpGhjDevnFTNiRn8Zn0KIHma/A1CllAk4lnAL6OHAt4RbQD/ogHLuN6kg98/GsnrO/PccjAbF/Wem8ce5lxNV6eGPr4T4yxX/x8SNyZw8IZ1pvxnY1UUVQogOsR8toIMID9A3HGjqJ6i17pWTKUv92nNprQlpMBoUL/y4iYe/XMfpEzO5YFo2OUnO3Z77wooXeGXVK5S5y8iJyeGcYecwc8BMnGYnwdpaqt9+h6pXXsG/fTvm7CzyZs3CYG09dkSBx0dGJMC8YFk+tYEgF/VP4rjk2BatnXWVHpbPLmDVT9vxugJMmZnHxONy2vXnIYToXPscgCqljgTOJjwP6DzgDeADrXVDRxZ0f0kFuf/WFtdx1jNzcFhM3HVaDH+ccyVpZUFuesfMXVfdyYwV0Zx6RC5jj8jq6qIKIUS7248A9EfgLuBh4ETgYsCgtb6zg4rYpaR+7Xl8gRAfLt3OM9/nc8mBOZw5KQuPP0ggpImy7rrraqWnkgRbeCq2P/34J8o95Zw37Dymp0/HoMLBYt3XX1N4y61olwvHpEkkXHgBUYceijLu6Bintea7qjqe3lrG91V1/Dx1GDl2K55gCNtOr/VorfnmP6tZO7cEtCZvXApjDs8kLS9Gel8J0cPtqn7dXQf624HXgJu01lUdVjLR5YakRfPfS6dwzrO/cO97ddw582HunHs9T8z0cddT93D31Xdh/iwfe7SFIVPSurq4QgjR1exa668jI+FuAe5WSi0EemUAKnoOty/Ia/O28twP+RTVeBicGkWiM9wqaTPv+s2pDVUbeHHli3yS/wmvHP8KIxJHcPf0u5umT/Fu2ID2+7ENG4Zt1Chijj6ahPPPwzZ8eIvr+EIh3iup5ultpaxu8JBqMXFbXj/iI1OnNAafOqQpWFdF5tDwYEf2KAtjDs9k1CH9iUmUkWyF6O326R3Q7ky+of31Fm+t4vzn55ESY+WqYz3cM/8PDC2E334WxV+vvIvjFlo4++JRZI9M7OqiCiFEu9mPFtCfgQOBt4FvgELgfq31kA4qYpeS+rXnOP/5ufywvpzJuQlcdfAADhmSvNtWxNUVq3lq6VPM3jYbu8nOKYNO4eIRF5PqTAXAvXQp5c88S/3XX+M88ECynnt2t/cv9fqZOGcVeQ4rV2Ym85vUeKzNutkGAyHWzi1m8RdbqS5xceqtE0jLi22fhxdCdDvtMghRdyYVZPuYv7mSC56fR1aCg0uPruPe+bcztEBxyRex3HfFnZy4yMy514wlLVcqDCFE77AfAegkYDUQB/wViAEe1Fr/0jEl7FpSv3ZfLl+A1+Zu5fSJmcTazczNr0ApxeTchD2f63dxxP+OAAXnDTuPs4eeTbwtHgD3kiWUPvIIrjm/YIiNJeHcc4k//zxM8fEtrlHpD/BcQRmr6z28OCoXgDUNboY4bC0C34AvyIrvC1ny1TYaqr0kZUYx/uhsBoxPwWCQbrZC9Fb70wVX9EGTchJ4/sKJXPzSfF76MoY7jryPv3E7Lx1ZzS3P3ctDl/4f1qeXcvb142U0OiFEn6KU+q/W+nxgutZ6PlBP+P1PITqVxx/kv3O28PR3G6lo8BFrN3P6xEym5O2+h9LqitXM2jiLWyfdisPs4JHDHmFowlCiLdFA+H1MpRSuRYvxrltPyq23EnfGGRijWg5YVOL18/S2Ul7eXoErGOLYpFhcwRAOo4Ghzh1daBuvpzUs/HQLif2dHHb+UDKH736eUSFE7yYtoKJN360r4/L/LCAn0ckFR9Tw90V/ZMRWOPv7FB49/0+cttrEWb8bT1yqo6uLKoQQv8retoAqpVYBRwCfAocALf6C1lpXdkgBu5jUr92H1po352/jX1+tp7jWw0GDkvjdEYOYkL37Fs+N1Rt5dNGjfLPtG6It0bx23GvkxOY0HXcvW0bZY48Tc9xxxP3mZEJeLwSDGByt6/jvKuu4YHk+/pDmN6nxXJuVwrColu9tet0Bln2zjS0rKjjllgkYDIqGGi/O2Naj5Aohei9pARX75ODBybx40SQufXkBz38ezU1H3sND/Ik3Dizhqlfv4+lzbsP46GLO/P14YpJkwAAhRJ/wNPA1kAcspGUAqiPpQnQYpRSfrigmLdbGv84ay9Q9tHjW+mp5cP6DzNo4C4fJwdVjr+a8Yec1tXh61q2j7J8PU//ttxjj4og55miAVtOplPn8bPf6GRPtYGKsg/PTE/ltRjI59pb5fO4Ay2ZvY8lX2/C6AuSMTsLr8mOPskjwKYRoIi2gYrcWbK7kohfnE+80c/GRdfxr2f8xapPm1J/T+PdZt3HmZjtn3jgBZ5xULEKInmk/3gF9Smt9VUeWqTuR+rVrzdlYwT+/XMs/zxhLZoKDWo+faKtpt11YQzqEQRnwBX2c9uFpHNT/IC4bdRlxtrimPGWPPU75k09iiIoi8dJLiT/vvFZdbav8AZ7cWsrzheX0t5r5fvLQXd63orCe9x5a1BR4Tjo+h5TsmHb5GQgheiZpARX7ZWJOAq/+dgoXvDCPZz6N4pqj/swT3IXfXMyVr9/Ls2fejvGRxZxx43js0ZauLq4QQnQopZQROLSryyF6v03lDfztk9V8uaqEfrE2CqvdZCY4iLGZd3mOJ+Dhv6v+y8f5H/PGCW9gM9l4Z+Y7mA3hc4LV1SiLBYPDgW34MBIuvpikyy/DGBfX4joNgSBPbyvj6W2l1AdDnJQSx005aa2Cz2AgRFVxA0kZ0cT3czJoUirDpveTwFMIsVuGPWcRfd2YzDjeuHwq/mCIZz+L5vqR97Muw8hLR5Tz2zfv4e20Gt55bAmeBn9XF1UIITqU1joIrFVKZXV1WUTvpLXm/k/XcNTD3/HzhnJuPWYIs28+ZLfdbbXWfLbpM2a+P5NHFz9KZkwm9f56AMwGMyGfj4rnnmPDkUdR8eKLAEQffjipt97SKvgE+LKilgc3F3NQfDTfTBrC0yNyGOS07bhfSLNuXjGv3f0LHzy8BJ8ngMGgOPjsIRJ8CiH2qMNbQCPfFi8ACrXWJ+x0bAbwL2A0cJbW+u2djscAq4D3tdbXdnRZxa4N6xfDm1dM49znfuHxj01cf9zDPKlu4pljq7j87Xv4z29ux/jEUk69biwWuzSsCyF6tXhgpVJqHtDQmKi1ntl1RRI9XSikMRgUSik8/iCnjMvgpqMHkxJt2+15Nd4arvvmOhaXLmZI/BDuOeAeJvebDIQD07qvvqL0gQfxb9tG1MEHE33kka2uobXm0/Ia6gIhzuyXwMyUOPIcVkZHO1rl27qykjnvbaSisJ7EjChmnDUEs9XYfj8IIUSv1xmRwg2E50tr6yuxrcBFwM27OPevwPcdUyyxrwamRPHWFdO44IV5PPCBhxuOfZSX1O954sQarvrgHl474XbU43DKtRKECiF6tf/r6gKI3mVufgV3zVrJPSePZGJOAnedOHyP05T4gj4sRgsxlhiS7EncPe1uTh54MkbDjmCw9IEHqXzxRayDBpL5/HNEHXBAq+vMr2ngLxu2M7+2gUkxTs5Ii8egVKvgE6Bsax0fPb6UmGQ7R146nEETUlEyj6cQYh91aBdcpVQGcDzwXFvHtdabtdbLgFAb504AUoEvOrKMYt9kJzp556rpDE6N5sEPazg9/VE8CU4enVnPmR/fw7vmbbz9+BK87kBXF1UIITqE1vo7YDNgjmzPBxZ1aaFEj1RW5+XGN5dw5jO/UOcJ4AuE/xzaXfDpD/l5eeXLHP3O0ZS6SlFK8c9D/smpg0/FaDASqKggUFEBQOyJJ5B65/+R+957rYLPQo+PK1du5sRF69nm8fHQkEzeGzew1b1dtT42LCwFICU7hmOuGMk5d01h8KQ0CT6FEPulo98B/RdwK20EmLujlDIAD7HrltHGfJcrpRYopRaUlZXtdyHFvkmKsvL6ZVOZMTiZx7+s5LDYf6LiYvnXyW5O/uKvfKzW8T8JQoUQvZRS6jLgbeDfkaT+wPtdViDRI705fyuHPfQtHy0r4tpDB/LVjQczfWDSbs9ZULyAMz48g38s+AcjEkcQ0jv+vNLBIJWvvMrGY46l9KF/AmAbPpyEc85BmVr3Sirw+Pi8vIYbc1L5aepQzk1PxNQsoAz4giz8bDOv/N8cvn55VdM4DwPGpWA0yRAiQoj912H9JJVSJwClWuuFSqlD9vH0q4FPtNYFu/sWUGv9DPAMhIeJ38+iiv3gtJp49oKJ3PHucv77UwEnjP07G+L/zEOnbueqD+/nm8k3EHwczrpmDFbHrkfsE0KIHugaYDIwF0BrvV4pldK1RRI9Ta07wNjMOP48cwR5yVG7zRsMBbnz5zuZtXEW6c50Hj30UQ7N2jEYs3vpUor//Bc8q1bhnD6NxN9e2uoaWmveK61ms9vLjTlpTImLYuH0ESSYTa3ybVpSzo//W09dpYfcMUlMP2UgNqfU5UKI9tGRL+odAMxUSh0H2IAYpdQrWuvz9uLcacBBSqmrgSjAopSq11rf1oHlFfvIbDTwwGmjSYu18dg3Gzho8J3ExD/Ooyev4MIvH2Z+3mWEntCcc81YCUKFEL2JV2vta/yCVCllAuRLULFbdR4/D3y2lkm5Ccwck86lB+by24Nyd9vdVmuNUgqjwYjZYOayUZdx2ejLsJvsTXmq33mXoj/9CVNSEv3/+RDRxx7b6por6lzcvq6Q+bUNjI9xcF1WKmaDahV8AtRVePj82RXEpTk46ffjyBgS334/BCGEoAMDUK317cDtAJEW0Jv3MvhEa31u47ZS6iJgogSf3ZNSipuOGkJqjI07P1jBoNQrmZQ7i5eO+oKZc55hjauW/z4J5101Vr49FUL0Ft8ppe4A7EqpIwn32vmwi8skurGvVpXwp/dXUFLnISnKCoBhD+9PbqjawF9/+Su3Tb6NYYnDuGvaXU2BpdaaUG0txthYnAcdSMIlF5N01VUYo1q2pNYGgvw9v4gXC8uJN5t4eGgmZ6YlYNgpQPV5AmxaWs6QKWnEJNk56cZxpOXGYDBKV1shRPvr9KFKlVJ/ARZorWcppSYB7xEe0v5EpdSftdYjOrtM4tc7b2o2WQkOrnltEWXLjuHgsenMmvYS01e9wfb8ap5/PMTFV43DEWPp6qIKIcSvdRtwKbAcuILwKyPPdm2RRHdUVufl7g9X8vGyIoakRvPUeeMZl7X7FkVf0Mdzy5/j2eXPEmWOosxdxjCGNQWfvi1bKLrzLnQgQPZ//4M5JYXUW25p81oVvgCvFVVyYf8kbstNI7aN7rbrF5Tw09sbcNX6SMmOJj7NSfrAuHZ5fiGEaIvSunf0Gpo4caJesGBBVxejz9tYVs9vX15AQZWLYydVMbvmfoZv0UzdOBE99LdcdsVEohN2P6eZEEJ0JqXUQq31xH3If4PW+pE9pfUWUr/uv0+XF3HDG0u47rCBXHHwACx7GLxnSekS7v75bjbWbOT4vOO5ddKtJNgSANCBAJUvv0zZo4+hzGZSbr6ZuDNORxlaXnNNg5tZpdXcmtsPgHJfgCRL6/aG6lIX3722loI1VaRkR3PQWYNJy41tpycXQohd16/St0K0qwHJUbx39XQm5yYw65c4JpnuY22miY/HLcC29G88/vgPVJe6urqYQgjxa1zYRtpFnV0I0T0V13j4bEUxAMeMTOPbWw7husMH7TH4BJizfQ6ugIsnD3+S+w+6vyn49BUUsumMMyh98B84DzyQvI8/Iv6sM1sEn55giPvzizhi/lpeLChnu8cH0GbwGfSHeO8fiyjdXMuMswZz6h8mSvAphOg00gIqOoQ/GOKej1bx8pwtTMi1Umy5B5+/gvO+jaZmwC1cc+WRJPbf/ah/QgjRGfa2BVQpdTZwDnAg8EOzQ9FASGt9eAcVsUtJ/bp3tNa8t7iQu2etxGBQ/PiHw4iy7vlNpwXFCwjqIFP6TcEX9OEP+XGanS3yhFwutl76WxIuuojoo45sNcjQT1V13LK2gHy3l9PT4rl7QH8S2wg8SzbVkpIdjTIotq2uJCHdiTPW+useXAghdmFX9WunvwMq+gaz0cCfTxrJoNRo7p61ktTYP5KY8irPH7WQU376M48/Ws1VV59KSnZMVxdVCCH21s9AEZBEeK7qRnXAsi4pkegWyuq83PHecr5cVcKE7Hj+cfqYPQafnoCHRxY9wqurX2Vcyjgmp03GYrRgMYbHSnAvX0750/+m/0P/wOBwkP3aq22OmOsKhrhi5RacRgNvjRnAjITo1vdq8PPT2+tZM6eYwy8axtCp/cgcltA+Dy+EEPtIAlDRoc6bms2wfjFc8+oi8jeeyfDcIbxz4GtMX/UQzzxUykVXX0bGUKkEhRDdn9Z6C7CF8FRhQgBQ6/Fz7CPfU+sJcMdxQ7n0wDyMexjhdmnZUv7045/YXLuZM4ecyY0TbmwKLkM+H+VPPEnFc89hSk7Gv20b1kGDWgSfWmu+rqzjkPhoHEYDr43JY6DDhqONUWs3LCzl+zfW4m0IMP6YbAaMlylrhRBdSwJQ0eEmZMfz8fUHcsMbS/hx/WhGZeXw09AHGVj8X8wPbWHmZX9i2OT0ri6mEELsFaXUKcDfgRRARRattZYuHX2IPxjCbDQQYzNzw+GDmJqXyKDU1q2PO1tRvoILPr2AVEcqzxz5DNPSd3yf4Vm1iu233Y533TpiTz2F1Ntuwxjd8pqlXj+3rSvgk/IaHhmaxZn9Ehgd7WjzXj+8uY5lswtIzormxOuHkpy55/IJIURHkwBUdIrEKCsvXzKZR75ax6PfbCAj4a9sjn+I0vHfE3r6UmpKH2TqCSO7uphCCLE3HgBO1Fqv7uqCiK6xcEslN761lL+fOpqpeYmcPy1nj+d4Ah5sJhsjEkdw88Sb+c3A3xBl2TEWgtaa4r/9jWBVFRlPP0X0IYe0OF9rzbslVfxpfSGuUIj/G5DOqamtp3TRWqNDGoPRQM7oJJxxVsYekSlzegohug35bSQ6jdGguPGoIbx48STqPWb8RbcQ8h3I6zMKeOfzi/n435/RWwbFEkL0aiUSfPZNgWCIh79cx+lPzyGkNda9GNlWa82ba97k2HePpbC+EKUU5w8/vyn49G3ZQqCqCqUU6ff/nbwPZ7UKPgHu2rCda1ZvJc9h5auJQ7gmKwXTTl196yo9fPjYUuZ9uAmAzGEJjD86W4JPIUS3Ii2gotMdOiSFj647kOteX8zirSfSzzeGT8c9T8G2W6i4ey3n3XmdVJZCiO5sgVLqTeB9wNuYqLV+t8tKJDrc1goXv3tzMYu2VnPK+P78eeYIom3m3Z5T4a7grp/v4ruC7zgg/QCsxh0jzmqtqXnnHYr/dh8xRx1F+v33Ycno3+J8rTVBDSaD4sSUONKtZi7LTMa402BEWmvWzCnmx7fWEdKQNza5/R5cCCHamQSgoktkxDv43xXTeOybDTz2DUS7/48VSc9SFHqWqhtXctV9j2NxWLq6mEII0ZYYwAUc1SxNAxKA9mJfrS5hfWk9j549jplj9jxuwQ8FP/Cnn/5Eva+e2ybfxtlDz8agwl+uBqqqKL7zTuq+/ArH1Kkk/+6GVueX+wLcunYb6TYz9wzKYFKsk0mxzlb5Gmq8fPvqWjYvK6ffwFgOv3A4scn2X//AQgjRQSQAFV3GZDTw+yMHM2NwEje8sYTCgqsg5lteGP052+84mj9c8xIJg7K7uphCCNGC1vriri6D6BxuX5ANpfWMyojlouk5HD+6H6kxtr0694stX5BoT+TZo55lcPzgHddctoyCa64lWF1Nyq23knDRhShDy14/X5TXcNPabdT4g/whr99u7+Op97N9XRUHnDaQMYdlovYwAq8QQnQ11VveuZOJsnu2Oo+fuz5YybuLC7FbSzBk/IfhJVXcPOz/mHLqaV1dPCFEL7aribLbyHer1voBpdRjhFs8W9BaX98hBexifbV+3VBaxzWvLqakzsMPtx66x+62AAV1BfiCPvLi8nAH3BiUoUW3W4BAeTmFN91M6u23YRs6tMWx+kCQuzYU8mpRJcOdNh4fns3wqNatmZ56PxsWljDy4AwAvO4AVru0KQghupdd1a/yop3oFqJtZv555lgePXscJtUfd/5NrLQewPWlf+bp+65CB4NdXUQhhGgceGgBsLCNZb8ppU5XSq1USoWUUhN3Ona7UmqDUmqtUuroZunHRNI2KKVua5aeq5SaG0l/UylliaRbI/sbIsdzfk2Ze7O3FxZw4mM/UV7v5ZGzxu1V8PnF5i8448MzuPPnO9FaYzfZm4JP37ZtFN9zLzoYxJSURPbLL7UKPgFKfH7eL63m2qwUPp04uM3gc9uqSt7461x+eGs9NWUuAAk+hRA9ivzGEt3KzDHpTMlN4I/vLeer1ccTrB3Do5lvsfSvh3D/5a8Qmy5dcoUQXUNr/WFk/XIHXH4FcArw7+aJSqnhwFnACCAd+Eop1dif8wngSKAAmK+UmqW1XkV4jtKHtdZvKKWeBi4Fnoqsq7TWA5VSZ0XyndkBz9Jj+YMhbntnOe8sKmBqXgKPnDVuj11uvUEvD85/kDfXvsmopFHcf9D9qGaDBNV+8glFd94FBgPxZ56BddCgFucHQpqPy6uZmRzHAIeNuVOHk2Rp/edZwB/kl/fyWfrNNuLTHBx/zRhik9ue/1MIIbozaQEV3U5qjI1nL5jII2eNxWLMwZ1/A99Ej+WUN0/i589f6uriCSFEu9Nar9Zar23j0EnAG1prr9Z6E7ABmBxZNmit87XWPuAN4CQVjnwOA96OnP8ycHKzazUGz28Dhyul5IXBZhqnNbn+8EG8+tupeww+S12lnPfJeby59k0uHH4hLx/zMhnR4W6xIbebov/7PwpvvAnrwIHkvvtuq+Bzi9vLyYvXc8XKLcytaQBoM/jUWjPrX0tY+s02Rh2awRl3TCI5K7o9HlkIITqdtICKbkkpxUlj+zN9QBJ/fH85X6w8hq3mkVyW/xqn/msWt136PI7o1hNwCyFEL9Mf+KXZfkEkDWDbTulTgESgWmsdaCN//8ZztNYBpVRNJH/5zjdVSl0OXA6QlZXVLg/SnX2+spgByVEMTIniH6ePZm/j8nhrPCmOFK4dey0HZx7c4ljB735Hw/c/kHj55SRfdy3K3LIb77slVfxh7TaUgqeHZzM1LqrV9XVIgwrXiWMOz2TCsTlkj0zc/wcVQohuQFpARbeWHG3lmfMn8sQ54zCqTBq2XMfr3mGc+MJxzJ0rMx4IIXoOpdRXSqkVbSwndXXZdqa1fkZrPVFrPTE5uffOKRkIhrjv09Vc8d+FPDF7A8Aeg89AKMBzy5+jxluD2WjmicOfaBF86lAIgORrryPzuWdJufH3rYLP/1tfwNWrtjAsys5XE4dwcmrrL1RdtT4+enwpK74rBGDA+BQJPoUQvYK0gIoe4fjR6Rw4KJkb3ljMt2unsckwiot+eZczl7/Lrec/jcPa+ptjIYToCEqpl4EbtNbVkf144CGt9SW7O09rfcR+3K4QyGy2nxFJYxfpFUCcUsoUaQVtnr/xWgVKKRMQG8nfJ5XVebn+9cXMya/g3ClZ3Hni8D2eU+4u59bvb2V+8XyizdGcOXTHK7Qhn4+S++5Dmc2k3XEH9lEjd3mdA+KiiTWZ+F12alO33+a2rqzgq5dW4fMEGTA+Zf8eUAghuilpARU9RqzdzEsXT+bZcydgscbgLjqb/26fzLFPn8bPSz/q6uIJIfqO0Y3BJ4DWugoY10H3mgWcFRnBNhcYBMwD5gODIiPeWggPVDRLh+dWmw00zl91IfBBs2tdGNk+DfhG95a52PbRhtJ6TnjsBxZtreKh08dw729GYTUZd3vO4tLFnPHhGSwrW8Y9B9zTIvj0FRSy5ZxzqX79DZTZzM4/Vq01z2wr5dltZQAckxzLzblprYLPYCDET+9s4MPHlmKPtnD6bRMZfmB6Oz21EEJ0DxKAih7nyFH9WHLrkYzKjgN3FluKrubCz3/kuufPp7yhrKuLJ4To/QyRVk8AlFIJ/MoeRUqp3yilCoBpwMdKqc8BtNYrgbeAVcBnwDVa62CkdfNa4HPC08O8FckL8AfgRqXUBsLveD4fSX8eSIyk3wg0Td3S12TE25mUk8C7V0/n1AkZe8z/1ZavuOSzS7CZbLx63KucNHBHr+m62bPZdOqp+LZsIeOJx0m95ZYW3Xir/AEuWrGJOzdsZ25NfavgtLmSTbUs+WorI2b05/TbJpLYX3r3CCF6H9VbvvzsqxNl92Vaa576dB2PLt+ApyqEMriJSpjNLZNHct5BV2FQ8v2KEGLPdjVR9m7yXwDcAfwPUIRbE+/VWv+3g4rYpXpL/eoPhnhy9kYuOiCHWPue5/VsrtxdzuOLH+fGiTcSY4lpSg9UVrLhiCOx5GST8cgjWDIzW5w3v6aBK1duptQX4M4B6fw2I6nNd0yrihuIT3MCULG9nsR0CTyFED3frupX+Qtd9FhKKa4+bgj/O3EK6YOTiDIGqSs/gbu+cnL0Y1exqmR5VxdRCNELaa3/Q3jOzhKgGDiltwafvUV5vZdzn5vLw1+t4/OVxXt1TklDCQ/Mf4BAKECSPYm7p9/dFHyG3G4ATAkJZD3/HDmvv94q+Cz2+jltyQZMSvHh+EFclpncKvgM+IN899paXv/zXEo21QJI8CmE6PUkABU93qjhSXzxm3EcljcY2yArUV4T67fP5MSnv+W6N+6m2lPd1UUUQvQCSqmYyDqBcOD5WmQpjqSJbmhFYQ0zH/uRpduq+deZYzljYuYez1lcupgzPzqTd9a9w8bqjS2OedauJX/mSVS/HZ5q1TFuHAartem4LzIKbprVzJPDs/ly0hDGxjha3aO61MU7DyxkxfeFjD0ii6QsCTyFEH2DBKCiV4iKt/HwBeP4S2IWavIQMmLKMLpS+XDJJKY8+Bx///oF/EF/VxdTCNGzvRZZLwQWNFsa90U38+3aUk596mcA3r5yOieP67+HM+B/6/7HJZ9fgtPs5NXjXmVIwpCmYzUffczmM89Ce71YBgxode7SOhcz5q1hdkW4NfP45Dhi2hjcaMPCUt7623zqKjwcd/Vopp86EKNR/iQTQvQNMg2L6DUMRgNnnDyYMUtKuaMyxPaRAcb+MIflDTk89aWdV+c+ym3Hj+Xs0Yft9STjQgjRSGt9ggr/8jhYa721q8sj9mxYvxiOGJ7Kn2eOICnKusf8Ty55kqeWPsUB/Q/g7wf9nVhrLAA6EKD0wX9Q+fLL2CdOIOPhhzE1mx9Va80rRRX8cV0hyRYTsXsYUbe23E1CPydH/XYEMYn2X/eQQgjRw8ggRKJXqilz89ibK3klWxFXto3cpYv5xTEGrc2kJW3mb785hMMGjOrqYgohuoH9GIRouda6z/wC6Wn1q9sX5D9zNvPbg/IwtjHH5u6sqljFl1u+5Nqx12I07AgiG375ha0XXUz8+eeTeustKPOOQYxcwRC3rt3G2yVVHJoQzePDskm0tP5+v67SQ12Fm/RB8eiQJqS1tHoKIXo1GYRI9CmxyXZuv3I8T/hiSAqk8e3MkzgmupBx7p8prsjkkmc3c9DDzzN7w9quLqoQoudZpJSa1NWFEK2V1Ho485k53P/ZGuZuqtirczbVbOKFFS8AMDxxODeMv6Ep+AzWNwDgnDqV3PfeJe2Pd7QIPgE+LK3mnZIqbs5J45XReW0Gn1tXVvDWvfP56qXVBIMhlEFJ8CmE6LPkt5/otYwmA4efOoinDhrMbxd4mT16OiuPOJ47AnMY4fmegtJ4Ln5uAwc9/Apfr8vv6uIKIXqOKcAcpdRGpdQypdRypdSyri5UX7eisIaTHv+JjaX1PHv+RKYPSNrjOT9v/5lzPzmXl1e+TLm7vMWxum++YePhh+NatAgA27BhLY5X+gMAnJEWzxcTB3NzbhrGnV7v0CHN/I838eHjS3HEWph5/VgJPIUQfZ68Ayp6vcxhCdyRMYGxr6zmJaOJO487m0nlxTz69Vs85YhiddmBXPrCajKSF3D7UZM4bmSOvCMqhNido7u6AKKlr1aVcO3ri0h0Wnn7qukM6xezx3NeX/M6f5/3d/Li8njssMdIsocDVq01Ff/+N2WPPIptxAjM6ektzgtpzcObS3imoIzPJgwm12FlVHTrUW4DviCf/nsFW1dWMHhKKoecMxSzdffvhgohRF8gAajoE+zRFk65cjSDvyvktW838fH4ZC4783quKdzI7z58iYez+rOmagbXvLqK+OjFXDVjKOdPGYLdIn8sCCFauUdrfX7zBKXUf4Hzd5FfdLCkaCvjs+J55KxxJEfvebChf8z/By+veplDMg7h/hn34zQ7gfD8nkV//CO1n3xKzIkn0u+vf8FgszWdVxsIcu2qLXxRUcvpafGkWc27ugVGswFHrIWDzxnCiIPS5YtNIYSIkEGIRJ9TWdTA5y+vYpbdz48jHdiV5qH1izF/9DxPDstlhf0gQt4MrJYAZ03K4MoZw+kXK6MUCtFb7ccgRIu01uOb7RuB5Vrr4R1SwC7WXevXQDDE7LVlHDk8FQi3XO5tkPfZ5s9YUbaC30/4fYvBhipffZWSe+4l5aYbSbj00hbXW9Pg5pLlm9nq8fLngf25pH9Sm/dbO7eYlOxo4tOcv/IJhRCiZ9tV/SoBqOiTQsEQiz7fyuffbuGziU7WJ5uYZIa/LfyBso9e5rkxqcyLP4hA3QiUUhw6NJ5LDxjCtLxEDPs4qqIQonvb2wBUKXU7cAdgB1xA4y8DH/CM1vr2jitl1+mO9Wu9N8C1ry3i27VlfHDNAYzJjNvjOSUNJaysWMlhWYe1OqZ9PpTFgg6F8KxYgX306FZ5/rB2G5+W1/DsiBymxEW1Oh4Mhvj57Q0sm13A8APTOfS8ofv1bEII0VtIACpEG8oL6vjyxdV8b/DxzZQoao1wUZSJK779jC0fvcorE6L4Pm06vpqJ6KCD9HgTF00byGkTMklwWrq6+EKIdrAfLaD39dZgsy3drX4trvFw8UvzWVdSxz0nj+TsyVl7PGdN5Rqu+foafEEfn57yKVGWHQFk7RdfUPrAg2S//BLm/v1bnBfSmgp/gGSLGXcwRE0g2Ga3W1etj8+fXcH29dWMOTyT6acMwCCDDQkh+jgJQIXYhWAgxIJPNvPTV1uYM9bJz7kWHEYDt8WYOfajd9n08Rt8ON7Ep4PGUF8zkaA7F5MBjh3Zj7OnZDE1V1pFhejJ9iMANQDnALla678qpTKBflrreR1WyC7UnerXVdtrueSl+dR7Azxx7ngOHpy8x3O+L/iem7+7mRhLDE8c/gRDEoYAkcGGnn2Osn/+E9uY0WQ+/jim5B3Xqw8EuX71VtY2ePhi4mCcprbHBKgqbuCDfy3B2+Dn0POHMnhyWvs8rBBC9HC7ql87fBCiyLsxC4BCrfUJOx2bAfwLGA2cpbV+O5KeDbxHeJoYM/CY1vrpji6r6JuMJgNTZuaROyaJ/q+sYeTqan6aEccfg15eOOIU7vnN6fzu3bc485X/8fXw+XwwJZvi+rF8vHIiHy4rol+slVPHZ3LK+P7kJbfuliWE6HWeAELAYcBfgfpImswN2sHWltRiUPC/K6ft1Ui3b655k7/N+xtD4ofw+OGPk+JIASDk81H8f3dS88EHxBx3HP3+dm+LwYa2uL1cuHwT6xo83D0wHcduWjOjE22k5cUw8bgckjKif/1DCiFEL9fhLaBKqRuBiUBMGwFoDhAD3AzMahaAWiJl8yqlooAVwHSt9fZd3ac7fUMreq5gMMTSr7cx/8NNrO9n5ttpMRQQ5JD4aP4Uayb57Tcpf+N15mZ6+PDwJFbrLEK1k/DXD0CjGJ8VxynjMzhhdD/iHNJFV4ieYH8HIVJKLdZaj4ukLdVaj+m4Unad7lC/FtW4mwaDc/kCOCx79/35o4seZV3VOh6Y8QAO846pUkofeYSKp54m6dprSbrm6haDCf1YVcdlKzajgWdG5DAjoXVQ2TiOwKhDM7DaZUIBIYRoS5e0gCqlMoDjgXuBG3c+rrXeHMkX2ind12zXSrglVIgOZzQaGH9UNgPGJfPtq2vJ+l8Za6bE8pWhgSOrQpx6/Bncct4FnPi/tzjgv6+w3rGQb47cyuyB4KodxZry6fzp/Wr+/OFKDhyYxAmj0zlyRCoxtl0P1S+E6HH8kd49GkAplUy4RVS0M601T323kUe+Ws/bV05nVEbsHoNPf9BPQX0BubG5XDfuOkI61GKkW4Ck3/4W+6jRRB92aKv7PbipmBSrmZdH5ZJjbz2li6fez2fPrqBwbRWOWAvDD0hvlUcIIcSudWgLqFLqbeA+IBq4eecW0Gb5XgI+amwBjaRlAh8DA4FbtNZPtHHe5cDlAFlZWRO2bNnS7s8g+i6tNevmFvPj/zZQEwiy/qhkPnEG0MBF/ZO4LikK44cfUPnyf6iqKOTHA+P5fKKJrR47hobJUD+eercFi9HAwUOSOWF0Pw4flkqUVb4tF6I72Y8W0HOBM4HxwMvAacCftNb/66AidqmuagENhjR3zVrBK79s5aSx6Txw2misu3gPs1Gdr47fz/4966vX89FvPiLasqP10rV4MeVPPEnGI//C4Gw5RYo/pPGGQkSZjJT5/NgNBqLauFdFYT2fPLWMhmofh5w7hKHT+rXPwwohRC/U6S2gSqkTgFKt9UKl1CH7er7WehswWimVDryvlHpba12yU55ngGcgXEH++lILsYNSiiFT+5E9MolfPtiI9aPtDE62suKIJJ4rKOP1ogquPOgofnvmWaR8+y3JL73EUfcvZtUwBz8cvZgfkz7G4U4jynsIczcP48tVJVhMBg4YkMhRI9I4fFgKKdG2PRdECNGtaK1fVUotBA4nPBXLyVrr1V1crF7F7Qty/RuL+XJVCVcePIBbjx6yx8HeihuKufrrq9lUvYm/HPCXFsFn7Wefsf3WP2Dql0agqhpLswC02h/g8pWbMSrFq6PzSLa03WNl25pKPnlqORabkZNvGkdabmz7PKwQQvQxHdkUcwAwUyl1HGADYpRSr2itz9uXi2ittyulVgAHAW/vKb8Q7c0WZeaQc4cy/MB0vn9jHZbXChk/PJafpjp5cHMxzxaUccWQ0Vz63/+SunIFcS+/zMjHv+R8U4D5JxiYPfxbVse+QrQnjxR9FMu3hydPVwrGZcZx5PA0jhyewoDkqL2eRF0I0eVKgB8I16N2pdR4rfWiLi5Tr/HG/K18tbqEv5w0ggum5ewx//qq9Vz11VXU++t58ognmZY+DQj3ZKl8/nlK//EQ9vHjyXjicUzx8U3n5bu8nL8sn60eHw8MycCwm9/BCWlOMofGc/DZQ3DGte6aK4QQYu90yjQskRbQve6CG3l3tEJr7VZKxQNzgVO11st3dY/uMEiC6P10SLPml2LmvLcBd70f+6FpfDPQwlc19cSZjFyRmcylGcnYKyuoeecdqt76H4GiIgqHJPDz8TnMji6gzFuJNZhLujqG+qpcNpWFXx3LiLdz8OBkDhmSwvQBiTilq64QnWI/uuD+FbgI2EjkPVBAa60P64DidbnOrF+11iilCIU0SwqqGZ8Vv+eTgNt+uI15RfN46oinmqZZASh/+mnK/vVIeKTb+/6GwbojcPyxqo7frtiMQcELI3OZGtd6FHO/L8iKbwsZc0SmTLclhBD7qEvnAW0egCql/gIs0FrPUkpNIjzdSjzgAYq11iOUUkcCDxGu2BXweKS77S5JACo6k9flZ95Hm1jxbSFGs4Hoo/vzSbriy6o64kxGfpuRzCUZScQbFPXffU/VG6/T8MOPhAyK/GNG8PMkJ9+F1lLnryNaZZFjPh5v3UBWF4Rw+YJYjAYm5cYzY1AyBwxMYni/GPnjR4gOsh8B6Fpg1E4D5vVanVW/rimu5Q9vL+OJc8eTEe/Y8wlAIBTAZDDhDrip8daQ5mw5B6evoJDaD2eReMUVKMOO8Qx9oRAHzF2D3WDgv6NzyW5jsKH6Ki+fPLWMsm11nPS7cWQM2btgWAghRFiXBqCdQQJQ0RWqS1zMeX8j+YvLcMZaiD8xk3dignxRUYvdYODc9ASuyEwh02bBV1BAzbvvUf3+ewS2FxGMjWLdKeP4cWiIH+uX4Q64iTLFMsxxImbvGDZut7GhtAGAOIeZaXmJTB+YxAEDEslNckp3XSHayX4EoO8AV2mtSzuwWN1GZ9Svc/Mr+O1/FuCwGPnPJVMYkrbn+TT/t+5/vL3ubZ4/6nmiLDtaLwMVFVS98QZJV13VIugECGmNBoxKsbbBQ7rVTHQbgw2VbK7lk6eW4fcEOfLSEeSOTvrVzyiEEH2NBKBCdKDtG6r56e0NlG6uJbF/FKkzs3jP7OXd0io0cHJKPNdkpTA8yo4OhXDNm0f1u+9S98WXaI8HPSCbdSeMZG6On++rF1Drq8VusjMu4VCSmE5tTRoLN9WzvcYDQFqMjUm5CUzOiWdiTgJDUqOlhVSI/bQfAehE4APCc1R7G9O11jM7oHhdrqPr189WFHH9G0vIjLfz8iWT99j6qbXm6WVP8+SSJzmo/0H84+B/NM3x6du8ma2XX0GgtJSct97ENnhw03muYIjrVm8hw2bhzwP77/L6+YvL+OKFlThiLBx/9WgS+7fumiuEEGLPJAAVooNprdmwsJRf3t9IbbmHfgNjyT4ui1kWH69sr6AhGOKQ+GguzUji8MQYDEoRrK+n9tNPqf3wI1zz54PWGIcPZdPxo/gl28f3lfMpdYcbWYYnjGB03GFYfKPYUmJlweYqimvDAWmMzcTEnAQm5sQzPiue0XsxV54QImw/AtCVwL+B5TSb/1Nr/V0HFK/LdWT9+tWqEi777wLGZsbxwoWTiHdadps/GApy37z7eHPtm8wcMJO7p9+N2RAetda9ZAnbrroagMynnsQ+dmzTeaVePxcs38TSOhd3DUjnyqyUXd6jeFMN82blc+QlI7BH7748Qgghdk0CUCE6SdAfYtVP21n46WYaanxkDI1n2PHZfGL28WJhOSW+ALl2Cxf3T+KsfonERLp/+UtKqfvsU2o++QTP0mUA2MaOoeTIMSweZOSn+mUsK1uGRpNgS2By2hSGRE/D6B3MuqIg8zZVsrEs3GXXoGBoWgxjs+IYlxnHuKw48pKipJVUiDbsRwA6X2s9qSPL1J10ZP1a7w3wyFfruPHIIdgtu5/jE+ChBQ/x0sqXuHjkxfx+/O+bXkWomz2bwt/fiCklhaxn/o0lJ6fpnNX1bs5blk+lP8hTw7M5Jrn19CkBX5BNy8oZNDG13Z5NCCH6OglAhehkAV+QFd8XsujzLbjr/GSPSmTc8TnMt4d4vqCc+bUNOIwGzkhL4JL+SQx27pgT1LdtG7WffErd55/jWbUKAOugQYSOOpBlY2KZxyZ+KfqFCk8FADkxOUxLn8bI+CkYvHmsK/azeGsVS7ZVU+cJAOC0GBnRP5ZR/WMZnRHLyP6x5CY6JSgVfd5+BKD/JNz1dhYtu+D2ymlY2rt+9QdD/Pu7jVxyYO4+99Qoqi/ih8IfOGPIGS3SG+bOo+yxR8l45BFMiYlN6a5giMlzVmFU8J/ReYyJbt2911Xr45OnllGyuZaz/jRZutwKIUQ7kQBUiC7i8wRY/m0Bi7/YitcVIGt4AhOOzaYszcrzBWW8X1KNT2umxDo5Nz2RE5LjcBibjdZYUEj9119R9+VXuBYtglAIc3o6joMPonTqIJakuvmlfAGLShbhDrhRKAbHD2Zi2kTGp0wg0Tic/JIQKwprWFZYw6rttXgD4V6DUVYTQ9OiGZ4ew7B+MQzvF8OQtGhs5j23RAjRW+xHADq7jWSZhmUv1HsDXP3qIr5fV8ajZ49j5pj0PZ5T6ankjTVvcOWYKzGoHb8btda4Fy/BMX5c035bg7N9XVHLUKeN/rbW3WkrCuv56ImleOr8HHHJcAaM23XXXCGEEPtGAlAhupjPHWD5dwUs/Xob7jo//QbGMuGYHByDYnirpIpXt1eQ7/YSYzJwSmoC5/VLYORO39YHKiup/+Yb6r6ZTcMvv6BdLpTFgmPKFCwHTWfzmGSWsI0FJQtYWroUTzD8juiA2AGMTRnL2JSxjEwcg8+dwIrttaworGF1US2ri+qo94ZbSg0KcpOcDEmLZnBq4xJFTqITk9HQ6rmE6On2NQDta9qrfi2t83DJS/NZXVTH334zkjMnZe3xnKL6Ii7/8nKKGop49bhXm+b41MEgxX/5K9Vvvkn2q6/gmDCh6RytNQ9uLibbZuXMfgm7vPaWFRV8/twKzFYjx189mpTsmF/9jEIIIXaQAFSIbsLvC7L6pyIWf7GF+iovSZlRjD86m7yxScytc/NqUQUflVXjDWlGR9s5PTWBk1PjSLaYW1wn5PPhmj+fhu+/p/677/Ft3gyAuX9/nNOnYZk2mU1DYlniWseCkgUsK1tGna8OgDhrHGOTxzImZQwjk0YyNH4YtQ1mVhXVsKqojtVFtawvqWNLpYvGXxEWo4G8ZCcDUqIYkBRZJ0eRm+TEaZUBj0TPtR8toHe2la61/kv7lar7aI/6Nb+sngtfnEd5nY8nzh3HYUP3/K7lxuqNXP7l5bgDbh4/7HHGp44HIOTxUHjzzdR/9TWJl19O8u9/19Ty6QuFuGntNv5XXMUF6Yk8MCRzl9df80sRS7/exvFXjyYq3rbLfEIIIfaPBKBCdDPBQIh180pY9PkWqktcRCVYGX1IJsMP7IfLrHinpIo3iypZXu/GqOCQ+BhOT4vn6KRY7G20RPq2bKH+xx9pmDMH19x5hOrCwaZ1+DCcU6dhmzieksFJLHdtYEnZEpaWLWVTzaam83NichieOJyRSSMZmTSSIfFDUNrKxrJ61pXUsbakjvUl9eSX1bO10kWo2a+O9FgbOUnO8JLoICfRSW6Sk8wEh3TnFd3efgSgNzXbtQEnAKu11pe0e+G6gfaoX7dUNHDZfxbwwGljGJsZt8f8y8qWcfXXV2MxWHjqiKeaWj6DNTVsu/oa3IsWkXrHHSScf17TOTX+AJeu2MyP1fXcmpvG77NTW3XJDYU0FQX1JGeF5xkNBkMYpWeHEEJ0CAlAheimQiHNluXlLP16G4XrqjFZjQyb1o/Rh2UQl+JgTYObt4ureLekiu1eP1FGA8cnxzEzJY6D4qOwGFr/8aQDATwrV9IwZw4NP8/BtXgx+P2gFNahQ3FMnIhj4kQCowezRm9nZflKVpSvYEXFCkpd4WlfFIrsmGyGJAxhaMLQpiXJnoQ3EGRLhYuNpfVsLKtnY1kDm8ob2FLRQJXL31QOpcJzlmbGO8hMcJCZYCcrIbydEW8nJdqGUQZBEl3s13bBVUpZgc+11oe0X6m6j/aqX0MhvdeDni0oXsC9c+/l0cMeJTN6RytmzaxZFP3xT6Q/+AAxxxzTlO4Khjhu4To2uDz8c2gWZ6S17nrr9wb54vmVbFtVyTl3TyEmyf6rn0kIIcSuSQAqRA9QtrWOpd9sY/38EkIhTc6oJEbO6E/m8ARQ8HN1Pf8rruKTsmrqgiFiTUaOSYrlxJQ4ZuwiGIVwlzX30mW4FszHtWAB7sVL0J7w+6Hm7CwcY8diGzMGx9ix1GTEsap6LWuq1rC2ci1rKtdQWF/YdK0EWwID4wYyKH5Qi7XT7ASgxuVnc0UDmyvCQem2SjfbKl1sq3JRXOuh+a8ck0GRFmujf5yd/vF2MuLs9IuzkxZrIz02vI6xmdocWESI9tIOAWg8MF9rPbAdi9VtdGb9uqlmE7mxuUB4zk+jIdyDQvt8KEt4ECFfQQGWjIxW5z66pYRx0Q4OSohudayh2svHTy6jfFsdB54xiNGH7rprrhBCiPYhAagQPUhDjZcV3xWy8odC3HV+ohNtjDgonWHT03HEWPCGQnxXWceHZdV8Xl5DbSBEjMnA0UmxHJMUyyHx0ThNu+76qn0+3CtX4l64ENeSJbiXLCVYXg6AcjiwjxyJbdTI8HrkSNwpMayrWseayjVsqN7A+qr1bKjegDvgbrpmmjON3Jhc8uLyyIvNIzc2l9zYXBJtiU0BpMcfpLDazdZKF4VVbrZXuymsdlNYFV6X1HpadO0FcFiMpMXaSIuxkdq0WJvWKdE2kqOt0tVX7Lf96IK7HGj8pBqBZOAvWuvHO6J8Xa2z6tfXVr/G3+f/nUcOfYRDMg9pSncvWULBjTeS8cgj2EeNanHOD5V1OI0Gxsc6d3ndisJ6Pnp8KR5XgKMvHUHO6KSOegQhhBDNSAAqRA8UDITIX1LGyh8KKVxbjcGoyBuXzIiD+tN/UBzKoPCGQnwfCUa/KK+lOhDEalAcGBfN0UkxHJUUS5rVvNv7aK3xFxbiXrwE95IluJcuxbt2Ldof7k5riI3FPmIEthEjsA0fhnXIUExZGWx3F7OhagPrq9ezqWYT+TX5bKrZ1CIwjTJHkRWTRXZ0Ntmx2WRFZ5Edk01mdCZx1rgWrZv+YIjSOi/FNW6KajwUVXvC65pwcFpS66W0zoM/2Pr3VrTNRHK0leQoa3gdbSUpykpSlIVEp5WkaCuJTgtJUda9mvBe9B37EYBmN9sNACVa60D7l6x76Oj6VWvNk0uf5OmlT3NI5iE8OONBbKbwoED1331HwQ2/w5SSQtbzz2HJ3NFy+U5xJb9bs43JsU7eHjtglz0lfnl/I2vmFHH8NWOa3v0UQgjR8SQAFaKHqypuYOX321nzSxFeV4DoRBtDpqYxdGoascnh6Vr8Ic28mnq+KK/ls/Iatnh8AIyJtnNYQgyHJcYwLtqBaS/ew9I+H5716/GsWIlnxQrcK1fgXbceAuG/s5XdjnXwIGxDh2EbOgTr4MFYBw5ExURT0lDSFJBuqd3C1rqtbKndQlFDESEdarqH0+wkIyqDjOgMMqMzyYjKoF9UP9Kd6aRHpeMwt540PhTSVLv9FNd4KKn1UFbnpazeG15HltI6DxX1Puq8bccENrOBRKeVBKeFeKeFRKeFeIeFeIeZOGd4He+wEBdZx9rNOCxG6QrcS+1tAKqU2vWcHoDWurL9StV9dGT9GgwFuW/efby59k1OHngyd027C5MhPKp29fvvU/THP2EbMoTMZ/6NKSnccqm15vGtpdybX8T0uCheHJlDrLn1SNyeBj82pxkd0rjr/ThiWs8DKoQQouNIACpELxHwBclfUsaaOUVsW1MFGvoNjGXotH4MHJ+CxR7+Q0xrzVqXhy/Ka/mivIZFtS5CQKzJyIz4aA5NiOaQhGjS25icfVdCPh++DRvwrF6DZ+0avGvW4lmzhlBtbVMeU0oK1oEDsQ4ahHXQQCx5A7Dk5mCKj8cX9FFQX8CWmi0U1BdQUFewY11XgC/ka3G/OGsc/Zz9SI9KJ82ZRpojjTRnGqnOVNIcaSQ5kjAbdt266/EHqWjwUVHvpbzeS3mdj4oGH5UNXiob/JF1OK2qwUeDL7jLa5mNilh7OCiNs5uJtZuJaVzbTMRE9mNs4f1om5noSHq0zYRZRtrstvYhAN1EuOttW99EaK11XrsXrhvoyPr15+0/c8WXV3DxyIv5/fjfN33JU//Dj2y77DIc06aS8dhjGKOiAAhqzZ/WF/JiYTknp8TxyLAsrDu9+661Zu6sfNb8XMTpt0/CGWftkLILIYTYPQlAheiF6io9rJtXzJo5xVSXuDCaDeSMSmTQpFSyRyRiatbVtNof4Puqer6trGV2ZR1F3nD32gF2KwfER3FAfBTT46JazTe6J1prAkVFeDdswLt+Pd71kfXGjU0DHQEY4+Ox5OZiycvFmpuLJScHS1YW5sxMDDYbIR2izFVGUUMR2+u3s71hO0X1RU3rYlcxDf6GFvc2KAOJtkSSHcmkOFJIsaeE144Ukh3JJNmTSLInEW+NbxrMZHe8gSA1Lj9VLj9VLh/VLh9VLj817vBS7fJT4/ZR7Qpv13n91Lj81HkD7OlXqc1sIMoaDkajrOHFaTURbTPhtBpxWk04LeG0qMb9SJrD0njciMNqwmE27vVoomLPfu0gRL1dR9SvIR3CoMKB4+LSxYxLGdfiuA4EqPzvK8Sfew4Gy44vyYJac8mKTQx02PhjXj8MO/VKCPpDfP2f1ayfX8KwA/px8DlDZJoVIYToIhKACtGLaa0p2VTL2rnFbFxUirvOj9lmJG9MMgMnppA5LAGjydAi/5oGD99V1vFTdT1zquupD4a7xg512jggLoqpcVFMjnWSuof3R3dZpmAQf2Eh3vx8fJs248vPx7dpE95NmwhWVLTIa0pLw5KVhSU7G3NGBuaM/lgyMjBnZGBMSGhqFanz1VHcUEyJq4TihmKKG4opc5dR4iqhzFVGqauUam91q7IYlIEEWwJJ9iQSbYkk2hNJsCWQaEskwR5ex9viSbAlEG+Lx2rctxaTUEhT7wtQ4/JT6/FT5wlEFj+17si+N0C9N0C9Z8c6nOanwRuk3hvAFwjt+WYRNrMBp8WE3WLEYTHisJiwm8PbdouxadsW2babw+k28459m9mI3WLAatpxzGYyhNdmY5+ZImd/AlCl1ExgRmT3W631R+1fsu6hvevXLbVbuPHbG7lr2l2MTh7dlB7y+Sh76J8kXHoJ5pSUFudU+gP4Q5pUq5lASLf5GoGnwc+nTy9n+/pqpszMY8Kx2dJtXgghutCu6tfWL00IIXocpRRpebGk5cVy0BmDKFxXzfoFJeQvLmPt3GKsDhM5o5PIG5tM5vAEzBYjw6LsDIuyc2VWCoGQZlmdi5+q6/mxqp7Xiip4vjA8Km6O3cLkWCeTY8MB6UCHtVWrQ5tlMhrDQWVWFhzS8liwpgbf1q34tmzFt3UL/i1b8W3dSt3XXxOsbPkanXI4sPRPx5Sejjk9nfh+6aT068f49FzM6QdgSk5GmXb8KvMGvZS5yih3lzctZe4yKtwVTev8mnwq3BWtuvw2spvs4WDUGk+cLY44a3iJtcY2bcdYY4i1xhJjCa+jrFHE2PYvWG/kD4ZoiASqDd4gLl8Aly9IgzdAg69lWniJbHuDuPxB3L4AxbV+3P4g7kgety+IL7j3gW1zJoPCZjZijQSlVpMBa+O62balcd8UDmYtJgMWYzh9521rs31zs3XjdcxGA2ajapGnMa27BBNKqfuBScCrkaQblFLTtdZ3dGGxeoTFpYu5/pvrUagW74MH6+spuPY6XL/8gnXoUOJ+c3LTsS1uL+cszSfWbOTj8YN2+Q773A/yKd5UwxEXD2fIlLSOfhQhhBD7SVpAhejFgv4QW1dXsnFhKZuXl+N1BTBZDGQNTyRvbBLZo5KwOVsHTb5QiBV1bubVNDCvpoG5NQ1U+MMD+sSYDIyNdjA+xsn4GAfjYhz73G13d0INDfgKC/EXFOIvKMBfWICvoBB/0XYC24sIVle3PMFgwJSUhCktDXNqamSdgik1FVNyMqaUFEzJyRiioloEMFprGvwNVHoqqfBUUOmppNpTTZW3iipPeKn0htOqvdXUeGuo99fvstwGZSDaEk2MJabNdbQlmihzFFGWKKLMUURbonGanUSbo3FanESZo7AYO2aQlGBI4/EHmwLTxm2PPxRZhxdvZN8bCB/zRPI07nsDQbyBUHjxh7c9/nCA6/WHIuvIfiC0x27J+8psVM0CUgODU6N47bKpv/q6+zEK7jJgrNbhCEopZQQWa61H7/7Mnqm96tfPNn3GH3/8I/2i+vHk4U+SFZMFgL+0lG2XX4F3wwbS772H2JNOajpnaZ2L85bl4w9pXh6Vy5S4qFbX1VqjlMLnDlCxvYF+A2J/dVmFEEL8etICKkQfZDQbyB2dRO7oJILBENvXVZO/pIxNS8rIX1KGMij6DYgle2Qi2SMTSUh3opTCYgjPqzc+1smVhP/Ay3d7mVvTwOJaF4trXTy2tYTG2VAybGbGRDsYHeVgVLSdUdH2/Q5KDU4ntsGDsQ0e3ObxUEMD/uJi/NuL8G/fTqCkBH9JMYHiEryb8mmYM4dQfetAUdnt4YA0ORlTYiKmpESMiYlEJyUTn5SIKTERY8IgjOmJGJyONlvb/CE/Nd4aarw1VHurqfXWUuOrabWu99VT56uj1FVKna+OOl8dnqCn1fV2ZjKYiDJH4TQ7mxaH2YHD5Nixb3LgMDuwm+xN283TGpfGfbPBjNGgmt4p7SxaawIhjS8QwhcI4Y8Epb7gjv3GYzvS9I70YDiPf6dj4SW8nRTVpYPLxAGNzfUS8ezBnO1zuOX7WxifMp5HDn2EOFscAL4tW9h6yaUEqqrIfOopog46sOmcbypq+e3KzSSYjbwzdiCDnbZW1928vJwlX23j+GtGY7GbJPgUQogeQFpAheiDdEhTuqWOTUvL2LKygvJt4YAtKt5K1shEskck0n9IPFb7rgOWhmCQ5XVuFkUC0uX1Lja7d3RpTbeaGRllZ0Skq+/wKBu5divGTuhGGayvJ1BaRqC0lEDZTuvycgIVFQTLywnW1LR5vrJYMCYmYoqPx5iQgDEuDmN8PMa4WIzx8Zji4sJpcXEYY2MxxMbtMmht5A/6qfPX0eBroM5fR72vnnp/eGnwN9Dgb6De12zbX4/L78IVcDWluQIuXH4XQb3r0Xp3ZjKYwkGp0Y7dbMdmtGEz2bCbdmzbTDasRit2kx2r0dq0v6s0i9GCzWgLr03htcVgwWK0NA0s05PsRwvo2cD9wGzCI+LOAG7TWr/ZQUXsUu1RvwZDQV5Z/QpnDT2rxTvWwepqCq67npRbb8U+auSOdK05esE6AF4dndfmu+grvi/k+9fXkpQZzQnXjpFpVoQQopuRQYiEELtUX+Vl66oKtqyoYNvqSvyeIMqgSMmOJnNYAhlD4knLi8Vo3n1wUeMPsKLezfI6N8vr3Syrc5Hv9ja1lNoMisFOG8OddoY4bQxy2hjssJJhs+zVe6XtTft8BCorCZSVE6ysIFBZFVlXEqysIlhZSaCqimB1NcGqKkJ1dbu+mMmEMTYWY0wMxpgYDE3raIwxsRhjojFERWOMjsIQFbVjOzo6vO9woAx7Dt601vhCvqbgtPnaHXA3Lc33PUEPnoAHV8CFJxDebp7euPYGvbgD7l/1MzUbzE1BavPAtPm22Wjekd6YZjC3WpsNZsxGc9vbBjPRlmjGpoz9VeWFfZqG5QngNa31T0qpfoTfAwWYp7Uu/tUF6aY6on6t++ornAcdhMFqbepCCxDSGr/WWA0Girw+ooxGok0tR7DWIc0vH+Sz6PMtZI9K5KhLR2CxSYcuIYTobiQAFULslWAgRPHGGgrWVrFtdSWlW+rQIY3JbKDfoDjSI0tqdsweA1IATzDEepeHVfUeVje4WV3vYVWDmzJfoCmP3WBgkMPKIKeNAQ4reXZr09pp2vP0KZ1F+/0Ea2oIVlURqKoiVFsb3q+uCa8jS6i2lmBdHcHaGkK1dQRrayG451ZLg8MRCU6jMDidOxaHA4PT0WzbicHu2JHuiCx2O8ruwOCwh7dttn0euEdrjTfoxRv0NgWlnqAHb8DblN5iCXjxhXx4g158wdZrX8iHP+gP70e2G9N9QR/+kD+cFgpvN6btjYFxA3nvpPf26fnasg8B6A3AWUA/4C3gda314l9dgG6uPetXHQxS+tA/qXzhBVJuuYXESy9pOuYOhrhhzVZCWvPMiJxdfin187sbWPzFVkYclM6MswZjkGlWhBCiW5J3QIUQe8VoMtB/SDz9h8QzZWYeXneA7euqKFhTRcHaKuZ+kN+ULzU3hn4DY8MBaW5sm112bUYDo6IdjIp2tEiv8gdY3+BhncvLugYP610efqmu552Sqhb5Ui0m8hxWcuxWcmxWsu0Wsu1WcuwW4kzGTh0ZVZnN4QGPkpLYl7cPtdZol4tgfT2hujqCdXWEmrbrCTU0hPcb6gk2NBCqb9xvwF9VFT7e0EDI5UJ7vftQYIWyh4NRg82Gstsw2CLBqd2GwWprvbZZw3mtNqw2KzarlThrJM1ixWBzoqwJKKs1nNdqQVmaLcZf/4VB+P3RQMsgNRKoNm2H/JgN7Tf41V6W6xHgEaVUNuFA9AWllB14nXAwuq5TC9TDhBoaKLzlVuq/+Yb4c84m4cILmo6V+fxctHwTC2td/N+AdHb3v3r4gek4YiyMOTyz24yMLIQQYu9JC6gQYp946v1s31DN9g3VFK2vpmxrXXi0UwUJ/Zyk5saQlhtLal4MCWlO1D7OJekKhtjs9pLv8pLfbL3Z7aW0WasphEfkzbJZybRZmpYMm5lMm4X+ts4PUDuD9vsJud3hpcFFyOUi5IoEp243IVfkmMtFyO1Cu9yEvB6020PI4wmnRba1J5LmcaM9XkIeD/j3rvVxl0wmlMWCwWxuGZhaLKjmaY3bZjPKYm6532KJpJlMzdLC28bYWJzTp//qn+n+zAPa7NxxwAvAaK1192mub0ftUb/6i4rYdtXVeNetI/WOO0g479ymY+saPJy3LJ9Sn5/Hh2VzQkpcq/Nrytys/nk7U2bm9br/00II0VtJC6gQol3YoszkjU0mb2wyAD5PgOL8Gko21VKcX0v+4jJW/1QEgMVmJDkrmuTsGFKyoknOiiY22b7boNRhNDA8ys7wKHurYw3BIFvdPra4fWx2e9ns8bHN7SPf7eW7qjpcO813aTcY6G8zk241k261kG4Lr1MtJvpZzaRazSSaTV3y/un+UmYzRrMZY0xMh1xfBwJor5eQ1xsJUL1oX2Tb6wtvNx73+tBeD9rnI+Tzhfd9jYsX7ffvOObzo/2Rtc9HqKEhnM/vb8rXtB1Z9tRt2TpoIHkfftghP4fdUUqZgGMJt4IeDnwL3N3pBelBQm43wdoaMv/9NFEHHdSUHghpLliejzsU4t1xAxkf42x1bnF+DZ88tYxQUDP8gHRiklr/bhBCCNFzSAAqhPhVLDYTWcMTyRqeCIS7T9aUuineVENJfi2lW2pZNnsboUC4t4XFbiI5K4qkjGiSMqJI7B9FQj/nXr1P6jQaGRYZVXdnWmsq/UEKvD62un1s9/rY7vFT6PWx3evn28o6Snx+du7zYVaKFIuJNKuZFIuZZIuJFIuZlGbrRIuJJIsJZzt0L+3ulMmEMpkwOFsHAp1NB4PhgNjni6z9EIgEqIEAGDr330MpdSRwNnAcMA94A7hca93QqQXpgax5eQz87DOUJTxSbSCkUQpMBsUTw7JJsYZ7Luxs46JSvnxxFc5YCydcO0aCTyGE6AUkABVCtCulFHGpDuJSHQyd2g8ID2xUub2Bsq11lG6to2xLLSu/LyTgD7dYKoMiPs0RDkbTnST0Cy8xSba9HmBEKUViJFgcs9P7po38IU2pz0+x10+xz0+R10+JN7wu8wXY7PYyt6aeSn/bLW92g4Eki4kkc/g+CWYjCWYTiWYTCebwfrzZFF5MRuLMRix7MbKtaJsyGsPvlFq7dL7P5m4HXgNu0lpX7SmzaKkx+Nzm8XH1yi0cmhjNjTlpTIht+8uO5d8W8P2b60jNieH4q0djj5ZpVoQQojeQAFQI0eGMJkO4K25WNMMjaaGQpqbURXlBPRUF9VQU1lO0oZr180tanBeX6iChXzigjUtzEJcS3t6faRfMBkX/yPuhu+MPacr9fkp9AUq9fir8Acp9Acoj6wp/gBKvn9X1bir9Qdyh0C6v5TAamoLRWJOJWJNxx2I2EmOKLMbGbQPRkbRooxHTPr5DKzqO1vqwri5DT/dRaTU3rd1GUGsuzUjabd64VAeDJqRw2AXDMFl6f+8DIYToKyQAFUJ0CYNBEZ/mJD7NyaCJqU3pPneAqmIXlUUNVBU1UFncQPGmWtYvLKV5/1lHrIX4VAexyXZiku3EJoe3Y5PtWNoYjXdfmA2KflYL/awWiN5zflcwRJU/QKU/HJxW+4NUB4JU+wNUBYJURdJqA0E2u73UBILUBII0BHcduDayGxRRkWA0ymQgymgkymggyhReO42RNJMBh9GA02jEaTTgMISP2Y3hdEckzW409Kh3XkXv4A6GuGtDIf/ZXsG4aAdPj8gm2966Zdtd72Pb6koGT0ojc1gCmcMSuqC0QgghOpIEoEKIbsViN5GaG0NqbstBdgK+IDVlbqpLXVSX7Fg2LSvHXddy5FZblJmYJDsxiTaiE21EJ4TXMYl2ohNtmK3t25oSDvD23LK6M39IUxsIUhcMB6R1gXCQWhsIUhcIURcMp9UHQ9RF0uqDQQq9PhpcIeoDIRqCQdyhfRvN3G5Q2I0G7JGAtPnaZlTYDIbIorA1phsUVoMBm9GA1RDOY42kWZXC0rhtCG9bmqVbDAYsSklrbh+2zuXh9aJKrslK4Q+5aW12Ta8orOfjJ5fhrvXRf3A8zthu0/VaCCFEO5IAVAjRI5gsRhL7hwct2pnPHaCm3E1tmZuayFJX4aZsWx35S8uaBkBqZHWYiIq3EZVgDa/jrUTFW3HGWXHGhtcWW8dP4WI2RN5b/ZW/igMhTUMwiCsUwhUM0dBiCeIOhtNdwRDuUMttT0jjDoZwR/KW+cJp3tCO455giD231e6ZASIBqcKsDJF1JEiNBKgWpTCpHXnMBiL7BkwqPGiUSammVuprslLaoWRdTyn1IHAi4AM2Ahdrrasjx24HLgWCwPVa688j6ccAjwBG4Dmt9f2R9FzCAyQlAguB87XWPqWUFfgPMAGoAM7UWm/ujOcbE+1gztRhZOziS5r8JWV8+eIqLDYjJ984XoJPIYToxSQAFUL0eBa7ieTMaJIzW/eX1SGNq85HXYWH2nI3dZUe6qu8kcVDSX4tnobWc1+arEacsRacsVYcMZbwEmvBHm1p2rdHW7BHmzGZu/b9NJNBEWswEdtB19da49cab0jjCYXwRgJUbyQ49WqNr1mar3Gtw9u+pu1wnkBk26c1/mb5/CHCx3Q4QPbrIP5Q+N7+SN5AZDugNXl2W68JQIEvgdu11gGl1N8JD3j0B6XUcMLTvYwA0oGvlFKDI+c8ARwJFADzlVKztNargL8DD2ut31BKPU04eH0qsq7SWg9USp0VyXdmZz3groLPhZ9t5pf380nJjubYK0cTFS/BpxBC9GYSgAohejVlUOFWzVgraXlth2h+X5CGai+uGi/11V4aqn001HhpqA4v5QX1uGq8+Dxtj45rthnDgWm0GVuUBVuUGbvTjC0qsjRuO8xYnSZsDvNeTTvTXSgVbpm0GCAaGQymI2itv2i2+wtwWmT7JOANrbUX2KSU2gBMjhzboLXOB1BKvQGcpJRaDRwGnBPJ8zLhOUqfilzr7kj628DjSimltd63PtztzGQxMnhyKoeeN1QGGxJCiD5AAlAhRJ9nthjDo+umtD19SyO/L4i71ocrsrjrfLjr/LjrI+tIS2vZ1jo89X6CgV13XDVZDNicZqwOE1aHGYvdFNk2YbU3phmx2E1YbKbwcbsJsy2cZjIbOryLsOgylwBvRrb7Ew5IGxVE0gC27ZQ+hXC322qtdaCN/P0bz4m0tNZE8pfvXACl1OXA5QBZWVm/8nFaW7+gBINBMWB8CqMPzWi8Z7vfRwghRPfT4QGoUsoILAAKtdYn7HRsBvAvYDRwltb67Uj6WMLf1sYQfuflXq31mwghRBcyW4yYk+zEJNn3mFdrTcAXwl3vw1Pvx9Pgx+sK4G3w42kI4HH5m7Z97gB1FR7KC/z4XIFdtrQ2pwwKi80YDkhtJsxWY3jfGg5SzdbWi8kS2bYYMVmNmK0GTOZwusliwGwxYjApCQQ6iFLqKyCtjUN/1Fp/EMnzRyAAvNqZZduZ1voZ4BmAiRMntlsLqbvOx3evr2PjolKyhicwYHyKfN6EEKKP6YwW0BuA1YSDyZ1tBS4Cbt4p3QVcoLVer5RKBxYqpT5vHJBBCCG6O6VUJPCzE5O454C1uVBI43OHA1OfJ4DPHcTnDuCNpPm9wXC6J4h/p3VDjQ+/N4jfE8TvDe62FbbtcoPRYsRsMWA0NwaoO9ZGswGTyYDR0rg2YjQZMJkNGE0Ko8mI0awwmgwtFoNJ7WJfYTBG0oyq6ZjB0PsCYa31Ebs7rpS6CDgBOLxZt9hCILNZtoxIGrtIrwDilFKmSCto8/yN1ypQSpmA2Ej+TrFxUSnfvb4WryvA1JPzGHdk+7esCiGE6P46NABVSmUAxwP3AjfufLxx9D2lVGin9HXNtrcrpUqBZKC6A4srhBDdgsGgwu+NOs2/+lrBYIiAN4jfGyLgCwelfl+QgDdIwBcKb/uabXuDBPwhAv4QQV9kO7IO+kN4XYHI9o60oD9EIBBqMU9rezA0BqdGhcEY3m4KUo2KuFQHx14xqn1v2kUiI9reChystXY1OzQLeE0p9U/CgxANAuYBChgUGfG2kPBARedorbVSajbhd0jfAC4EPmh2rQuBOZHj33TW+5/Fm2r47JkVJGdFc9LvhrU5mrUQQoi+oaNbQP9FuELdi6nc26aUmgxYCA9Lv/OxDn1HRQghejqj0YDRYcC6+9dbfzWtNaGQDgekgUhgGtDh7cgSCoQI+jXBYIhQoHG9I18o2GzdIo8mFAynNx0LapxxvWq01McBK/BlpOX3F631lVrrlUqpt4BVhLvmXqO1DgIopa4FPic8DcsLWuuVkWv9AXhDKXUPsBh4PpL+PPDfyEBGlYSD1k6RlhvLMVeMJGd0EkZjzxmASwghRPvrsABUKXUCUKq1XqiUOmQ/r9EP+C9woda6VT+yjnpHRQghxL5RSmE0Kgku9pPWeuBujt1LuCfRzumfAJ+0kZ7PjpFym6d7gNN/XUn334BxvWbKHCGEEL9CR/6lcAAwUym1mXA3oMOUUq/s7clKqRjgY8KDM/yyp/xCCCGEEEIIIbq3DgtAtda3a60ztNY5hLv5fKO1Pm9vzlVKWYD3gP80jowrhBBCCCGEEKJn6/S+UkqpvyilZka2JymlCgh3Cfq3Uqrx/ZUzgBnARUqpJZFlbGeXVQghhBBCCCFE++mMaVjQWn8LfBvZvrNZ+nzCQ8TvnP8VYK+76wohhBBCCCGE6P5ktAghhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1Caa27ugztQilVBmxpp8slAeXtdK2eoK89L/S9Z+5rzwvyzH1Bez1vttY6uR2u0yu1Y/3a1z6f0Peeua89L/S9Z+5rzwt975nb83nbrF97TQDanpRSC7TWE7u6HJ2lrz0v9L1n7mvPC/LMfUFfe96eri/+e/W1Z+5rzwt975n72vNC33vmznhe6YIrhBBCCCGEEKJTSAAqhBBCCCGEEKJTSADatme6ugCdrK89L/S9Z+5rzwvyzH1BX3venq4v/nv1tWfua88Lfe+Z+9rzQt975g5/XnkHVAghhBBCCCFEp5AWUCGEEEIIIYQQnUICUCGEEEIIIYQQnUIC0GaUUscopdYqpTYopW7r6vJ0BKXUC0qpUqXUimZpCUqpL5VS6yPr+K4sY3tSSmUqpWYrpVYppVYqpW6IpPfmZ7YppeYppZZGnvnPkfRcpdTcyOf7TaWUpavL2p6UUkal1GKl1EeR/d7+vJuVUsuVUkuUUgsiab32cw2glIpTSr2tlFqjlFqtlJrW25+5N5C6tXd+Nvta/Sp1q9Stve0z3agr6lYJQCOUUkbgCeBYYDhwtlJqeNeWqkO8BByzU9ptwNda60HA15H93iIA3KS1Hg5MBa6J/Lv25mf2AodprccAY4FjlFJTgb8DD2utBwJVwKVdV8QOcQOwutl+b39egEO11mObzdfVmz/XAI8An2mthwJjCP979/Zn7tGkbu3Vn82+Vr9K3RrW258XpG7t8LpVAtAdJgMbtNb5Wmsf8AZwUheXqd1prb8HKndKPgl4ObL9MnByZ5apI2mti7TWiyLbdYT/U/Wndz+z1lrXR3bNkUUDhwFvR9J71TMrpTKA44HnIvuKXvy8u9FrP9dKqVhgBvA8gNbap7Wuphc/cy8hdWtYr/ts9rX6VepWqVsj273qmbuqbpUAdIf+wLZm+wWRtL4gVWtdFNkuBlK7sjAdRSmVA4wD5tLLnznSZWYJUAp8CWwEqrXWgUiW3vb5/hdwKxCK7CfSu58Xwn/4fKGUWqiUujyS1ps/17lAGfBipDvYc0opJ737mXsDqVvDevVns6/Ur1K3St1KL/tM00V1qwSgogUdnpen183No5SKAt4Bfqe1rm1+rDc+s9Y6qLUeC2QQboEY2rUl6jhKqROAUq31wq4uSyc7UGs9nnDXxmuUUjOaH+yFn2sTMB54Sms9Dmhgpy5BvfCZRS/Rmz+bfal+lbq1T5C6tRPqVglAdygEMpvtZ0TS+oISpVQ/gMi6tIvL066UUmbCleOrWut3I8m9+pkbRbpRzAamAXFKKVPkUG/6fB8AzFRKbSbcve8wwu8z9NbnBUBrXRhZlwLvEf5jqDd/rguAAq313Mj+24Qrzd78zL2B1K303s9mX61fpW7tlc8LSN1KJ9WtEoDuMB8YFBndywKcBczq4jJ1llnAhZHtC4EPurAs7SryvsLzwGqt9T+bHerNz5yslIqLbNuBIwm/mzMbOC2Srdc8s9b6dq11htY6h/D/22+01ufSS58XQCnlVEpFN24DRwEr6MWfa611MbBNKTUkknQ4sIpe/My9hNStYb3us9nX6lepW6VujWTrVc/cVXWrCreqCgCl1HGE+7sbgRe01vd2bYnan1LqdeAQIAkoAe4C3gfeArKALcAZWuudB1PokZRSBwI/AMvZ8Q7DHYTfU+mtzzya8AvjRsJfMr2ltf6LUiqP8LeYCcBi4DyttbfrStr+lFKHADdrrU/ozc8bebb3Irsm4DWt9b1KqUR66ecaQCk1lvBgGBYgH7iYyGecXvrMvYHUrb3zs9nX6lepW6VupZd9pht1Rd0qAagQQgghhBBCiE4hXXCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFaEdKqUSl1JLIUqyUKoxs1yulnuyA+72klNqklLpyH8/7pHFC7f2459jIvH77c6498vPwKaWS9ucaQggh+h6pX/d4rtSvoscwdXUBhOhNtNYVwFgApdTdQL3W+h8dfNtbtNZv78sJWuv9quAixgITgU/29USttRsYq5Ta/CvuL4QQoo+R+nWP95X6VfQY0gIqRCdQSh2ilPoosn23UuplpdQPSqktSqlTlFIPKKWWK6U+U0qZI/kmKKW+U0otVEp9rpTqtxf3eUkp9ZRS6helVH7kvi8opVYrpV5qlm+zUipJKZUTOfasUmqlUuoLpZQ9kudbpdTEyHZS5BwL8BfgzMg3rWcqpZyRe8xTSi1WSp0UOWdEJG2JUmqZUmpQu/9ghRBC9GlSv0r9KnoeCUCF6BoDgMOAmcArwGyt9SjADRwfqSQfA07TWk8AXgDu3ctrxwPTgN8Ds4CHgRHAKKXU2DbyDwKe0FqPAKqBU3d1Ya21D7gTeFNrPVZr/SbwR+AbrfVk4FDgQaWUE7gSeERrPZbwN7oFe1l+IYQQYn9J/SpENyddcIXoGp9qrf1KqeWAEfgskr4cyAGGACOBL5VSRPIU7eW1P9Ra68i1S7TWywGUUisj116yU/5NWuvGtIWRPPviKGCmUurmyL4NyALmAH9USmUA72qt1+/jdYUQQoh9JfWrEN2cBKBCdA0vgNY6pJTya611JD1E+P+lAlZqraft77Uj1/I2S2+89q7yAwQBe2Q7wI5eErbd3E8Bp2qt1+6UvlopNRc4HvhEKXWF1vqbvSi/EEIIsb+kfhWim5MuuEJ0T2uBZKXUNACllFkpNaKTy7AZmBDZPq1Zeh0Q3Wz/c+A6FfkqWSk1LrLOA/K11o8CHwCjO7rAQgghxB5I/SpEF5MAVIhuKPIuyGnA35VSSwl365neycX4B3CVUmox0HxI99nA8MZBEoC/AmZgWaQb0l8j+c4AViillhDu7vSfTiu5EEII0QapX4XoempHzwQhRE8TGXnvo30dJr6rqfAw8RO11uVdXRYhhBBiZ1K/CtFxpAVUiJ6tBvir2seJsruKikyUTfgb3VAXF0cIIYTYFalfhegg0gIqhBBCCCGEEKJTSAuoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOYerqArSXpKQknZOT09XFEEII0cMsXLiwXGud3NXl2FtKqTjgOWAkoIFLtNZzmh2/BTg3smsChgHJgBP4D5AaOe8ZrfUje7qf1K9CCCH2x67q114TgObk5LBgwYKuLoYQQogeRim1pavLsI8eAT7TWp+mlLIAjuYHtdYPAg8CKKVOBH6vta5USlmBm7TWi5RS0cBCpdSXWutVu7uZ1K9CCCH2x67qV+mCK4QQQvQQSqlYYAbwPIDW2qe1rt7NKWcDr0fyFmmtF0W264DVQP8OLbAQQgixEwlAhRBCiJ4jFygDXlRKLVZKPaeUcraVUSnlAI4B3mnjWA4wDpi7i3MvV0otUEotKCsra7fCCyGEEBKACiGEED2HCRgPPKW1Hgc0ALftIu+JwE9a68rmiUqpKMJB6e+01rVtnai1fkZrPVFrPTE5uce8HiuEEKIHkABUCCGE6DkKgAKtdWPL5duEA9K2nEWk+20jpZSZcPD5qtb63Q4rpRBCCLELEoAKIYQQPYTWuhjYppQaEkk6HGg1iFDkXdGDgQ+apSnC746u1lr/sxOKK4QQQrTSa0bBFUIIIfqI64BXIyPg5gMXK6WuBNBaPx3J8xvgC611Q7PzDgDOB5YrpZZE0u7QWn/SOcUWQgghJAAVQgghehSt9RJg4k7JT++U5yXgpZ3SfgRUBxZNCCGE2CPpgiuEEEIIIYQQolN0aACqlDpGKbVWKbVBKdVqlD6llFUp9Wbk+NzIsPAopXKUUm6l1JLI8nSriwshhBBCCCGE6FE6rAuuUsoIPAEcSXjUvvlKqVla6+aDJVwKVGmtByqlzgL+DpwZObZRaz22o8rXFne9jxXfFTJ4ciqxyY7OvLUQQgghhBBiD7TWhDQEQ5pgSBPSmqDW6BAEdThNR9JCGkKRPCENIa2bzg9pTSjUmBbZjxxrkUdr0Ow4nx3X0ZH0xvzQeD5odlwrXO4d99KR54icgqZ5est9Ivkil2k6r+k4Le8RvqRutt12evOfZ/O8AOdMySIpyto+/2Bt6Mh3QCcDG7TW+QBKqTeAk2g5Wt9JwN2R7beBxyOj9HWJUEAz/6NNhIKaKTPzuqoYQgghhBBCtLtQSOMLhvD6Q3gDQbyBEN5ACF8gFEkP4guG9/3BEL6gxh855m9K1wSCO443bvtD4e1AUDdt+4OaYChEIKQJBMPBoT8UIthsP9C4HwkoG4PKxv1Q5FhINx7r6p9i73fUiNQeG4D2B7Y12y8Apuwqj9Y6oJSqARIjx3KVUouBWuBPWusfOrCsADjjrGQMS2DtL8VMPiEXZZCxGoQQQgghROcIBEM0+ILUewM0RBaXL0iDN4DbH6TBG8TlC6e5/UHcvsjiDy+eSJonEMTjD+GJpIUDznAg2Z4sRgNmo8LUuDYYMBkVZqMBk2FHutGgMBsMGA0Kq9mE0RDJa1AYjQqjUpgMCoNBYTYqDM32G9dGFb6OIbI2GhRK0SLdoIikR/KocB6DUhgMkbXakVc1WxsNjfvhNINSKHbkMRh27DddU4EivK8i2wbDjrRwKBE5TuSazc6ByHlN92p2vfCpLfYb2+ma56X5ddrIEylB0zY7pTc/l2bP25G66yi4RUCW1rpCKTUBeF8pNUJrXds8k1LqcuBygKysrHa58dCpaXz5wiq2r6+m/5D4drmmEEIIIYTo/Tz+INUuPzXu1kut20+tx0+dJ0Bd0zq8Xe8NUO8N4PHvfYBoMRqwmQ04LCbsFiM2sxG72YDNbCTGbsZmNmAzGbGajVhN4XSryYDVbMBqCm9bTIZwWtO2EYvJgNlowGIMp1mMBsymcFDZmN4YVHZhx0XRg3VkAFoIZDbbz4iktZWnQCllAmKBCh3uyOwF0FovVEptBAYDC5qfrLV+BngGYOLEie3SIJ87NhmzzciaX4okABVCCCGE6KO01tR6ApTVeals8FFR76Wiwddiu9rlp7LBR7XLR5XLj9sf3O01o60mom0mom1mom0mkqIs5CY5ibKZiLKacFpMOK1Gom0mnNbw4jAbw2tLeG23GLGbjZiNMpmF6Jk6MgCdDwxSSuUSDjTPAs7ZKc8s4EJgDnAa8I3WWiulkoFKrXVQKZUHDCI82XaHM1uMDByfwoaFpcw4K4jZauyM2wohhBBCiE6gtabG7ae41kNxjYeSWg/FNV6Kaz2U1Xkpq/dSHln7Am23SEbbTCQ6LcQ7LaTF2hjWL4Z4h5l4p4U4h5k4u4VYu5kYu4lYu5lYu5lomxmjvN4lRMcFoJF3Oq8FPgeMwAta65VKqb8AC7TWs4Dngf8qpTYAlYSDVIAZwF+UUn4gBFypta7sqLLubOi0NFb/XET+kjKGTEnrrNsKIYQQQohfKRjSFNW42VbpprDazfbIUli9Y7+trq6JTgvJ0VaSo60MSHaGt6PC+4lOKwlOC4lRFuIdFiwmaX38f/buOkCqqm/g+PdM7M52d5JLd0gqgq1Y+Chi66vY3d2PjYmiooDY6GN3gIR091Lb3T1x3j9mwIXdwVF2d3bh93nf+9w795x77m8W2eE394QQ/1arjgHVWn8LfHvAuQcaHdcB5zRz3TxgXmvGdjBxXUIJjrSwZUmuJKBCCCGEEO1Mg81BZmkNOwur2V1UTUZJDXtKasgsqSGrtAarff+RWVFBvsSH+tEzNphj06KJDbE4t2DnPjrIIkmlEG2kvU5C5FXKoEgbHsvyb3dTWVJHULjF2yEJIYQQQhxxKuqsbM+vYnt+JdsLqthVVM3OwioyS2uxN1qPI8TPTHK4P73igzmxTyzJ4f4khfmTGOZHbIgFi1mGVAnRXkgC6kbaUbEs/2Y325blMfjEVG+HI4QQQghx2LLaHaQXVLExp4ItuRVsK3AmnbnldfvqWMwGOkUG0js+hNP6x9MpMoBOkQF0jgwkxN/sxeiFEP+EJKBuhET5E9c1hK1/5jHohBSZZloIIYQQogXUWe1szClnfVY5G3Mq2JRbwfb8qn1rVPqaDHSNDuSozhF0iwmke3QQ3WOCSAzzwyCT+AjR4UkCehA9jorjt/e2ULC7kphOwd4ORwghhBCiQ7E7NOkFVazNLGNNVhlrM8vYmleJzdV9NiLAh17xwVw6OpXe8SH0igumU2SAzBYrxGFMEtCD6DI4mgUfbWPrn7mSgAohhBBC/I06q501mWWs2F3C8t2lrNpTSmW9DXAuXTIgKZSpR3ehf1Io/RJDiA7ylV5mQhxhJAE9CF8/E537R7JtRT6jJnXDaJbZ0YQQQggh9qptsLN8dwmLdxSzdFcxG7LL981AmxYTxMQB8QxOCWNAUiipEQHShVYIIQno30kbEcf2FQXs3lBEl4HR3g5HCCGEEMJrrHYHazPLWJRezOIdRazOKKPB7sBkUPRPCuXy0Z0Z1imMQclhhPr7eDtcIUQ7JAno30jqEYZ/iA9bluRJAiqEEEKII05BRR2/byvk960F/LGtiMp6G0pB7/hgLh2VyoguEQxNDSfAV/5ZKYT4e/Kb4m8YjAa6D4tl3S+Z1FY24Bck3+YJIYQQ4vCltWZtVjm/bs7n160FbMiuACAm2JdT+sVxdPcoRnSJkCecQoh/RRJQD/Q4KpY1P2WwbVk+/ccneTscIYQQQogWZXdoVuwu4bsNefywMY/c8joMCgYlh3H7CWmMS4umZ1yQTBgkhDhkkoB6ICIhkOiUIDYvzqXfsYnyy1cIIYQQHZ7doVmyo5hv1ufy06Y8iqoa8DEZGNstiluPT2N8j2jCAuQppxCiZUkC6qGeI+OY/8E2CjMqiU6RJVmEEEII0fFordmQXcH/1mTz5docCivrCfAxMq5HNCf2iWVcWrSM5RRCtCr5DeOhbkNjWPhpOpsX50oCKoQQQogOJbOkhv+tzubzNdnsLKzGx2hgXI8ozhiQwLge0VjMRm+HKIQ4QkgC6iFffzNdBkaxbVk+o87uislHflELIYQQov2qt9n5aVM+Hy7LZGF6EQDDO4Xzf2M6c3KfOEL8zV6OUAhxJJIE9B/oOTKObcvy2bmmkO7DYr0djhBCCCFEE+kFVXy0PIN5q7IpqW4gIdSPW47rztmDE0kI9fN2eEKII5wkoP9AQvcwgiMtbFqUKwmoEEIIIdoNu0Pz06Y83lm0m6W7SjAZFMf1iuG8YcmM7hqJ0SATKAoh2gdJQP8BZVD0GBHHsq92UVFUS3CkfIsohBBCCO8pr7Xy0fIMZi3eQ3ZZLYlhftx1Ug/OHpRIVJCvt8MTQogmJAE9gNYawO1SKz1GxLHs611sXpLL8NM6t2VoQgghhBAA7Cys4p1Fu5m3KouaBjvDO4Vz/6m9OK5XjDztFEK0a5KANrK9uo5L1u/iie6JHB0e1GydoHALyT3D2bI4l6GndMIgv+SFEEII0UY2ZJfz2u/pfLchD7PBwMQB8Vw6KpXe8SHeDk2IVufQDuwOOzZtw+6wY9d2bA4bdm3HoR3YHDbn3lXu0I59Zfv2jc5rrfcr11rjYP8yrTUO7fhrw4HD4dprx75yzV/1NPqv63DW2Vvu9th1TeO9QzsA9sW190FZc3X31tv3f3vPa/Y7t/f6/eo3bgPNXcPuIiEwodX+HCUBbSTJ4kOJ1cbc3GK3CShAj5Fx/PjWRrK2lJDcK6INIxRCCCHEkWj57hJe/S2d37cWEmQxce0xXblkVCqRgdLNVrQcrTVWh5U6ex31tnrq7HU02Bv27evt9fvt9zt2NGC1W7E6rH+9dlix2q00OBqwOWz7yq0Oq/N1M/u9SaXNYduXbDZOMjsygzKgUCilMGBAKbXvtULtK3f+v9qv/n77RnUan9vbg7O5a4D9jxvXb9wuYHPYWvXnIAloIxajgUmxYbybXUxRg41In+Z/PJ37R+EbYGLz4lxJQIUQQgjRKrTW/LG9iFd+TWfZ7hIiAny4/YQ0LhyRQrBFllA50jXYG6iyVlHdUE2Vtcp5bK2mxlpDtc25r7HVUGOtodZWu2+rsdVQZ6uj1lZLna3Oudn/2h9qkmdURnyMPpgNZswG837HZqMZH4MPJoMJs8GMn8kPk8G07/XeY6My7jtnVEaMBudrkzLtOzYq476yvfUNytDk/N5z+/aG/V8rpfa93rdhwGBw7vfW2a+8Ub3GZfuSywPKGid7QhLQJs6Pi+DNrCI+ySvh6uToZusYzQbShsWy4Y9s6qqsWALlQ0AIIYQQLWf57hKe+X4ry3aXEBdi4cHTenHe0GT8ZB3yw4bWmlpbLaX1pZTVl1FeX05FQwUV9RWU15dTXl9OpbWSyoZKKhoqqGqoorLB+brKWoXVYfXoPhajBT+T3/6b2Y9Iv0gsRgsWk+WvvevY1+iLxeTcN958jD5N9vs2gzPRNBrkv1FxcJKAHqBnoB+Dg/15P7eYqUlRbr+t6DkqjnW/ZbFteR79xiW1cZRCCCGEOBxtzCnn2R+28tvWQqKCfHn09N6cOzQZH5PB26EJD9Tb6ymqLaK4tpji2mJK6koornPta4udyWZd2b59g6PBbVsWo4Vg32CCzEEE+QQRbgknOTiZYJ9gAswBBPkEEWAOINAcuN/e3+yPv8kff7P/vieMQrQn8l9kM6bER3DLlkyWlVczPDSw2TqRiUFEJQexeXGuJKBCCCGEOCQ7C6t4/qdtfL0ulxA/M3ed1IOLR6TKE892wqEdlNSVkF+TT151HvnV+eTX5FNYU0hhbeG+fUVDRbPXB5oDCbeEE24JJy4wjl4RvQi1hBLmG0aobyihvqEE+wYT4hNCiG8Iwb7B+BplfK84PEkC2ozTo0N5YHs27+UWu01AAXqOjGPBh9sozKgkKtn9pEVCCCGEEM0pq2lg2s/bmfPnHnxNBq4/titXjOlMiJ8M72lLdoed/Jp8squyyanKIac6x7mvyiG7KpuCmoImXV5NBhNRflFE+UeRGpLKkNghRPtHE+UXRYRfBBGWCGfS6RcuyaQQjUgC2owAo5GzYsL4JK+Ex7omEGJu/sfUbWgMi+als2lhDkefn9bGUQohhBCio7LZHcxdmsELP2+jotbK5GHJ3DShO1FBkqi0FrvDTk51DrvLd5NRmUFmZSaZlZlkVGSQXZXdJMGM9osmLjCOfpH9iA2MJdY/lpiAmH37cEs4BiVdo4X4pyQBdWNKfASzc4r5rKCMSxMim61jCTDTdVA0W5flMeKsLvhY5McphBBCiINbsK2QR7/exPaCKkZ2ieD+U3vRMy7Y22EdNhrsDewq38X2su3sKt/F7vLd7KrYxZ7yPfuNufQ3+ZMcnEy3sG4cm3wsSUFJJAQmkBCYQGxALD5GHy++CyEOX5IxudEv0I8+gX7MzSnmkvgIt5MR9R4Tz9aleaSvKKDX6Pg2jlIIIYQQHUVmSQ0Pf7WRnzcXkBLhzxsXDub4XjGyPMO/pLUmrzqPzSWb2V66ne1l20kvTWd3xW7s2g44111MCkoiNTiVUfGj6BTSidTgVJKDk4mwuP/3nRCi9UgC6oZSiinxEdy9LYu1lbUMCPZvtl5slxDC4gLY+Ee2JKBCCCGEaMJqd/D2wl1M+3kbBqW466QeXDoqFV+TTDDkKa01mZWZbCrZxObizc6tZDNl9WX76iQGJtI1rCvHJh9Lt7BudA3tSkpwijzJFKKdkQT0IM6OCeOR9Gzezy12m4Aqpeg9Jp6FfsNeTgAAuhlJREFUH2+XyYiEEEIIsZ9VGaXc89l6tuRVcnyvGB6a2Jv4UD9vh9XuldeXs75oPesL17O2aC3rC9fvm2HWZDDRLbQb45PH0zO8Jz0ietAttBv+5ub/rSaEaF8kAT2IYJOR06JD+Sy/lAe7xBPg5pvKtOGxLPl8Bxv/yOaYKT3aOEohhBBCtDfltVae+WELc5dmEBts4Y0LB3NC71hvh9Uuaa3Jqc5hZf5KVuStYHXBanZX7AZAoega1pXjUo6jb2RfekX0omtoV8xGmSVYiI5KEtC/MSUugo/zSvmisIzz4yKarWMJMNNtcDTbluUz8uyuMhmREEIIcQT7eVM+d3++nuKqei4d2Ylbju9OoK/822AvrTUZlRksy1vGyvyVrMxfSV51HgAhviEMjBrI6V1Pp29kX/pE9iHAHODliIUQLUl+G/6NYSEBdPP35f2cYrcJKEDvsQls+TOP7cvz6T0moQ0jFEIIIUR7UFFn5ZGvNvHpyix6xAYx8+Kh9E0M8XZY7UJZXRl/5v3Jnzl/siRnCTnVOQBE+kUyOGYwl/W5jCExQ+gS2kWWNhHiMCcJ6N9QSjElLoKHduSwpbqWHgHNj9uI6RRMeHwAG//IkQRUCCFEq1FKhQJvAX0ADVymtV7SqPx2YIrrpQnoCURprUuUUicCLwJG4C2t9X/bMvbD2eL0Im7/dB255bVcO64LN47vjo/pyE2kHNrBhqINzM+az8LshWwu3oxGE2gOZFjsMC7tcylHxR1FSnCKzEQrxBFGElAPnBMbzhM7c5mTXczj3RObreOcjCiBPz7aRsGeCqJTZD0vIYQQreJF4Hut9SSllA+w38wrWutngGcAlFKnATe7kk8j8CpwHJAFLFdKfam13tS24R9eahvsPPX9Ft5dvJvOkQHMu3okA5PDvB2WV9RYa1iSs4T5WfNZkLWA4rpiDMpA/6j+XD3gakbEjaBPZB9MBvnnp+iYtNbgcIDdvu9Y2x2gHc5jh3PvPNaNzuv96+y91uFwfo24t0xr2FtX67/Kcd1Xa2edvddofcC5Rte6yvZdv1/dRvUble19j4FjxmAMbr1cRn4DeCDCx8Rp0aF8nFfCPV3iCDC6m4wohiWfpbPxjxxJQIUQQrQ4pVQIMBa4BEBr3QA0HOSSycAHruNhQLrWeqerrQ+B0wFJQP+ldVll3PjhGnYVVXPJyFTuPLEHfj5H1tIq5fXl/Jb5Gz/t+YklOUuwOqwEmYMYnTCasUljGZMwhhBf6YZ8pNEOB7qhAV1f79w3NOBoaEA3WJ2vrQ2uvdW57T1uaEBbbc5j2969sw42m7PMZkPbrM4k0GpD2+1gt6FtdmeZ3QY2u/O8zeaMpfE5e6P93jK7A+2wg92x7/x+e63Bbt+XpB3uOn3xhSSg7cHF8RHMyy/lf/llTIlvfiyor7+ZrkNj2LY8n1GTZDIiIYQQLa4TUAi8o5TqD6wEbtRaVx9YUSnlD5wIXOc6lQBkNqqSBQxv7iZKqSuBKwGSk5NbLPjDhdaamYt289/vNhMZ6Mv7VwxnZNdIb4fVZsrqyvg181d+3PMjS3OWYtM24gPiOa/HeYxLGseA6AGYDTJLbXulbTYcNTU4qqud+5pa5762Bl1Tg6O21nmurhZdW4ujts5ZVluHo64OXVeHo77eud/7uqEeXe9KOOvrnQljC1NmM5jNKKMRZTKhTCYwm1CmveeMYHSdNxpQRpPzvK8PBqM/ymgEo/GvvcEAJiPKYHTW32/vKjcaUUYDGIxgUM4yg3K2YTCiDAqUwXWdoemxQf11rJSzrf3OK0A5r1EK9p5T6q/XKGd913nnZgDFAecaXdd4Y+9xM/Vp5jxgTmy+x2dLkQzJQ0NDAugZYOHd7CLOjwt3O16h95h4tizOZduyfPqMlbGgQggh/qKUWudBtUKt9Xg3ZSZgEHC91nqpUupF4C7g/mbqngYs0lqX/NM4tdYzgBkAQ4YMOTK+8vdQWU0Dt32yjp835zOhZzTPTOpPWICPt8NqdbW2Wn7L+I0vd37Jnzl/Ytd2EgITuLD3hRyfcjy9I3rLWM42oB0OHBUV2CsqsJdX4Kh0HVdU4KisxF5R6dxXVeKoqnYdV+GoqtqXdOq6Os9vqBTKzw+DxYLBYkE13vv7YQwLQ1l8MfhaXHtflI8vytfXmfj5+DiPzT4on72bGeXjKnMllfuOTWZnudnsTDJde4xG+e/rMCIJqIeUUlycEMld27JYXVHDoJDmpwSPSQ0mIiGQjX9k03tMvPxlEUII0ZgROPkg5Qr48iDlWUCW1nqp6/WnOBPQ5pzHX91vAbKBpEavE13nhIdW7C7hhg9WU1hVz/2n9uKyUamH9ee8QztYmb+SL3d8yU97fqLaWk1sQCwX976YE1JPoGd4z8P6/bcFR3U1tuJibMXF2EtLsZeUYCtx7u2lJdjKyrCXleEoK8deVoa9ouLg3UCNRoyBgRgCAzEEBWEIDMAcE4Ohc2fnOX9/DAEBrs0fg3+A85y/PwZ/v33Hys8Pg5+fM3mUP2PRwiQB/QcmxYTx6I4c3s0pcpuAOicjimfBh9so2FNJTKqMBRVCCLHPVVrrPQeroJS6xl2Z1jpPKZWplErTWm8FxtPMGE7XWNGjgQsanV4OdFNKdcKZeJ4HnP8v3sMRx+HQTJ+/g+d/2kZCqB/zrh5Jv8RQb4fVanKrcpm3fR5f7viS3Opc/E3+HJ96PBO7TGRwzGBZJuVvaK1xVFRgzc/HVlCILT8fW2EBtoICbIWF2IqKsRUVYSsuRtfUNNuG8vPDFBaGMSwMY0gIPgmJGENDMIaGYgwJwRAcgjEkGGNwMIagYOdxUBDK318SRtHuSQJ6AO36Vqm5v7yBJiNnx4TxcV4JD3dNIMzc/I+v+/BYFn+WzsYF2ZKACiGE2EdrvbAF6lwPzHXNgLsTuFQpNdV17euuOmcCPzYeG6q1timlrgN+wPkkdqbWeuO/eBtHlIo6Kzd/uIZfthRwar84njirL8GWw298o91hZ2H2Qj7e9jELsxeitWZE/AhuHHQjxyYfi5+p+WXojkTaasWal4c1KwtrTi7W3FysuTnYcnOdr/Pymu3maggJwRwdhTEiEr/+/TFFRGCMjMAUEYkpMgJjWDim8DCM4eEY/OTnLQ5fkoA20rB7N9m33kbMXXfiP3Ros3UuSYhkdk4xH+WWMDU5utk6vn4m0obHsuXPPEae3RVLwOH3QSWEEOLfU0qNAh4CUnB+FitAa607/921Wus1wJADTr9+QJ13gXebufZb4Nt/EfIRKb2giivnrCCjuIaHJ/bmohGH35qVBTUFzNs+j8+2f0ZedR6RfpFc3udyzu5+NgmBR+5cFvaqaqwZe2jY49oyM7FmZTuTzrw854yojZiiojDFx+Gblkbg0UdjiovFHB2NKSYGU3Q0puhoDL6+Xno3QrQvkoA2YoqJoSEzk9IPPnCbgPYK9GNYSACzcoq4MikKg5sPor7HJLLxjxw2L8pl4PEyg6AQQoj9vA3cjHMWW/vf1BVe8NOmfG7+aA2+JgNzrxjO8M7Nz4DfUW0q3sScTXP4ftf32LSNEXEjuGPoHRyTdMwRM4Otdjiw5eZSv2MH9ek7qN+5g4bdu2nYswd7YdF+dY1RkfgkJOI3aBDBiQn4JCZiTkjEnBCPKSYGg8/hPxGVEC1FEtBGDH5+hJ55JiVz5xJTWIgpKqrZehfHR3Dt5gz+KK3i6PCgZutEJAQS3y2UDQuy6D8hCYPh8PrGVAghxCEp11p/5+0gRFMOh+bFX7bz4i/b6ZcYwusXDCY+9PDoDunQDhZkLWD2ptksz1uOv8mf83qcx+Qek0kOPry/LLcVFVG3ZSv1W7dSv22rK+Hcia6t3VfHGB6OT6dOBI4Zi09KCj6pqfikpuCTlITB39+L0QtxeJEE9ACh551LyaxZlM2bR+TUqc3WOTU6lPvTs5mVXeQ2AQXnU9Af3txAxoZiUvsdOeuDCSGEaJ5SapDr8Del1DPAZ0D93nKt9SqvBCYAqKyzcvNHa/l5cz5nD0rk8TP7YDEbvR3WIau31/NF+hfM3jSbPRV7iA2I5dbBt3JW97MI9jm85qrQWmPNyKB2wwbqNm6ifssW6rZuxV5cvK+OKToa327dCD1nEr5duuLbtQs+nTtjCgvzYuRCHDkkAT2Ab6dOBIwcQelHHxNxxRXOtYcOrGMwMDkugtczC8itbyDOt/luF50GRBIQ4sP637MkARVCCAHw3AGvG4/l1MCxbRiLaCS3vJZL31nO9oIqHjytF5eM7PhLrNTaavl026e8u+FdCmoL6BPRh2fGPsP4lPGHTTdba14etWvWUrdxgzPp3LARR2UlAMpsxrdbNwLHjsXSIw3ftB74pnWXRFMIL2vVBFQpdSLwIs7Z9t7SWv/3gHJfYDYwGCgGztVa725UnoxzevmHtNbPtmasjYVOnkz29TdQNX8+QeObXwv8ovgIXsso4L2cYm7vFNdsHaPRQO+xCSz7ahdl+TWExkj3DSGEOJJprce5K1NKxbRlLOIvG3PKuezd5VTX23nnkqGM7d78EJyOosZaw4dbP2TWxlmU1JUwNHYoT4x5gmGxwzp0Uq2tVuq2bKV29Wpq16ymZvUabLm5zkKzGUv37gSffDKWPr3x69MH365dUebDI9EW4nDSagmoUsoIvAoch3Ph7OVKqS+11o3XK7scKNVad1VKnQc8BZzbqPx5oM3HyASNG4cpJobS9z9wm4Cm+PkyLjyI93KKuSklFrObMZ69Rsez4tvdrJ+fxZj/dG/NsIUQQnQwSqlQ4Gyc63H2BOK9GtAR6LctBVz3/ipC/Mx8evUIesR23C6pNdYa5m6ey6xNsyivL2dk/Eiu7Hclg2MGezu0f0U3NFC7YQM1y5ZRvXQptavX7FvexBQXh//AAfhdegl+Awbg26OHTAQkRAfRmk9AhwHpWuudAEqpD4HT2X/B7NNxTkMP8CnwilJKaa21UuoMYBdQTRtTJhOh5/6HopdepmH3bnxSU5utd0lCJBet38UPReWcGh3abJ2AEF+6DIpmy5I8hk/sjI9Fej0LIcSRTCnlh/Pz73xgIBAEnAEs8GJYR6Q5f+7hwS820DMumJmXDCUm2OLtkP4Vq8PKvG3zeH3t6xTXFTM2cSxX9buKflH9vB3aP6IdDuo2bqJ68WJqli6lZvXqfZME+aalETppEv6DB+E3YADmuOZ7nwkh2r/WzIYSgMxGr7OA4e7quBbILgcilFJ1wJ04n57e1ooxuhU6aRJFr02n9KOPibnzjmbrjI8IJtFi5u3sQrcJKDgnI9q+PJ9ty/LpM/bIXVNLCCGOdEqp94ExwI/Ay8CvOL+s/d2bcR1pHA7Nf7/fwowFOzm2RzQvTx5IgG/H+4LYoR18v+t7XlnzCpmVmQyOGcy0cdMYED3A26F5zFZYSNWiRVQvXET1okXYS0sB8O3endCzz8Z/2FD8hw6VcZtCHEba62/bh4AXtNZVBxuroJS6ErgSIDm5ZacPN0dHEzRhAmWffUbUjTdgsDT9VtSoFJcmRPHojhw2VtXSO7D5adpjOwcTmRTI+t+z6D0mvkOPvxBCCHFIegGlwGZgs9barpTSXo7piGK1O7jtk7V8sSaHC49K4cHTemEyGrwd1j+2OHsx01ZNY3PJZrqHdefV8a8yJmFMu/83htaaug0bqfz1F6p+n0/95s0AGCMiCBw7hoDRYwgYOQJTxOG17qoQ4i9uE1ClVLgH1zu01mVuyrKBpEavE13nmquTpZQyASE4JyMaDkxSSj0NhAIOpVSd1vqVxhdrrWcAMwCGDBnS4h/gYZMnU/n991R8+x2hZ53ZbJ0pceE8uyuPt7IKeaFH80mwUoq+xyTy25wt5GwvI6G7fIsnhBBHIq31AKVUD2Ay8LNSqggIUkrFaK3zvRzeYa+2wc6176/i1y0F3H5CGtcc06XdJ2wHyqjI4Jnlz/B71u8kBCbw5JgnObnTyRhU+02idUMD1cuWU/XrL1T+8iu2/HwwGPAfNIiom28mcMxofHv0QBna73sQQrScgz0BzXFtB/vNbATcPXpcDnRTSnXCmWieh3O8S2NfAhcDS4BJwK9aa42zexIASqmHgKoDk8+24D9sKD5dulD6wQduE9BQs4lzYsP4KK+E+zrHE+HT/I+0+9AYFn+WzvrfsyQBFUKII5jWegvwIPCgUmowzmR0uVIqS2s90rvRHb4q6qxc8e4Klu8p4fEz+zBleIq3Q/pHaqw1zFg3g9mbZmM2mLll8C1M6TkFH2P7nHhHNzRQtWgRFd99R9Wvv+GoqkL5+RE4ehSBx95E4DFHS7daIY5QB0tAN2utBx7sYqXUandlrjGd1wE/4ExUZ2qtNyqlHgFWaK2/BN4G5iil0oESnElqu6GUIuy888h//HFq12/Ar2+fZutdnhjF7Jxi5uYWc0NK87Pom3yM9BoZz5pfMqkqrSMwrGNOdCCEEKLlaK1XAiuVUrfT6MtX0bKKq+q5aOYytuZV8uJ5A5nYv+NMNqy15uudXzNt5TQKaguY2GUiNw26iSj/9rdUjLbZqF66lIrvvqPyp59xlJdjCAkh6ITjCRo/gYCRI5od0iSEOLIcLAEd4cH1B62jtf4W+PaAcw80Oq4DzvmbNh7yII5WE3LG6RQ8/zylH36AX9/Hm62TFmBhbFgg72QXcXVStNslWfocncDqnzPYsCCbo07v0pphCyGEaIeUUle6ho/sx9X7Z8HB6oh/J7uslgvfXkp2aS1vXjSEcT2ivR2Sx7aXbufRPx9ldcFqekf05vlxz9M/qr+3w9qP1pq6TZso//x/VHz7LfaSEgwBAQRNGE/wyScTMGIESpZHEUI04jYBdSWHwL41PWMa19daZzSuc7gyBgURctpplH/xBTF33IExJKTZelckRnHR+l18W1TG6dHNdykJjvQjtW8kG//IYchJqZh8jK0ZuhBCiPbnLte4T3cUcCOu+Q3EodlZWMUFby2lss7GnMuHM6yTJ9NbeF+9vZ4Z62Ywc8NMAs2BPDLyEU7venq7GudpKy6m/KuvKP/8f9Rv3Yoymwk89liCTzmZwLFj5UmnEMKtv50FVyl1Pc6xKvmAw3VaAx1rcalDEDb5PMo+/piyeZ8RcdmlzdaZEBFMqp8Pb2UWuU1AAQaMT+J/64rYujSP3mNkSRYhhDjCzAdO+5s6P7VFIIe7nYVVnDfjT+wOzQdXHkWfhOa/QG5vVuSt4OElD7O7YjendT6N24feTpilfYyV1HY7VQsWUPbpPKrmzwebDUvfvsQ8cD8hJ5+MMTTU2yEKIToAT5ZhuRFI01oXt3Yw7ZWlZ0/8Bg+mdO5cwi++CGVs+uTSoBSXJUTyQHoOaypqGBDs32xb8d1DiUwKZO0vmfQaLUuyCCHEkURr3fy3mKJFNU4+3/+/o0iLDfJ2SH+roqGC51c8z7zt80gITOCNCW8wMqF9zEllKy2l7NNPKfvwI6zZ2RgjIwm/6CJCzjgdS/fu3g5PCNHBeNKXIxMob+1A2guHduAcirO/8AsvxJqdTdVvv7m99ry4CAKMBt7KKnRbRynFgPFJlObVkLGppEViFkIIIYTTzsIqJr/ZsZLPBVkLOON/Z/B5+udc0vsSPpv4mdeTT601tWvXknPnnaQffQyFzz2POSGBhGnT6Pbbr8Tccbskn0KIf+Vg64De4jrcCfyulPoGqN9brrV+vpVja3M7y3dy4683cu9R93JU3FH7lQVNGI8pPo6S2XMImjCh2euDTUbOjQ1nTk4xD3SJJ9rX3Gy9rkNiWPz5Dtb+kklKb1loWQghhGgJu4qqmfzmn9jsHSP5rLHW8OyKZ/lk2yd0C+vGK+NfoVdEL6/GpG02Kn/6ieKZ71C3fj2GgABCJ00i7PzJ+Hbt6tXYhBCHh4M9AQ1ybRk4x6P4NDoX2Pqhtb2EwAQqGiqYu2lukzJlMhE+ZQo1y5ZRt2WL2zYuT4zEqjVzctz3WDaaDPQ9OpHMTSUUZ1e1SOxCCCE6DtfkfqIF7Sqq5rwZS7B2kORzTcEaJn01iU+3fcqlvS/lw1M+9Gry6aitpWTuXHaceBLZN9+CvaKcmAfup+v8+cQ+cL8kn0KIFnOwWXAfbu68UsrC30+g0CH5Gn05p/s5zFg3g4yKDJKDk/crD500icJXXqVk9hzin2h+SZYu/haODQ9iVk4R16dE42NoPsfvPTaeld/tZu2vmRx7Yc8Wfy9CCCHate1KqXnAO1rrTd4OpqPb3Sj5/KCdJ59Wu5Xpa6fz9oa3ifWPZeYJMxkSO8Rr8dhKSih9by6l77+PvawMvwEDiL7zDoKOPbbZOS+EEOJQeTSft1LKqJQ6WSk1B9gNnNuqUXnRuWnnYjQYeX/L+03KjCEhhJw+kYqvv8ZW4n785v8lRlHQYOPLgjK3dfwCfUg7KpZtS/OpqWhoidCFEEJ0HP2BbcBbSqk/lVJXKqWCvR1UR5RTVsuUt5Z2iORzT8Uepnw7hTfXv8nELhOZN3Ge15JPW3Ex+c88Q/r4CRS99hp+gweT8v5cUj/8gODjjpPkUwjRag6agCqljlZKvYEz6bwcOA7orLWe1AaxeUWUfxQnpp7I/9L/R1VD0+6x4RdeiG5ooOyjj9y2cXR4EN38fXkjs7DZCY326j8+CbvNwcY/slskdiGEEB2D1rpSa/2m1nokcCfO5c5ylVKzlFLS19FDxVX1XPj2Uipqrcy+bFi7Tj6/3fkt//nqP+RW5zJt3DQeHfUogT5tP6LJVlJCwbPPkj7hOEreeZeg4ybQ+dtvSHr1FfwHDWrzeIQQRx63CahSKgt4ElgI9NJanw3Uaq1r2io4b7mg5wVUW6v5X/r/mpT5dulCwOjRlL7/Abqh+SeXBqWYmhTN+qpaFpW5H+MZFhtASp8I1v+ehc1qb6nwhRBCtHOunkUTlVKfA9OA54DOwFfAt96MraOorLNyyTvLySqt5a2Lh7TbdT7rbHU8vORh7vzjTtLC0/jktE8Ynzy+zePYl3iOn0DxzHeciefXX5Pw9NP4du7c5vEIIdoXrTUOrbFrfdAHaC3hYOuAfgqcgbO7rV0p9QXQutG0E70jezMweiBzN89lco/JGA37d0MJv+hCMq+8iooffiTktFObbePsmDD+uyuX1zIKGB3m/hvZ/uOT+PLFNWxfnk/PkfEt+j6EEEK0W9uB34BntNaLG53/VCk11ksxdRh1VjtXzFrB5twK3rxoCMM7t88Z5XeV7+K2+bexrXQbl/e5nGsHXovZ0PwM+a3FUVNDyaxZFL/5Fo66OoJPOYXIq6dK0ik6LK01Vq1pcGgatMbqcL62ul7bXGU21zmbq37j13bXObsGm/7rnE3j2u8991e5o1GZA/Zds/e8HfZ/rcGB87UD12vXtY5G5Vqz75xzD7rRdY5G5fDXsd5X11lfu44d+x2D87Jm6rvKnK/399vQNHoG+rXan+HBJiG6SSl1M3AMMBl4GghRSv0H+FZrfVhP3zql5xRum38bC7IWMC553H5lAaNH45OaSsmcOW4TUIvRwOUJkfx3Vx6bq2rd/iEm9ggjIiGAtb9k0mNEHEqpFn8vQggh2p2LtNYLG59QSo3SWi/SWt/graA6AqvdwbVzV7FsdwnTzh3AuB7R3g6pWd/u/JaHlzyMj9GHV8e/ytjEtv1eQdvtlH/+OYUvvYytoICg444j6uabJPEULcrq0NTY7VTbHdQ6HNTYHdTaHdS6ztc6NHV2BzUOB3V2B3UOTZ3DQZ3DQb3ruN5Vp96hqXf8tW/QmnqHpsHhoMGhqW+UbLYVA2BSCqNSGJXz2KDAqJTzGPaVGZXCgMKknL0hDQoMNC5znjcBRoNhX7lSYHQdGxQoVz3FX9cB+9U3NKqjAOU6NgBqbxs4D/bW2a9+o2tUo2sUznORPgd7RnnoDtq6dj5//Q34TSllBk7AmYy+BkS2amReNj55PLEBsczdPLdJAqoMBsIuvID8Rx+jds0a/AYMaLaNixIieXFPAa9nFvJiz+Rm6yil6D8+iV9nbyFrSylJPcNb+q0IIYRof14CDhxw93Iz50QjDofm9k/W8suWAh47ow+nD0jwdkhN2Bw2nlvxHO9tfo+B0QN5euzTxAbEttn9tdZUL1hAwbPPUr89Hb8BA0iY9oKM7xT7OLSmyu6gzGqjwman0u6g0mbf77jSZqfKdVxtd1Blt1Nlc+5r7M5Es9ruTBL/KR+lsBgVFoMBX4MBi0HhazDga1D4GBShZiM+BhO+BgM+SrnOG/AxKHyUcu0NmF31zUph3rt3lZvUX+f3HptcdUz7NvYdG1119yaZRlfiKA+GWofH6a3W2gp8DXytlGq9Z7LthMlgYnKPybyw8gW2lmwlLTxtv/LQM86gcNqLlMyeQ4KbBDTcbGJyXDhzcoq5u3Mcsb7Nd7vpNjSGJZ/vYM3PGZKACiHEYUwpNQIYCUQppW5pVBQMyLSjf+PRbzbxvzU53H5CGhccleLtcJooqyvjtvm3sTRvKRf0vIBbhtzSpl1u69PTyXv8cWqW/Ik5JZmEF18k6Pjj5B/RhymtNTV2B0VWG8VWG8UNNkptdkqtNkqtrr3rdbnVTpkryayw2XH8TdtmpQg0GggwGQg0Ggk0GggxGYm3mAkwGggwGgkwGvA3Gvbt/Q3OvZ/RgJ/r2GJwvnbunUmnUf57POK5TUCVUjO01lc2V6a1rv27OoeDs7udzfQ103l/y/s8PHL/ZVENAQGETppEyZw5ROflYY5t/tvNq5KieDe7iLeyCrmvS/NjPE1mI/3GJbH0y50UZVUSmdh+Z/ETQghxSHyAQJyfv41/2VcAh+0M8y3h7YW7eGfRbi4b1Ylrjuni7XCa2Fa6jRt+vYGCmgIeHfUoZ3Q9o83uba+qpujVVymZMwdDQAAx995L2HnnosxtO95UtIxau4P8Bit59VbyG6wUNtgobLBR4DouaLBS3OBMOusczT+BNAChZiNhJhNhZiNRPma6BVgIMRkJMRkJNhkJMRsJNjqPg0xGgk0G57HRiMXo0UqNQvwrB3sCeoZSqu4g5QoYd5DyDi/EN4SJXSbyv/T/ceOgGwm37P90MmzKFEpmzaJ07lyib7212TZS/Hw5JSqU2TlF3JQSQ6Cp+S+4+xydwKof9rDqhwyOv7x3i78XIYQQ3qe1ng/MV0q9q7Xe4+14Oorv1ufy2DebOKlPLPed0rPdPdH7ac9P3LvwXgLNgbx74rv0i+rXJvfVWlPx9TcUPP00tqIiQidNIuqWmzGFhbXJ/cU/V2N3kFPfQHadlez6BrLrGsipt5JbZyXPlXSW2ZqujGBUEGk2Ee1jJtLHRFqAhQizybn5mIh0HYebnQlnsMmIoZ39PRFir4MloLd7cP0fLRVIezWl5xQ+3vYxn277lCv77f+w1ycxgaDjj6f0w4+IuGoqxsCAZtu4OimKrwrLeD+3mCuTmp8swRJgpveYeNb+kslRp3cmOPKw7+UshBBHHKXUNK31TcArSqkmjy601hPbPqr2beWeUm76aA0Dk0J54dwBGAzt5x/VDu1g+trpvL72dfpF9uOFcS8Q7d82kyLVbdtG/qOPUbN8OZa+fUl89RX8+rVN4ivcszk0WfUN7KltIKOu3rVvIMP1uuSAZfcUEO1jIt7Xh05+vowIDSTWx0ysr3OL9jER5WMm3CwJpTh8HGwW3FltGUh71Tm0MyPjR/LRlo+4tM+lTcZyRFx+GZXff0/Zp58QccklzbYxKCSAo0ICeCOzkEsTojC7+fDsPz6Zdb9lseanDMZOTmu2jhBCiA5tjmv/rFej6CB2F1Xzf7NXEBti4c2LhmAxt59hsvX2eu5beB/f7/6eM7qewX1H3Yev0bfV7+toaKBo+nSK33wLY2AgsY88TOikSSiDdJlsK1pr8hqsbK+uZ0dtPbtq6tnp2mfUNew3S6tZKRItZpItzh5xSRYf4n3NJFh8SHAlmT7yZyeOMK07x+5h4oKeF3DNL9fw4+4fOaXzKfuV+fXti//QoZTMmk34lClux1tckxzNRet38XVhGWfGNN81JjDMl7ThsWxanMuQUzrhH+zT4u9FCCGE92itV7oOVwC1WmsHgFLKCLR+9tKBlFQ3cOm7y9Fa8+6lw4gIbD8/nvL6cm749QZWFazi5sE3c2nvS9ukW3DN6tXk3nc/DTt2EHLGGUTfeYd0t21FWmty6q1sqqplW00926vr2FZTx/bqOirtf03j42cw0MnPhx6BFk6JCqGTvy8pFl9S/HyI9TXLpDtCHEASUA+MShhF55DOvLvxXU7udHKTD5nwyy8ja+rVVHz3HSETm+89NSEimK7+vkzPKOCM6FC3H1QDj09m85Jc1v+exfCJslaXEEIcpn4BJgB719T2A37EOUPuEa/Oauf/Zq8gu6yWD/5vOJ0imx/i4g1ZlVlc/fPVZFdl88zYZzix04mtfk9HTQ0F06ZROuc9THGxJL05g8AxY1r9vkeSWruDzVW1bKquY1NVLZuqatlcXUd5o/GY0T4muvlbmBQbTjd/X7oHWOji70usj7ndjUsWoj372wRUKdVXa72+LYJprwzKwCW9L+GBxQ/wZ+6fjIgfsV954Nix+HbrSvHbMwk+7bRmfwkZlGJqUjS3bc1kUVkVo8Oan+k2LDaAzv2jWP97FgOPT8bHIt8RCCHEYciitd6bfKK1rlJK+XszoPZCa81tn6xlVUYpr54/iMEp7Wd5so1FG7nml2uwOWy8efybDI4Z3Or3rF6yhNz7H8CalUXY+ecTdcstbuecEJ6pszvYVF3L2spa1lXWsLaihq01ddhdPWcDjAZ6BfhxenQovQL96BlgIS3AQqhZ/k0mREvw5G/Sa0opX+BdYK7Wurx1Q2qfTul8Ci+vfpl3NrzTJAFVBgPhl15G7j33UL1oMYGjRzXbxqSYMJ7alcsrewrcJqAAA09IZueaQjYtzGHAhOQWfR9CCCHahWql1CCt9SoApdRgoNbLMbULr/6WztfrcrnzxB6c3DfO2+Hs83vm79yx4A7CLeG8NuE1Ooe0bi8lR10dBc89T+mcOfikpJDy3hz8hwxp1XsejrTWZNVbWVlezYqKalaU17ChqgabK9kMNxvpH+TP8ZEh9Avyo3egH0kWH5nwR4hW9LcJqNZ6jFKqG3AZsFIptQx4R2v9U6tH1474GH2Y0nMK01ZNY0vJFnqE99ivPOTUUyicNo2SmW+7TUAtRgNXJkbx+M5cVlfUMDC4+S+7YzuFkNA9lDU/Z9L3mESMJhmcLoQQh5mbgE+UUjk4J8KMBc71akTtwI8b83j2x22cMSCeqUe3n2Eon2//nIeWPETP8J68Mv4VIv0iW/V+dVu3knPbbdRvTyfswguJvvUWDBZLq97zcOHQms3VdSwpq2JJWRUryqvJb7ABzrGaA4L9uDopmgHB/vQP8ifBV7rPCtHWPOpLoLXerpS6D+ekCS8BA5Xzb+s9WuvPWjPA9uSctHOYsW4G72x4h6fGPrVfmfLxIfyiCyl49jlqN27Er3fza3lekhDJKxkFvLQnn3f6dnJ7r4EnpPD1y2vZtiyPniPjW/R9CCGE8C6t9XKlVA9g75TnW7XWVm/G5G1b8yq5+aM19EsM4b9n92s3ScHsjbN5ZsUzjIofxfPHPI+/ufV6SmuHg5JZsyl8/nkMoSEkvfkmgWNGt9r9DgcOrdlUVcvisiqWlFXzZ1kVpa5xm4kWM6PCghgS7M+QkAB6BfhhakfL+AhxpPJkDGg/4FLgFOAn4DSt9SqlVDywBDhiEtBgn2AmdZ/E3M1zuXHQjcQH7p8Yhp57LkXTX6dk5jskPNf8DPtBJiOXJUTywp58tlTX0iOg+fU+k3uFE5EYyOofM+hxVBxKfmEKIcThJg3oBViAQUoptNazvRyTV5RWN/B/s1fg72tixoXtY7kVrTXT105n+trpHJdyHE+NeQqzsfmZ7luCNS+PnLvvpmbJnwSOH0/co49gCm8/41/bk7x6K/NLKvm9pIL5pZX71tZMsfhwYlQII0IDGREaSJJFVhMQoj3ypG/ny8AqoL/W+tq941W01jnAfa0ZXHt0Ya8LUSjmbJrTpMwYFETouedS8f33WLOz3bbxf0lR+BsNvLynwG0dpRSDTkimNK+GXeuKWiR2IYQQ7YNS6kGcn68vA+OAp4Hmp1E/zFntDq6Zu4q88jreuHAwsSHe72qqtebp5U8zfe10zuh6Bk+PfbpVk8/K339n1+lnULtmLbGPPkLiKy9L8tmI1aFZVFrJQ+nZjFu2hQGLN3Ljlgz+KK3i2PBgXuqZzMoRvVg6ohcv9EjmP7HhknwK0Y55koB+rrWeo7XeNzmCUupGAK110yzsMBcbEMtJnU5i3vZ5lNc3nY8p/KILQSmKZ81y20a42cRF8RF8nl/K7tp6t/W6DoomONLCyu/3oBstaiyEEKLDmwSMB/K01pcC/YEQ74bkHY99vYklO4t54qy+DEr2/pqWdoedBxc/yHub3+OCnhfw8MiHMRlaZ/ZTbbNR8PwLZE29GlN8PJ0//4ywc85pN92PvanCZud/+aVcs2kPfRZt4Ow1O5iZVUSkj4n7Osfxy9A01o3qzSu9UvhPbDgJknAK0WF4koBe1My5S1o4jg7lkj6XUGur5aOtHzUpM8fGEnLKKZR98in2sjK3bVydFI3ZoHjlIE9BDUYDg05IoWB3BZmbSloidCGEEO1DrdbaAdiUUsFAAZDk5Zja3IfLMpi1ZA9XjO7EpMGJ3g4Hq93KHQvu4PP0z5nafyp3DL0Dg2qdiQBthYVkXHY5xTNmEHrOOaR+8D4+qamtcq+OorDByrvZRfxnTTq9Fq5n6qY9zC+p5KTIEN7pk8rmMX34ZEBXrkuJoXegn8xUK0QH5fYrPaXUZOB8oJNS6stGRUHAEZ0NdQ/rzqiEUczdPJeLe1+Mr9F3v/Lwyy6j/IsvKP3gAyKvvrrZNmJ8zZwXG877uSXckhpDvJtv7nqMiGPFt7tZ/s0uknqFy7eiQghxeFihlAoF3gRWAlU451U4YqzLKuOBLzYyplskd53U4+8vaGVWu5Vb59/Kb5m/cduQ27i498Wtdq/qZcvIvvVWHJVVxP33SULPOKPV7tXeFTXY+LawjC8LylhcVoUD6Orvy9SkaE6IDGFQsD9G+bePEIeVg/UpWQzkApHAc43OVwLrWjOojuDS3pdyxY9X8OWOLzmn+zn7lVnSuhN49NGUzJpN+EUXYQhofsHoa5OjeS+3mOmZBTzarflvfo0mA4NPTGH+B9vI2lpKUg8ZEyKEEB2d1voa1+HrSqnvgWCt9RHz2VpW08DV760iKsiXF88biMno3eXGrA4rty+4nd8yf+PuYXdzfs/zW+U+WmuK33qLwhem4ZOcTPJbb2NJ694q92rPKm12vios4/P8UhaV/pV03pgSw8ToUHoEWOQLd9EuaK3RDo3DrnHs3dtd5xz7l+13zqHRDufM1g4H6Mbnteu13ltH77uP1uBwaNDsd25fXf3X6311NKAbtQvOsn3Hrmv5q96+a/nrGP1XnSEndyIwzLf5H0oLcJuAaq33AHuAEa129w5sWOwwekX0YvbG2ZzV9SyMhv1n7Iu8eiq7z5tM6UcfE3HZpc22kezny9kxYbyXU8yNKbFE+jT/x9FzZDwrvtvDim92SwIqhBCHCaXUWcBonJ/5CzlCvtx1ODQ3fbSGgso6Ppk6kvAA747dszqs3LngTn7J+IW7ht3Vasmno7aWnHvuofK77wk66UTiHn0MY2DzX1Afjuxas7C0io/zSvi2sIxah6aTnw83uJLOnpJ0HtG0Q2OzOrA12Pft7TYHtgYHNqsDu2uz2ezYrRq7zXXO5vjr2K73vXa4XjvsDuy25vd7k0m7be+xo9lEsyNSyvk/zr1zclMFYHDum5Q7/4e9fwX7HZsEeCEBVUot1FqPVkpV4kqI9xYBWmsd3GpRdQBKKS7tfem+b0wnpEzYr9xvwAACRo6g+J2ZhJ0/2e0C0jekxPBJXilvZhVyd+e4ZusYzQYGnZDMHx9tJ3tbKQndvT9JgxBCiH9PKfUa0BX4wHXqKqXUBK31tR5cGwq8BfTB+fl8mdZ6yQF1jgGmAWagSGt9tOv8zcAVruvWA5dqresO/R157tXf0vl9ayGPnt6bAUmhbXnrJmwOG3f/cTc/7fmJ24fczpSeU1rlPtbcXLKuvY66zZuJvu1Wwi+//IhJtnbU1PFBbgnz8kvJrbcSYjJyTmw458aGMyjY/4j5ORxO7HYH1lo7DXU25+Y6ttbZsda7juvt+15b6+1YG+zYXHtrvd2ZWDa4zjc4E8hDoQwKo1FhNBswmAzOY5Pr2OQ6NioMRgNmX+feaFT7zhkOPDY4Xyujs11lcJXtPe/aGwyu48Z7ozOx23tsUM4y5+Y6v/ecYt91uK7Zt8dZX6m/ytXeBNJwQHLZKKHsCH+nDvYEdLRrH9R24XQsE1ImkBiYyJvr32R88vgmf+ARU6eScdHFlM2bR/iU5j/UuvpbODUqlJlZhVyTFEWIufk/kl6j4ln53R6Wf7NbElAhhOj4jgV6atcU50qpWcBGD699Efheaz1JKeUD+DcudCWorwEnaq0zlFLRrvMJwA1AL611rVLqY+A84N0WeD8eWbi9iOd/3sbpA+K54KiUtrpts2wOG/csvIcfdv/AbUNu46Lezc25eOhqVq8m6/ob0LW1JE5/jaBjjmmV+7QnDQ4H3xdVMDu7iIVlVRgVjAsP5uGuCRwfEYzFy12uBditDuqqrdRVW6mvsVJXbXMeV9uoq7FSX2OjocZKfa3Nedxob/MwWTSZDZh8jZhdm8nHiNnXQGCor/O8j9FZx8eIyWf/vdFkcB6bnXWMrs1kNmA0uV432jsTNtFR/O284kqpo4CNWutK1+sgnB9eS1s7uPbOZDBxRd8reGjJQyzKWcTohNH7lfsPHYrf4MEUv/W2c1p1n+a7Gd2YEs1XhWXMzC7i5tTY5u/lY2Tg8cks+jSdnPQy4ruGtvTbEUII0XbSgWScQ13AOQNu+t9dpJQKAcbimo1ea90ANBxQ7XzgM611hqtO4+nWTYCfUsqKM3HN+fdv4Z/JLa/lhg9X0y06kCfP6uvVb+ntDjv3LbqP73Z9x82Db261CYfKPv8feQ88gCkujqR338G3a9dWuU97kVnXwNycYubmFlPYYCPRYubuTnFMjgsn2rf11lEVzq7ttZUN1FQ0UFvR4Dq2UlPpel3VQF2VM+GsrbJirbO7bctgUPj4m/D1N+Hr59wHhlnw9Tfh42fC18+I2eIs87GYMPsZ8fE1YbYY8bE4y8w+BgzyRYNww5OFraYDgxq9rm7m3GGhpsHG+0szOH1AAlFBnvV7nthlIq+ve5031r7BqPhR+32gKqWInDqVzP/7P8q//JLQSZOabaNPkD/HRQTzRmYhVyRGEWQyNluv99gEVv2whxXf7mbiDQP+8fsTQgjRbgQBm5VSy3B2hx2Gc2bcLwG01hPdXNcJKATeUUr1xzmD7o1a6+pGdboDZqXU7677vKi1nq21zlZKPQtkALXAj1rrH5u7iVLqSuBKgOTk5EN7p0CDzcG1c1dRb7Uz/YLB+LuZ86AtaK155M9H+GbnN9w46EYu63NZy9/DbqfguecpmTkT/6OOIuGF5zGFHZ69l7TWLC6rYkZWIT8WVaCA4yKDuSg+kmPCg2QG2xbQUGejqrSe6tJ6KkvrqC6rp6qsnpryBqrL6qkpr6em0trseEWjyYBfsBm/QB/8gsyExvrjF+CDJdCEJdAHS4AZ3wATFn/XPsCM2dfYIbpxio7Lk08AtbeLEIDW2qGU8t4nRyvKr6jniW83U1hZz90n9/ToGrPRzGV9LuOJpU+wPG85w+KG7VceMHoUlj59KJrxJiFnnIEyNf+ju71TLMev2MabWYXc4uYpqNnHyIAJySz5fAd5O8uJ7XxErlkuhBCHgwf+5XUmnF8AX6+1XqqUehG4C7j/gDqDgfGAH7BEKfUnzsT1dJxJbBnwiVLqAq31ewfeRGs9A5gBMGTIkEOehePJ7zazKqOMV88fRJeowENt7pC8sOoFPtv+GVf1u4or+l7R4u076urIuf0OKn/6ibDzzyfm7rtQ5sPv6V+Dw8EXBWXMyCxkfVUt4WYjN6bEcEF8BIlulpYTzaurtlJRVEtlcR0VxXVUFtdRWVxLRXEdVaX1NNTamlzjF2TGP8SXgBAfIhMD8Q/xISDEF/8QH/yDfPAL8sE/2AezRZJJ0f54kkjuVErdgPOpJ8A1wM7WC8l7OkUGMLF/PHP+3MNVR3fxeGa+s7qdxYx1M5ixbkaTBFQpReTVU8m69joqvvuOkNNOa7aNfkH+nBQZwuuZBVyeEOl2LGifoxNY/WMGK77dzanX9f9nb1AIIUS7oLWe/y8vzQKyGg2D+RRnAnpgnWLXU9FqpdQCYO8Hxi6tdSGAUuozYCTQJAFtSQ6HpqrOxmWjOnFKv+Yn22srMzfM5J0N73Be2nlcO+Bv53v6x+xlZWRecy21q1cTc8/dhF/UOuNKvanUamNOTjFvZxWS32Cjm78vz6UlcVZMGH7S5dKtumorpXk1lBfUUF5Y+9e+sJb6mv0TTLPFSHCEH8GRfiR0CyUw3EJgmK9rsxAQ4ovRLD9r0XF5koBOBV4C7sPZTegXXN1yDkfXHduVL9bm8PbCndx+gmcLY/safbmk9yU8u+JZ1hSsYUD0gP3KA8eNw7d7d4pef4PgU05BGZr/pXFbp1i+W17OG1mF3NGp+Q9pH4uJ/hOSWPrFTgr2VBCdckRPRiyEEB2Sa36Fl4GegA9gBKr/boZ5rXWeUipTKZWmtd6K8ynnpgOqfQG84uqt5AMMB14AAoCjlFL+OLvgjgdWtODbapbBoHjmnP7Ote28aN62ebyw8gVO6nQSdw+/u8WfCjVkZZN55ZVYMzNJeOF5gk88sUXb97bCBitvZBbyTnYR1XYHx4QF8UKPKMaFB8kTNhetNVWl9ZTkVFOaV01pXg2ledWU5ddQW2ndV08pCIqwEBLlR7chMQRH+RES6UdQhIWgCOdYS/mZisPZ3yagrskLzmuDWNqFrtFBnNw3jlmL93DlmC6E+HvWbeac7ufw9vq3eWPdG0yfMH2/MmUwEDn1KrJvuZXKn34m+ITjm22jd6Afp0aFMCOzkP9LjCLMzVPQfscksuanDJZ/vYtTrpWnoEII0QG9gvOz9RNgCHARzrGbnrgemOuaAXcncKlSaiqA1vp1rfVmpdT3ONcVdQBvaa03ACilPgVWATZgNa5utm3Bm7NU/rTnJx758xFGJYzi8VGPY1At+/SobvNmMq68El3fQPLMt/EfOrRF2/emvHor0zMKmJ1TRJ1Dc3p0KDekxNAr0M/boXlVfa2N4qxKirOrKc6uoiSnmuKc6v26y/oFmQmN8adT/yjCYv0JjfEnNNqfoAgLRpM8wRRHLk9mwbUAlwO9gX2LWWqtW37Ufjtx/bFd+WZdLu8s3sVNEzz794C/2Z+Lel/Ei6teZGPxRnpH9N6vPOiEE/BJfZmi118n6Pjj3H6zdWtqLN8UlvN6pvt1QX38TAyYkMTSL3fJWFAhhOigtNbpSimj1tqOc1Kh1cDdHly3BmfS2tjrB9R5BnimmWsfBB7810F3QEtylnDngjvpF9mPF455AbOxZcdjVi1aRPb1N2AICSFl5kx8u3Vr0fa9JbuugZczCvggtxib1pwdE8YNKTF09W9+XfPDWW1VA4UZlRRmVFKUWUVhRiXlhbX7yn39TYTHB9B9WAwRCYGExwcQHhuAJfDwG/srREvwpAvuHGALcALwCDAF2NyaQXlbj9hgju8Vw8yFu7h8dCeCLJ79Ajkv7TxmbpjJjLUzePHYF/crU0YjEVddRe7dd1P1++8EjRvXbBs9A/04PTqUN7MKuTIxigg3MwX2OzaJdb9lsfTLnZx+08B/9gaFEEJ4W43rCeYapdTTQC4gj0Ra2IaiDdz4242khqTyyvhX8DO17FO7im+/JfuOO/Ht3JmkN2dgjolp0fa9objBxkt78nknuwgNnBsbzvUp0aT4ebY6QEdntzoozKwkf1cF+bsryN9VTkVR3b7yoAgLUclB9BgRR2RSIJGJQQSE+kiXWSH+AU8S0K5a63OUUqdrrWcppd4H/mjtwLzt+mO78eOmfGYv2cO14zxbtyvQJ5ALel7A9LXT2Va6je5h+z89DTn1FIpefZWiV18j8JhjDvoU9MuCMl7LLOD+LvHN1vGxmBh0QgqLPk0na0sJiT3C/9kbFEII4U0X4kw4rwNuxrkO6Nlejegwk1WZxbW/XEu4JZw3JrxBiG/L9hYqm/cZufffj9+ggSRNn44xKKhF229r1TY7r2cWMj2zgBq7g3Pjwrk1Nfawn9G2rspKTnoZOell5KaXU5RZicPuHK8cEOpLTKdgeo9JIDoliMikICwB8lRTiEPlSQK6d9R0mVKqD5AHRLdeSO1D38QQju0RzVt/7OSSkakE+Hq28syUnlOYtXEWb617i6ePfnq/MmU2E3n11eTeey9Vv/5K0PjxzbbRLcDCWTFhzMwqYmpSFFE+zf+y63N0Amt+zuTPL3ZydlqYfPsmhBAdRxHQoLWuAx5WShmBI+MRUxsory/n2l+uxeaw8dqE14jyj2rR9kvmvEf+448TMGoUia+8jMGv446HrHc4mJNTzAu78ym22jglKoQ7O8XRPeDw7GpbU9FA1tYScraXk5teRkmOcwldo8lAdGoQ/Y9NIqZzMDGpIQSGyV9JIVqDJ1nVDKVUGM41xr4EAtl/vbHD1vXHduXM1xbznmtZFk+E+IYwucdkZm6YydUDrqZTSKf9y0+fSPGMGRS++BKB48a5nRH3ltRYPi8o5ZWMAh7umtBsHZPZyNBTUvl97lb2rC8mtV/kP3uDQgghvOUXYAJQ5XrtB/yIc1kUcQisdis3/34zGZUZzDhuBp1DOrdo+0Uz3qTw+ecJHD+ehBeex+DTMZ8Qaq35vqich9Jz2FPXwKjQQO7tHMegkABvh9aiGups5GwvI2tLKVlbSijOdiacZouRuC4hdBsaQ3zXUKJTgzCZjV6OVogjgyez4L7lOpwPtOxv8XZuYHIYY7pF8uYfO7loRCp+Pp79Yrqw14XM3TyXGetm8OSYJ/crUyYTkdddR87tt1P5ww8En3RSs2109vdlUkw4s7KLuCYpmhjf5p+C9hgZx6ofM/jzi52k9IlAeXGWQSGEEB6zaK33Jp9oratcy6OIQ6C15sHFD7I8bzlPjH6CobEtNxut1prCF1+k+PU3CD71VOKffAJl7pjdMTdX1fJAejZ/lFaRFmDhg36dOeYwWU5Fa01JTjW71xexZ0Mx+TsrcDg0RpOBuK4hjDgzlsQeYUQmBXl1ZmYhjmR/O+GBUipCKfWyUmqVUmqlUmqaUiqiLYJrD24Y342iqgbeX5bh8TURfhFM7jmZb3Z+w46yHU3Kg08+Cd9uXSl86WW0zdZMC063pMZg1ZqX9uS7rWM0Ghh2aieKs6tIX1XgcYxCCCG8qlopNWjvC6XUYJxrc4pD8Pra1/lq51dcO+BaTutyWou1q7Um/8knKX79DULPmUT8U//tkMlnqdXGPduymLBiK+sra3miWwK/DEljXERwh04+bQ12dq8vYv77W5l972I+fHQZf/5vJ9Z6OwOOS2LijQO44vkxnH7TQAadkEJ0SrAkn0J4kSddcD8EFvDX5AhTgI9wdh067A1NDeeozuG8MX8HU4YnY/Gwe8ZlvS/j460f8+qaV3n+mOf3K1NGI5HXXU/2jTdS/vXXhJ5xRrNtpPj5Mjk2gtk5xVyZFOV2BrpuQ2NY9cMeln21iy4DozAYZSJFIYRo524CPlFK5QAKiAXO9WpEHdyXO77ktbWvcXqX07mq31Ut1q7WmvxHH6P0/fcJv/giou+6q8Mla3atmZNTzFM7c6mw27k4PpLbOsUS7ma98Y6gvtbG7nVF7FxdSMbGYmxWByZfI0k9whh6cidS+kQQECpjOIVojzz5zROntX600evHlFIefUgqpU4EXgSMOBfC/u8B5b7AbGAwUAycq7XerZQaxl+LYyvgIa31557cszXccGw3zn9rKR8tz+TikakeXRNqCeXCXhfy+trX2Vy8mZ4RPfcrDzpuAr69elL06muEnHKK229Sb+0Uw7z8Ep7elcervVKarWMwKIaf1pnv3ljPlj/z6DWq+ZlzhRBCtA9a6+VKqR5AmuvUVq219WDXCPeW5y3nwcUPMjx2OA+OeLDFEkStNQX//a8z+bzsMqJvv63DJZ+bqmq5bWsmqypqGB0ayKPdEugZ2DEnTaqrsrJrXSE7VhWSuaUEh00TEOJDz5FxpPaPJKFbGEazfAkvRHvnyd/SH5VS5ymlDK7tP8APf3eRa0a/V4GTgF7AZKVUrwOqXQ6Uaq27Ai8AT7nObwCGaK0HACcCbyilvPY13YguEQzrFM4rv6VT22D3+LoLe11IsE8wr655tUmZMhiIuv56rJmZlH3uPreO8/Xh/xKjmJdfyvrKGrf1Og2IJDoliOXf7MJudXgcoxBCCO/QWlu11htcmySf/1JWZRY3/34zyUHJPD/ueczGlukaq7Wm4NlnKZk1m7CLLuxwyWeN3cFjO3I4fsVW9tQ28FqvFD4Z0KXDJZ/WejvbluXx9StrmXnHQn6dvYWSnGr6HpPI2XcM5uInRzF2chrJvSIk+RSig/Dkb+r/Ae8DDa7tQ+AqpVSlUqriINcNA9K11ju11nuvO/2AOqcDs1zHnwLjlVJKa12jtd47ONICaM/eTutQSnH7CWkUVtYza8luj68L9gnm0j6XMj9rPmsL1zYpDzzmGCz9+1E0/XUcDQ1u27k2OZowk5EnduYeNMbhp3emqqSejQtzPI5RCCGE6KhqrDXc8NsNOLSDl499mWCf4BZpV2tN4bQXKXl7JmHnTybm7rs7VPL5W3EFxyzbwisZBfwnNpyFw3twVkzHWa7NYXeQsamYn9/ZxMw7FvLTzE0UZ1cxYEIS59w9hAsfH8HoSd2I7Rwiky8K0QH9bQKqtQ7SWhu01ibXZnCdC9JaH+w3fQKQ2eh1lutcs3VcCWc5EAGglBqulNoIrAemNkpI91FKXamUWqGUWlFYWPh3b+WQDE0N5+juUbw+fwcVdZ5/UX1+j/MJt4Tz8uqXm5QppYi64QZsubmUffyJ2zZCzCZuTInht5JKFpZWuq2X1DOc+G6hrPh2Fw117ic3EkIIITo6h3Zw36L72FG2g2fHPktycHKLtV306msUv/EGoeecQ8x993WYxK3UauPaTXuYvG4nPgbF5wO78nyPZMI6yFjPsvwaFn+Wzqy7F/PVS2vZta6I7kOiOeOWgVz0+EhGntWV6JSOPWGSEMKzJ6AopcKUUsOUUmP3bq0dmNZ6qda6NzAUuFsp1WRFZK31DK31EK31kKioll1kujm3HZ9GWY2Vt//Y5fE1/mZ/ruh7BUtzl7Isd1mT8oCRI/EfMoSiN17HUet+AsRLEiJJ8DXz6I4ctG7+gbBSihFndaG20srqHz2ftVcIIUTbU0r1U0pNVEqdtXfzdkwdyYx1M/hpz0/cMvgWRia03PKpRa+/QdErrxBy5pnEPvyQ2/W625ufiso5etkWviwo49bUGH4ZmsaI0EBvh/W3bFY7W5fm8flzq5j74J+s+TmT6NRgTryyD5c+PYpxF/YkoXuYPOkU4jDiyTIsV+CcBfcH4GHX/iEP2s4Gkhq9TnSda7aOa4xnCM7JiPbRWm/GuVB3Hw/u2ar6JoZwYu9Y3l64i9Jq911mD/SftP8Q7R/NK2teaZI8KqWIuvEG7IVFlL7/gds2LEYDd3SKY21lLV8VlrutF9sphK5DolnzUwZVpfUexyiEEKLtKKVmAjNxzjB/mms71atBdSC/ZPzCq2te5bTOp3FRr4tarN2SWbMonDaN4ImnEffYox0i+ay02bl5SwYXrt9FhNnEd4O7cXunOHzbeeyledX88fE23r1rET+/s4mq0jqGn96Zi58YySnX9KPLoGhMHq48IIToWDz57XQjzqeQe7TW44CBQJkH1y0HuimlOimlfIDzgC8PqPMlcLHreBLwq9Zau64xASilUoAewG4P7tnqbjm+O9UNNl6f33R9T3d8jb5c1e8qVhesZlHOoibl/kOHEjBqFEUzZmAvd59cTooNo0eAhSd35mB1uB8We9TpXXA4NMu+2ulxjEIIIdrUUa4ePBdrrS91bZd5O6iOYHvpdu754x76RPThgREPtFh3zPIvvyT/yf8SdNxxxD/xBMrY/pOfhaWVHLNsCx/llnBDcjTfD+lOnyB/b4fllnZo9mwo5quX1vD+Q0vZMD+bpJ7hTLxxABc8MoIhJ6XK0ilCHAE8SUDrtNZ14Fw2RWu9hb+mjXfLNWbzOpxPTDcDH2utNyqlHlFKTXRVexuIUEqlA7cAd7nOjwbWKqXWAJ8D12iti/7B+2o13WOCOGNAArOW7Kagos7j687seiYJgQm8vPrlZrvQRt92K46KCorffNNtG0aluLdzHLtqG5ibW+y2XkiUH32PSWTzklyKsqo8jlEIIUSbWdLMzPDib5TXl3PDrzfgb/Zn2rhpWExNRuf8K1Xz55Nzz734Dx9O/LPPoEzte8xknd3BfduzmLRmBxaDga8GdeOeLvHt9qlnQ52Ndb9l8f7DS/n6lbUUZVUx7LROXPzkKE64og9JPcOli60QRxBPfsNmKaVCgf8BPymlSoE9njSutf4W+PaAcw80Oq4DzmnmujnAHE/u4Q03TejGV2tzeOW3dB453bOewWajman9p3L/ovv5NeNXxqeM36/c0rMnIRMnUjJ7DmHnn485vvm1PCdEBHNUSADP7c7jnJgwAkzNf0M75ORUtizJZcln6Zx2w4B/9P6EEEK0utk4k9A8oB7nmtdaa93Pu2G1X3aHnTsX3El+TT4zT5hJTEBMi7Rbs2oVWTfehKV7dxJffQWDb/t+Are9uo6rNu5mU3UdlydEcm+XePyN7TPxrC6vZ+3PmWz8I5uGOjvRqcEcd1kvugyKxmhqnzELIVqfJ7Pgnqm1LtNaPwTcj/Op5RmtHFe7lhIRwDlDkvhgWQaZJe7X5jzQqZ1PJTU4lRdXv4jN0XSW2qgbbwCg8MWX3LahlOL+LvEUNth4I8v9zL+WADODT0olY1MJmZtKPI5RCCFEm3gbuBDnWtd7x3+e5tWI2rkZ62ewKGcRdw27iwHRA1qkzbqt28icejXm2FiS3pyBMbD9TtqjtebD3GKOX7GNvAYrc/p24vHuie0y+SwvrOX397cy594lrPk5g+TeEZx9x2DOuWsI3YfFSvIpxBHOk0mIjlJKBQForecDv+McB3pEu2F8V5RSvPTLdo+vMRlM3DT4JnaV7+Kz7Z81KTfHxxN24QWUf/kldVu2uG1ncEgAp0SF8EpGAfn17peE6XdMIkERFhbNS8dxkDGjQggh2lyh1vpLrfUurfWevZu3g2qvluQsYfqa6Zza+VTO6d6k49S/0pCVTeYVV2CwWEh66y1MEREt0m5rqLLZuX5zBjdtyWRAsB+/DE3juMgQb4fVRHF2FT/N3MjcB/9k8+Ic0kbEcv7DR3HC//UhtnP7i1cI4R2efAU1HecstHtVuc4d0eJC/LhgeArzVmWxo9DzcZbHJh3LoOhBvLbmNaqt1U3KI6+8EkNwMAXPPnfQdu7vEo/NoXlyZ67bOkazgRFndKE4u4qtf+Z5HKMQQohWt1op9b5SarIsw3JwedV53LngTrqEduH+o+5vkUmHbMXFZF5+OY6GBpLeehOfxAOXKW8/1lfWcPyKbXyWX8rtqbF8OqArcb4+3g5rP8XZVXz3+no+fHQZO9cW0f/YRC56bCTjpvQgNLr9TookhPAOTxJQpRvNmqO1duDZ2NHD3jXjumAxG3nm+60eX6OU4tYht1JcV8y7G99tUm4MCSFy6lSqFy6kalHTGXP3SvXz5f+Sovgor4S1le67AXcdEk10ShBLv9yJtcHucZxCCCFalR/OsZ/HI8uwuGV1WLl9/u3U2et47pjn8DcfejLjqK0l8+prsObnkzR9Opbu3Vsg0tbxfk4xp6zcTq3DwbyBXbm1UyzGFpr1tyWU5dfw49sb+fCxZWRtKWHoKalc/MRIRk3qJrPZCiHc8iQB3amUukEpZXZtNwKyvgcQGejL1KO78P3GPFbs9nycZb+ofhyfcjyzNs6isKbpOM6wKedjTkig4Nnn0A6H23ZuSokhwmzige3Zzc6sC86Ed9SkrlSX1bP2l0yPYxRCCNF6Gi290niTZVgOMG3lNNYUruHhkQ/TOaTzIbenHQ5y7ryLuvXrSXj2GfwHtc8RRfUOB3dszeSWrZmMCA3k5yFpjAhtP+NTK4pq+WXWJt5/6E92rS1k0AkpXPj4SIad1hlLgNnb4Qkh2jlPEtCpwEggG8gChgNXtmZQHckVYzoRE+zL499udpsENuemQTdhdVh5dc2rTcoMPj5E3XQT9Zs3U/H1127bCDIZuatzHEvLq/mysMxtvfhuYXTqH8mq7/dQXV7vcYxCCCFah1LqHaXUzAM3b8fVnvy852dmb5rNeWnncVKnk1qkzYLnnqPyxx+JvvMOgiZMaJE2W1pufQNnrU5ndk4x1ydH837/zkT4tI+OZ7WVDSz4YCtzH/iT7csL6HdsEhc+NpIRZ3SRxFMI4TFPZsEt0Fqfp7WO1lrHaK3P11oXtEVwHYG/j4lbj0tjdUYZ3673fJxlUnAS56Wdx+fpn5Nemt6kPPiUk7H06kXBtGk46t0njZPjwukdaOHRHTnU2t0/LR15dlfsdgdLPt/hcYxCCCFazdfAN67tFyCY/edbOKJlVGRw/6L76RPRh9uH3t4ibZZ++BElb88k7PzJhF98cYu02dL+LKvi+BXb2Fxdx1u9U7m3S3y76HJrtzpY/WMG7z3wJxv+yKHnqDgueHQEo8/phn9w+xqPKoRo/2Qe7BZw9uBEesQG8dT3W6i3eT7O8qp+VxFgCuCFVS80KVMGA9F33I4tJ5fS9+a6bcOoFI90TSCrzsobme6/FwiN9mfAhGS2/plH3s5yj2MUQgjR8rTW8xptc4H/AEO8HVd70GBv4Lb5t2FQBp475jl8jIee4FT9sZC8Rx8l4OixxNxzT4tMZNSStNa8nVXIpDXpBBmNfDu4G6dGh3o7LLTWpK8s4P2H/2TxZ+nEdQnhvPuGccyUHgSGyRhPIcS/IwloCzAaFPec3JOMkhrmLPF8Fv1QSyiX972cBVkLWJa7rEl5wFFHEXD0WIqmT8dWXOy2nVFhQZwSFcJLGQXkHWRZlsEnphAQ4sOCD7fJsixCCNG+dAOivR1Ee/DSqpfYXLKZR0c9Snxg/CG3V7d1G9k33YRvt24kPPc8ytQ+urPuZXVo7tyWxb3bsxkXHsx3g7vRI8DP22FRsKeCz59bxQ9vbsDkY+S0G/pz6nX9CY8P8HZoQogOThLQFjK2exRju0fx8q/plNe4TwIPNKXnFGIDYnlu5XM4dNMutDF33omjro7CadMO2s4DrmVZntiZ47aOj8XEyLO7UphRyZbF7pdvEUII0bqUUpVKqYq9e+Ar4E5vx+Vti7IXMWvTLM5NO5djk4895PasBQVkTp2KISCApNenYwxsX8lThc3Ohet2MjunmOuSo5nVtxMhZu8myHXVVuZ/sJVP/ruCsvwajpmSxrn3DiW5V/tdJ1UI0bH8bQKqlAp1zYL7vFLqpb1bWwTX0dx9Ug8q6qy88tt2j6+xmCzcMPAGNhVv4rtd3zUp9+3cmfALLqDs03nUbtjotp0UP1+uTIri47xSVle4X5al29AY4rqGsOR/O6j/B4myEEKIlqO1DtJaBzfad9daz/N2XN5UXFvMvQvvpWtoV24bctsht+eoryfr+uuxl5eT9Pp0zLGxLRBly8moree0VdtZWFbJ82lJ3NclHoMXuwZrrdn6Zy7vP/QnGxdk0++YRKY8MoLeYxIwGOV5hRCi5XjyG+VbIBVYD6xstIkD9IwL5pzBicxavIeMYvdJ4IFO6XwKPcN7Mm3VNGqsTa+LvPYajOHh5D/xxEFn2r0xJYZIs4n7t2fhOMiyLGPO7U59tZVlX+/yOEYhhBCHTinVw7Uf1Nzm7fi8xaEd3LfoPiobKnlq7FNYTJZDak9rTd5DD1O3dh3x/30SS69eLRRpy1hZXs3JK7eTV2/lw/5dOD/eu08XS3Kq+d/zq/n53c0ER/pxzt1DGXNud3z92ld3ZSHE4cGTBNSitb5Fa/2O1nrW3q3VI+ugbjkuDaNB8fQPWzy+xqAM3DXsLvKq83h7w9tNyo1BQUTffBO1q1ZR8fU3btsJMhm5r0scKypq+CjP/bqkUUlB9BqTwPrfsynOkUkXhRCiDd3i2j/XzPast4Lytrmb57IweyG3Db2N7mHdD7m90jnvUf7550Recw3Bxx/fAhG2nC8KSjl7TToBRgNfD+rG6LAgr8Vis9pZ8r8dfPTYMoqzqzhmShpn3z6YqGTvxSSEOPx5koDOUUr9n1IqTikVvndr9cg6qNgQC/83tjNfr8tlVUapx9cNihnEyZ1O5t0N75JZmdmkPOSss7D07k3BM8/gqK52285/YsMZHhLAoztyKLHa3NY7amJnfCxGFn68/R+tXyqEEOLf01pf6dqPa2Y79EGPHdDm4s28sPIFjkk6hvPSzjvk9qr//JP8p54icPx4Iq+7tgUibDlvZBZw1cY99Avy59vB3ekWcGhPeg9F3q5yPn58Oau+30P3YTFMefgoeo9JQBna1wzBQojDjycJaAPwDLCEv7rfrmjNoDq6q8Z2JirIl0e+2vSPZpu9ZfAtGA1Gnl3e9EtwZTAQc++92AoKKJrxpts2DErx3+6JlNvsPLHD/URDlkAzwyd2JmtLKTtXF3ocoxBCiJahlBqplDpfKXXR3s3bMbW1GmsNd/5xJ2G+YTwy8pFDXh6lISuL7Jtuxic1lfin/osytI+xi1prHt+Rw4PpOZwSFcLH/bsQ4eOd7q22BjuL56Xz2dMrsdbbOfX6/oy/pBd+QbKepxCibXjym/lWoKvWOlVr3cm1dW7twDqyAF8Td53YgzWZZXy6Ksvj62ICYriy35X8mvkri7MXNyn3HzSQ4ImnUfLOOzRkNn1KulfPQD/+LzGK93KLWVnu/mlp7zHxRCQEsvDT7VjrPV+/VAghxKFRSs3B2eV2NDDUtR1x64A+s+IZdpfv5okxTxBmCTukthw1NWRdex3a4SDp1VcwBga2UJSHxubQ3LI1k5czCrgoPoIZvVOxeGlSn9wd5Xz0+HJW/5RBz9HxTH5gOCm9ZXZbIUTb8uQ3YDrg+Yw6AoAzByYwOCWMp77bQnmt57PNXtTrIpKDknly2ZNY7U2vi771NjCZyH/qqYO2c1tqLHG+Zu7cloXNzVNYg9HA2MndqSqpZ7lMSCSEEG1pCDBKa32N1vp613aDt4NqSwuyFvDptk+5pPclDI8bfkhtaa3Juede6rdvJ+G5Z/FJTW2ZIA9Rrd3B5Rt38UFuCbekxvBU90SMXpjp1m51sOjT7Xz27ErsVgcTbxzAuCk98JFJhoQQXuBJAloNrFFKvSHLsHjOYFA8PLE3JTUNTPt5m8fX+Rh9uHPYneyu2M37W95vUm6OiSbyqquo+vkXqhc3fUq6V6DJyCNdE9hQVcu7OUVu68V3DaXXqDjW/JJJUValx3EKIYQ4JBuA9rUuSBsqqyvjwcUP0jW0K9cNvO6Q2yt+6y0qv/+e6FtuJnDMmBaI8NCVW21MXruDH4sqeLxbAnd0ijvkLsb/RklONZ88tYI1P2fSe0wC5z0wjKSeMpWHEMJ7PElA/wc8DixGlmH5R/okhHD+sGRmL9nD1jzPk7uxiWMZkzCG6WunU1TbNHkMv+RizElJ5D32OLqhwW07p0aFMC48iP/uzCW/3v1T2BFndcUSYOL3uVv/0ZhVIYQQ/4xS6iul1JdAJLBJKfWDUurLvZu342srjy99nLL6Mp4c8yQ+xkMbe1i9bBmFL0wj6KQTCb/88haK8NAUNlg5c3U6KytqmN4rhcsTo9o8Bq01GxZk8/GTy6kuq+eUa/pxzPlp+FjkqacQwrv+NgFtvPSKLMPyz912fBpBFhMPfrnhH802e8fQO6i31zNt5bQmZQZfX2Lvu5eGnTspnjnTbRtKKZ7olohVax5Kz3ZbzxJgZtSkbuTvqmDjAvf1hBBCHLJncS658hBwBvAE+y/Fctj7btd3fL/7e67ufzU9wnscUlu2wkKyb70Vn5QU4h59zCtPGA+UV2/lrNXp7Kpt4L1+nTkj5tDGtv4btVUNfPf6eua/v5X4bqGcd/8wUvtFtnkcQgjRnL9NQJVSu5RSOw/c2iK4w0FYgA+3HZ/GnztL+Hqd+1lpD5QakspFvS7iix1fsK5wXZPywKOPJujEEyl6bToNe/a4baeTvy/XJUfzeUEZf5S4fwrbfVgMiT3C+PN/O6guq/c4TiGEEJ7TWs/XWs8HTt573Pict+NrbQU1BTz252P0i+zHZX0uO6S2tM1G9q234aisIuHFaRgDA1ooyn8vu66BM1dvJ6feygf9O3N0eNuvp5m5pYQPH13Gno3FjJrUldOu609AiG+bxyGEEO540gV3CH/N0DcGeAl4rzWDOtxMHpZM7/hgHv9mM9X17tfmPNCV/a4kyi+Kx/58DJuj6XUxd9+N8vEh7+FHDvp09brkGFL9fLhrWxZ1dkezdZRSHH1+Gnab5o+Pt3scoxBCiH/luGbOndTmUbQhrTUPLn6QBnsDj49+HJPh0LqCFr78CjXLlhH74INYundvoSj/vYzaes5cnU5Rg42P+nfhqNC2nYVXOzTLv9nFly+uwdfPxKQ7hzBgQrKs6ymEaHc86YJb3GjL1lpPA05p/dAOH0aD4pHTe5NXUcerv6V7fF2AOYA7ht3B5pLNfLDlgybl5phoom66ierFi6n45lu37fgZDTzVPYkdtfU8vzvPbb3QaH+GnJzKjlUF7F7vfuIiIYQQ/45S6mql1HogTSm1rtG2C2ja3eUwMm/7PBZmL+SmwTeRGpJ6SG1VzZ9P8RtvEHrOJELPPKNF4jsUe1zJZ7nNzscDujIkpG2fxtZVWfn61bUs+2oXacNiOefuoUQltf3TVyGE8IQnXXAHNdqGKKWmAjKC/R8anBLOWYMSePOPnewqcr8254FOSDmBMQljeHn1y+RWNe3CGzb5PCx9+5L/5JPYy8vdtnN0eBDnxYbzamYB6yvdr6oz8PhkwmL9WfDBNlkbVAghWt77wGnAl6793m2w1voCbwbWmjIrM3l6+dMMjx3O5B6TD6kta3Y2OXfciW/PnsTce28LRfjv7aip44zV6dTYHXw6oAsDg/3b9P75uyv46IllZG0t5ejz0xh/SU/MvsY2jUEIIf4JT7rgNp4c4UlgMPCf1gzqcHXXST2wmIw88IXnExIppbj3KOcH7BNLn2hynTIaiXv4IeylpRQ8/8JB23qoazwRZhM3b8nE6ma2W6PJwDFTelBZUidrgwohRMvTWuvdwLVAZaMNpdRhuTaGQzu4b+F9GJWRR0c9ikF58k+P5umGBrJuvgVtt5M47QUMFksLRvrPpdfUcebqdBocmnkDu9I3qO2Sz72z3H727EoUirNvH0yfsQntYiImIYQ4GE+64I5rtB2ntf4/rfXWtgjucBMdZOH2E9P4Y3sR/1vj+WyzCYEJXDvgWn7P+p2fM35uUm7p1YvwCy+k7KOPqFm92m07oWYTT3ZPZENVLdMzC9zWi+/219qgBXsqPI5TCCHE39q7wPNKYAX7L2+2wltBtSaDMjC5x2QeGPEAcYFxh9RW/rPPUrduHXFPPI5PSkoLRfjv7Kmt55w1O3Bo+GxgV3oF+rXZvW0Ndn55dzPz399KYloY/7lnKNEpwW12fyGEOBTK3ZM4pdQFWuv3lFK3NFeutX6+VSP7h4YMGaJXrGj/n912h2bS64vZU1zDz7ccTXiAZ+uf2Rw2Jn8zmeLaYr444wuCfPYf2+GormbHqadhDAyk02fzUGaz27au2LCLn4or+HlIGt0Cmv/2uL7GygePLMPX38R/7h6K0fzvv7EWQoj2TCm1Ums9xNtxtFft5fO1av58Mq+aStiFFxJ77z1ejSWnroHTV6dTabO3efJZXV7Pt9PXU7C7gqGndmLoyaky0ZAQol1y9/l6sKxi7wj6IDeb+BeMBsV/z+pHRa2Vx77Z5PF1JoOJB0c8SHFdMS+uerFJuSEggNj77qV++3ZKZh18mdYnuiXiZzBw69ZMHG6+gPD1N3PMlDRKcqpZ/o10xRVCiJZwwLwKTTYP2whVSn2qlNqilNqslBrRTJ1jlFJrlFIblVLz/8m17ZG1oICcu+/BNy2N6Ntu9WoshQ1WzlmzgzKrjQ/7d2nT5LMwo5JPnlxBSW41J03ty7BTO0nyKYTocNxOJqS1fsO1f7jtwjkypMUGMfXoLrzyWzpnDUxkdDfPFofuE9mHyT0m8/7m9zmty2n0j+q/X3nQ+PEEThhP4cuvEDh+PL6dOjXbTrSvmYe7JnDjlgzeyS7i8sSoZuul9o2kx4hYVv2YQeeBUdK9RwghDt1zBynTwLEetPEi8L3WepJSygfYb+ChUioUeA04UWudoZSK9vTa9kg7HOTefQ+OmhoSnnsWg6/31rQssdo4Z80OcuqtfNS/MwPacMKh9JUF/PLuJiyBZs6+fRCRifIsQAjRMXkyC26UUuoepdQMpdTMvVtbBHc4u+7YrnSKDOCez9dT2+D5bLPXD7yeaP9oHl7yMFaHtUl57P0PoHx9yb3nXrTdfbv/iQ1jXHgQj+/MJaO23m290ed0wz/Yh19mbcZubX4NUSGEEJ45YF6FA7e/TT6VUiHAWOBtV3sNWuuyA6qdD3ymtc5w1Sn4B9e2OyXvzqJ60SJi7roL365dvRZHhc3OeWt3sKu2ntl9OzGsjdb51Fqz7Otd/PDmBiKTgjjn7qGSfAohOjRPBvZ9AYQAPwPfNNrEIbCYjTxxZl8ySmp48ZftHl8XYA7gnuH3sL10O7M2Nu1qa46JJvbee6hdvZqSOXPctqOU4um0JABu35rldlZeX38z4y7oIV1xhRCifegEFALvKKVWK6XeUkoduOhkdyBMKfW7UmqlUuqif3Btu1K7YSMFL7xA4ITxhJ7rvQn4q212pqzdyeaqOt7qncqY8LZJAG1WOz++tZHlX+8i7ahYzrh5IP7Bns0dIYQQ7ZUnCai/1vpOrfXHWut5e7dWj+wIMKJLBP8Zksibf+xkU47ns80em3wsE5InMH3NdHaW7WxSHjxxIoHjxlH4wjTqd7lPGpMsPtzfJZ75pZXMyil2Wy+lTwQ9Rsax6scMmRVXCCG8ywQMAqZrrQcC1cBdzdQZDJwCnADcr5Tq7uG1ACilrlRKrVBKrSgsLGydd/I3HNXV5Nx6K6bwcOIefdRry4tYHZorNu5mZUU103ulcFxkSJvct67aypcvriF9ZQEjzuzC+It7yoSAQojDgie/yb5WSp3c6pEcoe45uSdh/mbu/mwddjdrczbn3qPuxd/sz70L78XmsO1XppQi9qGHnF1x773voF1xL4mPYFx4EA+nZ7Ojps5tvdGTukpXXCGE8L4sIEtrvdT1+lOcSeWBdX7QWldrrYuABUB/D68FQGs9Q2s9RGs9JCqq+XkCWlveE0/QkJFB/FNPYQoL80oMWmtu2ZrBbyWVPJOWxKnRoW1y38qSOj57ZiX5uys4/oreDDohRdb3FEIcNtwmoEqpSqVUBXAjziS0VilV0ei8aAGh/j48cFpv1maV8+7i3R5fF+kXyb1H3cuG4g28s+GdJuX7uuKuWvW3XXFf6JGMr8HAtZsysLpJgqUrrhBCHLpDnQVXa50HZCql0lynxgMHTqn+BTBaKWVSSvkDw4HNHl7bLlR8/z3l8z4j4sorCThquNfieHxnLp/klXJHp1imxEe0yT2LsqqY99QKqssbmHj9ALoNiWmT+wohRFtxm4BqrYO01sGuvUFr7dfotUyH2oJO6xfHsT2ieeaHLewsrPL4uhNTT+SE1BN4be1rbC3Z2qQ8eOJEAo85hsIXptGwe7fbdmJ9zTydlsSayhqm7clzW69xV9y8neUexymEEGKf51zbq8BSYAbwpuv4VQ/buB6Yq5RaBwwAnlBKTVVKTQXQWm8GvgfWAcuAt7TWG9xd2wLvqUVZ8wvIffAhLH37EnXdtV6L483MQl7JKOCi+AhuTmmbJDBrSwmfP7sSlOKs2waRkOadJ79CCNGaPJkF9xdPzol/TynFk2f1xddk5NZP1mKze97F9d7h9xLsE8x9i+7Dat9/VlylFLEPP4zy9SXnb2bFnRgdyqSYMKbtyWdVebXbeqPP6UZgmC8/zdxIQ63NbT0hhBBN7Z3xFsgFBrm6uQ4GBgLZHraxxnVdP631GVrrUq3161rr1xvVeUZr3Utr3UdrPe1g17bwWzwkWmty778PXV9P/FNPocxmr8Txv/xS7k/P5pSoEJ7sntgm3V+3Lc/jq5fXEhhu4ew7BhOR0Daz7AohRFs7WBdci1IqAohUSoUppcJdWyqQ0GYRHiFigi08cnpvVmeUMeOPphMLuRNmCeOBEQ+wpWQLM9bPaFLuaVdcgCe6JxLrY+a6zRlUu0lWff1MHHdZbyqL61jw4TaP4xRCCLGfNK31+r0vXE8oe3oxnnah7JNPqF7wB9G33IJv5+bXsm5tf5RUcv3mDI4KCeDVnikY2yD5XP97Fj+9vYnYziGcddsggsItrX5PIYTwloM9Ab0KWAH0AFYBK13bF8ArrR/akWdi/3hO7hvLCz9tY3Ou58NsxyeP59TOp/LmujfZVNx0OM9+s+Jud7/kS7DJyEs9k9lVW88j6Tlu68V1CWHIyalsXZrHtuXuu+wKIYRwa51rGZRjXNubOLvMHrEasrIo+O9T+A8fTtgFU7wSw8aqWi7dsIsu/r7M6tsJi7H1Z51d9eMeFny4jdR+kZx2Q398/b3z1FcIIdrKwcaAvqi17gTcprXu1Gjrr7WWBLQVKKV47Iy+hPiZueXjtTTYPO+Ke9ewuwi3hHPvwntpsDc0aTfu0UcwBAaSfettOOrr3bYzKiyIq5KimJVTzC/F7pPgISenEts5hPnvb6OiuNbjOIUQQgBwKbAR50R/N+KcDOhSr0bkRdrhIPeuu0Ep4p94HGVo++VG8uqtXLhuJ8EmIx/070yI2dSq99Nas/SrnSz5bAddh0Rz4lV9MJmNrXpPIYRoDw7WBfdY12G2UuqsA7c2iu+IEx7gw5Nn9WNzbgUv/+r+aeWBQnxDeGjkQ6SXpfPqmqbzWJgiI4l/4nHqt22j4LnnDtrW3Z3j6Blg4aYtGRQ2WJutYzAaOO6yXmit+fmdTTj+wRIyQghxpNNa1wGvA3dprc/UWr/gOndEKpk1m5oVK4i55x7MCW0/yqfabuei9Tsps9mZ068zcb4+rXo/rTWLPk1nxTe76TkyjuMu642xDZ62CiFEe3Cw33ZHu/anNbOd2spxHdGO6xXD2YMSee33HazJLPP4urGJYzmr21m8s+Edluctb1IeePTRhF14IaWz51C1YIHbdnwNBl7rlUKlzc51mzJw6OaTy+BIP46enEZuejmrvt/tcZxCCHGkU0pNBNbgnK0WpdQApdSXXg3KS+p37KDwhRcIHDeOkLPObPP7O7Tmhs0ZrK+s5fVeKfQO9Gvd+zk0v7+/lbW/ZNJ3XCLjLuiBwSBrfAohjhwH64L7oGt/aTPbZW0X4pHpwYm9iAny5ZaP11BndT977YHuHHonKcEp3LXgLkrrmk5uGH3brfh2707O3fdgKypy207PQD8e65bI/NJKXtqT77Ze2vBYug2NYdnXu2VpFiGE8NyDwDCgDJyz0wLemXXHi7TVSs6dd2Hw9yfukYfbZLbZAz2xM5dvCst5qGs8x0eGtOq9HHYHv7y7iU1/5DDoxBTG/KcbSpJPIcQR5mBdcG852NaWQR6Jgi1mnp7Un52F1fz3uy0eX+dv9uepsU9RUl/CA4sfQB/w9NLg60v8s8/gqKwk5957m5Q3NiUunDOjQ3l6Vx5LytyvT3r0+WkEhjqXZqmXpVmEEMITVq31gd/aHXFjGYrefJO6DRuIfeghTFFRbX7/D3KL9631eWVi697f4dD8/O5mti3LZ/jEzow4o4tXEm4hhPC2g3XBDfqbTbSy0d0iuWRkKu8u3s0vm90/hTxQr4he3DzoZn7P/J2Ptn7UpNzSvTvRd9xB9fwFlL431207SimeSUsixc+Hqzfuoaih+eTS18/EcZf3prKknt9mbz5oUiuEEAKAjUqp8wGjUqqbUuplYLG3g2pLddu2UTT9dYJPPpngE09o8/svKq3k9q2ZHB0WxOPdWnetT4dD8+uszWxfns9RZ3RmyMmprXYvIYRo79ThkiwMGTJEr1ixwtthtLg6q50zX1tMXnkt3904ltgQz9YGc2gH1/5yLctyl/HBqR/QPaz7fuVaa7KmXk31kiWkfvIJlrTublqC9ZU1nLJyO6PDAnmvX2cMbj6kV/+UweJ56Yw+pxv9xyd5/iaFEMKLlFIrtdZD2vie/sC9wPGuUz8Aj2qt3U9T7iWt8fmqbTZ2Tz4fa1YWnb/5GlN4eIu2/3d21tRz8sptRPmY+HpQt1ad8VY7NL++t4Uti3MZPrETQ04+4npaCyGOUO4+X2XKtXbOYjbyyvkDqbc5uOmj1dg9nG3WoAw8NuoxgnyCuGP+HdTa9l8qRSlF3BOPYwgOJue2W3HU1Lhtq2+QPw93S+DXkkpeyyhwW2/AhCQ69Y9k8bx0cnfIeFAhhDiIU7TW92qth7q2+4CJ3g6qrZTMnkPd+vXE3HdvmyefVTY7l6zfhUHBe/1ad7kV7dD8PteZfA49JVWSTyGEoJUTUKXUiUqprUqpdKXUXc2U+yqlPnKVL1VKpbrOH6eUWqmUWu/aH9uk8SNIl6hAHjm9D3/uLOHV39I9vi7CL4InxjzBjvIdPLP8mSblpogI4p/6L/XpO8h7+OGDdp29JD6CU6NCeHJXLsvLq5uto5Ri/MU9CYyw8MObG6itbGi2nhBCCO728Nxhp2HPHgpffJHAY48l+OST2/Tee2e83VFbx4zeqaT4+bbavbTWzP9wG5sW5TL4pBSGnirJpxBCQCsmoEopI/AqcBLQC5islOp1QLXLgVKtdVfgBeAp1/ki4DStdV/gYmBOa8XZUZw9KIEzByYw7edtLNtV4vF1I+NHcmmfS/lk2yf8vOfnJuWBo0YRed21lH/xJWUffey2HaUUz/dIJtHXh6kbd7sfD+pv5sQr+1BXZeWnmRtlfVAhhGhEKXWSa7xnglLqpUbbu8BhP4ubdjjIve9+lNlM7IMPtPkkPC/tyefbonIe6BLP6LDWm85Ca80fH21n44JsBp2QzPCJnWXCISGEcGnNWXCHAela651a6wbgQ+D0A+qcDsxyHX8KjFdKKa31aq11juv8RsBPKdV6X1N2AEopHj2jD8nh/tz44WpKqz1/unj9gOvpE9GHBxY9QGZFZpPyyKuvJmDMGPIff5za9RvcthNsMjKjTypFVhtXbdyNzU1yGZUUxNjzupO5uZQV3+zyOE4hhDgC5AArgDpgZaPtS6DtZ+JpY2Uff0LN8uVE33kH5piYNr33T0XlPLUrj7Njwlp9xts/v9jJ+t+zGDAhiaNktlshhNiPJ7PgDgGuBhJc21RgkAdtJwCNs50s17lm62itbUA5EHFAnbOBVc1NzKCUulIptUIptaKwsNCDkDq2QF8Tr5w/iKKqem7/dJ3Hs82ajWaeOfoZlFLc/PvNTceDGgzEP/0UxqhIsm+8EXtZmdu2+gf580xaEovKqnhkR47bej1HxdHjqFiWf7ubjI3FHsUphBCHO631Wq31LKCr1npWo+0zrXXTxZsPI9bcXAqeeQb/o44idNKkNr33zpp6rt28h96BfjyTltSqCeHqnzJY9f0eeo+JZ+TZXSX5FEKIA7hNQLXWD2utHwYSgUFa61u11rcCg4HktghOKdUbZ7fcq9zEOENrPURrPSTKC+uHeUOfhBDuOqknP2/O593Fuz2+LjEokafGPsW20m08suSRJsmrKSyMxBdfxFZYSPYdd6AdDrdt/Sc2nCsSI5mRVcgnec13B1ZKMfb8NCLiA/hp5iYqimubrSeEEEeoVKXUp0qpTUqpnXs3bwfVWrTW5D30MNrhIO7RR9o0Kds76ZBJKWb2ScXf2HrTX2xenMPieel0GRTN2MlpknwKIUQzPPktHAM07u/Z4Dr3d7KBxmtxJLrONVtHKWUCQoBi1+tE4HPgIq31Dg/ud8S4bFQqE3pG88S3m1m5x/PxoKMTRnPNgGv4eufXfLj1wyblfn37EnPP3VQv+IPiN944aFsPdklgRGgAt2/NZG1l8zPomn2MnHhlXxwOzbevraeh7rAf3iSEEJ56B5iOc9znOGA28J5XI2pFFV9/TdX8+UTfdCM+SW23TJfWmhu3/DXpUHIrTjq0c00hv83ZQlLPMI67tBcGgySfQgjRHE8S0NnAMqXUQ0qph4Cl/DVu82CWA92UUp2UUj7AeTjHuDT2Jc5JhgAmAb9qrbVSKhT4BrhLa73Ig3sdUZRSPHfOAOJD/Zj63ioKKuo8vvbKflcyNnEsTy97mjUFa5qUh553HsETT6PwpZepWuT+R282KN7s3YkIs4nL1u+isMHabL3QGH9OuKI3JTlV/DJrM1omJRJCCAA/rfUvONfj3qO1fgg4xcsxtQrtcFA84038+vcn7IIL2vTer2QU8E1h6086lLW1lB/f2kh0ajAnXtUXo1lWuRNCCHf+9jek1vpx4FKg1LVdqrV+woPrbMB1OBfX3gx8rLXeqJR6RCm1d62zt4EIpVQ6cAuwd6mW64CuwANKqTWuLfofvrfDWoi/mRkXDqGqzsbVc1fRYHPfZbYxgzLwxOgniA2I5dbfb6Wotmi/cvX/7d13fBzF2cDx33NNJ+nUe7Vky71XsCFgDAaHDqaH+hJMD5AAKSSBkEISOoTea4JjOqEZmw62sXG33C2rWL33a/P+cecu2TKo2NLz/XyWu92dmZ2RD42e29kZEVLuuIOQnAFsu/kW3IWF7ZYV77Dx3MhsKj1eZq3Ow9NOcJk5PI4pM3PYvLScRTopkVJKAbSKiAXYICLXicgZgKunK9UVxGKh38svkXrvvYjV2m3X/bamgbs2F3NaYnSXTjpUtrWO9x9bQWRCKCdfOxqHs+vWFVVKqd6go1/RhQF1xpgHgUIR6dBiVsaY940xg4wxA4KBLMaYPxpj3gm+bzHGnG2MyTHGTDLGbA4e/4sxJtwYM2aXrewHtK9XG5wcwd1nj2LJ1mr+8r81Hc4XFRLFA8c8QJ27jps/vxmPf/e7l5awMNIffhjj81F49TX4Gtpe9xNgVEQY9wzO4NuaRv60ac8R1juNPjaDIZOTWfy/PDYu0X9KpVSfdwOBvvUXBOZWuIidI4J6HWtUFI70Pech7Drlbg9Xrc4jOzSEe7tw0qGa0ibefXg5zjA7p/5iDE6XvUuuo5RSvcl+A1ARuR34NTsXyLbTi59TOdScPCqVWUf158VvtzJnSft3K/c0OHYwf5z8R5aULuH+Jffvdd6RlUX6A/fTunkz226+GePztVvWWcmxzEpP4OnCCl4sqmgzjYgw9YIhJPePYt7zayjPr+9wXZVSqrcxxnxnjGkwxhQaYy4zxpxpjFnQ0/XqDXzGcO2ardR6fTw1IguXrWvuujbXu3n3X8sBOPWGMbhi+vRqcUop1WEduQN6BnAq0AgQXJ+z6x6kUAfs1hMGM2VAHL97cyUrC2s7nO+UAadw/pDzeWnNS7y54c29zodPmULS735Lw2efUXbfffss648DUjk2NpLfbihkfmVdm2msdgs/vWokTped9x9bQVNdx9cyVUqp3kBE3hWRd9rberp+vcEDeaV8Ud3A3wamM8wV2iXX8Lp9vP/YChprWjnpmlFEJ4V1yXWUUqo36kgA6jaBNTsMgIiEd22V1IGyWS08fP5YElwhXPXyEiob9loytV23TLyFySmTufPbO/mu5Lu9zsf+7GdEn38eVc88S80bewepO+pgEZ4Y3o+h4aFcsTqP1Q1tL7sSFungxKtH0dLg4YPHV+DzdOzZVaWU6iXuAe7dx6Z+hC+r6rknr4SzkmI4PyW2S65h/IZPnltDyZY6pl82jOT+UV1yHaWU6q06EoDOFpEngGgRuQL4BHi6a6ulDlScK4THLxxPeUMr1726tMOTEtktdu6Zeg+ZkZnc+OmN5NXm7ZUm+Xe/I2zy4ZTcfjtN33/fblkum5WXRmUTabNy4YrNFLe2fYczITOCYy8dRsnmOj55YY3OjKuU6jOMMZ/va+vp+h3KSls9XL1mKzlhIfxjcHqXPff5zRsb2bS0nCln5jBgnM6PqJRSB6ojs+DeA8wBXgcGA380xjzU1RVTB25kehR/P3Mk326u5PdvrSRw43r/Ih2R/OvYf2EVK9fNv47a1t2H8YrdTvr992NLTaHwuutxF7Y/2VBKiIOXR/WnzuvjohVbaPC2/exozvhEJp85gI2Ly/jmjY0db6RSSvUCIjJQROaIyBoR2bx96+l6Haq8fsNVa/Jo9Pl5akQW4V002+7KzwpZ9kkBI49OY8xx3beeqVJK9SYdmYToH8aYucaYW4wxNxtj5orIP7qjcurAnTkunV9My2H24kIe/WxTh/NlRGTw4LQH2dawjRs/vRGPb/eZca3R0WQ89hjG46Hwmmvw1bc/idBwVyhPDc8it7GZK1dvxdvOHc6x0zMZeUw6yz4pYPm8gg7XVSmleoHngMcAL3AMgTW3dYK/H+jevBK+rWnk74PSGRLeNc99bllRwZevrSdrVDxHnjuoy+6wKqVUb9eRIbjT2zj2086uiOo8N00fxGljUrn7o3W8t2Jbh/ONTRzLnUfcyeLSxdy54M697qCG9O9P2v2BmXELr/8Ffnf7kwhNi4vkroHpzKuq4/cbi9q8GysiHHn2QPqPTeCrORt0eRalVF8SaoyZB4gxZqsx5g7gpB6u0yFpQU0DD24t5ZzkGM7touc+y/Pr+fjpVcRnRHD85cOxWDT4VEqpH6rdAFRErhaRlcBgEVmxy7YFWNF9VVQHSkT4x8xRTMyK4Zezl7Nka3WH857c/2SuGn0Vb218i2dXPbvXedeRR5D617/QtGAB2379a4y//WdNL06L55qMRJ4vquCBraVtprFYhOmXDSOlfxRzn1vNtg0dr6tSSh3CWkXEAmwQketE5AzA1dOVOtTUerxcu2YrmaEO/jYwvUuu0VTn5v3HVuAMt3PStaOwh3TN8F6llOor9nUH9FXgFOCd4Ov2bbwx5sJuqJv6EZx2K09cNIHUKCdXvLiY/MqmDue9ZvQ1/DTrpzzw/QO8u+ndvc5HnXYaiTf/ivoPPqT0rr/v81nT3w9I4ezkGP6xpYRnCsvbTGNzWDnxmlFExYfy/mMrqdzW0OG6KqXUIeoGIAz4BTAeuBC4pEdrdIgxxnDr+kJK3R4eHdavS9b79Hn8fPD4SloaPJx49SjCo3StT6WU+rHaDUCNMbXGmDxjzPnGmK1AM4GlWFwiktltNVQ/WGy4g2cvnYjfGC57fhG1TZ79ZyJwB/UvR/6Fw5IP449f/5EvCr/Yu+zLLyf2koupfuklqp55pt2yLCLcPziTGfGR3LahiNdLqtpM5wy3c/J1o7HaLLz38HIaqls61killDoEGWO+M8Y0GGMKjTGXGWNmGmMW9HS9DiWzS6p5u6yGW7JSGBfZ+SvEGWP4/N/rKNlcy7GXDiMhU5dAV0qpztCRSYhOEZENwBbgcyAP+KCL66U6Sf8EF09cOJ78qiaufHkxLZ62Z6Xdk8Pq4IFjHmBgzEB+9dmvWFq2dLfzIkLir39N5Ik/peyee6l56612y7JZhMeHZXFktItfrM3n44raNtNFxody8nWjcTd7efuBZTTVtf+MqVJKHcpEZK6IRO+yHyMiH/VglQ4pW5pa+d2GQiZHh3Ndv65ZCmXFp4XkflPMhBOzyBmvy60opVRn6cgkRH8BDgfWG2OygWMB/Zb2EHJY/zjuOXs0CzZX8Yt/L8Xr69gaoS6Hi8eOe4zk8GSunXct66vX73ZeLBZS/v53wiYfTvHv/0DDl1+2W5bTauH5kdmMcoVxxeo8vq5uexbdhMwITr5uNA3VLbz9wFJaGjp211YppQ4x8caYmu07xphqQKOcDvD4Ddes2YpNhH8N7Ye1C2ajLVhTxdf/3UD26HgmnZzd6eUrpVRf1pEA1GOMqQQsImIxxnwKTOjieqlOdtqYNP506nA+XlPKra+vwN/O0ih7iguN44npTxBqDeWquVdR1LD7GqAWh4P0hx8mZOBACn9xA03ff99uWS6blVdG9ycrNISLV25hWV3bz6Wm5ERz4jWjqC1r5p2HltHa7O14Q5VS6tDg3/VxFhHpR+AxF7Uf9+aVsLS+ibsHZ5DmdHR6+TWlTXz09CpiU8M57rJhiM54q5RSnaojAWiNiLiAL4BXRORBoLFrq6W6wiVTsvjl9EG88X0Rd763Zp+TB+0q1ZXKE9OfoNXXyqyPZ1HZXLnbeavLReaTT2BPSqLgilk0L1/eblmxdhuvjR5AnN3GBSs2kdvQ3Ga6jCGxzLhyBJVFDbz38HLcLRqEKqV6ld8BX4nISyLyMoE+9rc9XKeD3rfBJVfOS47l1MToTi/f3ezl/cdWICKcePUoHE5bp19DKaX6uo4EoKcRmIDoJuBDYBOB2XDVIej6aTlcfmQ2z3+Tx4PzNnQ4X05MDo8c+wjlzeVc/cnV1LnrdjtvS0gg84XnscbFkf/zK2hetbrdspJD7MweM4AQi4WZyzayup0gNGtkPMdfPpzSLbW8/9gKvO6OPb+qlFIHs+DyK1HAOOA14D8EZpjXZ0D3ocHr4/rcrfQLdfDXgWmdXr4xhnkv5FJT1syMWSOIjA/t9GsopZTqQABqjGk0xviMMV5jzAvGmIeCQ3LVIUhEuO3EoZw1Pp0HPtnAc19v6XDeMYljuG/qfWys2cisj2ftFYTak5Lo9/xzWCMjKbj8clrWrm23rKzQEN4Yk4PTYuGspRtZVd/2cNwB4xI59tJhFK2v4YMnVuHzdOz5VaWUOlgZY/zArcaYCmPMe8GtoqfrdbC7Y+M2trV4eHhoP8K7YMmVpXPz2bysnCNm5pA2OKbTy1dKKRXQbgAqIvUiUhd83f5++35de/nUwc9iEf5+5khOGJ7En95dw+tLCjuc98i0I7l/6v2sr17fdhCamkrmC88joaHkX/Z/tG5o/y5rdlgIb47NIcxq4axlm1jRThA6+LBkpl4wmPzVlXzwxEq8HZzJVymlDmKfiMjNIpIhIrHbt56u1MFqXmUdLxdXcnVmIhOjOn/JlaJ11Sx4cxMDxiUyalp6p5evlFJqp32tAxphjIkMvm5/v30/sjsrqTqfzWrhwfPGckROHLfMWc5bS4v2nyno6IyjuX/q/ayrXseVH1+5VxDqSE+n3wvPIzYbWy/7P1o3b263rH6hIbwxNgeXzcLZyzaxvJ0gdPhP0pj6s8FsXV3J/x5ZgadVg1Cl1CHtXOBaAs9+Lglui3u0Rgepao+XX67NZ3C4k1uykju9/MaaVj56ehXRSWFMu3gI0gWz6iqllNppX3dAnSJyo4j8S0RmiYg+id/LOO1Wnrp4Aodlx3HT7GXMOYA7oUdnHM0DUx9gbfXatoPQfv3IfOF5APIvuXT/QeiYHCJtVs5etpGl7cyOO/wnaRx3yVCK1lXz7sPLcOvsuEqpQ5QxJruNrX9P1+tg9PsNRVR6vDw0NBOntSNTV3Scz+fno6dW4XH7mTFrpE46pJRS3WBfv8lfILDcykrgRODebqmR6lZhDhvPXjqRIwbEc8uc5cz+rqDDebffCV1bvZar5l61VxAa0r8//Z57FmMMW392Ic2r25+YKDM0MBw32mbjnGUbWVTT0Ga6wYencPzPR1C6uS6wTmijrhOqlDr0iEiYiPxeRJ4M7g8UkZN7ul4Hm/fKani9tJob+yUzOiKs08v/5vWNFG+qZdqFQ4hN7fyhvUoppfa2rwB0mDHmQmPME8BZwE+6qU6qm4U6rDx9yQR+MjCBW19fwasL8zucd2rGVO6fej+5Vblc+fGV1LbW7nY+ZOBAsl5+CQl1kn/JpTQtWdJuWelOB2+OzSHRYeec5Zv4uKK2zXQ54xOZceUIKooaeOv+pTTXuztcX6WUOkg8B7iBKcH9IuAvPVedg0+528Ot6wsY5Qrlhn5JnV7+hsWlrJhfyKhj0hk4sfPLV0op1bZ9BaA7bi0ZY3SsYy/ntFt58qLxHDM4gd+9uZKXFmztcN6pGVO57+j7WFe9jks/vJTSxtLdzjuyssh65RVs8fHkX/5zGr78qt2y0pwO3h43kMHhTi5btYX/FLc94XL26AROumYUtaVNvHnv9zRUt3a4vkopdRAYYIz5J8G+1hjTBOjDh0HGGG5dV0iD18+DQzOxWzr3R1NV3Mj8l9aS3D+SKTNzOrVspZRS+7avAHT0rjPfAqN0FtzezWm38vhF4zluaCJ/eGsVzx/AEi3HZB7DY8c9xraGbVzy4SVsrds9gLWnpNDv5ZdwZGVRcM011H30cbtlxTtsvD4mhyOiXdy4toBH8svaTJc5LI6Trx9NQ3Urr/9zMVXbGjtcX6WU6mFuEQkFDICIDAD0m7Sg10ur+aCilluzkxnq6tz1OL1uHx89tQqb3cIJV4zEauvc50qVUkrt275mwbXuMfOtTWfB7f1CbFYe/dl4jh+WxB3vruGBT9ZjjOlQ3sNSDuPZE56lydPExR9cTG5l7m7nbfHx9HvheUKHD6foppuoefOtdsty2ay8PKo/pyVG8+dN27hjYxH+NuqRNiiGM341Dr/P8MY9S9i2ofqA2quUUj3kDuBDIENEXgHmAb/u0RodJMrdHn6/oYjxkWFcnZnY6eV/PWcjVdsaOe7SYbhiQjq9fKWUUvumX/upvThsFh752ThmjkvngU82cNtbq/D5OxaEDo8fzgs/fQGH1cFlH13GdyXf7XbeGhVF5jNPE374YRT/9rdUPPVUuwGuw2LhsWH9uDwtnscLyvlFbj6eNuqRkBnBzFvHExrh4O0Hl7FxSdt3TJVS6mBhjPkYOBO4FPg3MMEY82mPVuogcduGIpp8fu4bkom1k5dE2fR9Gau+KGLM9Ez6jYjr1LKVUkp1jAagqk12q4V7zh7F1VMH8OrCfK595XtaPB1bezM7KpuXfvoSSWFJXDX3Kubnz9/tvCU8nPTHHyfyxBMpv/c+Sv54O8bT9my2FhH+MjCN32QnM6e0mvOXb6Las/cjyZHxocy8ZTyJmZF89PQqls/r+Gy+SinV3URknjGm0hjzP2PMe8aYChGZ18G80SIyR0TWikiuiExuI81UEVkmIqtF5PM9zllFZKmIvNdZ7eksH5bX8k5ZDTdlJTE43NmpZddVNDP/pbUk9ovg8NN0xRullOopGoCqdokIv54xhD+ePIwPV5dw8bOLqG3u2LInyeHJvDDjBQbHDuamz27i1dxXdztvcThIvedu4q68kpr//peCq67G19D20isiwo1ZyTw0NJNFtY2ctGQDm5pa9krndNk57cYx9B+dwFf/3cBX/92A6eCdW6WU6g7BNbZjgXgRiRGR2OCWBaR1sJgHgQ+NMUOA0cBuzzuISDTwKHCqMWY4cPYe+W/YM8/BoM7r4zfrCxka7uTaTh566/P5mfvsajCG438+Qp/7VEqpHqS/gdV+/d+R2Tx0/liW5ldz7hPfUlq3d/DXlmhnNE8f/zRHpR3FXYvu4q8L/orXv/PupVgsJN50Iyl/+TONCxey9YKf4Skubre8c5JjmTNmALVeHycu2cCXVfV7pbE5rJwwawQjj0ln+bwCPnhiJe4WncRZKXXQuBJYAgwJvm7f3gb+tb/MIhIFHAU8A2CMcRtjavZIdgHwhjEmP5imbJf86cBJwNM/tiGd7c+btlHm9nDfkEwcls7982TRu1so2VzH1AuHEJXQuZMaKaWUOjAagKoOOXV0Ks9dOomCqibOfPQb1pZ0bCLkMHsYDxzzAJcMu4T/rPsP1867lnr37oFj9FlnkfnkE3i2bSPvnHNpXr263fImRbv4YPxAUkLsnLdiEy8UVeyVxmIRfnLOQI48eyB5Kyt5/Z9LqC1vOrAGK6VUFzDGPGiMyQZuNsb0N8ZkB7fRxpj9BqBANlAOPBccRvu0iITvkWYQECMin4nIEhG5eJdzDwC3Av59XUREZonIYhFZXF5e3vEG/kBfV9fz0rZKrsxIYGxkWKeWXbCmiu8/2sqwI1IYOEHX+1RKqZ6mAajqsCMHxvPalZPx+v3MfPQbPl5d0qF8VouVmyfezB2T72BR8SIufP9CCup3f0YzfMoUsv79KthtbL3won0u05IZGsK74wZyTGwkv15fyG3rC/HuMdRWRBh9bAanXD+axppW/nvXYgrWVB14o5VSqgsYYx4WkSkicoGIXLx960BWGzAOeMwYMxZoBH7TRprxBO50ngD8QUQGicjJQJkxZkkH6vekMWaCMWZCQkLCAbXtQDX7/Ny8roCsUAe3ZKd0atlNdW7mPr+GmKQwjjx3UKeWrZRS6ofRAFQdkBFpUbxz3ZHkJLq48uUlPPLpxg4v0zJz0EyemP4EFc0VXPC/C1hSuvvfQCEDB5L92ms4Bw2i6IYbKLvnHoy37eGzETYrL4zM5sqMBJ4pquCc5Zsoa937+dSMobGc/dsJhEeH8O7Dy1j2SX6H66uUUl1FRF4C7gGOBCYGtwkdyFoIFBpjFgb35xAISPdM85ExptEYUwF8QeBZ0SOAU0UkD/gPME1EXv6xbfmx7skrYUuzm3sGZxBm7bw/S4wxzH8xF3ezlxOuGIHdYe20spVSSv1wGoCqA5YU6eS1Kydz6uhU7v5oHTe+tqzDM+ROSpnEqye9SnRIND//+Oe8tva13QJCW0ICmS+9SPR551L59DPkX3EF3uq21/a0ivCnnDQeGprJ0rpGpi9ex7c1e09kFJUQxsxbx5M9OoGv52xk3gu5eDtYX6WU6iITgCOMMdcYY64Pbr/YXyZjTAlQICKDg4eOBdbskext4EgRsYlIGHAYkGuM+a0xJt0YkwWcB8w3xlzYaS36AZbXN/FYfhkXpsRxZExEp5a9+sttbF1VyZQzBxCX5urUspVSSv1wGoCqH8Rpt/LAuWO45YTBvL1s2wFNTtQvsh8vn/gyh6cczl8W/oXffvVbmjw7n9G0OByk3HEHKX/9C81LvmfLzJk0r1zVbnnnJMfy/vhBhFutnLVsI4/kl+11l9PhtDFj1ggmnZLNugUlvP7PJdSU6nOhSqkeswpI/oF5rwdeEZEVwBjgbyJylYhcBWCMyQU+BFYAi4CnjTHt/xLtIV6/4VdrC0hw2PjDgM4deltT2sTXczaQMTSGkUend2rZSimlfhzpLcMRJ0yYYBYvXtzT1eiTPl5dwo2vLSPCaeNfF4xjYlZsh/L5jZ+nVjzFI8seoX9Uf+475j76R+2+NlvzylUU3vALfBWVJN9+O9Ezz2y3vHqvj5vW5vNeeS0z4iN5cEgmUXbbXunyVlTwyQtr8HsNx1w4hIETdVIKpfoyEVlijOnI8NfOvOanBILHRUDr9uPGmFO7sx4d0VX96xMFZdy+cRtPD8/i5MToTivX7/Pz+t3fU1vWxHl/OAxXTEinla2UUqrj2utf9Q6o+tGOH57MG9dMIdRu5bwnF/D455vwd2D9TYtYuHL0lTwx/QmqW6s5773z+HDLh7ulCR05guw5cwgdP47i225j229+i6+hsc3yImxWnhqexZ9z0vikso7jF69nef3edzmzRsVz7m2TiEtz8fEzq/n0lbV43TokVynVre4ATgf+Bty7y9YnFLW4+ceWEo6Li+SkhKhOLXvxB1spy6vj6AsGa/CplFIHIQ1AVacYkhzJu9cfyYzhyfz9g7X8/MXFVDe6O5R3cupkXjv5NQbHDOaWL27hroV34fbtzGuLjSXzqaeIu/oqat95hy0zz2x3SK6IcEVGAm+NHYjHGE5asp4H8kr2miU3ItbJ6b8ay7gTMlnz5Tbm/GMx1SVtB7ZKKdXZjDGft7X1dL26yx82FGGM4W8D0xCRTiu3dEsdi9/PY9BhSbrkilJKHaQ0AFWdJsJp518XjOXO04bz1YYKTnroS5ZsbXsCoT0lhyfz7IxnuWjYRby69lUu+N8FbKjesOO82Gwk3nAD/V54HtPqJu/886l8+mmMv+2l7CZEhTN/4mBOTojm71tKOGPpRrY2t+6Wxmq1MPmMHE6+bjSNtW5m37WY3G+26Sy5SqkuIyL1IlLXxlYvIh1bYPkQ93FFLe9X1PLLrGQyQzvvDqWn1cfc51YTHuXgKF1yRSmlDloagKpOJSJcPDmL16+egtUqnPvEtzz1xeYODcm1W+zcOvFW/jXtX5Q3l3Pee+fx4uoX8ZudQWbYxIn0f+tNIqZNo+yee8m//HI8pWVtlhdtt/H48CweHdaPdU3NTPtuHa8WV+4VYPYbEce5t00iMTOC+S+u5f3HVtJY29pmmUop9WMYYyKMMZFtbBHGmMierl9Xa/T5+O36QgaHO7kqI7FTy/7m9Y3Uljdz7KXDCAmzd2rZSimlOo8GoKpLjEyP4r3rf8JxQ5P46/u5XPTsQrbVNHco79EZR/PGqW8wJXUKdy++m1lzZ1HSWLLjvDU6mrQHHyD5z3fSvGw5W047jbqPPm63vDOTYpg/cQijI8L45doC/m9VHhXu3dcXdcWEcPpNYznirBwK1lTxnzsXsXFJ24GtUkqpH+beLaUUtXq4e1A6dkvnDb3duqqSVV8UMebYDNIHx3RauUoppTqfBqCqy0SF2nnswnHcdeZIluXXcML9XzBnSWGHhrjGhcbx0LSHuH3y7awoX8GZ75zJB1s+2HFeRIg5+2yyX38de1oaRTfcQOEvbsBbUdFmeelOB3PGDOD2AanMq6zjqEW5/Lekare6iEUYc1wm59w2kch4Jx89tYqPn1lNS6Pnx/8wlFKqj8ttaOaJwjJ+lhLLpOjOW5eztcnDpy/lEpsazmGn9d9/BqWUUj1KA1DVpUSE8ydl8sENRzE0JZKb/7ucK19aQkXD/oe4ighnDTqLOafMITsym1u/uJWbPr2JsqaddyZD+meT9dp/SPjlL2n47DM2n3Qyte+802aQaxHh6sxE5k4cTP/QEK7Pzef85Zv3ejY0NiWcmbeO57BTs9m0pIx/37mQLSvaDmyVUkrtn98YbllXQJTNym0DUju17K/mbKSp3sOxlwzFZrd2atlKKaU6nwagqltkxoXx71mHc9uJQ/lsXTkn3P8FH64q2X9GIDMykxd++gI3jLuBL4u+5PS3Tmf2utk7ng0Vm434WVeQ/dabOPr3Z9utv6bgqqvwlLRd/uBwJ++MG8jfBqbxXV0jUxet44mCMny7BK0Wq4UJJ2Zz1m8m4Ay38/6jK/jgiZU0VLf8+B+GUkr1Ma8WV7G4rok7ctKIbWN95h9q66pK1n5TzNjjM0ns1+sfoVVKqV5BesuMn121ULbqfOtL6/nl7GWsKqrjxJHJ/PHk4SRHOTuUd2vdVv787Z9ZWLKQcYnjuH3K7fSP2jnkyvh8VL/yKmX3349YrSTceCMx552L2Nr+g6eoxc1v1hcyt7KO0RGh3DM4g5ERYbul8Xn9LPskn+/+l4fFIhx2an9GTk3DYtXvb5TqDdpbKFsF/Nj+1RjD9MXribRZeX3MgE5bdqW12ct/7lyI3Wnj3N9NxGrX38lKKXUwaa9/1QBU9QiPz8+TX2zmoXkbsFst/Or4QVw8OQtrByalMMbw9qa3ufu7u2n2NnPFyCu4fOTlOKyOHWncBQWU3H47jd98S8jgwST/4feETWj770tjDG+X1fD7DUVUerxcmBrHr7NTiHfsHrTWljfzxX/Wkb+6ioTMCKb+bLB+465UL6AB6L51Rv/a6PVR5/OREuLYf+IO+vSlXHK/KWbmrRNIytbfxUopdbDRAFQdlLZWNvKHt1fzxfpyRqZF8bczRjIyPapDeSubK/nHd//ggy0fkBGRwc0TbuaYjGN2fLtujKH+47mU/v3veIuLiTzlFBJvvhl7UttT/9d6vNybV8qzReWEWS3ckpXCpWnxu83UaIxh45Iyvpq9gaZ6NyN+ksakU7MJdXXeH1VKqe6lAei+HYz9a/6aSt59aDnjTshk8hk5PV0dpZRSbdAAVB20jDG8t6KYO99bQ2VDKxdPzuKm6YOICu3YOm7fbPuGfy76J5tqN3FYymH8euKvGRgzcMd5f3MzFU8+SdUzzwaeF732WmIvuhBxtB00rm9s4Y8bivisup5BYU7+PDCNo2MjdkvT2uxl4dubWfVFEfYQKxNOzGLU1HQdAqbUIUgD0H072PpXd7OXf/95IXaHlXNum6gTDyml1EGqRwJQEZkBPAhYgaeNMX/f43wI8CIwHqgEzjXG5IlIHDAHmAg8b4y5bn/XOtg6SHXgaps93PvxOl5asJXoUDs3TR/E+ZMysXfgWUuv38vsdbN5ZNkjNHgaOHvQ2Vw75lpinDvXg3Pn51N6199p+PRT7JmZJN54AxEzZiCWvcs3xvBRRR23byxia4ub4+Ii+V3/FIa5QndLV7Wtka9f30j+6koiE0KZcuYA+o9J6LRnnJRSXU8D0H072PrXz15Zy5qvtnHmLeNJ7t+xETNKKaW6X7cHoCJiBdYD04FC4DvgfGPMml3SXAOMMsZcJSLnAWcYY84VkXBgLDACGKEBaN+yqqiWv/4vl283VzIgIZzbThrKMYMTOxTU1bTU8OjyR5m9bjZh9jBmjZzFeUPOw2nbOclRw5dfUnb3PbSuX49z+HASb/4V4ZMnt1leq9/PkwXlPJxfSr3Xz5lJMdyanUy/0JDd0uWvruSrORupLm4kdWA0R5yVo8+HKnWI0AB03w6m/rVgbRXvPLCMMdMzOWKmDr1VSqmDWU8EoJOBO4wxJwT3fwtgjLlrlzQfBdN8KyI2oARIMMFKicilwAQNQPseYwyf5JZx1/u5bK5o5MiceG47aShDUzoW1G2s3sg9S+7h66KvSQhNYNaoWcwcOBO7NTCs1/h81L77LuUPPYR3WzHhRxxB4q9+iXPYsDbLq/Z4eSS/jGcKy/EYw4Wp8dzUL4mkkJ3DhP0+P2u+LmbRu5tprveQPTqeSaf0Jz698xZcV0p1Pg1A9+1g6V89bh//uXMhFquFc2+biM2hQ2+VUupg1hMB6FnADGPMz4P7FwGH7RpMisiqYJrC4P6mYJqK4P6l7CMAFZFZwCyAzMzM8Vu3bu2Stqie4/H5eWXBVh6Yt4HaZg+nj0njF8cOJDs+vEP5F5cs5uGlD/N92fekudK4avRVnNz/ZGyWwAy3/tZWql/9N5WPP46vtpaIn84g/qqrcQ4e1GZ5Ja0e7ssr4dXiSuwiXJaWwFUZCSTuEoi6m70sn1/Asrn5uFt85IxPZOLJ2cSmdKzOSqnupQHovh0sAei3b27k+4/yOf2XY0kbFLP/DEoppXpUrwxAd3WwdJCqa9Q2eXj08428+M1WWr0+zhibzi+OzaFf3P6DOmMM32z7hoeWPsSayjVkRWZx5egrmZE1Y0cg6quro/KZZ6l++WX8jY24jjuW+KuvJnT48DbL3NLUyt15JbxVWo3DIpyfEsc1mYlkOHdObNTS6GHZJ/msmF+I1+1j4KQkJp6YTXRSWJtlKqV6hgag+3Yw9K8VhfXM/ttihkxOZtpFQ3u0LkoppTpGh+CqXqG8vpUnPt/ESwu24vUbzhqXznXTcsiI3X9QZ4xhfv58/rXsX2ys2UiaK41Lh1/K6Tmn73hG1FdTQ9VLL1P14ov46+sJP/ooEq6+mtAxY9osc3NTK4/klzK7pBqDYWZSLNf3SyQnbOczp80NbpZ+lM/Kzwrxef30H5vIuBMy9RlRpQ4SGoDuW0/3r36/4fV/LKa+qoUL7jgcZ3jHZkhXSinVs3oiALURmIToWKCIwCREFxhjVu+S5lpg5C6TEJ1pjDlnl/OXogGoakNZXQuPfraJVxfl4/cbThuTxqyj+jM4OWK/ef3Gz+cFn/P0qqdZUb6CWGcsFw27iHMHn0uEI5DfV19P9SuvUvX88/hqagibNInYSy/BNXVqm7PmFrW4ebygjJe3VdLiN5yYEMXP0xM4PCp8x+RJjbWtrJhfyKovinA3e0kbHMO4EzLJGBqrs+Yq1YM0AN23nu5fl88v4KvZG5h++TAGTUzusXoopZQ6MD21DMuJwAMElmF51hjzVxG5E1hsjHlHRJzASwRmvK0CzjPGbA7mzQMiAQdQAxy/6wy6e+rpDlL1jJLaFh7/fBOvfVdAs8fH1MEJzDqqP5P7x+03qDPGsLh0Mc+sfIavt32Ny+7izIFnct6Q88iIyADA39hI9WuzqXrpJbzFxdj7ZRJ74UVEn3kGlvC9h/+Wuz08XVjBi0UVVHt9jHSFcnl6PKcnxuAMLifjbvay+sttLJ+XT2Otm/gMF2OnZzJgXCJWm64jqlR30wB033qyf62vauHff1pISk4UJ183Wr+sU0qpQ0iPBKDdSQPQvq260c3LC7bywrd5VDS4GZkWxayj+vPTEcnYOrCOaG5lLs+uepa5W+fiN36OSj+KC4ZcwOTUyYgIxuulfu5cqp5/gebly7FERBB99tnEXHABjvS0vcpr8vl5o7SapwrLWdfYQpzdxsWpcVySFk9ycMIin8fPukUlLJubT3VJE6GRDoYfmcrwn6TiinHuVaZSqmtoALpvPdW/GmN4/7GVFK6t4vw/HkZkfOj+MymllDpoaACq+oQWj483vi/i6S83s7mikeRIJ+dNyuD8SZkkRe4/qCttLGX2+tnMWT+HqpYqsiKzOH/I+Zw64FRcjsByKs3LllH5wgvUfzwX/H7CjziC6LPPJmLaMYh992eTjDF8Vd3AU4XlzK2swyJwXFwkP0uJY1psJDaLYPyGgtwqVn5WSN6qSkSE7NHxjDw6jbTBMfqNv1JdTAPQfeup/nXT92V8+OQqpszMYez0zG6/vlJKqR9HA1DVp/j9hnlry3hpwVa+WF+O1SJMH5rEhYf3Y8qAOCyWfQd1bp+bj/I+4t9r/83KipU4rU6Ozzqe03NOZ3zSeCxiwVNcTM2c16l5/XW8JSVY4+OJPuN0os86C0e/fnuVmdfcyivbKnmtpIoyt5ckh43zUuI4PyWWrNAQAOoqmln1RRG5XxfT0ughOimMoVNSGHxYMuHRIV3ys1Kqr9MAdN96on9tbfLw6p8WEhbp4OzfTMDSgZEsSimlDi4agKo+a2tlI68uzGf24gKqmzxkx4dzzoQMzhibRnLU/u+KrqpYxRsb3uCDLR/Q4Gkg3ZXOaTmncdqA00hxpWB8Phq+/JKa2f+l4fPPwecjbOJEIk85mcgTTsAaFbVbeR6/YV5lHa8UVzKvsg4/MCXaxcykGE5KiCLabsPr9rFxSRlrvtpG8aZaRCBzeBxDJqeQPSoeq13/GFOqs2gAum890b9+/uo6Vn9ZxFm/maAzhiul1CFKA1DV57V4fHywqphXFuSzeGs1InBkTjwzx6Vz/PAkwhy2feZv9jYzL38eb214i4UlCxGEScmTmJE9g+MyjyPaGY2ntIzaN9+g9q23ceflIXY7rqlHE3nyKbimHo0lZPe7mMWtbl4rruK/JdVsam7FLsKxcRGckRTD9LgowqwWakqbWPttMWsXlNBY00pImI2BE5MYOCGJlAFRyH7u5iql9k0D0H3r7v61NK+OOf9YzKip6fzk3EHddl2llFKdSwNQpXaRV9HIG98X8vr3RRTVNBPusHLiyBROG5PG4f1j9ztxUWF9Ie9seof3t7zP1rqt2MTG5NTJzMiewbSMaYTbw2lZtZq6996l9n/v46uowBIRQcRxxxFx/HTCp0zZLRg1xrCioZk3Sqt5u7SGEreHcKuFGfFRnJgQxdTYCELFQmFuFbnfFrNleQU+j5/w6BByxiWSMyGRpOxIfV5UqR9AA9B9687+dfuanw3VrVzwp8MJCd33F4NKKaUOXhqAKtUGv9+wKK+K15cU8v7KYhrdPmLDHZwwPIkTR6ZweP847PsIRo0xrK1aywd5H/DRlo/Y1rgNh8XBlLQpTMuYxlHpRxFrj6JxwULq3n2X+vnz8dfXYwkLI/zoo4icPp3wo47G6tq5pIvPGL6taeCN0mo+KK+l2uvDaRGmxkbw0/hopsdH4vJB3ooKNi4pY+vqSvxegys2EIxmj0kguX/Ufp9zVUoFaAC6b93Zv676oojPX13H9P8bxqBJuuanUkodyjQAVWo/mt0+Pl9fxvsrS5iXW0qj20dMmJ3jhyUzY0QykwfE4bRb281vjGFFxQo+3PIh8/LnUdxYjCCMThjN1IypHJN5DFnONJoWfUf93LnUz5uHr7IScTgIm3w4rqOOwnXUUTgyMnaU6fUbFtQ28EF5LR9U1LKt1YNV4LAoF9NiIzg2LpJsi42tKyrYsKSMgjVV+H0Gp8tO1og4skbHkzE0FodT7yIo1R4NQPetu/rX5no3r9y+gPh0F6fdNFZHdCil1CFOA1ClDkCLx8fn68t5f2Ux83LLaGj14rRbODInnmlDkpg2JHGfExgZY1hXvY5PCz7l0/xPya3KBSAjIoMpqVOYkjqFiQnjsa7eEAhGP/0MT34+AI6sLFxHH0X4T44ibOKEHUN1jTEsr2/mg4paPq6oJbexBYCUEDvHxEYwLTaSw0JDqV1fy5bl5WxdVUlrkxerzULa4Bgyh8eSOSyW6KQw/cNOqV1oALpv3dW/zn8xl3ULSjj395OITQ3ffwallFIHNQ1AlfqBWr0+Fm6uYv7aMj7JLaWwuhmAYSmRTB2cwJE58YzrF7PPu6MljSV8WvApXxd9zaKSRTR7m7GJjVEJo5iSOoXJqZMZUB9G61ff0vDFFzQtWoRxu5GQEELHjSX8sMMJO2wSoSNG7FhrtLjVzaeV9cyvquOL6nrqvH4swKiIMI6IcTElMpx+FV5KVlWRt7KC2rJAvV0xIWQMiyVjaGBzhtvbrbdSfYEGoPvWHf1r8aZa3rh7CWOnZzJlZk6XXksppVT30ABUqU5gjGFjWQPz1pYxP7eMJfnV+PyGEJuFiVmxHJETz5E58QxLjcTazjOYbp+b5eXL+WbbN3yz7RvWVK4BINQWytjEsYxPGs+46JFkb2rA8+13NC1cROu6dQBYwsIInTiB8EmTCB07DueI4VgcDjx+w/d1jXxWVc83NQ18X9eExxhsAmMjwjkixsVwsZGQ30L12hoK11bjbvaCQFyai7SB0aQOiiZ1YDShLke3/TyVOhhoALpvXd2/+n1+Zt+1mNZGD+fffpg+MqCUUr2EBqBKdYH6Fg+LtlTx9cZKvt5YwbrSegAinDYm9IthQlYsk7JjGZkW1e4d0qqWKr4r+Y7FJYtZXLqYjTUbAQixhjAyfiSjE0YzPLQ/A7e0ErJ4DU0LFuLesgUAsdtxjhhB6LixhI0dS+jYsdji4mj0+fiutpGvqxv4uqaB5fVN+AwIMCjcycSIMAZ5LCQVtuBfV0/Z5lq8Hj8AsanhpOZEkzwgiqTsSKISQnXIrurVNADdt67uX5fPL+Cr2Rs44YoR5IxP7LLrKKWU6l4agCrVDcrqW/h2UyULNlexOK+KDWUNADisFkalRzE+K4Yx6dGMzogmJcrZZmBX01LDkrIlLC5ZzNKypayrWofXeAFIc6UxKmEUw53ZZJdZyMitRJaspGX1aozHA4AtNYXQESMDgenIETiHD6clLJyl9U18V9vIotpGltQ1UucNBJxRNiujXKHk+K2kVHqI3NRE69pavK0+AJwuO8nZkSRlR5HUP5LEzAhCwnTYruo9NADdt67sXxtrW3n19gUk9Y/ilOtH65ddSinVi2gAqlQPqG50s3hrNYvzqliUV8XqojrcvkDglxARwuj0KEanRzMyPYrhqVEkRITsVUaLt4XcqlxWlK9geflyVpSvoLSpFABB6BfZjyHRg8hxx5BV5CVtbTnOZRt3TGoEYO+XiXPwEEKGDMY5ZAiOQYPYHBXLkvpmltc3sbyuiTWNzXiDvw7i7DYG2e2kN0NchYfwLY2EbGnEGqg6kfFOEjIjSch0kZAZQUJmhA7dVYcsDUD3rSv710+eW8OGJaWc/4fDiE4K65JrKKWU6hkagCp1EGj1+lhbXM/ywhqWFdSworCWjcG7pADxrhCGpUYyLCWSYamRDE2OICs+fK+1SMubysmtyiW3MnfH67bGbTvOxzpjGeDKItsTRWY5pG6qJXHVNhwbC3eksUREEDJoECE5OYQM6I9k9ycvJZ1lznBWNDSzuqGZdY0ttPoDvyNsAllWO6mtEFfjxbWthbDCFuIafFj9EBblIC7NRVxqeOA1zUVMchg2R/uTMyl1MNAAdN+6qn8t2VzL6/9cwvgZ/Tj89AGdXr5SSqmepQGoUgepuhYPa7bVBbbiwOuGsno8vsD/m3arkB0fzsCkCAYmuhgUfM2MCyPEtjO4q2mpYV31OjZUb2BDzQY2Vm9kQ80Gmr3NO9LEhcTSz5ZIWnMoqRU+krfUEbe2lPjCemzBu5sWlwtH//44svphy+xHdUoqW+KTWBkTzwpsrG9soaDFzfbfHFYgxVhIaDZE1XgJL2klptZLbIOfqGY/kfGhxCSHEZMURkxyONFJYcQkh+F02XW4nTooaAC6b13Rvxq/4b9/X0xTbSsX/OlwnXhIKaV6ofb6V/2Nr1QPi3TaObx/HIf3j9txzO31s7GsgbUldawvbWBjWT0rC2t5f2Ux278zEoG06FCy48N3bFnx2RweP5yzBobitFvxGz/bGraxsWYjebV5bKnbwpbaLXzh3UxtbC3EAuPBgoMkeyypXhcpdVYSS2qJLfiK2O/eJbEG+jVDFnB6bCz2jHQsqWk0JCVTEp9IXnQcqyNjWREdyQKXjZbUnUGxw0CcB6IbfLiqq4gqKCe6wUd0o58Ev4XkaCfRiaFExYcSlRhKVEIYEXFOwqNDsLQzi7BS6tCX+20x5fn1HHfZMA0+lVKqj9Hf+kodhBw2S2Aobmrkbseb3T42lTewsayBLRWN5FU2sqWikTe/L6K+1btb2qTIEDJiwsiMDSM9NpW06P4clxBK6sBQUqNCafHXkVeXR0F9Afl1+RTUF1BQX8BXjgJqImpgIGz/FRGCnSTjIrHJTmxtGbHl+UQvbyC2xkdGvWFMPfy8FWzxcZjEZJoTEqiOjac4Jo7CyGg2hUeSG+1iZXokLSE7n/Ny+CGq2U1EfTORuX4il/iJbPYT0eInyWEjNSyElMgQouJCccU6cUWH4Ipx4ooJwRGqv76UOhS1NntZ8NYmkvtHMWhSUk9XRymlVDfTv+CUOoSEOqyMSItiRFrUbseNMVQ2usmraKSguomCqmbyq5ooqGpi4ZYq3lxWxJ6j7WPDHaREOUmOTCEpKpvUCCfjEkNIynHiCvXhkyoa/KWUNBWzrWEbxY3FFDUUkddURkVqA4yGwADcgBBjI9brIaZpG1F1BURXthCV6yG6EY5sgpOaDFGNECHhWCPjaYqJoTYymsqISIrDIykIdZHvimBTfCS1rghqXBE0OQWLcRPe0oqrxE94nh9XiyG8xU+kD+KtVuJD7CQ47SSFOUiKDCEqykl4tIOwyBBCI+w4Qm061Fepg8h3/9tCc4OHU64fpP9vKqVUH6QBqFK9gIgQ7woh3hXChKzYvc57fH5KalvYVtPMttpmttW0UFTTHNxvYWlBDVWN7r3yWS1CbHgSCa5MEiJCSHeFMNrlICrBit3eCrYGfNTQbMppMuXUekqpbKmgpLmCVU0V1Hvq26htKyG+YiLdZUQ0g6vBh6vBS2QNjGkGV4vB1QLhLRDmsWK3urDYI/DaImkICacq1EVFWDi1LheVYS62hoXT4AmnwRtGgzccd10oFIXi9ECo2xDqMURiIVIsRNusRNutRDtsxDrtxIXZiQt3kBgRQkS4A2e4nZAwm06cpFQXqS5pZOX8QoZNSSEhM6Knq6OUUqoHaACqVB9gt1rIiA0jI7b9ZQ5avT7K6loprWuhpK6FivpWKhrclNe3Ut7QSkVDK+tL66lsdOMOriG6UxwQh9UylOhQO1FhdlLCHAxyWnA6/NhtXiy2VrA04ZdGvNThppZWU0OTr5oKbzn1nlLqfLXsfUOkIbgVY/NDWKsQ2mIIbzGEtRpclZBQDKFuCG0NBp2tYPPbEXEAIfisoXisofisYXhtYVTZwihxuGgJcdLkDKU5xEmr3YnP6sBvdeCzhiC2EKx2J1aHE5sjlFC7nXCblQibFZfdSqTDhsthJSLERkSIjUinjahQO1GhdiLCbITarVgslj0bo1SfZYzhq9kbsIVYOew0nfVWKaX6Kg1AlVIAhNis+w1SIfBHZJPbR1Wjm8pGN1WNrVQ2uKlt9lDT5KG6yU1Ns4eaJjdldR7qWjzUNXuob/VijA2ICm4Ze5VttwphDiuhDsFhA4fdj83qw2r1YrG6Qdxga8XnaqY1vJEGfwMe04DH34ibRlpoxFhaQdyIxQviQSxukEYQ717Brd1jcHrA4YEQL4R4wNEMYR6Dwxs47vAGNpsPLMaK39iox0a9sYHYABtG7BiLPfjqwGex4xcHRoJBsMUB4kCsIYjVgcXiwGINwWJ3YrU5sNhtWOx2bHYHVocdm8OB3eHA7rBjCwm8Op0h2B12QpwOnKEhOEPshDhshNothNisOCyCXQKbzSI4RLCJ4LAIFh3mqA4CeSsryV9TxRFn5RAWqesGK6VUX6UBqFLqgIgI4SE2wkNs+w1Wd+X3G+pbvdQ1e6ht9tDQ6qW+xUtDq4f6Fu+OrbHVS6M78Nrk9tHQuvN9s9sXePX4flDd7VaD1Qo2ix+r1eAXHy3ipVW81OMBAkGrCXFjQjwY8eDHjV+8+MUT3LwgPkR8sMsm4gN8IH5E3CDNIP5djvkAfzC9HxE/4Mfq92Hz+7EaP9ZWP7Zmg9Xvw2pM4LjPj82A1b/rZrD6QYxgMYJs3xDEWHZ7DwLssi+CJXhcCKYVCxA4ZhELQmBfgu9FBMEaSCeWQFliwSJWENmRziLBPJZgPkswb/C4RXZJIxbEIrvl2XF+1+MiWC3WQDkWCxZL8PoWKxER0Zx5+nk/6LOgupfP4+er/24gJjmMkcek93R1lFJK9SANQJVS3cJikR1DVPe+93lg/H5DsycQjLZ4AgFpczAw3f6+xeOjxeMPvHoD71s9Plq9flq921/9tHoC+26vH7fPH3jd473H58fnM3h9frz+nlg72SD4QYKvmGAAawgEtf6daSzbjwVejey6b3Yc331/j2O7HJfg9Xfkg93TYQIx7o59kN3KDZ7bPguW2TVvMCDftSxAZNefsdn7NXi9qIImDUAPEcvnF1BX3swp14/GatWh6Uop1ZdpAKqUOuRYLDvvwnY3n9/g8QWCUq8v+N5v8Hj9eP1+3F4TSOMPnPfu8erzG7z+na9enx+fCez7/Luf37759zjvMwZ/8NXnZ8d7f/C434DPGIzZnp/gcYPPsMvxXfNsL8+PMex9zh8ozx/M7w++9xuD8QeOGQLx5a7p2HEMDIHjO46x+3tD4D+7PmG8/djuYWgwLHbuPXFWXyAi0cDTwAgCP5L/M8Z8u0eaqcADgB2oMMYcLSIZwItAUjDfk8aYB7u6vsYYNi8rJ2tUPJnD4/afQSmlVK+mAahSSh0AqyUwJNRp15lye9r2ALcPehD40BhzlgRm2tptLHwwQH0UmGGMyReRxOApL/ArY8z3IhIBLBGRucaYNV1ZWRHhzJvH4W7+YUPnlVJK9S4agCqllDok9cU1JEUkCjgKuBTAGOMG9rwVfAHwhjEmP5imLPhaDBQH39eLSC6QBnRpAApgsVpwunTorVJKqcCsE0oppZQ6NGQD5cBzIrJURJ4WkfA90gwCYkTkMxFZIiIX71mIiGQBY4GFbV1ERGaJyGIRWVxeXt7JTVBKKdWXaQCqlFJKHTpswDjgMWPMWKAR+E0bacYDJwEnAH8QkUHbT4qIC3gduNEYU9fWRYwxTxpjJhhjJiQkJHRBM5RSSvVVGoAqpZRSh45CoNAYs/3O5RwCAemeaT4yxjQaYyqAL4DRACJiJxB8vmKMeaOb6qyUUkrtoAGoUkopdYgwxpQABSIyOHjoWPZ+hvNt4EgRsYlIGHAYkCuBh2afAXKNMfd1W6WVUkqpXegkREoppdSh5XrgleAMuJuBy0TkKgBjzOPGmFwR+RBYQWBVm6eNMatE5EjgImCliCwLlvU7Y8z73d8EpZRSfZUGoEoppdQhxBizDJiwx+HH90hzN3D3Hse+YvsiqkoppVQP0SG4SimllFJKKaW6hQagSimllFJKKaW6hQagSimllFJKKaW6hQagSimllFJKKaW6hRhjeroOnUJEyoGtnVRcPFDRSWUdCvpae6HvtbmvtRe0zX1BZ7W3nzEmoRPK6ZU6sX/ta59P6Htt7mvthb7X5r7WXuh7be7M9rbZv/aaALQzichiY8yeMwz2Wn2tvdD32tzX2gva5r6gr7X3UNcX/736Wpv7Wnuh77W5r7UX+l6bu6O9OgRXKaWUUkoppVS30ABUKaWUUkoppVS30AC0bU/2dAW6WV9rL/S9Nve19oK2uS/oa+091PXFf6++1ua+1l7oe23ua+2FvtfmLm+vPgOqlFJKKaWUUqpb6B1QpZRSSimllFLdQgNQpZRSSimllFLdQgPQXYjIDBFZJyIbReQ3PV2friAiz4pImYis2uVYrIjMFZENwdeYnqxjZxKRDBH5VETWiMhqEbkheLw3t9kpIotEZHmwzX8KHs8WkYXBz/drIuLo6bp2JhGxishSEXkvuN/b25snIitFZJmILA4e67WfawARiRaROSKyVkRyRWRyb29zb6B9a+/8bPa1/lX7Vu1be9tnerue6Fs1AA0SESvwCPBTYBhwvogM69ladYnngRl7HPsNMM8YMxCYF9zvLbzAr4wxw4DDgWuD/669uc2twDRjzGhgDDBDRA4H/gHcb4zJAaqBy3uuil3iBiB3l/3e3l6AY4wxY3ZZr6s3f64BHgQ+NMYMAUYT+Pfu7W0+pGnf2qs/m32tf9W+NaC3txe0b+3yvlUD0J0mARuNMZuNMW7gP8BpPVynTmeM+QKo2uPwacALwfcvAKd3Z526kjGm2BjzffB9PYH/qdLo3W02xpiG4K49uBlgGjAneLxXtVlE0oGTgKeD+0Ivbu8+9NrPtYhEAUcBzwAYY9zGmBp6cZt7Ce1bA3rdZ7Ov9a/at2rfGnzfq9rcU32rBqA7pQEFu+wXBo/1BUnGmOLg+xIgqScr01VEJAsYCyykl7c5OGRmGVAGzAU2ATXGGG8wSW/7fD8A3Ar4g/tx9O72QuAPn49FZImIzAoe682f62ygHHguOBzsaREJp3e3uTfQvjWgV382+0r/qn2r9q30ss80PdS3agCqdmMC6/L0urV5RMQFvA7caIyp2/Vcb2yzMcZnjBkDpBO4AzGkZ2vUdUTkZKDMGLOkp+vSzY40xowjMLTxWhE5ateTvfBzbQPGAY8ZY8YCjewxJKgXtln1Er35s9mX+lftW/sE7Vu7oW/VAHSnIiBjl/304LG+oFREUgCCr2U9XJ9OJSJ2Ap3jK8aYN4KHe3WbtwsOo/gUmAxEi4gteKo3fb6PAE4VkTwCw/umEXieobe2FwBjTFHwtQx4k8AfQ735c10IFBpjFgb35xDoNHtzm3sD7VvpvZ/Nvtq/at/aK9sLaN9KN/WtGoDu9B0wMDi7lwM4D3inh+vUXd4BLgm+vwR4uwfr0qmCzys8A+QaY+7b5VRvbnOCiEQH34cC0wk8m/MpcFYwWa9pszHmt8aYdGNMFoH/b+cbY35GL20vgIiEi0jE9vfA8cAqevHn2hhTAhSIyODgoWOBNfTiNvcS2rcG9LrPZl/rX7Vv1b41mKxXtbmn+lYJ3FVVACJyIoHx7lbgWWPMX3u2Rp1PRP4NTAXigVLgduAtYDaQCWwFzjHG7DmZwiFJRI4EvgRWsvMZht8ReE6lt7Z5FIEHxq0EvmSabYy5U0T6E/gWMxZYClxojGntuZp2PhGZCtxsjDm5N7c32LY3g7s24FVjzF9FJI5e+rkGEJExBCbDcACbgcsIfsbppW3uDbRv7Z2fzb7Wv2rfqn0rvewzvV1P9K0agCqllFJKKaWU6hY6BFcppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFSpTiQicSKyLLiViEhR8H2DiDzaBdd7XkS2iMhVB5jv/e0Lav+Aa44Jruv3Q/KGBn8ebhGJ/yFlKKWU6nu0f91vXu1f1SHD1tMVUKo3McZUAmMAROQOoMEYc08XX/YWY8ycA8lgjPlBHVzQGGAC8P6BZjTGNANjRCTvR1xfKaVUH6P9636vq/2rOmToHVCluoGITBWR94Lv7xCRF0TkSxHZKiJnisg/RWSliHwoIvZguvEi8rmILBGRj0QkpQPXeV5EHhORBSKyOXjdZ0UkV0Se3yVdnojEi0hW8NxTIrJaRD4WkdBgms9EZELwfXwwjwO4Ezg3+E3ruSISHrzGIhFZKiKnBfMMDx5bJiIrRGRgp/9glVJK9Wnav2r/qg49GoAq1TMGANOAU4GXgU+NMSOBZuCkYCf5MHCWMWY88Czw1w6WHQNMBm4C3gHuB4YDI0VkTBvpBwKPGGOGAzXAzPYKNsa4gT8CrxljxhhjXgNuA+YbYyYBxwB3i0g4cBXwoDFmDIFvdAs7WH+llFLqh9L+VamDnA7BVapnfGCM8YjISsAKfBg8vhLIAgYDI4C5IkIwTXEHy37XGGOCZZcaY1YCiMjqYNnL9ki/xRiz/diSYJoDcTxwqojcHNx3ApnAt8BtIpIOvGGM2XCA5SqllFIHSvtXpQ5yGoAq1TNaAYwxfhHxGGNM8LifwP+XAqw2xkz+oWUHy2rd5fj2sttLD+ADQoPvvewcJeHcx/UEmGmMWbfH8VwRWQicBLwvIlcaY+Z3oP5KKaXUD6X9q1IHOR2Cq9TBaR2QICKTAUTELiLDu7kOecD44PuzdjleD0Tssv8RcL0Ev0oWkbHB1/7AZmPMQ8DbwKiurrBSSim1H9q/KtXDNABV6iAUfBbkLOAfIrKcwLCeKd1cjXuAq0VkKbDrlO6fAsO2T5IA/BmwAyuCw5D+HEx3DrBKRJYRGO70YrfVXCmllGqD9q9K9TzZOTJBKXWoCc68996BThPf0yQwTfwEY0xFT9dFKaWU2pP2r0p1Hb0DqtShrRb4sxzgQtk9RYILZRP4Rtffw9VRSiml2qP9q1JdRO+AKqWUUkoppZTqFnoHVCmllFJKKaVUt9AAVCmllFJKKaVUt9AAVCmllFJKKaVUt9AAVCmllFJKKaVUt/h/3w6gPSKFttIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbA4d+elkmb9B5IQg8lhN6bVBERxIK99969937Wa7967deGimIXxQqKIgjSW+g1ECAQ0nudsr8/JoyEhBAgIZT1Pk8ecs7Z55w1I3Jmzd57baW1RgghhBBCCCGEaGqG5g5ACCGEEEIIIcSZQRJQIYQQQgghhBAnhCSgQgghhBBCCCFOCElAhRBCCCGEEEKcEJKACiGEEEIIIYQ4IUzNHUBjCQ0N1fHx8c0dhhBCiFPMypUrc7TWYc0dx8lKnq9CCCGOxeGer6dNAhofH8+KFSuaOwwhhBCnGKXUruaO4WQmz1chhBDH4nDPVxmCK4QQQgghhBDihJAEVAghhBBCCCHECSEJqBBCCCGEEEKIE6LJ54AqpYzACmCv1nrcIccGA68AScBkrfX0g469AJyDO0n+DbhLa62bOl4hhBB/s9vtpKenU1FR0dyhHDer1UpsbCxms7m5QxFCiBPudPr3XJxcjvb5eiKKEN0FbAJsdRzbDVwN3H/wTqVUf2AA7sQU4C9gCDCvqYIUQghRW3p6Ov7+/sTHx6OUau5wjpnWmtzcXNLT00lISGjucIQQ4oQ7Xf49FyeXY3m+NukQXKVULO5ezCl1Hddap2mt1wKuQw8BVsACeAFmILMJQxVCCFGHiooKQkJCTvkPK0opQkJC5Jt/IcQZ63T591ycXI7l+drUc0BfAR6kdoJZL631YmAukFH986vWetOh7ZRSNyqlViilVmRnZzdCuEIIIQ51unxYOV1ehxBCHCv5d1A0haP9e9VkCahSahyQpbVeeQzntgESgVggBjhLKTXo0HZa63e11j211j3DwmQNcSGEEEIIIYQ4mTVlD+gAYLxSKg34AncS+UkDz50ILNFal2itS4BZQL+mCVMIIcTJas+ePQwbNoyOHTvSqVMnXn31Vc+xF198kQ4dOpCcnEyvXr34+OOPmzFSIYQQR2I0GklOTqZTp0507dqVl156CZer/oGS+/bt44ILLjjitZ955pnGCvOwpk6dyu23315vm3nz5rFo0SLP9ttvv33aPJ8a6z1usgRUa/0PrXWs1joemAz8obW+vIGn7waGKKVMSikz7gJEtYbgCiGEOL2ZTCZeeuklNm7cyJIlS3jzzTfZuHEjb7/9Nr/99hvLli0jJSWFOXPmIIXShRDi5Obt7U1KSgobNmzgt99+Y9asWTzxxBP1nhMdHc306dPrbQPHlhw5nc6jPudIDk1Ab775Zq688spGv8/RcDgc9W431EmfgB6OUupJpdT46t97KaXSgQuBd5RSG6qbTQdSgXXAGmCN1vrHpo6tKKecr59dTtq6nKa+lRBCiAaIioqie/fuAPj7+5OYmMjevXt55plneOutt7DZ3AXWbTYbV111VXOGKuqhtWbNnD1UlR/bhx4hxOknPDycd999lzfeeAOtNU6nkwceeIBevXqRlJTEO++8A0BaWhqdO3cG3D2Q559/PmPGjKFt27Y8+OCDADz88MOUl5eTnJzMZZddBsAnn3xC7969SU5O5qabbvIkm35+ftx333107dqVxYsX8/HHH5OUlETXrl254oorAPjxxx/p06cP3bp1Y8SIEWRm1q6FWlebtLQ03n77bV5++WWSk5NZsGABjz/+OC+++CIAKSkp9O3bl6SkJCZOnEh+fj4AQ4cO5aGHHqJ37960a9eOBQsW1PmePf/883Tp0oWuXbvy8MMPe85dsWIFADk5OcTHx3veq/Hjx3PWWWcxfPjwWtulpaVce+219O7dm27duvH9998f9Xt8rE7EMixoredRvYSK1vrRg/Yvxz3P89D2TuCmExHbwfaXF/OLcyXFG6u4tkvoib69EEKc1BZ8tZWcPSWNes3QFn4Muqhdg9qmpaWxevVq+vTpQ3FxMa1atWrUWETTyUwrYuH0bZitRjoOiG7ucIQQwIyXVtXa16ZHOF2GxmKvcvLT62tqHe/QL4rE/lGUl1TxyzvraxybeF/3o46hVatWOJ1OsrKy+P777wkICGD58uVUVlYyYMAARo0aVavATUpKCqtXr8bLy4v27dtzxx138Nxzz/HGG2+QkpICwKZNm/jyyy9ZuHAhZrOZW2+9lU8//ZQrr7yS0tJS+vTpw0svvcSGDRt46qmnWLRoEaGhoeTl5QEwcOBAlixZglKKKVOm8MILL/DSSy/ViONwbW6++Wb8/Py4/373KpNz5szxnHPllVfy+uuvM2TIEB599FGeeOIJXnnlFcDdK7ls2TJmzpzJE088we+//17jfrNmzeL7779n6dKl+Pj4eGKtz6pVq1i7di3BwcFMnTq1xvY///lPzjrrLD744AMKCgro3bs3I0aMaPB7fDxOSAJ6qvC3FzH+j1dJrbwSLh7Q3OEIIYSoVlJSwqRJkzwP6tORUqoF8DEQgXs5sne11q8qpYKBL4F4IA24SGudr9yfyl4FxgJlwNVa61XV17oK+L/qSz+ltf6oen8PYCrgDcwE7tInYOxyZEIAF/9fb4KjfQHISS/GFuqNxSofQ4QQbrNnz2bt2rWe4baFhYVs27aNdu1qfkk5fPhwAgICAOjYsSO7du2iRYsWNdrMmTOHlStX0qtXLwDKy8sJDw8H3PNQJ02aBMAff/zBhRdeSGiou+MpODgYcK+ZevHFF5ORkUFVVVWd61s2pM3BCgsLKSgoYMiQIQBcddVVXHjhhZ7j559/PgA9evQgLS2t1vm///4711xzDT4+PjVirc/IkSNrtDt4e/bs2fzwww+e3tmKigp2794NNOw9Ph7yL/9BqoKN/N9VJoZvXX/kxkIIcYZpaE9lY7Pb7UyaNInLLrvM84D28/Njx44dp1svqAO4T2u9SinlD6xUSv0GXA3M0Vo/p5R6GHgYeAg4G2hb/dMHeAvoU52wPgb0xJ3IrlRK/aC1zq9ucwOwFHcCOgZ3ob8mFxLjB4DT4eLnN9cSEuvHuNu6nohbCyHqUF+PpdlirPe4t5/lmHo8D7Vjxw6MRiPh4eForXn99dcZPXp0jTaHJmNeXl6e341GY53zGbXWXHXVVTz77LO1jlmtVoxGY71x3XHHHdx7772MHz+eefPm8fjjjx9Tm6Nx4HUd7jUdjslk8hRyOnQtTl9f38Nua6355ptvaN++fY02S5cubdB7fDxO+BzQk1m0LRaDC8rIau5QhBBC4H5AXnfddSQmJnLvvfd69v/jH//gtttuo6ioCHD3kJ7qVQa11hkHejC11sW4i+/FAOcBH1U3+wiYUP37ecDH2m0JEKiUigJGA79prfOqk87fgDHVx2xa6yXVvZ4fH3StE8ZoMjDquk70Odf95YF2aZzOo1ouXAhxGsjOzubmm2/m9ttvRynF6NGjeeutt7Db7QBs3bqV0tLSBl/PbDZ7zh0+fDjTp08nK8v9mT4vL49du3bVOuess87i66+/Jjc319MO3L2VMTExAHz00Ue1zquvjb+/P8XFxbXaBwQEEBQU5JnfOW3aNE9vaEOMHDmSDz/8kLKyshqxxsfHs3Kle9XLhhRrOmD06NG8/vrrngJ+q1evPuI5B7/Hx0MS0IOYDWYCyy2UmQtxVDV+VSwhhBBHZ+HChUybNo0//viD5ORkkpOTmTlzJrfccgvDhg2jV69edO7cmUGDBmEwnD6PNKVUPNANd09lhNY6o/rQftxDdMGdnO456LT06n317U+vY39d979RKbVCKbUiOzv7+F5MHaLaBBLW0h+AJT/s4MfXUuS5K8QZ4EARm06dOjFixAhGjRrFY489BsD1119Px44d6d69O507d+amm246qp63G2+8kaSkJC677DI6duzIU089xahRo0hKSmLkyJFkZGTUOqdTp07861//YsiQIXTt2tXzRefjjz/OhRdeSI8ePTzDcw91uDbnnnsuM2bM8BQhOthHH33EAw88QFJSEikpKTz66KOHXvawxowZw/jx4+nZsyfJycmeobP3338/b731Ft26dSMnp+GFVB955BHsdjtJSUl06tSJRx555IjnHPweHw91upSt79mzpz5QAepY7cotZeR/ZxBl/ZHPrn6XmBYBjRSdEEKcmjZt2kRiYmJzh9Fo6no9SqmVWuuezRRSLUopP+BP4Gmt9bdKqQKtdeBBx/O11kFKqZ+A57TWf1Xvn4N7aO5QwKq1fqp6/yNAOe5igM9prUdU7x8EPKS1HldfPI3xfK3P5iUZZO0qZtBFbWsVGxFCNJ7T7d9zcXI5mufr6fN1cSMI9rVQ5Qwi1xLKtm17jnyCEEII0Yiq177+BvhUa/1t9e7M6uGzVP95YJ7IXuDgqhCx1fvq2x9bx/4TYlVRaZ1rtXboG8Xgi9uhlKI4r4K0tbIUmhBCnM4kAT2Iv9WM1WSnUoewfduGI58ghBBCNJLqqrbvA5u01v896NAPwIFFTq8Cvj9o/5XKrS9QWD1U91dglFIqSCkVBIwCfq0+VqSU6lt9rysPulaTWl5YytiV2/hif/3LBiz7aSe/T91IZdnxzzESQghxcpIquIeI8FekV4awL3tjc4cihBDizDIAuAJYp5RKqd73T+A54Cul1HXALuCi6mMzcS/Bsh33MizXAGit85RS/waWV7d7Umt9IPO7lb+XYZnFCaqA293mw/PtYpkQHgSAU2uMdQy3HTK5HV2GxODlYwbcBYqUQYblCiHE6UQS0EO0jghgd2oIha7ai/MKIYQQTaV6Lufhsq3hdbTXwG2HudYHwAd17F8BdD6OMI+JUSmuinEX6ahyuTh/9XbOjwji2tiwGu1MFiPhcTYAti7bz/r5exl7SxJWX/OJDlkIIUQTkSG4h+gQFYa2B1DsbPyqf0IIIcSZrsqlifQyE+lVf1KpDAqzxYjZUv96fUIIIU4t0gN6iNahAYCBfDM47E5MZnnwCSGEEMfLWVCAMTAQP5ORKZ0TPPtn5xQS5WWmi79PjfZte0bQpkc4SinsVU7yM0o9vaNCCCFOXdIDeoi4EPcDMM/kQ052eTNHI4QQ4tprryU8PJzOnWuOHH3xxRfp0KEDycnJ9OrVi48//riZIhRHUr52LduHj6B47twa+x0uzZOp+/h36r46zzuwLMuS71KZ8dIqSgsrmzxWIUTTefrpp+nUqRNJSUkkJyezdOlSAF555RXKysoOe97111/Pxo3HVp/lhx9+4Lnnnjumc0828+bNY9GiRc0dxnGTHtBDtDyQgHoFs237XiKj2zdzREIIcWa7+uqruf3227nyyis9+95++21+++03li1bhs1mo6ioiBkzZjRjlKI+loQEbGPH4p2cXGO/yaD4JrkNB+oMHa44Uc+x8US2CsA3wOsERCuEaAqLFy/mp59+YtWqVXh5eZGTk0NVVRXgTkAvv/xyfHx8ap3ndDqZMmXKMd93/PjxjB8//pjPbyxOpxOj0XjY7YaYN28efn5+9O/fv7HDO6GkB/QQYX5emAwOSlQIO7Ztau5whBDijDd48GCCg4Nr7HvmmWd46623sNncQzJtNhtXXXVVXaeLk4DR35+ofz+JKSgI7XKR+8GHuEpLAYjwMhNmMaO15o5Nu/nX1vRa64V6+1lo2zMCgKxdRfz19TZcTtcJfx1CiGOXkZFBaGgoXl7uL5JCQ0OJjo7mtddeY9++fQwbNoxhw4YB4Ofnx3333UfXrl1ZvHgxQ4cOZcWKFZ5j99xzD506dWL48OFkZ7vrtgwdOpS77rqL5ORkOnfuzLJlywCYOnUqt99+O+D+QvPOO++kf//+tGrViunTpwPgcrm49dZb6dChAyNHjmTs2LGeYwfbvn07I0aMoGvXrnTv3p3U1FTmzZvHuHHjPG1uv/12pk6dCkB8fDwPPfQQ3bt35+uvv661PXv2bPr160f37t258MILKSkp8Zz32GOP0b17d7p06cLmzZtJS0vj7bff5uWXXyY5OZkFCxY09n+iE0Z6QA+hlCLUV5NtDyF9/wZgQnOHJIQQJ4VHtqWzvqRxpyZ09vPm321jj+qcoqIiiouLadWqVaPGciRKqaIjNQEytNbtTkQ8p6ryNWvIevFFjEFBBE6c4NmvgXCLiWCzyTP0ti57NuWxY3U2PcbE4e1vafqAhThNzXhpFR36RZHYPwqn08UPr6TQcWA07ftEYq9y8tPra+g8JIa2PSOoLHcw839rSTorltbdwikvqeKXd9aTPLIlCUmhlBZWHnGEwqhRo3jyySdp164dI0aM4OKLL2bIkCHceeed/Pe//2Xu3LmEhrqrZZeWltKnTx9eeumlWtcpLS2lZ8+evPzyyzz55JM88cQTvPHGGwCUlZWRkpLC/Pnzufbaa1m/fn2t8zMyMvjrr7/YvHkz48eP54ILLuDbb78lLS2NjRs3kpWVRWJiItdee22tcy+77DIefvhhJk6cSEVFBS6Xiz179tT7ukNCQli1yr26xsMPP+zZzsnJ4fzzz+f333/H19eX559/nv/+9788+uijgDtBX7VqFf/73/948cUXmTJlCjfffDN+fn7cf//99d7zZCcJaB3iw/zISg+mwLmwuUMRQghx8kjVWnerr4FSavWJCuZU5dOtGwkzZuDVri0A2uFAmUwYlOLxNjGe3s+tpRXYTMZa1XJ7jImn82D3WqFaayrLHLJMixCnAD8/P1auXMmCBQuYO3cuF198Mc899xxXX311rbZGo5FJkybVeR2DwcDFF18MwOWXX87555/vOXbJJZcA7pEzRUVFFBQU1Dp/woQJGAwGOnbsSGZmJgB//fUXF154IQaDgcjISE9P7MGKi4vZu3cvEydOBMBqtTbodR+I9dDtJUuWsHHjRgYMGABAVVUV/fr187Q78Lp69OjBt99+26B7nSokAa1D+8hQluwsoURnNncoQghx0jjansqmYrPZ8PPzY8eOHSe6F7TuT0NH3+aMU+Go4NVVr3Jz15sJ8ArA2t7dSWzft4/d11xLxCOP4DfQ/SFMKYVTa65bv5MAk5Efu7et1SPq5eNOOFfO2sXGhfu44KGe+NikN1SIozHxvu6e341GQ41ts8VYY9vL21Rj29vPUmO7ofOzjUYjQ4cOZejQoXTp0oWPPvqozgTUarU2eH7kwf8+HPpvRV2jKQ4MAQZqDfc/FiaTCZfr7ykBFRUVNY77+vrWua21ZuTIkXz++ed1XvdAnEajEYfDcdxxnkxkDmgd2oYHgTZTYLTjtMscEyGEONn84x//4LbbbqOoyD0qtqSkpMmr4Gqtdxy6TykVfKQ2AtbnrOfrrV+zJntNjf3KbMYUFYUpLKzGfqNSvNkxjufbt6h3OG6LjsG07haGt7/0gApxstuyZQvbtm3zbKekpBAXFweAv78/xcXFDbqOy+XyzM/87LPPGDhwoOfYl19+Cbh7NAMCAggICGjQNQcMGMA333yDy+UiMzOTefPm1Wrj7+9PbGws3333HQCVlZWUlZURFxfHxo0bqayspKCggDlz5jTonn379mXhwoVs374dcA8t3rp1a73nHM37dDKTBLQOnqVYzN7k5Ry+JLQQQoimd8kll9CvXz+2bNlCbGws77//PrfccgvDhg2jV69edO7cmUGDBmEwNO0jTSk1QCm1SSm1QSnVRyn1G7BcKbVHKdXviBc4g/WM7Mms82cxOHYwAGV297PVFBZG3NQPPT2i5Skpnh6JJH8fOvl5A/Dunix+yiqodd2IeBsDLnD3kJYWVpK6OusEvBohxLEoKSnhqquuomPHjiQlJbFx40Yef/xxAG688UbGjBlT59DXQ/n6+rJs2TI6d+7MH3/84ZkzCe6e027dunHzzTfz/vvvNzi2SZMmERsbS8eOHbn88svp3r17ncnrtGnTeO2110hKSqJ///7s37+fFi1acNFFF9G5c2cuuugiunWrd6aGR1hYGFOnTuWSSy4hKSmJfv36sXnz5nrPOffcc5kxY8YpX4RINUbX88mgZ8+e+kB1rOO1J6+MQS/MJcw2nVeHPkL//ie20IUQQpwsNm3aRGJiYnOH0Wjqej1KqZVa655HOlcptQy4DvADfgQmaK3/Ukp1B17XWg9oipibW2M+XwE25W7i5t9v5rlBz9Ev+u+8vWz5cnZdcSVRzz1L4IQJnv0Ol+b8lO1Ee5l5u1P8Ya/75+db2LJkP1c81U+KEwlRh9Pl33M/Pz9PtdiDDR06lBdffJGePY/4z3mdSkpK8PPzIzc3l969e7Nw4UIiIyOPN9wzxtE8X2UOaB2iAqwoXBSagknbukUSUCGEEABmrfU6AKVUttb6LwCt9SqllHfzhnbqCPcJp0dED9oEtqmx37tHDyIffxzb2LE19psMii+7tubAQNwShxMfowHDIUNzB1zQhg79ojzJp9a63uG7QghxsHHjxlFQUEBVVRWPPPKIJJ9NSBLQOpiMBoJ8nBTZQ9iTsR44u7lDEkII0fwOHuP7j0OOSZdbA4V4h/Dfof8F3EniL2m/MDp+NAaDgaDJ7uqQrvJysl5+mbDbb8dos+FtdL/1VS4Xl6zZQWsfL15JbFnjuiazkYh497qwqauy2Lw4g5HXdcJilY86QpxO6ur9BOqct3k0jvd80XAyB/QwWoR447KHkFci9SSEEEIA8IhSygdAa/3dgZ1KqdZA01ZAOk0t2reIB+c/yOy02TX2l69ZS8GXX1G+pmbRIrNSjAq1MTzEVu91K8scVJY7MBikB1QIIU428rXgYbSLCGbN3mJKXfuaOxQhhBAnAa31D4fuU0pFaq1TgReaIaRTXv/o/rw5/E0GxQyqsd+3bx9a/zYbc3g4ANpuR5nNKKW4Iy7C025hfjHx3l7EWGt2QHccGE2H/lEYDAqH3UlxbgVBkTWXQhBCCNE8pAf0MNqFB4PLmyJVhtMhS7EIIYSo08zmDuBUppRicOxglFLklOfw4PwHKawsBPAkn+Vr15I65mwqNm2qcW6F08VtG3fz8Nb0Oq99oPdz8bepTH9uBeXFVU34SoQQQjSU9IAeRnyoHwB5Fi8Kc8oJlm9OhRBC1CZjPBvJ1rytLNq3iPTidAK8/l7+wGizYYlriSk0tEZ7q9HAZ11bEWKu/6NMt1EtCYn1k8q4QghxkpAe0MPwrAVqCWD77pxmjkYIIc5c+/fvZ/LkybRu3ZoePXowduxYz2LdZ599Nunp6Vx22WW0b9+ezp07c+2112K3209UeO+dqBud7vrH9OfXSb/SKbQT8PdaoZb4eFp+8AGmsDC01pSnpHjO6ejnTYSXGa01D23Zwzf782pd1y/ISscB0QDkpJew9IcdaNfpsQSdEKeS3NxckpOTSU5OJjIykpiYGM92VVXNEQqvvPIKZWVlR7zm0KFDacxlohrLd999x8aNG5s7jJOWJKCH0TLYnYDmW0LYuSW1maMRQogzk9aaiRMnMnToUFJTU1m5ciXPPvssmZmZlJeXk5ubS2xsLJdddhmbN29m3bp1lJeXM2XKlCaNSykVpJRKApYopbpXrwUq6lFe5TxiG1+ze7TRnN1zGPvtWFILaj5/C77+mrTJl1C2enXNa7s028oq2V5WWe/1d6zOYtOiDMpLTtgXFEKIaiEhIaSkpJCSksLNN9/MPffc49m2WGqOUGhoAtoUnE5nvdsNIQlo/SQBPQyr2YifxY7dEcqefRuaOxwhhDgjzZ07F7PZzM033+zZ17VrVwYNGsS8efMYOnQoAGPHjkUphVKK3r17k55e97zAxqCU+jewFngNeKn658Umu+FpYP3eQga98AeLtjdsRFGbwDb0juxNlG9Ujf0B551H5JNP4J2cXGO/j9HAF11b8WCCe92+fRVV2Ovo5ew1LoGL/9ULH5sFrTWVZZKICtGc5syZQ7du3ejSpQvXXnstlZWVvPbaa+zbt49hw4YxbNgwAG655RZ69uxJp06deOyxx4543eXLl9O/f3+6du1K7969KS4uZurUqdx+++2eNuPGjfMsveLn58d9991H165dWbx4ca3tTz75hN69e5OcnMxNN93kSUr9/Pz417/+RdeuXenbty+ZmZksWrSIH374gQceeIDk5GRSU6Uj61AyB7QeMUEWthcFk1e1tblDEUKIZrf/mWeo3LS5Ua/pldiByH/+87DH169fT48ePeo8NmvWLCZMmFBjn91uZ9q0abz66quNGeahLgJaa62lqk0DRdis9IwLpk24X4Pax9nieGGIu7BwlbOKNdlr6BXZC4OXF0EXXQSAPTOLvKlTCb/nbpTFgsXg/k69zOliwurt9A7w5Y2OcTWuq5TyzAVN+X0Pa+fu4YKHeuIb4NVYL1WIU8KCr7aSs6fu9TSPVWgLPwZd1K7B7SsqKrj66quZM2cO7dq148orr+Stt97i7rvv5r///S9z584ltHru99NPP01wcDBOp5Phw4ezdu1akpKS6rxuVVUVF198MV9++SW9evWiqKgIb2/vemMpLS2lT58+vPTSS7W2N23axPPPP8/ChQsxm83ceuutfPrpp1x55ZWUlpbSt29fnn76aR588EHee+89/u///o/x48czbtw4Lrjggga/H2cS6QGtR5vIIFz2EEode5s7FCGEEIdYuHAhAwcOrLHv1ltvZfDgwQwaNOgwZzWK9UBgU97gdBPm78XbV/Qg3GZFa81vGzPRumHzMN9f9z43zL6B3UW7a+wvXTCfgi+/pGp3zf0+RgN3x0VwXWxYvdeNaRdIq65h+NikOJEQzcHpdJKQkEC7du6k9aqrrmL+/Pl1tv3qq6/o3r073bp1Y8OGDfUOb92yZQtRUVH06tULAJvNhslUf5+b0Whk0qRJdW7PmTOHlStX0qtXL5KTk5kzZw47duwAwGKxMG7cOAB69OhBWlpaw178GU56QOvRPjyEn9fkUaoKcDpdGI2Srwshzlz19VQ2lU6dOjF9+vRa+3fs2EGLFi1qzBt64oknyM7O5p133mnqsJ4FViul1gOeSYda6/FNfePTwW8bM7lx2krevrwHYzpHHrH91Z2vpm1QW1raWtbYH3jBBfgOHuxZrsVVVYWh+u/DpdEhnnafZ+TS1d+Hjn41e0DC42yEx9kAKC+uYufaHBL7R6GUFDYWp7+j6alsbjt37uTFF19k+fLlBAUFcfXVV1NRUXHU1zGZTLhcfy+tePA1rFYrRqOxzm2tNVdddRXPPvtsrWuaq9cnBnfS6nA4jjquM5FkVPU4sBRLrtlMUXZ5M0cjhBBnnrPOOovKykreffddz761a9cybdo0xowZ49k3ZcoUfv31Vz7//HMMhiZ/tH0EPA88x99zQF9q6pueLkZ2jODty7szulNEg9p7m7wZETcCgK35W3lt1Wu4tPtD5IHks+iXX9h57njs+/bVOLfM6eLFnfv53+6seu+xdl4687/YSnHu0X+oFUIcG6PRSFpaGtu3bwdg2rRpDBkyBAB/f3+Ki4sBKCoqwtfXl4CAADIzM5k1a1a9123fvj0ZGRksX74cgOLiYhwOB/Hx8aSkpOByudizZw/Lli1rUJzDhw9n+vTpZGW5/x3Jy8tj165d9Z5zcPyiNukBrUdcdSXcXC8bO/cVECRrgQohxAmllGLGjBncfffdPP/881itVuLj43G5XLz11luedjfffDNxcXH069cPgPPPP59HH320qcIq01q/1lQXP90ppRjT2V1cKKu4gid+3MiT4zsR4nfkeZhzds3h+9TvuTTxUkK9/14X1BwVhaVNG4zBwTXa+xgN/NyjHf4m95cSlS4XXnV8QdH7nARaJYdhC3X3krqcLgwy6kmIJmW1Wvnwww+58MILcTgc9OrVy1Nw7sYbb2TMmDFER0czd+5cunXrRocOHWjRogUDBgyo97oWi4Uvv/ySO+64g/Lycry9vfn9998ZMGAACQkJdOzYkcTERLp3b1jx8o4dO/LUU08xatQoXC4XZrOZN998k7i4uMOeM3nyZG644QZee+01pk+fTuvWrRv+xpwBVEPnYBzzDZQyAiuAvVrrcYccGwy8AiQBk7XW06v3DwNePqhph+rj3x3uPj179tSNvQ5QQVkVyU/+hl/wTzze8hIumDy4Ua8vhBAnu02bNpGYmNjcYdRQWVnJgAEDjmntt7pej1Jqpda6Z0OvoZT6L+6htz9QcwjuqqMO6BTQFM/XAxZuz+GOz1cz9ZpeJMUGHrG91pr8ynyCrcForalyVeFlrJm4uiorKU9Zg2+f3jX2V7lcXLJmB8k2Hx5pHX3Ye6Sty2HxjFTG3d4V/2DrMb0uIU5GJ+O/5+L0cTTP1xPRA3oXsAmw1XFsN3A1cP/BO7XWc4FkAKVUMLAdmN2UQdYl0MeCl8lBpSuE9D2bAElAhRCiuXl5eTX3wuPdqv/se9A+DZzVDLGc0ga0CWXBg8Pw9XJ/HCkstxPgbT5se6UUwVZ3L+eHGz7k17RfmTJqCv4Wf0+b3HfeIeedd2n9yywsLVp49huVItHPSqJv/UmlxWrEN9ALq+/h4xBCCHHsmjQBVUrFAucATwP3Hnpca51W3c516LGDXADM0lo3y2q0kTYj6ZUh5BTLUixCCCFAaz2suWM4nRxIPn/fmMl9X6/h0+v70Dkm4IjntQlsw67gXfiaa06PCbn+erwSE2skn+BOQJ9qG+vZXlpQQktvC1FeNavgRrcNYnzbIACcDhdp63Jo3S38mF6bEEKI2pp6gsMrwINAfQnmkUwGPq/rgFLqRqXUCqXUiuzs7OO4xeG1igjAVRVMqaPpFjUXQghxalNKNWwykTisTjE2RnWMoHVYw9YKHRw7mCf6P4FBGSioKGBL3hYADD4+2EaOBKBi0yYyHn0MV1XNJVurXC5u3biLezfvqfceGxbs45d31pOZVnQMr0iIk09TT70TZ6aj/XvVZAmoUmockKW1Xnkc14gCugC/1nVca/2u1rqn1rpnWFj9630dq/bhIWh7EGUqF5fzePJoIYQQp7FbmjuAU11UgDf/ubAr3hYjlQ4ns9ZlNPjcJ5c8yY2/3UiZveZgqbKVqyhZsABnQUGN/RaDgU+SWvFCe3cv6eE+PHUeEsO427sSEW+rt50QpwKr1Upubq78PRaNSmtNbm4uVmvD58w35RDcAcB4pdRYwArYlFKfaK0vP4prXATM0FrbmyTCBmgV6g8YKTApinLLCQyXSrhCCCFqubW5AzidfLJkN//+aSM/3TGwQcNxH+z1IKkFqfiYfWrsD778MgImTMDo54vWGmdeHqYQ9xqhiQetC/rPbXsJMZu4Lz6ixjqgBoMirrO7ff7+Un77YCMjr+0oVfHFKSk2Npb09HSaatSgOHNZrVZiY2OP3LBakyWgWut/AP8AUEoNBe4/yuQT4JID12guLUPcD7Mcix+79xVJAiqEEAIA5c5UzgIuBcYBDVvYUhzR1f3jaRvu16DkEyDSN5JI30gA5qfPZ2v+Vq7rfB1KKYx+7ud23odTyZ0yhYSvv8IcE+M516k1JU4n3gZDjeTzUFXlTlxOjcliPGwbIU5mZrOZhISE5g5DiCafA1qLUupJpdT46t97KaXSgQuBd5RSGw5qFw+0AP480TEeLO5AAuoVwrYtac0ZihBCnJH279/P5MmTad26NT169GDs2LFs3eouDHf22WeTnv73HP0777wTP7+GzSE8Vkqpvkqp14BdwPfAfNzLhYlGYjQoBrdzT63ZvL+IGz9eQVFFwwZDzd0zl9lps6l0VtbY7zdsKIGTzscUXXMJFqNSvNahJf/X2r026c6ySvZX1r5XRIKNi//VC/9gK1pr0tblyFBGIYQ4BickAdVazzuwBqjW+lGt9Q/Vvy/XWsdqrX211iFa604HnZOmtY7RWjfrxMsIfytG5aJMhZC2dWNzhiKEEGccrTUTJ05k6NChpKamsnLlSp599lkyMzMpLy8nNzfXM+xnxYoV5OfnN1ksSqlnlFLbcFd2X4t7OZZsrfVHWuumu/EZLjWrlI0ZRZRUOBrU/pG+j/D+6PexmqzYXXbKHeUAeCUkEH7ffSilcOTmkv/5554EUimFQSm01ty8MY3L1qbiqiO5VAZ3D2n6pnx+fnMtW5dlNtKrFEKIM8eJWAf0lGYwKML8NTlVIewv2oTD7sRkluE3QghxIsydOxez2czNN9/s2de1a1cAZs2axdChQwFwOp088MADfPbZZ8yYMaOpwrke2Aq8Bfyota5USkkXWBM7JymK4YnhWM1GtNZkFVcSYTt8sQuDMnjWBX16ydNsy9/Gh2M+xGL8e7mV/C++IPe9KfgOHFhjuRalFK90aEmxw4mhnuG4sYlBjL6hM626uXtptdb1Dt8VQgjxN0lAGyAuzJ+s9BAMlX+Rsb2QFonBzR2SEEKccM8ve57NeZsb9ZodgjvwUO+HDnt8/fr19OjRo85js2bNYsKECQC88cYbjB8/nqioqEaN7xBRwEjc9QleUUrNBbyVUiatdcO658QxsVZ/8fvRojRe+m0r3982gFYNWK5lcOxgYvxiaiSfAKG33IL/iJGe5FPb7SizGahZnOjjvTmkllXySOtoTIa/E0ylFG16uNcGrSyz8+Pra+hzXitadJDPB0IIcSQnfA7oqah9eDCuqmC0azfLN+xv7nCEEEIACxcuZODAgezbt4+vv/6aO+64o0nvp7V2aq1/0VpfBbQGvgMWAnuVUp816c0FACM7RXJF3zjiQxpWEPCslmdxQ9INAOwo2MHSjKUAKIMBa/t2ABT/MZcd48+jKn1vrfN3lFeyrayC+jo3K8sd7uJEJvlIJYQQDSE9oA3QOiwAtIUN0d74bVjL+Rd0bO6QhBDihKuvp7KpdOrUienTp9fav2PHDlq0aIHFYmH16tVs376dNm3aAFBWVkabNm3Yvn17k8Wlta4EvgG+UUrZgAlNdjPhERPozYNj3PWe8kqr+HZVOtcNTGjQ8NeXV77MprxN/Hz+z3gZvTz7jUGBmFu2wBRSu/fy8TYxVLlcGJWi0O5gf5WD9r41h//aQry58OGenvmhu9bnEtUmAItVPmIJIURd5Ou6BjiwFMvOwBB01kpK8iuaOSIhhDgznHXWWVRWVvLuu+969q1du5Zp06YxZswYAM455xz2799PWloaaWlp+Pj4NEnyqZQaV9d+rXWR1vrj+tqIxvfNynRe+HULqdmlDWr/zKBn+N+I/3mSzwMFiHy6daPlO+9g8PZGV1VR9NtvNc6zGNwflR7dvo/zVm2jyOGsde0DyWdpYSWz3l7H0h92HPPrEkKI0518PdcAB4b6uOyhaMdqdmzIJWlgzBHOEkIIcbyUUsyYMYO7776b559/HqvVSnx8PC6Xi7feeutEh/MfpdReoL7utmeAn05QPGe06wclMKxDGG3C3XNBHU4XJuPhv1f3t/h7ihN9uulTUrJSeHrg0zWLE335FZlPP415+nS8O3eqcf4/WkUxOtSGzXT4QoS+AV6Mv6srIbHu+7icLgz1xCSEEGciSUAboEWQN35eJhxl8eT5rmD+pnRJQIUQ4gSJjo7mq6++8mxXVlYyYMAA4uPj62xfUlLSVKFkAv89QpttTXVzUZNSijbh7kRv7pYsnv55Ex9e3YsWwT5HPNfutONwOTAZan4MCrr0EizxcZ7k8+DqtpFeZsaGBQKwuKCE13Zl8mbHOILNNa8R3TYIAJdL8/Oba4loFUDvcQnH9VqFEOJ0IgloA5iMBvq1DuGv7YmsjYPAbStxOXvJt5pCCNEMvLy8WLFixQm/r9Z66Am/qWgQm9VEVICVYF/LkRsDV3e+Gpd2YVAGCisLySjNoENwB5TRiN+gQQBUbt/O3vsfIObF/+BVPb/4gP2VdrKq7JjrmXuqXRq/ECt+gV6HbSOEEGciyaAaaFDbUMqr/Mj2CcVUvIKsXcXNHZIQQgghgB5xwUy7rg++XibsThe/rD9yxXqDcn8Een7Z81z363UUV9V8rrvKK1AGAwbf2hV3J0YEMbtne/xNRpxaMzunsFYbo8nAsMs60HFgNADpW/LJSK3dTgghzjSSgDbQwDahADhK2+BwbWDdhuxmjkgIIYQQh/p82W5u/mQlKXsKGtT+3p738uygZz3zQw/w7tKZ+G+mY46KQmtN8dy5nsJFAMbq3s8vMvK4ct1OlhQcfui31pol36Uy/4staJc+bDshhDgTSALaQAmhvsQEemMq6cjusBKWbpJpPkIIIcTJ5rI+cXx4dS+SWwQC1Ega6xLqHcrg2MEALN63mIcXPEy5oxzAM/+zdOEi0m+5laKffq51/uSoYD7sHE/fwOpiSHUkmEopzr2jK2ff1AVlUDidLqrKHcf8GoUQ4lQmCWgDKaUY2CaUqorWrG9hxJ6+mooSe3OHJYQQ4gRTSq1USt2mlApq7lhEbUaDYliHcAC2Z5Vw/luLSMtp2FItOwp3sC1/W62k1XdAf2JeexXbOWMB0C7X3/dTirOrixPtqahiwNJN/JlXe5qOl48ZW6g3AEu+28GXzyynUpJQIcQZSBLQozCwbSh2h4kyHYuxcgW7N+Y2d0hCCCFOvIuBaGC5UuoLpdRopeqpRiOaTUFZFSUVDkzGhv3nuSzxMj4/53N8zD7YXXY25GwA3F9C20aNQhkMOAsL2TnpAornzq11vgJaeltoYa2/GFKrrqG07x2Bl7fUghRCnHkkAT0KA9qEohQ4S9pSbkxl0dbM5g5JCCFOe/v372fy5Mm0bt2aHj16MHbsWLZu3QrA2WefTXp6OnPmzKF79+4kJyczcOBAtm/f3mTxaK23a63/BbQDPgM+AHYppZ5QSgU32Y3FUesZH8yvdw8mNsi9NMu8LVlHHJJ7YF3QqeunctnMy9hZuLPGcVdFJQYfH4yBgbXOjbVa+Dq5Da183JVvp6Rns7eiqla7qDaB9D63FQCF2WX88fEmGZIrhDhjSAJ6FIJ9LXSODsBc1pktsU62b1l/xAeZEEKIY6e1ZuLEiQwdOpTU1FRWrlzJs88+S2ZmJuXl5eTm5hIbG8stt9zCp59+SkpKCpdeeilPPfVUk8allEoCXgL+A3wDXAgUAX806Y3FUTMY3L2fC7Zlc/WHy/lhzb4GnXdJh0t4rN9jJATUXMPTHBFO3CfT8OnWDYDi33/HkZ9f6/z9lXae25HBx/vqHy2VkVpI2rocKspkWo8Q4swgCehRGtg2lLLyKLZFWDDnriJ3b5MteC6EEGe8uXPnYjabufnmmz37unbtyqBBg5g3bx5Dhw4F3EMki4qKACgsLCQ6OrrJYlJKrQReBpYDSVrrO7XWS7XWLwE7muzG4rgMbBPK65d0Y1yS++/Gkb5A9rP4MbHtRAB2F+3mpt9uYn+pe3mXAyOuHXl57H3gQXJef73W+ZFeZub0as998REAZFRWUXXQ3NEDOvSN4vIn+2ELcc8P3b0xV77cFkKc1mTywVEa1CaUt+al4ihvjbKnsHVDLqGx/kc+UQghTnFP/LiBjfuKGvWaHaNtPHZup8MeX79+PT169Kjz2KxZs5gwYQIAU6ZMYezYsXh7e2Oz2ViyZEmjxnmIC7XWNRJNpVSC1nqn1vr8pryxOHZKKc7t6k4+C8vtXDt1OfeObMeA6mXW6pNeks6uol04tbPGflNwMHHTpmGJawmAq6wM5e3tSVDjvN1DcR0uzaVrdhBjtfBJUqta17dUzwVN35LPj6+tYcTVibTvG3XsL1YIIU5i0gN6lHrEB2E1G6CkPXm++/lr257mDkkIIc5ICxcuZODAgQC8/PLLzJw5k/T0dK655hruvffeprz19AbuEyeponI7FXYnFlPDPgb1j+7PjxN/JMYvBoD56fNxaXdvpnfnThj9/dFOJ3tuu42Mf/1frfNNBsX9CZFcH1t/shvTLpBR13eibS93r6nD7qy3vRBCnIqkB/QoeZmM9E4IYeXuTqxN+A6ftBSqKvphscpbKYQ4vdXXU9lUOnXqxPTptXO7HTt20KJFCywWC9nZ2axZs4Y+ffoAcPHFFzNmzJhGj0Up1QHoBAQopQ7u6bQB1ka6xwfAOCBLa925el8w8CUQD6QBF2mt86sr774KjAXKgKu11quqz7kKOJAJPaW1/qh6fw9gKuANzATu0mfgeM8WwT78ePtAz/zQ3zdm0is+mAAf82HPMRvcx5bvX85tc27jyf5PeoboAqAUvv36Ywqpuw7VOdVLtQB8ti+X5UWlPNs2Fqvx7yRYKUXbnu7ks6rCwfTnVpA4IJpuI1se60sVQoiTjvSAHoNBbUIprbCR6RuAtWQ1e7cWNHdIQghxWjrrrLOorKzk3Xff9exbu3Yt06ZN8ySZQUFBFBYWeirj/vbbbyQmJjZFOO1xJ4eBwLkH/XQHbmike0wFDs2eHwbmaK3bAnOqtwHOBtpW/9wIvAWehPUxoA/QG3jsoDVL36qO9cB5jZ+pnyIOJJ95pVXc8flq/jN7c4PO6xnRk5eHvsy5rc8FwOly91Iqg4HQG28gcNIkAEr+WkjBtzPqnM+ZVWVnX4Udi+Hwy8MogyKqTSBhLWWajxDi9CLddsdgYFv3EBpnaVu0cz1LV2WQkHTkOSRCCCGOjlKKGTNmcPfdd/P8889jtVqJj4/H5XLx1ltvAWAymXjvvfeYNGkSBoOBoKAgPvjgg0aPRWv9PfC9Uqqf1npxo9/AfY/5Sqn4Q3afBwyt/v0jYB7wUPX+j6t7MJcopQKVUlHVbX/TWucBKKV+A8YopeYBNq31kur9HwMTgFlN8VpOFcG+Fj6/sS8Job4AVDqceJmMh22vlGJE3AgASu2lXP3L1VzZ8UpPQnpAwfTpVO3YQcC4c8BSc13Qu+MjuUNrDEpRaHfwTWY+V8eEYjhoOVmzxciwyzt4ttf/mY4yKDoOjPbMMRVCiFORJKDHoEOkP6F+FspLO7IrbDklqduZUNoBq+/hh+4IIYQ4NtHR0Xz11Vee7crKSgYMGEB8fLxn38SJE5k4cWIdZzcepdSDWusXgEuVUpccelxrfWcT3TpCa51R/ft+IKL69xjg4EIE6dX76tufXsf+WpRSN+LuVaVly9N/+Gdyi0AAnC7NDR+vpGWwN09N6HLE8+xOO2HeYUT6RtY6FvPSizjz81EWC7qqisqdaVjbt/McN1YnkV/tz+fx1L30C/Qj0c+7zvtorUlbn4tS7gRUCCFOZTIE9xgopRjYJhRneVvWtTRgLFnPliX7mzssIYQ4I3h5ebFixYrmuPWm6j9XACvr+Gly1b2dTT5nU2v9rta6p9a6Z1hYWFPf7qSSHBtAx6iABrUNtAbyvxH/o1dkLwB+TP2RDTkbAFBGI6ZQ9+ionHffI+2CC6hKT691jetjQ5nds70n+dxaWlGrjVKKc25JYuS1HVFKUV5cxa4N9a8vKoQQJytJQI/RwLZhVNgtlKooorL+ZN6qDFm3SwghTmNa6x+r//zowA8wDZhxoMhPE8msHlpL9Z9Z1fv3Ai0Oahdbva++/bF17BfVjAbFvaPac2kfd6/vwu05fLl8d4Oe73annbfXvM2UdVNqHQu67FIiHn0ES6z77dfOv6vbKqXoVJ18biwpZ9jyzUzdm1PrGsqgPAUPV/66i1lvraO0sPLoX6QQQjQzSUCP0aDqeaCukrbk+GWwuXwn+3c07vp4QghxMjhdvlxrrNehlPpMKWVTSvkC64GNSqkHGuXidfsBuKr696uA7w/af6Vy6wsUVg/V/RUYpZQKqi4+NAr4tfpYkVKqb3UF3SsPupaow5fL9zBlwU4qHa4jtjUbzXx2zmc83v9xAAorCymoKADAFBRE0IUXAlC1ezc7xp5D2erVta7RzsfKI62imRgeCIDdVfff2b7ntWLcHV3xDXCvM1qUU36Ur0wIIZqPJKDHKMJmpV2EH36OnvzZxUDLPX+xdkHtoTVCCHEqs1qt5ObmnvJJqNaa3NxcrNZGWS2lo9a6iL8L+CQAVzTGhZVSnwOLgfZKqXSl1HXAc8BIpdQ2YET1NriXUdkBbAfeA24FqC4+9G9gefXPkwcKElW3mVJ9TipneAGiI3n54mQ+vaEPVrORKoeLzfvr/6I5wCuAAC/38N3HFz3OJT9fQpWzqkYbXVWFMTQUc2TteaMmg+LmluEEmE24tObytTt4KnVf7XZmI7Ht3YWNM1IL+eTRJaSuyqrVTgghTkZShOg4DGwTxrQlJVSEmwjN/YtZ6ZMYUmqXYkRCiNNGbGws6enpZGdnN3cox81qtRIbG3vkhkdmVkqZcSegb2it7UqpRsnQtda1ihtVG15HWw3cdpjrfADUKgWstV4BdD6eGM8kRoMi3N/9pcW781N5dc42fr93CHEhvkc898akG9lesB2L0V0B16VdGJQBrzZtiP/0E0+77NffwH/kCKwdOtQ436E17X2txHt71Xuf0Fg/eoyJo0VH9/qjLqcLg1H6F4QQJy9JQI/DoLahfLBwJ4GViSzpsAb/srVsXdaGpGGN8gFHCCGandlsJiEhobnDONm8A6QBa4D5Sqk4QOZgnOYu7xtHsK+XJ/m0O12Y60n0EkMSSQxxr0e7fP9y/rP8P7wy7BWi/f6uYuvIzSX/qy8BaiWgFoOBJ9v+XaT4t5xC/swv5l+tovE+6L5mLyN9xrcCwOXSfPfyauI6h9BjTPzxvWAhhGgi8hXZcejTKhiLyUCk8WxWtjXQcfsfLFi+95QfqiaEEOLwtNavaa1jtNZjtdsuYFhzxyWaVqCPxVOcaE9eGcNenMei7bWLBdXF7rRjNVkJ9Aqssd8UEkKrH34g9OabAKjYsoWqPXvquAKsLS5nUX4JxnqWAHU6XARF+OAX1ChDzYUQoklID+hx8LGYGN0pknlbQMeZyLduZbt9P5k7i4hs1bAS7kIIIU4tSikvYBIQT83n6JPNEpA44bSGhFBfWgT7NKh9/5j+9Ivuh1IKh8vByytf5oqOVxDpG4kpKKj6mpr9jz6Gs6SEVj/+gDLU7CO4LyGSW1uGYzEYqHS5+N/uLG6MDcPXZPS0MVuMDLsi0bO9bUUm+7YWMOCCNpgsRoQQ4mQgPaDH6aKesRRXuIh2jeKPrgaiMxax9i+pai+EEKex74HzAAdQetCPOEO0DPFh2nV9PAnof37dzKLU+ntD3YWHYWv+Vr7e+jWrs1bXOh7z8n+JfuZplMGAdrmwZ9YsLHRg6O2C/BJe2Lmf5UX1/7UryCwje08xhvq6TYUQ4gSTHtDjNKB1KDGB3lA6kH2hM0mYP49fIscypNyBl7e8vUIIcRqK1VqPae4gxMmhqMLOzHX7USj6tw49YvuOIR2Zef5MQqwhgHt+aLwtnjCfMMzR0Zij3XNE8z/7nOyXXyZ++td4HTIPe0SIjQV9OtDGxz3Udl5eEZ38vAmz1CyC2OucBLqPjsNgNGCvcrL0+x10Hx2Hj83SGC9dCCGOifSAHieDQXFBj1i2ZRiw2MNY1bqECvsWti7d39yhCSGEaBqLlFJdmjsIcXKwWc3MvHMQdw5vC8CGfYWs3JVX7zmh3qEopbA77Tw8/2EeW/RYrTZ+Q4cQdOUVWOLjAdB2e43jB5LPMqeLWzfu4p9b6x59ZTS5P+plbC9g3Z/pFGRKZ70Qonk1eQKqlDIqpVYrpX6q49hgpdQqpZRDKXXBIcdaKqVmK6U2KaU2KqXimzrWY3VBD3fV21h1EYs6Gui0bR4Ll+6TYkRCCHF6GgisVEptUUqtVUqtU0qtbe6gRPPxthixVCd6L83eyh2frabS4TzieWajmSmjp/Bw74cBKLWXklXmHnZriY0l/K673PNG8/NJPXssRTNn1rqGj9HAd93a8mib6p5Tu4PUsopa7Vp2DOHKp/sT3dY953Trsv3k7i05thcshBDH4UT0gN4FbDrMsd3A1cBndRz7GPiP1joR6A2ctCsstwj2YUDrUPZlxlNhUrhca1iuc8lKK27u0IQQQjS+s4G2wCjgXGBc9Z9C8Nol3ZhyVS+8TEZcLs269MJ62ycEJNDS5q6u+8bqN5j4/UQKKw85x+HAq317LK1a1XmNdr5WWljdw2qf25HByBVbybc7arXzDXCvKeq0u1g8I5XlP6cd5asTQojj16QJqFIqFjgHmFLXca11mtZ6LeA65LyOgElr/Vt1uxKtdVlTxnq8LuwZS3aRkzBHH+Z1UYRlL2P1H7ubOywhhBCNrHrZlRbAWdW/lyFTWkQ1Py8THaNtAMxYvZdz3/iL5Wn1D8k94JIOl3BX97sI8HJX0i+pcvdQmsLCaPHmG561QrNefoWsV1+tc6TVffGR/Ld9C4LM7joUm0vLa7Uxmg1c9K9eDJ7czn2f/EpSV2XJyC0hxAnR1A/MV4AHOSTBbIB2QIFS6tvq4bv/UUqd1PXDR3eKxGY14esYw9ZYRaetvzN7Tx4FmSd13iyEEOIoKaUeAx4C/lG9ywx80nwRiZPV2C5R/HtCZ3rGuYe9ZhdX1tu+pa0lF7W/CIAdBTsYOX0kf+z+o0YbrTWO3BycObmeyroHC/cyMyHCfb+NJeWctWwLU/fWrtDr7WfxFCNaN28Pv32wkdKCqqN/kUIIcZSaLAFVSo0DsrTWK4/hdBMwCLgf6AW0wj1U99B73KiUWqGUWpGdnX084R43q9nIhG4xbN3jjXL6sLFFHnnWXayYldascQkhhGh0E4HxVC+9orXeB/g3a0TipORtMXJF3ziUUhSW2znntQU8/8vmBp1r87IxIm4ESWFJANhd7iJESimin3qKyMfdhYuqdu1i7733Yc+qPVOprY+VJ9rEMCE8EICMyirKnLX7BPqMb8WE+7rhF+QeorttRSZV5bWH8AohRGNoyh7QAcB4pVQa8AVwllKqod8QpwMpWusdWmsH8B3Q/dBGWut3tdY9tdY9w8LCGinsY3dRzxZUOTVx6gLmdzHQa+1s/tieQ0GW9IIKIcRppEq7xypqAKWUbzPHI04BPhYj1wxI4OzOkQBU2J3Y60gGDwj1DuXfA/5NqLd7aZd7593Lvxf/23NcGd0Dwyo2baJ02bI6r2E2KG5oEUZg9XDcuzbt5txVW2sNtTUYDUQmuIf9FuWU89v7G0j5XaYRCSGaRpMloFrrf2itY7XW8cBk4A+t9eUNPH05EKiUOpBVngVsbIIwG1XnmAA6RtkozutMkQ/4lK5ke1geK3/Z1dyhCSGEaDxfKaXewf2cugH4HXivmWMSJzmz0cAtQ1uTFBsIwBt/bGfca39RVnXknkany0m7oHbEB8R79rm0O3m1jRlDm99/wxweDkDWiy8eNiG9Jz6Su+IiUUqhtWZbae1qubZQbyY91JPkke7CSDnpxezbln80L1UIIep1wosmKKWeVEqNr/69l1IqHbgQeEcptQFAa+3EPfx2jlJqHaA4RR7uF/WMJS3bRZCrEz/3NjJg5c/M3ZxNYXbtIgBCCCFOPVrrF4HpwDdAe+BRrfXrzRuVONV0axnIWYnh+FjcvZNVjsP3hhoNRu7odgdXdLwCgCUZS5j802T2lewDwGB1rwnqyM+naNYvlK9aXed1+gX6Mb56OO7vuUUMWraZublFtdpFxNuwWN1xrZy1i1/eXY+j6sjLygghREOckARUaz1Paz2u+vdHtdY/VP++vLqX1FdrHaK17nTQOb9prZO01l201ldrrU+JmfETusVgMRqIURexJRai9y9kU1QRq35Ja+7QhBBCNJLqZ9QDWuv7D1RsF+JoDE+M4KEx7qq2e/LKGPj8H8zb0rAV5+xOO94mb0K8Q4C/e0NNQUG0+vkngq+9BoDSpcvIeuklXGW1pwL1DfTjX62iGBjknr68ubSc4jrWLh1+VSLn3pGMyWJEa82aOXuoKLUf/QsWQohqUja+kQX6WBjVKYKNu3wJMoXwXX8jfVNmMm9jNkU50gsqhBCnKqVUsVKq6HA/zR2fOLUlxQbSLsKdDFbYnfUuiTIodhAfnf0RXkYvnC4nV8y6gk83fQq4e0MNFnd127KVKyia9QsYan/c8zcZuSMuArNB4dKaG9anccXaHbXamSxGwlq648reXcxf07exI6V5Cz8KIU5tkoA2gYt7taCw3EGvgBtYmwBt0uazPqaUVb/KXFAhhDhVaa39tdY24FXgYSAGiMW9JMsrzRiaOMW1CPZhylU9iQ70BuChb9Zy47SVDVqXs8xRRoxfjKdYkUu7PD2iYbfeSsJ332GwWtFOJ3vvf6DO+aEGpXgtMY6HW0UBYHdpfskurHX/8Dgbk/+vNx36ugsp7Vybw/r5e3HVU0xJCCEOJQloExjQOpQWwd5sTWuBv9GPH/pB9/W/8Of6TIrzak/4F0IIcUoZr7X+n9a6WGtdpLV+CzivuYMSpwetNd1aBNIzLsizzmdxxeGHvPpb/Hlh8AuMjh8NwIxtM5j802TyK9yFg4x+7iLN9oz9lKek4DjMsnXdbD70DfRzXyMrn6vX72RJYWmtdiExfhiM7o+PqSuzWDcvHepYj1QIIQ5HEtAmYDAobh7SmnXpxQwKvYEVbRVdN/9BSmyl9IIKIcSpr1QpdZlSyqiUMiilLqN6TVAhjpdSiqsHJHDTkNYApOwpoN+zf7BkR26Dzg/0CiTeFk+gVyAAhZWFAFhiY2g982dsZ58NQME335J+zz24Smv/1Z0UEcRHXRLoG+BOXr/Pyuev/OJa7YZfnciEe7phMCicdhc//2+tVMwVQhyRJKBN5IIesUTYvEhNa4eP0Zsf+2i6bvqN+Wv3U5IvvaBCCHEKuxS4CMis/rmwep8QjS7Ix8zZnSPpHONep3NfQTmVdRQLOmB43HBeGPICSinK7GWc9915vLPmHQCUxYKqng/qKi3FWVCA8vFxb1f9XevRqBSjQwM8y7W8sSuLN3bVLpCklMLb3z3ftCi3nPyMUpx297Bdp9PVoCHEQogzjySgTcTLZOSGQa1YkVbIoLBrWJyo6L1uNitbOFgxS3pBhRDiVKW1TtNan6e1DtVah2mtJ2it05o7LnF6igvx5T8XdsXPy4TWmjs+X81l7y1t8PkXtb+IftH9ACiqKiK9OB2A4CuvoOUHH6CUwlVWRuroMeR99lmt85VS/Ni9LS8ntgAg3+7g2nU72VRSs7BiUKQvlz7eh9jEIADW/L6Hr59dQVXFkdc5FUKcWSQBbUKX9mlJsK+FfXu6YDFamNXDQeK2P/hrdQa5e0uaOzwhhBBCnGLuGt6WGwa3AsDl0szesB+nq+6eRh+zD7cm30pSWBIAH2/4mHO/O5esMndv5oE5pq7KSvwGDcLawb0sjLO4GHvm3z2eVqOBKC93T+eW0gqWF/09bLf8oJ5Og9HguaYt1Jvwg9YTzUkvwXWYOIUQZxZJQJuQj8XEdQMTWLS9kMHhV7Cgi5HBK2exvB0snL5NhqYIIYQQosGUUgxuF8boTu4qtH9uzebGaSuZvWF/g86/sN2FPNL3EcJ9wgH4ZecvpBenYwoKIurJJ/Dp3h2AvA8/JHX0aBw5ObWu0TfQj1X9OpHo567Y+1TqPs5ZtQ3HIcllmx7hDL20PQAVpXa+/c9KFk3ffmwvXAhxWpEEtIld0S8Of6uJ/IxeKKOB35Mrabf1D5ZmFrFrfcMKCgghhDh5KKUSGrJPiKY2pF0Y713Zk1HVCensDfv5bvXew/Y0RvhGcH7b8wEod5Tz5JIneXftu7XaBUyYQPgD92MKdS/tUvjjj1Tu+HuNULPh76q3yTYfhgb7Y6reNz+vmIpDlmWxeJsYflUiHQdGA1CcV8Hq2btleK4QZyhJQJuYzWrmqn7xzNtSwJCIycztZuTshT+wPNHFX9O345S1s4QQ4lTzTR37pp/wKMQZz2BQjOwYgbE6+ft6ZTpT/trhWRWlvpFW3iZvZoyfwe3dbgdgV9Eu7vrjLvYU78HSsiXBl10GgKuigsynnyH3/ffrvM6FkcE8mOBeP3RvRRWT16Ty2u7MWnG27h5OcLS7qu7ONTks+S6VyjJ3AqplaK4QZxRJQE+AawcmYDUZKc8ehNOg+LWHg+Hzv2GRxcH6eXubOzwhhBANoJTqoJSaBAQopc4/6OdqwNrM4QnBO5f34IOre6GUosLu5OxXF/DT2n2HbR/hG+EZjruzcCfrc9bjbXIPrS2uKkZrjcFqpdXMnwm76y4AqnbvZtc111CZmlrretFeZr5Kbs2V0e6e05SiMh7csoecqpo9nUnDYrnsyb74B7v/t5nz8SbmfrL5+N8AIcQpQRLQEyDY18KlfVry+8ZChkdfzOweRnqun8uO6HwWzdpJRcnhF5gWQghx0mgPjAMCgXMP+ukO3NB8YQnhZjAowv3dSV1+WRWRAVZCfL0AKCy3k55fdthzh7YYyq8X/Eqotzt5fHTho1zz6zVorTEFB2MOdyeqVXv2YN+7D6PNBoB9/36cJe6iREopBgb5E+llBmB9STkzswvxqu6hza6y46zulbWFuhNdrTV+gV74Blg8sezZlIfTISPEhDhdSQJ6gtw4uBVGpdD5IzCbvPhshIlLfvyE+S1NLPtpZ3OHJ4QQ4gi01t9rra8Bxmmtrzno506t9aLmjk+Ig0UFeDP1mt70ax0CwMeL0hjyn3lkFh1+LXKTweT5fXjccMYmjPVUtf1006dklGTgN2AArX/9BVNYGACZzzzLzvPOQ7tqJ4yXR4ewol9H/E1GAG7asIsLU2r2nCql6DuhNb3PdVf2zd1bwg+vprB+vowQE+J0ZTpyE9EYImxWLuwZy9cr0rlh3A187HyNcxavpZKtLF5WRefBMZ65EUIIIU5q25VS/wTiOeg5qrW+ttkiEuIIzu8RS5i/FxE2dw/p23+mEurnxQU9YutsP67VOM/ve4r28J/l/wHgssTL0GjQ7uQx5PrrsKenowzuPo3MZ5/Db9gwfPv2AdxLuBxwTUyopwfUpTVPpWYwKTKITtUVdQGCo3wZd3tXIhLcPay7NuSyfl46Qy/vgG+AV2O9HUKIZnTYBFQp9VoDzi/SWv9fI8ZzWrt5SGu+WL6HgszehHuH8/HZ+dzw3Se8dcW/6Th9G+Pu6Or5plEIIcRJ63tgAfA74GzmWIRokJhAbyb3bgm4h73O2ZRJXIivJwHdV1BOdKB3nee2sLVg1vmzCPAKAGDu7rm8suoV3hrxFrFJSXgnudcZdeTnU/TLL5hjYvDt2wftcODIzcUcEQHAueGBnmumllUydV8OnfysdPLzptzpotTpItRiIq5ziKddZamdkoJKrL7uYb2ZO4vwtpmxhdQdqxDi5FdfD+h5wKNHOP9hQBLQBmoR7MPFvVrw5bI9PDzpLl4t/xd7g/YRtXshSyt60WV9LvFdQps7TCGEEPXz0Vo/1NxBCHGslFJ8dVM/KuzuYbN78soY/J+5PDOxC5dUJ6mHivKL8vzua/GldWBrIn3dy78sSF+A2WimT2Qf2sz5He10fy9TMn8+6XfcSdwn0/Dp1q3G9dr6WlnXv5Nn+ZbvsvJ5cEs6f/RqT1vfv2t6tesdSdteEZ4v6P/8fAsAF/2zF+CuoKsM8uW9EKeS+hLQl7XWH9V3slIqqJHjOe3dM6IdP6TsY+mGMBKDE/l85HaemPoVj9/Vl3ZfbSO2fRAmi7G5wxRCCHF4PymlxmqtZzZ3IEIcK6UU3tWfN2xWMw+P6cDgdu55nSt35fN9yl7uGdGOIF9LrXP7RvWlb1Rfz/aUdVNwuBz0PacvmEwUOUsJwAtrhw6E3nIL3p07A1DwzbdUbNlMxAMPoMxmfE1/f97pE+DHffERtPFxD7N9e3cWWVUOHmkdVWN02JibOlNe5C7e6HS4+PzJpXQfHUfHAdGN/A4JIZpKfUWIFh7pZK31K40XypkhzN+LW4e15reNWZwdeRc53nYWJJbQf8lPLPNysHxmWnOHKIQQon534U5CK5RSRUqpYqVUUXMHJcSxCvAxc9OQ1sRUD8HdlFHET2szsJqNnu19BeWHPf/dUe/y3KDnAKhyVjH227H8L+V/mKOjCbv9NpTZPXy2atcuKtat92yXLl2GPdO9ZmgrHy/ujo/0JJt7KqrYXlbh2Z6VXcCeiipsId6e+aFVFQ4iEwLwDXQnrWVFVSz6djvFeYcvtCSEaH71JaDvKqW2KaX+rZTqeMIiOgNcOyCBmEBvvl7kYljsWXw/yMKoJT+zrm0FS//YTU56SXOHKIQQ4jC01v5aa4PW2qq1tlVv25o7LiEay+V941j08FmeHtInftzA5e8vRVcXEHK6dI32XkYvWthaAOBwObi287WeHtKssizunXcv2/O3E37vPcR9Mg0A7XCw9+67yXzuOc91DiznAvB0u1imdkkAoNzp4taNu3lzd5bn+P5KO95+FkZc05G4Tu45o/t3FLLm9z3YK9xDgItyyynIPPzSM0KI5nHYBFRr3Q33emcOYLpSao1S6mGlVPyJCu50ZTUbeejsDmzMKCLRcg12E3w7UDH5+0+Zn+zLvE834zrkH3chhBAnB+V2uVLqkertFkqp3s0dlxCN6UDvJ8Dzk5J4dmIXlFJorRn53z95449tdZ7nY/bhui7X0T2iOwA7C3eyKnMVRoP7eqlFO/l91+84lCbu008Ju/12ABy5uWzr35+Cb771XMtQ3fvpbTQwr3d7bmnhHiK8o6yS5EUb+GZ/Xo17t0oO45r/DPSsKrB2Tjpf/HsZVRUOwN1jeiCJFkI0n3rXAdVab9FaP6G17ghcCQQAc5RSRxyeK+p3blIU3VoG8uH8HCa1uYy5XaDVnqW4SjewqrCU9X/K+ldCCHGS+h/QD7i0ersEeLP5whGiacWF+NKnlbuXsdzuZGj7cNpG+ANQVGHnho9XsGZPQZ3n9onqw5wL55AQ4O7N/D71ex5e8DB2lx2vVglkhVkoqSoBrQm+6iq8k7u677N2LbuuuprKne610uO8vYjzdg+19TcZ+GerKPoF+gHwW04hI5ZvYVf539VyAZJHtmD0DZ2wWN0lT2a/v4EfXk1p3DdHCHHU6k1AD1BKGYBwIALwBbLqP0MciVKK/zunI1nFlRgLR+Pn5c/Uc32554sP+LOXFwu/T5U5DEIIcXLqo7W+DagA0FrnA7UrtQhxGvKxmHj03I6M7uSugLs7t4yN+4pwVI/cSs0u4f2/dlJYZvecc6D3E+Cu7nfx6dhP8TH7APD00qe5fOblmEJDCb/vXpwt3dV2nYVFOAsKMIW4E9+S+fPJefttXFVVhFnM3BkXQbTV/b+dSSmCzUYivdzJ5xcZuTy0ZQ9eAV4kdA3z3Lt1t3Da9nQvCaO1ZvrzK0j5fXeTvE9CiMOrNwFVSg1SSv0PSAfux73uWXut9cQTEdzprkdcEOOSovho0V6uan836yMq2Ridy4g537ColYX5X2yVoSJCCHHysSuljIAGUEqFAa7mDUmI5tE5JoC/HhpG95aBACzYms1TP2/E7nL/L7FxXxEr0vI8U4tMBhPtg9t7zr+5683c0+MewJ0UTvphEs8vex6/QQNp9f13KH93L2fZsmXkf/Glp4BR0ezZFP/xBwDDQmx8ldwGL4P7Y+3uiirWl5Rjrl6eZUp6Np/uyyWxfxQdB7qr5TrtLgLDffD2c1/PXunkh1dXk74lv8neKyGE22ETUKXUHuBZYCOQrLUerbX+UGtdeMKiOwM8NKYDLg2bt7WlW3g3pp1tZczimaQHZLIqNY8dKdnNHaIQQoiaXgNmAOFKqaeBv4BnmjckIZqPUspTrfbqAQksfng4oX7u4bLvLdjBTdNWetquTS9gT97fhYGSw5MZ0mIIAA7t4IJ2F9Ar0r3GZ5m9jKFfDuX77d8Tfv/9tJ75s+c+eR9OJe+jjz3XKZo5k4pNmwB4MCGKn7q39Rz7NaeQP/L+LlT95u4slpSWMeKajrTv6+5xLcmvoKyoCl2dKOdllPLrlPVSxEiIJlBfD+hArfVArfUbWmsZcttEWgT7cO2ABL5dvZfJ8Q9SbtJ8MsaLuz+fwpz+fvz5xVYqyx3NHaYQQgg8U1J2Ag/i/pI2A5igtf66WQMT4iQSGWD1/P74uZ2YclVPDNW9kY98t567v0zxHF+5K4/ckkoAzAYz13W5jrNangVAmaOMs1qeRZwtDoDtlemc/c3ZpGSlEPfxR0Q9/zwA2ukk49HHyP/yS891C7/9lqr0dAC+Tm7Dm4nua1S6XLyxK5P5ecUAuLTmye372OWjmPxIH1okBgNQnFfBvq0FGM3Vvaobcpk7bRMVpX8PLRZCHJv6EtBrjnSyUurxxgvlzHXrsNaE+FqYMreQazpfy/x2dirYQeKa31kWCIu/3d7cIQohhAC01i7gTa31Zq31m9Vf0m5q7riEOFkF+Jjp1jLIs/3SRcn83zmJALhcmmunruD5XzZ7js/dkkV+aRUAod6hPN7/cZLDk93ttYu2QW2J8IlAmc3Mq1jD+O/Gk1GeSevZvxJw4/VorbHv30/Gv/6Pkjlz3OeVlVH60UfY9+7Fy2Bg3YDO3Bnnngu6p6KKD/dms6XUXXcju8rOg1v2UBHvy9XPD8A/2J1MF+VWsHtjHmarez7r+vl7mfvJZk+PqRCi4epLQK9XSt1bz899wOQTFejpzGY188+xiazaXYBf+dnE+cfx/gQfrv75C9a0rWT50gx2b8ht7jCFEEK4zVFKTVIHxgIKIRqsTbhfjYT0g6t7ce1Ad4XcrOIKrvlwOV+v3ANAhd3J58t2k1nkTg47BHfgtbNeI8rPPWzW3+JPgi2BMJ8wTMHBfJz9E6O+GYUrLIjWv/+Oa8wQ7C47FRs3kvXCC1Tu2AGAa/cuyt58A3tmJnHeXmwZ1IXzwgMBSC2r5NvMfEocTpRSrCoq5cYNaQT0DuPKZ/pjNLo/OpcVVlKQWYaq7tmd//kW/pj293dRLqdMCxficOpLQN8D/Ov58atuIxrB+d1jGNgmlP/OTuW2Lv8kw7uSn/u4uHb6R8zrb+OPj2XYhxBCnCRuAr4GKpVSRUqpYqVU0ZFOEkLUZDAoesQF0SHSBkCwj4VvbunPuCR3oaD1ewv5x7frWJvuLj+yO7eMl2ZvYV9BOQD9ovvx6lmvYja4CwklBicyJn4MXkYvLLExvLj1bcbPGI9Pz560+fNPdrT2ZXfRbio2bSL33ffQVe6e1qqFC8l98EEc+fn0DfRj88DOdLO5q/RmVTpYVVSKj8GAUorPMnIZsXwLbca0ZOJ93SlyOKlyubB4m7B4mzyv7Zv/rKqRkOZllOKwO5v4HRXi1GA63AGt9RMnMpAznVKKpyd2ZvQr85mx2MJ5rc/jB/0jz09ZjnX/albZOhD9xVZGXdepuUMVQogzVvUc0DFaa1kPW4hGZjIa6BH3d+9oj7gg5t0/lDB/d0GjjRlF/G9eKuclxwDw59ZsPl6UxrPndyHcZqVv1EAGxw72nH9Owjn0iewDgDkinGd/ugtvszcfnP0BfkOG8OWu74lJjyEpO5fydesw+rkr7ha88w6FP/9MqxkzGBMWwHBnOaq0GCxBBJmMtLRaCDK5h+K+lLafzzNy2XReF4zVPaZaQ0LXUPwC3XFrl+ab51fQrnckQy51VwBeNy+dmHZBBEf7NvG7KsTJp0HrgIoTIy7El7tHtGP2xky6+16DzWrjvfN9ue+L91nYBVavzWL7SqkHJYQQzaV6DugbzR2HEGcCpRTxob74ern7S8Z0jmT946NpFepO2koqHOwtKMfm7e4BnbJgJ0lPzKa8yt3TGGFOpqVliGdJu38P+Df39rgXAIOPD++vf5+5e+YSeP5E2sz+lVv/vJOvtnyFJT4en169yKzKxaVdZP33v+yc4F6B8OywQF7Zu5XiX2cDMDLExoMJURirR+S/kpbJPZv30PPseDr0i+KNXZm8tSeL4Vd1JHFAFE6tKSuqYv4XW9mzKQ+AqnIHP76+xrMEjMvpoqpCClCK05ckoCeZ6wYmkBhl4/lZO7m964NsCalkeZsSrv/qA34bEsC8z7ZQWljZ3GEKIcSZTOaACtFMvC1GT0Xdc5Ki+OXuwVjN7t7I5BaBXNE3Dm+Le3vKgh3c+PFKz9ItCzeZ+GWl2XOtb8f9zL3d3Qmp3Wn3JKq2s88m8F8PMmr6KN5d+y5Bl1xC0D8e5L2177E9fzt5n0wj/9NPARgY5M/Zr/6HzOdfAOCF9i14w8uOI9+dTK4qKmNlcRmtuoURHmfjnJXbeGhvBte8MJD2fSOZlV3A6qxiSgsqcTrc80Zz95by3t3z2bk2B4CS/ErW/5lOWVFV072xQpxAkoCeZMxGA8+d34Xs4krWbo6nX1Q/Ph1hJnH7YsK2L2FZlNFddU1L1TUhhGgmMgdUiJPQgDahPDimg2f77hHtePfKHp7tLZnFrN6T79m+/fM1XPPBOgDMRjOjQv6PEJd7TVKtNY/0fZShLYbi060bxf0SeW31a2zK20Tc1Kk4n7mfMd+MYdHeRRj9/SnxMzJn9xysuhTve+4i89lnAfigSwJPzfiEolmzABgXFsBQZyXevka8fEzcs3kP31aUMPmR3sR1CmHS6u18W1FCn/EJhMb6sSi/hE2pefz5+VZKC9wdELs25PLFU8sozHavUVqUU86ejXkyx1ScMo6YgCql2iml5iil1ldvJyml/q/pQztzdW0RyNX9E/hk6W4mtXwQk8WL/11s496vPmBlqwpSduSzaWFGc4cphBBnJK21v9baoLW2aK1t1du25o5LCFFTdKA3PeKCPdvPTOzCp9f39Wyf3y2GS3q39Gy/MXc701e61w71MfvwwS8RfDLfXQAyISCBe9p8i83VA2UyYQwIoHNwEsHewUQ++giZE/tx99y72Vawjagnn2D3eT255KdL2Ja7hbJFi9mzYy3z0+dzTbg3HS8+n+zXXgdgdvc23DDtXUqXLsPu0ngrCCnKpvuIGAwBZs5P2c7CEMVVz/bHO8KbCau2sdBejl+QF1iN/JFbxOo1WfzwWgr2CncCunlJBt++uNIzjDdvXym7N+bKkjHipNGQHtD3gH8AdgCt9Vpk+ZUmd9+odsQEevPizL3c3/OfbAou4/dkO/d8+h6/DLEx/+ttFOWUN3eYQghxxlFKDa7rp7njEkIcnQndYpjUI9az/ctdg3n2/C6e7ZEdI+hevWSM1poXf01l/pYCAFr6t+TXecP5eYV7eG9yWDJDrW9SWBCF36BBWFq3hqoYDMqP1rNmsnVUO26bcxu55TlEPvJ/LOzmxfjvxmPJ34NrzhzWpC7kqy2f8VaYmU6XX0zGN1/icFbwTWwAZz/7OIYdGyhFYykrI3rPOsZc2pJso+bStTtIb+3NhHu7kWFwMXjpZlbrKgxGA/m4mJKezfwl6cx8ax1V2kWJw8mSH1P56pnlnteZti6HDQv2erYrSu3Yq6Q3VTSdhiSgPlrrZYfsa/DMaKWUUSm1Win1Ux3HBiulVimlHEqpCw455lRKpVT//NDQ+50ufL1MPDWhM9uySti9qz0j40by1SAIyU4hMeUPFrex8PvUjbLOlBBCnHgPHPTzCPAj8HhzBiSEOH4Wk4FAH4tn+96R7Ti/uztBVUqx6pGR3DWiLQBOl+aagQn0jHf3sGqXhQVbKtiZ5Z6n2caWxOJlw5i7wT1stlfYEMJzX2LDPi+CJk/GPy4JCkaQbwqj3eJFrO7gwzN/vYvTy4eoZ55hRlQ6gz7vR7JyYM7K5IesP3h+8UNM9XUR8cC9LF/2HZv2z+Mnczk9LpmAOX89la5K+uRn0uWXqYy9MIytZZX8Z9UmQrz3MeHWRJYUltFmwTp2B5uISLCxqrCUK9fuYMGq/ayevZtd5ZV8tT+PmV9s5qunl1PmdFFod7D4++3M/3Kr531JW5tD2rocz3Z5SZUkrOKoNCQBzVFKtQY0QHWieDTjP+8CNh3m2G7gauCzOo6Va62Tq3/GH8X9ThvDOoQzvms0b8zdzqQW9xDoHcz/Lvbnpu+msTm8kDXZJSyfmdbcYQohxBlFa33uQT8jgc5A/pHOE0Kc2qxmIzaru4iRyWjg3pHtGNIuDHB3HKQ8OorrByUA4GU28Oal3RnWIRwAs8GHFkGB+FrcCW4L7yTWbWlDapZ7NNvQyIspTX2QJfsdBJ4/kdiwEXjt+zcbTSG0+m4GGYFRLF3XkoyQWOI++4wZpPHv37+hZXAIAaNG8d+877nlx0v5P28w//Qjb26awvfrnuQPQzGh99zKorwf2LD3e17fvYmkOycR0HkP63M34L9iGb2XvcPo66P4Ky+fV39bQMv8xfQ4K4LvMvPp+/Nf5O3dgaO8iu+z8hm3cisLft9Fyu+7WZRfwnM7Mpjxv7XMemstO8oq+TOvmFlT1rHwm+2UOp2UOV2snJ3GtuWZnvcxfXMeeftKPdsVpXac0qFyRjnsOqAHuQ14F+iglNoL7AQub8jFlVKxwDnA08C9hx7XWqdVt5O/dYfx7/M6s2xnHo98l8q/zn+Ce+bfxoxBJh7++G2eu/0xgn9KI6ZdELHtg458MSGEEE0hHUhs7iAaSik1BngVMAJTtNbPNXNIQpw2DlTctZqNnJMU5dkfYbMy9Zrenu12EX5seGI0xuqKvlEBPrx4YVeSYgMB6BzWgZ4tDPhVL0HTJ3wMH+SupBATrbt3Y8DaAL6au4mMs8Pp+sTjRM2fR9qfw0gfmkynlSt4b+bH/LLYl1su60aL96fwZPqvbNkTwQ9DBmC+YBJ3bJzJ/rwwvoxJomznDm5b9jwlFUG8W5qAYcrLvNFpG+UpQbyw1YdWH7zDTx9eS84OG6Nn5dDrx29ZMeVeFu7cTeFP2zkvZTWb7r6cd1NLSf1tIw+tTyNz4jie31bF0r/WctfCDPKGjGRmGCxbu4Hzfs4gdGB39g8PZ2NGFm2n7Saudzz2UZHsrbTjPXUHbXtGYOgXRonTSfl3u4nvEopv5yCcQObcfcS0DSS0VQBGrUlbl0tIjC8BYT5ol6YgqwyfAC+8vE1ordEujcEodVdPJkdMQLXWO4ARSilfwKC1Lj6K678CPAj4H0NsVqXUCtzDfZ/TWn93aAOl1I3AjQAtW7Y89PBpIcDHzEsXdeWyKUv5c00cF7a7kOlMp/vGLfT/8wf+7HcOAR9s4OL/6423v+XIFxRCCHFclFKvUz0qCPdIomRgVbMFdBSUUkbgTWAk7sR5uVLqB631xuaNTIgzi1LKs74pQLCvhQsOmo/aJtyfty7/u4Jv/9ahrHt8tGd7ePuW/HRHCK3D/AA4r2MvAoxZxAR6AzC54zgcRbsIjAjBr3U0V65rxUvpW7AmJhLaK5k+c1bw+upMrFeOJGr8ObT4bibfrNS0+OcwfCZNIH/2TBauC+Xl6xMhqQO/rdvE1h2xrBnXiQpfC68t2kRpbjILOrSgJG0Tz66bgypL5j1nAT5pS7g5vRjvXd14YudmYrcuYnLvDQT81os7V2+k48YUbuzdCcsfPbhq7gq6b9nCg92SKf8jmcm/LCJ5515eaJlE3ryunDN7KcnbsnnZksjuvE4MnbOCDik5fHNVIhv2tKfPghQ6LM9j51UdSGnRlm4L1xKzMI/yazqS0jKeDss24vdbFv7XJbE2Lpa4lC1Y5+URdXkSa6JDiNq4A8uSIlpd2IU1IT4E79iHaVUxHcd1Ya2/Ab/9OZg2lNJ+aBs2WzU+hWWoraUk9Igk3QssFS70zhJi2geRZwFzhQv7/jLC4mxUmhVUOqnKryIw3Buj2YDD7qKy1I63zYLRaMDpdOFyakwmA8pw5qzspY60nIdSqlbPJVAIrNRap9Rz3jhgrNb6VqXUUOB+rfW4w7SdCvyktZ5+0L4YrfVepVQr4A9guNY69XD369mzp16xYkW9r+VU9u+fNvL+Xzt5+4okXttyE1U52Tz7VjkP3v4YXTKjGWXz45zbkjzfvAkhhGgYpdRKrXXPo2h/1UGbDiBNa72w8SNrfEqpfsDjWuvR1dv/ANBaP3u4cxrj+frP994nt6TkuK4hhGhcLl09F0+B3WWgwmnC31QFCkodZoocFqK8SkFBfpWVvCpvWvu5Zxvsr/Ahp9KHzgHuuaDby6zkV9roFZQFwNpSL4orghgYuBfldLCkMpCyyhCG+25FOaqY54rCXhXMSMt6DI4qZpvi0fYgRrEag72KWT7tUI4ARlYux+Cq5Ge/Lpic/owqXoRSDn62dcesfRid+ydOg4tZwf2xaC/GZPxGpZeBX4IH46WMjNn7O2XeRn4LGozVAGP2zKHQz8y8wIFYDZoxu+aSZ7MyP6Av3kbNmB3zyAryZmFAH7yNTs7e9icZIb4sDuiNr8nJmK1/sjfUj6W23viaHIzZ+ie7wwNY4dcTX7OdUVv+Yle4jdX+3fEx2Rm5bTFp4TbW+nbF12RnWOoy0sIC2OjTCT9zFQN3rGZnWABbvNthM9jpt3stO0ICSPVug83goFv6JnYF29hljSPYUEW3vZvYHhzALms8Idhpvz+VtCB/MrxiCFOVJO7fRmpIAPtMLQjVdhKyd5MW5E+2OZxIXUKr3DRSg4PIMsYQ7qwiNjeDXUG+5BlDidJ5tCjYhz0kkgcuvZJOrROO++/Y4Z6vDUlAPwN64i6yADAOWAvEA19rrV84zHnPAlfgfjhbARvwrda61vDduhLQozkOp38CWmF3ct4bC8krq+LFy4K4889rGbLdwsVzfbjl4We4aK6dcWe3InnE6dkTLIQQTeUYElBfoEJr7azeNgJeWuuypoqxsVTXcRijtb6+evsKoI/W+vZD2h08wqjHrl27juu+if/3NuWOFsd1DSGEECfG/T2ruP2Cicd9ncM9XxsyBzQW6K61Lqm+0GPAz8BgYCVQZwKqtf4H7uVbOKgHtKFzR4OAMq11pVIqFBhwuPucKaxmI69MTua8Nxby6XzN9V1u4F3eodOWCu7+9B3eu/weAr9LJbptIOFxshydEEI0oTnACOBAl543MBvo32wRNTKt9bu46z/Qs2fP41488ME+LcmTHtD6HaZDQIOMbhKNzu6CMrvC7lLYXeBwgV1DSz8XJgPsLzOwt8SIo/qYQyscTugfXQpGOxtzzews9AaXCYcLyl12nFoxsNV6XK4qNufEsS8/En1QvVOFg45RX+HESXrxIEpK4mvEpFQ5gTFTcClNac44HOWtagZtKsCnxccAVGRMwFXh7nQxuBy4DBplycE75uvq4+dCVRQ+lXYUDoq9weiVhVf4rwBUZo5B2aMIKSpD4yA3QGOy7MfbthCFoqRgNLjCic0uwGF0kh2osZgysHmnoA0mckuGo1UY8ZnZVJmcZNtceJsyCDBvxaksZFcOwmEKo/W+/ZRbXOT5OfAxZRJoSsOOL1mOnriMIcTvz6bM6qDIx46vMZMAYyZ2/MnSndCEEpOdRbmXgxJvO37GLGyGPCoNNrJpi8EVQmRuDiVeVZRb7fgbs7CpYiqNwWTTEosjiKCCXEq8Kqm0OLCZcvBXpVSYQsnWUVirAgkozqPEXEGlVRNozMamKojwb8t5A65umr94B/5TNqBNOFB50LYdiNBalyulKg9zzmEppZ4EVmitf1BK9QJmAEHAuUqpJ7TWnXAXc3inujiRAfcc0DN+fkpilI0HRrfn6ZmbGNZhHD0jVjJlbArPvLecrstmM7/HMAKmbODif/bC4t2Q/7RCCCGOgfXAl7IAWusSpZRPcwZ0FPYCB3dFxlbva1LXnDu2qW8hxGlNa01JpQOLyYCXyUh2cSWrdudTUuGguMJOcYWD4koHl/eJo2WIDwu2ZfP6nO2UVDoorXK3Ka9y8tJl0YQGVPLdynw++6v2qoqje81FGfazpagjOzO6AmBRGqeqxGWoZFfVaxhMZVQ5++BtHERrhx/GjL2sjyrDbnGwWH2LMjmx+3Yk2n8AnXcYidqykZm9XbgMDlz2NXg5FbHRoZRqRfKyTJK3b2BmLxcG7SI4PRd/l5WsqCy2x/rTdfNe4vfuYlPLfJRD4bvHn6hsC9nBZaS0raTt3nRCCnIpDCrE4uuDf9UAwlY7KAoIZm2bAEIL9uNlr8A3wkhQVALBxrsIWl6JDo5ldbARU0U+JoOBqPhAwloEYuNavNYWY2ztzTaTE21UeBkNxCQEEBzmg1elC9euUgwmRbHSmE0GLCYDIRE++PlZcFW5KCuqRBkURqMBg1FhMCrMXkYMRgNaa/lCiYYNwX0EmAh8X73rXOAH4CXgXa31ZU0aYQOd7kNwD3C5NJdNWcqa9AI+ubEjd/91Obb8Sp54p4y773mSnmmhnB0TxMjrOslfcCGEaIBjGIK7ELhDa72qersH8IbWul9TxdhYlFImYCswHHfiuRy4VGu94XDnnCnPVyFOpCqHi125peSUVJFbWkl+aRX5ZXaGJ4bTKTqADfsK+ee36ygst1NYbqeowoHTpfnf5V3pFm/kl43pPPFtVo1rGo0uBvRIwWLdwZ4cfzL2JtMjqC3WojzWOreSZczBErwQg7kQZ2UYQSRzjxpExVef81WfMvaH2LHpTHyrHNjaJxMUmEifJd50/+g9fuploNDPhBELQQZvAsZfyVJDKIUpGfTekML+QAcVFisOkzejin3JCxjM7Fhv9nnlEJ6fj8Hbm4CoQEze3vT9pYjicm82xZjJCDZhdUFMjB/J/aLxNRowTd8DQL6vAZfVgK/ZSMv4ANonhWE1KHYuz8JkMWC2GDF5GTFbjPgEWPAN8EJrjcPuOuOK+pysjnkOaPXJvfh7aNFCrfVJ9yQ6kx6Q+wrKGf3KfFqH+XHvuXD73FsYttXC+X/ZuPPBp5n8ewXnjG9L0rDYI19MCCHOcMeQgPYCvgD2AQqIBC7WWq9sohAblVJqLO4q9UbgA6310/W1P5Oer0Icj9JKB06tsVnNlFY6+HzZbrKKK8k+6OeaAfFM7t2SbZnFjHx5fq1rXDPUi06tCti8P59ZK3zpFtmeIB8vthWsZkPBSly+KRgsuWinFexhTO/6NFUfvs9HkWtZElWAX5nGr1wT2i6JsOi2XJTTE/NDD5LSSpFvM2JW3gR52Wh7x31sCm/F53PW0335Iop9fCmp/rnSFo7Vux2/eimm28rwrXJhMlpJaBlIgNlIvzl5lG0sICPQ6E4g7S6iw3w5e3J7bCYj6T/toqrYgdXXjJePCS8fE4ERPsR3CQUgf38pRpMBi7cJs9WIUZZIOW0dVwJafYFw3MWEANBa72688I7fmfaAnLkug1s/XcU1A+IJjv2Dd9e+y20/ucDal08vvp2LZxUw6d7uRLUOaO5QhRDipHa0CWj1OWagffXmFq21vfEjOzmcac9XIepSYXeyr6Acg1LEh/ricLr4x7fr2F9Uwf7CCvYXVVBc4eCmIa34x9mJFFfY6fL4bCwmA+H+XgT6GDCaS+kYX0Rg8G72FmWzOd3M3b2uJ94vgJ83f8RHGdNQyum5Z5BXEF92eYmia+9gcUQRm1oqAko1AaXQctLlBA8eTf62SsL+8zxFAYHk+QeQ5etPz7gYekwczzJvG1cs24CttIRCX38qvLwIMJt4oMqHgGV5bHPYWRxhwKfChb9LMf7SRILNRnJn7CJ7Qx7e/hZ8bRa8/S0EhHnTd0JrAPbvLMTl0Fj9zHj7mfHyNWOQ3kZRh2MuQqSUGo97uG00kAW0BDYDnRo7SNFwY7tEcc2AeD5cmMZrl0ykZ8Qq3j8nhWfeW0S71R35s/cQ/N5dx0X/6o2PTdYHFUKIxlSdcK5v7jiEEI3D6dLsKyin0uGkTbh7+fqHv1nL5v3FpOeXkVNSBcB5ydG8OrkbJqOB1XsK8PUy0SrMlx7xftgN2VR5reTJxV+zt3gfHXtk88LQJ+gU0pHvVk3j0Q0vsiMTrPtNRJiDiYtuRUe/EspHj6NbMISHKIJKNUEl0Pamewm4/Dp+2rYTv8FDwRaEn38AW339GZnYlnO6dyZNG5jk3Az3PoEvilgfC9FWC/4FBrb9bzfZpVWcG2LEv8KCb3kFdzzVHX9fC2vm7GG3r5m+QX4MD/DCN8CCT4AXCWEBKKXQ19Q/jSsyQTo3xPFpyBzQNcBZwO9a625KqWHA5Vrr605EgA11Jn5DW+VwcfG7i9m6v5ip13fk/sVX4JdbxhNTKrj3zsdJyoxkuMmb8+5OxiDDG4QQok7H0gN6JjkTn6/i9FVW5cDH4u5/mbJgB8t25pGWW0pabhlVDhe94oP4+mb3rLNrPlxGldNFiyAfogO9sHiVYfHOQVt2k1aURlphGjck3cDg2MEszVjK9bOvB8CGN9GmUFrEdOCGztdjGH0lha5S8vwgtAh8HEZCrr6K8PvvZ2l+MSVTppAeFMIO/yA2+tno1TaBh9rHUeF0ET9/LQoINxpp6eNFnI8XfcsMmGbtIy+3giyLxlbmwssBkx/pTUiMHztSskldnYV/sBX/YCu2EG/8gr0ICPeRnkpxQh3POqArtNY9qxPRblprl1Jqjda6a1MFeyzO1AfkvoJyznltAeH+Vh4+38hd825h6HYLk/+wcvODTzNhEYzuHcOASW2aO1QhhDgpSQJavzP1+SpOfev3FrJqdz7bMkvYllXM9qwSrGYjfz10FgA3T1vJ9uwSEkJ9aRXqS3yoLwmhVoIC80ktSGV7wXaSw5MZHDuYtMI0zv3uXM+1Q8yBJAS34bou1xH//NfkrFzCXlMRkQXgUwm+gwfR8t130Vqz8623ybT6sCM0gk0BIdiio3iwrbtOR+e/1pNjd2BRijhvCwneXgy2eNN6eQF5GWWkFpVhzbNjdMG427sS1zmEfdsKWP3bbgJCvbGFeRNQ/WMLtUqHgzipHM86oAVKKT9gPvCpUioLKG3sAMWxiQ705pXJ3bj6w2X8uDSGm5Ju5m3eIn53FY9+8DpP3/JPbD/vITLBRuvu4c0drhBCnLKUUt3rO36gKq4Q4sRxuTRpuaVszChiU0YR2zJLeOvyHhgNis+W7eazpbvx9zLRJsKPszqE0y7C37MUxlOT4ih3lNPC1gK7086FP15I2uY0nNo9D9OojNyQdAPdtjowL17EfYXxhG/OImJXEYHR/rSe9SEAmTGLiAg6m4iEeDKiYtkVE8voju0AmLB6O0sT/y6QHW4yMdzhJGtXETnpJdyz34hzXyWklTJgYms69Ykhd28J36VsJzjal96JYQRG+BAY4UNEgnud9+i2gUS3DTyxb7QQjaghCeh5QDlwD3AZEAA80ZRBiaMzpF0Yd57VllfnbOPZ+HMY2mITH581n399upFJP37KrBGX4ffRJoKjfQmK9G3ucIUQ4lT1Uj3HNO7pKkKIJqK1ZndeGRE2K1azka9W7OHJHzdSUulez9JoULQJ8yO3tJJwfyt3nNWGO89qS4TNC6UUi/YtIiVrIbfNWc/mvM1kl2czNHYorw9/HaPDRWdjC/oTQUxGJdE7i+n/xqd4ma3s+9e/KJ71C0PatsHadRReF7TDq4O7BtlPWQX8NO4i1peUk1pWiQYC8+1sqp5DeVFYEGcpL0LyHHQO8iW5ewQVpXbev28BAGYvIyExfoT0CCco0r2ccHC0L9e+OFCW0xOnrYYkoI9qrR8CXMBHAEqp54GHmjIwcXTuHN6WVbvzeeyHjXx6wz/ZXbSbVyan88w7M9ncMoH5nXphe3sdkx7qiZd3Q/6zCyGEOJjWelhzxyDEmaS8ysmq3fms3JXPqt35rN5dQGG5nc9u6EP/1qG0CvVlYrcYusQE0DHaRtsIP7xMRiqdlazOWk1KVgqFlYXc3eNuAN5e8zZrsteQEJBAb1tnOnRIJjmyO3nTPiHzhRe4zO4uZm0MDMTaqROm8iowWwl6+GH2P/AwC0sqWF1Uxtricmb1aAvAmuIylheW0sXfmwnhQXTx96aznzfzv9hCxvZCCveVYtJQCOT2i4TuEVh9zYy9NYngKB9sId611quUxFOc7hoyB3SV1rr7IfvWaq2TmjSyoyRzVCC3pJJzXvsLk1HxxpUtuXXuFYTmOfi/D6q49+7H6bUrjOHB/oy9JUkmoQshRLVjXIalM9CRmsuTfdzYsZ0M5PkqTpSs4gqW7sgjPsSXLrEBrNlTwHlvLkQpaBfuT7eWgXRtEcjwDuGE26y1zv8h9Qe+3vI1G3I3YHe5k8n/Z+++w+MozgeOf+d6Ue+W1d17r4DpHQyh9xp6S2gBkh+QBAKBEEIndBJ6qKZX041777bcJKt36frd/P64kyxZckVd7+d59tnd2dndWfms0XszO5Mbm8t7x/0P3+o1bFzwDZbFa2HBUoLV1WS/+gqOCRNwLVpE/ezZ2EaPxj5yJLWJSdiNRhxGA++WVPG71VvxRf5eTraYGB/j4L5BGSRqA9s3VlO6qZbijTUYDIoTrx8LwMdPLiMU1KTkRJOSHUNKdjTOWGun/SyF6A72+R1QpdRVwNVAnlJqWbND0cBP7V9E8WslRll5+vwJnPHvOfxtVhl/O/YBrp99DS+caOa+Z/7JdX/4G7E/VJHw/kamnyKDEgkhxP5QSt0FHEI4AP0EOBb4EeiVAagQHSUY0nyyvIhf8iv4Jb+CjWXhIUYuOyiXURnhVs2XL5nM2Mw4Yu3mpvNqvDV8veUn5hbPZX7xfF44+gXibfFUe6rRaM4ZfBYj6mMZ238y/YaOw7VwIVvOPQ8jYMjOwnHoodjHjcWSnQ1A3YhR/NQ/l5+q6pi3tZr1a0p4bkQOJ6TEMcxp49KMJCbEOBlpsZAda0cpxQ9vruO9bwtAg1KQmBFF/8HxTWU8/upu1U4jRLeyu76YrwGfAvcBtzVLr9NaV3ZoqcR+G5sZx4OnjeaGN5aQNz+T68fdwCP8i+xCP7e/8Bh/v+IPOD/ZRmK6kyFT+3V1cYUQoic6DRgDLNZaX6yUSgVe6eIyCdHtefxB5m2qpM4T4PjR/TAo+POHq/D4g0zKieeMiZlMzUtkRHp4sB2z0cDBg5Obzl9SuoR7597L2sq1aDQ2o41xKeOo9lZjzy/i+F8CHDLHjmvhG2i3G8Oll8DQcdhGjaL/vx7GPn485pQUyn0B6kMh4m0Wtri9TPllNQCxJiOTYp2cnpbA8Cg7Pk8A+6YGDl/tonB9IZ8U1HPxgwdij7LQb2AcVqeZ9IGxpOTEYLHJ601C7K3d/W8xArXANTsfUEolSBDafZ00tj/rSup4YvZG7kw9lGNz1vI6n/GHt1Zwzjsv8cEJF2N/dS2xqQ6ZTFgIIfadOzIlWUApFQOUApldXSghuqP8snq+Xl3K9+vLmLepEm8gRG6Sk+NH90MpxbtXTSc9zoap2fQhWmvya/L5qfAnfir8iZMGnsSxuccSb4snxhLD1WOvZoJzGEMaYokZMxYdCrH+4ukEa2qw5OURd8opOKdNxTF5MgBBk5mVUw9kdkUt325Zy7J6N6enxfPYsGyybBbuGdSfybFOhjlsGDQYTQbyF5fx/HMrCAU1RrOBtLxYJp2Q21TGgRNkZgEh9tfuAtCFhEf1A9j5hUEN5HVIiUS7uOnIIWworeeej1fz7wuuZ1PtJh47bSN/fv4rtqSk8fnUo3E8vZwzbptEVLy8kyCEEPtggVIqDniWcF1ZD8zp0hIJ0U0EgiEWba1mUk48Sin+/V0+by7YxqCUKM6dks2MwUlMyU1syp+V6Gja9of8/H3e3/mh4Ae2N2wHICcmh0AogA6FSNlSx/0bxlP/wmw8yx6lNCuTmM8/RxkM9H/sUSzZ2ZhTUwGoCwQxmowAHL9wHcvq3RgVTIpxcltuGocnhltZva4AM4qCbP58E/NWVXDAqYMYNr0fSZlRjDk8k8xhCfQbGIvJbOysH6EQvd4eByHqKWSQhNYavAFOe3oOBVUunr14CHfMvQRqavnLMy4ePvdGogwjOKHBxG9uGo/JIr9YhRB90/4MQtTs3BwgRmu9bE95eyqpX8WeuHwBvl1bxhcri5m9towat5+PrjuQkf1j2VbpwmBQ9I+ztzqv1lfLjwU/UuWt4txh5wJw9kdnk+RI4qD+BzE9ZQoZ8eH3NIvuvpvqN94EpbCNHkXUjBlEzZiBbeRIlFJorVlZ7+bz8lo+L6+hwOtj2fSRmAyK90uqsBgUB8ZHExMJSgO+IB8+tpSijTXokMYWZSZ7ZCIjDkyn38C4TvvZCdGb7ap+3asAVCk1E5gR2f1Wa/1RO5fvV5MKsm2F1W5OevxHoqwmHjg7mWu/u4T0Cs0d//Fx83V3M25LEsenx3PkpSNk2G8hRJ+0twGoUmqo1nqNUmp8W8e11ovav3RdT+pXsTuLtlZx7rNzcfuDJDgtHDY0hSOGpTJjcBIOS+uOdjXeGr7Z+g2fb/6cuUVzCegAWdFZfPSbj1BKEXS5aPjxR+q++or6b78j543Xsebl4Vq0GP+2rTgPOghTQkKLa35YWs3dGwop9PpRwIQYB0cnxXJpRjIOowGtNeXb6tm4uJRQQDP91PBAjJ89s4K4FDs5o5NIyYmRGQKEaGf7PApusxPvByYBr0aSblBKTdda39HOZRQdoH+cnX+fP5Gzn/mFhz+p5/6jH+T3317Pkyeb+Nu/H+R3N/2V2HkVxH64iSkzpVe1EELsxo3A5cBDbRzTwGGdWxwhOpfHH+Sr1SV8tLSICdnxXDYjj2FpMZwxMYOjR6YxJTcRYxtBXK2vFofJgclg4vnlz/PiyhfpH9Wf84efz2FZhzEqaRSB4mJKH/ondd98g3a5MMbGEn344eEhZgHH+HEwfhyBkObHqjpmlVZzTr9ExsY4SDSbGBlt56bcNI5MjCHZEh4xt2xrHYvnFZO/pIzacg9KQfaoJLTWKKU45vKRnfrzE0KE7c2QXccBY7XWIQCl1MvAYkAC0B5iQnY8D5w2mt+9uYTkn9O5fcofuZe/kjgtwJ+ffpC7brgbx1dbiEmyMWx6elcXVwghuiWt9eWR9aFdXRYhOtPc/AreWVTAp8uLqfMGSIm2Mj47DgC7xcifT2odyPmCPn4o+IFZG2fxQ+EPPHH4E0xLn8aZQ8/k6JyjGRY3BPe8ebDBhTHFCE4nrnnziD3hBGKOPQbHpEkoU/jP1JDWzKtp4N2SKj4pq6HcH8BuMDAhxsnYGAfT46OYHh8FQEVhPcE0I0ajgQ2LSlk2u4CMoQlMODaH3DFJ2KMsnfZzE0K0bW/HjI4DGke9lWFTe6CTx/WnuNbD/Z+uISV6JBePuJgXeZGU8m1c+/JjPHXB77G9sZaoeBuZwxL2fEEhhOijlFLXAK9qrasj+/HA2VrrJ7u0YEK0o+3VbtIj720+/d1G5m2q5JiR/ThlfH+m5rXd0glQ56vjkUWP8Nnmz6jx1pBkT+KsoWeRHhX+gjupxIP5/c/Y+MHVBEpLcUydinP6dIwxMQz8djbKsGM03NpAkBiTEV9Ic/6yfAIajkyK4cTkOA5LjMZpDL/PWVvuZv2CEtbNK6FyewMnXDeG7BGJjD0ik/FHZ2O1yxQpQnQne/M/8j5gsVJqNuHRcGfQcl5Q0UNcMSOP4hoPz/24iTuOO4mjsgt55bAvuPHdxZzx3gu8d/yl2J5Zzuk3TyCxf1RXF1cIIbqry7TWTzTuaK2rlFKXARKAih7N7QvyyfIi3pi/lQVbqvjxD4fRP87OPb8ZRYLDgn0XAxaWu8vZXLOZiWkTsZvs/FT4E9PTpzNzwEym9puKyRD+c7NpICGjkagZM4i94w6iDjm46TrKYKDM5+e9kireLq7CHQrx/eSh2IwG3hgzgKFOG07TjjK4an18/uwKtq+vBqDfgFhmnDWY1OzwCLfS2ilE97TLAFQp9QTwmtb6daXUt4TfAwX4g9a6uDMKJ9qXUoo7TxhOWZ2Xv32yhgdPv47S5FIe+81y7njtWw74IZYPJp6C7fGlnP6HiTjjZHoWIYRog1EppXRkFD+llBGQv3RFj1VS6+GJ2Rt4b3EhdZ4AuUlO/nDMUKIigwi1NYJtSIeYs30Ob697m2+3fUuCLYEvTvsCk8HEh7/5EKMy4l64kJJH7iD19tsxxccTdeCBWLJziD3xBExJSS2ut6i2gSe3lvJ5eS1+rRkdbef89ESCGkwKJsQ60VpTtKGahhofAyekYIsyowyKKSflMXhSKjFJrcsphOh+dtcCug74h1KqH/AW8LrWenHnFEt0FINB8dAZY6ho8HLHu6t47Jy/8rTvdzx49hb+7+X3qYqJ5ZPsQ3A8uYyTbxyHxSbdVoQQYiefAW8qpf4d2b8ikiZEj+ELhCiv95IeZ0cpeGdhAUcMT+WsSVlMzUvY7cj4X2/5mgfmP8D2hu3EW+M5b/h5nDLoFIwGI8HaWmrf/4CqN9/Et3Ejhuho4k47DdPkyUQfcUSL62zz+HAaDSSYTWzz+Pi5up5LM5I4u18iQ5y2pnyeej+rfy5i1U/bqS5xEZNsZ8D4ZAwGxcm/H9dhPyMhRMfY4zQsSqls4KzIYgdeJxyMruv44u09GSZ+39R6/Jzx9By2Vbp46oIh3LvkSuqrS7nrJS8vzrwWhxrDbxxRHHflKAxGw54vKIQQPdS+zgOqlDIQDjoPjyR9CTyntQ52RPm6mtSvvUtprYdX5m7ltblbyUt28tYV04Bw99tddbEFWFa2jBRHCmnONOZsn8PzK57ntMGncVjmYViM4Q4AgaoqNhx2ONrtxjZ6NPFnnknMccdisO9omQxpzTeVdbxYUM43lbX8ITeN3+Wk4Q9pNBqLoeXfHCu+L+THt9YTDIToNzCWYdPTGTA+Wb4gF6IH+FXzgDa7yDjgBWC01nrXv6W6gFSQ+664xsOpT/2MNxDk4XOy+b/5l6Oqa7nzJT//PP8W8spzmZmTxGHnD5U5QoUQvda+BqB9jdSvvcOKwhqe/SGfj5cVEdSaQ4ekcOH0HA4enLzLc/xBP19s+YJXV7/K8vLlXDTiIm6aeFPTcR0IUPf1N3g3rCf5mmsAqHjxJRyTJ2EfMaLV9Z7ZVsoLheVsdvtIsZg4Lz2Rs/slkmnb0YPd5wmwbl4J/QfHEZ/mpGhjDevnFTNiRn8Zn0KIHma/A1CllAk4lnAL6OHAt4RbQD/ogHLuN6kg98/GsnrO/PccjAbF/Wem8ce5lxNV6eGPr4T4yxX/x8SNyZw8IZ1pvxnY1UUVQogOsR8toIMID9A3HGjqJ6i17pWTKUv92nNprQlpMBoUL/y4iYe/XMfpEzO5YFo2OUnO3Z77wooXeGXVK5S5y8iJyeGcYecwc8BMnGYnwdpaqt9+h6pXXsG/fTvm7CzyZs3CYG09dkSBx0dGJMC8YFk+tYEgF/VP4rjk2BatnXWVHpbPLmDVT9vxugJMmZnHxONy2vXnIYToXPscgCqljgTOJjwP6DzgDeADrXVDRxZ0f0kFuf/WFtdx1jNzcFhM3HVaDH+ccyVpZUFuesfMXVfdyYwV0Zx6RC5jj8jq6qIKIUS7248A9EfgLuBh4ETgYsCgtb6zg4rYpaR+7Xl8gRAfLt3OM9/nc8mBOZw5KQuPP0ggpImy7rrraqWnkgRbeCq2P/34J8o95Zw37Dymp0/HoMLBYt3XX1N4y61olwvHpEkkXHgBUYceijLu6Bintea7qjqe3lrG91V1/Dx1GDl2K55gCNtOr/VorfnmP6tZO7cEtCZvXApjDs8kLS9Gel8J0cPtqn7dXQf624HXgJu01lUdVjLR5YakRfPfS6dwzrO/cO97ddw582HunHs9T8z0cddT93D31Xdh/iwfe7SFIVPSurq4QgjR1exa668jI+FuAe5WSi0EemUAKnoOty/Ia/O28twP+RTVeBicGkWiM9wqaTPv+s2pDVUbeHHli3yS/wmvHP8KIxJHcPf0u5umT/Fu2ID2+7ENG4Zt1Chijj6ahPPPwzZ8eIvr+EIh3iup5ultpaxu8JBqMXFbXj/iI1OnNAafOqQpWFdF5tDwYEf2KAtjDs9k1CH9iUmUkWyF6O326R3Q7ky+of31Fm+t4vzn55ESY+WqYz3cM/8PDC2E334WxV+vvIvjFlo4++JRZI9M7OqiCiFEu9mPFtCfgQOBt4FvgELgfq31kA4qYpeS+rXnOP/5ufywvpzJuQlcdfAADhmSvNtWxNUVq3lq6VPM3jYbu8nOKYNO4eIRF5PqTAXAvXQp5c88S/3XX+M88ECynnt2t/cv9fqZOGcVeQ4rV2Ym85vUeKzNutkGAyHWzi1m8RdbqS5xceqtE0jLi22fhxdCdDvtMghRdyYVZPuYv7mSC56fR1aCg0uPruPe+bcztEBxyRex3HfFnZy4yMy514wlLVcqDCFE77AfAegkYDUQB/wViAEe1Fr/0jEl7FpSv3ZfLl+A1+Zu5fSJmcTazczNr0ApxeTchD2f63dxxP+OAAXnDTuPs4eeTbwtHgD3kiWUPvIIrjm/YIiNJeHcc4k//zxM8fEtrlHpD/BcQRmr6z28OCoXgDUNboY4bC0C34AvyIrvC1ny1TYaqr0kZUYx/uhsBoxPwWCQbrZC9Fb70wVX9EGTchJ4/sKJXPzSfF76MoY7jryPv3E7Lx1ZzS3P3ctDl/4f1qeXcvb142U0OiFEn6KU+q/W+nxgutZ6PlBP+P1PITqVxx/kv3O28PR3G6lo8BFrN3P6xEym5O2+h9LqitXM2jiLWyfdisPs4JHDHmFowlCiLdFA+H1MpRSuRYvxrltPyq23EnfGGRijWg5YVOL18/S2Ul7eXoErGOLYpFhcwRAOo4Ghzh1daBuvpzUs/HQLif2dHHb+UDKH736eUSFE7yYtoKJN360r4/L/LCAn0ckFR9Tw90V/ZMRWOPv7FB49/0+cttrEWb8bT1yqo6uLKoQQv8retoAqpVYBRwCfAocALf6C1lpXdkgBu5jUr92H1po352/jX1+tp7jWw0GDkvjdEYOYkL37Fs+N1Rt5dNGjfLPtG6It0bx23GvkxOY0HXcvW0bZY48Tc9xxxP3mZEJeLwSDGByt6/jvKuu4YHk+/pDmN6nxXJuVwrColu9tet0Bln2zjS0rKjjllgkYDIqGGi/O2Naj5Aohei9pARX75ODBybx40SQufXkBz38ezU1H3sND/Ik3Dizhqlfv4+lzbsP46GLO/P14YpJkwAAhRJ/wNPA1kAcspGUAqiPpQnQYpRSfrigmLdbGv84ay9Q9tHjW+mp5cP6DzNo4C4fJwdVjr+a8Yec1tXh61q2j7J8PU//ttxjj4og55miAVtOplPn8bPf6GRPtYGKsg/PTE/ltRjI59pb5fO4Ay2ZvY8lX2/C6AuSMTsLr8mOPskjwKYRoIi2gYrcWbK7kohfnE+80c/GRdfxr2f8xapPm1J/T+PdZt3HmZjtn3jgBZ5xULEKInmk/3gF9Smt9VUeWqTuR+rVrzdlYwT+/XMs/zxhLZoKDWo+faKtpt11YQzqEQRnwBX2c9uFpHNT/IC4bdRlxtrimPGWPPU75k09iiIoi8dJLiT/vvFZdbav8AZ7cWsrzheX0t5r5fvLQXd63orCe9x5a1BR4Tjo+h5TsmHb5GQgheiZpARX7ZWJOAq/+dgoXvDCPZz6N4pqj/swT3IXfXMyVr9/Ls2fejvGRxZxx43js0ZauLq4QQnQopZQROLSryyF6v03lDfztk9V8uaqEfrE2CqvdZCY4iLGZd3mOJ+Dhv6v+y8f5H/PGCW9gM9l4Z+Y7mA3hc4LV1SiLBYPDgW34MBIuvpikyy/DGBfX4joNgSBPbyvj6W2l1AdDnJQSx005aa2Cz2AgRFVxA0kZ0cT3czJoUirDpveTwFMIsVuGPWcRfd2YzDjeuHwq/mCIZz+L5vqR97Muw8hLR5Tz2zfv4e20Gt55bAmeBn9XF1UIITqU1joIrFVKZXV1WUTvpLXm/k/XcNTD3/HzhnJuPWYIs28+ZLfdbbXWfLbpM2a+P5NHFz9KZkwm9f56AMwGMyGfj4rnnmPDkUdR8eKLAEQffjipt97SKvgE+LKilgc3F3NQfDTfTBrC0yNyGOS07bhfSLNuXjGv3f0LHzy8BJ8ngMGgOPjsIRJ8CiH2qMNbQCPfFi8ACrXWJ+x0bAbwL2A0cJbW+u2djscAq4D3tdbXdnRZxa4N6xfDm1dM49znfuHxj01cf9zDPKlu4pljq7j87Xv4z29ux/jEUk69biwWuzSsCyF6tXhgpVJqHtDQmKi1ntl1RRI9XSikMRgUSik8/iCnjMvgpqMHkxJt2+15Nd4arvvmOhaXLmZI/BDuOeAeJvebDIQD07qvvqL0gQfxb9tG1MEHE33kka2uobXm0/Ia6gIhzuyXwMyUOPIcVkZHO1rl27qykjnvbaSisJ7EjChmnDUEs9XYfj8IIUSv1xmRwg2E50tr6yuxrcBFwM27OPevwPcdUyyxrwamRPHWFdO44IV5PPCBhxuOfZSX1O954sQarvrgHl474XbU43DKtRKECiF6tf/r6gKI3mVufgV3zVrJPSePZGJOAnedOHyP05T4gj4sRgsxlhiS7EncPe1uTh54MkbDjmCw9IEHqXzxRayDBpL5/HNEHXBAq+vMr2ngLxu2M7+2gUkxTs5Ii8egVKvgE6Bsax0fPb6UmGQ7R146nEETUlEyj6cQYh91aBdcpVQGcDzwXFvHtdabtdbLgFAb504AUoEvOrKMYt9kJzp556rpDE6N5sEPazg9/VE8CU4enVnPmR/fw7vmbbz9+BK87kBXF1UIITqE1vo7YDNgjmzPBxZ1aaFEj1RW5+XGN5dw5jO/UOcJ4AuE/xzaXfDpD/l5eeXLHP3O0ZS6SlFK8c9D/smpg0/FaDASqKggUFEBQOyJJ5B65/+R+957rYLPQo+PK1du5sRF69nm8fHQkEzeGzew1b1dtT42LCwFICU7hmOuGMk5d01h8KQ0CT6FEPulo98B/RdwK20EmLujlDIAD7HrltHGfJcrpRYopRaUlZXtdyHFvkmKsvL6ZVOZMTiZx7+s5LDYf6LiYvnXyW5O/uKvfKzW8T8JQoUQvZRS6jLgbeDfkaT+wPtdViDRI705fyuHPfQtHy0r4tpDB/LVjQczfWDSbs9ZULyAMz48g38s+AcjEkcQ0jv+vNLBIJWvvMrGY46l9KF/AmAbPpyEc85BmVr3Sirw+Pi8vIYbc1L5aepQzk1PxNQsoAz4giz8bDOv/N8cvn55VdM4DwPGpWA0yRAiQoj912H9JJVSJwClWuuFSqlD9vH0q4FPtNYFu/sWUGv9DPAMhIeJ38+iiv3gtJp49oKJ3PHucv77UwEnjP07G+L/zEOnbueqD+/nm8k3EHwczrpmDFbHrkfsE0KIHugaYDIwF0BrvV4pldK1RRI9Ta07wNjMOP48cwR5yVG7zRsMBbnz5zuZtXEW6c50Hj30UQ7N2jEYs3vpUor//Bc8q1bhnD6NxN9e2uoaWmveK61ms9vLjTlpTImLYuH0ESSYTa3ybVpSzo//W09dpYfcMUlMP2UgNqfU5UKI9tGRL+odAMxUSh0H2IAYpdQrWuvz9uLcacBBSqmrgSjAopSq11rf1oHlFfvIbDTwwGmjSYu18dg3Gzho8J3ExD/Ooyev4MIvH2Z+3mWEntCcc81YCUKFEL2JV2vta/yCVCllAuRLULFbdR4/D3y2lkm5Ccwck86lB+by24Nyd9vdVmuNUgqjwYjZYOayUZdx2ejLsJvsTXmq33mXoj/9CVNSEv3/+RDRxx7b6por6lzcvq6Q+bUNjI9xcF1WKmaDahV8AtRVePj82RXEpTk46ffjyBgS334/BCGEoAMDUK317cDtAJEW0Jv3MvhEa31u47ZS6iJgogSf3ZNSipuOGkJqjI07P1jBoNQrmZQ7i5eO+oKZc55hjauW/z4J5101Vr49FUL0Ft8ppe4A7EqpIwn32vmwi8skurGvVpXwp/dXUFLnISnKCoBhD+9PbqjawF9/+Su3Tb6NYYnDuGvaXU2BpdaaUG0txthYnAcdSMIlF5N01VUYo1q2pNYGgvw9v4gXC8uJN5t4eGgmZ6YlYNgpQPV5AmxaWs6QKWnEJNk56cZxpOXGYDBKV1shRPvr9KFKlVJ/ARZorWcppSYB7xEe0v5EpdSftdYjOrtM4tc7b2o2WQkOrnltEWXLjuHgsenMmvYS01e9wfb8ap5/PMTFV43DEWPp6qIKIcSvdRtwKbAcuILwKyPPdm2RRHdUVufl7g9X8vGyIoakRvPUeeMZl7X7FkVf0Mdzy5/j2eXPEmWOosxdxjCGNQWfvi1bKLrzLnQgQPZ//4M5JYXUW25p81oVvgCvFVVyYf8kbstNI7aN7rbrF5Tw09sbcNX6SMmOJj7NSfrAuHZ5fiGEaIvSunf0Gpo4caJesGBBVxejz9tYVs9vX15AQZWLYydVMbvmfoZv0UzdOBE99LdcdsVEohN2P6eZEEJ0JqXUQq31xH3If4PW+pE9pfUWUr/uv0+XF3HDG0u47rCBXHHwACx7GLxnSekS7v75bjbWbOT4vOO5ddKtJNgSANCBAJUvv0zZo4+hzGZSbr6ZuDNORxlaXnNNg5tZpdXcmtsPgHJfgCRL6/aG6lIX3722loI1VaRkR3PQWYNJy41tpycXQohd16/St0K0qwHJUbx39XQm5yYw65c4JpnuY22miY/HLcC29G88/vgPVJe6urqYQgjxa1zYRtpFnV0I0T0V13j4bEUxAMeMTOPbWw7husMH7TH4BJizfQ6ugIsnD3+S+w+6vyn49BUUsumMMyh98B84DzyQvI8/Iv6sM1sEn55giPvzizhi/lpeLChnu8cH0GbwGfSHeO8fiyjdXMuMswZz6h8mSvAphOg00gIqOoQ/GOKej1bx8pwtTMi1Umy5B5+/gvO+jaZmwC1cc+WRJPbf/ah/QgjRGfa2BVQpdTZwDnAg8EOzQ9FASGt9eAcVsUtJ/bp3tNa8t7iQu2etxGBQ/PiHw4iy7vlNpwXFCwjqIFP6TcEX9OEP+XGanS3yhFwutl76WxIuuojoo45sNcjQT1V13LK2gHy3l9PT4rl7QH8S2wg8SzbVkpIdjTIotq2uJCHdiTPW+useXAghdmFX9WunvwMq+gaz0cCfTxrJoNRo7p61ktTYP5KY8irPH7WQU376M48/Ws1VV59KSnZMVxdVCCH21s9AEZBEeK7qRnXAsi4pkegWyuq83PHecr5cVcKE7Hj+cfqYPQafnoCHRxY9wqurX2Vcyjgmp03GYrRgMYbHSnAvX0750/+m/0P/wOBwkP3aq22OmOsKhrhi5RacRgNvjRnAjITo1vdq8PPT2+tZM6eYwy8axtCp/cgcltA+Dy+EEPtIAlDRoc6bms2wfjFc8+oi8jeeyfDcIbxz4GtMX/UQzzxUykVXX0bGUKkEhRDdn9Z6C7CF8FRhQgBQ6/Fz7CPfU+sJcMdxQ7n0wDyMexjhdmnZUv7045/YXLuZM4ecyY0TbmwKLkM+H+VPPEnFc89hSk7Gv20b1kGDWgSfWmu+rqzjkPhoHEYDr43JY6DDhqONUWs3LCzl+zfW4m0IMP6YbAaMlylrhRBdSwJQ0eEmZMfz8fUHcsMbS/hx/WhGZeXw09AHGVj8X8wPbWHmZX9i2OT0ri6mEELsFaXUKcDfgRRARRattZYuHX2IPxjCbDQQYzNzw+GDmJqXyKDU1q2PO1tRvoILPr2AVEcqzxz5DNPSd3yf4Vm1iu233Y533TpiTz2F1Ntuwxjd8pqlXj+3rSvgk/IaHhmaxZn9Ehgd7WjzXj+8uY5lswtIzormxOuHkpy55/IJIURHkwBUdIrEKCsvXzKZR75ax6PfbCAj4a9sjn+I0vHfE3r6UmpKH2TqCSO7uphCCLE3HgBO1Fqv7uqCiK6xcEslN761lL+fOpqpeYmcPy1nj+d4Ah5sJhsjEkdw88Sb+c3A3xBl2TEWgtaa4r/9jWBVFRlPP0X0IYe0OF9rzbslVfxpfSGuUIj/G5DOqamtp3TRWqNDGoPRQM7oJJxxVsYekSlzegohug35bSQ6jdGguPGoIbx48STqPWb8RbcQ8h3I6zMKeOfzi/n435/RWwbFEkL0aiUSfPZNgWCIh79cx+lPzyGkNda9GNlWa82ba97k2HePpbC+EKUU5w8/vyn49G3ZQqCqCqUU6ff/nbwPZ7UKPgHu2rCda1ZvJc9h5auJQ7gmKwXTTl196yo9fPjYUuZ9uAmAzGEJjD86W4JPIUS3Ii2gotMdOiSFj647kOteX8zirSfSzzeGT8c9T8G2W6i4ey3n3XmdVJZCiO5sgVLqTeB9wNuYqLV+t8tKJDrc1goXv3tzMYu2VnPK+P78eeYIom3m3Z5T4a7grp/v4ruC7zgg/QCsxh0jzmqtqXnnHYr/dh8xRx1F+v33Ycno3+J8rTVBDSaD4sSUONKtZi7LTMa402BEWmvWzCnmx7fWEdKQNza5/R5cCCHamQSgoktkxDv43xXTeOybDTz2DUS7/48VSc9SFHqWqhtXctV9j2NxWLq6mEII0ZYYwAUc1SxNAxKA9mJfrS5hfWk9j549jplj9jxuwQ8FP/Cnn/5Eva+e2ybfxtlDz8agwl+uBqqqKL7zTuq+/ArH1Kkk/+6GVueX+wLcunYb6TYz9wzKYFKsk0mxzlb5Gmq8fPvqWjYvK6ffwFgOv3A4scn2X//AQgjRQSQAFV3GZDTw+yMHM2NwEje8sYTCgqsg5lteGP052+84mj9c8xIJg7K7uphCCNGC1vriri6D6BxuX5ANpfWMyojlouk5HD+6H6kxtr0694stX5BoT+TZo55lcPzgHddctoyCa64lWF1Nyq23knDRhShDy14/X5TXcNPabdT4g/whr99u7+Op97N9XRUHnDaQMYdlovYwAq8QQnQ11VveuZOJsnu2Oo+fuz5YybuLC7FbSzBk/IfhJVXcPOz/mHLqaV1dPCFEL7aribLbyHer1voBpdRjhFs8W9BaX98hBexifbV+3VBaxzWvLqakzsMPtx66x+62AAV1BfiCPvLi8nAH3BiUoUW3W4BAeTmFN91M6u23YRs6tMWx+kCQuzYU8mpRJcOdNh4fns3wqNatmZ56PxsWljDy4AwAvO4AVru0KQghupdd1a/yop3oFqJtZv555lgePXscJtUfd/5NrLQewPWlf+bp+65CB4NdXUQhhGgceGgBsLCNZb8ppU5XSq1USoWUUhN3Ona7UmqDUmqtUuroZunHRNI2KKVua5aeq5SaG0l/UylliaRbI/sbIsdzfk2Ze7O3FxZw4mM/UV7v5ZGzxu1V8PnF5i8448MzuPPnO9FaYzfZm4JP37ZtFN9zLzoYxJSURPbLL7UKPgFKfH7eL63m2qwUPp04uM3gc9uqSt7461x+eGs9NWUuAAk+hRA9ivzGEt3KzDHpTMlN4I/vLeer1ccTrB3Do5lvsfSvh3D/5a8Qmy5dcoUQXUNr/WFk/XIHXH4FcArw7+aJSqnhwFnACCAd+Eop1dif8wngSKAAmK+UmqW1XkV4jtKHtdZvKKWeBi4Fnoqsq7TWA5VSZ0XyndkBz9Jj+YMhbntnOe8sKmBqXgKPnDVuj11uvUEvD85/kDfXvsmopFHcf9D9qGaDBNV+8glFd94FBgPxZ56BddCgFucHQpqPy6uZmRzHAIeNuVOHk2Rp/edZwB/kl/fyWfrNNuLTHBx/zRhik9ue/1MIIbozaQEV3U5qjI1nL5jII2eNxWLMwZ1/A99Ej+WUN0/i589f6uriCSFEu9Nar9Zar23j0EnAG1prr9Z6E7ABmBxZNmit87XWPuAN4CQVjnwOA96OnP8ycHKzazUGz28Dhyul5IXBZhqnNbn+8EG8+tupeww+S12lnPfJeby59k0uHH4hLx/zMhnR4W6xIbebov/7PwpvvAnrwIHkvvtuq+Bzi9vLyYvXc8XKLcytaQBoM/jUWjPrX0tY+s02Rh2awRl3TCI5K7o9HlkIITqdtICKbkkpxUlj+zN9QBJ/fH85X6w8hq3mkVyW/xqn/msWt136PI7o1hNwCyFEL9Mf+KXZfkEkDWDbTulTgESgWmsdaCN//8ZztNYBpVRNJH/5zjdVSl0OXA6QlZXVLg/SnX2+spgByVEMTIniH6ePZm/j8nhrPCmOFK4dey0HZx7c4ljB735Hw/c/kHj55SRfdy3K3LIb77slVfxh7TaUgqeHZzM1LqrV9XVIgwrXiWMOz2TCsTlkj0zc/wcVQohuQFpARbeWHG3lmfMn8sQ54zCqTBq2XMfr3mGc+MJxzJ0rMx4IIXoOpdRXSqkVbSwndXXZdqa1fkZrPVFrPTE5uffOKRkIhrjv09Vc8d+FPDF7A8Aeg89AKMBzy5+jxluD2WjmicOfaBF86lAIgORrryPzuWdJufH3rYLP/1tfwNWrtjAsys5XE4dwcmrrL1RdtT4+enwpK74rBGDA+BQJPoUQvYK0gIoe4fjR6Rw4KJkb3ljMt2unsckwiot+eZczl7/Lrec/jcPa+ptjIYToCEqpl4EbtNbVkf144CGt9SW7O09rfcR+3K4QyGy2nxFJYxfpFUCcUsoUaQVtnr/xWgVKKRMQG8nfJ5XVebn+9cXMya/g3ClZ3Hni8D2eU+4u59bvb2V+8XyizdGcOXTHK7Qhn4+S++5Dmc2k3XEH9lEjd3mdA+KiiTWZ+F12alO33+a2rqzgq5dW4fMEGTA+Zf8eUAghuilpARU9RqzdzEsXT+bZcydgscbgLjqb/26fzLFPn8bPSz/q6uIJIfqO0Y3BJ4DWugoY10H3mgWcFRnBNhcYBMwD5gODIiPeWggPVDRLh+dWmw00zl91IfBBs2tdGNk+DfhG95a52PbRhtJ6TnjsBxZtreKh08dw729GYTUZd3vO4tLFnPHhGSwrW8Y9B9zTIvj0FRSy5ZxzqX79DZTZzM4/Vq01z2wr5dltZQAckxzLzblprYLPYCDET+9s4MPHlmKPtnD6bRMZfmB6Oz21EEJ0DxKAih7nyFH9WHLrkYzKjgN3FluKrubCz3/kuufPp7yhrKuLJ4To/QyRVk8AlFIJ/MoeRUqp3yilCoBpwMdKqc8BtNYrgbeAVcBnwDVa62CkdfNa4HPC08O8FckL8AfgRqXUBsLveD4fSX8eSIyk3wg0Td3S12TE25mUk8C7V0/n1AkZe8z/1ZavuOSzS7CZbLx63KucNHBHr+m62bPZdOqp+LZsIeOJx0m95ZYW3Xir/AEuWrGJOzdsZ25NfavgtLmSTbUs+WorI2b05/TbJpLYX3r3CCF6H9VbvvzsqxNl92Vaa576dB2PLt+ApyqEMriJSpjNLZNHct5BV2FQ8v2KEGLPdjVR9m7yXwDcAfwPUIRbE+/VWv+3g4rYpXpL/eoPhnhy9kYuOiCHWPue5/VsrtxdzuOLH+fGiTcSY4lpSg9UVrLhiCOx5GST8cgjWDIzW5w3v6aBK1duptQX4M4B6fw2I6nNd0yrihuIT3MCULG9nsR0CTyFED3frupX+Qtd9FhKKa4+bgj/O3EK6YOTiDIGqSs/gbu+cnL0Y1exqmR5VxdRCNELaa3/Q3jOzhKgGDiltwafvUV5vZdzn5vLw1+t4/OVxXt1TklDCQ/Mf4BAKECSPYm7p9/dFHyG3G4ATAkJZD3/HDmvv94q+Cz2+jltyQZMSvHh+EFclpncKvgM+IN899paXv/zXEo21QJI8CmE6PUkABU93qjhSXzxm3EcljcY2yArUV4T67fP5MSnv+W6N+6m2lPd1UUUQvQCSqmYyDqBcOD5WmQpjqSJbmhFYQ0zH/uRpduq+deZYzljYuYez1lcupgzPzqTd9a9w8bqjS2OedauJX/mSVS/HZ5q1TFuHAartem4LzIKbprVzJPDs/ly0hDGxjha3aO61MU7DyxkxfeFjD0ii6QsCTyFEH2DBKCiV4iKt/HwBeP4S2IWavIQMmLKMLpS+XDJJKY8+Bx///oF/EF/VxdTCNGzvRZZLwQWNFsa90U38+3aUk596mcA3r5yOieP67+HM+B/6/7HJZ9fgtPs5NXjXmVIwpCmYzUffczmM89Ce71YBgxode7SOhcz5q1hdkW4NfP45Dhi2hjcaMPCUt7623zqKjwcd/Vopp86EKNR/iQTQvQNMg2L6DUMRgNnnDyYMUtKuaMyxPaRAcb+MIflDTk89aWdV+c+ym3Hj+Xs0Yft9STjQgjRSGt9ggr/8jhYa721q8sj9mxYvxiOGJ7Kn2eOICnKusf8Ty55kqeWPsUB/Q/g7wf9nVhrLAA6EKD0wX9Q+fLL2CdOIOPhhzE1mx9Va80rRRX8cV0hyRYTsXsYUbe23E1CPydH/XYEMYn2X/eQQgjRw8ggRKJXqilz89ibK3klWxFXto3cpYv5xTEGrc2kJW3mb785hMMGjOrqYgohuoH9GIRouda6z/wC6Wn1q9sX5D9zNvPbg/IwtjHH5u6sqljFl1u+5Nqx12I07AgiG375ha0XXUz8+eeTeustKPOOQYxcwRC3rt3G2yVVHJoQzePDskm0tP5+v67SQ12Fm/RB8eiQJqS1tHoKIXo1GYRI9CmxyXZuv3I8T/hiSAqk8e3MkzgmupBx7p8prsjkkmc3c9DDzzN7w9quLqoQoudZpJSa1NWFEK2V1Ho485k53P/ZGuZuqtirczbVbOKFFS8AMDxxODeMv6Ep+AzWNwDgnDqV3PfeJe2Pd7QIPgE+LK3mnZIqbs5J45XReW0Gn1tXVvDWvfP56qXVBIMhlEFJ8CmE6LPkt5/otYwmA4efOoinDhrMbxd4mT16OiuPOJ47AnMY4fmegtJ4Ln5uAwc9/Apfr8vv6uIKIXqOKcAcpdRGpdQypdRypdSyri5UX7eisIaTHv+JjaX1PHv+RKYPSNrjOT9v/5lzPzmXl1e+TLm7vMWxum++YePhh+NatAgA27BhLY5X+gMAnJEWzxcTB3NzbhrGnV7v0CHN/I838eHjS3HEWph5/VgJPIUQfZ68Ayp6vcxhCdyRMYGxr6zmJaOJO487m0nlxTz69Vs85YhiddmBXPrCajKSF3D7UZM4bmSOvCMqhNido7u6AKKlr1aVcO3ri0h0Wnn7qukM6xezx3NeX/M6f5/3d/Li8njssMdIsocDVq01Ff/+N2WPPIptxAjM6ektzgtpzcObS3imoIzPJgwm12FlVHTrUW4DviCf/nsFW1dWMHhKKoecMxSzdffvhgohRF8gAajoE+zRFk65cjSDvyvktW838fH4ZC4783quKdzI7z58iYez+rOmagbXvLqK+OjFXDVjKOdPGYLdIn8sCCFauUdrfX7zBKXUf4Hzd5FfdLCkaCvjs+J55KxxJEfvebChf8z/By+veplDMg7h/hn34zQ7gfD8nkV//CO1n3xKzIkn0u+vf8FgszWdVxsIcu2qLXxRUcvpafGkWc27ugVGswFHrIWDzxnCiIPS5YtNIYSIkEGIRJ9TWdTA5y+vYpbdz48jHdiV5qH1izF/9DxPDstlhf0gQt4MrJYAZ03K4MoZw+kXK6MUCtFb7ccgRIu01uOb7RuB5Vrr4R1SwC7WXevXQDDE7LVlHDk8FQi3XO5tkPfZ5s9YUbaC30/4fYvBhipffZWSe+4l5aYbSbj00hbXW9Pg5pLlm9nq8fLngf25pH9Sm/dbO7eYlOxo4tOcv/IJhRCiZ9tV/SoBqOiTQsEQiz7fyuffbuGziU7WJ5uYZIa/LfyBso9e5rkxqcyLP4hA3QiUUhw6NJ5LDxjCtLxEDPs4qqIQonvb2wBUKXU7cAdgB1xA4y8DH/CM1vr2jitl1+mO9Wu9N8C1ry3i27VlfHDNAYzJjNvjOSUNJaysWMlhWYe1OqZ9PpTFgg6F8KxYgX306FZ5/rB2G5+W1/DsiBymxEW1Oh4Mhvj57Q0sm13A8APTOfS8ofv1bEII0VtIACpEG8oL6vjyxdV8b/DxzZQoao1wUZSJK779jC0fvcorE6L4Pm06vpqJ6KCD9HgTF00byGkTMklwWrq6+EKIdrAfLaD39dZgsy3drX4trvFw8UvzWVdSxz0nj+TsyVl7PGdN5Rqu+foafEEfn57yKVGWHQFk7RdfUPrAg2S//BLm/v1bnBfSmgp/gGSLGXcwRE0g2Ga3W1etj8+fXcH29dWMOTyT6acMwCCDDQkh+jgJQIXYhWAgxIJPNvPTV1uYM9bJz7kWHEYDt8WYOfajd9n08Rt8ON7Ep4PGUF8zkaA7F5MBjh3Zj7OnZDE1V1pFhejJ9iMANQDnALla678qpTKBflrreR1WyC7UnerXVdtrueSl+dR7Azxx7ngOHpy8x3O+L/iem7+7mRhLDE8c/gRDEoYAkcGGnn2Osn/+E9uY0WQ+/jim5B3Xqw8EuX71VtY2ePhi4mCcprbHBKgqbuCDfy3B2+Dn0POHMnhyWvs8rBBC9HC7ql87fBCiyLsxC4BCrfUJOx2bAfwLGA2cpbV+O5KeDbxHeJoYM/CY1vrpji6r6JuMJgNTZuaROyaJ/q+sYeTqan6aEccfg15eOOIU7vnN6fzu3bc485X/8fXw+XwwJZvi+rF8vHIiHy4rol+slVPHZ3LK+P7kJbfuliWE6HWeAELAYcBfgfpImswN2sHWltRiUPC/K6ft1Ui3b655k7/N+xtD4ofw+OGPk+JIASDk81H8f3dS88EHxBx3HP3+dm+LwYa2uL1cuHwT6xo83D0wHcduWjOjE22k5cUw8bgckjKif/1DCiFEL9fhLaBKqRuBiUBMGwFoDhAD3AzMahaAWiJl8yqlooAVwHSt9fZd3ac7fUMreq5gMMTSr7cx/8NNrO9n5ttpMRQQ5JD4aP4Uayb57Tcpf+N15mZ6+PDwJFbrLEK1k/DXD0CjGJ8VxynjMzhhdD/iHNJFV4ieYH8HIVJKLdZaj4ukLdVaj+m4Unad7lC/FtW4mwaDc/kCOCx79/35o4seZV3VOh6Y8QAO846pUkofeYSKp54m6dprSbrm6haDCf1YVcdlKzajgWdG5DAjoXVQ2TiOwKhDM7DaZUIBIYRoS5e0gCqlMoDjgXuBG3c+rrXeHMkX2ind12zXSrglVIgOZzQaGH9UNgPGJfPtq2vJ+l8Za6bE8pWhgSOrQpx6/Bncct4FnPi/tzjgv6+w3rGQb47cyuyB4KodxZry6fzp/Wr+/OFKDhyYxAmj0zlyRCoxtl0P1S+E6HH8kd49GkAplUy4RVS0M601T323kUe+Ws/bV05nVEbsHoNPf9BPQX0BubG5XDfuOkI61GKkW4Ck3/4W+6jRRB92aKv7PbipmBSrmZdH5ZJjbz2li6fez2fPrqBwbRWOWAvDD0hvlUcIIcSudWgLqFLqbeA+IBq4eecW0Gb5XgI+amwBjaRlAh8DA4FbtNZPtHHe5cDlAFlZWRO2bNnS7s8g+i6tNevmFvPj/zZQEwiy/qhkPnEG0MBF/ZO4LikK44cfUPnyf6iqKOTHA+P5fKKJrR47hobJUD+eercFi9HAwUOSOWF0Pw4flkqUVb4tF6I72Y8W0HOBM4HxwMvAacCftNb/66AidqmuagENhjR3zVrBK79s5aSx6Txw2misu3gPs1Gdr47fz/4966vX89FvPiLasqP10rV4MeVPPEnGI//C4Gw5RYo/pPGGQkSZjJT5/NgNBqLauFdFYT2fPLWMhmofh5w7hKHT+rXPwwohRC/U6S2gSqkTgFKt9UKl1CH7er7WehswWimVDryvlHpba12yU55ngGcgXEH++lILsYNSiiFT+5E9MolfPtiI9aPtDE62suKIJJ4rKOP1ogquPOgofnvmWaR8+y3JL73EUfcvZtUwBz8cvZgfkz7G4U4jynsIczcP48tVJVhMBg4YkMhRI9I4fFgKKdG2PRdECNGtaK1fVUotBA4nPBXLyVrr1V1crF7F7Qty/RuL+XJVCVcePIBbjx6yx8HeihuKufrrq9lUvYm/HPCXFsFn7Wefsf3WP2Dql0agqhpLswC02h/g8pWbMSrFq6PzSLa03WNl25pKPnlqORabkZNvGkdabmz7PKwQQvQxHdkUcwAwUyl1HGADYpRSr2itz9uXi2ittyulVgAHAW/vKb8Q7c0WZeaQc4cy/MB0vn9jHZbXChk/PJafpjp5cHMxzxaUccWQ0Vz63/+SunIFcS+/zMjHv+R8U4D5JxiYPfxbVse+QrQnjxR9FMu3hydPVwrGZcZx5PA0jhyewoDkqL2eRF0I0eVKgB8I16N2pdR4rfWiLi5Tr/HG/K18tbqEv5w0ggum5ewx//qq9Vz11VXU++t58ognmZY+DQj3ZKl8/nlK//EQ9vHjyXjicUzx8U3n5bu8nL8sn60eHw8MycCwm9/BCWlOMofGc/DZQ3DGte6aK4QQYu90yjQskRbQve6CG3l3tEJr7VZKxQNzgVO11st3dY/uMEiC6P10SLPml2LmvLcBd70f+6FpfDPQwlc19cSZjFyRmcylGcnYKyuoeecdqt76H4GiIgqHJPDz8TnMji6gzFuJNZhLujqG+qpcNpWFXx3LiLdz8OBkDhmSwvQBiTilq64QnWI/uuD+FbgI2EjkPVBAa60P64DidbnOrF+11iilCIU0SwqqGZ8Vv+eTgNt+uI15RfN46oinmqZZASh/+mnK/vVIeKTb+/6GwbojcPyxqo7frtiMQcELI3OZGtd6FHO/L8iKbwsZc0SmTLclhBD7qEvnAW0egCql/gIs0FrPUkpNIjzdSjzgAYq11iOUUkcCDxGu2BXweKS77S5JACo6k9flZ95Hm1jxbSFGs4Hoo/vzSbriy6o64kxGfpuRzCUZScQbFPXffU/VG6/T8MOPhAyK/GNG8PMkJ9+F1lLnryNaZZFjPh5v3UBWF4Rw+YJYjAYm5cYzY1AyBwxMYni/GPnjR4gOsh8B6Fpg1E4D5vVanVW/rimu5Q9vL+OJc8eTEe/Y8wlAIBTAZDDhDrip8daQ5mw5B6evoJDaD2eReMUVKMOO8Qx9oRAHzF2D3WDgv6NzyW5jsKH6Ki+fPLWMsm11nPS7cWQM2btgWAghRFiXBqCdQQJQ0RWqS1zMeX8j+YvLcMZaiD8xk3dignxRUYvdYODc9ASuyEwh02bBV1BAzbvvUf3+ewS2FxGMjWLdKeP4cWiIH+uX4Q64iTLFMsxxImbvGDZut7GhtAGAOIeZaXmJTB+YxAEDEslNckp3XSHayX4EoO8AV2mtSzuwWN1GZ9Svc/Mr+O1/FuCwGPnPJVMYkrbn+TT/t+5/vL3ubZ4/6nmiLDtaLwMVFVS98QZJV13VIugECGmNBoxKsbbBQ7rVTHQbgw2VbK7lk6eW4fcEOfLSEeSOTvrVzyiEEH2NBKBCdKDtG6r56e0NlG6uJbF/FKkzs3jP7OXd0io0cHJKPNdkpTA8yo4OhXDNm0f1u+9S98WXaI8HPSCbdSeMZG6On++rF1Drq8VusjMu4VCSmE5tTRoLN9WzvcYDQFqMjUm5CUzOiWdiTgJDUqOlhVSI/bQfAehE4APCc1R7G9O11jM7oHhdrqPr189WFHH9G0vIjLfz8iWT99j6qbXm6WVP8+SSJzmo/0H84+B/NM3x6du8ma2XX0GgtJSct97ENnhw03muYIjrVm8hw2bhzwP77/L6+YvL+OKFlThiLBx/9WgS+7fumiuEEGLPJAAVooNprdmwsJRf3t9IbbmHfgNjyT4ui1kWH69sr6AhGOKQ+GguzUji8MQYDEoRrK+n9tNPqf3wI1zz54PWGIcPZdPxo/gl28f3lfMpdYcbWYYnjGB03GFYfKPYUmJlweYqimvDAWmMzcTEnAQm5sQzPiue0XsxV54QImw/AtCVwL+B5TSb/1Nr/V0HFK/LdWT9+tWqEi777wLGZsbxwoWTiHdadps/GApy37z7eHPtm8wcMJO7p9+N2RAetda9ZAnbrroagMynnsQ+dmzTeaVePxcs38TSOhd3DUjnyqyUXd6jeFMN82blc+QlI7BH7748Qgghdk0CUCE6SdAfYtVP21n46WYaanxkDI1n2PHZfGL28WJhOSW+ALl2Cxf3T+KsfonERLp/+UtKqfvsU2o++QTP0mUA2MaOoeTIMSweZOSn+mUsK1uGRpNgS2By2hSGRE/D6B3MuqIg8zZVsrEs3GXXoGBoWgxjs+IYlxnHuKw48pKipJVUiDbsRwA6X2s9qSPL1J10ZP1a7w3wyFfruPHIIdgtu5/jE+ChBQ/x0sqXuHjkxfx+/O+bXkWomz2bwt/fiCklhaxn/o0lJ6fpnNX1bs5blk+lP8hTw7M5Jrn19CkBX5BNy8oZNDG13Z5NCCH6OglAhehkAV+QFd8XsujzLbjr/GSPSmTc8TnMt4d4vqCc+bUNOIwGzkhL4JL+SQx27pgT1LdtG7WffErd55/jWbUKAOugQYSOOpBlY2KZxyZ+KfqFCk8FADkxOUxLn8bI+CkYvHmsK/azeGsVS7ZVU+cJAOC0GBnRP5ZR/WMZnRHLyP6x5CY6JSgVfd5+BKD/JNz1dhYtu+D2ymlY2rt+9QdD/Pu7jVxyYO4+99Qoqi/ih8IfOGPIGS3SG+bOo+yxR8l45BFMiYlN6a5giMlzVmFU8J/ReYyJbt2911Xr45OnllGyuZaz/jRZutwKIUQ7kQBUiC7i8wRY/m0Bi7/YitcVIGt4AhOOzaYszcrzBWW8X1KNT2umxDo5Nz2RE5LjcBibjdZYUEj9119R9+VXuBYtglAIc3o6joMPonTqIJakuvmlfAGLShbhDrhRKAbHD2Zi2kTGp0wg0Tic/JIQKwprWFZYw6rttXgD4V6DUVYTQ9OiGZ4ew7B+MQzvF8OQtGhs5j23RAjRW+xHADq7jWSZhmUv1HsDXP3qIr5fV8ajZ49j5pj0PZ5T6ankjTVvcOWYKzGoHb8btda4Fy/BMX5c035bg7N9XVHLUKeN/rbW3WkrCuv56ImleOr8HHHJcAaM23XXXCGEEPtGAlAhupjPHWD5dwUs/Xob7jo//QbGMuGYHByDYnirpIpXt1eQ7/YSYzJwSmoC5/VLYORO39YHKiup/+Yb6r6ZTcMvv6BdLpTFgmPKFCwHTWfzmGSWsI0FJQtYWroUTzD8juiA2AGMTRnL2JSxjEwcg8+dwIrttaworGF1US2ri+qo94ZbSg0KcpOcDEmLZnBq4xJFTqITk9HQ6rmE6On2NQDta9qrfi2t83DJS/NZXVTH334zkjMnZe3xnKL6Ii7/8nKKGop49bhXm+b41MEgxX/5K9Vvvkn2q6/gmDCh6RytNQ9uLibbZuXMfgm7vPaWFRV8/twKzFYjx189mpTsmF/9jEIIIXaQAFSIbsLvC7L6pyIWf7GF+iovSZlRjD86m7yxScytc/NqUQUflVXjDWlGR9s5PTWBk1PjSLaYW1wn5PPhmj+fhu+/p/677/Ft3gyAuX9/nNOnYZk2mU1DYlniWseCkgUsK1tGna8OgDhrHGOTxzImZQwjk0YyNH4YtQ1mVhXVsKqojtVFtawvqWNLpYvGXxEWo4G8ZCcDUqIYkBRZJ0eRm+TEaZUBj0TPtR8toHe2la61/kv7lar7aI/6Nb+sngtfnEd5nY8nzh3HYUP3/K7lxuqNXP7l5bgDbh4/7HHGp44HIOTxUHjzzdR/9TWJl19O8u9/19Ty6QuFuGntNv5XXMUF6Yk8MCRzl9df80sRS7/exvFXjyYq3rbLfEIIIfaPBKBCdDPBQIh180pY9PkWqktcRCVYGX1IJsMP7IfLrHinpIo3iypZXu/GqOCQ+BhOT4vn6KRY7G20RPq2bKH+xx9pmDMH19x5hOrCwaZ1+DCcU6dhmzieksFJLHdtYEnZEpaWLWVTzaam83NichieOJyRSSMZmTSSIfFDUNrKxrJ61pXUsbakjvUl9eSX1bO10kWo2a+O9FgbOUnO8JLoICfRSW6Sk8wEh3TnFd3efgSgNzXbtQEnAKu11pe0e+G6gfaoX7dUNHDZfxbwwGljGJsZt8f8y8qWcfXXV2MxWHjqiKeaWj6DNTVsu/oa3IsWkXrHHSScf17TOTX+AJeu2MyP1fXcmpvG77NTW3XJDYU0FQX1JGeF5xkNBkMYpWeHEEJ0CAlAheimQiHNluXlLP16G4XrqjFZjQyb1o/Rh2UQl+JgTYObt4ureLekiu1eP1FGA8cnxzEzJY6D4qOwGFr/8aQDATwrV9IwZw4NP8/BtXgx+P2gFNahQ3FMnIhj4kQCowezRm9nZflKVpSvYEXFCkpd4WlfFIrsmGyGJAxhaMLQpiXJnoQ3EGRLhYuNpfVsLKtnY1kDm8ob2FLRQJXL31QOpcJzlmbGO8hMcJCZYCcrIbydEW8nJdqGUQZBEl3s13bBVUpZgc+11oe0X6m6j/aqX0MhvdeDni0oXsC9c+/l0cMeJTN6RytmzaxZFP3xT6Q/+AAxxxzTlO4Khjhu4To2uDz8c2gWZ6S17nrr9wb54vmVbFtVyTl3TyEmyf6rn0kIIcSuSQAqRA9QtrWOpd9sY/38EkIhTc6oJEbO6E/m8ARQ8HN1Pf8rruKTsmrqgiFiTUaOSYrlxJQ4ZuwiGIVwlzX30mW4FszHtWAB7sVL0J7w+6Hm7CwcY8diGzMGx9ix1GTEsap6LWuq1rC2ci1rKtdQWF/YdK0EWwID4wYyKH5Qi7XT7ASgxuVnc0UDmyvCQem2SjfbKl1sq3JRXOuh+a8ck0GRFmujf5yd/vF2MuLs9IuzkxZrIz02vI6xmdocWESI9tIOAWg8MF9rPbAdi9VtdGb9uqlmE7mxuUB4zk+jIdyDQvt8KEt4ECFfQQGWjIxW5z66pYRx0Q4OSohudayh2svHTy6jfFsdB54xiNGH7rprrhBCiPYhAagQPUhDjZcV3xWy8odC3HV+ohNtjDgonWHT03HEWPCGQnxXWceHZdV8Xl5DbSBEjMnA0UmxHJMUyyHx0ThNu+76qn0+3CtX4l64ENeSJbiXLCVYXg6AcjiwjxyJbdTI8HrkSNwpMayrWseayjVsqN7A+qr1bKjegDvgbrpmmjON3Jhc8uLyyIvNIzc2l9zYXBJtiU0BpMcfpLDazdZKF4VVbrZXuymsdlNYFV6X1HpadO0FcFiMpMXaSIuxkdq0WJvWKdE2kqOt0tVX7Lf96IK7HGj8pBqBZOAvWuvHO6J8Xa2z6tfXVr/G3+f/nUcOfYRDMg9pSncvWULBjTeS8cgj2EeNanHOD5V1OI0Gxsc6d3ndisJ6Pnp8KR5XgKMvHUHO6KSOegQhhBDNSAAqRA8UDITIX1LGyh8KKVxbjcGoyBuXzIiD+tN/UBzKoPCGQnwfCUa/KK+lOhDEalAcGBfN0UkxHJUUS5rVvNv7aK3xFxbiXrwE95IluJcuxbt2Ldof7k5riI3FPmIEthEjsA0fhnXIUExZGWx3F7OhagPrq9ezqWYT+TX5bKrZ1CIwjTJHkRWTRXZ0Ntmx2WRFZ5Edk01mdCZx1rgWrZv+YIjSOi/FNW6KajwUVXvC65pwcFpS66W0zoM/2Pr3VrTNRHK0leQoa3gdbSUpykpSlIVEp5WkaCuJTgtJUda9mvBe9B37EYBmN9sNACVa60D7l6x76Oj6VWvNk0uf5OmlT3NI5iE8OONBbKbwoED1331HwQ2/w5SSQtbzz2HJ3NFy+U5xJb9bs43JsU7eHjtglz0lfnl/I2vmFHH8NWOa3v0UQgjR8SQAFaKHqypuYOX321nzSxFeV4DoRBtDpqYxdGoascnh6Vr8Ic28mnq+KK/ls/Iatnh8AIyJtnNYQgyHJcYwLtqBaS/ew9I+H5716/GsWIlnxQrcK1fgXbceAuG/s5XdjnXwIGxDh2EbOgTr4MFYBw5ExURT0lDSFJBuqd3C1rqtbKndQlFDESEdarqH0+wkIyqDjOgMMqMzyYjKoF9UP9Kd6aRHpeMwt540PhTSVLv9FNd4KKn1UFbnpazeG15HltI6DxX1Puq8bccENrOBRKeVBKeFeKeFRKeFeIeFeIeZOGd4He+wEBdZx9rNOCxG6QrcS+1tAKqU2vWcHoDWurL9StV9dGT9GgwFuW/efby59k1OHngyd027C5MhPKp29fvvU/THP2EbMoTMZ/6NKSnccqm15vGtpdybX8T0uCheHJlDrLn1SNyeBj82pxkd0rjr/ThiWs8DKoQQouNIACpELxHwBclfUsaaOUVsW1MFGvoNjGXotH4MHJ+CxR7+Q0xrzVqXhy/Ka/mivIZFtS5CQKzJyIz4aA5NiOaQhGjS25icfVdCPh++DRvwrF6DZ+0avGvW4lmzhlBtbVMeU0oK1oEDsQ4ahHXQQCx5A7Dk5mCKj8cX9FFQX8CWmi0U1BdQUFewY11XgC/ka3G/OGsc/Zz9SI9KJ82ZRpojjTRnGqnOVNIcaSQ5kjAbdt266/EHqWjwUVHvpbzeS3mdj4oGH5UNXiob/JF1OK2qwUeDL7jLa5mNilh7OCiNs5uJtZuJaVzbTMRE9mNs4f1om5noSHq0zYRZRtrstvYhAN1EuOttW99EaK11XrsXrhvoyPr15+0/c8WXV3DxyIv5/fjfN33JU//Dj2y77DIc06aS8dhjGKOiAAhqzZ/WF/JiYTknp8TxyLAsrDu9+661Zu6sfNb8XMTpt0/CGWftkLILIYTYPQlAheiF6io9rJtXzJo5xVSXuDCaDeSMSmTQpFSyRyRiatbVtNof4Puqer6trGV2ZR1F3nD32gF2KwfER3FAfBTT46JazTe6J1prAkVFeDdswLt+Pd71kfXGjU0DHQEY4+Ox5OZiycvFmpuLJScHS1YW5sxMDDYbIR2izFVGUUMR2+u3s71hO0X1RU3rYlcxDf6GFvc2KAOJtkSSHcmkOFJIsaeE144Ukh3JJNmTSLInEW+NbxrMZHe8gSA1Lj9VLj9VLh/VLh9VLj817vBS7fJT4/ZR7Qpv13n91Lj81HkD7OlXqc1sIMoaDkajrOHFaTURbTPhtBpxWk04LeG0qMb9SJrD0njciMNqwmE27vVoomLPfu0gRL1dR9SvIR3CoMKB4+LSxYxLGdfiuA4EqPzvK8Sfew4Gy44vyYJac8mKTQx02PhjXj8MO/VKCPpDfP2f1ayfX8KwA/px8DlDZJoVIYToIhKACtGLaa0p2VTL2rnFbFxUirvOj9lmJG9MMgMnppA5LAGjydAi/5oGD99V1vFTdT1zquupD4a7xg512jggLoqpcVFMjnWSuof3R3dZpmAQf2Eh3vx8fJs248vPx7dpE95NmwhWVLTIa0pLw5KVhSU7G3NGBuaM/lgyMjBnZGBMSGhqFanz1VHcUEyJq4TihmKKG4opc5dR4iqhzFVGqauUam91q7IYlIEEWwJJ9iQSbYkk2hNJsCWQaEskwR5ex9viSbAlEG+Lx2rctxaTUEhT7wtQ4/JT6/FT5wlEFj+17si+N0C9N0C9Z8c6nOanwRuk3hvAFwjt+WYRNrMBp8WE3WLEYTHisJiwm8PbdouxadsW2babw+k28459m9mI3WLAatpxzGYyhNdmY5+ZImd/AlCl1ExgRmT3W631R+1fsu6hvevXLbVbuPHbG7lr2l2MTh7dlB7y+Sh76J8kXHoJ5pSUFudU+gP4Q5pUq5lASLf5GoGnwc+nTy9n+/pqpszMY8Kx2dJtXgghutCu6tfWL00IIXocpRRpebGk5cVy0BmDKFxXzfoFJeQvLmPt3GKsDhM5o5PIG5tM5vAEzBYjw6LsDIuyc2VWCoGQZlmdi5+q6/mxqp7Xiip4vjA8Km6O3cLkWCeTY8MB6UCHtVWrQ5tlMhrDQWVWFhzS8liwpgbf1q34tmzFt3UL/i1b8W3dSt3XXxOsbPkanXI4sPRPx5Sejjk9nfh+6aT068f49FzM6QdgSk5GmXb8KvMGvZS5yih3lzctZe4yKtwVTev8mnwq3BWtuvw2spvs4WDUGk+cLY44a3iJtcY2bcdYY4i1xhJjCa+jrFHE2PYvWG/kD4ZoiASqDd4gLl8Aly9IgzdAg69lWniJbHuDuPxB3L4AxbV+3P4g7kgety+IL7j3gW1zJoPCZjZijQSlVpMBa+O62balcd8UDmYtJgMWYzh9521rs31zs3XjdcxGA2ajapGnMa27BBNKqfuBScCrkaQblFLTtdZ3dGGxeoTFpYu5/pvrUagW74MH6+spuPY6XL/8gnXoUOJ+c3LTsS1uL+cszSfWbOTj8YN2+Q773A/yKd5UwxEXD2fIlLSOfhQhhBD7SVpAhejFgv4QW1dXsnFhKZuXl+N1BTBZDGQNTyRvbBLZo5KwOVsHTb5QiBV1bubVNDCvpoG5NQ1U+MMD+sSYDIyNdjA+xsn4GAfjYhz73G13d0INDfgKC/EXFOIvKMBfWICvoBB/0XYC24sIVle3PMFgwJSUhCktDXNqamSdgik1FVNyMqaUFEzJyRiioloEMFprGvwNVHoqqfBUUOmppNpTTZW3iipPeKn0htOqvdXUeGuo99fvstwGZSDaEk2MJabNdbQlmihzFFGWKKLMUURbonGanUSbo3FanESZo7AYO2aQlGBI4/EHmwLTxm2PPxRZhxdvZN8bCB/zRPI07nsDQbyBUHjxh7c9/nCA6/WHIuvIfiC0x27J+8psVM0CUgODU6N47bKpv/q6+zEK7jJgrNbhCEopZQQWa61H7/7Mnqm96tfPNn3GH3/8I/2i+vHk4U+SFZMFgL+0lG2XX4F3wwbS772H2JNOajpnaZ2L85bl4w9pXh6Vy5S4qFbX1VqjlMLnDlCxvYF+A2J/dVmFEEL8etICKkQfZDQbyB2dRO7oJILBENvXVZO/pIxNS8rIX1KGMij6DYgle2Qi2SMTSUh3opTCYgjPqzc+1smVhP/Ay3d7mVvTwOJaF4trXTy2tYTG2VAybGbGRDsYHeVgVLSdUdH2/Q5KDU4ntsGDsQ0e3ObxUEMD/uJi/NuL8G/fTqCkBH9JMYHiEryb8mmYM4dQfetAUdnt4YA0ORlTYiKmpESMiYlEJyUTn5SIKTERY8IgjOmJGJyONlvb/CE/Nd4aarw1VHurqfXWUuOrabWu99VT56uj1FVKna+OOl8dnqCn1fV2ZjKYiDJH4TQ7mxaH2YHD5Nixb3LgMDuwm+xN283TGpfGfbPBjNGgmt4p7SxaawIhjS8QwhcI4Y8Epb7gjv3GYzvS9I70YDiPf6dj4SW8nRTVpYPLxAGNzfUS8ezBnO1zuOX7WxifMp5HDn2EOFscAL4tW9h6yaUEqqrIfOopog46sOmcbypq+e3KzSSYjbwzdiCDnbZW1928vJwlX23j+GtGY7GbJPgUQogeQFpAheiDdEhTuqWOTUvL2LKygvJt4YAtKt5K1shEskck0n9IPFb7rgOWhmCQ5XVuFkUC0uX1Lja7d3RpTbeaGRllZ0Skq+/wKBu5divGTuhGGayvJ1BaRqC0lEDZTuvycgIVFQTLywnW1LR5vrJYMCYmYoqPx5iQgDEuDmN8PMa4WIzx8Zji4sJpcXEYY2MxxMbtMmht5A/6qfPX0eBroM5fR72vnnp/eGnwN9Dgb6De12zbX4/L78IVcDWluQIuXH4XQb3r0Xp3ZjKYwkGp0Y7dbMdmtGEz2bCbdmzbTDasRit2kx2r0dq0v6s0i9GCzWgLr03htcVgwWK0NA0s05PsRwvo2cD9wGzCI+LOAG7TWr/ZQUXsUu1RvwZDQV5Z/QpnDT2rxTvWwepqCq67npRbb8U+auSOdK05esE6AF4dndfmu+grvi/k+9fXkpQZzQnXjpFpVoQQopuRQYiEELtUX+Vl66oKtqyoYNvqSvyeIMqgSMmOJnNYAhlD4knLi8Vo3n1wUeMPsKLezfI6N8vr3Syrc5Hv9ja1lNoMisFOG8OddoY4bQxy2hjssJJhs+zVe6XtTft8BCorCZSVE6ysIFBZFVlXEqysIlhZSaCqimB1NcGqKkJ1dbu+mMmEMTYWY0wMxpgYDE3raIwxsRhjojFERWOMjsIQFbVjOzo6vO9woAx7Dt601vhCvqbgtPnaHXA3Lc33PUEPnoAHV8CFJxDebp7euPYGvbgD7l/1MzUbzE1BavPAtPm22Wjekd6YZjC3WpsNZsxGc9vbBjPRlmjGpoz9VeWFfZqG5QngNa31T0qpfoTfAwWYp7Uu/tUF6aY6on6t++ornAcdhMFqbepCCxDSGr/WWA0Girw+ooxGok0tR7DWIc0vH+Sz6PMtZI9K5KhLR2CxSYcuIYTobiQAFULslWAgRPHGGgrWVrFtdSWlW+rQIY3JbKDfoDjSI0tqdsweA1IATzDEepeHVfUeVje4WV3vYVWDmzJfoCmP3WBgkMPKIKeNAQ4reXZr09pp2vP0KZ1F+/0Ea2oIVlURqKoiVFsb3q+uCa8jS6i2lmBdHcHaGkK1dQRrayG451ZLg8MRCU6jMDidOxaHA4PT0WzbicHu2JHuiCx2O8ruwOCwh7dttn0euEdrjTfoxRv0NgWlnqAHb8DblN5iCXjxhXx4g158wdZrX8iHP+gP70e2G9N9QR/+kD+cFgpvN6btjYFxA3nvpPf26fnasg8B6A3AWUA/4C3gda314l9dgG6uPetXHQxS+tA/qXzhBVJuuYXESy9pOuYOhrhhzVZCWvPMiJxdfin187sbWPzFVkYclM6MswZjkGlWhBCiW5J3QIUQe8VoMtB/SDz9h8QzZWYeXneA7euqKFhTRcHaKuZ+kN+ULzU3hn4DY8MBaW5sm112bUYDo6IdjIp2tEiv8gdY3+BhncvLugYP610efqmu552Sqhb5Ui0m8hxWcuxWcmxWsu0Wsu1WcuwW4kzGTh0ZVZnN4QGPkpLYl7cPtdZol4tgfT2hujqCdXWEmrbrCTU0hPcb6gk2NBCqb9xvwF9VFT7e0EDI5UJ7vftQYIWyh4NRg82Gstsw2CLBqd2GwWprvbZZw3mtNqw2KzarlThrJM1ixWBzoqwJKKs1nNdqQVmaLcZf/4VB+P3RQMsgNRKoNm2H/JgN7Tf41V6W6xHgEaVUNuFA9AWllB14nXAwuq5TC9TDhBoaKLzlVuq/+Yb4c84m4cILmo6V+fxctHwTC2td/N+AdHb3v3r4gek4YiyMOTyz24yMLIQQYu9JC6gQYp946v1s31DN9g3VFK2vpmxrXXi0UwUJ/Zyk5saQlhtLal4MCWlO1D7OJekKhtjs9pLv8pLfbL3Z7aW0WasphEfkzbJZybRZmpYMm5lMm4X+ts4PUDuD9vsJud3hpcFFyOUi5IoEp243IVfkmMtFyO1Cu9yEvB6020PI4wmnRba1J5LmcaM9XkIeD/j3rvVxl0wmlMWCwWxuGZhaLKjmaY3bZjPKYm6532KJpJlMzdLC28bYWJzTp//qn+n+zAPa7NxxwAvAaK1192mub0ftUb/6i4rYdtXVeNetI/WOO0g479ymY+saPJy3LJ9Sn5/Hh2VzQkpcq/Nrytys/nk7U2bm9br/00II0VtJC6gQol3YoszkjU0mb2wyAD5PgOL8Gko21VKcX0v+4jJW/1QEgMVmJDkrmuTsGFKyoknOiiY22b7boNRhNDA8ys7wKHurYw3BIFvdPra4fWx2e9ns8bHN7SPf7eW7qjpcO813aTcY6G8zk241k261kG4Lr1MtJvpZzaRazSSaTV3y/un+UmYzRrMZY0xMh1xfBwJor5eQ1xsJUL1oX2Tb6wtvNx73+tBeD9rnI+Tzhfd9jYsX7ffvOObzo/2Rtc9HqKEhnM/vb8rXtB1Z9tRt2TpoIHkfftghP4fdUUqZgGMJt4IeDnwL3N3pBelBQm43wdoaMv/9NFEHHdSUHghpLliejzsU4t1xAxkf42x1bnF+DZ88tYxQUDP8gHRiklr/bhBCCNFzSAAqhPhVLDYTWcMTyRqeCIS7T9aUuineVENJfi2lW2pZNnsboUC4t4XFbiI5K4qkjGiSMqJI7B9FQj/nXr1P6jQaGRYZVXdnWmsq/UEKvD62un1s9/rY7vFT6PWx3evn28o6Snx+du7zYVaKFIuJNKuZFIuZZIuJFIuZlGbrRIuJJIsJZzt0L+3ulMmEMpkwOFsHAp1NB4PhgNjni6z9EIgEqIEAGDr330MpdSRwNnAcMA94A7hca93QqQXpgax5eQz87DOUJTxSbSCkUQpMBsUTw7JJsYZ7Luxs46JSvnxxFc5YCydcO0aCTyGE6AUkABVCtCulFHGpDuJSHQyd2g8ID2xUub2Bsq11lG6to2xLLSu/LyTgD7dYKoMiPs0RDkbTnST0Cy8xSba9HmBEKUViJFgcs9P7po38IU2pz0+x10+xz0+R10+JN7wu8wXY7PYyt6aeSn/bLW92g4Eki4kkc/g+CWYjCWYTiWYTCebwfrzZFF5MRuLMRix7MbKtaJsyGsPvlFq7dL7P5m4HXgNu0lpX7SmzaKkx+Nzm8XH1yi0cmhjNjTlpTIht+8uO5d8W8P2b60jNieH4q0djj5ZpVoQQojeQAFQI0eGMJkO4K25WNMMjaaGQpqbURXlBPRUF9VQU1lO0oZr180tanBeX6iChXzigjUtzEJcS3t6faRfMBkX/yPuhu+MPacr9fkp9AUq9fir8Acp9Acoj6wp/gBKvn9X1bir9Qdyh0C6v5TAamoLRWJOJWJNxx2I2EmOKLMbGbQPRkbRooxHTPr5DKzqO1vqwri5DT/dRaTU3rd1GUGsuzUjabd64VAeDJqRw2AXDMFl6f+8DIYToKyQAFUJ0CYNBEZ/mJD7NyaCJqU3pPneAqmIXlUUNVBU1UFncQPGmWtYvLKV5/1lHrIX4VAexyXZiku3EJoe3Y5PtWNoYjXdfmA2KflYL/awWiN5zflcwRJU/QKU/HJxW+4NUB4JU+wNUBYJURdJqA0E2u73UBILUBII0BHcduDayGxRRkWA0ymQgymgkymggyhReO42RNJMBh9GA02jEaTTgMISP2Y3hdEckzW409Kh3XkXv4A6GuGtDIf/ZXsG4aAdPj8gm2966Zdtd72Pb6koGT0ojc1gCmcMSuqC0QgghOpIEoEKIbsViN5GaG0NqbstBdgK+IDVlbqpLXVSX7Fg2LSvHXddy5FZblJmYJDsxiTaiE21EJ4TXMYl2ohNtmK3t25oSDvD23LK6M39IUxsIUhcMB6R1gXCQWhsIUhcIURcMp9UHQ9RF0uqDQQq9PhpcIeoDIRqCQdyhfRvN3G5Q2I0G7JGAtPnaZlTYDIbIorA1phsUVoMBm9GA1RDOY42kWZXC0rhtCG9bmqVbDAYsSklrbh+2zuXh9aJKrslK4Q+5aW12Ta8orOfjJ5fhrvXRf3A8zthu0/VaCCFEO5IAVAjRI5gsRhL7hwct2pnPHaCm3E1tmZuayFJX4aZsWx35S8uaBkBqZHWYiIq3EZVgDa/jrUTFW3HGWXHGhtcWW8dP4WI2RN5b/ZW/igMhTUMwiCsUwhUM0dBiCeIOhtNdwRDuUMttT0jjDoZwR/KW+cJp3tCO455giD231e6ZASIBqcKsDJF1JEiNBKgWpTCpHXnMBiL7BkwqPGiUSammVuprslLaoWRdTyn1IHAi4AM2Ahdrrasjx24HLgWCwPVa688j6ccAjwBG4Dmt9f2R9FzCAyQlAguB87XWPqWUFfgPMAGoAM7UWm/ujOcbE+1gztRhZOziS5r8JWV8+eIqLDYjJ984XoJPIYToxSQAFUL0eBa7ieTMaJIzW/eX1SGNq85HXYWH2nI3dZUe6qu8kcVDSX4tnobWc1+arEacsRacsVYcMZbwEmvBHm1p2rdHW7BHmzGZu/b9NJNBEWswEdtB19da49cab0jjCYXwRgJUbyQ49WqNr1mar3Gtw9u+pu1wnkBk26c1/mb5/CHCx3Q4QPbrIP5Q+N7+SN5AZDugNXl2W68JQIEvgdu11gGl1N8JD3j0B6XUcMLTvYwA0oGvlFKDI+c8ARwJFADzlVKztNargL8DD2ut31BKPU04eH0qsq7SWg9USp0VyXdmZz3groLPhZ9t5pf380nJjubYK0cTFS/BpxBC9GYSgAohejVlUOFWzVgraXlth2h+X5CGai+uGi/11V4aqn001HhpqA4v5QX1uGq8+Dxtj45rthnDgWm0GVuUBVuUGbvTjC0qsjRuO8xYnSZsDvNeTTvTXSgVbpm0GCAaGQymI2itv2i2+wtwWmT7JOANrbUX2KSU2gBMjhzboLXOB1BKvQGcpJRaDRwGnBPJ8zLhOUqfilzr7kj628DjSimltd63PtztzGQxMnhyKoeeN1QGGxJCiD5AAlAhRJ9nthjDo+umtD19SyO/L4i71ocrsrjrfLjr/LjrI+tIS2vZ1jo89X6CgV13XDVZDNicZqwOE1aHGYvdFNk2YbU3phmx2E1YbKbwcbsJsy2cZjIbOryLsOgylwBvRrb7Ew5IGxVE0gC27ZQ+hXC322qtdaCN/P0bz4m0tNZE8pfvXACl1OXA5QBZWVm/8nFaW7+gBINBMWB8CqMPzWi8Z7vfRwghRPfT4QGoUsoILAAKtdYn7HRsBvAvYDRwltb67Uj6WMLf1sYQfuflXq31mwghRBcyW4yYk+zEJNn3mFdrTcAXwl3vw1Pvx9Pgx+sK4G3w42kI4HH5m7Z97gB1FR7KC/z4XIFdtrQ2pwwKi80YDkhtJsxWY3jfGg5SzdbWi8kS2bYYMVmNmK0GTOZwusliwGwxYjApCQQ6iFLqKyCtjUN/1Fp/EMnzRyAAvNqZZduZ1voZ4BmAiRMntlsLqbvOx3evr2PjolKyhicwYHyKfN6EEKKP6YwW0BuA1YSDyZ1tBS4Cbt4p3QVcoLVer5RKBxYqpT5vHJBBCCG6O6VUJPCzE5O454C1uVBI43OHA1OfJ4DPHcTnDuCNpPm9wXC6J4h/p3VDjQ+/N4jfE8TvDe62FbbtcoPRYsRsMWA0NwaoO9ZGswGTyYDR0rg2YjQZMJkNGE0Ko8mI0awwmgwtFoNJ7WJfYTBG0oyq6ZjB0PsCYa31Ebs7rpS6CDgBOLxZt9hCILNZtoxIGrtIrwDilFKmSCto8/yN1ypQSpmA2Ej+TrFxUSnfvb4WryvA1JPzGHdk+7esCiGE6P46NABVSmUAxwP3AjfufLxx9D2lVGin9HXNtrcrpUqBZKC6A4srhBDdgsGgwu+NOs2/+lrBYIiAN4jfGyLgCwelfl+QgDdIwBcKb/uabXuDBPwhAv4QQV9kO7IO+kN4XYHI9o60oD9EIBBqMU9rezA0BqdGhcEY3m4KUo2KuFQHx14xqn1v2kUiI9reChystXY1OzQLeE0p9U/CgxANAuYBChgUGfG2kPBARedorbVSajbhd0jfAC4EPmh2rQuBOZHj33TW+5/Fm2r47JkVJGdFc9LvhrU5mrUQQoi+oaNbQP9FuELdi6nc26aUmgxYCA9Lv/OxDn1HRQghejqj0YDRYcC6+9dbfzWtNaGQDgekgUhgGtDh7cgSCoQI+jXBYIhQoHG9I18o2GzdIo8mFAynNx0LapxxvWq01McBK/BlpOX3F631lVrrlUqpt4BVhLvmXqO1DgIopa4FPic8DcsLWuuVkWv9AXhDKXUPsBh4PpL+PPDfyEBGlYSD1k6RlhvLMVeMJGd0EkZjzxmASwghRPvrsABUKXUCUKq1XqiUOmQ/r9EP+C9woda6VT+yjnpHRQghxL5RSmE0Kgku9pPWeuBujt1LuCfRzumfAJ+0kZ7PjpFym6d7gNN/XUn334BxvWbKHCGEEL9CR/6lcAAwUym1mXA3oMOUUq/s7clKqRjgY8KDM/yyp/xCCCGEEEIIIbq3DgtAtda3a60ztNY5hLv5fKO1Pm9vzlVKWYD3gP80jowrhBBCCCGEEKJn6/S+UkqpvyilZka2JymlCgh3Cfq3Uqrx/ZUzgBnARUqpJZFlbGeXVQghhBBCCCFE++mMaVjQWn8LfBvZvrNZ+nzCQ8TvnP8VYK+76wohhBBCCCGE6P5ktAghhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1CAlAhhBBCCCGEEJ1Caa27ugztQilVBmxpp8slAeXtdK2eoK89L/S9Z+5rzwvyzH1Bez1vttY6uR2u0yu1Y/3a1z6f0Peeua89L/S9Z+5rzwt975nb83nbrF97TQDanpRSC7TWE7u6HJ2lrz0v9L1n7mvPC/LMfUFfe96eri/+e/W1Z+5rzwt975n72vNC33vmznhe6YIrhBBCCCGEEKJTSAAqhBBCCCGEEKJTSADatme6ugCdrK89L/S9Z+5rzwvyzH1BX3venq4v/nv1tWfua88Lfe+Z+9rzQt975g5/XnkHVAghhBBCCCFEp5AWUCGEEEIIIYQQnUICUCGEEEIIIYQQnUIC0GaUUscopdYqpTYopW7r6vJ0BKXUC0qpUqXUimZpCUqpL5VS6yPr+K4sY3tSSmUqpWYrpVYppVYqpW6IpPfmZ7YppeYppZZGnvnPkfRcpdTcyOf7TaWUpavL2p6UUkal1GKl1EeR/d7+vJuVUsuVUkuUUgsiab32cw2glIpTSr2tlFqjlFqtlJrW25+5N5C6tXd+Nvta/Sp1q9Stve0z3agr6lYJQCOUUkbgCeBYYDhwtlJqeNeWqkO8BByzU9ptwNda60HA15H93iIA3KS1Hg5MBa6J/Lv25mf2AodprccAY4FjlFJTgb8DD2utBwJVwKVdV8QOcQOwutl+b39egEO11mObzdfVmz/XAI8An2mthwJjCP979/Zn7tGkbu3Vn82+Vr9K3RrW258XpG7t8LpVAtAdJgMbtNb5Wmsf8AZwUheXqd1prb8HKndKPgl4ObL9MnByZ5apI2mti7TWiyLbdYT/U/Wndz+z1lrXR3bNkUUDhwFvR9J71TMrpTKA44HnIvuKXvy8u9FrP9dKqVhgBvA8gNbap7Wuphc/cy8hdWtYr/ts9rX6VepWqVsj273qmbuqbpUAdIf+wLZm+wWRtL4gVWtdFNkuBlK7sjAdRSmVA4wD5tLLnznSZWYJUAp8CWwEqrXWgUiW3vb5/hdwKxCK7CfSu58Xwn/4fKGUWqiUujyS1ps/17lAGfBipDvYc0opJ737mXsDqVvDevVns6/Ur1K3St1KL/tM00V1qwSgogUdnpen183No5SKAt4Bfqe1rm1+rDc+s9Y6qLUeC2QQboEY2rUl6jhKqROAUq31wq4uSyc7UGs9nnDXxmuUUjOaH+yFn2sTMB54Sms9Dmhgpy5BvfCZRS/Rmz+bfal+lbq1T5C6tRPqVglAdygEMpvtZ0TS+oISpVQ/gMi6tIvL066UUmbCleOrWut3I8m9+pkbRbpRzAamAXFKKVPkUG/6fB8AzFRKbSbcve8wwu8z9NbnBUBrXRhZlwLvEf5jqDd/rguAAq313Mj+24Qrzd78zL2B1K303s9mX61fpW7tlc8LSN1KJ9WtEoDuMB8YFBndywKcBczq4jJ1llnAhZHtC4EPurAs7SryvsLzwGqt9T+bHerNz5yslIqLbNuBIwm/mzMbOC2Srdc8s9b6dq11htY6h/D/22+01ufSS58XQCnlVEpFN24DRwEr6MWfa611MbBNKTUkknQ4sIpe/My9hNStYb3us9nX6lepW6VujWTrVc/cVXWrCreqCgCl1HGE+7sbgRe01vd2bYnan1LqdeAQIAkoAe4C3gfeArKALcAZWuudB1PokZRSBwI/AMvZ8Q7DHYTfU+mtzzya8AvjRsJfMr2ltf6LUiqP8LeYCcBi4DyttbfrStr+lFKHADdrrU/ozc8bebb3Irsm4DWt9b1KqUR66ecaQCk1lvBgGBYgH7iYyGecXvrMvYHUrb3zs9nX6lepW6VupZd9pht1Rd0qAagQQgghhBBCiE4hXXCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFEEIIIYQQQnQKCUCFaEdKqUSl1JLIUqyUKoxs1yulnuyA+72klNqklLpyH8/7pHFC7f2459jIvH77c6498vPwKaWS9ucaQggh+h6pX/d4rtSvoscwdXUBhOhNtNYVwFgApdTdQL3W+h8dfNtbtNZv78sJWuv9quAixgITgU/29USttRsYq5Ta/CvuL4QQoo+R+nWP95X6VfQY0gIqRCdQSh2ilPoosn23UuplpdQPSqktSqlTlFIPKKWWK6U+U0qZI/kmKKW+U0otVEp9rpTqtxf3eUkp9ZRS6helVH7kvi8opVYrpV5qlm+zUipJKZUTOfasUmqlUuoLpZQ9kudbpdTEyHZS5BwL8BfgzMg3rWcqpZyRe8xTSi1WSp0UOWdEJG2JUmqZUmpQu/9ghRBC9GlSv0r9KnoeCUCF6BoDgMOAmcArwGyt9SjADRwfqSQfA07TWk8AXgDu3ctrxwPTgN8Ds4CHgRHAKKXU2DbyDwKe0FqPAKqBU3d1Ya21D7gTeFNrPVZr/SbwR+AbrfVk4FDgQaWUE7gSeERrPZbwN7oFe1l+IYQQYn9J/SpENyddcIXoGp9qrf1KqeWAEfgskr4cyAGGACOBL5VSRPIU7eW1P9Ra68i1S7TWywGUUisj116yU/5NWuvGtIWRPPviKGCmUurmyL4NyALmAH9USmUA72qt1+/jdYUQQoh9JfWrEN2cBKBCdA0vgNY6pJTya611JD1E+P+lAlZqraft77Uj1/I2S2+89q7yAwQBe2Q7wI5eErbd3E8Bp2qt1+6UvlopNRc4HvhEKXWF1vqbvSi/EEIIsb+kfhWim5MuuEJ0T2uBZKXUNACllFkpNaKTy7AZmBDZPq1Zeh0Q3Wz/c+A6FfkqWSk1LrLOA/K11o8CHwCjO7rAQgghxB5I/SpEF5MAVIhuKPIuyGnA35VSSwl365neycX4B3CVUmox0HxI99nA8MZBEoC/AmZgWaQb0l8j+c4AViillhDu7vSfTiu5EEII0QapX4XoempHzwQhRE8TGXnvo30dJr6rqfAw8RO11uVdXRYhhBBiZ1K/CtFxpAVUiJ6tBvir2seJsruKikyUTfgb3VAXF0cIIYTYFalfhegg0gIqhBBCCCGEEKJTSAuoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOIQGoEEIIIYQQQohOYerqArSXpKQknZOT09XFEEII0cMsXLiwXGud3NXl2FtKqTjgOWAkoIFLtNZzmh2/BTg3smsChgHJgBP4D5AaOe8ZrfUje7qf1K9CCCH2x67q114TgObk5LBgwYKuLoYQQogeRim1pavLsI8eAT7TWp+mlLIAjuYHtdYPAg8CKKVOBH6vta5USlmBm7TWi5RS0cBCpdSXWutVu7uZ1K9CCCH2x67qV+mCK4QQQvQQSqlYYAbwPIDW2qe1rt7NKWcDr0fyFmmtF0W264DVQP8OLbAQQgixEwlAhRBCiJ4jFygDXlRKLVZKPaeUcraVUSnlAI4B3mnjWA4wDpi7i3MvV0otUEotKCsra7fCCyGEEBKACiGEED2HCRgPPKW1Hgc0ALftIu+JwE9a68rmiUqpKMJB6e+01rVtnai1fkZrPVFrPTE5uce8HiuEEKIHkABUCCGE6DkKgAKtdWPL5duEA9K2nEWk+20jpZSZcPD5qtb63Q4rpRBCCLELEoAKIYQQPYTWuhjYppQaEkk6HGg1iFDkXdGDgQ+apSnC746u1lr/sxOKK4QQQrTSa0bBFUIIIfqI64BXIyPg5gMXK6WuBNBaPx3J8xvgC611Q7PzDgDOB5YrpZZE0u7QWn/SOcUWQgghJAAVQgghehSt9RJg4k7JT++U5yXgpZ3SfgRUBxZNCCGE2CPpgiuEEEIIIYQQolN0aACqlDpGKbVWKbVBKdVqlD6llFUp9Wbk+NzIsPAopXKUUm6l1JLI8nSriwshhBBCCCGE6FE6rAuuUsoIPAEcSXjUvvlKqVla6+aDJVwKVGmtByqlzgL+DpwZObZRaz22o8rXFne9jxXfFTJ4ciqxyY7OvLUQQgghhBBiD7TWhDQEQ5pgSBPSmqDW6BAEdThNR9JCGkKRPCENIa2bzg9pTSjUmBbZjxxrkUdr0Ow4nx3X0ZH0xvzQeD5odlwrXO4d99KR54icgqZ5est9Ivkil2k6r+k4Le8RvqRutt12evOfZ/O8AOdMySIpyto+/2Bt6Mh3QCcDG7TW+QBKqTeAk2g5Wt9JwN2R7beBxyOj9HWJUEAz/6NNhIKaKTPzuqoYQgghhBBCtLtQSOMLhvD6Q3gDQbyBEN5ACF8gFEkP4guG9/3BEL6gxh855m9K1wSCO443bvtD4e1AUDdt+4OaYChEIKQJBMPBoT8UIthsP9C4HwkoG4PKxv1Q5FhINx7r6p9i73fUiNQeG4D2B7Y12y8Apuwqj9Y6oJSqARIjx3KVUouBWuBPWusfOrCsADjjrGQMS2DtL8VMPiEXZZCxGoQQQgghROcIBEM0+ILUewM0RBaXL0iDN4DbH6TBG8TlC6e5/UHcvsjiDy+eSJonEMTjD+GJpIUDznAg2Z4sRgNmo8LUuDYYMBkVZqMBk2FHutGgMBsMGA0Kq9mE0RDJa1AYjQqjUpgMCoNBYTYqDM32G9dGFb6OIbI2GhRK0SLdoIikR/KocB6DUhgMkbXakVc1WxsNjfvhNINSKHbkMRh27DddU4EivK8i2wbDjrRwKBE5TuSazc6ByHlN92p2vfCpLfYb2+ma56X5ddrIEylB0zY7pTc/l2bP25G66yi4RUCW1rpCKTUBeF8pNUJrXds8k1LqcuBygKysrHa58dCpaXz5wiq2r6+m/5D4drmmEEIIIYTo/Tz+INUuPzXu1kut20+tx0+dJ0Bd0zq8Xe8NUO8N4PHvfYBoMRqwmQ04LCbsFiM2sxG72YDNbCTGbsZmNmAzGbGajVhN4XSryYDVbMBqCm9bTIZwWtO2EYvJgNlowGIMp1mMBsymcFDZmN4YVHZhx0XRg3VkAFoIZDbbz4iktZWnQCllAmKBCh3uyOwF0FovVEptBAYDC5qfrLV+BngGYOLEie3SIJ87NhmzzciaX4okABVCCCGE6KO01tR6ApTVeals8FFR76Wiwddiu9rlp7LBR7XLR5XLj9sf3O01o60mom0mom1mom0mkqIs5CY5ibKZiLKacFpMOK1Gom0mnNbw4jAbw2tLeG23GLGbjZiNMpmF6Jk6MgCdDwxSSuUSDjTPAs7ZKc8s4EJgDnAa8I3WWiulkoFKrXVQKZUHDCI82XaHM1uMDByfwoaFpcw4K4jZauyM2wohhBBCiE6gtabG7ae41kNxjYeSWg/FNV6Kaz2U1Xkpq/dSHln7Am23SEbbTCQ6LcQ7LaTF2hjWL4Z4h5l4p4U4h5k4u4VYu5kYu4lYu5lYu5lomxmjvN4lRMcFoJF3Oq8FPgeMwAta65VKqb8AC7TWs4Dngf8qpTYAlYSDVIAZwF+UUn4gBFypta7sqLLubOi0NFb/XET+kjKGTEnrrNsKIYQQQohfKRjSFNW42VbpprDazfbIUli9Y7+trq6JTgvJ0VaSo60MSHaGt6PC+4lOKwlOC4lRFuIdFiwmaX38f/buOkCqqm/g+PdM7M52d5JLd0gqgq1Y+Chi66vY3d2PjYmiooDY6GN3gIR091Lb3T1x3j9mwIXdwVF2d3bh93nf+9w795x77m8W2eE394QQ/1arjgHVWn8LfHvAuQcaHdcB5zRz3TxgXmvGdjBxXUIJjrSwZUmuJKBCCCGEEO1Mg81BZmkNOwur2V1UTUZJDXtKasgsqSGrtAarff+RWVFBvsSH+tEzNphj06KJDbE4t2DnPjrIIkmlEG2kvU5C5FXKoEgbHsvyb3dTWVJHULjF2yEJIYQQQhxxKuqsbM+vYnt+JdsLqthVVM3OwioyS2uxN1qPI8TPTHK4P73igzmxTyzJ4f4khfmTGOZHbIgFi1mGVAnRXkgC6kbaUbEs/2Y325blMfjEVG+HI4QQQghx2LLaHaQXVLExp4ItuRVsK3AmnbnldfvqWMwGOkUG0js+hNP6x9MpMoBOkQF0jgwkxN/sxeiFEP+EJKBuhET5E9c1hK1/5jHohBSZZloIIYQQogXUWe1szClnfVY5G3Mq2JRbwfb8qn1rVPqaDHSNDuSozhF0iwmke3QQ3WOCSAzzwyCT+AjR4UkCehA9jorjt/e2ULC7kphOwd4ORwghhBCiQ7E7NOkFVazNLGNNVhlrM8vYmleJzdV9NiLAh17xwVw6OpXe8SH0igumU2SAzBYrxGFMEtCD6DI4mgUfbWPrn7mSgAohhBBC/I06q501mWWs2F3C8t2lrNpTSmW9DXAuXTIgKZSpR3ehf1Io/RJDiA7ylV5mQhxhJAE9CF8/E537R7JtRT6jJnXDaJbZ0YQQQggh9qptsLN8dwmLdxSzdFcxG7LL981AmxYTxMQB8QxOCWNAUiipEQHShVYIIQno30kbEcf2FQXs3lBEl4HR3g5HCCGEEMJrrHYHazPLWJRezOIdRazOKKPB7sBkUPRPCuXy0Z0Z1imMQclhhPr7eDtcIUQ7JAno30jqEYZ/iA9bluRJAiqEEEKII05BRR2/byvk960F/LGtiMp6G0pB7/hgLh2VyoguEQxNDSfAV/5ZKYT4e/Kb4m8YjAa6D4tl3S+Z1FY24Bck3+YJIYQQ4vCltWZtVjm/bs7n160FbMiuACAm2JdT+sVxdPcoRnSJkCecQoh/RRJQD/Q4KpY1P2WwbVk+/ccneTscIYQQQogWZXdoVuwu4bsNefywMY/c8joMCgYlh3H7CWmMS4umZ1yQTBgkhDhkkoB6ICIhkOiUIDYvzqXfsYnyy1cIIYQQHZ7doVmyo5hv1ufy06Y8iqoa8DEZGNstiluPT2N8j2jCAuQppxCiZUkC6qGeI+OY/8E2CjMqiU6RJVmEEEII0fFordmQXcH/1mTz5docCivrCfAxMq5HNCf2iWVcWrSM5RRCtCr5DeOhbkNjWPhpOpsX50oCKoQQQogOJbOkhv+tzubzNdnsLKzGx2hgXI8ozhiQwLge0VjMRm+HKIQ4QkgC6iFffzNdBkaxbVk+o87uislHflELIYQQov2qt9n5aVM+Hy7LZGF6EQDDO4Xzf2M6c3KfOEL8zV6OUAhxJJIE9B/oOTKObcvy2bmmkO7DYr0djhBCCCFEE+kFVXy0PIN5q7IpqW4gIdSPW47rztmDE0kI9fN2eEKII5wkoP9AQvcwgiMtbFqUKwmoEEIIIdoNu0Pz06Y83lm0m6W7SjAZFMf1iuG8YcmM7hqJ0SATKAoh2gdJQP8BZVD0GBHHsq92UVFUS3CkfIsohBBCCO8pr7Xy0fIMZi3eQ3ZZLYlhftx1Ug/OHpRIVJCvt8MTQogmJAE9gNYawO1SKz1GxLHs611sXpLL8NM6t2VoQgghhBAA7Cys4p1Fu5m3KouaBjvDO4Vz/6m9OK5XjDztFEK0a5KANrK9uo5L1u/iie6JHB0e1GydoHALyT3D2bI4l6GndMIgv+SFEEII0UY2ZJfz2u/pfLchD7PBwMQB8Vw6KpXe8SHeDk2IVufQDuwOOzZtw+6wY9d2bA4bdm3HoR3YHDbn3lXu0I59Zfv2jc5rrfcr11rjYP8yrTUO7fhrw4HD4dprx75yzV/1NPqv63DW2Vvu9th1TeO9QzsA9sW190FZc3X31tv3f3vPa/Y7t/f6/eo3bgPNXcPuIiEwodX+HCUBbSTJ4kOJ1cbc3GK3CShAj5Fx/PjWRrK2lJDcK6INIxRCCCHEkWj57hJe/S2d37cWEmQxce0xXblkVCqRgdLNVrQcrTVWh5U6ex31tnrq7HU02Bv27evt9fvt9zt2NGC1W7E6rH+9dlix2q00OBqwOWz7yq0Oq/N1M/u9SaXNYduXbDZOMjsygzKgUCilMGBAKbXvtULtK3f+v9qv/n77RnUan9vbg7O5a4D9jxvXb9wuYHPYWvXnIAloIxajgUmxYbybXUxRg41In+Z/PJ37R+EbYGLz4lxJQIUQQgjRKrTW/LG9iFd+TWfZ7hIiAny4/YQ0LhyRQrBFllA50jXYG6iyVlHdUE2Vtcp5bK2mxlpDtc25r7HVUGOtodZWu2+rsdVQZ6uj1lZLna3Oudn/2h9qkmdURnyMPpgNZswG837HZqMZH4MPJoMJs8GMn8kPk8G07/XeY6My7jtnVEaMBudrkzLtOzYq476yvfUNytDk/N5z+/aG/V8rpfa93rdhwGBw7vfW2a+8Ub3GZfuSywPKGid7QhLQJs6Pi+DNrCI+ySvh6uToZusYzQbShsWy4Y9s6qqsWALlQ0AIIYQQLWf57hKe+X4ry3aXEBdi4cHTenHe0GT8ZB3yw4bWmlpbLaX1pZTVl1FeX05FQwUV9RWU15dTXl9OpbWSyoZKKhoqqGqoorLB+brKWoXVYfXoPhajBT+T3/6b2Y9Iv0gsRgsWk+WvvevY1+iLxeTcN958jD5N9vs2gzPRNBrkv1FxcJKAHqBnoB+Dg/15P7eYqUlRbr+t6DkqjnW/ZbFteR79xiW1cZRCCCGEOBxtzCnn2R+28tvWQqKCfHn09N6cOzQZH5PB26EJD9Tb6ymqLaK4tpji2mJK6koornPta4udyWZd2b59g6PBbVsWo4Vg32CCzEEE+QQRbgknOTiZYJ9gAswBBPkEEWAOINAcuN/e3+yPv8kff7P/vieMQrQn8l9kM6bER3DLlkyWlVczPDSw2TqRiUFEJQexeXGuJKBCCCGEOCQ7C6t4/qdtfL0ulxA/M3ed1IOLR6TKE892wqEdlNSVkF+TT151HvnV+eTX5FNYU0hhbeG+fUVDRbPXB5oDCbeEE24JJy4wjl4RvQi1hBLmG0aobyihvqEE+wYT4hNCiG8Iwb7B+BplfK84PEkC2ozTo0N5YHs27+UWu01AAXqOjGPBh9sozKgkKtn9pEVCCCGEEM0pq2lg2s/bmfPnHnxNBq4/titXjOlMiJ8M72lLdoed/Jp8squyyanKIac6x7mvyiG7KpuCmoImXV5NBhNRflFE+UeRGpLKkNghRPtHE+UXRYRfBBGWCGfS6RcuyaQQjUgC2owAo5GzYsL4JK+Ex7omEGJu/sfUbWgMi+als2lhDkefn9bGUQohhBCio7LZHcxdmsELP2+jotbK5GHJ3DShO1FBkqi0FrvDTk51DrvLd5NRmUFmZSaZlZlkVGSQXZXdJMGM9osmLjCOfpH9iA2MJdY/lpiAmH37cEs4BiVdo4X4pyQBdWNKfASzc4r5rKCMSxMim61jCTDTdVA0W5flMeKsLvhY5McphBBCiINbsK2QR7/exPaCKkZ2ieD+U3vRMy7Y22EdNhrsDewq38X2su3sKt/F7vLd7KrYxZ7yPfuNufQ3+ZMcnEy3sG4cm3wsSUFJJAQmkBCYQGxALD5GHy++CyEOX5IxudEv0I8+gX7MzSnmkvgIt5MR9R4Tz9aleaSvKKDX6Pg2jlIIIYQQHUVmSQ0Pf7WRnzcXkBLhzxsXDub4XjGyPMO/pLUmrzqPzSWb2V66ne1l20kvTWd3xW7s2g44111MCkoiNTiVUfGj6BTSidTgVJKDk4mwuP/3nRCi9UgC6oZSiinxEdy9LYu1lbUMCPZvtl5slxDC4gLY+Ee2JKBCCCGEaMJqd/D2wl1M+3kbBqW466QeXDoqFV+TTDDkKa01mZWZbCrZxObizc6tZDNl9WX76iQGJtI1rCvHJh9Lt7BudA3tSkpwijzJFKKdkQT0IM6OCeOR9Gzezy12m4Aqpeg9Jp6FfsNeTgAAuhlJREFUH2+XyYiEEEIIsZ9VGaXc89l6tuRVcnyvGB6a2Jv4UD9vh9XuldeXs75oPesL17O2aC3rC9fvm2HWZDDRLbQb45PH0zO8Jz0ietAttBv+5ub/rSaEaF8kAT2IYJOR06JD+Sy/lAe7xBPg5pvKtOGxLPl8Bxv/yOaYKT3aOEohhBBCtDfltVae+WELc5dmEBts4Y0LB3NC71hvh9Uuaa3Jqc5hZf5KVuStYHXBanZX7AZAoega1pXjUo6jb2RfekX0omtoV8xGmSVYiI5KEtC/MSUugo/zSvmisIzz4yKarWMJMNNtcDTbluUz8uyuMhmREEIIcQT7eVM+d3++nuKqei4d2Ylbju9OoK/822AvrTUZlRksy1vGyvyVrMxfSV51HgAhviEMjBrI6V1Pp29kX/pE9iHAHODliIUQLUl+G/6NYSEBdPP35f2cYrcJKEDvsQls+TOP7cvz6T0moQ0jFEIIIUR7UFFn5ZGvNvHpyix6xAYx8+Kh9E0M8XZY7UJZXRl/5v3Jnzl/siRnCTnVOQBE+kUyOGYwl/W5jCExQ+gS2kWWNhHiMCcJ6N9QSjElLoKHduSwpbqWHgHNj9uI6RRMeHwAG//IkQRUCCFEq1FKhQJvAX0ADVymtV7SqPx2YIrrpQnoCURprUuUUicCLwJG4C2t9X/bMvbD2eL0Im7/dB255bVcO64LN47vjo/pyE2kHNrBhqINzM+az8LshWwu3oxGE2gOZFjsMC7tcylHxR1FSnCKzEQrxBFGElAPnBMbzhM7c5mTXczj3RObreOcjCiBPz7aRsGeCqJTZD0vIYQQreJF4Hut9SSllA+w38wrWutngGcAlFKnATe7kk8j8CpwHJAFLFdKfam13tS24R9eahvsPPX9Ft5dvJvOkQHMu3okA5PDvB2WV9RYa1iSs4T5WfNZkLWA4rpiDMpA/6j+XD3gakbEjaBPZB9MBvnnp+iYtNbgcIDdvu9Y2x2gHc5jh3PvPNaNzuv96+y91uFwfo24t0xr2FtX67/Kcd1Xa2edvddofcC5Rte6yvZdv1/dRvUble19j4FjxmAMbr1cRn4DeCDCx8Rp0aF8nFfCPV3iCDC6m4wohiWfpbPxjxxJQIUQQrQ4pVQIMBa4BEBr3QA0HOSSycAHruNhQLrWeqerrQ+B0wFJQP+ldVll3PjhGnYVVXPJyFTuPLEHfj5H1tIq5fXl/Jb5Gz/t+YklOUuwOqwEmYMYnTCasUljGZMwhhBf6YZ8pNEOB7qhAV1f79w3NOBoaEA3WJ2vrQ2uvdW57T1uaEBbbc5j2969sw42m7PMZkPbrM4k0GpD2+1gt6FtdmeZ3QY2u/O8zeaMpfE5e6P93jK7A+2wg92x7/x+e63Bbt+XpB3uOn3xhSSg7cHF8RHMyy/lf/llTIlvfiyor7+ZrkNj2LY8n1GTZDIiIYQQLa4TUAi8o5TqD6wEbtRaVx9YUSnlD5wIXOc6lQBkNqqSBQxv7iZKqSuBKwGSk5NbLPjDhdaamYt289/vNhMZ6Mv7VwxnZNdIb4fVZsrqyvg181d+3PMjS3OWYtM24gPiOa/HeYxLGseA6AGYDTJLbXulbTYcNTU4qqud+5pa5762Bl1Tg6O21nmurhZdW4ujts5ZVluHo64OXVeHo77eud/7uqEeXe9KOOvrnQljC1NmM5jNKKMRZTKhTCYwm1CmveeMYHSdNxpQRpPzvK8PBqM/ymgEo/GvvcEAJiPKYHTW32/vKjcaUUYDGIxgUM4yg3K2YTCiDAqUwXWdoemxQf11rJSzrf3OK0A5r1EK9p5T6q/XKGd913nnZgDFAecaXdd4Y+9xM/Vp5jxgTmy+x2dLkQzJQ0NDAugZYOHd7CLOjwt3O16h95h4tizOZduyfPqMlbGgQggh/qKUWudBtUKt9Xg3ZSZgEHC91nqpUupF4C7g/mbqngYs0lqX/NM4tdYzgBkAQ4YMOTK+8vdQWU0Dt32yjp835zOhZzTPTOpPWICPt8NqdbW2Wn7L+I0vd37Jnzl/Ytd2EgITuLD3hRyfcjy9I3rLWM42oB0OHBUV2CsqsJdX4Kh0HVdU4KisxF5R6dxXVeKoqnYdV+GoqtqXdOq6Os9vqBTKzw+DxYLBYkE13vv7YQwLQ1l8MfhaXHtflI8vytfXmfj5+DiPzT4on72bGeXjKnMllfuOTWZnudnsTDJde4xG+e/rMCIJqIeUUlycEMld27JYXVHDoJDmpwSPSQ0mIiGQjX9k03tMvPxlEUII0ZgROPkg5Qr48iDlWUCW1nqp6/WnOBPQ5pzHX91vAbKBpEavE13nhIdW7C7hhg9WU1hVz/2n9uKyUamH9ee8QztYmb+SL3d8yU97fqLaWk1sQCwX976YE1JPoGd4z8P6/bcFR3U1tuJibMXF2EtLsZeUYCtx7u2lJdjKyrCXleEoK8deVoa9ouLg3UCNRoyBgRgCAzEEBWEIDMAcE4Ohc2fnOX9/DAEBrs0fg3+A85y/PwZ/v33Hys8Pg5+fM3mUP2PRwiQB/QcmxYTx6I4c3s0pcpuAOicjimfBh9so2FNJTKqMBRVCCLHPVVrrPQeroJS6xl2Z1jpPKZWplErTWm8FxtPMGE7XWNGjgQsanV4OdFNKdcKZeJ4HnP8v3sMRx+HQTJ+/g+d/2kZCqB/zrh5Jv8RQb4fVanKrcpm3fR5f7viS3Opc/E3+HJ96PBO7TGRwzGBZJuVvaK1xVFRgzc/HVlCILT8fW2EBtoICbIWF2IqKsRUVYSsuRtfUNNuG8vPDFBaGMSwMY0gIPgmJGENDMIaGYgwJwRAcgjEkGGNwMIagYOdxUBDK318SRtHuSQJ6AO36Vqm5v7yBJiNnx4TxcV4JD3dNIMzc/I+v+/BYFn+WzsYF2ZKACiGE2EdrvbAF6lwPzHXNgLsTuFQpNdV17euuOmcCPzYeG6q1timlrgN+wPkkdqbWeuO/eBtHlIo6Kzd/uIZfthRwar84njirL8GWw298o91hZ2H2Qj7e9jELsxeitWZE/AhuHHQjxyYfi5+p+WXojkTaasWal4c1KwtrTi7W3FysuTnYcnOdr/Pymu3maggJwRwdhTEiEr/+/TFFRGCMjMAUEYkpMgJjWDim8DCM4eEY/OTnLQ5fkoA20rB7N9m33kbMXXfiP3Ros3UuSYhkdk4xH+WWMDU5utk6vn4m0obHsuXPPEae3RVLwOH3QSWEEOLfU0qNAh4CUnB+FitAa607/921Wus1wJADTr9+QJ13gXebufZb4Nt/EfIRKb2giivnrCCjuIaHJ/bmohGH35qVBTUFzNs+j8+2f0ZedR6RfpFc3udyzu5+NgmBR+5cFvaqaqwZe2jY49oyM7FmZTuTzrw854yojZiiojDFx+Gblkbg0UdjiovFHB2NKSYGU3Q0puhoDL6+Xno3QrQvkoA2YoqJoSEzk9IPPnCbgPYK9GNYSACzcoq4MikKg5sPor7HJLLxjxw2L8pl4PEyg6AQQoj9vA3cjHMWW/vf1BVe8NOmfG7+aA2+JgNzrxjO8M7Nz4DfUW0q3sScTXP4ftf32LSNEXEjuGPoHRyTdMwRM4Otdjiw5eZSv2MH9ek7qN+5g4bdu2nYswd7YdF+dY1RkfgkJOI3aBDBiQn4JCZiTkjEnBCPKSYGg8/hPxGVEC1FEtBGDH5+hJ55JiVz5xJTWIgpKqrZehfHR3Dt5gz+KK3i6PCgZutEJAQS3y2UDQuy6D8hCYPh8PrGVAghxCEp11p/5+0gRFMOh+bFX7bz4i/b6ZcYwusXDCY+9PDoDunQDhZkLWD2ptksz1uOv8mf83qcx+Qek0kOPry/LLcVFVG3ZSv1W7dSv22rK+Hcia6t3VfHGB6OT6dOBI4Zi09KCj6pqfikpuCTlITB39+L0QtxeJEE9ACh551LyaxZlM2bR+TUqc3WOTU6lPvTs5mVXeQ2AQXnU9Af3txAxoZiUvsdOeuDCSGEaJ5SapDr8Del1DPAZ0D93nKt9SqvBCYAqKyzcvNHa/l5cz5nD0rk8TP7YDEbvR3WIau31/NF+hfM3jSbPRV7iA2I5dbBt3JW97MI9jm85qrQWmPNyKB2wwbqNm6ifssW6rZuxV5cvK+OKToa327dCD1nEr5duuLbtQs+nTtjCgvzYuRCHDkkAT2Ab6dOBIwcQelHHxNxxRXOtYcOrGMwMDkugtczC8itbyDOt/luF50GRBIQ4sP637MkARVCCAHw3AGvG4/l1MCxbRiLaCS3vJZL31nO9oIqHjytF5eM7PhLrNTaavl026e8u+FdCmoL6BPRh2fGPsP4lPGHTTdba14etWvWUrdxgzPp3LARR2UlAMpsxrdbNwLHjsXSIw3ftB74pnWXRFMIL2vVBFQpdSLwIs7Z9t7SWv/3gHJfYDYwGCgGztVa725UnoxzevmHtNbPtmasjYVOnkz29TdQNX8+QeObXwv8ovgIXsso4L2cYm7vFNdsHaPRQO+xCSz7ahdl+TWExkj3DSGEOJJprce5K1NKxbRlLOIvG3PKuezd5VTX23nnkqGM7d78EJyOosZaw4dbP2TWxlmU1JUwNHYoT4x5gmGxwzp0Uq2tVuq2bKV29Wpq16ymZvUabLm5zkKzGUv37gSffDKWPr3x69MH365dUebDI9EW4nDSagmoUsoIvAoch3Ph7OVKqS+11o3XK7scKNVad1VKnQc8BZzbqPx5oM3HyASNG4cpJobS9z9wm4Cm+PkyLjyI93KKuSklFrObMZ69Rsez4tvdrJ+fxZj/dG/NsIUQQnQwSqlQ4Gyc63H2BOK9GtAR6LctBVz3/ipC/Mx8evUIesR23C6pNdYa5m6ey6xNsyivL2dk/Eiu7Hclg2MGezu0f0U3NFC7YQM1y5ZRvXQptavX7FvexBQXh//AAfhdegl+Awbg26OHTAQkRAfRmk9AhwHpWuudAEqpD4HT2X/B7NNxTkMP8CnwilJKaa21UuoMYBdQTRtTJhOh5/6HopdepmH3bnxSU5utd0lCJBet38UPReWcGh3abJ2AEF+6DIpmy5I8hk/sjI9Fej0LIcSRTCnlh/Pz73xgIBAEnAEs8GJYR6Q5f+7hwS820DMumJmXDCUm2OLtkP4Vq8PKvG3zeH3t6xTXFTM2cSxX9buKflH9vB3aP6IdDuo2bqJ68WJqli6lZvXqfZME+aalETppEv6DB+E3YADmuOZ7nwkh2r/WzIYSgMxGr7OA4e7quBbILgcilFJ1wJ04n57e1ooxuhU6aRJFr02n9KOPibnzjmbrjI8IJtFi5u3sQrcJKDgnI9q+PJ9ty/LpM/bIXVNLCCGOdEqp94ExwI/Ay8CvOL+s/d2bcR1pHA7Nf7/fwowFOzm2RzQvTx5IgG/H+4LYoR18v+t7XlnzCpmVmQyOGcy0cdMYED3A26F5zFZYSNWiRVQvXET1okXYS0sB8O3endCzz8Z/2FD8hw6VcZtCHEba62/bh4AXtNZVBxuroJS6ErgSIDm5ZacPN0dHEzRhAmWffUbUjTdgsDT9VtSoFJcmRPHojhw2VtXSO7D5adpjOwcTmRTI+t+z6D0mvkOPvxBCCHFIegGlwGZgs9barpTSXo7piGK1O7jtk7V8sSaHC49K4cHTemEyGrwd1j+2OHsx01ZNY3PJZrqHdefV8a8yJmFMu/83htaaug0bqfz1F6p+n0/95s0AGCMiCBw7hoDRYwgYOQJTxOG17qoQ4i9uE1ClVLgH1zu01mVuyrKBpEavE13nmquTpZQyASE4JyMaDkxSSj0NhAIOpVSd1vqVxhdrrWcAMwCGDBnS4h/gYZMnU/n991R8+x2hZ53ZbJ0pceE8uyuPt7IKeaFH80mwUoq+xyTy25wt5GwvI6G7fIsnhBBHIq31AKVUD2Ay8LNSqggIUkrFaK3zvRzeYa+2wc6176/i1y0F3H5CGtcc06XdJ2wHyqjI4Jnlz/B71u8kBCbw5JgnObnTyRhU+02idUMD1cuWU/XrL1T+8iu2/HwwGPAfNIiom28mcMxofHv0QBna73sQQrScgz0BzXFtB/vNbATcPXpcDnRTSnXCmWieh3O8S2NfAhcDS4BJwK9aa42zexIASqmHgKoDk8+24D9sKD5dulD6wQduE9BQs4lzYsP4KK+E+zrHE+HT/I+0+9AYFn+WzvrfsyQBFUKII5jWegvwIPCgUmowzmR0uVIqS2s90rvRHb4q6qxc8e4Klu8p4fEz+zBleIq3Q/pHaqw1zFg3g9mbZmM2mLll8C1M6TkFH2P7nHhHNzRQtWgRFd99R9Wvv+GoqkL5+RE4ehSBx95E4DFHS7daIY5QB0tAN2utBx7sYqXUandlrjGd1wE/4ExUZ2qtNyqlHgFWaK2/BN4G5iil0oESnElqu6GUIuy888h//HFq12/Ar2+fZutdnhjF7Jxi5uYWc0NK87Pom3yM9BoZz5pfMqkqrSMwrGNOdCCEEKLlaK1XAiuVUrfT6MtX0bKKq+q5aOYytuZV8uJ5A5nYv+NMNqy15uudXzNt5TQKaguY2GUiNw26iSj/9rdUjLbZqF66lIrvvqPyp59xlJdjCAkh6ITjCRo/gYCRI5od0iSEOLIcLAEd4cH1B62jtf4W+PaAcw80Oq4DzvmbNh7yII5WE3LG6RQ8/zylH36AX9/Hm62TFmBhbFgg72QXcXVStNslWfocncDqnzPYsCCbo07v0pphCyGEaIeUUle6ho/sx9X7Z8HB6oh/J7uslgvfXkp2aS1vXjSEcT2ivR2Sx7aXbufRPx9ldcFqekf05vlxz9M/qr+3w9qP1pq6TZso//x/VHz7LfaSEgwBAQRNGE/wyScTMGIESpZHEUI04jYBdSWHwL41PWMa19daZzSuc7gyBgURctpplH/xBTF33IExJKTZelckRnHR+l18W1TG6dHNdykJjvQjtW8kG//IYchJqZh8jK0ZuhBCiPbnLte4T3cUcCOu+Q3EodlZWMUFby2lss7GnMuHM6yTJ9NbeF+9vZ4Z62Ywc8NMAs2BPDLyEU7venq7GudpKy6m/KuvKP/8f9Rv3Yoymwk89liCTzmZwLFj5UmnEMKtv50FVyl1Pc6xKvmAw3VaAx1rcalDEDb5PMo+/piyeZ8RcdmlzdaZEBFMqp8Pb2UWuU1AAQaMT+J/64rYujSP3mNkSRYhhDjCzAdO+5s6P7VFIIe7nYVVnDfjT+wOzQdXHkWfhOa/QG5vVuSt4OElD7O7YjendT6N24feTpilfYyV1HY7VQsWUPbpPKrmzwebDUvfvsQ8cD8hJ5+MMTTU2yEKIToAT5ZhuRFI01oXt3Yw7ZWlZ0/8Bg+mdO5cwi++CGVs+uTSoBSXJUTyQHoOaypqGBDs32xb8d1DiUwKZO0vmfQaLUuyCCHEkURr3fy3mKJFNU4+3/+/o0iLDfJ2SH+roqGC51c8z7zt80gITOCNCW8wMqF9zEllKy2l7NNPKfvwI6zZ2RgjIwm/6CJCzjgdS/fu3g5PCNHBeNKXIxMob+1A2guHduAcirO/8AsvxJqdTdVvv7m99ry4CAKMBt7KKnRbRynFgPFJlObVkLGppEViFkIIIYTTzsIqJr/ZsZLPBVkLOON/Z/B5+udc0vsSPpv4mdeTT601tWvXknPnnaQffQyFzz2POSGBhGnT6Pbbr8Tccbskn0KIf+Vg64De4jrcCfyulPoGqN9brrV+vpVja3M7y3dy4683cu9R93JU3FH7lQVNGI8pPo6S2XMImjCh2euDTUbOjQ1nTk4xD3SJJ9rX3Gy9rkNiWPz5Dtb+kklKb1loWQghhGgJu4qqmfzmn9jsHSP5rLHW8OyKZ/lk2yd0C+vGK+NfoVdEL6/GpG02Kn/6ieKZ71C3fj2GgABCJ00i7PzJ+Hbt6tXYhBCHh4M9AQ1ybRk4x6P4NDoX2Pqhtb2EwAQqGiqYu2lukzJlMhE+ZQo1y5ZRt2WL2zYuT4zEqjVzctz3WDaaDPQ9OpHMTSUUZ1e1SOxCCCE6DtfkfqIF7Sqq5rwZS7B2kORzTcEaJn01iU+3fcqlvS/lw1M+9Gry6aitpWTuXHaceBLZN9+CvaKcmAfup+v8+cQ+cL8kn0KIFnOwWXAfbu68UsrC30+g0CH5Gn05p/s5zFg3g4yKDJKDk/crD500icJXXqVk9hzin2h+SZYu/haODQ9iVk4R16dE42NoPsfvPTaeld/tZu2vmRx7Yc8Wfy9CCCHate1KqXnAO1rrTd4OpqPb3Sj5/KCdJ59Wu5Xpa6fz9oa3ifWPZeYJMxkSO8Rr8dhKSih9by6l77+PvawMvwEDiL7zDoKOPbbZOS+EEOJQeTSft1LKqJQ6WSk1B9gNnNuqUXnRuWnnYjQYeX/L+03KjCEhhJw+kYqvv8ZW4n785v8lRlHQYOPLgjK3dfwCfUg7KpZtS/OpqWhoidCFEEJ0HP2BbcBbSqk/lVJXKqWCvR1UR5RTVsuUt5Z2iORzT8Uepnw7hTfXv8nELhOZN3Ge15JPW3Ex+c88Q/r4CRS99hp+gweT8v5cUj/8gODjjpPkUwjRag6agCqljlZKvYEz6bwcOA7orLWe1AaxeUWUfxQnpp7I/9L/R1VD0+6x4RdeiG5ooOyjj9y2cXR4EN38fXkjs7DZCY326j8+CbvNwcY/slskdiGEEB2D1rpSa/2m1nokcCfO5c5ylVKzlFLS19FDxVX1XPj2Uipqrcy+bFi7Tj6/3fkt//nqP+RW5zJt3DQeHfUogT5tP6LJVlJCwbPPkj7hOEreeZeg4ybQ+dtvSHr1FfwHDWrzeIQQRx63CahSKgt4ElgI9NJanw3Uaq1r2io4b7mg5wVUW6v5X/r/mpT5dulCwOjRlL7/Abqh+SeXBqWYmhTN+qpaFpW5H+MZFhtASp8I1v+ehc1qb6nwhRBCtHOunkUTlVKfA9OA54DOwFfAt96MraOorLNyyTvLySqt5a2Lh7TbdT7rbHU8vORh7vzjTtLC0/jktE8Ynzy+zePYl3iOn0DxzHeciefXX5Pw9NP4du7c5vEIIdoXrTUOrbFrfdAHaC3hYOuAfgqcgbO7rV0p9QXQutG0E70jezMweiBzN89lco/JGA37d0MJv+hCMq+8iooffiTktFObbePsmDD+uyuX1zIKGB3m/hvZ/uOT+PLFNWxfnk/PkfEt+j6EEEK0W9uB34BntNaLG53/VCk11ksxdRh1VjtXzFrB5twK3rxoCMM7t88Z5XeV7+K2+bexrXQbl/e5nGsHXovZ0PwM+a3FUVNDyaxZFL/5Fo66OoJPOYXIq6dK0ik6LK01Vq1pcGgatMbqcL62ul7bXGU21zmbq37j13bXObsGm/7rnE3j2u8991e5o1GZA/Zds/e8HfZ/rcGB87UD12vXtY5G5Vqz75xzD7rRdY5G5fDXsd5X11lfu44d+x2D87Jm6rvKnK/399vQNHoG+rXan+HBJiG6SSl1M3AMMBl4GghRSv0H+FZrfVhP3zql5xRum38bC7IWMC553H5lAaNH45OaSsmcOW4TUIvRwOUJkfx3Vx6bq2rd/iEm9ggjIiGAtb9k0mNEHEqpFn8vQggh2p2LtNYLG59QSo3SWi/SWt/graA6AqvdwbVzV7FsdwnTzh3AuB7R3g6pWd/u/JaHlzyMj9GHV8e/ytjEtv1eQdvtlH/+OYUvvYytoICg444j6uabJPEULcrq0NTY7VTbHdQ6HNTYHdTaHdS6ztc6NHV2BzUOB3V2B3UOTZ3DQZ3DQb3ruN5Vp96hqXf8tW/QmnqHpsHhoMGhqW+UbLYVA2BSCqNSGJXz2KDAqJTzGPaVGZXCgMKknL0hDQoMNC5znjcBRoNhX7lSYHQdGxQoVz3FX9cB+9U3NKqjAOU6NgBqbxs4D/bW2a9+o2tUo2sUznORPgd7RnnoDtq6dj5//Q34TSllBk7AmYy+BkS2amReNj55PLEBsczdPLdJAqoMBsIuvID8Rx+jds0a/AYMaLaNixIieXFPAa9nFvJiz+Rm6yil6D8+iV9nbyFrSylJPcNb+q0IIYRof14CDhxw93Iz50QjDofm9k/W8suWAh47ow+nD0jwdkhN2Bw2nlvxHO9tfo+B0QN5euzTxAbEttn9tdZUL1hAwbPPUr89Hb8BA0iY9oKM7xT7OLSmyu6gzGqjwman0u6g0mbf77jSZqfKdVxtd1Blt1Nlc+5r7M5Es9ruTBL/KR+lsBgVFoMBX4MBi0HhazDga1D4GBShZiM+BhO+BgM+SrnOG/AxKHyUcu0NmF31zUph3rt3lZvUX+f3HptcdUz7NvYdG1119yaZRlfiKA+GWofH6a3W2gp8DXytlGq9Z7LthMlgYnKPybyw8gW2lmwlLTxtv/LQM86gcNqLlMyeQ4KbBDTcbGJyXDhzcoq5u3Mcsb7Nd7vpNjSGJZ/vYM3PGZKACiHEYUwpNQIYCUQppW5pVBQMyLSjf+PRbzbxvzU53H5CGhccleLtcJooqyvjtvm3sTRvKRf0vIBbhtzSpl1u69PTyXv8cWqW/Ik5JZmEF18k6Pjj5B/RhymtNTV2B0VWG8VWG8UNNkptdkqtNkqtrr3rdbnVTpkryayw2XH8TdtmpQg0GggwGQg0Ggk0GggxGYm3mAkwGggwGgkwGvA3Gvbt/Q3OvZ/RgJ/r2GJwvnbunUmnUf57POK5TUCVUjO01lc2V6a1rv27OoeDs7udzfQ103l/y/s8PHL/ZVENAQGETppEyZw5ROflYY5t/tvNq5KieDe7iLeyCrmvS/NjPE1mI/3GJbH0y50UZVUSmdh+Z/ETQghxSHyAQJyfv41/2VcAh+0M8y3h7YW7eGfRbi4b1Ylrjuni7XCa2Fa6jRt+vYGCmgIeHfUoZ3Q9o83uba+qpujVVymZMwdDQAAx995L2HnnosxtO95UtIxau4P8Bit59VbyG6wUNtgobLBR4DouaLBS3OBMOusczT+BNAChZiNhJhNhZiNRPma6BVgIMRkJMRkJNhkJMRsJNjqPg0xGgk0G57HRiMXo0UqNQvwrB3sCeoZSqu4g5QoYd5DyDi/EN4SJXSbyv/T/ceOgGwm37P90MmzKFEpmzaJ07lyib7212TZS/Hw5JSqU2TlF3JQSQ6Cp+S+4+xydwKof9rDqhwyOv7x3i78XIYQQ3qe1ng/MV0q9q7Xe4+14Oorv1ufy2DebOKlPLPed0rPdPdH7ac9P3LvwXgLNgbx74rv0i+rXJvfVWlPx9TcUPP00tqIiQidNIuqWmzGFhbXJ/cU/V2N3kFPfQHadlez6BrLrGsipt5JbZyXPlXSW2ZqujGBUEGk2Ee1jJtLHRFqAhQizybn5mIh0HYebnQlnsMmIoZ39PRFir4MloLd7cP0fLRVIezWl5xQ+3vYxn277lCv77f+w1ycxgaDjj6f0w4+IuGoqxsCAZtu4OimKrwrLeD+3mCuTmp8swRJgpveYeNb+kslRp3cmOPKw7+UshBBHHKXUNK31TcArSqkmjy601hPbPqr2beWeUm76aA0Dk0J54dwBGAzt5x/VDu1g+trpvL72dfpF9uOFcS8Q7d82kyLVbdtG/qOPUbN8OZa+fUl89RX8+rVN4ivcszk0WfUN7KltIKOu3rVvIMP1uuSAZfcUEO1jIt7Xh05+vowIDSTWx0ysr3OL9jER5WMm3CwJpTh8HGwW3FltGUh71Tm0MyPjR/LRlo+4tM+lTcZyRFx+GZXff0/Zp58QccklzbYxKCSAo0ICeCOzkEsTojC7+fDsPz6Zdb9lseanDMZOTmu2jhBCiA5tjmv/rFej6CB2F1Xzf7NXEBti4c2LhmAxt59hsvX2eu5beB/f7/6eM7qewX1H3Yev0bfV7+toaKBo+nSK33wLY2AgsY88TOikSSiDdJlsK1pr8hqsbK+uZ0dtPbtq6tnp2mfUNew3S6tZKRItZpItzh5xSRYf4n3NJFh8SHAlmT7yZyeOMK07x+5h4oKeF3DNL9fw4+4fOaXzKfuV+fXti//QoZTMmk34lClux1tckxzNRet38XVhGWfGNN81JjDMl7ThsWxanMuQUzrhH+zT4u9FCCGE92itV7oOVwC1WmsHgFLKCLR+9tKBlFQ3cOm7y9Fa8+6lw4gIbD8/nvL6cm749QZWFazi5sE3c2nvS9ukW3DN6tXk3nc/DTt2EHLGGUTfeYd0t21FWmty6q1sqqplW00926vr2FZTx/bqOirtf03j42cw0MnPhx6BFk6JCqGTvy8pFl9S/HyI9TXLpDtCHEASUA+MShhF55DOvLvxXU7udHKTD5nwyy8ja+rVVHz3HSETm+89NSEimK7+vkzPKOCM6FC3H1QDj09m85Jc1v+exfCJslaXEEIcpn4BJgB719T2A37EOUPuEa/Oauf/Zq8gu6yWD/5vOJ0imx/i4g1ZlVlc/fPVZFdl88zYZzix04mtfk9HTQ0F06ZROuc9THGxJL05g8AxY1r9vkeSWruDzVW1bKquY1NVLZuqatlcXUd5o/GY0T4muvlbmBQbTjd/X7oHWOji70usj7ndjUsWoj372wRUKdVXa72+LYJprwzKwCW9L+GBxQ/wZ+6fjIgfsV954Nix+HbrSvHbMwk+7bRmfwkZlGJqUjS3bc1kUVkVo8Oan+k2LDaAzv2jWP97FgOPT8bHIt8RCCHEYciitd6bfKK1rlJK+XszoPZCa81tn6xlVUYpr54/iMEp7Wd5so1FG7nml2uwOWy8efybDI4Z3Or3rF6yhNz7H8CalUXY+ecTdcstbuecEJ6pszvYVF3L2spa1lXWsLaihq01ddhdPWcDjAZ6BfhxenQovQL96BlgIS3AQqhZ/k0mREvw5G/Sa0opX+BdYK7Wurx1Q2qfTul8Ci+vfpl3NrzTJAFVBgPhl15G7j33UL1oMYGjRzXbxqSYMJ7alcsrewrcJqAAA09IZueaQjYtzGHAhOQWfR9CCCHahWql1CCt9SoApdRgoNbLMbULr/6WztfrcrnzxB6c3DfO2+Hs83vm79yx4A7CLeG8NuE1Ooe0bi8lR10dBc89T+mcOfikpJDy3hz8hwxp1XsejrTWZNVbWVlezYqKalaU17ChqgabK9kMNxvpH+TP8ZEh9Avyo3egH0kWH5nwR4hW9LcJqNZ6jFKqG3AZsFIptQx4R2v9U6tH1474GH2Y0nMK01ZNY0vJFnqE99ivPOTUUyicNo2SmW+7TUAtRgNXJkbx+M5cVlfUMDC4+S+7YzuFkNA9lDU/Z9L3mESMJhmcLoQQh5mbgE+UUjk4J8KMBc71akTtwI8b83j2x22cMSCeqUe3n2Eon2//nIeWPETP8J68Mv4VIv0iW/V+dVu3knPbbdRvTyfswguJvvUWDBZLq97zcOHQms3VdSwpq2JJWRUryqvJb7ABzrGaA4L9uDopmgHB/vQP8ifBV7rPCtHWPOpLoLXerpS6D+ekCS8BA5Xzb+s9WuvPWjPA9uSctHOYsW4G72x4h6fGPrVfmfLxIfyiCyl49jlqN27Er3fza3lekhDJKxkFvLQnn3f6dnJ7r4EnpPD1y2vZtiyPniPjW/R9CCGE8C6t9XKlVA9g75TnW7XWVm/G5G1b8yq5+aM19EsM4b9n92s3ScHsjbN5ZsUzjIofxfPHPI+/ufV6SmuHg5JZsyl8/nkMoSEkvfkmgWNGt9r9DgcOrdlUVcvisiqWlFXzZ1kVpa5xm4kWM6PCghgS7M+QkAB6BfhhakfL+AhxpPJkDGg/4FLgFOAn4DSt9SqlVDywBDhiEtBgn2AmdZ/E3M1zuXHQjcQH7p8Yhp57LkXTX6dk5jskPNf8DPtBJiOXJUTywp58tlTX0iOg+fU+k3uFE5EYyOofM+hxVBxKfmEKIcThJg3oBViAQUoptNazvRyTV5RWN/B/s1fg72tixoXtY7kVrTXT105n+trpHJdyHE+NeQqzsfmZ7luCNS+PnLvvpmbJnwSOH0/co49gCm8/41/bk7x6K/NLKvm9pIL5pZX71tZMsfhwYlQII0IDGREaSJJFVhMQoj3ypG/ny8AqoL/W+tq941W01jnAfa0ZXHt0Ya8LUSjmbJrTpMwYFETouedS8f33WLOz3bbxf0lR+BsNvLynwG0dpRSDTkimNK+GXeuKWiR2IYQQ7YNS6kGcn68vA+OAp4Hmp1E/zFntDq6Zu4q88jreuHAwsSHe72qqtebp5U8zfe10zuh6Bk+PfbpVk8/K339n1+lnULtmLbGPPkLiKy9L8tmI1aFZVFrJQ+nZjFu2hQGLN3Ljlgz+KK3i2PBgXuqZzMoRvVg6ohcv9EjmP7HhknwK0Y55koB+rrWeo7XeNzmCUupGAK110yzsMBcbEMtJnU5i3vZ5lNc3nY8p/KILQSmKZ81y20a42cRF8RF8nl/K7tp6t/W6DoomONLCyu/3oBstaiyEEKLDmwSMB/K01pcC/YEQ74bkHY99vYklO4t54qy+DEr2/pqWdoedBxc/yHub3+OCnhfw8MiHMRlaZ/ZTbbNR8PwLZE29GlN8PJ0//4ywc85pN92PvanCZud/+aVcs2kPfRZt4Ow1O5iZVUSkj4n7Osfxy9A01o3qzSu9UvhPbDgJknAK0WF4koBe1My5S1o4jg7lkj6XUGur5aOtHzUpM8fGEnLKKZR98in2sjK3bVydFI3ZoHjlIE9BDUYDg05IoWB3BZmbSloidCGEEO1DrdbaAdiUUsFAAZDk5Zja3IfLMpi1ZA9XjO7EpMGJ3g4Hq93KHQvu4PP0z5nafyp3DL0Dg2qdiQBthYVkXHY5xTNmEHrOOaR+8D4+qamtcq+OorDByrvZRfxnTTq9Fq5n6qY9zC+p5KTIEN7pk8rmMX34ZEBXrkuJoXegn8xUK0QH5fYrPaXUZOB8oJNS6stGRUHAEZ0NdQ/rzqiEUczdPJeLe1+Mr9F3v/Lwyy6j/IsvKP3gAyKvvrrZNmJ8zZwXG877uSXckhpDvJtv7nqMiGPFt7tZ/s0uknqFy7eiQghxeFihlAoF3gRWAlU451U4YqzLKuOBLzYyplskd53U4+8vaGVWu5Vb59/Kb5m/cduQ27i498Wtdq/qZcvIvvVWHJVVxP33SULPOKPV7tXeFTXY+LawjC8LylhcVoUD6Orvy9SkaE6IDGFQsD9G+bePEIeVg/UpWQzkApHAc43OVwLrWjOojuDS3pdyxY9X8OWOLzmn+zn7lVnSuhN49NGUzJpN+EUXYQhofsHoa5OjeS+3mOmZBTzarflvfo0mA4NPTGH+B9vI2lpKUg8ZEyKEEB2d1voa1+HrSqnvgWCt9RHz2VpW08DV760iKsiXF88biMno3eXGrA4rty+4nd8yf+PuYXdzfs/zW+U+WmuK33qLwhem4ZOcTPJbb2NJ694q92rPKm12vios4/P8UhaV/pV03pgSw8ToUHoEWOQLd9EuaK3RDo3DrnHs3dtd5xz7l+13zqHRDufM1g4H6Mbnteu13ltH77uP1uBwaNDsd25fXf3X6311NKAbtQvOsn3Hrmv5q96+a/nrGP1XnSEndyIwzLf5H0oLcJuAaq33AHuAEa129w5sWOwwekX0YvbG2ZzV9SyMhv1n7Iu8eiq7z5tM6UcfE3HZpc22kezny9kxYbyXU8yNKbFE+jT/x9FzZDwrvtvDim92SwIqhBCHCaXUWcBonJ/5CzlCvtx1ODQ3fbSGgso6Ppk6kvAA747dszqs3LngTn7J+IW7ht3Vasmno7aWnHvuofK77wk66UTiHn0MY2DzX1Afjuxas7C0io/zSvi2sIxah6aTnw83uJLOnpJ0HtG0Q2OzOrA12Pft7TYHtgYHNqsDu2uz2ezYrRq7zXXO5vjr2K73vXa4XjvsDuy25vd7k0m7be+xo9lEsyNSyvk/zr1zclMFYHDum5Q7/4e9fwX7HZsEeCEBVUot1FqPVkpV4kqI9xYBWmsd3GpRdQBKKS7tfem+b0wnpEzYr9xvwAACRo6g+J2ZhJ0/2e0C0jekxPBJXilvZhVyd+e4ZusYzQYGnZDMHx9tJ3tbKQndvT9JgxBCiH9PKfUa0BX4wHXqKqXUBK31tR5cGwq8BfTB+fl8mdZ6yQF1jgGmAWagSGt9tOv8zcAVruvWA5dqresO/R157tXf0vl9ayGPnt6bAUmhbXnrJmwOG3f/cTc/7fmJ24fczpSeU1rlPtbcXLKuvY66zZuJvu1Wwi+//IhJtnbU1PFBbgnz8kvJrbcSYjJyTmw458aGMyjY/4j5ORxO7HYH1lo7DXU25+Y6ttbZsda7juvt+15b6+1YG+zYXHtrvd2ZWDa4zjc4E8hDoQwKo1FhNBswmAzOY5Pr2OQ6NioMRgNmX+feaFT7zhkOPDY4Xyujs11lcJXtPe/aGwyu48Z7ozOx23tsUM4y5+Y6v/ecYt91uK7Zt8dZX6m/ytXeBNJwQHLZKKHsCH+nDvYEdLRrH9R24XQsE1ImkBiYyJvr32R88vgmf+ARU6eScdHFlM2bR/iU5j/UuvpbODUqlJlZhVyTFEWIufk/kl6j4ln53R6Wf7NbElAhhOj4jgV6atcU50qpWcBGD699Efheaz1JKeUD+DcudCWorwEnaq0zlFLRrvMJwA1AL611rVLqY+A84N0WeD8eWbi9iOd/3sbpA+K54KiUtrpts2wOG/csvIcfdv/AbUNu46Lezc25eOhqVq8m6/ob0LW1JE5/jaBjjmmV+7QnDQ4H3xdVMDu7iIVlVRgVjAsP5uGuCRwfEYzFy12uBditDuqqrdRVW6mvsVJXbXMeV9uoq7FSX2OjocZKfa3Nedxob/MwWTSZDZh8jZhdm8nHiNnXQGCor/O8j9FZx8eIyWf/vdFkcB6bnXWMrs1kNmA0uV432jsTNtFR/O284kqpo4CNWutK1+sgnB9eS1s7uPbOZDBxRd8reGjJQyzKWcTohNH7lfsPHYrf4MEUv/W2c1p1n+a7Gd2YEs1XhWXMzC7i5tTY5u/lY2Tg8cks+jSdnPQy4ruGtvTbEUII0XbSgWScQ13AOQNu+t9dpJQKAcbimo1ea90ANBxQ7XzgM611hqtO4+nWTYCfUsqKM3HN+fdv4Z/JLa/lhg9X0y06kCfP6uvVb+ntDjv3LbqP73Z9x82Db261CYfKPv8feQ88gCkujqR338G3a9dWuU97kVnXwNycYubmFlPYYCPRYubuTnFMjgsn2rf11lEVzq7ttZUN1FQ0UFvR4Dq2UlPpel3VQF2VM+GsrbJirbO7bctgUPj4m/D1N+Hr59wHhlnw9Tfh42fC18+I2eIs87GYMPsZ8fE1YbYY8bE4y8w+BgzyRYNww5OFraYDgxq9rm7m3GGhpsHG+0szOH1AAlFBnvV7nthlIq+ve5031r7BqPhR+32gKqWInDqVzP/7P8q//JLQSZOabaNPkD/HRQTzRmYhVyRGEWQyNluv99gEVv2whxXf7mbiDQP+8fsTQgjRbgQBm5VSy3B2hx2Gc2bcLwG01hPdXNcJKATeUUr1xzmD7o1a6+pGdboDZqXU7677vKi1nq21zlZKPQtkALXAj1rrH5u7iVLqSuBKgOTk5EN7p0CDzcG1c1dRb7Uz/YLB+LuZ86AtaK155M9H+GbnN9w46EYu63NZy9/DbqfguecpmTkT/6OOIuGF5zGFHZ69l7TWLC6rYkZWIT8WVaCA4yKDuSg+kmPCg2QG2xbQUGejqrSe6tJ6KkvrqC6rp6qsnpryBqrL6qkpr6em0trseEWjyYBfsBm/QB/8gsyExvrjF+CDJdCEJdAHS4AZ3wATFn/XPsCM2dfYIbpxio7Lk08AtbeLEIDW2qGU8t4nRyvKr6jniW83U1hZz90n9/ToGrPRzGV9LuOJpU+wPG85w+KG7VceMHoUlj59KJrxJiFnnIEyNf+ju71TLMev2MabWYXc4uYpqNnHyIAJySz5fAd5O8uJ7XxErlkuhBCHgwf+5XUmnF8AX6+1XqqUehG4C7j/gDqDgfGAH7BEKfUnzsT1dJxJbBnwiVLqAq31ewfeRGs9A5gBMGTIkEOehePJ7zazKqOMV88fRJeowENt7pC8sOoFPtv+GVf1u4or+l7R4u076urIuf0OKn/6ibDzzyfm7rtQ5sPv6V+Dw8EXBWXMyCxkfVUt4WYjN6bEcEF8BIlulpYTzaurtlJRVEtlcR0VxXVUFtdRWVxLRXEdVaX1NNTamlzjF2TGP8SXgBAfIhMD8Q/xISDEF/8QH/yDfPAL8sE/2AezRZJJ0f54kkjuVErdgPOpJ8A1wM7WC8l7OkUGMLF/PHP+3MNVR3fxeGa+s7qdxYx1M5ixbkaTBFQpReTVU8m69joqvvuOkNNOa7aNfkH+nBQZwuuZBVyeEOl2LGifoxNY/WMGK77dzanX9f9nb1AIIUS7oLWe/y8vzQKyGg2D+RRnAnpgnWLXU9FqpdQCYO8Hxi6tdSGAUuozYCTQJAFtSQ6HpqrOxmWjOnFKv+Yn22srMzfM5J0N73Be2nlcO+Bv53v6x+xlZWRecy21q1cTc8/dhF/UOuNKvanUamNOTjFvZxWS32Cjm78vz6UlcVZMGH7S5dKtumorpXk1lBfUUF5Y+9e+sJb6mv0TTLPFSHCEH8GRfiR0CyUw3EJgmK9rsxAQ4ovRLD9r0XF5koBOBV4C7sPZTegXXN1yDkfXHduVL9bm8PbCndx+gmcLY/safbmk9yU8u+JZ1hSsYUD0gP3KA8eNw7d7d4pef4PgU05BGZr/pXFbp1i+W17OG1mF3NGp+Q9pH4uJ/hOSWPrFTgr2VBCdckRPRiyEEB2Sa36Fl4GegA9gBKr/boZ5rXWeUipTKZWmtd6K8ynnpgOqfQG84uqt5AMMB14AAoCjlFL+OLvgjgdWtODbapbBoHjmnP7Ote28aN62ebyw8gVO6nQSdw+/u8WfCjVkZZN55ZVYMzNJeOF5gk88sUXb97bCBitvZBbyTnYR1XYHx4QF8UKPKMaFB8kTNhetNVWl9ZTkVFOaV01pXg2ledWU5ddQW2ndV08pCIqwEBLlR7chMQRH+RES6UdQhIWgCOdYS/mZisPZ3yagrskLzmuDWNqFrtFBnNw3jlmL93DlmC6E+HvWbeac7ufw9vq3eWPdG0yfMH2/MmUwEDn1KrJvuZXKn34m+ITjm22jd6Afp0aFMCOzkP9LjCLMzVPQfscksuanDJZ/vYtTrpWnoEII0QG9gvOz9RNgCHARzrGbnrgemOuaAXcncKlSaiqA1vp1rfVmpdT3ONcVdQBvaa03ACilPgVWATZgNa5utm3Bm7NU/rTnJx758xFGJYzi8VGPY1At+/SobvNmMq68El3fQPLMt/EfOrRF2/emvHor0zMKmJ1TRJ1Dc3p0KDekxNAr0M/boXlVfa2N4qxKirOrKc6uoiSnmuKc6v26y/oFmQmN8adT/yjCYv0JjfEnNNqfoAgLRpM8wRRHLk9mwbUAlwO9gX2LWWqtW37Ufjtx/bFd+WZdLu8s3sVNEzz794C/2Z+Lel/Ei6teZGPxRnpH9N6vPOiEE/BJfZmi118n6Pjj3H6zdWtqLN8UlvN6pvt1QX38TAyYkMTSL3fJWFAhhOigtNbpSimj1tqOc1Kh1cDdHly3BmfS2tjrB9R5BnimmWsfBB7810F3QEtylnDngjvpF9mPF455AbOxZcdjVi1aRPb1N2AICSFl5kx8u3Vr0fa9JbuugZczCvggtxib1pwdE8YNKTF09W9+XfPDWW1VA4UZlRRmVFKUWUVhRiXlhbX7yn39TYTHB9B9WAwRCYGExwcQHhuAJfDwG/srREvwpAvuHGALcALwCDAF2NyaQXlbj9hgju8Vw8yFu7h8dCeCLJ79Ajkv7TxmbpjJjLUzePHYF/crU0YjEVddRe7dd1P1++8EjRvXbBs9A/04PTqUN7MKuTIxigg3MwX2OzaJdb9lsfTLnZx+08B/9gaFEEJ4W43rCeYapdTTQC4gj0Ra2IaiDdz4242khqTyyvhX8DO17FO7im+/JfuOO/Ht3JmkN2dgjolp0fa9objBxkt78nknuwgNnBsbzvUp0aT4ebY6QEdntzoozKwkf1cF+bsryN9VTkVR3b7yoAgLUclB9BgRR2RSIJGJQQSE+kiXWSH+AU8S0K5a63OUUqdrrWcppd4H/mjtwLzt+mO78eOmfGYv2cO14zxbtyvQJ5ALel7A9LXT2Va6je5h+z89DTn1FIpefZWiV18j8JhjDvoU9MuCMl7LLOD+LvHN1vGxmBh0QgqLPk0na0sJiT3C/9kbFEII4U0X4kw4rwNuxrkO6Nlejegwk1WZxbW/XEu4JZw3JrxBiG/L9hYqm/cZufffj9+ggSRNn44xKKhF229r1TY7r2cWMj2zgBq7g3Pjwrk1Nfawn9G2rspKTnoZOell5KaXU5RZicPuHK8cEOpLTKdgeo9JIDoliMikICwB8lRTiEPlSQK6d9R0mVKqD5AHRLdeSO1D38QQju0RzVt/7OSSkakE+Hq28syUnlOYtXEWb617i6ePfnq/MmU2E3n11eTeey9Vv/5K0PjxzbbRLcDCWTFhzMwqYmpSFFE+zf+y63N0Amt+zuTPL3ZydlqYfPsmhBAdRxHQoLWuAx5WShmBI+MRUxsory/n2l+uxeaw8dqE14jyj2rR9kvmvEf+448TMGoUia+8jMGv446HrHc4mJNTzAu78ym22jglKoQ7O8XRPeDw7GpbU9FA1tYScraXk5teRkmOcwldo8lAdGoQ/Y9NIqZzMDGpIQSGyV9JIVqDJ1nVDKVUGM41xr4EAtl/vbHD1vXHduXM1xbznmtZFk+E+IYwucdkZm6YydUDrqZTSKf9y0+fSPGMGRS++BKB48a5nRH3ltRYPi8o5ZWMAh7umtBsHZPZyNBTUvl97lb2rC8mtV/kP3uDQgghvOUXYAJQ5XrtB/yIc1kUcQisdis3/34zGZUZzDhuBp1DOrdo+0Uz3qTw+ecJHD+ehBeex+DTMZ8Qaq35vqich9Jz2FPXwKjQQO7tHMegkABvh9aiGups5GwvI2tLKVlbSijOdiacZouRuC4hdBsaQ3zXUKJTgzCZjV6OVogjgyez4L7lOpwPtOxv8XZuYHIYY7pF8uYfO7loRCp+Pp79Yrqw14XM3TyXGetm8OSYJ/crUyYTkdddR87tt1P5ww8En3RSs2109vdlUkw4s7KLuCYpmhjf5p+C9hgZx6ofM/jzi52k9IlAeXGWQSGEEB6zaK33Jp9oratcy6OIQ6C15sHFD7I8bzlPjH6CobEtNxut1prCF1+k+PU3CD71VOKffAJl7pjdMTdX1fJAejZ/lFaRFmDhg36dOeYwWU5Fa01JTjW71xexZ0Mx+TsrcDg0RpOBuK4hjDgzlsQeYUQmBXl1ZmYhjmR/O+GBUipCKfWyUmqVUmqlUmqaUiqiLYJrD24Y342iqgbeX5bh8TURfhFM7jmZb3Z+w46yHU3Kg08+Cd9uXSl86WW0zdZMC063pMZg1ZqX9uS7rWM0Ghh2aieKs6tIX1XgcYxCCCG8qlopNWjvC6XUYJxrc4pD8Pra1/lq51dcO+BaTutyWou1q7Um/8knKX79DULPmUT8U//tkMlnqdXGPduymLBiK+sra3miWwK/DEljXERwh04+bQ12dq8vYv77W5l972I+fHQZf/5vJ9Z6OwOOS2LijQO44vkxnH7TQAadkEJ0SrAkn0J4kSddcD8EFvDX5AhTgI9wdh067A1NDeeozuG8MX8HU4YnY/Gwe8ZlvS/j460f8+qaV3n+mOf3K1NGI5HXXU/2jTdS/vXXhJ5xRrNtpPj5Mjk2gtk5xVyZFOV2BrpuQ2NY9cMeln21iy4DozAYZSJFIYRo524CPlFK5QAKiAXO9WpEHdyXO77ktbWvcXqX07mq31Ut1q7WmvxHH6P0/fcJv/giou+6q8Mla3atmZNTzFM7c6mw27k4PpLbOsUS7ma98Y6gvtbG7nVF7FxdSMbGYmxWByZfI0k9whh6cidS+kQQECpjOIVojzz5zROntX600evHlFIefUgqpU4EXgSMOBfC/u8B5b7AbGAwUAycq7XerZQaxl+LYyvgIa31557cszXccGw3zn9rKR8tz+TikakeXRNqCeXCXhfy+trX2Vy8mZ4RPfcrDzpuAr69elL06muEnHKK229Sb+0Uw7z8Ep7elcervVKarWMwKIaf1pnv3ljPlj/z6DWq+ZlzhRBCtA9a6+VKqR5AmuvUVq219WDXCPeW5y3nwcUPMjx2OA+OeLDFEkStNQX//a8z+bzsMqJvv63DJZ+bqmq5bWsmqypqGB0ayKPdEugZ2DEnTaqrsrJrXSE7VhWSuaUEh00TEOJDz5FxpPaPJKFbGEazfAkvRHvnyd/SH5VS5ymlDK7tP8APf3eRa0a/V4GTgF7AZKVUrwOqXQ6Uaq27Ai8AT7nObwCGaK0HACcCbyilvPY13YguEQzrFM4rv6VT22D3+LoLe11IsE8wr655tUmZMhiIuv56rJmZlH3uPreO8/Xh/xKjmJdfyvrKGrf1Og2IJDoliOXf7MJudXgcoxBCCO/QWlu11htcmySf/1JWZRY3/34zyUHJPD/ueczGlukaq7Wm4NlnKZk1m7CLLuxwyWeN3cFjO3I4fsVW9tQ28FqvFD4Z0KXDJZ/WejvbluXx9StrmXnHQn6dvYWSnGr6HpPI2XcM5uInRzF2chrJvSIk+RSig/Dkb+r/Ae8DDa7tQ+AqpVSlUqriINcNA9K11ju11nuvO/2AOqcDs1zHnwLjlVJKa12jtd47ONICaM/eTutQSnH7CWkUVtYza8luj68L9gnm0j6XMj9rPmsL1zYpDzzmGCz9+1E0/XUcDQ1u27k2OZowk5EnduYeNMbhp3emqqSejQtzPI5RCCGE6KhqrDXc8NsNOLSDl499mWCf4BZpV2tN4bQXKXl7JmHnTybm7rs7VPL5W3EFxyzbwisZBfwnNpyFw3twVkzHWa7NYXeQsamYn9/ZxMw7FvLTzE0UZ1cxYEIS59w9hAsfH8HoSd2I7Rwiky8K0QH9bQKqtQ7SWhu01ibXZnCdC9JaH+w3fQKQ2eh1lutcs3VcCWc5EAGglBqulNoIrAemNkpI91FKXamUWqGUWlFYWPh3b+WQDE0N5+juUbw+fwcVdZ5/UX1+j/MJt4Tz8uqXm5QppYi64QZsubmUffyJ2zZCzCZuTInht5JKFpZWuq2X1DOc+G6hrPh2Fw117ic3EkIIITo6h3Zw36L72FG2g2fHPktycHKLtV306msUv/EGoeecQ8x993WYxK3UauPaTXuYvG4nPgbF5wO78nyPZMI6yFjPsvwaFn+Wzqy7F/PVS2vZta6I7kOiOeOWgVz0+EhGntWV6JSOPWGSEMKzJ6AopcKUUsOUUmP3bq0dmNZ6qda6NzAUuFsp1WRFZK31DK31EK31kKioll1kujm3HZ9GWY2Vt//Y5fE1/mZ/ruh7BUtzl7Isd1mT8oCRI/EfMoSiN17HUet+AsRLEiJJ8DXz6I4ctG7+gbBSihFndaG20srqHz2ftVcIIUTbU0r1U0pNVEqdtXfzdkwdyYx1M/hpz0/cMvgWRia03PKpRa+/QdErrxBy5pnEPvyQ2/W625ufiso5etkWviwo49bUGH4ZmsaI0EBvh/W3bFY7W5fm8flzq5j74J+s+TmT6NRgTryyD5c+PYpxF/YkoXuYPOkU4jDiyTIsV+CcBfcH4GHX/iEP2s4Gkhq9TnSda7aOa4xnCM7JiPbRWm/GuVB3Hw/u2ar6JoZwYu9Y3l64i9Jq911mD/SftP8Q7R/NK2teaZI8KqWIuvEG7IVFlL7/gds2LEYDd3SKY21lLV8VlrutF9sphK5DolnzUwZVpfUexyiEEKLtKKVmAjNxzjB/mms71atBdSC/ZPzCq2te5bTOp3FRr4tarN2SWbMonDaN4ImnEffYox0i+ay02bl5SwYXrt9FhNnEd4O7cXunOHzbeeyledX88fE23r1rET+/s4mq0jqGn96Zi58YySnX9KPLoGhMHq48IIToWDz57XQjzqeQe7TW44CBQJkH1y0HuimlOimlfIDzgC8PqPMlcLHreBLwq9Zau64xASilUoAewG4P7tnqbjm+O9UNNl6f33R9T3d8jb5c1e8qVhesZlHOoibl/kOHEjBqFEUzZmAvd59cTooNo0eAhSd35mB1uB8We9TpXXA4NMu+2ulxjEIIIdrUUa4ePBdrrS91bZd5O6iOYHvpdu754x76RPThgREPtFh3zPIvvyT/yf8SdNxxxD/xBMrY/pOfhaWVHLNsCx/llnBDcjTfD+lOnyB/b4fllnZo9mwo5quX1vD+Q0vZMD+bpJ7hTLxxABc8MoIhJ6XK0ilCHAE8SUDrtNZ14Fw2RWu9hb+mjXfLNWbzOpxPTDcDH2utNyqlHlFKTXRVexuIUEqlA7cAd7nOjwbWKqXWAJ8D12iti/7B+2o13WOCOGNAArOW7Kagos7j687seiYJgQm8vPrlZrvQRt92K46KCorffNNtG0aluLdzHLtqG5ibW+y2XkiUH32PSWTzklyKsqo8jlEIIUSbWdLMzPDib5TXl3PDrzfgb/Zn2rhpWExNRuf8K1Xz55Nzz734Dx9O/LPPoEzte8xknd3BfduzmLRmBxaDga8GdeOeLvHt9qlnQ52Ndb9l8f7DS/n6lbUUZVUx7LROXPzkKE64og9JPcOli60QRxBPfsNmKaVCgf8BPymlSoE9njSutf4W+PaAcw80Oq4DzmnmujnAHE/u4Q03TejGV2tzeOW3dB453bOewWajman9p3L/ovv5NeNXxqeM36/c0rMnIRMnUjJ7DmHnn485vvm1PCdEBHNUSADP7c7jnJgwAkzNf0M75ORUtizJZcln6Zx2w4B/9P6EEEK0utk4k9A8oB7nmtdaa93Pu2G1X3aHnTsX3El+TT4zT5hJTEBMi7Rbs2oVWTfehKV7dxJffQWDb/t+Are9uo6rNu5mU3UdlydEcm+XePyN7TPxrC6vZ+3PmWz8I5uGOjvRqcEcd1kvugyKxmhqnzELIVqfJ7Pgnqm1LtNaPwTcj/Op5RmtHFe7lhIRwDlDkvhgWQaZJe7X5jzQqZ1PJTU4lRdXv4jN0XSW2qgbbwCg8MWX3LahlOL+LvEUNth4I8v9zL+WADODT0olY1MJmZtKPI5RCCFEm3gbuBDnWtd7x3+e5tWI2rkZ62ewKGcRdw27iwHRA1qkzbqt28icejXm2FiS3pyBMbD9TtqjtebD3GKOX7GNvAYrc/p24vHuie0y+SwvrOX397cy594lrPk5g+TeEZx9x2DOuWsI3YfFSvIpxBHOk0mIjlJKBQForecDv+McB3pEu2F8V5RSvPTLdo+vMRlM3DT4JnaV7+Kz7Z81KTfHxxN24QWUf/kldVu2uG1ncEgAp0SF8EpGAfn17peE6XdMIkERFhbNS8dxkDGjQggh2lyh1vpLrfUurfWevZu3g2qvluQsYfqa6Zza+VTO6d6k49S/0pCVTeYVV2CwWEh66y1MEREt0m5rqLLZuX5zBjdtyWRAsB+/DE3juMgQb4fVRHF2FT/N3MjcB/9k8+Ic0kbEcv7DR3HC//UhtnP7i1cI4R2efAU1HecstHtVuc4d0eJC/LhgeArzVmWxo9DzcZbHJh3LoOhBvLbmNaqt1U3KI6+8EkNwMAXPPnfQdu7vEo/NoXlyZ67bOkazgRFndKE4u4qtf+Z5HKMQQohWt1op9b5SarIsw3JwedV53LngTrqEduH+o+5vkUmHbMXFZF5+OY6GBpLeehOfxAOXKW8/1lfWcPyKbXyWX8rtqbF8OqArcb4+3g5rP8XZVXz3+no+fHQZO9cW0f/YRC56bCTjpvQgNLr9TookhPAOTxJQpRvNmqO1duDZ2NHD3jXjumAxG3nm+60eX6OU4tYht1JcV8y7G99tUm4MCSFy6lSqFy6kalHTGXP3SvXz5f+Sovgor4S1le67AXcdEk10ShBLv9yJtcHucZxCCCFalR/OsZ/HI8uwuGV1WLl9/u3U2et47pjn8DcfejLjqK0l8+prsObnkzR9Opbu3Vsg0tbxfk4xp6zcTq3DwbyBXbm1UyzGFpr1tyWU5dfw49sb+fCxZWRtKWHoKalc/MRIRk3qJrPZCiHc8iQB3amUukEpZXZtNwKyvgcQGejL1KO78P3GPFbs9nycZb+ofhyfcjyzNs6isKbpOM6wKedjTkig4Nnn0A6H23ZuSokhwmzige3Zzc6sC86Ed9SkrlSX1bP2l0yPYxRCCNF6Gi290niTZVgOMG3lNNYUruHhkQ/TOaTzIbenHQ5y7ryLuvXrSXj2GfwHtc8RRfUOB3dszeSWrZmMCA3k5yFpjAhtP+NTK4pq+WXWJt5/6E92rS1k0AkpXPj4SIad1hlLgNnb4Qkh2jlPEtCpwEggG8gChgNXtmZQHckVYzoRE+zL499udpsENuemQTdhdVh5dc2rTcoMPj5E3XQT9Zs3U/H1127bCDIZuatzHEvLq/mysMxtvfhuYXTqH8mq7/dQXV7vcYxCCCFah1LqHaXUzAM3b8fVnvy852dmb5rNeWnncVKnk1qkzYLnnqPyxx+JvvMOgiZMaJE2W1pufQNnrU5ndk4x1ydH837/zkT4tI+OZ7WVDSz4YCtzH/iT7csL6HdsEhc+NpIRZ3SRxFMI4TFPZsEt0Fqfp7WO1lrHaK3P11oXtEVwHYG/j4lbj0tjdUYZ3673fJxlUnAS56Wdx+fpn5Nemt6kPPiUk7H06kXBtGk46t0njZPjwukdaOHRHTnU2t0/LR15dlfsdgdLPt/hcYxCCCFazdfAN67tFyCY/edbOKJlVGRw/6L76RPRh9uH3t4ibZZ++BElb88k7PzJhF98cYu02dL+LKvi+BXb2Fxdx1u9U7m3S3y76HJrtzpY/WMG7z3wJxv+yKHnqDgueHQEo8/phn9w+xqPKoRo/2Qe7BZw9uBEesQG8dT3W6i3eT7O8qp+VxFgCuCFVS80KVMGA9F33I4tJ5fS9+a6bcOoFI90TSCrzsobme6/FwiN9mfAhGS2/plH3s5yj2MUQgjR8rTW8xptc4H/AEO8HVd70GBv4Lb5t2FQBp475jl8jIee4FT9sZC8Rx8l4OixxNxzT4tMZNSStNa8nVXIpDXpBBmNfDu4G6dGh3o7LLTWpK8s4P2H/2TxZ+nEdQnhvPuGccyUHgSGyRhPIcS/IwloCzAaFPec3JOMkhrmLPF8Fv1QSyiX972cBVkLWJa7rEl5wFFHEXD0WIqmT8dWXOy2nVFhQZwSFcJLGQXkHWRZlsEnphAQ4sOCD7fJsixCCNG+dAOivR1Ee/DSqpfYXLKZR0c9Snxg/CG3V7d1G9k33YRvt24kPPc8ytQ+urPuZXVo7tyWxb3bsxkXHsx3g7vRI8DP22FRsKeCz59bxQ9vbsDkY+S0G/pz6nX9CY8P8HZoQogOThLQFjK2exRju0fx8q/plNe4TwIPNKXnFGIDYnlu5XM4dNMutDF33omjro7CadMO2s4DrmVZntiZ47aOj8XEyLO7UphRyZbF7pdvEUII0bqUUpVKqYq9e+Ar4E5vx+Vti7IXMWvTLM5NO5djk4895PasBQVkTp2KISCApNenYwxsX8lThc3Ohet2MjunmOuSo5nVtxMhZu8myHXVVuZ/sJVP/ruCsvwajpmSxrn3DiW5V/tdJ1UI0bH8bQKqlAp1zYL7vFLqpb1bWwTX0dx9Ug8q6qy88tt2j6+xmCzcMPAGNhVv4rtd3zUp9+3cmfALLqDs03nUbtjotp0UP1+uTIri47xSVle4X5al29AY4rqGsOR/O6j/B4myEEKIlqO1DtJaBzfad9daz/N2XN5UXFvMvQvvpWtoV24bctsht+eoryfr+uuxl5eT9Pp0zLGxLRBly8moree0VdtZWFbJ82lJ3NclHoMXuwZrrdn6Zy7vP/QnGxdk0++YRKY8MoLeYxIwGOV5hRCi5XjyG+VbIBVYD6xstIkD9IwL5pzBicxavIeMYvdJ4IFO6XwKPcN7Mm3VNGqsTa+LvPYajOHh5D/xxEFn2r0xJYZIs4n7t2fhOMiyLGPO7U59tZVlX+/yOEYhhBCHTinVw7Uf1Nzm7fi8xaEd3LfoPiobKnlq7FNYTJZDak9rTd5DD1O3dh3x/30SS69eLRRpy1hZXs3JK7eTV2/lw/5dOD/eu08XS3Kq+d/zq/n53c0ER/pxzt1DGXNud3z92ld3ZSHE4cGTBNSitb5Fa/2O1nrW3q3VI+ugbjkuDaNB8fQPWzy+xqAM3DXsLvKq83h7w9tNyo1BQUTffBO1q1ZR8fU3btsJMhm5r0scKypq+CjP/bqkUUlB9BqTwPrfsynOkUkXhRCiDd3i2j/XzPast4Lytrmb57IweyG3Db2N7mHdD7m90jnvUf7550Recw3Bxx/fAhG2nC8KSjl7TToBRgNfD+rG6LAgr8Vis9pZ8r8dfPTYMoqzqzhmShpn3z6YqGTvxSSEOPx5koDOUUr9n1IqTikVvndr9cg6qNgQC/83tjNfr8tlVUapx9cNihnEyZ1O5t0N75JZmdmkPOSss7D07k3BM8/gqK52285/YsMZHhLAoztyKLHa3NY7amJnfCxGFn68/R+tXyqEEOLf01pf6dqPa2Y79EGPHdDm4s28sPIFjkk6hvPSzjvk9qr//JP8p54icPx4Iq+7tgUibDlvZBZw1cY99Avy59vB3ekWcGhPeg9F3q5yPn58Oau+30P3YTFMefgoeo9JQBna1wzBQojDjycJaAPwDLCEv7rfrmjNoDq6q8Z2JirIl0e+2vSPZpu9ZfAtGA1Gnl3e9EtwZTAQc++92AoKKJrxpts2DErx3+6JlNvsPLHD/URDlkAzwyd2JmtLKTtXF3ocoxBCiJahlBqplDpfKXXR3s3bMbW1GmsNd/5xJ2G+YTwy8pFDXh6lISuL7Jtuxic1lfin/osytI+xi1prHt+Rw4PpOZwSFcLH/bsQ4eOd7q22BjuL56Xz2dMrsdbbOfX6/oy/pBd+QbKepxCibXjym/lWoKvWOlVr3cm1dW7twDqyAF8Td53YgzWZZXy6Ksvj62ICYriy35X8mvkri7MXNyn3HzSQ4ImnUfLOOzRkNn1KulfPQD/+LzGK93KLWVnu/mlp7zHxRCQEsvDT7VjrPV+/VAghxKFRSs3B2eV2NDDUtR1x64A+s+IZdpfv5okxTxBmCTukthw1NWRdex3a4SDp1VcwBga2UJSHxubQ3LI1k5czCrgoPoIZvVOxeGlSn9wd5Xz0+HJW/5RBz9HxTH5gOCm9ZXZbIUTb8uQ3YDrg+Yw6AoAzByYwOCWMp77bQnmt57PNXtTrIpKDknly2ZNY7U2vi771NjCZyH/qqYO2c1tqLHG+Zu7cloXNzVNYg9HA2MndqSqpZ7lMSCSEEG1pCDBKa32N1vp613aDt4NqSwuyFvDptk+5pPclDI8bfkhtaa3Juede6rdvJ+G5Z/FJTW2ZIA9Rrd3B5Rt38UFuCbekxvBU90SMXpjp1m51sOjT7Xz27ErsVgcTbxzAuCk98JFJhoQQXuBJAloNrFFKvSHLsHjOYFA8PLE3JTUNTPt5m8fX+Rh9uHPYneyu2M37W95vUm6OiSbyqquo+vkXqhc3fUq6V6DJyCNdE9hQVcu7OUVu68V3DaXXqDjW/JJJUValx3EKIYQ4JBuA9rUuSBsqqyvjwcUP0jW0K9cNvO6Q2yt+6y0qv/+e6FtuJnDMmBaI8NCVW21MXruDH4sqeLxbAnd0ijvkLsb/RklONZ88tYI1P2fSe0wC5z0wjKSeMpWHEMJ7PElA/wc8DixGlmH5R/okhHD+sGRmL9nD1jzPk7uxiWMZkzCG6WunU1TbNHkMv+RizElJ5D32OLqhwW07p0aFMC48iP/uzCW/3v1T2BFndcUSYOL3uVv/0ZhVIYQQ/4xS6iul1JdAJLBJKfWDUurLvZu342srjy99nLL6Mp4c8yQ+xkMbe1i9bBmFL0wj6KQTCb/88haK8NAUNlg5c3U6KytqmN4rhcsTo9o8Bq01GxZk8/GTy6kuq+eUa/pxzPlp+FjkqacQwrv+NgFtvPSKLMPyz912fBpBFhMPfrnhH802e8fQO6i31zNt5bQmZQZfX2Lvu5eGnTspnjnTbRtKKZ7olohVax5Kz3ZbzxJgZtSkbuTvqmDjAvf1hBBCHLJncS658hBwBvAE+y/Fctj7btd3fL/7e67ufzU9wnscUlu2wkKyb70Vn5QU4h59zCtPGA+UV2/lrNXp7Kpt4L1+nTkj5tDGtv4btVUNfPf6eua/v5X4bqGcd/8wUvtFtnkcQgjRnL9NQJVSu5RSOw/c2iK4w0FYgA+3HZ/GnztL+Hqd+1lpD5QakspFvS7iix1fsK5wXZPywKOPJujEEyl6bToNe/a4baeTvy/XJUfzeUEZf5S4fwrbfVgMiT3C+PN/O6guq/c4TiGEEJ7TWs/XWs8HTt573Pict+NrbQU1BTz252P0i+zHZX0uO6S2tM1G9q234aisIuHFaRgDA1ooyn8vu66BM1dvJ6feygf9O3N0eNuvp5m5pYQPH13Gno3FjJrUldOu609AiG+bxyGEEO540gV3CH/N0DcGeAl4rzWDOtxMHpZM7/hgHv9mM9X17tfmPNCV/a4kyi+Kx/58DJuj6XUxd9+N8vEh7+FHDvp09brkGFL9fLhrWxZ1dkezdZRSHH1+Gnab5o+Pt3scoxBCiH/luGbOndTmUbQhrTUPLn6QBnsDj49+HJPh0LqCFr78CjXLlhH74INYundvoSj/vYzaes5cnU5Rg42P+nfhqNC2nYVXOzTLv9nFly+uwdfPxKQ7hzBgQrKs6ymEaHc86YJb3GjL1lpPA05p/dAOH0aD4pHTe5NXUcerv6V7fF2AOYA7ht3B5pLNfLDlgybl5phoom66ierFi6n45lu37fgZDTzVPYkdtfU8vzvPbb3QaH+GnJzKjlUF7F7vfuIiIYQQ/45S6mql1HogTSm1rtG2C2ja3eUwMm/7PBZmL+SmwTeRGpJ6SG1VzZ9P8RtvEHrOJELPPKNF4jsUe1zJZ7nNzscDujIkpG2fxtZVWfn61bUs+2oXacNiOefuoUQltf3TVyGE8IQnXXAHNdqGKKWmAjKC/R8anBLOWYMSePOPnewqcr8254FOSDmBMQljeHn1y+RWNe3CGzb5PCx9+5L/5JPYy8vdtnN0eBDnxYbzamYB6yvdr6oz8PhkwmL9WfDBNlkbVAghWt77wGnAl6793m2w1voCbwbWmjIrM3l6+dMMjx3O5B6TD6kta3Y2OXfciW/PnsTce28LRfjv7aip44zV6dTYHXw6oAsDg/3b9P75uyv46IllZG0t5ejz0xh/SU/MvsY2jUEIIf4JT7rgNp4c4UlgMPCf1gzqcHXXST2wmIw88IXnExIppbj3KOcH7BNLn2hynTIaiXv4IeylpRQ8/8JB23qoazwRZhM3b8nE6ma2W6PJwDFTelBZUidrgwohRMvTWuvdwLVAZaMNpdRhuTaGQzu4b+F9GJWRR0c9ikF58k+P5umGBrJuvgVtt5M47QUMFksLRvrPpdfUcebqdBocmnkDu9I3qO2Sz72z3H727EoUirNvH0yfsQntYiImIYQ4GE+64I5rtB2ntf4/rfXWtgjucBMdZOH2E9P4Y3sR/1vj+WyzCYEJXDvgWn7P+p2fM35uUm7p1YvwCy+k7KOPqFm92m07oWYTT3ZPZENVLdMzC9zWi+/219qgBXsqPI5TCCHE39q7wPNKYAX7L2+2wltBtSaDMjC5x2QeGPEAcYFxh9RW/rPPUrduHXFPPI5PSkoLRfjv7Kmt55w1O3Bo+GxgV3oF+rXZvW0Ndn55dzPz399KYloY/7lnKNEpwW12fyGEOBTK3ZM4pdQFWuv3lFK3NFeutX6+VSP7h4YMGaJXrGj/n912h2bS64vZU1zDz7ccTXiAZ+uf2Rw2Jn8zmeLaYr444wuCfPYf2+GormbHqadhDAyk02fzUGaz27au2LCLn4or+HlIGt0Cmv/2uL7GygePLMPX38R/7h6K0fzvv7EWQoj2TCm1Ums9xNtxtFft5fO1av58Mq+aStiFFxJ77z1ejSWnroHTV6dTabO3efJZXV7Pt9PXU7C7gqGndmLoyaky0ZAQol1y9/l6sKxi7wj6IDeb+BeMBsV/z+pHRa2Vx77Z5PF1JoOJB0c8SHFdMS+uerFJuSEggNj77qV++3ZKZh18mdYnuiXiZzBw69ZMHG6+gPD1N3PMlDRKcqpZ/o10xRVCiJZwwLwKTTYP2whVSn2qlNqilNqslBrRTJ1jlFJrlFIblVLz/8m17ZG1oICcu+/BNy2N6Ntu9WoshQ1WzlmzgzKrjQ/7d2nT5LMwo5JPnlxBSW41J03ty7BTO0nyKYTocNxOJqS1fsO1f7jtwjkypMUGMfXoLrzyWzpnDUxkdDfPFofuE9mHyT0m8/7m9zmty2n0j+q/X3nQ+PEEThhP4cuvEDh+PL6dOjXbTrSvmYe7JnDjlgzeyS7i8sSoZuul9o2kx4hYVv2YQeeBUdK9RwghDt1zBynTwLEetPEi8L3WepJSygfYb+ChUioUeA04UWudoZSK9vTa9kg7HOTefQ+OmhoSnnsWg6/31rQssdo4Z80OcuqtfNS/MwPacMKh9JUF/PLuJiyBZs6+fRCRifIsQAjRMXkyC26UUuoepdQMpdTMvVtbBHc4u+7YrnSKDOCez9dT2+D5bLPXD7yeaP9oHl7yMFaHtUl57P0PoHx9yb3nXrTdfbv/iQ1jXHgQj+/MJaO23m290ed0wz/Yh19mbcZubX4NUSGEEJ45YF6FA7e/TT6VUiHAWOBtV3sNWuuyA6qdD3ymtc5w1Sn4B9e2OyXvzqJ60SJi7roL365dvRZHhc3OeWt3sKu2ntl9OzGsjdb51Fqz7Otd/PDmBiKTgjjn7qGSfAohOjRPBvZ9AYQAPwPfNNrEIbCYjTxxZl8ySmp48ZftHl8XYA7gnuH3sL10O7M2Nu1qa46JJvbee6hdvZqSOXPctqOU4um0JABu35rldlZeX38z4y7oIV1xhRCifegEFALvKKVWK6XeUkoduOhkdyBMKfW7UmqlUuqif3Btu1K7YSMFL7xA4ITxhJ7rvQn4q212pqzdyeaqOt7qncqY8LZJAG1WOz++tZHlX+8i7ahYzrh5IP7Bns0dIYQQ7ZUnCai/1vpOrfXHWut5e7dWj+wIMKJLBP8Zksibf+xkU47ns80em3wsE5InMH3NdHaW7WxSHjxxIoHjxlH4wjTqd7lPGpMsPtzfJZ75pZXMyil2Wy+lTwQ9Rsax6scMmRVXCCG8ywQMAqZrrQcC1cBdzdQZDJwCnADcr5Tq7uG1ACilrlRKrVBKrSgsLGydd/I3HNXV5Nx6K6bwcOIefdRry4tYHZorNu5mZUU103ulcFxkSJvct67aypcvriF9ZQEjzuzC+It7yoSAQojDgie/yb5WSp3c6pEcoe45uSdh/mbu/mwddjdrczbn3qPuxd/sz70L78XmsO1XppQi9qGHnF1x773voF1xL4mPYFx4EA+nZ7Ojps5tvdGTukpXXCGE8L4sIEtrvdT1+lOcSeWBdX7QWldrrYuABUB/D68FQGs9Q2s9RGs9JCqq+XkCWlveE0/QkJFB/FNPYQoL80oMWmtu2ZrBbyWVPJOWxKnRoW1y38qSOj57ZiX5uys4/oreDDohRdb3FEIcNtwmoEqpSqVUBXAjziS0VilV0ei8aAGh/j48cFpv1maV8+7i3R5fF+kXyb1H3cuG4g28s+GdJuX7uuKuWvW3XXFf6JGMr8HAtZsysLpJgqUrrhBCHLpDnQVXa50HZCql0lynxgMHTqn+BTBaKWVSSvkDw4HNHl7bLlR8/z3l8z4j4sorCThquNfieHxnLp/klXJHp1imxEe0yT2LsqqY99QKqssbmHj9ALoNiWmT+wohRFtxm4BqrYO01sGuvUFr7dfotUyH2oJO6xfHsT2ieeaHLewsrPL4uhNTT+SE1BN4be1rbC3Z2qQ8eOJEAo85hsIXptGwe7fbdmJ9zTydlsSayhqm7clzW69xV9y8neUexymEEGKf51zbq8BSYAbwpuv4VQ/buB6Yq5RaBwwAnlBKTVVKTQXQWm8GvgfWAcuAt7TWG9xd2wLvqUVZ8wvIffAhLH37EnXdtV6L483MQl7JKOCi+AhuTmmbJDBrSwmfP7sSlOKs2waRkOadJ79CCNGaPJkF9xdPzol/TynFk2f1xddk5NZP1mKze97F9d7h9xLsE8x9i+7Dat9/VlylFLEPP4zy9SXnb2bFnRgdyqSYMKbtyWdVebXbeqPP6UZgmC8/zdxIQ63NbT0hhBBN7Z3xFsgFBrm6uQ4GBgLZHraxxnVdP631GVrrUq3161rr1xvVeUZr3Utr3UdrPe1g17bwWzwkWmty778PXV9P/FNPocxmr8Txv/xS7k/P5pSoEJ7sntgm3V+3Lc/jq5fXEhhu4ew7BhOR0Daz7AohRFs7WBdci1IqAohUSoUppcJdWyqQ0GYRHiFigi08cnpvVmeUMeOPphMLuRNmCeOBEQ+wpWQLM9bPaFLuaVdcgCe6JxLrY+a6zRlUu0lWff1MHHdZbyqL61jw4TaP4xRCCLGfNK31+r0vXE8oe3oxnnah7JNPqF7wB9G33IJv5+bXsm5tf5RUcv3mDI4KCeDVnikY2yD5XP97Fj+9vYnYziGcddsggsItrX5PIYTwloM9Ab0KWAH0AFYBK13bF8ArrR/akWdi/3hO7hvLCz9tY3Ou58NsxyeP59TOp/LmujfZVNx0OM9+s+Jud7/kS7DJyEs9k9lVW88j6Tlu68V1CWHIyalsXZrHtuXuu+wKIYRwa51rGZRjXNubOLvMHrEasrIo+O9T+A8fTtgFU7wSw8aqWi7dsIsu/r7M6tsJi7H1Z51d9eMeFny4jdR+kZx2Q398/b3z1FcIIdrKwcaAvqi17gTcprXu1Gjrr7WWBLQVKKV47Iy+hPiZueXjtTTYPO+Ke9ewuwi3hHPvwntpsDc0aTfu0UcwBAaSfettOOrr3bYzKiyIq5KimJVTzC/F7pPgISenEts5hPnvb6OiuNbjOIUQQgBwKbAR50R/N+KcDOhSr0bkRdrhIPeuu0Ep4p94HGVo++VG8uqtXLhuJ8EmIx/070yI2dSq99Nas/SrnSz5bAddh0Rz4lV9MJmNrXpPIYRoDw7WBfdY12G2UuqsA7c2iu+IEx7gw5Nn9WNzbgUv/+r+aeWBQnxDeGjkQ6SXpfPqmqbzWJgiI4l/4nHqt22j4LnnDtrW3Z3j6Blg4aYtGRQ2WJutYzAaOO6yXmit+fmdTTj+wRIyQghxpNNa1wGvA3dprc/UWr/gOndEKpk1m5oVK4i55x7MCW0/yqfabuei9Tsps9mZ068zcb4+rXo/rTWLPk1nxTe76TkyjuMu642xDZ62CiFEe3Cw33ZHu/anNbOd2spxHdGO6xXD2YMSee33HazJLPP4urGJYzmr21m8s+Edluctb1IeePTRhF14IaWz51C1YIHbdnwNBl7rlUKlzc51mzJw6OaTy+BIP46enEZuejmrvt/tcZxCCHGkU0pNBNbgnK0WpdQApdSXXg3KS+p37KDwhRcIHDeOkLPObPP7O7Tmhs0ZrK+s5fVeKfQO9Gvd+zk0v7+/lbW/ZNJ3XCLjLuiBwSBrfAohjhwH64L7oGt/aTPbZW0X4pHpwYm9iAny5ZaP11BndT977YHuHHonKcEp3LXgLkrrmk5uGH3brfh2707O3fdgKypy207PQD8e65bI/NJKXtqT77Ze2vBYug2NYdnXu2VpFiGE8NyDwDCgDJyz0wLemXXHi7TVSs6dd2Hw9yfukYfbZLbZAz2xM5dvCst5qGs8x0eGtOq9HHYHv7y7iU1/5DDoxBTG/KcbSpJPIcQR5mBdcG852NaWQR6Jgi1mnp7Un52F1fz3uy0eX+dv9uepsU9RUl/CA4sfQB/w9NLg60v8s8/gqKwk5957m5Q3NiUunDOjQ3l6Vx5LytyvT3r0+WkEhjqXZqmXpVmEEMITVq31gd/aHXFjGYrefJO6DRuIfeghTFFRbX7/D3KL9631eWVi697f4dD8/O5mti3LZ/jEzow4o4tXEm4hhPC2g3XBDfqbTbSy0d0iuWRkKu8u3s0vm90/hTxQr4he3DzoZn7P/J2Ptn7UpNzSvTvRd9xB9fwFlL431207SimeSUsixc+Hqzfuoaih+eTS18/EcZf3prKknt9mbz5oUiuEEAKAjUqp8wGjUqqbUuplYLG3g2pLddu2UTT9dYJPPpngE09o8/svKq3k9q2ZHB0WxOPdWnetT4dD8+uszWxfns9RZ3RmyMmprXYvIYRo79ThkiwMGTJEr1ixwtthtLg6q50zX1tMXnkt3904ltgQz9YGc2gH1/5yLctyl/HBqR/QPaz7fuVaa7KmXk31kiWkfvIJlrTublqC9ZU1nLJyO6PDAnmvX2cMbj6kV/+UweJ56Yw+pxv9xyd5/iaFEMKLlFIrtdZD2vie/sC9wPGuUz8Aj2qt3U9T7iWt8fmqbTZ2Tz4fa1YWnb/5GlN4eIu2/3d21tRz8sptRPmY+HpQt1ad8VY7NL++t4Uti3MZPrETQ04+4npaCyGOUO4+X2XKtXbOYjbyyvkDqbc5uOmj1dg9nG3WoAw8NuoxgnyCuGP+HdTa9l8qRSlF3BOPYwgOJue2W3HU1Lhtq2+QPw93S+DXkkpeyyhwW2/AhCQ69Y9k8bx0cnfIeFAhhDiIU7TW92qth7q2+4CJ3g6qrZTMnkPd+vXE3HdvmyefVTY7l6zfhUHBe/1ad7kV7dD8PteZfA49JVWSTyGEoJUTUKXUiUqprUqpdKXUXc2U+yqlPnKVL1VKpbrOH6eUWqmUWu/aH9uk8SNIl6hAHjm9D3/uLOHV39I9vi7CL4InxjzBjvIdPLP8mSblpogI4p/6L/XpO8h7+OGDdp29JD6CU6NCeHJXLsvLq5uto5Ri/MU9CYyw8MObG6itbGi2nhBCCO728Nxhp2HPHgpffJHAY48l+OST2/Tee2e83VFbx4zeqaT4+bbavbTWzP9wG5sW5TL4pBSGnirJpxBCQCsmoEopI/AqcBLQC5islOp1QLXLgVKtdVfgBeAp1/ki4DStdV/gYmBOa8XZUZw9KIEzByYw7edtLNtV4vF1I+NHcmmfS/lk2yf8vOfnJuWBo0YRed21lH/xJWUffey2HaUUz/dIJtHXh6kbd7sfD+pv5sQr+1BXZeWnmRtlfVAhhGhEKXWSa7xnglLqpUbbu8BhP4ubdjjIve9+lNlM7IMPtPkkPC/tyefbonIe6BLP6LDWm85Ca80fH21n44JsBp2QzPCJnWXCISGEcGnNWXCHAela651a6wbgQ+D0A+qcDsxyHX8KjFdKKa31aq11juv8RsBPKdV6X1N2AEopHj2jD8nh/tz44WpKqz1/unj9gOvpE9GHBxY9QGZFZpPyyKuvJmDMGPIff5za9RvcthNsMjKjTypFVhtXbdyNzU1yGZUUxNjzupO5uZQV3+zyOE4hhDgC5AArgDpgZaPtS6DtZ+JpY2Uff0LN8uVE33kH5piYNr33T0XlPLUrj7Njwlp9xts/v9jJ+t+zGDAhiaNktlshhNiPJ7PgDgGuBhJc21RgkAdtJwCNs50s17lm62itbUA5EHFAnbOBVc1NzKCUulIptUIptaKwsNCDkDq2QF8Tr5w/iKKqem7/dJ3Hs82ajWaeOfoZlFLc/PvNTceDGgzEP/0UxqhIsm+8EXtZmdu2+gf580xaEovKqnhkR47bej1HxdHjqFiWf7ubjI3FHsUphBCHO631Wq31LKCr1npWo+0zrXXTxZsPI9bcXAqeeQb/o44idNKkNr33zpp6rt28h96BfjyTltSqCeHqnzJY9f0eeo+JZ+TZXSX5FEKIA7hNQLXWD2utHwYSgUFa61u11rcCg4HktghOKdUbZ7fcq9zEOENrPURrPSTKC+uHeUOfhBDuOqknP2/O593Fuz2+LjEokafGPsW20m08suSRJsmrKSyMxBdfxFZYSPYdd6AdDrdt/Sc2nCsSI5mRVcgnec13B1ZKMfb8NCLiA/hp5iYqimubrSeEEEeoVKXUp0qpTUqpnXs3bwfVWrTW5D30MNrhIO7RR9o0Kds76ZBJKWb2ScXf2HrTX2xenMPieel0GRTN2MlpknwKIUQzPPktHAM07u/Z4Dr3d7KBxmtxJLrONVtHKWUCQoBi1+tE4HPgIq31Dg/ud8S4bFQqE3pG88S3m1m5x/PxoKMTRnPNgGv4eufXfLj1wyblfn37EnPP3VQv+IPiN944aFsPdklgRGgAt2/NZG1l8zPomn2MnHhlXxwOzbevraeh7rAf3iSEEJ56B5iOc9znOGA28J5XI2pFFV9/TdX8+UTfdCM+SW23TJfWmhu3/DXpUHIrTjq0c00hv83ZQlLPMI67tBcGgySfQgjRHE8S0NnAMqXUQ0qph4Cl/DVu82CWA92UUp2UUj7AeTjHuDT2Jc5JhgAmAb9qrbVSKhT4BrhLa73Ig3sdUZRSPHfOAOJD/Zj63ioKKuo8vvbKflcyNnEsTy97mjUFa5qUh553HsETT6PwpZepWuT+R282KN7s3YkIs4nL1u+isMHabL3QGH9OuKI3JTlV/DJrM1omJRJCCAA/rfUvONfj3qO1fgg4xcsxtQrtcFA84038+vcn7IIL2vTer2QU8E1h6086lLW1lB/f2kh0ajAnXtUXo1lWuRNCCHf+9jek1vpx4FKg1LVdqrV+woPrbMB1OBfX3gx8rLXeqJR6RCm1d62zt4EIpVQ6cAuwd6mW64CuwANKqTWuLfofvrfDWoi/mRkXDqGqzsbVc1fRYHPfZbYxgzLwxOgniA2I5dbfb6Wotmi/cvX/7d13fBzF2cDx33NNJ+nUe7Vky71XsCFgDAaHDqaH+hJMD5AAKSSBkEISOoTea4JjOqEZmw62sXG33C2rWL33a/P+cecu2TKo2NLz/XyWu92dmZ2RD42e29kZEVLuuIOQnAFsu/kW3IWF7ZYV77Dx3MhsKj1eZq3Ow9NOcJk5PI4pM3PYvLScRTopkVJKAbSKiAXYICLXicgZgKunK9UVxGKh38svkXrvvYjV2m3X/bamgbs2F3NaYnSXTjpUtrWO9x9bQWRCKCdfOxqHs+vWFVVKqd6go1/RhQF1xpgHgUIR6dBiVsaY940xg4wxA4KBLMaYPxpj3gm+bzHGnG2MyTHGTDLGbA4e/4sxJtwYM2aXrewHtK9XG5wcwd1nj2LJ1mr+8r81Hc4XFRLFA8c8QJ27jps/vxmPf/e7l5awMNIffhjj81F49TX4Gtpe9xNgVEQY9wzO4NuaRv60ac8R1juNPjaDIZOTWfy/PDYu0X9KpVSfdwOBvvUXBOZWuIidI4J6HWtUFI70Pech7Drlbg9Xrc4jOzSEe7tw0qGa0ibefXg5zjA7p/5iDE6XvUuuo5RSvcl+A1ARuR34NTsXyLbTi59TOdScPCqVWUf158VvtzJnSft3K/c0OHYwf5z8R5aULuH+Jffvdd6RlUX6A/fTunkz226+GePztVvWWcmxzEpP4OnCCl4sqmgzjYgw9YIhJPePYt7zayjPr+9wXZVSqrcxxnxnjGkwxhQaYy4zxpxpjFnQ0/XqDXzGcO2ardR6fTw1IguXrWvuujbXu3n3X8sBOPWGMbhi+vRqcUop1WEduQN6BnAq0AgQXJ+z6x6kUAfs1hMGM2VAHL97cyUrC2s7nO+UAadw/pDzeWnNS7y54c29zodPmULS735Lw2efUXbfffss648DUjk2NpLfbihkfmVdm2msdgs/vWokTped9x9bQVNdx9cyVUqp3kBE3hWRd9rberp+vcEDeaV8Ud3A3wamM8wV2iXX8Lp9vP/YChprWjnpmlFEJ4V1yXWUUqo36kgA6jaBNTsMgIiEd22V1IGyWS08fP5YElwhXPXyEiob9loytV23TLyFySmTufPbO/mu5Lu9zsf+7GdEn38eVc88S80bewepO+pgEZ4Y3o+h4aFcsTqP1Q1tL7sSFungxKtH0dLg4YPHV+DzdOzZVaWU6iXuAe7dx6Z+hC+r6rknr4SzkmI4PyW2S65h/IZPnltDyZY6pl82jOT+UV1yHaWU6q06EoDOFpEngGgRuQL4BHi6a6ulDlScK4THLxxPeUMr1726tMOTEtktdu6Zeg+ZkZnc+OmN5NXm7ZUm+Xe/I2zy4ZTcfjtN33/fblkum5WXRmUTabNy4YrNFLe2fYczITOCYy8dRsnmOj55YY3OjKuU6jOMMZ/va+vp+h3KSls9XL1mKzlhIfxjcHqXPff5zRsb2bS0nCln5jBgnM6PqJRSB6ojs+DeA8wBXgcGA380xjzU1RVTB25kehR/P3Mk326u5PdvrSRw43r/Ih2R/OvYf2EVK9fNv47a1t2H8YrdTvr992NLTaHwuutxF7Y/2VBKiIOXR/WnzuvjohVbaPC2/exozvhEJp85gI2Ly/jmjY0db6RSSvUCIjJQROaIyBoR2bx96+l6Haq8fsNVa/Jo9Pl5akQW4V002+7KzwpZ9kkBI49OY8xx3beeqVJK9SYdmYToH8aYucaYW4wxNxtj5orIP7qjcurAnTkunV9My2H24kIe/WxTh/NlRGTw4LQH2dawjRs/vRGPb/eZca3R0WQ89hjG46Hwmmvw1bc/idBwVyhPDc8it7GZK1dvxdvOHc6x0zMZeUw6yz4pYPm8gg7XVSmleoHngMcAL3AMgTW3dYK/H+jevBK+rWnk74PSGRLeNc99bllRwZevrSdrVDxHnjuoy+6wKqVUb9eRIbjT2zj2086uiOo8N00fxGljUrn7o3W8t2Jbh/ONTRzLnUfcyeLSxdy54M697qCG9O9P2v2BmXELr/8Ffnf7kwhNi4vkroHpzKuq4/cbi9q8GysiHHn2QPqPTeCrORt0eRalVF8SaoyZB4gxZqsx5g7gpB6u0yFpQU0DD24t5ZzkGM7touc+y/Pr+fjpVcRnRHD85cOxWDT4VEqpH6rdAFRErhaRlcBgEVmxy7YFWNF9VVQHSkT4x8xRTMyK4Zezl7Nka3WH857c/2SuGn0Vb218i2dXPbvXedeRR5D617/QtGAB2379a4y//WdNL06L55qMRJ4vquCBraVtprFYhOmXDSOlfxRzn1vNtg0dr6tSSh3CWkXEAmwQketE5AzA1dOVOtTUerxcu2YrmaEO/jYwvUuu0VTn5v3HVuAMt3PStaOwh3TN8F6llOor9nUH9FXgFOCd4Ov2bbwx5sJuqJv6EZx2K09cNIHUKCdXvLiY/MqmDue9ZvQ1/DTrpzzw/QO8u+ndvc5HnXYaiTf/ivoPPqT0rr/v81nT3w9I4ezkGP6xpYRnCsvbTGNzWDnxmlFExYfy/mMrqdzW0OG6KqXUIeoGIAz4BTAeuBC4pEdrdIgxxnDr+kJK3R4eHdavS9b79Hn8fPD4SloaPJx49SjCo3StT6WU+rHaDUCNMbXGmDxjzPnGmK1AM4GlWFwiktltNVQ/WGy4g2cvnYjfGC57fhG1TZ79ZyJwB/UvR/6Fw5IP449f/5EvCr/Yu+zLLyf2koupfuklqp55pt2yLCLcPziTGfGR3LahiNdLqtpM5wy3c/J1o7HaLLz38HIaqls61killDoEGWO+M8Y0GGMKjTGXGWNmGmMW9HS9DiWzS6p5u6yGW7JSGBfZ+SvEGWP4/N/rKNlcy7GXDiMhU5dAV0qpztCRSYhOEZENwBbgcyAP+KCL66U6Sf8EF09cOJ78qiaufHkxLZ62Z6Xdk8Pq4IFjHmBgzEB+9dmvWFq2dLfzIkLir39N5Ik/peyee6l56612y7JZhMeHZXFktItfrM3n44raNtNFxody8nWjcTd7efuBZTTVtf+MqVJKHcpEZK6IRO+yHyMiH/VglQ4pW5pa+d2GQiZHh3Ndv65ZCmXFp4XkflPMhBOzyBmvy60opVRn6cgkRH8BDgfWG2OygWMB/Zb2EHJY/zjuOXs0CzZX8Yt/L8Xr69gaoS6Hi8eOe4zk8GSunXct66vX73ZeLBZS/v53wiYfTvHv/0DDl1+2W5bTauH5kdmMcoVxxeo8vq5uexbdhMwITr5uNA3VLbz9wFJaGjp211YppQ4x8caYmu07xphqQKOcDvD4Ddes2YpNhH8N7Ye1C2ajLVhTxdf/3UD26HgmnZzd6eUrpVRf1pEA1GOMqQQsImIxxnwKTOjieqlOdtqYNP506nA+XlPKra+vwN/O0ih7iguN44npTxBqDeWquVdR1LD7GqAWh4P0hx8mZOBACn9xA03ff99uWS6blVdG9ycrNISLV25hWV3bz6Wm5ERz4jWjqC1r5p2HltHa7O14Q5VS6tDg3/VxFhHpR+AxF7Uf9+aVsLS+ibsHZ5DmdHR6+TWlTXz09CpiU8M57rJhiM54q5RSnaojAWiNiLiAL4BXRORBoLFrq6W6wiVTsvjl9EG88X0Rd763Zp+TB+0q1ZXKE9OfoNXXyqyPZ1HZXLnbeavLReaTT2BPSqLgilk0L1/eblmxdhuvjR5AnN3GBSs2kdvQ3Ga6jCGxzLhyBJVFDbz38HLcLRqEKqV6ld8BX4nISyLyMoE+9rc9XKeD3rfBJVfOS47l1MToTi/f3ezl/cdWICKcePUoHE5bp19DKaX6uo4EoKcRmIDoJuBDYBOB2XDVIej6aTlcfmQ2z3+Tx4PzNnQ4X05MDo8c+wjlzeVc/cnV1LnrdjtvS0gg84XnscbFkf/zK2hetbrdspJD7MweM4AQi4WZyzayup0gNGtkPMdfPpzSLbW8/9gKvO6OPb+qlFIHs+DyK1HAOOA14D8EZpjXZ0D3ocHr4/rcrfQLdfDXgWmdXr4xhnkv5FJT1syMWSOIjA/t9GsopZTqQABqjGk0xviMMV5jzAvGmIeCQ3LVIUhEuO3EoZw1Pp0HPtnAc19v6XDeMYljuG/qfWys2cisj2ftFYTak5Lo9/xzWCMjKbj8clrWrm23rKzQEN4Yk4PTYuGspRtZVd/2cNwB4xI59tJhFK2v4YMnVuHzdOz5VaWUOlgZY/zArcaYCmPMe8GtoqfrdbC7Y+M2trV4eHhoP8K7YMmVpXPz2bysnCNm5pA2OKbTy1dKKRXQbgAqIvUiUhd83f5++35de/nUwc9iEf5+5khOGJ7En95dw+tLCjuc98i0I7l/6v2sr17fdhCamkrmC88joaHkX/Z/tG5o/y5rdlgIb47NIcxq4axlm1jRThA6+LBkpl4wmPzVlXzwxEq8HZzJVymlDmKfiMjNIpIhIrHbt56u1MFqXmUdLxdXcnVmIhOjOn/JlaJ11Sx4cxMDxiUyalp6p5evlFJqp32tAxphjIkMvm5/v30/sjsrqTqfzWrhwfPGckROHLfMWc5bS4v2nyno6IyjuX/q/ayrXseVH1+5VxDqSE+n3wvPIzYbWy/7P1o3b263rH6hIbwxNgeXzcLZyzaxvJ0gdPhP0pj6s8FsXV3J/x5ZgadVg1Cl1CHtXOBaAs9+Lglui3u0Rgepao+XX67NZ3C4k1uykju9/MaaVj56ehXRSWFMu3gI0gWz6iqllNppX3dAnSJyo4j8S0RmiYg+id/LOO1Wnrp4Aodlx3HT7GXMOYA7oUdnHM0DUx9gbfXatoPQfv3IfOF5APIvuXT/QeiYHCJtVs5etpGl7cyOO/wnaRx3yVCK1lXz7sPLcOvsuEqpQ5QxJruNrX9P1+tg9PsNRVR6vDw0NBOntSNTV3Scz+fno6dW4XH7mTFrpE46pJRS3WBfv8lfILDcykrgRODebqmR6lZhDhvPXjqRIwbEc8uc5cz+rqDDebffCV1bvZar5l61VxAa0r8//Z57FmMMW392Ic2r25+YKDM0MBw32mbjnGUbWVTT0Ga6wYencPzPR1C6uS6wTmijrhOqlDr0iEiYiPxeRJ4M7g8UkZN7ul4Hm/fKani9tJob+yUzOiKs08v/5vWNFG+qZdqFQ4hN7fyhvUoppfa2rwB0mDHmQmPME8BZwE+6qU6qm4U6rDx9yQR+MjCBW19fwasL8zucd2rGVO6fej+5Vblc+fGV1LbW7nY+ZOBAsl5+CQl1kn/JpTQtWdJuWelOB2+OzSHRYeec5Zv4uKK2zXQ54xOZceUIKooaeOv+pTTXuztcX6WUOkg8B7iBKcH9IuAvPVedg0+528Ot6wsY5Qrlhn5JnV7+hsWlrJhfyKhj0hk4sfPLV0op1bZ9BaA7bi0ZY3SsYy/ntFt58qLxHDM4gd+9uZKXFmztcN6pGVO57+j7WFe9jks/vJTSxtLdzjuyssh65RVs8fHkX/5zGr78qt2y0pwO3h43kMHhTi5btYX/FLc94XL26AROumYUtaVNvHnv9zRUt3a4vkopdRAYYIz5J8G+1hjTBOjDh0HGGG5dV0iD18+DQzOxWzr3R1NV3Mj8l9aS3D+SKTNzOrVspZRS+7avAHT0rjPfAqN0FtzezWm38vhF4zluaCJ/eGsVzx/AEi3HZB7DY8c9xraGbVzy4SVsrds9gLWnpNDv5ZdwZGVRcM011H30cbtlxTtsvD4mhyOiXdy4toBH8svaTJc5LI6Trx9NQ3Urr/9zMVXbGjtcX6WU6mFuEQkFDICIDAD0m7Sg10ur+aCilluzkxnq6tz1OL1uHx89tQqb3cIJV4zEauvc50qVUkrt275mwbXuMfOtTWfB7f1CbFYe/dl4jh+WxB3vruGBT9ZjjOlQ3sNSDuPZE56lydPExR9cTG5l7m7nbfHx9HvheUKHD6foppuoefOtdsty2ay8PKo/pyVG8+dN27hjYxH+NuqRNiiGM341Dr/P8MY9S9i2ofqA2quUUj3kDuBDIENEXgHmAb/u0RodJMrdHn6/oYjxkWFcnZnY6eV/PWcjVdsaOe7SYbhiQjq9fKWUUvumX/upvThsFh752ThmjkvngU82cNtbq/D5OxaEDo8fzgs/fQGH1cFlH13GdyXf7XbeGhVF5jNPE374YRT/9rdUPPVUuwGuw2LhsWH9uDwtnscLyvlFbj6eNuqRkBnBzFvHExrh4O0Hl7FxSdt3TJVS6mBhjPkYOBO4FPg3MMEY82mPVuogcduGIpp8fu4bkom1k5dE2fR9Gau+KGLM9Ez6jYjr1LKVUkp1jAagqk12q4V7zh7F1VMH8OrCfK595XtaPB1bezM7KpuXfvoSSWFJXDX3Kubnz9/tvCU8nPTHHyfyxBMpv/c+Sv54O8bT9my2FhH+MjCN32QnM6e0mvOXb6Las/cjyZHxocy8ZTyJmZF89PQqls/r+Gy+SinV3URknjGm0hjzP2PMe8aYChGZ18G80SIyR0TWikiuiExuI81UEVkmIqtF5PM9zllFZKmIvNdZ7eksH5bX8k5ZDTdlJTE43NmpZddVNDP/pbUk9ovg8NN0xRullOopGoCqdokIv54xhD+ePIwPV5dw8bOLqG3u2LInyeHJvDDjBQbHDuamz27i1dxXdztvcThIvedu4q68kpr//peCq67G19D20isiwo1ZyTw0NJNFtY2ctGQDm5pa9krndNk57cYx9B+dwFf/3cBX/92A6eCdW6WU6g7BNbZjgXgRiRGR2OCWBaR1sJgHgQ+NMUOA0cBuzzuISDTwKHCqMWY4cPYe+W/YM8/BoM7r4zfrCxka7uTaTh566/P5mfvsajCG438+Qp/7VEqpHqS/gdV+/d+R2Tx0/liW5ldz7hPfUlq3d/DXlmhnNE8f/zRHpR3FXYvu4q8L/orXv/PupVgsJN50Iyl/+TONCxey9YKf4Skubre8c5JjmTNmALVeHycu2cCXVfV7pbE5rJwwawQjj0ln+bwCPnhiJe4WncRZKXXQuBJYAgwJvm7f3gb+tb/MIhIFHAU8A2CMcRtjavZIdgHwhjEmP5imbJf86cBJwNM/tiGd7c+btlHm9nDfkEwcls7982TRu1so2VzH1AuHEJXQuZMaKaWUOjAagKoOOXV0Ks9dOomCqibOfPQb1pZ0bCLkMHsYDxzzAJcMu4T/rPsP1867lnr37oFj9FlnkfnkE3i2bSPvnHNpXr263fImRbv4YPxAUkLsnLdiEy8UVeyVxmIRfnLOQI48eyB5Kyt5/Z9LqC1vOrAGK6VUFzDGPGiMyQZuNsb0N8ZkB7fRxpj9BqBANlAOPBccRvu0iITvkWYQECMin4nIEhG5eJdzDwC3Av59XUREZonIYhFZXF5e3vEG/kBfV9fz0rZKrsxIYGxkWKeWXbCmiu8/2sqwI1IYOEHX+1RKqZ6mAajqsCMHxvPalZPx+v3MfPQbPl5d0qF8VouVmyfezB2T72BR8SIufP9CCup3f0YzfMoUsv79KthtbL3won0u05IZGsK74wZyTGwkv15fyG3rC/HuMdRWRBh9bAanXD+axppW/nvXYgrWVB14o5VSqgsYYx4WkSkicoGIXLx960BWGzAOeMwYMxZoBH7TRprxBO50ngD8QUQGicjJQJkxZkkH6vekMWaCMWZCQkLCAbXtQDX7/Ny8roCsUAe3ZKd0atlNdW7mPr+GmKQwjjx3UKeWrZRS6ofRAFQdkBFpUbxz3ZHkJLq48uUlPPLpxg4v0zJz0EyemP4EFc0VXPC/C1hSuvvfQCEDB5L92ms4Bw2i6IYbKLvnHoy37eGzETYrL4zM5sqMBJ4pquCc5Zsoa937+dSMobGc/dsJhEeH8O7Dy1j2SX6H66uUUl1FRF4C7gGOBCYGtwkdyFoIFBpjFgb35xAISPdM85ExptEYUwF8QeBZ0SOAU0UkD/gPME1EXv6xbfmx7skrYUuzm3sGZxBm7bw/S4wxzH8xF3ezlxOuGIHdYe20spVSSv1wGoCqA5YU6eS1Kydz6uhU7v5oHTe+tqzDM+ROSpnEqye9SnRIND//+Oe8tva13QJCW0ICmS+9SPR551L59DPkX3EF3uq21/a0ivCnnDQeGprJ0rpGpi9ex7c1e09kFJUQxsxbx5M9OoGv52xk3gu5eDtYX6WU6iITgCOMMdcYY64Pbr/YXyZjTAlQICKDg4eOBdbskext4EgRsYlIGHAYkGuM+a0xJt0YkwWcB8w3xlzYaS36AZbXN/FYfhkXpsRxZExEp5a9+sttbF1VyZQzBxCX5urUspVSSv1wGoCqH8Rpt/LAuWO45YTBvL1s2wFNTtQvsh8vn/gyh6cczl8W/oXffvVbmjw7n9G0OByk3HEHKX/9C81LvmfLzJk0r1zVbnnnJMfy/vhBhFutnLVsI4/kl+11l9PhtDFj1ggmnZLNugUlvP7PJdSU6nOhSqkeswpI/oF5rwdeEZEVwBjgbyJylYhcBWCMyQU+BFYAi4CnjTHt/xLtIV6/4VdrC0hw2PjDgM4deltT2sTXczaQMTSGkUend2rZSimlfhzpLcMRJ0yYYBYvXtzT1eiTPl5dwo2vLSPCaeNfF4xjYlZsh/L5jZ+nVjzFI8seoX9Uf+475j76R+2+NlvzylUU3vALfBWVJN9+O9Ezz2y3vHqvj5vW5vNeeS0z4iN5cEgmUXbbXunyVlTwyQtr8HsNx1w4hIETdVIKpfoyEVlijOnI8NfOvOanBILHRUDr9uPGmFO7sx4d0VX96xMFZdy+cRtPD8/i5MToTivX7/Pz+t3fU1vWxHl/OAxXTEinla2UUqrj2utf9Q6o+tGOH57MG9dMIdRu5bwnF/D455vwd2D9TYtYuHL0lTwx/QmqW6s5773z+HDLh7ulCR05guw5cwgdP47i225j229+i6+hsc3yImxWnhqexZ9z0vikso7jF69nef3edzmzRsVz7m2TiEtz8fEzq/n0lbV43TokVynVre4ATgf+Bty7y9YnFLW4+ceWEo6Li+SkhKhOLXvxB1spy6vj6AsGa/CplFIHIQ1AVacYkhzJu9cfyYzhyfz9g7X8/MXFVDe6O5R3cupkXjv5NQbHDOaWL27hroV34fbtzGuLjSXzqaeIu/oqat95hy0zz2x3SK6IcEVGAm+NHYjHGE5asp4H8kr2miU3ItbJ6b8ay7gTMlnz5Tbm/GMx1SVtB7ZKKdXZjDGft7X1dL26yx82FGGM4W8D0xCRTiu3dEsdi9/PY9BhSbrkilJKHaQ0AFWdJsJp518XjOXO04bz1YYKTnroS5ZsbXsCoT0lhyfz7IxnuWjYRby69lUu+N8FbKjesOO82Gwk3nAD/V54HtPqJu/886l8+mmMv+2l7CZEhTN/4mBOTojm71tKOGPpRrY2t+6Wxmq1MPmMHE6+bjSNtW5m37WY3G+26Sy5SqkuIyL1IlLXxlYvIh1bYPkQ93FFLe9X1PLLrGQyQzvvDqWn1cfc51YTHuXgKF1yRSmlDloagKpOJSJcPDmL16+egtUqnPvEtzz1xeYODcm1W+zcOvFW/jXtX5Q3l3Pee+fx4uoX8ZudQWbYxIn0f+tNIqZNo+yee8m//HI8pWVtlhdtt/H48CweHdaPdU3NTPtuHa8WV+4VYPYbEce5t00iMTOC+S+u5f3HVtJY29pmmUop9WMYYyKMMZFtbBHGmMierl9Xa/T5+O36QgaHO7kqI7FTy/7m9Y3Uljdz7KXDCAmzd2rZSimlOo8GoKpLjEyP4r3rf8JxQ5P46/u5XPTsQrbVNHco79EZR/PGqW8wJXUKdy++m1lzZ1HSWLLjvDU6mrQHHyD5z3fSvGw5W047jbqPPm63vDOTYpg/cQijI8L45doC/m9VHhXu3dcXdcWEcPpNYznirBwK1lTxnzsXsXFJ24GtUkqpH+beLaUUtXq4e1A6dkvnDb3duqqSVV8UMebYDNIHx3RauUoppTqfBqCqy0SF2nnswnHcdeZIluXXcML9XzBnSWGHhrjGhcbx0LSHuH3y7awoX8GZ75zJB1s+2HFeRIg5+2yyX38de1oaRTfcQOEvbsBbUdFmeelOB3PGDOD2AanMq6zjqEW5/Lekare6iEUYc1wm59w2kch4Jx89tYqPn1lNS6Pnx/8wlFKqj8ttaOaJwjJ+lhLLpOjOW5eztcnDpy/lEpsazmGn9d9/BqWUUj1KA1DVpUSE8ydl8sENRzE0JZKb/7ucK19aQkXD/oe4ighnDTqLOafMITsym1u/uJWbPr2JsqaddyZD+meT9dp/SPjlL2n47DM2n3Qyte+802aQaxHh6sxE5k4cTP/QEK7Pzef85Zv3ejY0NiWcmbeO57BTs9m0pIx/37mQLSvaDmyVUkrtn98YbllXQJTNym0DUju17K/mbKSp3sOxlwzFZrd2atlKKaU6nwagqltkxoXx71mHc9uJQ/lsXTkn3P8FH64q2X9GIDMykxd++gI3jLuBL4u+5PS3Tmf2utk7ng0Vm434WVeQ/dabOPr3Z9utv6bgqqvwlLRd/uBwJ++MG8jfBqbxXV0jUxet44mCMny7BK0Wq4UJJ2Zz1m8m4Ay38/6jK/jgiZU0VLf8+B+GUkr1Ma8WV7G4rok7ctKIbWN95h9q66pK1n5TzNjjM0ns1+sfoVVKqV5BesuMn121ULbqfOtL6/nl7GWsKqrjxJHJ/PHk4SRHOTuUd2vdVv787Z9ZWLKQcYnjuH3K7fSP2jnkyvh8VL/yKmX3349YrSTceCMx552L2Nr+g6eoxc1v1hcyt7KO0RGh3DM4g5ERYbul8Xn9LPskn+/+l4fFIhx2an9GTk3DYtXvb5TqDdpbKFsF/Nj+1RjD9MXribRZeX3MgE5bdqW12ct/7lyI3Wnj3N9NxGrX38lKKXUwaa9/1QBU9QiPz8+TX2zmoXkbsFst/Or4QVw8OQtrByalMMbw9qa3ufu7u2n2NnPFyCu4fOTlOKyOHWncBQWU3H47jd98S8jgwST/4feETWj770tjDG+X1fD7DUVUerxcmBrHr7NTiHfsHrTWljfzxX/Wkb+6ioTMCKb+bLB+465UL6AB6L51Rv/a6PVR5/OREuLYf+IO+vSlXHK/KWbmrRNIytbfxUopdbDRAFQdlLZWNvKHt1fzxfpyRqZF8bczRjIyPapDeSubK/nHd//ggy0fkBGRwc0TbuaYjGN2fLtujKH+47mU/v3veIuLiTzlFBJvvhl7UttT/9d6vNybV8qzReWEWS3ckpXCpWnxu83UaIxh45Iyvpq9gaZ6NyN+ksakU7MJdXXeH1VKqe6lAei+HYz9a/6aSt59aDnjTshk8hk5PV0dpZRSbdAAVB20jDG8t6KYO99bQ2VDKxdPzuKm6YOICu3YOm7fbPuGfy76J5tqN3FYymH8euKvGRgzcMd5f3MzFU8+SdUzzwaeF732WmIvuhBxtB00rm9s4Y8bivisup5BYU7+PDCNo2MjdkvT2uxl4dubWfVFEfYQKxNOzGLU1HQdAqbUIUgD0H072PpXd7OXf/95IXaHlXNum6gTDyml1EGqRwJQEZkBPAhYgaeNMX/f43wI8CIwHqgEzjXG5IlIHDAHmAg8b4y5bn/XOtg6SHXgaps93PvxOl5asJXoUDs3TR/E+ZMysXfgWUuv38vsdbN5ZNkjNHgaOHvQ2Vw75lpinDvXg3Pn51N6199p+PRT7JmZJN54AxEzZiCWvcs3xvBRRR23byxia4ub4+Ii+V3/FIa5QndLV7Wtka9f30j+6koiE0KZcuYA+o9J6LRnnJRSXU8D0H072PrXz15Zy5qvtnHmLeNJ7t+xETNKKaW6X7cHoCJiBdYD04FC4DvgfGPMml3SXAOMMsZcJSLnAWcYY84VkXBgLDACGKEBaN+yqqiWv/4vl283VzIgIZzbThrKMYMTOxTU1bTU8OjyR5m9bjZh9jBmjZzFeUPOw2nbOclRw5dfUnb3PbSuX49z+HASb/4V4ZMnt1leq9/PkwXlPJxfSr3Xz5lJMdyanUy/0JDd0uWvruSrORupLm4kdWA0R5yVo8+HKnWI0AB03w6m/rVgbRXvPLCMMdMzOWKmDr1VSqmDWU8EoJOBO4wxJwT3fwtgjLlrlzQfBdN8KyI2oARIMMFKicilwAQNQPseYwyf5JZx1/u5bK5o5MiceG47aShDUzoW1G2s3sg9S+7h66KvSQhNYNaoWcwcOBO7NTCs1/h81L77LuUPPYR3WzHhRxxB4q9+iXPYsDbLq/Z4eSS/jGcKy/EYw4Wp8dzUL4mkkJ3DhP0+P2u+LmbRu5tprveQPTqeSaf0Jz698xZcV0p1Pg1A9+1g6V89bh//uXMhFquFc2+biM2hQ2+VUupg1hMB6FnADGPMz4P7FwGH7RpMisiqYJrC4P6mYJqK4P6l7CMAFZFZwCyAzMzM8Vu3bu2Stqie4/H5eWXBVh6Yt4HaZg+nj0njF8cOJDs+vEP5F5cs5uGlD/N92fekudK4avRVnNz/ZGyWwAy3/tZWql/9N5WPP46vtpaIn84g/qqrcQ4e1GZ5Ja0e7ssr4dXiSuwiXJaWwFUZCSTuEoi6m70sn1/Asrn5uFt85IxPZOLJ2cSmdKzOSqnupQHovh0sAei3b27k+4/yOf2XY0kbFLP/DEoppXpUrwxAd3WwdJCqa9Q2eXj08428+M1WWr0+zhibzi+OzaFf3P6DOmMM32z7hoeWPsSayjVkRWZx5egrmZE1Y0cg6quro/KZZ6l++WX8jY24jjuW+KuvJnT48DbL3NLUyt15JbxVWo3DIpyfEsc1mYlkOHdObNTS6GHZJ/msmF+I1+1j4KQkJp6YTXRSWJtlKqV6hgag+3Yw9K8VhfXM/ttihkxOZtpFQ3u0LkoppTpGh+CqXqG8vpUnPt/ESwu24vUbzhqXznXTcsiI3X9QZ4xhfv58/rXsX2ys2UiaK41Lh1/K6Tmn73hG1FdTQ9VLL1P14ov46+sJP/ooEq6+mtAxY9osc3NTK4/klzK7pBqDYWZSLNf3SyQnbOczp80NbpZ+lM/Kzwrxef30H5vIuBMy9RlRpQ4SGoDuW0/3r36/4fV/LKa+qoUL7jgcZ3jHZkhXSinVs3oiALURmIToWKCIwCREFxhjVu+S5lpg5C6TEJ1pjDlnl/OXogGoakNZXQuPfraJVxfl4/cbThuTxqyj+jM4OWK/ef3Gz+cFn/P0qqdZUb6CWGcsFw27iHMHn0uEI5DfV19P9SuvUvX88/hqagibNInYSy/BNXVqm7PmFrW4ebygjJe3VdLiN5yYEMXP0xM4PCp8x+RJjbWtrJhfyKovinA3e0kbHMO4EzLJGBqrs+Yq1YM0AN23nu5fl88v4KvZG5h++TAGTUzusXoopZQ6MD21DMuJwAMElmF51hjzVxG5E1hsjHlHRJzASwRmvK0CzjPGbA7mzQMiAQdQAxy/6wy6e+rpDlL1jJLaFh7/fBOvfVdAs8fH1MEJzDqqP5P7x+03qDPGsLh0Mc+sfIavt32Ny+7izIFnct6Q88iIyADA39hI9WuzqXrpJbzFxdj7ZRJ74UVEn3kGlvC9h/+Wuz08XVjBi0UVVHt9jHSFcnl6PKcnxuAMLifjbvay+sttLJ+XT2Otm/gMF2OnZzJgXCJWm64jqlR30wB033qyf62vauHff1pISk4UJ183Wr+sU0qpQ0iPBKDdSQPQvq260c3LC7bywrd5VDS4GZkWxayj+vPTEcnYOrCOaG5lLs+uepa5W+fiN36OSj+KC4ZcwOTUyYgIxuulfu5cqp5/gebly7FERBB99tnEXHABjvS0vcpr8vl5o7SapwrLWdfYQpzdxsWpcVySFk9ycMIin8fPukUlLJubT3VJE6GRDoYfmcrwn6TiinHuVaZSqmtoALpvPdW/GmN4/7GVFK6t4vw/HkZkfOj+MymllDpoaACq+oQWj483vi/i6S83s7mikeRIJ+dNyuD8SZkkRe4/qCttLGX2+tnMWT+HqpYqsiKzOH/I+Zw64FRcjsByKs3LllH5wgvUfzwX/H7CjziC6LPPJmLaMYh992eTjDF8Vd3AU4XlzK2swyJwXFwkP0uJY1psJDaLYPyGgtwqVn5WSN6qSkSE7NHxjDw6jbTBMfqNv1JdTAPQfeup/nXT92V8+OQqpszMYez0zG6/vlJKqR9HA1DVp/j9hnlry3hpwVa+WF+O1SJMH5rEhYf3Y8qAOCyWfQd1bp+bj/I+4t9r/83KipU4rU6Ozzqe03NOZ3zSeCxiwVNcTM2c16l5/XW8JSVY4+OJPuN0os86C0e/fnuVmdfcyivbKnmtpIoyt5ckh43zUuI4PyWWrNAQAOoqmln1RRG5XxfT0ughOimMoVNSGHxYMuHRIV3ys1Kqr9MAdN96on9tbfLw6p8WEhbp4OzfTMDSgZEsSimlDi4agKo+a2tlI68uzGf24gKqmzxkx4dzzoQMzhibRnLU/u+KrqpYxRsb3uCDLR/Q4Gkg3ZXOaTmncdqA00hxpWB8Phq+/JKa2f+l4fPPwecjbOJEIk85mcgTTsAaFbVbeR6/YV5lHa8UVzKvsg4/MCXaxcykGE5KiCLabsPr9rFxSRlrvtpG8aZaRCBzeBxDJqeQPSoeq13/GFOqs2gAum890b9+/uo6Vn9ZxFm/maAzhiul1CFKA1DV57V4fHywqphXFuSzeGs1InBkTjwzx6Vz/PAkwhy2feZv9jYzL38eb214i4UlCxGEScmTmJE9g+MyjyPaGY2ntIzaN9+g9q23ceflIXY7rqlHE3nyKbimHo0lZPe7mMWtbl4rruK/JdVsam7FLsKxcRGckRTD9LgowqwWakqbWPttMWsXlNBY00pImI2BE5MYOCGJlAFRyH7u5iql9k0D0H3r7v61NK+OOf9YzKip6fzk3EHddl2llFKdSwNQpXaRV9HIG98X8vr3RRTVNBPusHLiyBROG5PG4f1j9ztxUWF9Ie9seof3t7zP1rqt2MTG5NTJzMiewbSMaYTbw2lZtZq6996l9n/v46uowBIRQcRxxxFx/HTCp0zZLRg1xrCioZk3Sqt5u7SGEreHcKuFGfFRnJgQxdTYCELFQmFuFbnfFrNleQU+j5/w6BByxiWSMyGRpOxIfV5UqR9AA9B9687+dfuanw3VrVzwp8MJCd33F4NKKaUOXhqAKtUGv9+wKK+K15cU8v7KYhrdPmLDHZwwPIkTR6ZweP847PsIRo0xrK1aywd5H/DRlo/Y1rgNh8XBlLQpTMuYxlHpRxFrj6JxwULq3n2X+vnz8dfXYwkLI/zoo4icPp3wo47G6tq5pIvPGL6taeCN0mo+KK+l2uvDaRGmxkbw0/hopsdH4vJB3ooKNi4pY+vqSvxegys2EIxmj0kguX/Ufp9zVUoFaAC6b93Zv676oojPX13H9P8bxqBJuuanUkodyjQAVWo/mt0+Pl9fxvsrS5iXW0qj20dMmJ3jhyUzY0QykwfE4bRb281vjGFFxQo+3PIh8/LnUdxYjCCMThjN1IypHJN5DFnONJoWfUf93LnUz5uHr7IScTgIm3w4rqOOwnXUUTgyMnaU6fUbFtQ28EF5LR9U1LKt1YNV4LAoF9NiIzg2LpJsi42tKyrYsKSMgjVV+H0Gp8tO1og4skbHkzE0FodT7yIo1R4NQPetu/rX5no3r9y+gPh0F6fdNFZHdCil1CFOA1ClDkCLx8fn68t5f2Ux83LLaGj14rRbODInnmlDkpg2JHGfExgZY1hXvY5PCz7l0/xPya3KBSAjIoMpqVOYkjqFiQnjsa7eEAhGP/0MT34+AI6sLFxHH0X4T44ibOKEHUN1jTEsr2/mg4paPq6oJbexBYCUEDvHxEYwLTaSw0JDqV1fy5bl5WxdVUlrkxerzULa4Bgyh8eSOSyW6KQw/cNOqV1oALpv3dW/zn8xl3ULSjj395OITQ3ffwallFIHNQ1AlfqBWr0+Fm6uYv7aMj7JLaWwuhmAYSmRTB2cwJE58YzrF7PPu6MljSV8WvApXxd9zaKSRTR7m7GJjVEJo5iSOoXJqZMZUB9G61ff0vDFFzQtWoRxu5GQEELHjSX8sMMJO2wSoSNG7FhrtLjVzaeV9cyvquOL6nrqvH4swKiIMI6IcTElMpx+FV5KVlWRt7KC2rJAvV0xIWQMiyVjaGBzhtvbrbdSfYEGoPvWHf1r8aZa3rh7CWOnZzJlZk6XXksppVT30ABUqU5gjGFjWQPz1pYxP7eMJfnV+PyGEJuFiVmxHJETz5E58QxLjcTazjOYbp+b5eXL+WbbN3yz7RvWVK4BINQWytjEsYxPGs+46JFkb2rA8+13NC1cROu6dQBYwsIInTiB8EmTCB07DueI4VgcDjx+w/d1jXxWVc83NQ18X9eExxhsAmMjwjkixsVwsZGQ30L12hoK11bjbvaCQFyai7SB0aQOiiZ1YDShLke3/TyVOhhoALpvXd2/+n1+Zt+1mNZGD+fffpg+MqCUUr2EBqBKdYH6Fg+LtlTx9cZKvt5YwbrSegAinDYm9IthQlYsk7JjGZkW1e4d0qqWKr4r+Y7FJYtZXLqYjTUbAQixhjAyfiSjE0YzPLQ/A7e0ErJ4DU0LFuLesgUAsdtxjhhB6LixhI0dS+jYsdji4mj0+fiutpGvqxv4uqaB5fVN+AwIMCjcycSIMAZ5LCQVtuBfV0/Z5lq8Hj8AsanhpOZEkzwgiqTsSKISQnXIrurVNADdt67uX5fPL+Cr2Rs44YoR5IxP7LLrKKWU6l4agCrVDcrqW/h2UyULNlexOK+KDWUNADisFkalRzE+K4Yx6dGMzogmJcrZZmBX01LDkrIlLC5ZzNKypayrWofXeAFIc6UxKmEUw53ZZJdZyMitRJaspGX1aozHA4AtNYXQESMDgenIETiHD6clLJyl9U18V9vIotpGltQ1UucNBJxRNiujXKHk+K2kVHqI3NRE69pavK0+AJwuO8nZkSRlR5HUP5LEzAhCwnTYruo9NADdt67sXxtrW3n19gUk9Y/ilOtH65ddSinVi2gAqlQPqG50s3hrNYvzqliUV8XqojrcvkDglxARwuj0KEanRzMyPYrhqVEkRITsVUaLt4XcqlxWlK9geflyVpSvoLSpFABB6BfZjyHRg8hxx5BV5CVtbTnOZRt3TGoEYO+XiXPwEEKGDMY5ZAiOQYPYHBXLkvpmltc3sbyuiTWNzXiDvw7i7DYG2e2kN0NchYfwLY2EbGnEGqg6kfFOEjIjSch0kZAZQUJmhA7dVYcsDUD3rSv710+eW8OGJaWc/4fDiE4K65JrKKWU6hkagCp1EGj1+lhbXM/ywhqWFdSworCWjcG7pADxrhCGpUYyLCWSYamRDE2OICs+fK+1SMubysmtyiW3MnfH67bGbTvOxzpjGeDKItsTRWY5pG6qJXHVNhwbC3eksUREEDJoECE5OYQM6I9k9ycvJZ1lznBWNDSzuqGZdY0ttPoDvyNsAllWO6mtEFfjxbWthbDCFuIafFj9EBblIC7NRVxqeOA1zUVMchg2R/uTMyl1MNAAdN+6qn8t2VzL6/9cwvgZ/Tj89AGdXr5SSqmepQGoUgepuhYPa7bVBbbiwOuGsno8vsD/m3arkB0fzsCkCAYmuhgUfM2MCyPEtjO4q2mpYV31OjZUb2BDzQY2Vm9kQ80Gmr3NO9LEhcTSz5ZIWnMoqRU+krfUEbe2lPjCemzBu5sWlwtH//44svphy+xHdUoqW+KTWBkTzwpsrG9soaDFzfbfHFYgxVhIaDZE1XgJL2klptZLbIOfqGY/kfGhxCSHEZMURkxyONFJYcQkh+F02XW4nTooaAC6b13Rvxq/4b9/X0xTbSsX/OlwnXhIKaV6ofb6V/2Nr1QPi3TaObx/HIf3j9txzO31s7GsgbUldawvbWBjWT0rC2t5f2Ux278zEoG06FCy48N3bFnx2RweP5yzBobitFvxGz/bGraxsWYjebV5bKnbwpbaLXzh3UxtbC3EAuPBgoMkeyypXhcpdVYSS2qJLfiK2O/eJbEG+jVDFnB6bCz2jHQsqWk0JCVTEp9IXnQcqyNjWREdyQKXjZbUnUGxw0CcB6IbfLiqq4gqKCe6wUd0o58Ev4XkaCfRiaFExYcSlRhKVEIYEXFOwqNDsLQzi7BS6tCX+20x5fn1HHfZMA0+lVKqj9Hf+kodhBw2S2Aobmrkbseb3T42lTewsayBLRWN5FU2sqWikTe/L6K+1btb2qTIEDJiwsiMDSM9NpW06P4clxBK6sBQUqNCafHXkVeXR0F9Afl1+RTUF1BQX8BXjgJqImpgIGz/FRGCnSTjIrHJTmxtGbHl+UQvbyC2xkdGvWFMPfy8FWzxcZjEZJoTEqiOjac4Jo7CyGg2hUeSG+1iZXokLSE7n/Ny+CGq2U1EfTORuX4il/iJbPYT0eInyWEjNSyElMgQouJCccU6cUWH4Ipx4ooJwRGqv76UOhS1NntZ8NYmkvtHMWhSUk9XRymlVDfTv+CUOoSEOqyMSItiRFrUbseNMVQ2usmraKSguomCqmbyq5ooqGpi4ZYq3lxWxJ6j7WPDHaREOUmOTCEpKpvUCCfjEkNIynHiCvXhkyoa/KWUNBWzrWEbxY3FFDUUkddURkVqA4yGwADcgBBjI9brIaZpG1F1BURXthCV6yG6EY5sgpOaDFGNECHhWCPjaYqJoTYymsqISIrDIykIdZHvimBTfCS1rghqXBE0OQWLcRPe0oqrxE94nh9XiyG8xU+kD+KtVuJD7CQ47SSFOUiKDCEqykl4tIOwyBBCI+w4Qm061Fepg8h3/9tCc4OHU64fpP9vKqVUH6QBqFK9gIgQ7woh3hXChKzYvc57fH5KalvYVtPMttpmttW0UFTTHNxvYWlBDVWN7r3yWS1CbHgSCa5MEiJCSHeFMNrlICrBit3eCrYGfNTQbMppMuXUekqpbKmgpLmCVU0V1Hvq26htKyG+YiLdZUQ0g6vBh6vBS2QNjGkGV4vB1QLhLRDmsWK3urDYI/DaImkICacq1EVFWDi1LheVYS62hoXT4AmnwRtGgzccd10oFIXi9ECo2xDqMURiIVIsRNusRNutRDtsxDrtxIXZiQt3kBgRQkS4A2e4nZAwm06cpFQXqS5pZOX8QoZNSSEhM6Knq6OUUqoHaACqVB9gt1rIiA0jI7b9ZQ5avT7K6loprWuhpK6FivpWKhrclNe3Ut7QSkVDK+tL66lsdOMOriG6UxwQh9UylOhQO1FhdlLCHAxyWnA6/NhtXiy2VrA04ZdGvNThppZWU0OTr5oKbzn1nlLqfLXsfUOkIbgVY/NDWKsQ2mIIbzGEtRpclZBQDKFuCG0NBp2tYPPbEXEAIfisoXisofisYXhtYVTZwihxuGgJcdLkDKU5xEmr3YnP6sBvdeCzhiC2EKx2J1aHE5sjlFC7nXCblQibFZfdSqTDhsthJSLERkSIjUinjahQO1GhdiLCbITarVgslj0bo1SfZYzhq9kbsIVYOew0nfVWKaX6Kg1AlVIAhNis+w1SIfBHZJPbR1Wjm8pGN1WNrVQ2uKlt9lDT5KG6yU1Ns4eaJjdldR7qWjzUNXuob/VijA2ICm4Ze5VttwphDiuhDsFhA4fdj83qw2r1YrG6Qdxga8XnaqY1vJEGfwMe04DH34ibRlpoxFhaQdyIxQviQSxukEYQ717Brd1jcHrA4YEQL4R4wNEMYR6Dwxs47vAGNpsPLMaK39iox0a9sYHYABtG7BiLPfjqwGex4xcHRoJBsMUB4kCsIYjVgcXiwGINwWJ3YrU5sNhtWOx2bHYHVocdm8OB3eHA7rBjCwm8Op0h2B12QpwOnKEhOEPshDhshNothNisOCyCXQKbzSI4RLCJ4LAIFh3mqA4CeSsryV9TxRFn5RAWqesGK6VUX6UBqFLqgIgI4SE2wkNs+w1Wd+X3G+pbvdQ1e6ht9tDQ6qW+xUtDq4f6Fu+OrbHVS6M78Nrk9tHQuvN9s9sXePX4flDd7VaD1Qo2ix+r1eAXHy3ipVW81OMBAkGrCXFjQjwY8eDHjV+8+MUT3LwgPkR8sMsm4gN8IH5E3CDNIP5djvkAfzC9HxE/4Mfq92Hz+7EaP9ZWP7Zmg9Xvw2pM4LjPj82A1b/rZrD6QYxgMYJs3xDEWHZ7DwLssi+CJXhcCKYVCxA4ZhELQmBfgu9FBMEaSCeWQFliwSJWENmRziLBPJZgPkswb/C4RXZJIxbEIrvl2XF+1+MiWC3WQDkWCxZL8PoWKxER0Zx5+nk/6LOgupfP4+er/24gJjmMkcek93R1lFJK9SANQJVS3cJikR1DVPe+93lg/H5DsycQjLZ4AgFpczAw3f6+xeOjxeMPvHoD71s9Plq9flq921/9tHoC+26vH7fPH3jd473H58fnM3h9frz+nlg72SD4QYKvmGAAawgEtf6daSzbjwVejey6b3Yc331/j2O7HJfg9Xfkg93TYQIx7o59kN3KDZ7bPguW2TVvMCDftSxAZNefsdn7NXi9qIImDUAPEcvnF1BX3swp14/GatWh6Uop1ZdpAKqUOuRYLDvvwnY3n9/g8QWCUq8v+N5v8Hj9eP1+3F4TSOMPnPfu8erzG7z+na9enx+fCez7/Luf37759zjvMwZ/8NXnZ8d7f/C434DPGIzZnp/gcYPPsMvxXfNsL8+PMex9zh8ozx/M7w++9xuD8QeOGQLx5a7p2HEMDIHjO46x+3tD4D+7PmG8/djuYWgwLHbuPXFWXyAi0cDTwAgCP5L/M8Z8u0eaqcADgB2oMMYcLSIZwItAUjDfk8aYB7u6vsYYNi8rJ2tUPJnD4/afQSmlVK+mAahSSh0AqyUwJNRp15lye9r2ALcPehD40BhzlgRm2tptLHwwQH0UmGGMyReRxOApL/ArY8z3IhIBLBGRucaYNV1ZWRHhzJvH4W7+YUPnlVJK9S4agCqllDok9cU1JEUkCjgKuBTAGOMG9rwVfAHwhjEmP5imLPhaDBQH39eLSC6QBnRpAApgsVpwunTorVJKqcCsE0oppZQ6NGQD5cBzIrJURJ4WkfA90gwCYkTkMxFZIiIX71mIiGQBY4GFbV1ERGaJyGIRWVxeXt7JTVBKKdWXaQCqlFJKHTpswDjgMWPMWKAR+E0bacYDJwEnAH8QkUHbT4qIC3gduNEYU9fWRYwxTxpjJhhjJiQkJHRBM5RSSvVVGoAqpZRSh45CoNAYs/3O5RwCAemeaT4yxjQaYyqAL4DRACJiJxB8vmKMeaOb6qyUUkrtoAGoUkopdYgwxpQABSIyOHjoWPZ+hvNt4EgRsYlIGHAYkCuBh2afAXKNMfd1W6WVUkqpXegkREoppdSh5XrgleAMuJuBy0TkKgBjzOPGmFwR+RBYQWBVm6eNMatE5EjgImCliCwLlvU7Y8z73d8EpZRSfZUGoEoppdQhxBizDJiwx+HH90hzN3D3Hse+YvsiqkoppVQP0SG4SimllFJKKaW6hQagSimllFJKKaW6hQagSimllFJKKaW6hQagSimllFJKKaW6hRhjeroOnUJEyoGtnVRcPFDRSWUdCvpae6HvtbmvtRe0zX1BZ7W3nzEmoRPK6ZU6sX/ta59P6Htt7mvthb7X5r7WXuh7be7M9rbZv/aaALQzichiY8yeMwz2Wn2tvdD32tzX2gva5r6gr7X3UNcX/736Wpv7Wnuh77W5r7UX+l6bu6O9OgRXKaWUUkoppVS30ABUKaWUUkoppVS30AC0bU/2dAW6WV9rL/S9Nve19oK2uS/oa+091PXFf6++1ua+1l7oe23ua+2FvtfmLm+vPgOqlFJKKaWUUqpb6B1QpZRSSimllFLdQgNQpZRSSimllFLdQgPQXYjIDBFZJyIbReQ3PV2friAiz4pImYis2uVYrIjMFZENwdeYnqxjZxKRDBH5VETWiMhqEbkheLw3t9kpIotEZHmwzX8KHs8WkYXBz/drIuLo6bp2JhGxishSEXkvuN/b25snIitFZJmILA4e67WfawARiRaROSKyVkRyRWRyb29zb6B9a+/8bPa1/lX7Vu1be9tnerue6Fs1AA0SESvwCPBTYBhwvogM69ladYnngRl7HPsNMM8YMxCYF9zvLbzAr4wxw4DDgWuD/669uc2twDRjzGhgDDBDRA4H/gHcb4zJAaqBy3uuil3iBiB3l/3e3l6AY4wxY3ZZr6s3f64BHgQ+NMYMAUYT+Pfu7W0+pGnf2qs/m32tf9W+NaC3txe0b+3yvlUD0J0mARuNMZuNMW7gP8BpPVynTmeM+QKo2uPwacALwfcvAKd3Z526kjGm2BjzffB9PYH/qdLo3W02xpiG4K49uBlgGjAneLxXtVlE0oGTgKeD+0Ivbu8+9NrPtYhEAUcBzwAYY9zGmBp6cZt7Ce1bA3rdZ7Ov9a/at2rfGnzfq9rcU32rBqA7pQEFu+wXBo/1BUnGmOLg+xIgqScr01VEJAsYCyykl7c5OGRmGVAGzAU2ATXGGG8wSW/7fD8A3Ar4g/tx9O72QuAPn49FZImIzAoe682f62ygHHguOBzsaREJp3e3uTfQvjWgV382+0r/qn2r9q30ss80PdS3agCqdmMC6/L0urV5RMQFvA7caIyp2/Vcb2yzMcZnjBkDpBO4AzGkZ2vUdUTkZKDMGLOkp+vSzY40xowjMLTxWhE5ateTvfBzbQPGAY8ZY8YCjewxJKgXtln1Er35s9mX+lftW/sE7Vu7oW/VAHSnIiBjl/304LG+oFREUgCCr2U9XJ9OJSJ2Ap3jK8aYN4KHe3WbtwsOo/gUmAxEi4gteKo3fb6PAE4VkTwCw/umEXieobe2FwBjTFHwtQx4k8AfQ735c10IFBpjFgb35xDoNHtzm3sD7VvpvZ/Nvtq/at/aK9sLaN9KN/WtGoDu9B0wMDi7lwM4D3inh+vUXd4BLgm+vwR4uwfr0qmCzys8A+QaY+7b5VRvbnOCiEQH34cC0wk8m/MpcFYwWa9pszHmt8aYdGNMFoH/b+cbY35GL20vgIiEi0jE9vfA8cAqevHn2hhTAhSIyODgoWOBNfTiNvcS2rcG9LrPZl/rX7Vv1b41mKxXtbmn+lYJ3FVVACJyIoHx7lbgWWPMX3u2Rp1PRP4NTAXigVLgduAtYDaQCWwFzjHG7DmZwiFJRI4EvgRWsvMZht8ReE6lt7Z5FIEHxq0EvmSabYy5U0T6E/gWMxZYClxojGntuZp2PhGZCtxsjDm5N7c32LY3g7s24FVjzF9FJI5e+rkGEJExBCbDcACbgcsIfsbppW3uDbRv7Z2fzb7Wv2rfqn0rvewzvV1P9K0agCqllFJKKaWU6hY6BFcppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFQppZRSSimlVLfQAFSpTiQicSKyLLiViEhR8H2DiDzaBdd7XkS2iMhVB5jv/e0Lav+Aa44Jruv3Q/KGBn8ebhGJ/yFlKKWU6nu0f91vXu1f1SHD1tMVUKo3McZUAmMAROQOoMEYc08XX/YWY8ycA8lgjPlBHVzQGGAC8P6BZjTGNANjRCTvR1xfKaVUH6P9636vq/2rOmToHVCluoGITBWR94Lv7xCRF0TkSxHZKiJnisg/RWSliHwoIvZguvEi8rmILBGRj0QkpQPXeV5EHhORBSKyOXjdZ0UkV0Se3yVdnojEi0hW8NxTIrJaRD4WkdBgms9EZELwfXwwjwO4Ezg3+E3ruSISHrzGIhFZKiKnBfMMDx5bJiIrRGRgp/9glVJK9Wnav2r/qg49GoAq1TMGANOAU4GXgU+NMSOBZuCkYCf5MHCWMWY88Czw1w6WHQNMBm4C3gHuB4YDI0VkTBvpBwKPGGOGAzXAzPYKNsa4gT8CrxljxhhjXgNuA+YbYyYBxwB3i0g4cBXwoDFmDIFvdAs7WH+llFLqh9L+VamDnA7BVapnfGCM8YjISsAKfBg8vhLIAgYDI4C5IkIwTXEHy37XGGOCZZcaY1YCiMjqYNnL9ki/xRiz/diSYJoDcTxwqojcHNx3ApnAt8BtIpIOvGGM2XCA5SqllFIHSvtXpQ5yGoAq1TNaAYwxfhHxGGNM8LifwP+XAqw2xkz+oWUHy2rd5fj2sttLD+ADQoPvvewcJeHcx/UEmGmMWbfH8VwRWQicBLwvIlcaY+Z3oP5KKaXUD6X9q1IHOR2Cq9TBaR2QICKTAUTELiLDu7kOecD44PuzdjleD0Tssv8RcL0Ev0oWkbHB1/7AZmPMQ8DbwKiurrBSSim1H9q/KtXDNABV6iAUfBbkLOAfIrKcwLCeKd1cjXuAq0VkKbDrlO6fAsO2T5IA/BmwAyuCw5D+HEx3DrBKRJYRGO70YrfVXCmllGqD9q9K9TzZOTJBKXWoCc68996BThPf0yQwTfwEY0xFT9dFKaWU2pP2r0p1Hb0DqtShrRb4sxzgQtk9RYILZRP4Rtffw9VRSiml2qP9q1JdRO+AKqWUUkoppZTqFnoHVCmllFJKKaVUt9AAVCmllFJKKaVUt9AAVCmllFJKKaVUt9AAVCmllFJKKaVUt/h/3w6gPSKFttIAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ + "\n", "colors = [\"tab:purple\", \"tab:cyan\", \"tab:red\", \"tab:green\", \"tab:blue\"]\n", "linestyles = [\"dashed\", \"dotted\", \"solid\"]\n", "\n", @@ -188,6 +165,7 @@ "\n", "\n", "def plot(sims):\n", + " import matplotlib.pyplot as plt\n", " fig, axs = plt.subplots(2, 2, figsize=(13,9))\n", " for (C_rate,sim), color in zip(sims.items(),colors):\n", " # Isolate final equilibration phase\n", @@ -216,8 +194,8 @@ " axs[0,0].set_ylabel(\"Voltage [V]\")\n", " axs[0,1].set_ylabel(\"Volumetric interfacial current density [A.m-3]\")\n", " axs[0,1].legend(('Deintercalation current','Stripping current','Total current'))\n", - " axs[1,0].set_ylabel(\"Plated lithium capacity [Ah]\")\n", - " axs[1,1].set_ylabel(\"Intercalated lithium capacity [Ah]\")\n", + " axs[1,0].set_ylabel(\"Plated lithium capacity [A.h]\")\n", + " axs[1,1].set_ylabel(\"Intercalated lithium capacity [A.h]\")\n", "\n", " for ax in axs.flat:\n", " ax.set_xlabel(\"Time [minutes]\")\n", @@ -261,11 +239,11 @@ { "data": { "text/plain": [ - "(
,\n", - " array([[,\n", - " ],\n", - " [,\n", - " ]],\n", + "(
,\n", + " array([[,\n", + " ],\n", + " [,\n", + " ]],\n", " dtype=object))" ] }, @@ -275,14 +253,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhUV/rA8e8Zy8TdE0jwECRA8FKkBpRSKNTdqezWtra7de+v7m6029JSo1QphVKguLuGCHH3ZGbO748ZAiEBAiSZBN7P89wnc++58t4h5M47x5TWGiGEEEIIIYQQoqUZ3B2AEEIIIYQQQoiTgySgQgghhBBCCCFahSSgQgghhBBCCCFahSSgQgghhBBCCCFahSSgQgghhBBCCCFahcndATSXkJAQHRcX5+4whBBCtGMrV67M01qHujsOd5NnqhBCiON1qGfqCZOAxsXFsWLFCneHIYQQoh1TSu1xdwxtgTxThRBCHK9DPVOlCa4QQgghhBBCiFYhCagQQgghhBBCiFYhCagQQgghhBBCiFZxwvQBFUII0bJqa2tJT0+nqqrK3aEcN6vVSkxMDGaz2d2hCCFEqziR/oaLtuVon6mSgAohhGiS9PR0fH19iYuLQynl7nCOmdaa/Px80tPTiY+Pd3c4QgjRKk6Uv+GibTmWZ6o0wRVCCNEkVVVVBAcHt/sPLkopgoODpRZACHFSOVH+hou25VieqZKACiGEaLIT5YPLiXIfQghxNORvn2gJR/t71eIJqFLKqJRarZSa3UjZqUqpVUopm1Jq6gHbRyul1hywVCmlJrV0rEIIIYQQQgghWk5r1IDeBmw+RFkqcBXwvwM3aq3naa2TtNZJwBigAvitBWMUQgjRxqWlpTF69Gh69uxJYmIiL7/8cl3Zc889R48ePUhKSmLgwIF88sknboxUCCFEY4xGI0lJSSQmJtK3b1+ef/55HA7HYY/Zu3cvU6dOPew+AE8++WRzhXlIH330Ebfeeuth95k/fz6LFy+uW3/rrbdOmGdSc73HLZqAKqVigLOB9xor11qnaK3XAYf7zZsK/Ky1rmiBEIUQQrQTJpOJ559/nk2bNrFkyRJef/11Nm3axFtvvcWcOXNYtmwZa9asYe7cuWit3R2uEEKIg3h6erJmzRo2btzInDlz+Pnnn3nkkUcOe0xUVBQzZ8484rmPJTmy2+1HfcyRHJyATps2jSuuuKLZr3M0bDbbYdebqrkS0JYeBfcl4B7A9zjOcRHwQmMFSqkbgBsAOnTocByXcKq1O7j8/aVMSormokHHfz4hhBDNJzIyksjISAB8fX1JSEggIyODJ598kvnz5+Pn5weAn58fV155pTtDFcegwu6g3G4n1GKmtqqaX5avpiovn9r8PHRxCaq6mvARwzltxFCKUtP45f+ew1FbjXLY0NoGDgcBUy5i/PjxZGzawPxnHgY0aO38iYOQy2/irDPGsnPZEpa+9qTriwrl+hZc0eH62xl56mjWzpvD2g/fQOMs3/d1RsI/7mXwwCEs+3E2m778yLld7S8fePdD9E7sxV9ffcm2n752bd3XN0pz6kNP0zUunrmfTmfX3J9QgHaVG5SDs555mZjQcH5+/13SFs+vd7xRO5j4ytuE+vgy6/XXyFy9pN77Z1Sai978GB+TiZkvPE/u5rWuqzqZLCaufvV9zAbF5089RcGurfWON/tYueHFtwD45LFHKUnfeUDsCmuAL9c98woAHzzwAOW56fWO9w4J5prHn8Ph0Lz/73upKsqtV+4XHcmVDzyJze7g/XvupKqiuF55cHwcl93zEDU2B+/96x/UVlfWlWkFEd26cdHt91FVa+e9O2/C7qj/ATq6V2+m3nQHFeVVvH/vLRycVsQNGMCkq2+mKL+Qjx+6i4N1G3YK4y65htw96fzvuQf3XxtnbU3P0adz+nmXkLplG9++8XSD4/uNP4dTx05m2+o1/PLRyw3KB02+gCGjxrHp78X8PuPdemUKzSkXXUW/IaNY9ecfLPrWWVt2YLe60666mYS+g1j2y48s//Wr+ifXmvG33E18114s+v5r1syf5Trv/vNPvMuZ5JUW5FNZXsL+3wznfgGRsZhNZkryc6muKK0XHWiCojpiNBopycuhurLsoPghKCYeg1IU52RRW12/zkgpRVC0a+RdrclL2wWu9/Xph//LmedM5uGHH8bhcHDHP27hr0WLqamp4ZorLuOqyy4hfW8ml157Ixs2bOCNl1/gp19+pbKykt17Uplw1pk8+tADPP3y61RWVtI7MZEe3brw9isv8OU33/HOh59gs9kYOvwUXn/9dcqzM4ju1pMrL72IPxcu5v8ee5jUzCxef+d9lFL06NKJt156jl/mzOW5V9+gtraG4OAQvvjyK8LCwqgoyKG6rJiitJ38PGcuz7/6BrV2O6Fh4Xw6fTo5u7fx5huvYzQY+fjDD3jmkQdZtHwlgaHh3HnHHSya8xN3/vsBKiqriO/Ygdf+72nCYzsybtIUBiUnM/f3ORSXlPDK/z3NsMEDAbD6BmD1D8JeXc1jjzzIl998h8Fg4PTRI3n4/nuYePEVvPDiSyT1SmTPto2MPnsS6/5ewP++nMkPP/9GZU0NGsUVl17CzK++oryiHLvdwVefvM89DzzC1p27sdnt/Pe+ezntlMF8PftXfvz1NyoqKti5cyeTJ0/m2Wef5b777qOysrKuBvuzzz5r8HveVC2WgCqlJgA5WuuVSqlRx3iOSKA38Gtj5Vrrd4B3AJKTk4/7626z0cCGjGK6hHkBkoAKIcSh/PXlNvLSyo6841EIifVhxAXdmrRvSkoKq1evZvDgwZSWltKpU6dmjUW0vAX5JWzbvYfi1Wtg0xoMeRup7T+Ye+54hPQ9O/n8+8cp9PCj2OxHpcEHm7JwyuoZnDZiKLM27+SR0M5ohwW0EbQRjYFxWUsZz3g+3JDKezEXgDYAqu7nlLx1nMVYXt6wl1lRNzaI6arCTYxkNC9szufPqOsalN9WvIXBDOHpbUWsiry6fqGy8WDJdnrTi8d3VbI1/KAaD2M5zxWn0JV4HtljJzX8svqHmwuJK8kkJjSchzLM5IReUq/c4JHFgMoiQn18eTDHl6KQi+uXe+5hXG0VPiYfHioMpzz4wnrlJq9tXKY1ZhQPl8VTHdynXrnFe4PzG33gkYqe2AMH1Cu3+qxm3zvyWO1AdMCQeuU+nsu4BrA5NE8wEgLq336A8W+uBEqrbDxlPgP865eH2BdyGZBdUsWz1vFgrV8eWb2Ai4CU/HKe8z6Xg3Usm89UYHNWKc/7nNegvGvhn0wCVqQW8aLPlAblvfP+Yhzwx+5cXvRuWD4o629OB77dlsWLXg3LR2es4FQmM33LXqZ7Nmwuek7GWoYwjjc2ZTHb2rA8e+9a+jGKlzZks8B6foPy6qwNJPQdxNOb8lnlcXC5DWvONq7t2otHt5Sy1eOC+sXGckLzdpPoEUlGlaZGBQKw7pNtznKlsZryMRqM+HTxInxABPZaBxs/31FX7mkuwKAM+CX4ENonjNoKG5tn7nKVO/CyFHLeXQNIrzVjV0H1Lq8M1QQARsCBYu8B5Za4IGwOBzk5OXz//fdo7yA+/nEBNdXVXDl5LAkjz8Fo3J+u5NutrNm0lRk//4nF4sG5owYy8drrefrpp3nttdf47NdFACzYvpXPZ8/h3W9/x2qt4fXHnmD6p58y4PRJlFdUENfvFG588Hl2bN3MU/fcz4qly/ALCGTp5lTSVCCxg87kg1nno5Ti+y/e5dlnn+Xxp58lHx9KsZKqgokddCbvzzofq7mMv2b/ypNPP8t1dz/EeZddi5eXN1dO+wcAJUuWEQiUVdu49o77uO/RZ0keOpzXn3uS/778Lg8/8R8Ayqtr+HD2n/z1x288+tIbvPP5WQD4VJfTCZgxazbf/TaPD3+Yh6enF8WFhaQSSI2rCXN2eQ3pBGLHQCpB5OPDqg2b+f2vOfTu0pPnX32dVRs2M/O3hfgHBvLg04/Sc/jpPPvWJLyUB/0GDODznxdQXFvLmjVrWL16NR4eHnTv3p1//OMfde/xmjVrGvx+Hq2WrAEdDkxUSo3H+WfETyn1qdb6siMcd6ALgG+11rUtEuFBah21VOhMlmeUAH1b45JCCCGOUllZGVOmTOGll15ydyjiKGVW1xDpYcFRU8PSu04n1d/OhpA49kbEYws4h2HeGQBsrPBksekmsAN2UMqByWAnYagHACFRcYSacjAbwKjAoJw/z+wxHoDBiT1ZnrEMhQODou7nOd3GATA+uS+55atQan8tkUHBhC6nAzB1aH8UzhpEXPsoFGPjRgJw+Sn9CVq1se6+lOv40THDALjm1H78sX5/DaNSYDTAkLCeAFw3og9/b92JPqCGy2K00MvP+eX3DSMSWbk7hQNrqTxMPnQ0BzjLT+nO+rS0/RcHrKYQAhzOj3XXD49jW2YmuM6gAG9LNGabA4wGrh0WRUpOdr2RK/08uuJwaAwGxTVDg8koyD/w9AR59arb94pBnuSV1q/BjPBNBsBkUFw60ExR+b5aNOcZYv1OAcDLw8jFA4yUVlXUxQfQJeg0AIJ9LJzfDypqquvOrTUkRjj/7aICPDkvSVNdW78GNClqIgCdIvyZ2MeO/aB+hYM6TAagd+cIJvRZj8Ox/73VGkZ2diaFQ/t0Znx62v4y188zuzuTvrGDe7GlZBH1aj0UnJvoPH7SsP7k2lfUKwM4r58zKb5w5CBqrWv3l7tONKGvM/7LxwzFc9XGer8bAKclnAnAlWOGEbxpG/tqJgGUMjOiy1AArjltCL9v3+26tsKBxmTwJTk2icqcbEL8vCmrqQHAaNwfpEE5e+V5Wy34eSnsNape+b7fFW+rBV8vRY0+sHx/j74gXyuVBzXvNBo899fGKvDxOnjEVIXWmt9++41Va9Yw95cfACgtKSEncxddu3Wt29PTamD4yJFERAQA0LVHD4oLCuvK/byN2BwOVi9bwJb1a7ls4hgMSmGrriY0NJSRXgaMRiPnTDkXo1GxevlfnHPeFEJCQrA5HERFB+PQmtTde7nvH9eQm52NrbaGrp07YzIoLBYwmRRWT8Ue1z55Odlom42OcXFYPRVGExjN4OH6EsVicb6oqiinrLSY4aOHAzD10ou5/dqr8PF1JuRTpkzBYoW+yUk8+1AqrsPw9nZ+YfD3ooWcd+ml+Ad6ARAaGej6d3T+v/fx9sTi4fzVsFjBZIbho0YRFeP8gtbDw8KwUaMIcR23ZOE8/pz7M5+//wZGpaitqSEvLx0PDyunnXYa/v7Ob4l69uzJnj17iI2Npbm0WAKqtb4fuB/AVQP6r6NMPgEu3neO1mBSJiyWCgpLrUfeWQghTmJNralsbrW1tUyZMoVLL72U885zfqDz8fFh165dUgvahq0sLmfGdz+iNv3Ff594iaIyG+92uJGamjAoN6DKHYR62Bjq2Q+AIV0iubB8J1528NEKD+1MAHvnRgNwVs8O7H59V4PrhHcJAWBEXDTbtoY0KPfp5uwRNCw6ip0b9zQot/T0gkQYFhZF6rr0BuX09YAuMDQ4mr2rsxoU2weYIRaG+keTtyqvQbljiAkiYbhvDKUrixqWn2qEUDjFGkP1stIG5fYxCgLgFFMMelnDoTHs4zR4wwhiMC+taVBuO9eB2QNG1EbjvbRhHzA9VYNBMaIymvVL6jcsMxiVs1oAOLU0mi1/G+uVe3iZ4DwwGBQj8iLZubr+R0yfIA+YBB4mI0MzI0jbVFCvPCjKG84GL4uJIXvCydpVUq88PN4HzgQ/q5lB20PJzyivX57gA6dBoLeF5I0hlObXn5MwLMkHToVwP0/6rQykqrx+3UaI3QuGQYcgP3ov8cVhq3//wUYrDIQuwQH0Wujd4L0L8LJCEiQGB9N7oVeDct8gC/SEvgHBrPvLs0G5V7QJOkN/vxC2NVLuEWeADjDYL5T0BakNyg3dgHAY6hVK3p97G5YnajCAjzLhKHXe+2kX9dgff7gXFquJyrIa13tnrFceGOmN2WKkoqSGssIqvDHXKw+O8gHAT5swljbSr9JXg1GhAJ/S/QloSupuTAYDYaFhaK15/ukXGT5wZL1DU9P2/1/1thvwUR74ljq/GbJoI6aS/b/LQXYT1RU2rFVw0ZRL+O99D2M0Gpy/X0BxbiUeHlZCaswAeNUqKmqd8ZgMBkJsJmprHTx1z73cdMOtjDvzbP5evojnXnoKs9GAr8OI1a4Irjby9L3OfSaeM5FV65fy8MMPE2Y342034G03ElrrvIaH3Zmge5iNGFB128tsJkxa4Vvr/L/k5+NNuN2CSXugbXbCba7ja03gCWaDws9hItxuAfZ/OeRhNOFwOPC1mPGrcGDUigi7BX+HkWBPX7ztzvN7mYyEePkS6XAeb9Lw4fuf0ycpEQ8vM3abg9KCKrI3bsTDw6PuPTUajcfcZ/RQWroPaANKqUeBFVrrWUqpgcC3QCBwjlLqEa11omu/OCAW+LPVgrPb8agpoKQq6Mj7CiGEaFVaa6699loSEhK4884767bff//93HLLLcyYMQM/Pz/Kysr45ptv3D7og4CNZZV8+MdC/Ga/xMaO+eyNiuDOwkzCAiOJdUQSXmkg1m4kwm4gPNybHmHOPr4hvlYum9IDk8WI1duEh5cJo8mIl7/zg5PBoLjyqWEYjAYMzipOZy2j2fVBz8vEja+ObBCPweD8yOYbZK1f7so1lNFZHhTpzQ0v7y/fN6jVvvOHxflx/Uun1jsWwGhxlkd3D+S6F0bUu7bWYLY6PwjG9Q7h2ufrl8P+8i7JYcT1bphAWzyd5T2HR9J1YFiDcg8v5wfWPmNi6Tk8qkG51VU+YGxH+o5pWJthMDnvf8i5nUgeF9egfJ9TLujG0MldDrg3Xa82ddRlPRhxUf0vqQ4sP/OaROy2+jWUyrC/fPxNfbDbGkmAXSbe1g+Hvf7xRtP+Wrgpdw+oV8MJYDLvL7/gPwPrD1SmweyxP6G+9OH6zYth/7+Nwai47LH95ftO4+Hl/Eht8TJx6SNDXGX7r+Hp4/zd9Q7w4OIHB7v6F1P3+7Pvd9s/1JML/jOw3u+V1hrfYGflSFCUN1PuHXBQOQSGO5PesI5+TL6rX13X530xhMT4sjstB7PViH+YV/2DD3h/LFYT/qGeztMf+Lvtev8tnkb8jJ7s22HfLqqu3FT3/6zuEtT/9/cJdN5Lbl4O9z90F9NuuAllUJx11ll8+PF7jB41GrPZzPbt24mKjMLLz1J3rMlixGQx1G0zmgxYPJ3vvdlsBqMDq4+Z0884nYsuP5/b/nkbYeHhFBQUUFpaSmhgJEpRd8yYMWO49MqL+PcD9xIcHExJeTH+vgGUlpUQ2yEGk8XIF1/t7+toMDj/5pjMBkpLS4iNicFoNPDxxx87y40KXz9fSktL9//Oun74+/sT4B/IkmWLGTZkOF99/QXDh51S771SB+x/sDPOOIOHHnyE8ydfgJeXFwWFBQQGBtGhQxwrV64kOXkg3//wLQAOh8bh+vev+z3UoB0ah925Pnrk6bz97pu8+uqrAKxatYrOsQkH/Ks2ZDabqa2tdb7Xx6FVElCt9Xxgvuv1gwdsXw7EHOKYFCC65aPbT5lM+OoySmxeDf6YCiGEcK9FixYxffp0evfuTVJSEuAcke+mm26irKyMgQMHYjabMZvN3HVXw0FGROvalprB/579F2khG1mTMIya3Guwlpvw9g3Fw2TkhdG9UQZFaAdfgqO9sVjrfyTpParRjweA88Psvg+xhyo3mY3HXm5Q9RKSgxkMqkG8BzIaDRi9Dj3RgNFkqJcwHcxkNh42PueH8EOXmy1GzIcpt1hNdc37jqXcw9NZI3MoVu/Dfzi1+hy+3NPXctjyAxOSxngHeBy23Dfo8C3d/EIOfXNKKfxDG9Zw7mMwKALCD11uNO2vjWuMyWIkNPbQY3darCYi4v0PWW71NhPVNfDQ1zcaMHq23O/mkX73KisrGXbqIGprazGZTFx++eXceeedKKW47rrrSElJYcTooWitCQ0N5bvvvsOrdv+/p9nDiNnDVPf/32Q21CX3N9xwA4OHJdO/f38+++wznnzyCc67cCIOhwOz2czrr79Ox44dAfALdv4bDx4+gAce+C8jR47EaDTSr18/PvroIx57/FGuvv5yAgMDGTNmDOkZzlpnq48Zi6cJ/1Av5z437N9n9+7d+AV7csHFU5g6dSq//v4Tr776ar2/FZ9+9gnTpk2joqKCTp068eGHH+Ltv//+AsK9sBm9MRgVgRH1f0/GjRvH2rVrOWPCSCwWC+PHj+fJJ5/kvvvv4YILLuCdd97h7LPPxmBUBEV64xPggdXbXPf+GIwGrN5mgiKd533ymUe5/fbbGTR0AA6Hg/j4eGbPnn3Yf98bbriBPn361L3Hx0qdKEPVJycn6xUrVhx5xyM454HbWV97BqsfOINA78P/gRNCiJPJ5s2bSUhIcHcYzaax+1FKrdRaJ7sppDajOZ6p21JXc+6PD1GbOQlbTThxtYqLQoK5/Oakeh+4hBCt40T7Gy7alqN5prZ6E9y2zObQGOzOPgOZxRWSgAohhBDHqKg0mso9N+LrgCl+/lwzOYHYnkHSukgIIU5ykoAewGRQWF3PxZ35efSMCnBrPEIIIUR7ldwjhGvDQ7hwTDxd+4RK4imEEAKQBLQBHw8LVMDO3FygyxH3F0IIIURDBqOBB+4Y7O4whBBCtDGH7mV8kvL3CQBgT3bD4dOFEEIIIYQQQhw7SUAP4h8UDcZyMgsazr8lhBBCCCGEEOLYSRPcA9jtDvJSvTGYSsktk7dGCCGEEEIIIZqT1IAewGg0YLAEYVYlFFbKYAlCCNHWXHPNNYSFhdGrV69625977jl69OhBUlISAwcO5JNPPnFThM1LKWVUSq1WSs12rccrpZYqpXYopWYopSyu7R6u9R2u8rgDznG/a/tWpdRZbroVIYTgiSeeIDExkT59+pCUlMTSpUsBeOmll6ioqDjkcddddx2bNm06pmvOmjWLp59++piObWvmz5/P4sWL3R3GcZME9CCe3oF46hLKa2WOMiGEaGuuuuoqfvnll3rb3nrrLebMmcOyZctYs2YNc+fO5USZ4xq4Ddh8wPozwIta6y5AIXCta/u1QKFr+4uu/VBK9QQuAhKBscAbSqlDzzIuhBAt5O+//2b27NmsWrWKdevW8fvvvxMbGwscPgG12+2899579OzZ85iuO3HiRO67775jjru52O32w643hSSgJ6hQqxUveynVdk8cjhPmA4wQQpwQTj31VIKCgupte/LJJ3nzzTfx8/MDwM/PjyuvvNId4TUrpVQMcDbwnmtdAWOAma5dPgYmuV6f61rHVX6aa/9zgS+01tVa693ADmBQq9yAEEIcIDMzk5CQEDw8nJU8ISEhREVF8corr7B3715Gjx7N6NGjAfDx8eGuu+6ib9++/P3334waNYoVK1bUld1xxx0kJiZy2mmnkZubC8CoUaO47bbbSEpKolevXixbtgyAjz76iFtvvRVwfon5z3/+k2HDhtGpUydmznT+OXU4HNx888306NGDM844g/Hjx9eVHWjHjh2cfvrp9O3bl/79+7Nz507mz5/PhAkT6va59dZb+eijjwCIi4vj3nvvpX///nz11VcN1n/77TeGDh1K//79Of/88ykrK6s77qGHHqJ///707t2bLVu2kJKSwltvvcWLL75IUlISf/31V3P/E7Ua6eh4kAhPC16OKsBIQUUNIT5SEyqEEAd7YHs6G8oqm/WcvXw8eaxrzFEdU1JSQmlpKZ06dWrWWI5EKVVypF2ATK11t+O4zEvAPYCvaz0YKNJa21zr6UC063U0kAagtbYppYpd+0cDSw4454HH1A9YqRuAGwA6dOhwHGELIdqDb59fRY+hkSQMi8RudzDrpTX0PCWK7oMjqK2xM/vVtfQaGU3X5HCqK2389MY6+oyJoXO/MCrLavjl7Q0kndGB+D4hlBdX4+1/+M/MZ555Jo8++ijdunXj9NNP58ILL2TkyJH885//5IUXXmDevHmEhIQAUF5ezuDBg3n++ecbnKe8vJzk5GRefPFFHn30UR555BFee+01ACoqKlizZg0LFizgmmuuYcOGDQ2Oz8zMZOHChWzZsoWJEycydepUvvnmG1JSUti0aRM5OTkkJCRwzTXXNDj20ksv5b777mPy5MlUVVXhcDhIS0s77H0HBwezatUqAO6777669by8PM477zx+//13vL29eeaZZ3jhhRd48MEHAWeCvmrVKt544w2ee+453nvvPaZNm4aPjw//+te/DnvNtk5qQA8S7W3BkxoAsoqb98OVEEKIE8ZOrbXfYRZfoPxYT66UmgDkaK1XNl/Ih6e1fkdrnay1Tg4NDW2tywohThI+Pj6sXLmSd955h9DQUC688MK6msKDGY1GpkyZ0miZwWDgwgsvBOCyyy5j4cKFdWUXX3wx4GwtU1JSQlFRUYPjJ02ahMFgoGfPnmRnZwOwcOFCzj//fAwGAxEREXU1sQcqLS0lIyODyZMnA2C1WvHy8jrife+L9eD1JUuWsGnTJoYPH05SUhIff/wxe/bsqdvvvPPOA2DAgAGkpKQc8TrtidSAHiTQz4oVZ9Pbnfl59IoOcG9AQgjRBh1tTWVL8fPzw8fHh127drV2LWjjn4yOfp9DGQ5MVEqNB6yAH/AyEKCUMrlqQWOADNf+GUAskK6UMgH+QP4B2/c58BghxEls8l39614bjYZ662aLsd66h6ep3rqnj6Xe+pFqP/dfx8ioUaMYNWoUvXv35uOPP+aqq65qsJ/VasVobFp3dWdvg4avG1sH6poAA80yXoDJZMLhcNStV1VV1Sv39vZudF1rzRlnnMHnn3/e6Hn3xWk0GrHZbI3u015JDehBvPwteLry8l25eW6ORgghxJHcf//93HLLLZSUOFvFlpWVtfgouFrrXQdvU0oFHWmfozj//VrrGK11HM5BhP7QWl8KzAOmuna7Evje9XqWax1X+R/a+clqFnCRa5TceKArsOxY4xJCiGO1detWtm/fXre+Zs0aOnbsCICvry+lpaVNOo/D4ajrn/m///2PU045pa5sxowZgLNG09/fH39//yadc/jw4Xz99dc4HA6ys7OZP39+g318fX2JiYnhu+++A6C6upqKigo6duzIpk2bqK6upqioiLlz5zbpmkOGDGHRokXs2LEDcDYt3rZt22GPOZr3qS2TBPQg3v4eWA3ObyZSc3LdHI0QQogDXXzxxQwdOpStW7cSExPD+++/z0033cTo0aMZOHAgvXr1YsSIERgMLft4U0oNV0ptVkptVEoNVkrNAZYrpdKUUkNb8NL3AncqpXbg7OP5vmv7+0Cwa/udwH0AWuuNwJfAJuAX4Bat9dEPvSiEEMeprKyMK6+8kp49e9KnTx82bdrEww8/DMANN9zA2LFjG236ejBvb2+WLVtGr169+OOPP+r6TIKz5rRfv35MmzaN999//zBnqW/KlCnExMTQs2dPLrvsMvr3799o8jp9+nReeeUV+vTpw7Bhw8jKyiI2NpYLLriAXr16ccEFF9CvX78mXTM0NJSPPvqIiy++mD59+jB06FC2bNly2GPOOeccvv3223Y/CJE6UYaqT05O1vtGxzoeRTkV3P/aK/xij2dQlIMZt1zcDNEJIUT7t3nzZhISEtwdRrNp7H6UUiu11slHOlYptQzn1Cc+wA/AJK31QqVUf+BVrfXwloi5tTTXM1UI0XacKH/DfXx86kaLPdCoUaN47rnnSE4+4p/wRpWVleHj40N+fj6DBg1i0aJFREREHG+4J42jeaZKH9CDePt7YFCRKFMJuaUyAq4QQohGmbXW6wGUUrla64UAWutVSilP94YmhBDiaE2YMIGioiJqamp44IEHJPlsQZKAHsTsYcRoCcFs20JRVZi7wxFCCNE2HdjG9/6DyiytGYgQQpxMGqv9BBrtt3k0jvd40XTSB7QRHr6BeDpKKKuVGlAhhBCNekAp5QWgtf5u30alVGegZUdAEkIIIdoxSUAbEWq14uUoo8buic3uOPIBQgghTipa61la64oDtymlIrTWO7XWz7orLiGEEKKtkwS0EeFWC16OCsBAfnmNu8MRQgjRPvzk7gCEEEKItk4S0EZEeVnw0rUAZBZXujkaIYQQ7UTDGc+FEEIIUY8koI0I8bNixTk9ze78fDdHI4QQYp+srCwuuugiOnfuzIABAxg/fnzdxN3jxo0jPT2dSy+9lO7du9OrVy+uueYaamtrWyu8d1vrQkII0d7k5+eTlJREUlISERERREdH163X1NRvcfjSSy9RUVFxiDPtN2rUKNrilFHfffcdmzZtcncYbZYkoI3w8rdgVc4BgnflSQIqhBBtgdaayZMnM2rUKHbu3MnKlSt56qmnyM7OprKykvz8fGJiYrj00kvZsmUL69evp7Kykvfee69F41JKBSql+gBLlFL9XXOBCiGEOEBwcDBr1qxhzZo1TJs2jTvuuKNu3WKpP3h4UxPQlmC32w+73hSSgB6eJKCN8Pa34KF8AAepOXnuDkcIIQQwb948zGYz06ZNq9vWt29fRowYwfz58xk1ahQA48ePRymFUopBgwaRnp7eYjEppR4D1gGvAM+7luda7IJCCHECmTt3Lv369aN3795cc801VFdX88orr7B3715Gjx7N6NGjAbjppptITk4mMTGRhx566IjnXb58OcOGDaNv374MGjSI0tJSPvroI2699da6fSZMmFA39YqPjw933XUXffv25e+//26w/umnnzJo0CCSkpK48cYb65JSHx8f/vOf/9C3b1+GDBlCdnY2ixcvZtasWdx9990kJSWxc+fO5n/j2jmZB7QRXv4eGAyhKFMZewukS48QQhws68knqd68pVnP6ZHQg4h///uQ5Rs2bGDAgAGNlv38889MmjSp3rba2lqmT5/Oyy+/3JxhHuwCoLPWWkasE0K0G399uY28tMbn0zxWIbE+jLigW5P3r6qq4qqrrmLu3Ll069aNK664gjfffJPbb7+dF154gXnz5hESEgLAE088QVBQEHa7ndNOO41169bRp0+fRs9bU1PDhRdeyIwZMxg4cCAlJSV4enoeNpby8nIGDx7M888/32B98+bNPPPMMyxatAiz2czNN9/MZ599xhVXXEF5eTlDhgzhiSee4J577uHdd9/lv//9LxMnTmTChAlMnTq1ye/HyURqQBvhHeCBwRCBMpWQV9ZqfYeEEEIco0WLFnHKKafU23bzzTdz6qmnMmLEiJa89AYgoCUvIIQQJyK73U58fDzdujmT1iuvvJIFCxY0uu+XX35J//796devHxs3bjxs89atW7cSGRnJwIEDAfDz88NkOnydm9FoZMqUKY2uz507l5UrVzJw4ECSkpKYO3cuu3btAsBisTBhwgQABgwYQEpKStNu/iQnNaCNsFiNGM0hmG2bKarycXc4QgjR5hyuprKlJCYmMnPmzAbbd+3aRWxsbL0+RI888gi5ubm8/fbbLR3WU8BqpdQGoHrfRq31xJa+sBBCHKujqal0t927d/Pcc8+xfPlyAgMDueqqq6iqqjrq85hMJhwOR936geewWq0YjcZG17XWXHnllTz11FMNzmk2m1HK2VrSaDRis9mOOq6TkdSANkIphYd3IJ66lLIaD3eHI4QQAhgzZgzV1dW88847ddvWrVvH9OnTGTt2bN229957j19//ZXPP/8cg6HFH3MfA88AT7O/D+jzLX1RIYRo74xGIykpKezYsQOA6dOnM3LkSAB8fX0pLS0FoKSkBG9vb/z9/cnOzubnn38+7Hm7d+9OZmYmy5cvB6C0tBSbzUZcXBxr1qzB4XCQlpbGsmXLmhTnaaedxsyZM8nJyQGgoKCAPXv2HPaYA+MXDUkN6CGEWK14OUopcnhSa3dgNkquLoQQ7qSU4ttvv+X222/nmWeewWq1EhcXh8Ph4M0336zbb9q0aXTs2JGhQ4cCcN555/Hggw+2VFgVWutXWurkQghxorJarXz44Yecf/752Gw2Bg4cWDfI3A033MDYsWOJiopi3rx59OvXjx49ehAbG8vw4cMPe16LxcKMGTP4xz/+QWVlJZ6envz+++8MHz6c+Ph4evbsSUJCAv37N23A8p49e/L4449z5pln4nA4MJvNvP7663Ts2PGQx1x00UVcf/31vPLKK8ycOZPOnTs3/Y05CSittbtjaBbJycm6OecB+uDDdfxvxxvssJ/D4vvGEBVw+M7LQghxotu8eTMJCQnuDqOe6upqhg8ffkzzwDV2P0qplVrr5KaeQyn1As6mt7Oo3wR31VEH1IY09zNVCOF+bfFvuDhxHM0zVWpADyHK2wMv16CGWcVVkoAKIUQb5OHh4e5JyPu5fg45YJsGxrghFiGEEKLNkwT0EEL8LFhxdlROKSigf8dAN0ckhBCirdFaj3Z3DEIIIUR7Ih0bD8Hbz4qnMgOwKy/PzdEIIYRoL5RSTetYJIQQrexE6Xon2paj/b2SBPQQvP0tWJQ3YCc1RxJQIYQQTXaTuwMQQoiDWa1W8vPzJQkVzUprTX5+PlartcnHSBPcQ/AO8MBgDENRyt4CeZuEEEI02c3uDkAIIQ4WExNDeno6ubm57g5FnGCsVisxMTFN3l8yq0Pw8rdgUJEoUwl5Zb7uDkcIIUQbppwzkY8BLgEmAOHujUgIIeozm83Ex8e7OwwhpAnuoVi9zShzMCZDCUVV8jYJIURbkJWVxUUXXUTnzp0ZMGAA48ePZ9u2bQCMGzeO9PT0un3/+c9/4uPj06LxKKWGKKVeAfYA3wMLgB4telEhhBCiHZPM6hCUUli8gvBylFBe6+HucIQQ4qSntWby5MmMGjWKnTt3snLlSp566imys7OprKwkPz+/rgnQihUrKCwsbLFYlFJPKqW2A08A63BOx5Krtf5Ya91yFxZCCCHaOUlADyPYwxMvRxm1DitVtXZ3hyOEECe1efPmYTabmTZtWt22vn37MmLECObPn8+oUaMAsNvt3H333Tz77LMtGc51QDbwJjBda52Pc/5PIYQQQhyG9AE9jAgPE972CgByS6uJDfJyc0RCCNE2PLPsGbYUbGnWc/YI6sG9g+49ZPmGDRsYMGBAo2U///wzkyZNAuC1115j4sSJREZGNmt8B4kEzgAuBl5SSs0DPJVSJq21rSUvLIQQQrRnUgN6GJFeHnjpWgCyiivdHI0QQohDWbRoEaeccgp79+7lq6++4h//+EeLXk9rbdda/6K1vhLoDHwHLAIylFL/a9GLCyGEEO2Y1IAeRpifBatytqhKKSxiYHywmyMSQoi24XA1lS0lMTGRmTNnNti+a9cuYmNjsVgsrF69mh07dtClSxcAKioq6NKlCzt27GixuLTW1cDXwNdKKT9gUotdTAghhGjnpAb0MLz9PLBiBGB3Xr6boxFCiJPbmDFjqK6u5p133qnbtm7dOqZPn87YsWMBOPvss8nKyiIlJYWUlBS8vLxaJPlUSk1obLvWukRr/cnh9hFCCCFOZlIDehjeAR5YDL7gsJGak+fucIQQ4qSmlOLbb7/l9ttv55lnnsFqtRIXF4fD4eDNN99s7XD+TymVAajD7PMkMLuV4hFCCCHaBUlAD8Pb3wODIQxlKiGzUKZiEUIId4uKiuLLL7+sW6+urmb48OHExcU1un9ZWVlLhZINvHCEfba31MWFEEKI9koS0MPw8rdgMESgDCXklQW6OxwhhBAH8fDwYMWKFa1+Xa31qFa/qBBCCHECkD6gh+Hpa0EbQzEbSimqOlwrKyGEEEIIIYQQRyIJ6GEYDAqLZyCejhLKa6UJrhBCCCGEEEIcD0lAjyDIasXbXorN4UFFjcwtLoQQQgghhBDHShLQIwi3mPF2VAKQU1Lt5miEEEK0JUqplUqpW5RSMlCAEEII0QQtnoAqpYxKqdVKqQZD0SulTlVKrVJK2ZRSUw8q66CU+k0ptVkptUkpFdfSsTYm0suCp64BIKukyh0hCCGEaLsuBKKA5UqpL5RSZymlZNAAIYQQ4hBaowb0NmDzIcpSgauA/zVS9gnwf1rrBGAQkNMi0R1BuK8HVjQAqYVF7ghBCCGES1ZWFhdddBGdO3dmwIABjB8/nm3btgEwbtw40tPTmTt3Lv379ycpKYlTTjmFHTt2tFg8WusdWuv/AN1wPss+APYopR5RSgW12IWFEEKIdqpFE1ClVAxwNvBeY+Va6xSt9TrAcdBxPQGT1nqOa78yrXVFS8Z6KD5+HliVc7aa3fkF7ghBCCEEoLVm8uTJjBo1ip07d7Jy5UqeeuopsrOzqaysJD8/n5iYGG666SY+++wz1qxZwyWXXMLjjz/eonEppfoAzwP/B3wNnA+UAH+06IWFEEKIdqil5wF9CbgH8D3K47oBRUqpb4B44HfgPq21/cCdlFI3ADcAdOjQ4biDbYx3gAdm5QuqhtSc/Ba5hhBCiCObN28eZrOZadOm1W3r27cvAD///DOjRo0CQClFSUkJAMXFxURFRbVYTEqplUAR8D7O59S+wQKWKqWGt9iFhRBCiHaqxRJQpdQEIEdrvVIpNeooDzcBI4B+OJvpzsDZVPf9A3fSWr8DvAOQnJysjy/ixnn5W1CGcAzmIlJyHUc+QAghTgKP/LCRTXtLmvWcPaP8eOicxEOWb9iwgQEDBjRa9vPPPzNp0iQA3nvvPcaPH4+npyd+fn4sWbKkWeM8yPla610HblBKxWutd2utz2vJCwshhBDtUUs2wR0OTFRKpQBfAGOUUp828dh0YI3WepfW2gZ8B/RvkSiPwNvfA4MhHINnGrsLjGjdInmuEEKI47Bo0SJOOeUUAF588UV++ukn0tPTufrqq7nzzjtb8tIzm7hNCCGEELRgDajW+n7gfgBXDei/tNaXNfHw5UCAUipUa50LjAFWtEScR+LlZ0EbQ/AwL6G8dgDphZXEBnm5IxQhhGgzDldT2VISExOZObNhbrdr1y5iY2OxWCzk5uaydu1aBg8eDMCFF17I2LFjmz0WpVQPIBHwV0odWNPpB1ib/YJCCCHECaLV5wFVSj2qlJroej1QKZWOc8CGt5VSGwFcfT3/BcxVSq0HFPBua8cKYDQZMFuDCbOlArA6rcgdYQghxElvzJgxVFdX884779RtW7duHdOnT69LMgMDAykuLq4bGXfOnDkkJCS0RDjdgQlAAHDOAUt/4PqWuKAQQghxImjpQYgA0FrPB+a7Xj94wPblQMwhjpkD9GmF8I4oyMNKl9xcUgw1rN5TyMS+LTeghRBCiMYppfj222+5/fbbeeaZZ7BarcTFxeFwOHjzzTcBMJlMvPvuu0yZMgWDwUBgYCAffPBBs8eitf4e+F4pNVRr/XezX0AIIYQ4QbVKAtrehVtM2Mr9MIRmsDQlAGerKyGEEK0tKiqKL7/8sm69urqa4cOHExcXV7dt8uTJTJ48uUXjUErdo7V+FrhEKXXxweVa63+2aABCCCFEOyUJaBNEeFrY7dEZg2cq27LiqLbZ8TAZ3R2WEEKc9Dw8PFixwi1DBGx2/XTLxYUQQoj2qtX7gLZHEb4WskL74mFJxeZQzT71gBBCiPZFa/2D6+fH+xZgOvCt6/VxUUrFKqXmKaU2KaU2KqVuc20PUkrNUUptd/0MdG1XSqlXlFI7lFLrlFL9DzjXla79tyulrjze2IQQQojjIQloE/j6W0mL6EqnEtdARKlF7g1ICCHc5ESZiqq57kMp9T+llJ9SyhvYAGxSSt3dDKe2AXdprXsCQ4BblFI9gfuAuVrrrsBc1zrAOKCra7kBeNMVXxDwEDAYGAQ8tC9pFUIIIdxBEtAm8Pb3wGEKpmtBBQZTEStTC9wdkhBCtDqr1Up+fn67T0K11uTn52O1NstsKT211iXAJOBnIB64/HhPqrXO1Fqvcr0uxdnkNxo4F9hXw/qx67q4tn+inZbgnMosEjgLmKO1LtBaFwJzgOafl0YIIYRoIukD2gRe/haiCu2YbZEYPFNZuSfE3SEJIUSri4mJIT09ndzcXHeHctysVisxMY0Own60zEopM85E8DWtda1SqlkzdKVUHNAPWAqEa60zXUVZQLjrdTSQdsBh6a5th9ouhBBCuIUkoE3g7W8hOt9OuU8CRs80snL6kFtaTaivh7tDE0KIVmM2m4mPj3d3GG3N20AKsBZYoJTqCDTbQAFKKR/ga+B2rXWJUqquTGutmzPZVUrdgLP5Lh06dGiu0wohhBD1SBPcJvDy9yCqwEZKdG98cfYDXZNW5N6ghBBCuJ3W+hWtdbTWeryr+eseYHRznNtVs/o18JnW+hvX5mxX01pcP3Nc2zOA2AMOj3FtO9T2xu7lHa11stY6OTQ0tDluQQghhGhAEtAmMFuMBBgMFMZ2oUd+OmBnTVqhu8MSQgjhZkopD6XUJUqpfyulHlRKPQj8uxnOq4D3gc1a6xcOKJoF7BvJ9krg+wO2X+EaDXcIUOxqqvsrcKZSKtA1+NCZrm1CCCGEW0gT3CbyC/UkyGEmptQDQ1AmK1KC3R2SEEII9/seKAZWAtXNeN7hOAczWq+UWuPa9m/gaeBLpdS1wB7gAlfZT8B4YAdQAVwNoLUuUEo9Bix37feo1lpG0hNCCOE2koA2UXicHyEZRWgVi9EzjbXpMdgdGqNBHflgIYQQJ6oYrXWzjyqrtV4IHOoBc1oj+2vglkOc6wPgg+aLTgghhDh20gS3icLi/AjLqqEgoDdGz1SqamF7Tqm7wxJCCOFei5VSvd0dhBBCCNFeSALaROFxfkQU2djVMZGIqj0ArEktcm9QQggh3O0UYKVSaqtSap1Sar1Sap27gxJCCCHaKmmC20SBkd54mozUhMfRa3MBqeYKVqUWctEgGapeCCFOYuPcHYAQQgjRnkgNaBMZDIqwDr6ElRkIqApCeaayYk+eu8MSQgjhRq5pV2KBMa7XFcizVQghhDgkeUgehfA4P4JTK6m2dMLomcbu3CpKq2rdHZYQQgg3UUo9BNwL3O/aZAY+dV9EQgghRNsmCehRCIvzIzLPRlZoXzwse9DAuvRid4clhBDCfSYDE4FyAK31XsDXrREJIYQQbZgkoEchPN6PkBI7KfHdiS9NA2B1aqGboxJCCOFGNa4pUDSAUsrbzfEIIYQQbZokoEfBJ9ADb18LHr6RdM6zYbTksEoSUCGEOJl9qZR6GwhQSl0P/A686+aYhBBCiDZLRsE9Ckop53QsuTV42CNQnqmsTI1Ea41Sh5ovXAghxIlKa/2cUuoMoAToDjyotZ7j5rCEEEKINksS0KMUHudL8Kp0yr26Y/RMpbg4mbSCSjoEe7k7NCGEEG7gSjgl6RRCCCGaQJrgHqWwOD+i8u3sie6Ln0oFYHWaNMMVQoiTiVKqVClVcqjF3fEJIYQQbZUkoEcprKMffpUOsjp2pUdeFkrVsDq1yN1hCSGEaEVaa1+ttR/wMnAfEA3E4JyS5SU3hiaEEEK0aZKAHiWrt5mAME+C8CWyxBOD5x4WbM9xd1hCCCHcY6LW+g2tdanWukRr/SZwrruDEkIIIdoqSUCPQXicH2GZ1WjVAZPvRnblVrAtu9TdYQkhhGh95UqpS5VSRqWUQSl1Ka45QYUQQgjRkCSgxyAszo/QvdUU+ffG5LcBhWb2ukx3hyWEEKL1XQJcAGS7lvNd24QQQgjRCElAj0F4nB+RBXZ2dOhJZGkpQT7Z/LhuL865yIUQQpwstNYpWutztdYhWutQrfUkrXWKu+MSQggh2ipJQI9BSKwP3naoiIqjd4qi2nspO3PL2SrNcIUQQgghhBDikCQBPQYms5HgGB8iKkx0KIpA+61DKfhRmuEKIYQQQgghxCFJAnqMwuP9CEmvIjVsCP41ZYQG5PHjukxphiuEECcRpVR8U7YJIYQQwkkS0GMUHudHeHYNf/UfxuCtmkqPRezKK2dTpsw/LoQQJ5GvG9k2s9WjEEIIIdoJk7sDaK/C4vwIL7KTFR5Jr6JwfvNdiyH7XH5cl0lilL+7wxNCCNGClFI9gETAXyl13gFFfoDVPVEJIYQQbZ/UgB6jwHAvPC1G4moURTGj8KstJzQwjx/XSzNcIYQ4CXQHJgABwDkHLP2B690XlhBCCNG2SQ3oMVIGRVhHP7pn2/gicQDDls1gXtxCsjMnsXFvCb2ipRZUCCFOVFrr74HvlVJDtdZ/uzseIYQQor2QGtDjEB7nR9ymMtIiokkqCsPhsw6jAWbLaLhCCHGy2KGU+rdS6h2l1Af7FncHJYQQQrRVh6wBVUq90oTjS7TW/23GeNqV8Dg/gn6108lspiR6FD61X+EbmMeP6z25d2x3lFLuDlEIIUTL+h74C/gdsLs5FiGEEKLNO1wT3HOBB49w/H3ASZuAhsX5ATCs1sTnPZMZuPJLFnT4i+LMyazPKKZPTIB7AxRCCNHSvLTW97o7CCGEEKK9OFwC+qLW+uPDHayUCmzmeNoVn0APvP0t9Eyv5dOYaG4oCGNe4jqM2ZP5cV2mJKBCCHHim62UGq+1/sndgQghhBDtweH6gC460sFa65eaL5T2KapbII61hXTytFAeMxLv2grCA/OZvU5GwxVCiJPAbTiT0CqlVIlSqlQpJRNCCyGEEIdwuAT0HaXUdqXUY0qpnq0WUTvTuX8o1WW1jDRY+V9CMsnbNeWWP8koqmRterG7wxNCCNGCtNa+WmuD1tqqtfZzrfu5Oy4hhBCirTpkAqq17odzjjMbMFMptVYpdZ9SKq61gmsPOiQGY7IY6JZSze7IGPoXhGL3dY6G++O6ve4OTwghRAtSTpcppR5wrccqpQa5Oy4hhBCirTrsNCxa661a60e01j2BKwB/YK5S6ojNc08WZouRjr1CcCzPo4PVQlXUSLxslUQG5fPdmr1U22RQRCGEOIG9AQwFLnGtlwGvuy8cIYQQom1r0jygSikDEAaEA95ATksG1d50GRBGVWkto0xWvkgYyIDtmkrPn8gtrWbWGqkFFUKIE9hgrfUtQBWA1roQsLg3JCGEEKLtOmwCqpQaoZR6A0gH/oVzrrPuWuvJrRFce9EhMQiT2UCPPdVsj4xmQH4I1d4biQ028t5fu2UwIiGEOHHVKqWMgAZQSoUCDveGJIQQQrRdh0xAlVJpwFPAJiBJa32W1vpDrbWMrHMQi9VEh17BsDyfKKuF2qiReNZoOkZuYmt2KQu257k7RCGEEC3jFeBbIEwp9QSwEHjSvSEJIYQQbdfhakBP0VqforV+TWstTW6PoHP/UCqLaxht9uTzhIEkb9fssM0gzNfCuwt2uTs8IYQQzczVPWU3cA/OL2wzgUla66/cGpgQQgjRhh0uAb36SAcrpR5uvlDat7heIRhNBhLSatgWGcNp6WGUqwr6dS1m4Y48Nu6VimMhhDiRaK0dwOta6y1a69ddX9hudndcQgghRFtmOkzZdUeYTFsBFwEPN2tE7ZTF00RszyBylucTPsGf/ISz6Jb+Kbs7foS35Vbe+2s3L16Y5O4whRBCNK+5SqkpwDdaOvwLIYQQR3S4GtB3Ad/DLD6ufYRLl/6hVBRWM9rDi1eTRzBhrYlM+x6G9YAf1u5lb1Glu0MUQgjRvG4EvgKqlVIlSqnSI3x5K4QQQpzUDlkDqrV+pDUDORHE9QnBYFQkpNfwhb83XTuNI7R4NsURX6OZzEeLU/j3+AR3hymEEKIZuPqAjtVay9zYQgghRBM1aR5Q0TQeXmZiE4LwWFZAsNnE96dNYNwKB5srlzC8mxf/W5pKSVWtu8MUQgjRDFx9QF9zdxxCCCFEeyIJaDPr3D+M8oIqzvT0YobZh7F+w/GsAY+APymrtjFjWZq7QxRCCNF85iqlpiillLsDEUIIIdqDFk9AlVJGpdRqpdTsRspOVUqtUkrZlFJTDyqzK6XWuJZZLR1nc4nvG4LBoBiebqNGa5adNYUxaxwsL/6Gfh19+GDRbmrtMke5EEKcIKQPqBBCCHEUjpiAKqW6KaXmKqU2uNb7KKX+exTXuA041LD0qcBVwP8aKavUWie5lolHcT23snqbiekRSOWKfE4P8uWFgCgmFndBOxzERG8hs7iKn9ZnujtMIYQQzUBr7au1NmitLVprP9e6n7vjEkIIIdqqptSAvgvcD9QCaK3X4Zx+5YiUUjHA2cB7jZVrrVNc5zuhqgQ79w+jJLeSC60+5NvsFI+9mEFbHawofJ9OIV689ecuHA4ZrV8IIdo7V0ueBou74xJCCCHaqqYkoF5a62UHbbM18fwvAfdwbAmmVSm1Qim1RCk1qbEdlFI3uPZZkZubewyXaBnxSSEogyJkcyk9va0816kX5+4KpIxKBiTkszmzhO/XZrg7TCGEEMfv7gOWB4AfkPmxhRBCiENqSgKap5TqDGgAV1/NI7YhVUpNAHK01iuPMbaOWutk4BLgJVcM9Wit39FaJ2utk0NDQ4/xMs3P08dCdLcAdqzI4bqYUDZW2wg/9VK6Zmg2lLxNr2g/nv1lK5U1dneHKoQQ4jhorc85YDkD6AUUujsuIYQQoq1qSgJ6C/A20EMplQHcDtzUhOOGAxOVUinAF8AYpdSnTQ1Ma53h+rkLmA/0a+qxbUHiiGhK8qrol2UnxGzizf7DOWetifSaLM4ZWE1mcRXv/rXL3WEKIYRoXumATPgshBBCHMIRE1Ct9S6t9elAKNBDa32K1jqlCcfdr7WO0VrH4ewz+ofW+rKmBKWUClRKebheh+BMZjc15di2olNSCL7BVjb/kcZV0SH8VO1gUOJ5hBTDopwPGNcrgjfn7yS7pMrdoQohhDhGSqlXlVKvuJbXgL+AVe6O62BKqbFKqa1KqR1KqfvcHY8QQoiTV1NGwb1TKXUnzqHmr3etX6uUSjqWCyqlHlVKTXS9HqiUSgfOB95WSm107ZYArFBKrQXmAU9rrdtVAmowGug7JpbMHcWMd3jgYVB8PWosE5Y7WF24njP6l2N3aJ77dau7QxVCCHHsVgArXcvfwL1N/bK1tSiljMDrwDigJ3CxUqqne6MSQghxsjI1YZ9k1/KDa30CsA6YppT6Smv97JFOoLWej7MZLVrrBw/YvhyIaWT/xUDvJsTWpiUMi2TZD7tIn7+X84YH8mF2Ib8EjeGXoj+ZvuU5rhj2FO8vTOHKYXH0ivZ3d7hCCCGO3kygSmtth7q5r7201hVujutAg4Adri4tKKW+AM6lhVsW9f7vK5TZGzzihRBCtHEL/nkKsZFhLXb+piSgMUB/rXUZgFLqIeBH4FSc3/geMQE9WVk8TfQ8JYq1f6Rz6dhoPs8sYOF5l3LJS3/wwqTdnN9tG4GrfHj8x018fv0QlFLuDlkIIcTRmQucDpS51j2B34BhbouooWgg7YD1dGDwwTsppW4AbgDo0KHDcV+0k7WMgpotx30eIYQQrcvb6/QWPX9TEtAwoPqA9VogXGtdqZSqPsQxwqX36BjWzk2jZkkep3b24dVyM7N7T2F2xre8a3mJW0a/x2OztzFnUzZnJka4O1whhBBHx7rvC1oArXWZUsrLnQEdK631O8A7AMnJycc9WfX3//33ccckhBDixNOUUXA/A5YqpR5y1X4uAv6nlPKmnQ0M5A5+wZ507h/GxoV7uSY8mKyaWlZcdAVXLDKRV1NAlffvdAnz4amft1BjO5bpUoUQQrhRuVKq/74VpdQAoNKN8TQmA4g9YD3GtU0IIYRodU0ZBfcxnAMQFbmWaVrrR7XW5VrrS1s2vBND39Njqam0EbGllK5eHrxRbmfYhBsYstnBx+vf59bTo9mdV870JXvcHaoQQoijczvwlVLqL6XUQmAGcKt7Q2pgOdBVKRWvlLLgHJl+lptjEkIIcZJqSg3ovsGCPge+BXKUUsffOeQkEhHvT0Qnf9bPTefm2DDWlVWy5OzJXL4xmFp7NWtKP2VE1xBe/n0bOaUyLYsQQrQXrudjD5zzY08DErTWK90bVX1aaxvOpPhXYDPwpdZ64+GPEkIIIVpGU6ZhmaiU2g7sBv50/fy5pQM70SSdHktJXhXJWXYSvK08nlFAz2vv5MyVDr7d8Q1Xj/ShyubgP99uQOvj7nojhBCilWita7XWG1xLrbvjaYzW+ietdTetdWet9RPujkcIIcTJqyk1oI8BQ4BtWut4nKP9LWnRqE5A8Umh+IVYWf9HGg92jmJPVQ3f9BvCJbldsdbAzF2vcfeZ3ZmzKZvv1kjXHCGEEEIIIcSJpykJaK3WOh8wKKUMWut5OOcFFUfBYFD0GR1L5o5iepbAyEBfXkzNJeK2eznvLxt/ZS4ksXM2AzoG8tD3G8kukaa4QgghhBBCiBNLUxLQIqWUD7AA+Ewp9TJQ3rJhnZgShkdisRpZOzeVB7tEUWSz81ZYB6b6jiS0BF5Y9izPTOlFjd3B/d+sl6a4QgjRRiml+h9ucXd8QgghRFvVlAT0XKACuAP4BdgJTGjJoE5UFquJxBHR7FiZQ0SxnQsigng/PQ/jrbdz6TzN1pIdLMr9lnvO6sEfW3KYuTLd3SELIYRo3POHWZ5zY1xCCCFEm9aUBPRBrbVDa23TWn+stX4FuLelAztR9T+rIxZPE4u/2cG98REYFTyrrYxPuoDk7ZpXV77MqF4wKC6IR3/YRGZxW5tOTgghhNZ69GGWMe6OTwghhGirmpKAntHItnHNHcjJwupjZsC4OFI3FmDbVcoNsWF8k11I9rU3Mm15IKZqOw8vfpBnpvbC5tDc+7U0xRVCiLZMKdVLKXWBUuqKfYu7YxJCCCHaqkMmoEqpm5RS64HuSql1Byy7gXWtF+KJp8+oGPxCrCz+egc3x4QSbDbxSE4JPe97jCt/q2V17hoW587i/vE9WLAtlxnL09wdshBCiEYopR4CXnUto4FngYluDUoIIYRoww5XA/o/4BxgluvnvmWA1vqyVojthGU0GxgyqTP5GeVkLM/hX/ER/F1Uzt+9+zGx80T67dS8tOJFRvY0MLRTMI//uJmUPBn3SQgh2qCpwGlAltb6aqAv4O/ekIQQQoi263AJqBEoAW4BSg9YUEoFtXxoJ7YuA8IIj/dj6axdXBDoT2dPDx7buZege+/lpqUBGKpreGTxgzw7tTdGg2LapyuprLG7O2whhBD1VWqtHYBNKeUH5ACxbo5JCCGEaLMOl4CuBFa4lpUHLStaPrQTm1KK4VO7UlFcw8Y/0nm4SxTbK6p5vaiaXvc+xuVzbCzPWcninNm8dFESW7NL+c+30h9UCCHamBVKqQDgXZzPx1XA326NSAghhGjDDpmAaq3jtdadXEv8QUun1gzyRBXZ2Z/O/cNY/dsehpmsTAkP5KU9WaQNGsLkuAn0SYEXlj9H92gbt5/WjW9WZ/Dp0lR3hy2EEMJFa32z1rpIa/0WzkH7rnQ1xRVCCCFEI5oyCi5KqYlKqedci8wB2oyGTu6Ew65Z+sMuHusaTYDJxO2bUwm579/cvMQPR3U1Dy18kFtHd2Z091Ae/WEjq1IL3R22EEKc1JRSPVw/++9bgCDA5HothBBCiEYcMQFVSj0N3AZsci23KaWebOnAThb+oV70Hh3D5sWZOLKreLpbDOvKKnm7pJo+dz/OZXNtLMleyvTNn/DihUlE+Fu55bNV5JVVuzt0IYQ4md3p+vl8I8tz7gpKCCGEaOuaUgM6HjhDa/2B1voDYCwgtaDNKHlcHB6eJhZ/vZ2zQ/2ZEOrPc7uz2Dt4KFNiz2bQNnhp5YvsKt3Am5cOoKC8hn9+vhqb3eHu0IUQ4qSktb7B9XN0I8sYd8cnhBBCtFVNaoILBBzwWoaXb2ZWbzMDJ8STtrmQ7SuyeapbDD4mA3dsSSXs3//hnytDCStR3DXvTiKCanl8Ui8W78zn+Tnb3B26EEKc1JRSt7gGIdq3HqiUutmNIQkhhBBtWlMS0KeA1Uqpj5RSH+Mc5e+Jlg3r5NN7VAzh8X4s+GIb3lWax7vGsKqkgvdLauj23Kvc+a2dkooC7l1wL+f1j+KSwR14c/5Ovl+T4e7QhRDiZHa91rpo34rWuhC43n3hCCGEEG3bIRNQpdTrSqnhWuvPgSHAN8DXwFCt9YzWCvBkYTAoTrsyAVu1gz//t5VJof6cFeLHM7sz2dupM4NvfIBrfrGxLGsZb6x9g4fO6cng+CD+9dVaFu/Mc3f4QghxsjIqpdS+FaWUEbC4MR4hhBCiTTtcDeg24DmlVApwB5CmtZ6ltc5qlchOQoER3gyaGM+uNbnsXJnLM91i8TAYuHNLGr7nT2Vy/ERGrXPwzrp3WJa1mHcuTyY+xJsbP1nJlqwSd4cvhBAno1+AGUqp05RSpwGfu7YJIYQQohGHmwf0Za31UGAkkA98oJTaopR6SCnVrdUiPMkknd6hrimuX7Xm0S7RLC0u5+U9OUQ8/BA37+pExzwD9y+4lwpHHh9dPQgvDyNXfbCcvUWV7g5fCCFONvcC84CbXMtc4B63RiSEEEK0YUfsA6q13qO1fkZr3Q+4GJgEbG7pwE5WBoNizBUJ1Fbb+fPzrZwfHsDU8ECeS8nir0obnV54hX/9aKSmopw7599BiK+Rj64eRHm1jas+XEZxZa27b0EIIU4aWmuH1vpNrfVU1/K21tru7riEEEKItqop84CalFLnKKU+A34GtgLntXhkJ7GgSG8GnRPPrtW57FyVyzPdY+jmbeWmTSnkR0bT/76nuemHWjbkb+ShxQ/RI8KXty8fwO68cm74ZAXVNvnsI4QQrUEp1VUpNVMptUkptWvf4u64hBBCiLbqcIMQnaGU+gBIxzmi349AZ631RVrr71srwJNV0umxhMU5m+KqcjvvJcZR5dDcuHEPnqefwfihV3Lhn3Zm75rN62teZ1iXEJ47vy9Ldxdw55drcTi0u29BCCFOBh8CbwI2YDTwCfCpWyMSQggh2rDD1YDeDywGErTWE7XW/9Nal7dSXCc9g9HAaVckUFNlY8EXW+nqbeWF7rEsLynn8V17CbvrTi5XQxmzTvP2urf5dvu3nJsUzf3jevDjukz+890GSUKFEKLleWqt5wLK1WXlYeBsN8ckhBBCtFmmQxVorce0ZiCioaAobwZNiGfJd7vYtGgvk4ZHsbS4nLfTchnk783Yl1/mlssvI99/F4+oRwj3DueGU4dSXFnLG/N3ohQ8fm4vDAZ15IsJIYQ4FtVKKQOwXSl1K5AB+Lg5JiGEEKLNOmIfUOFe/c7sSEyPQBZ8vo3c1FIe7hJFkq8Xt29OJdVgJv6tt7n7r0Bi8uDOP+5gW+E27j6rOzeN6sz/lqbywPdSEyqEEC3oNsAL+CcwALgMuNKtEQkhhBBtmCSgbZzBoDjz2kQ8fc388s56dKWdd3vFYVSK6zbuxhYSSvfX3+Xf35uwllZzy+83k1ORwz1ndWfayM58tjSVB2dtQGtJQoUQorkopaa7Xg7TWpdprdO11ldrradorZe4NTghhBCiDZMEtB3w9LVw1vW9KCusZu5Hm4ixmHk1oQObyqq4dfMeLF270veZ17j3KzslpXnc8vvNlNeWc+/Y7tw4shOfLnHWhEoSKoQQzWaAUioKuEYpFaiUCjpwcXdwQgghRFslCWg7EdHJn1PO70rK+nxW/rqHM0L8ebhLFD/mFvPIzr14DxnCsNse586Ztewo3M7Nc2+m0lbJfWN7cOOpziT0we83ShIqhBDN4y1gLtADWHnQssKNcQkhhBBt2iEHIRJtT6+R0WTuLGbZrF2Ex/txQ/dQ9lTW8HZaLh2sFq4991xOz8yk4rtXeHnSGm6deyuvn/46943rgQbeWbCLWruDxyf1wmSU7x6EEOJYaa1fAV5RSr2ptb7J3fEIIYQQ7YVkIe2IUorRl/UgIMKbOe9vpLyomse6RnNWiB8PbM/g17xigm+8kfGDLuPWWTZWZq3gn3/8kxpHDfeP68E/xnThi+VpTPt0FZU1dnffjhBCtGtKKSPOuT+FEEII0USSgLYzZg8j427sha3Gwa/vbgC75o2eHent68m0jXtYW1pJ+P33c07SxUz70cbSvUu47Y/bqHXUcteZ3Xns3ETmbsnmsveXUlRR4+7bEUKIdktrbQe2KqU6uDsWIYQQor2QBLQdCozwZswVCWTtKmHe9C14GQx82qcTIRYTl6/fRVpVDeEP/JdJPS/ghp/tLNq7iLvm30WtvZbLh8bxxiX9WZ9ezNS3/iajqNLdtyOEEO1ZILBRKTVXKTVr3+LuoIQQQoi2ShLQdqrLgDAGT4xn69Isls7aRajFzGd9OlHj0Fy6bhdFNjsRDz3IeV3P47pf7MxPn8/dC+6m1lHLuN6RfHLtILJLqpjyxmK2ZpW6+3aEEKK9egCYADwKPH/AIoQQQohGSALajg0YF0fPU6JY+fMeNv6VQTdvKx/2imdPZQ0Xr91FqUMT+eijnB83iavm2JmbOpc7591Jla2KIZ2C+WraUDSa899azJJd+e6+HSGEaHe01n8CKYDZ9Xo5sMqtQQkhhBBtmCSg7ZhSipEXd6Njr2D+/N9WUtbnMSzQh/d6xbGxrJKL1+6kzKGJfPwxLoqawLW/2vkzbT43zrmRkpoSekT48fVNwwjzs3LZe0uZvmSPTNMihBBHQSl1PTATeNu1KRr4zm0BCSGEEG2cJKDtnMFo4MzrEgmJ9eXXdzeQs6eEM0P8eTuxI2tKK7hs3S4qNEQ99RQXdDiX2763sy57Ndf8cjV5lXnEBHrxzc3DOLVbKA98t4F/f7uBGpvD3bclhBDtxS3AcKAEQGu9HQhza0RCCCFEGyYJ6AnAYjVx9i198PS1MPu1tRTnVjI+NIA3e8axoqScy9fvphJF5FNPMmHY1dw7w0ZK3g4u/+ky0krS8LOaefeKZG4e1ZnPl6VyybtLyC2tdvdtCSFEe1Ctta4bUlwpZQKkKYkQQghxCJKAniC8/T045x99cdg1s19bS2VZDRPDAng1oSNLisq4cv0uqhya8Lvv5oyp/+LBT2soLszi8p8uY2vBVowGxT1je/Dqxf3YsLeYia8tZF16kbtvSwgh2ro/lVL/BjyVUmcAXwE/uDkmIYQQos2SBPQEEhjhzfib+1CaX8Wsl9dQVV7LeeGBvJTQgYWFZVyzYTdVdgfB117Dqf94ikc+saGKSrjq5ytZnrUcgHP6RvH1TcMwKMX5b/3N1yvT3XxXQgjRpt0H5ALrgRuBn7TW/3FvSEIIIUTbJQnoCSaqSwDjb+pNYWYF37+0mqryWi6ICOL5HrHMKyjl8vW7KLPZCZg8iSGPvMqjn2kC8qu5/rfrmbltJgCJUf7MunU4SbEB3PXVWv711VoqamxuvjMhhGiT/qG1fldrfb7WeqrW+l2l1G3uDkoIIYRoqyQBPQF1SAxm3LTeFGSW19WEXhIZzCsJHVhcVMaUNTvIq7HhO3o0A17+kCe+stA7FR75+xGeXvY0NoeNYB8PPrtuMP8c04WvV6Uz8bVFbMkqcfetCSFEW3NlI9uuau0ghBBCiPZCEtATVMdewYy7sTf5GWX88MoaqiucNaEf9opna3kVk1ZvJ72qBq/+/Uj85AseWBTB+BXw2ebPuPn3mymuLsZkNHDnmd359NrBFFXUcu5ri/h8WapM1SKEOOkppS5WSv0AxCulZh2wzAMK3B2fEEII0VZJAnoCi+sdwtgbe5OXXsYPr66lutLGmSH+zOjbmZyaWs5ZtZ2t5VV4xMfTecaX3FI5hGk/2lm+dymX/ngpKcUpAAzvEsLPt41gUHwQ93+znn9+sYbSqlr33pwQQrjXYuB5YIvr577lLuAsN8YlhBBCtGmSgJ7g4vuEcNb1vcjdU8oPr6yhptLG4AAfvuvXFbvWTFq1nZXF5Rj9/Ih9602m9ruCBz6toTA/g0t+vJhFGYsACPX14OOrB3H3Wd35aX0m41/5iyW78t18d0II4R5a6z1a6/la66Fa6z8PWFZpraXTvBBCCHEIkoCeBDolhdYlod+9uJqKkhp6+njyQ/+u+JuNTF2zk9/zS1AmE+H338eYmx7nyY9sBOVUcdPvN/Ha6tewO+wYDIpbRnfhyxuHYFCKi99dwqM/bKKq1u7uWxRCCLdQSp2nlNqulCpWSpUopUqVUtJhXgghhDiEFk9AlVJGpdRqpdTsRspOVUqtUkrZlFJTGyn3U0qlK6Vea+k4T3Sd+oUy7qbeFGaW883/raQ4t5KOnh7M6teVLl4eXLFuF2+m5qC1JmDKFAa++jFPfePFqI2Kt9e9zQ1zbiCvMg+AAR2D+Pm2EVwxpCMfLNrN+Jf/YlVqoZvvUAgh3OJZYKLW2l9r7ae19tVa+7k7KCGEEKKtao0a0NuAzYcoS8U5WuD/DlH+GLCgBWI6KcX1DuHcO/pRVVHL1/+3kty0UsI8zHzXvwvjQv15ZOdebt+SRrXDgVf//vT48mvuzOjNzbPtrN27kqmzprA0cykAXhYTj5zbi8+uG0y1zcHUNxfzzC9bqLZJbagQ4qSSrbU+1DPumCil/k8ptUUptU4p9a1SKuCAsvuVUjuUUluVUmcdsH2sa9sOpdR9B2yPV0otdW2foZSyNGesQgghxNFq0QRUKRUDnA2811i51jpFa70OcDRy7AAgHPitJWM82UR08ue8fw3AaFR8+/wq0rcW4m008m5iHHfFhTMjq4Cpq3eSW1OLOSKCjh9/xJQh1/HE+9V45pRyw2838ObaN7E7nInm8C4h/HL7CM4fEMub83cy4ZWFLE+RASCFECeNFa7E7mJXc9zzlFLnHec55wC9tNZ9gG3A/QBKqZ7ARUAiMBZ4w9XKyAi8DowDegIXu/YFeAZ4UWvdBSgErj3O2IQQQojj0tI1oC8B99BIgnk4SikDztEE/3WE/W5QSq1QSq3Izc095iBPNkGR3ky5ZwA+gVZ+eHUNO1bmYFCKu+MjeScxjg1lFYxdsY31pRUok4mwu+5k+JNv8/QMC8O3wBtr3uDGOTeSVZ4FgK/VzDNT+/Dh1QOpqLFz/lt/c+/MdRRV1Lj5ToUQosX5ARXAmcA5rmXC8ZxQa/3bAQMZLQFiXK/PBb7QWldrrXcDO4BBrmWH1nqX1roG+AI4VymlgDHATNfxHwOTjic2IYQQ4ni1WAKqlJoA5GitVx7D4TcDP2mt0w+3k9b6Ha11stY6OTQ09JjiPFn5BFo571/9Cevgx6/vbWDt3DS01kwMC+D7/l3RwMRVO/g+x9m30+fUU+k58zvu3pPIjT/ZWbt3Bed9P5kfdv5QNy/o6O5hzLnzVG48tRMzV6Uz5vk/+XpluswbKoQ4YWmtr25kuaYZL3EN8LPrdTSQdkBZumvbobYHA0UHJLP7tjdKvtQVQgjRGlqyBnQ4MFEplYLz29gxSqlPm3jsUOBW17HPAVcopZ5ukShPYlZvMxNvTyK+TwgLv9rOvE+3YK910MfXi18GdCPRx8qNG/fw723pVDscmCMiiPv4Yy4YdB3PvlNDdEY1/174b+768y4Kq5yJqpfFxP3jE5j9j1OIC/birq/Wcsm7S9mZW+bmuxVCiOajlLrH9fNVpdQrBy9NOP53pdSGRpZzD9jnP4AN+Kzl7mQ/+VJXCCFEazC11Im11vezv9/KKOBfWuvLmnjspfteK6WuApK11vcd+ghxrMwWI+Nu7M2y2btZ8VMKhZkVjJvWmzA/C9/068ITOzN5Oz2XlSXlvJMYR0dPD8LuuhOfUSOJuu9evonO5MtRc1mdvYpHhj/KqTGnApAQ6cfMacP4YnkaT/+8mbEvLeCqYXHcOqYr/p5mN9+1EEIct30DD604loO11qcfrtz17JsAnKb3NyPJAGIP2C3GtY1DbM8HApRSJlct6IH7CyGEEG7R6vOAKqUeVUpNdL0eqJRKB84H3lZKbWzteAQog2LwxE6ceV0ieWmlfPXUcnL2lGAxGHikazQf9opjd2U1Z6zYyk+5RQB4DRhAl2+/56oOU3nygxq8s0q4Ze4tPLz4YUpqnFPgGQyKSwZ3YO5dozivXwzvLdzN6Ofm8+mSPdjsR9UtWAgh2hSt9Q+unx83thzPuZVSY3GOnzBRa11xQNEs4CKllIdSKh7oCiwDlgNdXSPeWnAOVDTLlbjOA/ZNc3Yl8P3xxCaEEEIcL3Wi9M9LTk7WK1Yc0xfR4gC5qaX89OY6KstqOe2KBLoODAdgT2U1N2xMYW1pJTfEhPLfzpFYDM7vL8r+/JPUB//LZ4lFzB6kCPIM4r7B93NmxzNxjoHhtCGjmMdmb2Lp7gK6h/vy4Dk9Gd4lxC33KYQQjVFKrdRaJ7s5hh2AB84aTIAlWutprrL/4OwXagNu11r/7No+HufAf0bgA631E67tnXB2gwkCVgOXaa2rjxSDPFOFEEIcr0M9UyUBFQ1UlNTwyzvrydxRTL8zOjB4UieMRgPVDgeP7tjL+xl59PX15LWEjnT1tgJgKywk+7HHWLPyZ96d7MXOwBpGxozkP4P/Q6RPZN25tdb8ujGLJ37aTFpBJacnhHH3WT3oHuHrrtsVQog6bSEBbQvkmSqEEOJ4SQIqjord5uCvL7ezcUEGEZ38OfO6RHyDnMnmj7lF3L01jQq7g/92juKa6BAMrprO0j/mkfH4o/wQnc2MMRYMZgv/6P8PLulxCUaDse78VbV2PlyUwhvzdlBWY2NyUjR3nNGN2CAvt9yvEEKAJKD7yDNVCCHE8ZIEVByT7cuzmffZFgxGxWlX9iS+j7PJbHZ1LXduSWNuQQmnBPjwUkIHYqwWABzl5eS+8gpbvv+UD862sKqDjZ7BPbl/0P0khSXVO39heQ1vLdjJR4tScGjNxYM6cOvoLoT5WVv7VoUQ4qgTUKXUx8BtWusi13og8HwzT8XS6uSZKoQQ4nhJAiqOWVF2Bb++t4G8tDL6nh7L0EmdMZoMaK35LLOAB3dkYASe6BbD+eGBdf0+KzdsZO+D/2W+YyvTx3uS71HDhE4TuL3/7YR7h9e7RnZJFa/M3c6M5WmYjIqrh8dz/YhOBHlb3HDHQoiT1TEkoKu11v2OtK29kWeqEEKI4yUJqDgutlo7i2fuYP2fGYTF+XHWdYn4hXgCzgGK/rk5laXF5YwN8eOpbjFEejgTR22zUTD9U9LeeoVv+tcye7ABk8mD6/tczxWJV+Bh9Kh3nZS8cl76fRvfr92Lp9nI5UM6ct2IToT6ejSISQghmtsxJKBrgVFa60LXehDwp9a6d0vF2BrkmSqEEOJ4SQIqmsXOVTn8MX0LWmtGXNCVHkMjUUph15q30nL5v92ZmJTiP52juDIquK5vaG1ODrkvvsS2ed8yfZwny+JqifaJ5u7kuxnTYUy90XIBtmeX8vq8Hcxauxez0cDFgzowbWRnIvylaa4QouUcQwJ6BfBv4CtA4Zzy5Amt9fQWCrFVyDNVCCHE8ZIEVDSbkrxK5n68mb3bi4jrHcyoy3rg7e+soUyprOaerWksKCxjgJ8Xz3WPJcHHs+7YyvXryX78CZYWr+OTsz1J9ashKTSJOwbcQf/w/g2utTuvnDfn7+CbVRkYlGJqcgw3ntqJjsHerXa/QoiTx7EMQqSU6gmMca3+obXe1PyRtS55pgohhDhekoCKZqUdmnXz0vn7u52YLAZGXtydrsnOfp1aa77OLuTBHRmU2Ozc0iGc2zuG42k0uI51UDJ7NpnPP8ecyDxmnuZJgcU5bcs/+/+TboHdGlwvraCCt/7cyVcr0ql1OBibGMF1IzoxoGNgq963EOLE1tQEVCnlp7UucTW5bUBrXdD80bUeeaYKIYQ4XpKAihZRmFXO7x9tJielhC7JYYy8qDtWHzMA+TU2Ht25lxlZBcR5WnikSzRnBvvVNbd1lJeT/9FHZH78Pj8mVvP9CAsVRjvndD6HW5JuIconqsH1ckqq+PjvFD5dkkpxZS0DOgZy/Yh4zugZgdGgGuwvhBBH4ygS0Nla6wlKqd3AgQ9SBWitdacWC7IVyDNVCCHE8ZIEVLQYh93Bqt9SWT57Nx5eJk45vytdB4bXJZoLC0u5f1s62yuqGRnoy6Ndo+nuvb8vp62ggLy33iLt28/5brDil2QD2mjgvK7ncW2va4n0iWxwzYoaG1+tSOe9hbtIK6ikY7AXVw6NY2pyDH5Wc6vduxDixHI0TXCV849crNY6tYXDanXyTBVCCHG8JAEVLS4vvZR507eQs6eU2IRARl7SHf9QLwBqHZqP9+bxf7uzKLPbuTo6hH/FRRBgNtUdX5OeQd6rr7Jr3iy+GWlhXqIGg4HJXSdzbe9rifaJbnBNu0Pz68Ys3vtrF6tSi/CyGJnUL5orhnakR4Rfq927EOLEcAyDEK1v7yPeNkaeqUIIIY6XJKCiVTgcmg1/ZrDk+5047Jrk8XH0O6MDRpOz/2d+jY1nd2cyfW8+AWYj98RHcmlkMOYDms9Wbd1G7quvkLJsLt+P8OCP3hptUJzbZRLX9r6WWN/YRq+9Pr2YT/5OYdbavVTbHAyKD+KKoR05KzECs6v/qRBCHM4xJKAfA69prZe3YFitTp6pQgghjpckoKJVlRVWs/CrbexclUtgpDejLu1OVJeAuvJNZZX8d3sGi4vK6Ozpwb2dIjkn1L/edCxVW7aQ9+ZbpCz+lVmnWPi9r8JhgLHxY7k68Wq6B3Vv9NqF5TV8tTKN6Uv2kFZQSYiPhfP6x3BBcixdwnxa+taFEO3YMSSgW4AuwB6gnP19QPu0UIitQp6pQgghjpckoMItUtbnseDzbZQWVNF1YDhDJ3fGN8jZ/1NrzZz8Ep7YlcnW8ir6+nry305RjAjyrXeOqm3byHvzTfYs/JUfhpn5I8lApcHGsKhhXJV4FUMihzSYRxSczXP/3JbDF8vS+GNLDjaHJrljIBcOjOXsPpF4WUwNjhFCnNyOIQHt2Nh2rfWe5ouq9ckzVQghxPGSBFS4TW21nVW/7mH1nFQU0O/MDvQ7qyNmixEAu9bMzCrk2d2ZZFTXMjLQl393jqSvr1e981Tv2EHeO++wd+7PzOmr+WWYB4XmGhKCErgq8SrOiDsDs6HxAYhyS6v5ZlU6M5ansSuvHB8PE2f3jmRy/2gGxQVhkBF0hRAcUwI6XWt9+ZG2tTfyTBVCCHG8JAEVbleSX8nf3+5kx4ocfAI9GDKpM90G7R8tt9rh4OOMPF7ak01BrZ2xIX7cERfRIBGtzcyk4ONPyPl6Bn92quLHUd6ke1UR5hXGBd0uYGq3qQR7Bjcag9aaFXsKmbE8jZ/XZ1JeYyc6wJPJ/aKZ3D+azqHSRFeIk9kxJKCrtNb9D1g3Auu11j1bJMBWIs9UIYQQx0sSUNFm7N1RxMIvt5ObWkp4vB/DzutMVNfAuvJSm5130nJ5Nz2XIpudM4L9uCMunP5+3vXOYy8poXDGDPI/+YRl/vn8dqo3a8KrMBvMjI0byyUJl9ArpNch46iosfHbxmy+WZ3Bwu25ODT0jfFnUr9ozu4dSZif9ZDHCiFOTEcxD+j9wL8BT6ACZ99PgBrgHa31/S0XZcuTZ6oQQojjJQmoaFO0Q7NlSRZLv99JeXENHRKDGHJuZ0I77O//WWqz80F6Hm+l5VBoszM6yJe74iJI9q+fiDpqaiiZ/SOFn37KzqxN/DrUgz97KSoNNvqE9OGC7hdwZtyZeJo8DxlPTkkVs9bu5ZtVGWzKLEEpGBQXxIS+UYzrFUGIj0eLvRdCiLbjGGpAn2rvyWZj5JkqhBDieEkCKtokW42d9fMzWPlLCtUVNrokhzH4nE4EhO9vdltms/NhRh5vpuVQUGtnaIA3N8eGcVqwH4YDBh/SWlO5eg2Fn35K1vzfmN/TwZxTvMjwrMLX7MP4TmcztdtUegT1OGxMO3LKmL1uLz+s3cvO3HKMBsWwzsGc3TuS03uGSzIqxAnsGBJQA3AJEK+1fkwpFQtEaq2XtViQrUCeqUIIIY6XJKCiTauuqGX1nFTWzk3DbtMkDItkwLiO+AXvr7Ust9mZvjefd9Jz2VtdSzcvKzd1COW88EA8DPXn+azNzqFoxgwKvpzBBs98/hjqzd+dbNQqOz2DezKl6xTGx4/Hx3LoPp9aa7ZklTJ73V5mr8tkT34FBgXJcUGMTYzgrF4RRAcculZVCNH+HEMC+ibgAMZorROUUoHAb1rrgS0WZCuQZ6oQQojjJQmoaBcqSmpY8XMKGxdkgIbuQyMYMLYj/qH7a0RrHZrvcwp5IzWHTeVVRFjMXBcTwmVRwQSY60+tomtqKJ03n6KZM8levpC/einmDfMhxbsCD6MHYzqMYWLniQyJHILJcOhpWbTWbMos4deN2fy6IYut2aUA9I7258ye4ZyWEE5CpG+j08EIIdqPYx2ESCm1Wmvdz7Vtrda6b8tF2fLkmSqEEOJ4SQIq2pXSgipW/5bKpoV7cTg03QaFM2BsRwIj9vf/1FrzZ2Epb6TmsKCwDE+DgakRgVwTHUKCT8OaydqMDIq+/obCb75mq8pmQbInixIUpcYaQjxDODv+bCZ2mUi3wG5HjG93Xjm/bszilw1ZrEkrAiDK38qYhDBO6xHO0M7BWM3GZns/hBCt4xgS0KXAMGC5KxENxVkD2q/FgmwF8kwVQghxvCQBFe1SeXE1q39LZeOCDGw2B10HhNHvrI6ExvrW229jWSXvp+fyTXYhVQ7N0ABvro0OZWyIP6aD5vjUdjvlCxdS9N13FM6fy8pYG38N8WFlVDV25aBbYDfGxY9jbNxYYnxjjhhjTmkV87fkMndLNn9tz6Oixo7VbGB45xBGdQ/l1G6hdAz2PuJ5hBDudwwJ6KXAhUB/4GNgKvBfrfVXLRRiq5BnqhBCiOMlCaho1ypKalg7N5X18zOorbYT0yOQfmd2IDYhqF6z14JaG59nFvBhRi7pVbVEeZi5NDKYiyODiLJaGpzXXlJCyc+/UPz992RvXsWiRAN/D/Jli385AH1C+jA2fixnxZ1FmFfYEeOsqrWzdHcBf2zO5o+tOaQVVAIQF+zFqd1CGdktlCGdgvH2OHRzXyGE+xxtAuo6pgdwGs6pWOZqrTe3SHCtSJ6pQgghjpckoOKEUF1Ry8a/9rLujzTKi2sIjvYm6YwOdE0Ox2jaPxCRXWvm5JXwQUYuCwrLMACjg/y4LCqI04P9MRsa9tWs2bOH4u9nUfzjbDKKUvk70cSSAd7s9ClHoegf3p/TO5zOaR1OI9In8oixaq1Jya9gwbZc/tyWy98786mstWM2KvrFBjKsSzDDu4SQFBuA2Wg44vmEEC3vGBPQQCAWqPtmSWu9qrlja03yTBVCCHG8JAEVJxS7zcH2FdmsmZNKfkY53v4Weo2KoefwKLz86td07qms5vPMAr7ILCCrppYwi4kLI4K4ODKYTl4Np1TRWlO1aRMlP/1EyU8/k1qdyeLeZpYleZHi5awZ7RXci9M6nsbpHU4nzj+uSTFX2+ysTCnkz+25LN6Rz4a9xWgNXhYjg+KDGNY5mCGdgukZ6YdJElIh3OIYmuA+BlwF7AT2PVC11npMC4TXauSZKoQQ4nhJAipOSFpr0jYVsOb3VNI2F2IwKboMCKP3qBjC4/zqNc+1OTR/FJTw6d58fs8vwQEk+3lxfkQQE8MCCDQ3bBarHQ4q16yhZPaPlM6ZQ5otl2U9TSzv58M23zIAOvl3YmTsSEbFjKJvaF+MhqYNPlRUUcOSXfks2pHPop157Mp1Jrc+HiaS4wIZHB/MoPgg+sT4Sw2pEK3kGBLQrUBvrXVNC4bV6uSZKoQQ4nhJAipOeIVZ5Wz4M4PNf2dSW2UnrKMvvUbG0DU5DJOlflKYVV3L19mFfJlVwNbyKixKcUaIHxdGBDE6yK/RJrrOZHQtpXPmUPrbb2SWZLCsh4FV/f3ZGFiOXTkI8AhgRPQIRsaOZHjU8MPOM3qwrOIqlqUUsHRXPkt3F7Ajx5ngepqNJMUGkBwXyICOgfTrEIi/p/n43iwhRKOOIQH9GrhJa53TgmG1OnmmCiGEOF6SgIqTRk2VjW1Ls1g3P4PCzHI8vEx0GxhOwilRDUbP1VqzvqySr7IK+Ca7iPxaG0FmI2eHBnBuWABDA3wwNjK3p9aa6s2bKfntN8rm/kFh6nbWxCtW9/NlVQcbpYYaTMpEUlgSw6OHMzxqON2DumNQTa/JzCurZvnuApbuLmDlnkI2ZZZgd2iUgm5hvgyIC6RfbAD9OgTQKcQHQyNJsxDi6BxDApoMfA9sAKr3bddaT2yB8FqNPFOFEEIcL0lAxUlHa03GtiI2LdzLrtW52G0OQjv40nN4JF0HhuPhVb8WsdahmVdQwrfZhfyaX0KF3UG4xcTEsADODQtkgJ9XvSa9B6pJT6fsj3mUzZ9HyYrlbAuzsTrRk/UJVnZ6lgIQbA1mePRwhkUNY3DkYEI8Q47qfsqrbaxNK2LFnkJW7Clk9Z5CSqttAPhaTfSNCSAp1rn0ifUnzNd6DO+aECe3Y0hANwJvA+sBx77tWus/WyC8ViPPVCGEEMdLElBxUqsqr2Xbsmw2LdpLfnoZJrOBTv1C6T44gpiEoAa1hxV2B7/nl/B9TiG/55dQ7dBEe5gZH+rP2aEBDPT3brRmFMBeVkb5woWUzf+TskULyavIY20nxYa+/qyJrqXE4Kwk6RLQhSGRQxgcOZjk8OSjaq4L4HBoduaWsTqtiDVpRaxJLWJrdil2h/P/dKS/ld7R/vSJ8ad3TAC9o/0J8m44FY0QYr9jSECXa60HtmRM7iDPVCGEEMdLElAhcNaK5qaWsmlRJjtWZFNdYcPL30K3geF0HxJJSEzDJLDUZufnvGJ+zC1ifkEp1Q5NiNnEuFB/xof4MzzQB4uh8aa1Wmuqt26l7K+/KP9rIWWrV7ErxMaGLhY2JfqwKaCcGmXHqIwkhiQyMHwgyRHJJIUmHXVCClBZY2d9RjHrM4pZl17E+vRiduWV15VHB3jSM8qPnpF+JEb5kRjtT5S/9ZA1u0KcbI4hAX0BZ9PbWdRvgivTsAghhDipSQIqxEHstQ5S1uexdWkWe9bn43BogqN96DY4nC4DwvAL9mxwTJnNztyCEn7KLeb3/BLK7Q58jQZGB/txZrAfY4L9CGpkNN26a5aVU7FsKeV/L6H878WU7d7JtmjFxh5WNnX3YptPKXYcGJSBhKAEksOTGRA+gH5h/QiwBhzTfZZU1bIho5j16cVs2FvCxr3F7M4rZ99//UAvMwmRfiRE+tEjwpeESD+6hPlgNTdtNF8hTiTHkIDOa2SzTMMihBDipCcJqBCHUVlWw44VOWxdmkX27hIAwuP96JocTuf+YfgENpwvtMruYEFhKb/kFTMnv4TcGhsGYJC/N2eE+HNGsB9dvTwOW7tYm51DxdIlzoR0yRLK8jLZFq3Y0tXKlu5ebPMtowY7APH+8fQL60dSaBL9wvrR0a/jMddcllfb2JJVwsa9JWzMKGFLVglbs0upqnV2YTMaFPEh3nSP8KV7uC/dwn3oFu5Lx2BvjDLYkTiBHW0CeqKSZ6oQQojjJQmoEE1UnFvJjpXZbF+RQ356GSiI6hJAlwFhxPcNbTQZdWjNmtIK5uSV8Ft+MRvLqgCIsZoZE+TH6CBfTgn0xdd06FpFrTW1GRlULFtOxbJlVCxfTnlWBjuiYFsnK9u7+7AlqJJS5WzlF2QNondI77qlV2gv/Cx+x3zfdodmT345W7JK2ZJZwqbMUrZll5JWWFFXW2oxGegc6kO3cB+6hPrQJcy5dAz2xmKSuUpF+3cMNaAPNrZda/1o80XV+uSZKoQQ4nhJAirEMSjMKmfHyhy2r8ihMNPZlzI83o9OSaF0SgolINyr0ePSq2qYm1/C/IJSFhSWUm53YFKQ7OfN6CA/Tg3ypY+v5yEHMtqndu9eKpYvp2LVaipXraJyxw72Bmm2djCyo6c/2yMhzVyKxvn/OM4vjt4hvUkMSSQxOJHuQd3xNDVsSnw0Kmps7MgpY1t2GduynUnp9uwyMooq6/YxGhQdg73oHOpDp1BvOoV40ynUh/gQb4K9LdLHVLQbx5CA3nXAqhWYAGzWWl/T7MG1InmmCiGEOF6SgApxnAoyy9m1Jpddq3PJTXVOrRIU5U2npFDieocQ1tEX1Ujz1BqHgxXFFcwrKGFeQSkbypyJm7/JyPAAH04J9OHUIF86ex6+uS6AvaSEyjVrqFi5ypmQbtxIub2CnRGKnZ092dnFm22BVRQanNcwKiOdAjqRGOxMSBOCE+ga0BUvc+OJ89Eor7axO6+cHTlldcvO3DL25FdQY6+bjQJfq4lOId7EhXjTMdib+BAv589gbwK8zJKcijbleJvgKqU8gF+11qOaL6rWJ89UIYQQx0sSUCGaUUl+JbvX5LFrTS6ZO4rQGjz9LMT1CiaudwgxCYFYrI0PRpRbU8vCwjL+KnTWjqZX1QIQ6WFmWIAPQwN8GBrgTacmJKTaZqN6504q16ylct1aqtato2rHTgq9NTsjFSldfdkd58kOvwqKlDMpNSgDHf060iOwBz2Ce9AjqAfdA7sT7BncLO+N3aHJKKxkV14Zu/PK2ZVbzu68clLyy8koquTAPzl+VhMdg73pEORFbJAXHQ5YIgOsmI3SrFe0rmZIQAOB5VrrLs0YVquTZ6oQQojjJQmoEC2kqqyWPRvzSVmfR+rGAmoqbRhMiuhugXToGUSHxGACI7waTSa11uypquGvwlL+Kizj76IycmtsAIRbTK5k1IdB/t5097ZiaEJtob2sjKqNm6jasIGqjRuo3LCRmtRU8v1gd7hiTxdfUjt6ssu/mhxDWd1xwdZgugV2o1tgN7oGdqVbYDc6BXTCw9iwz+uxqrbZSSuoZE9+OSn5FaTklZNaUEFaQQVphRXU2vf/PTIoiPT3JDrQk5hAT2ICvYgJcK5HB3gS4W+VkXpFszuGJrjrgX2/uEYgFHhUa/1aS8TXWuSZKoQQ4nhJAipEK7DbHWTuKCZlfR571udTlF0BgE+gBx0Sg+nQM4iYHoF4eJkbPV5rzc7Kaha7ktG/i8rJqnHWkPqbjAzw82KQvzcD/b3p5+eNVxNrCO1FRVRt2uRaNlO1eTM1KSmUWjUpYYq0Dp6kd/JlT4jm/9m77/i4rvPA+78zvWAGvYMFLJBEimIVqN4pEUWFiteOvU6cZLNOdjd5k3032ddpG68Tp2ySjZ3NbhKv4yRbYsd2RBUUFklUJwn2LoIkQJBogz69z3n/uEMQkiiJIgeFwPP9fOZz77lz555zwUscPHPPfU6PLUACIwg2KROLPYtZlr+M5QXLWVGwguUFy6nNr8VmtuXgJzaljRmNLxCjZ9QISHvHI/SOR7OvCIOBGJkP/boqybNnA1IHlflOKvMdVBVcXZbk2SVrr/hMbiAAXTKlmAJ8WutU7ls2s6RPFUIIcbMkABViFgRGo1w+PcalU2P0vj9GIpZGKShd4qXm9kJqbi+kclk+Ftu17+RprbkYTdDhD3PAH6bDH6YzYmTYtShYledko9fNBq+LDV7XdQ3bvSITDhM720nszGni758l1nmWeOc50rEog4VwscJE//J8+qrsXM5P0WcOkMZ4ttOkTNTk1VCbX8uy/GXU5tdOvvLt+bn54X1IMp1hYCJG30SUvoko/RNR+saj9PuvLq9MI3OFxaQo89gpz3dQ4XVQMWVZ7nUY73kduO0fP3erWFiuNwBVShV90vta67HctWrmSZ8qhBDiZkkAKsQsS6cz+LoCXD4zRu/74/guBtAZjdliomJ5PjW3FVJdV0DZUi/mT5jSZDyZ4mA2GD0ciHA0GCGcTfpTYDGz3utivdfFOo+LtR4X5fZr3229Fp3JkLx8mdjZs8TfP0v83Dni58+T6OkhqTIMFMHlcgsDy/IZqLTR603RZwlO3jEFKLAXsMS7hCXeJSz1Lp1cX+RZlJPkRx/bdq3xR5P0T8QY8EcZ8F9d+gIxBv0xfIE4ofhHb07l2S2UeeyUee2UeYzAtDT7KvM4JtcLnFZMckd1XvsMAWg3xtDba10QWmu9LOeNm0HSpwohhLhZEoAKMcckYin6z03Qe3ac3vfHjTlHAbPVRMUyL1UrC6leWUB5rfdj75ACpLWmMxzjcCDC4UCYQ4EIneEYV+4FVtqtrPU4WetxcZfHxZo8J2WfISgFyMTjJLq7iZ87bwSlFy6QuHCBxOXLZDJphvOhr1gxUOtlqNrFQBH0OaIME/rAcUqcJSz2LGaRZxGLvcayJq+Gak81hfbCGcmIG4wl8QWMYHQoaCx9gRhDU8rDwTjRZPojnzWbFMVuG8V5dkrybJTm2Snx2Ce3Gcur6/KM6q3nZpMQzRfSpwohhLhZEoAKMcdFQwkGzvvp75yg79w4I70h0GCyKMoWe6hYXkDlsnwqlufj8n7y85fhdJpTwSjHglGOBY27pOcj8cn3y2wW7sxzcpfHxZ15Tu70OFnssF1XkqOpdCJB4tIl4he6SHRdIN7VTaKnh0R3N5lgkJgVBguhv8zCyOJ8hirsDBRoBu0fDU5dFhfVnmojIM2rpjqvmqq8qsmX1+b9TG27GVprwok0w8H45GsoGGMkFGckmGA0HGc4lGAkGGckFCeeylzzOC6bmUKXjSL31Vehy0ahy0qB21gWumwUZJeFLhsOq0mmpplFNxKAKqWeAR7KFt/QWrfkvmUzS/pUIYQQN0sCUCFuMfFIkoELfvrPTTB4wc9QT5B0NtDxljqpXJ5PRa2X8tp8iqrdmD8lIVEwleZkKMrJYJTjoQgng1E6IzGuJJ51m03c4XawKs/JHXlOVrsd3J7nxGv57HfxtNakx8ZIXLx49dVzicQl46UjEeIW8BXAUKGJkcUeRipcDBWZ8LmSDJiCxEh+4Jh51jwq8yqpcldR4a6gwl1BpbuSSnclFe4KSl2lWE2f7c5uLmitiSTSjIaMwPTKciSUYDycYCySYCxsrI9ml+HER++uXmGzmChwWsl3WilwWcl32sjPlo2XhXzX1bLXYcWbXUrwevNuIAnRHwF3A/83u+mLGNOw/OZ0tG+mSJ8qhBDiZkkAKsQtLp3MMHw5yMB5PwMXJhjs8hMNGkGa2WqidJGH8lqv8VrqxVPs+NRgJJbO8H44xulQlFOhKKfDUU6HYvhTVwOkaruVOreD290Obnc7uc3tYKXbjtt8Y8NLtdakR0aMYLTnEsneXhK9l0leNpbp4RE0EHTCcD6MFFkYXeRltMzBcIGJYWeSYUuEgI5+4LgKRYmzhHJXOeXu8sllmauMcpexLHWWTutzqNcrnkrjjyQZjyQZjySYiCQYjySZiCSZiCbwR5L4o0Z5PJIgEDXKnxS4AtjMJrxOCx6HFY/DgsdhwTu5bizz7Ma2vOz6lW15DgtuuwW3zbKgMwffQAB6HFintc5ky2bgiNb6rulq40yQPlUIIcTN+rg+VVI/CnGLMJ4NzadiWT7rWYzWmuBoDN/FAL5u43XyrT6OvXYZALvbQtkSL2WLPZQu8VC2xEte4Qez5DrMJtZ5XazzXg3KtNb0x5OcCkU5G47xfjjG2XCM9yZGiE+ZB6XGYaXO5WCl22EsXXZWuh0UWj/514pSCktpKZbSUlwbN37k/Uw0SrKvz3j1908uE8f7SPb1kx4ZASBmhREvjHgVY1V5TJS7GCsyM5o3wgVHP/tMYcI6/pHje6weSl2lxstpvEqcJZS6ssts2W11T9vdRLvFTJnXTJnX8Zk+l0xnJoNRfzRJIJYiEE0SiGXL0RT+aJJgLEkwliIYSzIUiE+uf1oAe4XLZjaCUrsRlF4pu+wW8uxm3DZj3WUz47aZcdksuO1mnDZjm9NqxpXd7rSacdrM2D4hsdY8UABcyXo7PWmghRBCiHlCAlAhblFKKbwlTrwlTlZuKgeMTLujvSGGLwUZ6gky1BPgyK5LZLKBoyPPSumiPEpqPJQszqN0kYf8MtcHMrsqpah22Kh22Hiy5Orf0qmM5mIsztlsQHouHONcJM57EyPEpgSmRVYzK1wOljntLHfZWeGys8zlYInDhuM65i01OZ3YV6zAvmLFNd/PxOOkBgdJDgxQOzBIcqCfZH8/qUEfqRODJAd9ZIJBACI2GM+DMY9ioszJRLmbiSI7Y94oY84ueixnGCVMko8GZg6zg2JnsfFyFFPiLKHIUUSRo4hiZ7GxdBhLr92LSU1/gGU1m4wER3n2G/p8OqMJxY1gNBRPEYqljOA0niKcLYey6+GE8V4kkSYUT+ELxgiPpCffjybTfJYBNBaTwmk148gGqFcCU4fVZGzPbrNnlw6rCcfUpcWMPbtut5iwW4z37NnteXYL5Z8xoM+RPwSOKKX2YGTEfQj4Wi4OrJT6D8CfAqVa6xFlfCPybaARiAA/o7U+nN33K8BvZz/6+1rrf8hu3wj8PeAE2oBf0fNl6JMQQohbkgzBFWKeSyXTjPaGGeoJMHw5yMjlEKP9ITIp4/++xW6muMpNSU0exdV5k0ub8/q+n0prTW8sQWc4xvlInAuROOcjMbqicYYSV6c8UUCV3coyl51a59XXEqeNxU7bDQ/pvWabQmFSvkGSA4OkhoZIDflIDQ2R9A0ZZZ+P1MgIZDJoIOwwAtXxPIW/1Emw1EWgwM6Ex4TfpRm3JRkzxwjoCMYnPsiszBTYCyh0FFLkKKLQUUihvZBCR+Hk9qnLfHs+ToszZ+c7G7TWxJIZwokUkXjaWCaMgDWSSBPNLiOJFNFEmmjSeMWS6clyJJEmnsxc3Z5ME0tmiGXLqcz190+3V3jY8asPffqOn+IzTMPy34F/1Fq/q5SqxHgOFKBDaz2Yg3YsAr4L3A5szAagjcAvYwSgm4Fva603Z+ckPQhswpga5lD2M+NKqQ7g/wH2YwSgf6G1bv+0+qVPFUIIcbNkCK4QC5TFap58NvSKdCrD+GCY4UshRi4HGekNcf7QEKfe7p/cx1PsoLg6j+IqN0XVboqr8igod31kjlKzUixx2lnitLPlQ3UHUmkuROJ0ZQPSi9EEXZE4rwxNMJ764F3HMpuFpU47ix02Y+m0schhY7HDRoXdivkzDIc157kx5y3Hvnz5x+6j02nSY2Okhoc/+hoZJXV2lNTIMOmRMTLhMAAZZTyb6neD36UIFjkIlDoJ5tsJes0EXCEC9gADlnNMmGIEP/Sc6lR2s518Wz75jnzybfkU2Avw2r3k2/Lx2r14bd7JZb4tH6/Ni8fmwWPzYDbN/vQuSimcNuMuJnnTU0cqnSGWyhBPpomlrgam8VSGeDJDLGUEsPFUGpdtxruzTuBPs8HnD4Hva62P5PD4fw78R+ClKdueBf5X9g7mPqVUQbb+R4DdWusxAKXUbmCrUuoNwKu13pfd/r+A54BPDUCFEEKI6SIBqBALkNliMobh1niASsC4oxUajzPaF2KkN8Rob4jR/jA9J0fR2TtRJpMiv9xFUaWbokoXhZVuiirdFJS5MFs/OgTVazGz3utivfejiX/Gkym6o3EuRRNcjMbpiRnL9yZC/LNv/AP3Ga1KUe2wsshhBKU1V152GzUOK1V2G5bPmDhHmc2Tz6J+mkwkQmp01AhYR0eN9dExUmOjpEdGSfWOkR4bN94fH4eUcec3rYy7qwGXEbgGPRZCxU7CBXbCHhsht4mQM0jQ5uecpYuQKUGQGAlSn9get9X9gYDUY/VcXc++8qx55NnyJpceq2ey7LQ4b4lsuRaziTyzMbx2rtFafxv4tlJqCfCTwPeUUk7g+xjBaOeNHlsp9SzQp7U+9qF/p2rg8pRyb3bbJ23vvcb2j6v3q8BXARYvXnyjzRdCCCE+0dzr1YUQs0IphafIgafIwdI1JZPb08kME0MRRvtDjPWFGe0PM3wpwIUjQ1yJEpVJkV/qpLDCRWGFi4JyF4UVbgrKXTjc154apdBqodBqYYPX/ZH34pkMfbEkl2JxLscSXIomjGUswaujgQ8M7QUwAZV2IxCtdlxdVtttVDmsVNqtlFgtNxx0mVwubC4XLFr0qftqrckEg0aQOjFhvMYnSI+PZ8vZpc9vLP3GUicSk8dIWCDkMILXkAPCThPRQgcRr4OIx0rEbSbsgrA9QMTmp9eSJmRKElJxwjqOvsYw4Q+cjzLhtrhx29zkWfNwWV3kWfNwW924LC7cVvcHXi6rC7fFjdPqNLZl110WFy6rC5vJdksEtNNBa90D/DHwx0qp9cD3gP8EfOJtaqXUq0DFNd76LeA3gSdz3NRPpbX+DvAdMIbgznT9QgghFoZpD0CzKekPYnyb2/yh9x4CvgXcBfyk1vrH2e1LgO0Yf1dagf+mtf7r6W6rEOKjzFaTMRS3Ou/qU25AKpFmYijC2ECY8YEI4wNhxgaMO6aZ9NW/XZ0eKwXlLgrKjMA0v8xJQZmL/FInFtu1/0a3m0wsc9lZ5rp2sp1YOkN/PElvzAhMe2MJ+uIJ+mJJjgYjtA37SXzo+XabUlTajWC0ymGjwmasV2S3ldutlNss2Ew3l0xIKYXZ68Xs9X76zllaa3Q0SjoQIO0PkAn4jcDUHzCWwQAZf4B0MEh6zE/mYpB0IEAmYGzTsdjksTJAzAYR+9VX1K6Ieu1E8+3E3FZiLgtRl4WoQxGxh4laQ4ybB+kzp4ioFFGVIKLj13ze9VpMyoTL4sJpcV77ZTWWDrNjcpvDYqzbzfbJ8uS62YHdYv/A0mqyzskgVyllARow7oI+DrwBfP3TPqe1fuJjjrcGqAWu3P2sAQ4rpeqBPmDqtyA12W19GMNwp25/I7u95hr7CyGEELNmJu6A/gpwBrjWX2OXgJ8Bfu1D2weAe7XWcaVUHnBSKfWy1rr/wwcQQswOi808ZRjvVZl0hsBojInBCOODESZ8YcZ9ES6eHCX63sDVHRXkFdrJLzWC0clXmZHZ1+b4+F9PDvMnB6gZrRlNpuiNJRmIJ+iPJxmIJ+mPJRiIJzngD+OLJz8SpAKUWC2U2y2U2YzgtNx2NTgts1kpzS6d15HR93oppVAuFyaXC2vFtW6KfTKdSJAOhYyANBuUZoIhMqEg6WCITOhD6/0h0uFQdp8Q6VAIHYl88JhA3GpMdxOzXX1FHSbiHjtxt42Ey0rcZSXuMBNzmIjZFHFbmpglRNwSYMKcYdCUJqZSxEkRI0lMJ647sJ3KpEzYzUYwajPbJgPWK+Vl+cv4nXt/5zMf90YppbYAX8RICNQB/AD4qtY6fDPH1VqfAMqm1HMR2JRNQvQy8EtKqR9gJCHya60HlFI7gT9QShVmP/Yk8Bta6zGlVEApdQ9GEqKfBv7bzbRPCCGEuFnTGoAqpWqAJuCbwP/74fe11hez+2U+tD0xpWjHuBMqhLgFmMwm425nmYuld33wvUQ0xcRQBP9QlImhyOR697FhosHkB/Z1eqyT08x4ix14S6+u5xXaMX1CAGhSilKblVKblfV89PlTMO46jiXTDCaM4NSXDVJ9CWN9MJHkTCjGUCJJ5hqf91pMlNmMob2l2cDUeGXXrRaKbRZKbJacZvi9FmWzYSkqgqKiGz6GzmTIRCJkwmEjSM0u0+GwsR4OX30/HCETyZbHI+hw5Op70aixHo1C+qPT22ggbTKC27gVElaIW7LrLhvJbGCbdFpJOiwk7BYSdhMJu4mk1UTCCgmrImmBhClBwhwjbsoQCAD33vjP8Ab8BvCPwH/QWo/PUJ1tGAHveYxpWH4WIBto/h5wILvfN64kJAL+LVenYWlHEhAJIYSYZdN9B/RbGFn8PJ+y30dkU9C3AiuAX7/W3U9JmCDErcXmtFC2xEvZko8OiIhHUwSGo/iHo/iHIwSGowRGY/i6/Zw/NDSZCAmMZ07zCux4ih14Sxx4ip3G86vFDjxFdvIKHR/J1vthSimKbUaQuDrv46dESWvNaCKFL5FkKJFiKJFkOLscSqQYiic5E47y1ngKf+qjAReA05Sty2qhxGql2GamyGqUi7OBapHVQpHVTKHVQoHFjGmGh5sqkwlzXh7mvDwoL7/p42mt0YkEmUgEnQ1IjeA0SiYaQV9Zj0XRsRiZaCy7PUYmGkXHY8b7YzFj31h2eyxGJhZDx2IfeG7WvsoJn7/pZn+W83tshupZOmVdA//uY/b7Hsbzpx/efhC4c7raJ4QQQnxW0xaAKqWagSGt9SGl1COf9fNa68vAXUqpKuBFpdSPtda+D+0jCROEmCfsTguliz2ULv7o91WZdIbQeBz/SJTgaIzgaIzAaJTgSIzLZ8YJ+wf5wKhOBW6vjbxsUqW8QiMozcsGp3mFdlweG+o6MuealaLMbqXMfu1kSlPFMxlGEimGEymGE0lGkylGEilGkqnJ9eFEkvfDUUaTKWIfM8+lAgqtZgotFmNptXygXDClXGA1k28x9vGYTXPmOUmlFMpux2S3Q2Hhp3/gBuh0Gh2Pk4nFIHOt+9RCCCGEmGum8w7o/cAz2YmzHYBXKfV/tNZf/iwH0Vr3K6VOAg8CP56Gdgoh5jiT2TQ5HPda0skMoQkjMA2OxQiOxY3laIzhy0G6j4+QTmY+dEyFu8BOXqHdWBYYwam7wI4735Zd2q85vczHsZtMVDtsVDts17V/OJ1mLJlmLJliNJFiLJliPFseT2WXyRQD8SSnQ1HGU2ki6Y8PtMwK8i3m7Mu4k5qfDVCNdQv5FjNeixmvxYQ3u683+7LfZAKmmabM5slnZ8XcFAkkcHmv7/+DEEKIhWHaAlCt9W9gPCND9g7or11v8Jl9dnRUax3NJlV4AGNSbiGE+Aiz1ZRNZvTxz3vGwklC2cA0NB4nPHFlGWe4J0j3sY8GqQCOPCvufDvuAhuufDturw1Xvg2X1whUXfl2XPk2rB+T0feTuM1m3GYzi64zYAXjLutENkj1p9JMJNOMp1JMJNNMpNKMZ7f7k2n8qTSXYgkmUsa29KeME7GbFB6zEYx6sgGq12Imz2yUPWYznsltJtxmE57susdinEue2YTdpObMnVgxe0ZGImz74zf56ual/NTn7pjt5gghhJgjZnweUKXUN4CDWuuXlVJ3Y0y3Ugg8rZT6z1rr1cAdwJ8ppTTGaLQ/zWYGFEKIz0wphTPPhjPPds0hvmAEqfFIyghK/UZgGvHHCU0kJtdH+8JEAokPPI96hdVhxuXJBqceGy6vDafXhtNjlI11Ky6vDavdfMMBmt1kotxuovw6hgR/+Pwi6YwRnKbSBD60DKbSBFIZgmljWyC7bSiRIpRKE0ynCaauL3+tRTEZjLrMJvLMZtxmE26LKRt0m3CZjPemvtxms7Gefc955T2Tse6UwPaW4ouEGXEMMe7NAHcQHIsRj6Qoqcmb7aYJIYSYRTMSgGqt38CYkwyt9X+asv0AH5yj7Mr23RhzgwohxIxQSuFwW3G4rZ/4B7LOaKKhJJFAnLA/QcQfJxJIEAkkiGaXYwNhes+OE4+krnkMs8WE02PFkWfF6bHhzLPizLPhyMtuyy4dbuvkNvNNTvuilMJtMeO2mKm6wWNkskFsIJUmlM4QSqcJZYPWK8tIOkMolSaczhBKZwinjfVIOkNfLEk4HZssh9OfbUIWBTjNJhwmhfNKkJoNTuvcDv7ktkWfegwxc0zj77PC9ad4zj8DTzbxjX84RG9viO9941Gcbhs6o6/rOWwhhBDzy4zfARVCiFuZMilcXuMOZ8lHvj77oHQqQzSYJBpMEAlmA9RgglgwSTSUIBpKEg0m8Q9FiAaTJOPXzqILxh3WKwHyZHDqtmJ3W3C4rDjcFuxuK3aXFbvLgt1lbP8sz7B+GpNS5FnM5FlyM62M1ppoxghqI9lANZrOEMlkstuM9Wj6ajmWyRDN6Mlt0ez7iY9J6CRmj7uunsUnv8Htjz0AwPvqLL1FQbTtQcDG3/7JAZaUudnys6sBGOkN4Sl2YHfKnyZCiJmhMxoNmLJfhqVTxqM4VzLpJxNGv3zlMZtENAWKybnKY+EkJpPClv29FQ0mMFlMk7/Hwv44ZosJh9sYtRQci2G1myfLgZEoNocFR55RnhiKYHdZcOYZj+aMD4azX0zb0FozPhDB6TG+vM5kNOMDYVz5xgivTDrD2EAEd4FRTqczjPWHySu0G+VkhrGBMJ4iB448K6lkmrH+MN4SJw63lVQizdhAmPwy17T/Hpbf8kIIMU3MFlM2A6/9uvZPJdPEQili4SSxbIAaCyWN8pVX9n3/cJR4OEk8muKTbiNarCYjIHVnA1OnBZvLgt2RXTqN7VaH2Xgv+7qybrFNX2ZdpRQus8JlNiHd0fyz2GnnL7/03OT188BwG92pHjKJf81QLMbvjw/zdKmPLawmlkzxN39+kPs2VvDol24H4Id/cIC6+nLWPWFMs7bnf59hyZoSlq0rRWc0HS3dLLqjiKqVBaTTGY69epnqukLKa72kEmlOvd1PVV0BpYs8JONpTr/TT83thRRX55GIpjjz3gA1dxRSXJVHLJzk7L5BFq8uorDCTTSU4Oy+QZauKaGg3EUkkODs/kGWrSshv9RFeCJOZ4eP5RtK8ZY4CY7FOHfQx8pN5XiKHARGopw/NERdfQV5hXYmhiJ0HRnmtnsqcOfbGR8M03V0mDvuq8LltTHWH6b7+DCrH6jGkWdltC/ExRMj3PlQNXaXleFLQXpOjXLXozXYHBaGegJcOj3G2scXYbWZGez203tmnPVbFmO2mhg4P0Ff5wQbnlqMyWyi/9w4/ecm2NiwFKUUvWfHGezys6lhKQCXT48xdCnAxq1GuefUKKN9ITY8uQSAi8dHmBiKTP5bdB0dJjgaY+3jxqiDC4eHCPvj3PWoUT530EcslGTNI8a3dJ0HBklE09z5UDUAZ/cNkE5pVj1gjMc4814/WsOq+43y6Xf6MVkUt99TCcDJt/qw2s3ctrkCgON7enG4LdTVG+Vjr13GlW9j5SZjCqkjuy/hKXKwYmMZAId2XKSw3M2y9aUAHGzrprg6j9q1RrmjpZuyJR6WrikBYN9LF6hcUcCS1cUA7N1+nurbClm8qphMOsO+F7tYvLqImtuLSCcz7Hu5i6VriqmuKyQZT7P/lS6WrS2lamUBiWiKjle6Wb6xjMrl+cRCSQ60drOyvpyK2nwigQQHW7u57d5Kypd6CU/EOdB2kdUPVFG62ENgNMqh9h7WPFJNSY0H/3CEg+09rHt8EcXVeYwNhDm8s4cNTy2hqNLNaF+IQzt6qG+upaDcxVBPgMM7L3HvtuXklzoZ7PJzZNcl7v8XK/AWO+nrHOfo7ks8/KXbySu0c/n0GEdfu8TjX1mFy2vj4okRjr12mSd/fjXOPBsXjgxx/PVeGv/tXdidFjoPDHL89V6e/dX1WO1mzrzXz4k3+viJ/7gRs8XEybf6OPlmH1/47btRSnHstcuceW+An/yd+sl/m3MHhibLHa900XV0ZLL83j+f5/L7Y3zht4zyWz/oZODCxGT59f99hpHLIT7/m3cDsOtvT+EfivAvfsMot/3VccL+BP/ia5sAePkvjpKMpfiJ/2iUX/zzIwBs+w8bANj+Z4exOcw88yvrjfKfHsaVb6P5360F4J//5BAF5S4afmENAD/+44OULfbw5M8bs1396A8PUl1XwOM/s2ry99jSNSU8+mXj99o/fbODursreOgn6wD4we91sOrBKh743EoAvv+f97PuicXcu205AP/49f3c3bSU+qeXkUlrvv+N/Wx+dhmbGpaSSqT5we91cN9PrGD9lsUkomn+6fc7ePALK7nr0UXEQkl++M0DPPyl27jzoWrC/jg//IMDPPbTd3DHfZWExuL86A8PsuXnVlFXX4F/OMqP/vAgzb+0liV3Gtf+dJEeXwgh5giL1Uxeofm6A1aATEaTiBpBaTycIhZJEo8Y6/FIyliPpIhHjfWw3xgiHI+mSERS6E+5caiUMX+r1WHG5rBkX2ask0tju9VuntxutZs/9mW2zp2pYsT0m/pvvfaX/gbz++fIc7tIhePkF71IcCIJPM3Rngn+pzWM2XOeR7mdE73j/M9ML7+YMrGOxVweDdN6qp/nih0sW1fKeCjBzp1dbDFD1coCotEUb2w/z8PbVmQD0Azv/OgcD35hJaWLPCRiKd750Tke/tJtFFfnEYskeedH53jsp283AtCQUd7iWUVhhZuIP8G7Pz5PXqGDgnIXofEY7/3zeQrKjWRnwbEY771wnuJqN94SJ4GRKHtfuEDZEi+eIgcTQxH2bjeCmLxCOxODRrnm9kLc+XbGBsLse7GLJXeW4PLaGOkLsu/FLpatK8WRZwSc+17sYuWmcuwuK0M9Afa/1MUd91Zic1gY7DLKqx+sMgLQC372v9zFXY/WYLaa6D8/wf6Xu1i/ZTGYoffsBAdautl4JeA8M8bR3ZcmA9BLp0c5+Xb/1QD05Cid+wcnA9DuEyNcPDYyGYB2Hxum9+z41QD0yDBDPYHJAPTCoSHGfZHJAPTcgSFC47GrAWiHj0Q0NRmAnt03+IEA9Mx7A1jtpskA9My7/bi8tskA9PS7/RSUOicD0FNv91GyyDMZgJ58q4+qFfmTAejJN/tYcmfxZAB64o0+VmwsmwxAj++5zB33VU0GoMf39AJMBqDHXu/FYjOzeFUxWsOJN3px5FmNADSd4eSbveQV2KmuKySdynD67X4KylxUrSwgmUhz5r1+iqrdVC7PJ5lIc3b/IGVLvVTU5pOMpzh3cIiqukLKl3pJxFJ0HRliyZ3FlC72kIimuXhihOUbjLbGIyl6z4xxe/ZnkYim6D83MfmzjUdTDF0MkIgZj4AkYmnG+kOksnfykvE0E0MRMinjl38qmSE0ESeTzbCeTmeIhZKTuQ4yaU0qkfnoF53ZzsNsNmFzXB0VY7GZP5D52u604C1xGJ9X4PRYKaq8mjAwr9BB6ZKruRnyy1xUrsifLBdXu9FTOqrypR7srqvhS9XKArzFVzPkL15dRHRKrodl60tJRK+OLqqrL/9AwsE77q/8wLmtebga05RHXtY+VoPFfvX8Njy5GLvrag6Gu5tqceZdLW9+dhnu/Kvnf9/zK/AUOSbLD36+jvzSq+195F/eRkG58fPQWvPIV26nqNx9tfxzd1BaZTwWpBQ8/K9WUXalbFE8+POrqKwxztdsN/HgV1dRUWWULU4z9391NRXZx4qsHiv3/8IqShcZc7HbvFbu/cXVFC8y9ncU2LnnF1fjrXEz3SQAFUKIW5jJdPXZ1c9Ka00yniYeSZGIZl+xNImoEbAaZWNb8sp7MSPYDY7FjPfjaWPo8HWOgFXK+APFajdjsZux2sxY7SYsNrOx3Waa3G5sM13dbjMCWIvNjMVqMl7ZfWwOC+6C6w/cxczbWlnM1krjD/p8m4kvj1dhWm1861/piFLj+gG+iwVAM30+HxcSE7w3cpKfYCOvnzzHj4mRl27lAX6Jfz50mu954hS49nMvy/je3mP8RUGMgvxjbGQJf/nOYf6yIExJwRnuYhH/7d3DfKd4gpric9xJNd/ee4h/KBljRXE3d1DFf91/kO+XjnBn6WXqqOBPOw7wQvkg68uLWUEZ/+XgAVor+7i7uIxaSvijQx3squ7lvsJqFlPMNw/v581FfTxUWEsNhfzekX3sXdzH4wV1VJLPfz62j0NLL7PVu4oyvPzusb2cqO3lmfx1APynE/s4s+wSn/MYd2V+++Rezi+/xL/03AvAb53eS8/KS/yM+0EAfvPsXvrrevjXzkcA+I3OfQzffolftGfL5/czccdl/q3lUaPctZ/I6sv8W4zy1y52kFrVy7+5Ur50AHV7P7/Aw8b+vQex1vXz8zxklPsP414xwM9iDKf+2uARCpf5+Ar3G+8PH6Wsdogvcy/JdIbfGj9G1ZJRvshmook0vxM4xuJF43yBeoKxJL8bPs7yxQE+xybGwwm+Hj/B7bUhtrGBoWCM30ud4M6lMZ5hPQP+KL+vT7G+PEkTa7k8FuEPTKfYXJZhK2voGg7xh9bTPFCqeJLVdA4G+GPHGR4rsfA4qzjVO86f5L3PU0V2HuF2DncP8af5Z3m6sJcHqWPvuT7+vPAcP1E4yP2sYM+pi3yr5AJfzB/lHpbTeuw8f1Hexc8UBLibWl481sm3y7v4an6YDSzhh0fP8O2yblLeOGtZxP85fIJvlXRh8aa5k2r+7vBx/kdxF658E6uo4juHjvK3hV0UFli5jQr+8uBh/k/BBSoLnaygjG8dPMCPvN0s8nqppYQ/OdhBi+ciSz2FLKaYPzywn115l1juKaWaQn6vYy9vui9zh6uSCvL5T/v3ss95mTWuGsrw8lv73+WQvY8NrqUUk8d/3PsOJ219bHauoAAX/2HvO3Sa+3jAdQde4FfefZtuUx+POu7EDfzye29zmX6edBipWf7NO2/jy/TTYDeu3Z9/+y3GkgM02Yzyv3rrLQJ6gGaLccfwp994i5h5gEaT8fkv73mbtG2AJzHuGH7p9bdRzgEOYmTK/sKrb2P1DHKA2wD43O53cBUMsh/jd8W2ne+SXzLAXn4ZgOfa36OofID3+CUSqQzPtr9HaeUA72z5JcLxFM+0vUtlzRBvPvpv8UeSPN32LjWLh9nz4L9hOBjn6dZ3WVI7zKv3/hv6J6I0tb7LsuWj7Lr7F7g0GqGx9V3qVo7Rvv6rnB8K0tjyLnfcMUHLXT/PmYEAza+8w5rVfl5c/a84emmM5195hw13Bfnx7T/Lwa4RPv/KO9y9PsI/rfxp3jk7wE+//C733x3jfy/7Mq+e7OFfv3SAR+9J8r0lX+SVo138yktHeOr+DH+95PP8oOMsv/nySZ5+GP6i5nP83Xun+P0dZ/ncYxb+pPo5/ubt4/zZqxf4l1ud/H5FE3/++iH+6q1L/Hyzm9+qaOCPdx/g797r4989V8CvlT3BN3bs5QcdPn7986X825KH+Z3Wd3jhyCi/+y+r+Jni+/j/Wt6k7cQY3/ypZXyxYNNn+wX/GUkAKoQQC5RSavKu5s3QGU0yYQSiyVh2OeWViKVIJa6WU/HM5P6pyWWGaChJKp4mmUiTThr7XPmW/tMU1+Txk79df1PnIWaOslr59T/8z2SydzbKCwr5ydJHqFltDFu7r8LNr3b9I9bbvwjA/YWKnxj9U/KGnwbgDmuYjan/S/TyRgBqVZAVqoXhC7fDPVCRGKHGvIfecytg/ZMUhgcpo4OezmWw+hHcE/0UcYLu82G47X4co5fJ1+fo6tI8XHs31uEePOkeLna5ua9mLWZfN+5kH5culVNffSf0d+OK93N5cBnrq25D93fhjPoYGBpmTVktuq8LR2SEofExbi+uId3XhT00zEgozPJCyPRfxBYZZiIWZZEH0n3d2BPDBDMZyoFU/0WsqWHCmQwFQLr/ElbtI6E17itlhkgBNiA10ItF+YxveIDUYD8WNTh5BzrlG8RkHpgsp4d8mMz9k/8eqZFhrObeKeVRrP5LV8tj4+hgz2Q5PeEnE+6+WvYHSUe6ppRDJKPnAdBo0v4wiVhntgzpQJjYhfcny5lAhFjnGa5sSAcjRLLljIZ0KEL47PvZsiYTihJ8/+zk+5lwlOCZ8/AMZJIpdCRK4HQXNEEqGicTjeE/8z40fJlkOEwmGmXi9Dl48idJ+ANkYlHGTnfBY58nPjGOjkUYO3MRHnme+OgIOhZm9Ewv3P8MUd8gOh5m5P3jcE8TEV8/Oh5irPME3P0UkYF+dCLISOdJWPcYkf7LRvncKbjzQSJ9PeiEn+HzZ+C2e4n2XYSEn+GuTli2iWjvRUiOM3rpAixdS7y3GxJjjPddhEWrSfR2QWIcv68PqupI9ndBfJzAqA8qakn3n0clxgkExqF0EZmBC5gSY4TDQSisAN8FVGKUaDwGgMl3HpUeIZEx7hKahy+g9BCp7LeK5uHzmMw+rtwztI2ex2QZnPzO0TF2HqtlYPLf3jFxgZj16rXkDpxH2y5fLQfPk7BfvbbywufRyavXlid6HnPm6rXljV/AMX5hslyQPEfe2JRy6hwFo8a1ZlJQkD5L4bBxLZpNioLMWQqHjONZzIrCzBmKfEb9NouJAn2GkkGjfQ6rmQJOUTZo/N9w2EwUcJLywUGj7XYL+aYTVAyMGG11WPCaTlA5MGa0xWbCaz5OVb8fgHyzxmM9Tk1/CPhpCkiSZztOTb/xsy/IxPDajrFowPjpFqVC2bJxB7YkGcBrO0rNgHEHtTQxbpSHjDuW5bERvLajVA8UAU1URofw2o5SNWSMHKiKDmbLxkiGmkg/XttJKobqsuU+vLazlI8a9S8KX8ZjvUDp+NU7ttNGaz0vXhs3btRCCCHml3QqrePRpA7749o/HNGjfSHtu+jXfZ3juufUiL5wZEif7RjQXceGc1IfxjRhs96nzfZrrvSp6UxGa611KpXSp/sHtS8Q1FprHQuF9b539+vLg0Naa60jExP6vbZd+lJfv9Za69DIqN774xd1b7YcHPTpjn/6sR7oG9Baa+3vH9CHvv9DPTTgM8q9ffro93+oR4eM62ji0iV98vs/1BMjo0b5Yo8+84Mf6sD4uFG+0KU7/+lHOuQPGOXzF/T5f/qRjoRCRvlsp+7+4Y91LBo1yu+f1T0/+rFOxOJGfafP6Ms/+medTCaN90+e0n3//IJOZc/Xf+Kk7n9h++T5+48d04Mvvawz2XLgyFE99ErL1fLhI3qkrf1q+eAhPbpz5+TPMXjggB7ftftqeX+H9r/2+tXyvn068MYbk+XQ3r06+NbbV8vvvqtD7757df+339GhvXuvlt98U4f2779afuMNHT5wYLIceP11HT50+Gr5tdd05OjRq+Xdu3Xk+PHJsn/nTh05cfJqecdOHT19+mq5vV1H33//armtTcc6O7XWWmdSKaN8/rxRTiS0v71dxy50aa21Tsfj2t/eruPd3UY5GjXKly4Z5XBY+9t36PjlXq211qlgSPvbd+hEX59RDgS0f8dOnRgcNMoTE0bZZ1xLybEx7d+5UyeHjWspOTpqlEeNayk5PGyUx8a01lonfD7t37VLpyYmjPLgoFEOGNdWor/fKAeNayvR26v9u3bpdDistdY6fvmyDuzerdPZay3e06MDu3frTNy41uIXLxrlREJrrXWsq8sop1JG+cIFHdh99dqInTunA6++OlmOvn9WB15/fUr5fR3Ys+dq+fRpHXzzzcly5ORJHXz7navl4yd08J0p5aNHP3DtRI4c0aG9+ybL4UOHP3AthQ8e1OGDB6+WOzp0+NChyXJo7z4dOXJkSnnvB66t0LvvfuDaCr79jo6cvHptBd96S0dPnZosB/bs+cC1FXj9dR19/+zV8muv6di5c1fLr76qYxcuaK21zqTTRrnLuNYyyaQOvPaajl+8aJTjcaN85VqLxXTgtdd1ote41tKRiA68/rpO9Bu/t9KhkFG+cq0FgzqwZ8/ktZYKBHTwjTcmr7XUxIQOvvnm5LWWGh/Xwbfe0qns763k2JgOvvX25LWWHB3VwbffmbzWksPDOvTuuzqd/T2WCx/Xpyqt50fmwE2bNumDBw/OdjOEEELcwpRSh7TW0zv26BYgfaoQQoib9XF9au7y8wshhBBCCCGEEJ9AAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCaa1nuw05oZQaBnpydLgSYCRHx7pVyDkvDHLOC4Oc841borUuzcFxbmk57FPlWlwY5JwXBjnnhSGX53zNPnXeBKC5pJQ6qLXeNNvtmElyzguDnPPCIOcs5oqF+O8i57wwyDkvDHLO00OG4AohhBBCCCGEmBESgAohhBBCCCGEmBESgF7bd2a7AbNAznlhkHNeGOScxVyxEP9d5JwXBjnnhUHOeRrIM6BCCCGEEEIIIWaE3AEVQgghhBBCCDEjJAAVQgghhBBCCDEjJACdQim1VSl1Vil1Xin1tdluz3RRSn1PKTWklDo5ZVuRUmq3Uupcdlk4m23MJaXUIqXUHqXUaaXUKaXUr2S3z+dzdiilOpRSx7Ln/J+z22uVUvuz1/g/KaVss93WXFNKmZVSR5RSLdnyQjjni0qpE0qpo0qpg9lt8/n6LlBK/Vgp9b5S6oxS6t75fL63IulP5++1KH3qwulTpT+d//0pzE6fKgFollLKDPx3oAFYBXxRKbVqdls1bf4e2PqhbV8DXtNarwRey5bnixTwH7TWq4B7gH+X/bedz+ccBx7TWq8F1gFblVL3AH8M/LnWegUwDvyr2WvitPkV4MyU8kI4Z4BHtdbrpszdNZ+v728DO7TWtwNrMf695/P53lKkP53316L0qQunT5X+1DCfr22YhT5VAtCr6oHzWusurXUC+AHw7Cy3aVpord8Cxj60+VngH7Lr/wA8N5Ntmk5a6wGt9eHsehDjP1Y18/uctdY6lC1asy8NPAb8OLt9Xp0zgFKqBmgCvpstK+b5OX+CeXl9K6XygYeAvwXQWie01hPM0/O9RUl/Oo+vRelTF0afKv3pB8zba3u2+lQJQK+qBi5PKfdmty0U5Vrrgez6IFA+m42ZLkqppcB6YD/z/JyzQ2eOAkPAbuACMKG1TmV3mY/X+LeA/whksuVi5v85g/GH0C6l1CGl1Fez2+br9V0LDAN/lx0a9l2llJv5e763IulPF8i1KH3qvO5fvoX0p/O9P4VZ6lMlABUfoY25eebd/DxKqTzgn4Ff1VoHpr43H89Za53WWq8DajDuSNw+uy2aXkqpZmBIa31ottsyCx7QWm/AGPL475RSD019c55d3xZgA/BXWuv1QJgPDQ2aZ+crbmHz+VqUPnX+9qnSny6Y/hRmqU+VAPSqPmDRlHJNdttC4VNKVQJkl0Oz3J6cUkpZMTrK/6u1fiG7eV6f8xXZoRR7gHuBAqWUJfvWfLvG7weeUUpdxBjy9xjGcw3z+ZwB0Fr3ZZdDwHaMP47m6/XdC/Rqrfdnyz/G6Dzn6/neiqQ/nefXovSp875Plf50YfSnMEt9qgSgVx0AVmYzfNmAnwRenuU2zaSXga9k178CvDSLbcmp7HMLfwuc0Vr/1ylvzedzLlVKFWTXncAWjOd09gCfy+42r85Za/0bWusarfVSjP+/r2ut/yXz+JwBlFJupZTnyjrwJHCSeXp9a60HgctKqduymx4HTjNPz/cWJf3pPL4WpU+d/32q9KcLoz+F2etTlXFXVQAopRoxxrybge9prb85uy2aHkqp7wOPACWAD/hd4EXgh8BioAf4vNb6w4kVbklKqQeAt4ETXH2W4TcxnlmZr+d8F8ZD42aML5p+qLX+hlJqGca3mUXAEeDLWuv47LV0eiilHgF+TWvdPN/POXt+27NFC/CPWutvKqWKmb/X9zqMxBg2oAv4WbLXOfPwfG9F0p/O32tR+tSF1adKfzq/+1OYnT5VAlAhhBBCCCGEEDNChuAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKMQ2UUsVKqaPZ16BSqi+7HlJK/Y9pqO/vlVLdSqlf/Iyfa7syufYN1LkuO9ffjXzWmf15JJRSJTdyDCGEEPOf9Kef+lnpT8UtxzLbDRBiPtJajwLrAJRSXwdCWus/neZqf11r/ePP8gGt9Q11eFnrgE1A22f9oNY6CqxTSl28ifqFEELMc9Kffmq90p+KW47cARViBimlHlFKtWTXv66U+gel1NtKqR6l1PNKqf+ilDqhlNqhlLJm99uolHpTKXVIKbVTKVV5HfX8vVLqr5RS+5RSXdl6v6eUOqOU+vsp+11USpUopZZm3/ufSqlTSqldSilndp83lFKbsusl2c/YgG8AX8h+8/oFpZQ7W0eHUuqIUurZ7GdWZ7cdVUodV0qtzPkPVgghxIIi/an0p+LWJQGoELNrOfAY8Azwf4A9Wus1QBRoynaa/w34nNZ6I/A94JvXeexC4F7g3wMvA38OrAbWKKXWXWP/lcB/11qvBiaAn/i4A2utE8B/Av5Ja71Oa/1PwG8Br2ut64FHgT9RSrmBXwS+rbVeh/ENb+91tl8IIYS4XtKfCnGLkCG4Qsyudq11Uil1AjADO7LbTwBLgduAO4HdSimy+wxc57Ff0Vrr7LF9WusTAEqpU9ljH/3Q/t1a6yvbDmX3+SyeBJ5RSv1atuwAFgN7gd9SStUAL2itz33G4wohhBCfRvpTIW4REoAKMbviAFrrjFIqqbXW2e0ZjP+fCjiltb73Ro+dPVZ8yvYrx/64/QHSgDO7nuLqaAnHJ9SngJ/QWp/90PYzSqn9QBPQppT6Ba3169fRfiGEEOJ6SX8qxC1ChuAKMbedBUqVUvcCKKWsSqnVM9yGi8DG7PrnpmwPAp4p5Z3AL6vsV8tKqfXZ5TKgS2v9F8BLwF3T3WAhhBDiQ6Q/FWKOkABUiDks+2zI54A/Vkodwxjmc98MN+NPgX+jlDoCTE3xvgdYdSVpAvB7gBU4nh2W9HvZ/T4PnFRKHcUY/vS/ZqzlQgghBNKfCjGXqKsjFIQQt6psJr6Wz5o2frYpI238Jq31yGy3RQghhJD+VIjpJ3dAhZgf/MDvqc84cfZsUdmJszG+4c3McnOEEEKIK6Q/FWKayR1QIYQQQgghhBAzQu6ACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYEZbZbkCulJSU6KVLl852M4QQQtzCDh06NKK1Lp3tdsw26VOFEELcrI/rU+dNALp06VIOHjw4280QQghxC1NK9cx2G+YC6VOFEELcrI/rU2UIrhBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCiFtaIppitC80280QHxI/f5603z/bzRBCCDHHWGa7AUIIIcRnlU5m6Dk1SmeHj4snRsgvdfKTv1OPUmq2myayBn7rt4mePk3e/ffjbWwg77HHMOflzXazhBBCzDIJQIUQQtwSdEbTf36Czg4fFw4PEY+kcHqsrLq/irr68tlunviQ8t/+LQJt7QTa2wm98QbKZiPv4YeNYPSRRzA5nbPdRCGEELNAAlAhhBBzltaa0b4Qnft9nDvoIzQex2I3s2xtCXX1FdTcUYjZLE+TzEXONWtwrllD2a//GtGjR41gdOcOgrt3o1wuPI8+irepibwH7kfZbLPdXCGEEDNEAlAhhBBzTmA0yrkDPjo7fIz1hzGZFItWF3Hv88upvasUq908200U10mZTLg2bMC1YQPlv/E1IgcOEmhrI7hzJ4HWVkz5+Xif3IK3sRFXfT3KLP+2Qggxn0kAKoQQYk6IhZKcPzxEZ8cgA+eN5DUVy/J56CfrWLGpDGee3CW71SmzGfc9m3Hfs5mK3/4twnv34m9tJdDaxsSPfoy5tARvQwP5TU047rpLnukVQoh5SAJQIYQQsyaZSHPx2AidHYNcOjVGJqMprHCx+Zll1NWX4y2R5wTnqyvPhOY9/DCZaJTQm28SaG1l4vs/YPx//W+sixbhbWokv6kJ+8qVs91cIYQQOTKtAahSaivwbcAMfFdr/UfX2OfzwNcBDRzTWn8puz0NnMjudklr/cx0tlUIIcTMyKQz9L4/TmeHj66jwyTjadwFdu56fBF19eWU1OTJna8FxuR04t26Fe/WraQDAYK7XyXQ2srod/4no3/9N9hvuw1vcxP5jY1Yq6tnu7lCCCFugtJaT8+BlTIDncAWoBc4AHxRa316yj4rgR8Cj2mtx5VSZVrroex7Ia31dedr37Rpkz548GBOz0EIIURuaK3xXQzQ2eHj/EEf0WASm9PCig2l1NVXULmyAJNp9oNOpdQhrfWm2W7HbJsrfWpqeJjAjp0EWlqIHjsGgHPDBrxNjXi3bsVSXDzLLRRCCPFxPq5Pnc47oPXAea11V7YBPwCeBU5P2edfA/9daz0OcCX4FEIIMT9M+CKc7RjkXIcP/3AUs8XE0jXF1NVXsOTOYsxWyWArPp6ltJSin/oyRT/1ZRKXLxNobSPQ2oLv934f3x/8Ie5778Xb3ITniSdkjlEhhLhFTGcAWg1cnlLuBTZ/aJ86AKXUuxjDdL+utd6Rfc+hlDoIpIA/0lq/+OEKlFJfBb4KsHjx4pw2XgghxI0J++OcO+Dj3AEfQz1BUFBdV8iGrUtYvqEMu1PSDywEf3LgT4imomxdupWN5Rsxm24uu61t0SJKfvEXKPnFXyB2tpNAayuBlhYGvvYbDNq/Tt6jj+JtaiTvoYcw2e05OgshhBC5Ntt/BViAlcAjQA3wllJqjdZ6Aliite5TSi0DXldKndBaX5j6Ya31d4DvgDFcaEZbLoQQYlI8mqLryDCdHYP0nR1Hayhd7OH+z61g5aZy3AUSECw0kVSE1q5WftT5I0qcJWxZsoWtS7eyrmwdJnVzd74dt9XhuK2O0n//q0SPHCXQ0kJgxw6CO3Zg8njwPLmF/OZmmdZFCCHmoOkMQPuARVPKNdltU/UC+7XWSaBbKdWJEZAe0Fr3AWitu5RSbwDrgQsIIYSYE9LJDD2nRunsGOTi8VHSqQzeEgcbG5ZSV19OYYV7tpsoZtHv3vu7/PqmX+etvrfY2b2TF869wPff/z5lrjKeWvoUDUsbuLPkzptKOKWUwrVhPa4N6yn/zd8gvHcfgZYWgu078P/zC1endWluxrFmjSS3EkKIOWA6kxBZMJIQPY4ReB4AvqS1PjVln60YiYm+opQqAY4A64AMENFax7Pb9wLPTk1g9GFzJWGCEELMZzqj6T8/QWeHjwuHh4hHUjg9VlZsLKeuvpzyWu8t/Ue+JCEyTEefGk6G2XN5Dzu7d/JO/zukMilq8mpoqG2gobaBlYW5m2olE4sReuNNAq0thN54E51MYl282JjWpbkZ+/LlOatLCCHEtX1cnzptAWi20kbgWxjPd35Pa/1NpdQ3gINa65eV8VfKnwFbgTTwTa31D5RS9wF/gxGImoBvaa3/9pPqkgBUCCGmz0hviM6OQc4d8BEaj2Oxm1m2roS6+goW3V6IyTw/kgnN1QBUKVUAfBe4E2Pasp/TWu+d8r7CmPasEYgAP6O1PqyUWgf8FeDlaj/7T59W33T3qf64n9cvvU57dzv7B/eT0RlWFKxg69KtNNY2ssi76NMPcp2MaV12429pIbK/AzIZ7HfcQX5zE97GRqyVlTmrSwghxFWzEoDOJAlAhRAitwKjUc4d8NHZ4WOsP4zJpFi0uoi6+nJq7yrFap9/z9bN4QD0H4C3tdbfVUrZAFc2X8KV9xuBX8YIQDcD39Zab1ZK1QFaa31OKVUFHALumPrZa5nJPnUkOsKrPa/S3t3O4aHDANxZfCcNtQ1srd1KmassZ3Ulh4YI7tiBv6WV2PHjALg2bcLb3IznqSexFBbmrC4hhFjoJAAVQgjxqWKhJOcPD9HZMcjAeT8AlcvzWXl3OSs2leHMs81yC6fXXAxAlVL5wFFgmf6YTlsp9TfAG1rr72fLZ4FHtNYDH9rvGPA5rfW5T6pztvrUgdAAOy7uoL27nTNjZ1AoNlVsorG2kS1LtpBvz89ZXYmeHgJtbfhfaSHR1QUWC3kPPIC3qQnPY49icsszzEIIcTMkABVCCHFNyUSai8dG6OwY5NKpMTIZTWGlm7r6curuLsdb4pztJs6YORqArsPI+H4aWItxF/NXtNbhKfu0YExZ9k62/Brw/2mtD07Zpx74B2C11jpzjXqmTm22saenZ9rO6Xp0+7vZ0b2Dtu42LgYuYjFZuL/qfhpqG3h00aO4rK6c1KO1Jn7mDP7WVgJt7aQGBlBOJ57HHsPb1ETeA/ejbPP7ixchhJgOEoAKIYSYlElnuPz+OOc6fHQdHSYZT+MusFN3dzkr68spqcm7pZMJ3ag5GoBuAvYB92ut9yulvg0EtNa/M2WfTwxAlVKVwBvAV7TW+z6tzrnUp2qtOTN2hvbudtq72/FFfDgtTh6ueZiG2gYeqH4Amzk3AaLOZIgePoy/pYXgjp2kJyYw5+fjeeopvM1NuDZtQpnmx/POQggx3SQAFUKIBU5rje9igM4OH+cP+ogGk9icFpZvKOW2+gqqVhagTAsv6JxqjgagFcA+rfXSbPlB4Gta66Yp+3zsEFyllBcj+PwDrfWPr6fOudqnZnSGI0NHaOtqY1fPLibiE3hsHrYs2UJjbSObyjdhNuXm2WSdTBJ6910CrW0EX3sNHYlgKS/H29SEt6kRx6pVC/JLGiGEuF4SgAohxAI14YtwtmOQcx0+/MNRzBYTS9cUU1dfwZI7izFb5Y7OFXMxAAVQSr0N/LzW+qxS6uuAW2v961PebwJ+iatJiP5Ca12fTVjUDryitf7W9dZ3K/SpyUySff37aO9u57VLrxFJRSh1lvLU0qdorG286TlGp8pEIgT37CHQ2kbo7bchmcRWW4u3uYn8piZsS5fmpB4hhJhPJAAVQogFJOyPc/6gkUxoqCcICqrrCqmrL2f5+lLsLutsN3FOmsMB6DqMaVhsQBfws8AXALTWf52dhuUvMaY1iwA/q7U+qJT6MvB3wKkph/sZrfXRT6rvVutTo6kob/W+RXt3O2/1vkUyk2SRZxFbl26laVkTywtyN+9nemKCwM5dBFpbiRw4AFrjuPNOvM1NeBsasZbnLmuvEELcyiQAFUKIeS4RTdF1dJjOjkF63x9HayhZlEddfQUrN5WTV2if7SbOeXM1AJ1pt3KfGkgEeK3ntQ/MMVpXWEdDbQMNtQ1U51XnrK7k4CCBtnYCLS3ETp8GpXDV15P/dDOeLVsw5+cua68QQtxqJAAVQoh5KJ3K0HNylM4OHxdPjJBOZvCWOIyg8+5yiiplKonPQgJQw3zpU0eiI+y8uJO27jaODxvzfq4rXUdDbQNPLX2KYmdxzuqKd3URaGnF39pCsucSymrF/fBD5Dc1kffII5icCyebtBBCgASgQggxb+iMZuDCBGc7fFw4NEQ8ksKRZ2XlxjLqNldQXutdEMlRtNac7Auw/UgfqUyGbzx7500fUwJQw3zsU3uDvbR3t9PW3cb5ifOYlZnNlZtprG3k8cWPk2fLy0k9WmtiJ08RaGkh0NZGangYk8uFZ8sTeJubcd97L8piyUldQggxl0kAKoQQt7jRvhCdHYN0HvARGotjsZmoXVtKXX05i1YVYTYvjGRCveMRXjraz/YjfZwfCmE1KxrXVPKtL6y76cBbAlDDfO9Tz42fmwxG+0J92Ew2Hqp5iIbaBh6qeQiHxZGTenQ6TeTAAWNal127yQQCmIuK8G7dire5Gef6m79mhRBirpIAVAghbkHBsRjnDvjo7BhktC+MMikWrypi5d3l1K4tweZYGHdS/NEk7ScGeOFIHx3dYwDcvbSQ59ZX07SmkgJXbuaBlADUsFD6VK01x0eO097dzo7uHYzGRnFb3Ty++HEaahu4p/IeLKbc/B/LJBKE334bf0sLoT1voGMxrFVVxrQuzc04bqvLST1CCDFXSAAqhBC3iFg4yYXDQ3R2+Og/NwFAxTIvdfUVrNhYhtOTm2BrrkukMrxxdogXj/bx6pkhEqkMy0rcbFtfzbPrqllc7Mp5nRKAGhZin5rKpDgweID27nZe7XmVYDJIkaOILUu20LSsibWlazGp3IwySIfChF5/DX9LC+F334N0GvvKFXibmvE2N2GrqclJPUIIMZskABVCiDkslUhz8cQonR2D9JwcJZPWFFa4qKsvZ+XdFeSXLowEJlprDl+aYPuRXlqODzARSVLstvH02iq2ra/mrpr8aR2yKAGoYaH3qYl0grf73qatq403e98kno5T6a6kobaBxtpG6grrcnYdpsbGCOzYQaC1jeihQwA4160z7ow2bMVSUpKTeoQQYqZJACqEEHNMJqPpOztOZ8cgXUeGScTSuPJtrLy7nNvqKyhZlLdgng+7OBJm+5E+XjzaR89oBLvFxJOrK3h+fTUPrCzBOkPPt0oAapA+9apwMszrl16nrbuNvf17Ses0y/KX0VjbSGNtI4u8i3JWV7KvD39bG4HWNuLvvw8mE+5778Xb3IxnyxOY83KTKEkIIWaCBKBCCDEHaK0ZvhSkc7+Pcwd9RAIJrA4zy9eXUldfQfVthZhMCyPoHAsnaD3ezwtH+jhyaQKl4L7lxTy3rpqtd1bgcVhnvE0SgBqkT722sdgYuy/upq27jcNDhwFYU7KGhtoGti7dSqmrNGd1xc+dw9/aSqCllWRvL8pmI++RR/A2N5H38MOY7DKvrxBibpMAVAghZpF/OEJnh4/ODh8Tvggms2LJncXU1VewdE0xFpt5tps4I2LJNK+dGWL7kT7eODtEKqO5vcLDtvXVPLOuisr82R1qLAGoQfrUTzcQGmDHxR20d7dzZuwMJmXi7vK7aaht4IklT5Bvz89JPVprYseO4W9pJdDeTnp0FFNeHp4nn8Tb1Ih782aZ1kUIMSdJACqEEDMsEkhw/tAQnR2D+LoDAFStLKCuvpzlG8pwuGf+Dt9syGQ0HRfH2H64j7aTAwRjKcq9dp5dV81z66pZVeWd7SZOkgDUkIs+dTSRotBqxrQAhpF3+bto726nvbudnkAPFpOFB6ofoLG2kYdrHsZlzU3CLJ1KEd63n0BrK8Fdu8iEw5hLSvA2NJDf1Ihj7doFM2xfCDH3SQAqhBAzIBFL0X1shM4OH5fPjKEzmuLqvGwyoXI8RbmZX/BWcH4oyAuH+3jpaD99E1HcNjNb76xk2/pq7l1ejHkODjWWANSQiz71C0cvcC4S45myAp4tK2SdxznvgyOtNafHTtPW1caOizsYigzhtDh5dNGjNNY2cl/VfVjNufniKROLEXrzLQItLYTefBOdSGBdtAhvUyP5zc3YV6zIST1CCHGjJAAVQohpkk5nuHx6jM4OH93HhkklMuQV2qmrL6euvoLi6oWTOGQoGOPlo/28eLSPk30BzCbFAytKeH5DNVtWleOyze2hghKAGnLRp77oG+cF3zh7xoIktWaJw8azZQU8V17IHW7HvA9GMzrDId8h2rrb2N2zG3/cT749ny1LttBY28jG8o25m9YlGCS4azeB1lbC+/ZBJoP99tvJb27C29iItaoqJ/UIIcRnIQGoEELkkNYaX3eAzv2DnDs0RCyUxO6ysHxjGbfVl1O5vAA1B+/wTYdIIsWuUz5eONLHO+eGyWi4qyaf59ZV8/TaKko9t06yFAlADbnsUyeSKdpH/Lzkm+DtiSBpDStddp4rK2RbeSHLXLfO9XGjkukk7/W/R1t3G3su7yGailLmKmPr0q00LmtkVdGq3E3rMjxMoH0HgdZWoseOAeDctJH85mY8Tz2FpbAwJ/UIIcSnkQBUCCFyYHwwnE0mNEhgJIbZamLpmhLq6stZcmcxZsvMTBcy29IZzbvnR3jxSB87Tg0SSaSpLnCybX01z62vZkXZrXnXVwJQw3T1qSOJFC3DE7zoG2e/P4wG1nqcbCsr5NnyAirttpzXOddEkhHe7H2Ttu423ul7h1QmxRLvEhpqG2iobWBZ/rKc1ZW4fJlAayv+lhYS5y+AxYL7/vuMYPSxxzC53TmrSwghPkwCUCGEuEFhf5xzB4wMtsOXgigF1bcVUldfwfL1pdicc3tYaa5orTk9EGD74T5eOtbPcDCO12Gh6a4qtq2vZtOSW38KGQlADTPRp/bHErw0NMH2oXGOB6Mo4J4CN8+XF9JUWkCRdf7/v/LH/bza8yrt3e10DHag0dxRdMdkMFrhrshJPVpr4p2dBFpa8Le2kuofQDkceB57FG9zM3kPPICyzf/gXwgxsyQAFUKIzyARTXHhyDCdHYP0nR1Hayhd7JlMJuTOn//DBq/on4jy0tF+th/ppdMXwmpWPHJbGc+vr+bR28twWOfPFDISgBpmuk+9EInxom+CF4fGOReJY1HwaJGXbeWFPFXsxW2ZP9fYxxmKDLHz4k7au9s5MXICgA1lG2isbeTJpU9S6MjN0FmdyRA9cgR/SwvBHTtJj49jys/H++STeJubcW3aiDLP/5+3EGL6SQAqhBCfIp3K0HNylM4OHxdPjJBOZvCWOKirr6CuvpzCioUzXC0YS9J+YpDtR/rY1z2K1rBxSSHb1lfTtKaSQvf8vFsiAahhtvpUrTWnQlFeyAaj/fEkTpOJp0q8PF9eyCNFHmym+T/M/VLgEm3dbbR3t9Pl78KiLNxTdQ+NtY08tvgx3Nbc/C7SySThvXuNYPTV19CRCJayMryNjXibm3Gszt2zqUKIhWdWAlCl1Fbg24AZ+K7W+o+usc/nga8DGjimtf7SlPe8wGngRa31L31SXRKACiFuhM5oBi74OdsxyIVDQ8QjKRx5VlZuLKNucwXltd4F8wdYMp3hrc5hXjjSx6unfcRTGZYWu9i2vobn1lexpHj+B+ASgBrmQp+a0ZoOf5gXfOO0DE8wlkxTYDHTXFrAtvIC7i3Im/dzjGqt6RzvnAxGB8ID2M12Hq55mMZljTxY/SA2c26+DMpEo4T27MHf0kro7bchmcS2dCnepia8zU3Ya2tzUo8QYuGY8QBUKWUGOoEtQC9wAPii1vr0lH1WAj8EHtNajyulyrTWQ1Pe/zZQCoxJACqEyKXRvpCRTOjAIKGxOBabidq1pdTVl7NoVRFm8/y/ywLGH7hHL0+w/UgfLccHGAsnKHRZeXptFc+tr2b9ooIFE4CDBKBXzLU+NZnRvDkeZLtvnPYRP5F0hkq7lWfKCni+vJC78ub/HKMZneHY8DFau1rZ3bObsdgYHquHJ5Y8QUNtA/UV9ZhNuRk6m/b7CezaRaCllUhHB2iNY/VqvM3NeBsbsJaX56QeIcT8NhsB6L3A17XWT2XLvwGgtf7DKfv8F6BTa/3da3x+I/DrwA5gkwSgQoibFRyLTSYTGu0LoUyKRXcUUVdfTu3aEmyO+Z/05Iqe0TAvHjHm6+weCWOzmNiyqpxt66p5+LZSrAskAP8wCUANc7lPjaQz7Brxs31onNdHjTlGlzvtbCsvZFt5Actdjtlu4rRLZVLsH9hPW3cbr116jXAyTLGjmK21W2mobeCukrtyFpAnfT4Cbe0EWlqInToFSuG6+268zU14n3wSc0FBTuoRQsw/sxGAfg7YqrX++Wz5p4DNUwNJpdSLGHdJ78cYpvt1rfUOpZQJeB34MvAEHxOAKqW+CnwVYPHixRt7enqm5VyEELeueCTJhcPDnN0/SP/5CdBQXuulrr6CFRvLcHnn57OM1zIeTtByYoAXj/RxqGccgHuWFbFtfTUNayrxOqyz3MLZJwGoYS4HoFNNJFO0Dvt5wTfOexMhNHCXx8nzC2hal1gqxtt9b9PW1cZbvW+RyCSozqumsbaRhtoGVhauzFld8e5uAq1tBFpaSFy8CFYreQ88gLe5Cc+jj2JyuXJWlxDi1jdXA9AWIAl8HqgB3gLWYASeLq31f1FK/QxyB1QI8Rmkkml6TmSTCZ0cIZPSFJS7qKsvp66+nPzShfNHUiyZZs/7Q7xwpI83zg6RTGtWluWxbUM1z66rprrAOdtNnFMkADXcin3qQDzBy0MTvOAb51h2Wpd7C/Ky07rkU7gApnUJJoK8ful12rrb2D+wn7ROs6JgBU3Lmti6dCs1npqc1KO1JnbqNIGWFgJtbaSGhlAuF57HHye/uQn3ffehrPKFlhAL3VwdgvvXwH6t9d9ly68BXwN+FXgQyAB5gA34H1rrr31cfbdiZymEyJ1MRtPfOU5nh48LR4ZJRFO4vDZWbiqnbnM5pYs98/4ZsSsyGc3BnnG2H+ml9fgAgViKUo+dZ9dWsW1DNasqF05ipc9KAlDDrd6nXpnW5QXfOBeicaxK8WiRh23lhTxZ4sW9AKYZGY2OsqtnF21dbRwdPgrA2tK1NNQ28NTSpyhxluSkHp1OEzl4yAhGd+0i4/djLijA07CV/OZmnOvXoxZA5mIhxEfNRgBqwRhe+zjQh5GE6Eta61NT9tmKkZjoK0qpEuAIsE5rPTpln59B7oAKIa5Ba81Ir5FM6NwBH+GJOFa7meXrS6mrr6D69kJMpoUTaJ0fCvHikT5ePNpH73gUl83M1tUVPLe+mvtXlGBeQD+LGzUdAahS6vh17DastX48l/XejPnSp2qtORGK8oJvnJeGJhiIJ3GZTWwtyWdbWQGPFHmxLoD/F32hPtq722nvbqdzvBOTMrG5YjMNtQ08seQJPDZPTurRiQShd94l0NJC8PXX0bEYlqpK8rPTuthvu02+/BJiAZmtaVgagW9hPN/5Pa31N5VS3wAOaq1fVsZvoT8DtgJp4Jta6x986Bg/gwSgQogpAiNROrPJhMYHwphMisV3FlNXX87Su0qw2ub/3Y0rRkJxXjnWz/YjfRzv9WNS8MDKUp5fX82Tq8tx2eb/sMNcmqYA9BTQ+Em7AC9rre/KZb03Yz72qRmt2TsR4sWhCV4ZmmAilabQYubpsgK2lReyOd8976d1ATg/fn5yWpfeUC82k40Hax6ksbaRh2oewmHJTRKnTDhM8PU9BFpaCL37LqRS2FYsJ7+pCW9TE7bFi3NSjxBi7pqVAHQmzcfOUghxVSyU5PzhITo7Bhk47wegckW+kUxoQxmOvIXzvFE0kWbX6UFePNLHW+dGSGc0q6u8bFtfzTPrqijzzP8soNNlmgLQB7TW79zsPjNpvvepiUyGN8aMaV12jASIZjJU2a08V2Zk0r1zAUzrorXmxMgJ2rvb2XFxByPREdxWN48teozGZY1srtyM1ZSb36up8XGCO3fib2khevAQAI61d5Hf1Iy3YSuW0tKc1COEmFskABVC3HKSiTQXj4/Q2eHj0qlRMmlNYaXbSCZ0dznekoWTQCed0ezrGuWFw33sODlAOJGmKt/Bs+ur2ba+mrry3AyhW+jkGVDDQupTw6k0O0cDbPeNs2csQErDSld2WpeyQmpd9tlu4rRLZ9Ic8B2gvbud3T27CSaCFNoLeXLpkzTWNrKubB0mlZvnOJP9/QTa2vC3thE/cwZMJtz3bMbb1IznyS2YPfK7TIj5QgJQIcQtIZPO0HvWSCbUdWSYZDyNu8DOyruNDLYlNXnz/s7EVO8PBth+uI+XjvYzGIjhsVtoXFPJc+ur2VxbtKCecZ0J0xmAKqXuB74OLAEsGENvtdZ62XTUdzMWap86lkzRMjTB9qFx9k6EAVjncfF8eQHPlhVSbp//Iy0S6QTv9r1LW3cbb1x+g1g6RoW7goalDTTUNnB70e05+x0cv3CBQGsr/pZWkpcuoWw28h5+CG9TM3mPPIzJIaM5hLiVSQAqhJiztNYMXwrSud/HuYM+IoEENoeZ5RvKqNtcQdXKggUVaA36Y7x8rI8XDvfx/mAQi0nxyG2lbFtfw+N3lOGwLpxnXGfaNAeg7wP/HjiEkfcAgKmJ9+YK6VOhP5bgxaEJXvSNczxkTOtyf3Zal8bSfAoWwLQukWSE1y+/TltXG3v795LSKWrza2mobaCxtpEl3iU5qUdrTezECfwtLQTa20kPj2Byu/Fs2YK3uRn3PZtRlvn/8xZivpEAVAgx5/iHI3R2GMmEJnwRTBbF0jtLqKsvZ8maYiwLKNAKxVPsOGk81/nuhRG0hvWLC9i2vpqmNZUU583/YYBzwTQHoPu11pun49i5Jn3qB52PxNjuG2e7b4Ku7LQujxd7eK6skCdL8nGZ5/80I+OxcXb37Katu41DPuM5ztXFq2msbWRr7VbKXGU5qUen00Q6OvC3tBDctZtMMIi5uBjv1q14m5twrlu3oEbBCHErkwBUCDEnRIMJzh00kgn5ugMAVK0soK6+nOUbynC45/8QtytS6Qxvnx9h++E+dp0eJJbMsLjIxXPZ5zprS9yz3cQFZ5qSEG3Irn4eIyv8C0D8yvta68O5rC8XpE+9Nq01x0NRXhg0pnUZTCRxm000lOTzXHkhDxd6FsS0LoPhQXZ076Ctu40zY2dQKO6uuJuG2ga2LNlCvj0/J/Vk4nFCb71FoKWV0BtvoONxrNXVeJubyW9uwr5yZU7qEUJMDwlAhRCzJhlP031s2EgmdHoMndEUV7upq69g5d3leIoWznM+WmtO9Pl54XAfLcf7GQklKHBZaVpTyfMbqtmwuFC+3Z9F0xSA7vmEt7XW+rFc1pcL0qd+urTW7JsIsd03wSvDE/hTaYqsZp4uNaZ1qV8g07p0+7sn5xi9GLiIxWThgaoHaKht4JFFj+CyunJSTzoUIvjqqwRaWgnv3QvpNPa6OrzNzXgbG7HVVOekHiFE7kgAKoSYUZl0hsvvj9PZMUjX0RFS8TR5hXYjg219BcXVebPdxBl1eSzCS0f7eOFIH13DYWxmE4/fUca29dU8clsZNsv8H8J3K5jpLLhKqXKttW+m6rte0qd+NvHstC4v+MbZNeInmtFU2608V17ItrICVi+QaV3OjJ2hrauN9ovtDEWGcFqcPLLoERprG7m/6n6s5hxN6zI6SmDHDgKvtBA9ehQA54YNeJsa8W7diqW4OCf1CCFujgSgQohpp7Vm6GKQsx2DnD/oIxpMYndZjGRC9eVUrShALYDhaVf4I0laTwyw/UgvBy6OA1C/tIhtG6ppvLOSfNfCGW58q5iJAFQpVQD8BPAl4A6tddV01ncjpE+9ceFUmh0jfrYPTfDGAp3WJaMzHPYdpr27nZ09O/HH/XhtXrYs2ULTsiY2lG3AbMrNM/6J3l4CrW0EWl4hfu48mM2477sPb1MjnieewJy3sL7sFGIukQBUCDFtJnwROjsG6Tzgwz8UxWwxsXRNMXWbK1iyuhizdeHc3Yun0rxxdpjth/t4/f0hEukMy0vdPL+hhmfWVrGoKDfD0cT0mK4AVCnlBJ7FCDrXAx7gOeAtrXUm1/XdLOlTc2M0kaJleILtvnH2+Y1pXdZ7XGxbQNO6JNNJ9g7spa27jdcvvU40FaXMWcZTtU/RVNvEquJVObs7HDvbSaClhUBrK8n+fpTdTt6jj5Lf3IT7oYcw2Ww5qUcIcX0kABVC5FQkkODcQR+d+wcZ6gmCguq6AurqK1i+vhT7Arq7p7XmUM8424/00XJ8AH80SUmejafXVvH8+hrurPbO++F388U0PQP6j8CDwC7gB8DrwHmtdW0u68kl6VNzr2/KtC4nFui0LtFUlDcvv0lrdyvv9L1DKpNisWfx5LQuywpyMyWuzmSIHj1KoKWVwI4dpMfGMHk8eJ7cQn5zM676epR54WRZF2K2SAAqhLhpiViK7mMjdO4f5PL74+iMpmRRHnV3V7Dy7jLyChdOMiGA7pEw24/08eKRPi6NRXBYTTy1uoJt66t5YEUJlgUwNcN8M00B6FHABPwv4Ada616lVJfWOjd/bU8D6VOn17lwjO1D42z3jdMdTWBTiseKPWwrL2RL8cKY1sUf9/Papddo626jY6ADjeb2ottpqG2gYWkDlXmVOalHJ5OE9+0j0NJKcPduMpEI5tIS8hsb8TY14VizRr4gFGKafOYAVClVdB3HzWitJ26ybTkhnaUQ0yOdznD59BidHT66jw2TSmTwFDlYWV9OXX05xVUL6/ma0VCcluMDbD/Sx9HLEygF9y8vYdv6ap66s4I8+/y/izGfTeMQ3NuBLwJfAEaA24A752ICIpA+daZorTkajPKib5wXh8bxJVILclqX4cgwOy/upK27jRMjJwDYULaBxtpGtizdQpHjev4k/XSZWIzQG2/gb2kh/OZb6GQS6+LF5Dc34W1uxr5szn4nJMQt6UYC0BjQD3zSbz6z1npxbpp4c6SzFCJ3tNb4ugN0dvg4d9BHLJTE7rawYqMRdFYuy19QyYRiyTSvnvGx/XAfb3YOk8po7qj0sm19Fc+sraYif2Hd+Z3PZigJ0UaMYPTzQK/W+r7prO9GSJ8689Jas3cixHbfOC3D/gU7rcvlwGXaL7bT1tXGBf8FzMrMvVX30ljbyGOLH8Ntzc38yOlAgODu3fhbWojs2w9aY191B/lNTXgbG7FW5uYOrBAL2Y0EoEe01us/5aCfus9Mkc5SiJs3Phims8NH5wEfgeEoZquJ2rtKqKsvZ/HqYswLaKqQTEazv3uM7Ud6aT8xSDCeotxr57l11WzbUM3tFd7ZbqKYBjM5DYsyxv09qLV+aybq+yykT51d8UyGPaNBtg99cFqXZ8sKeb584Uzr0jneSVt3G+3d7QyEB7Cb7Txc8zCNyxp5sPpBbObcJBVKDg0R3LEDf0srsePHAXBt2oS3uQnPU09hKSzMST1CLDQ3EoA6tNaxTznop+4zU6SzFOLGhP1xzh8corPDSCakFFTfVjiZTMjmXFhDSjt9QbYf6eOlI330+2O4bWYa1lSybX019ywrxryA7vwuRNP0DOhXtdbfuZl9slO3fBe4E9DAz2mt9055XwHfBhqBCPAzWuvD2fe+Avx2dtff11r/w6e1WfrUuePKtC4v+CZ4c3zhTutybPgYbV1t7OrZxVhsDI/Vw+NLHqextpH6ivrcTevS04O/tZVASyuJri6wWMi7/368zc14HnsUkzs3d2CFWAhuKgmRUsoMlAOTf4lqrS/ltIU3STpLIa5fIpai6+gwnfsH6X1/HK2hdLGHuvpyVm4qx10w//+gmWooGOPlo/1sP9LHqf4AZpPioZUlPLe+midXVeC0SbbEhWKaAtAu4Nc+aRfgG1rr1Z9wjH8A3tZaf1cpZQNcU3MwKKUagV/GCEA3A9/WWm/O5nM4CGzCCFwPARu11uOf1GbpU+ema03rss7j4vkFNK1LKpNi/8B+2rrbeO3Sa4STYYodxWyt3UpDbQN3ldyVk7vDWmviZ84YwWhrG6nBQZTTiefRR/E2N5P3wP0omdZFiE90wwGoUuqXgd8FfMCVucq01vqunLfyJkhnKcQnS6cyXDo9RmfHIBePjZBKZvAUO6irL6euvoKiyoX1rW4kkWLXKR8vHOnjnXPDZDTcVZPPc+uqeXptFaWehRWEC8M0BaB/dx27+bXWv/oxn88HjgLL9Md02kqpvwHe0Fp/P1s+Czxy5aW1/oVr7fdxpE+d+/piCV4aMoLRhTqtSywV4+2+t2nrauOt3rdIZBJU51XTWNtIQ20DKwtX5qQenckQPXwYf0sLwfYdpP1+TPn5eJ96Cm9zE65Nm1CmhfOIihDX62YC0PPAZq316HQ1LheksxTio7TWDF7w09nh4/yhIWLhJA63lRUby6jbXEHFsoU1P2U6o3nvwgjbD/ex49QgkUSa6gIn29ZX89z6KlaUeWa7iWKWzeQzoNdLKbUO+A5wGliLcRfzV7TW4Sn7tAB/pLV+J1t+Dfj/MAJQh9b697PbfweIaq3/9Br1fBX4KsDixYs39vT0TONZiVw6H4nxgm+cF30TdEXjWJXi8QU2rUswEeT1S6/T3t3OvoF9pHWalYUraaxtZOvSrdR4anJSj04kCL33HoHWNoKvvYaORLCUl+NtbMTb3IRj1aoF1a8K8UluJgDdA2zRWqemq3G5IAGoEFeNDYTp7Bjk3AEfgZEYFquJ2rUl1NVXsGhV0YJKJqS15vRAgBeP9PHS0X6GgnE8DgtN2ec6715ahEme6xRZczQA3QTsA+7XWu9XSn0bCGitf2fKPjcdgE4lfeqtSWvNsWCU7UPjvOSbYDCRxG02sbUkn20LaFqX0egou3p20dbVxtHhowCsLV1LQ20DTy19ihJnSU7qyUQiBPfsIdDSSuiddyCZxFZbi7e5ifymJmxLl+akHiFuVTeShOj/za6uxpivrBWIX3lfa/1fp6GdN0w6S7HQhSfinDvoo7PDx/AlI5lQzR1F1NWXs2xdKTbH/B+ONdWAP8qLR/p58UgfZ31BrGbFI7eV8fz6ah69vQyHVZ7rFB81RwPQCmCf1npptvwg8DWtddOUfWQIrviAtNbsmwix3TdBy/AEE9lpXZqz07psXiDTuvSF+mjvbqe9u53O8U5MysTmis00Lmvk8cWP47HlZuRLemKCwM5dBFpbiRw4AFrjWLOG/OYmPA0NWMvKclKPELeSGwlAf/cTjqe11t/IVeNyQTpLsRAloikuHBmms2OQvrNGMqGyJR7q6itYsakMd/7Ceo4xGEvSfnKQ7Yf72Nc9itawYXEB2zbU0LymkkK3JIwQn2w6A1CllFlrnb7Bz74N/LzW+qxS6uuAW2v961PebwJ+iatJiP5Ca12fTUJ0CNiQ3fUwRhKisU+qT/rU+SWRyfDGWJAXfOPsHAkQzWSoslt5tqyA58sLuXMBTOsCcH78/OS0Lr2hXmwmGw/WPEhjbSMP1TyEw5KbOZ2Tg4ME2toJtLYSO3UKlMK1ebMRjG7Zgjk/Pyf1CDHX3VQW3A8dyAE8rbX+Ua4alwvSWYqFIp3KcOnUKJ0dPrqPj5BOZvCWOKjbXEHd3eUUViysZELJdIa3zw3zwuE+dp/2EU9lWFrsYtv6Gp5bX8WS4oX18xA3Z5oD0C7gn4G/01qf/oyfXYcxDYsN6AJ+FvgCgNb6r7PTsPwlsBVjGpaf1VofzH7254DfzB7qm1rrT02KJH3q/BVOpdk5GuAF3zhvjF2d1uW5skK2lReybAFM66K15sTICdq729lxcQcj0RHcVjePL36chtoG7qm8B4spN6OG4l3dBFpbCbS0kOjpQVmtuB96iPzmJvIeeQST05mTeoSYi3IxDctTwBeBLcA7WuvP5byVN0E6SzGf6YxmoMtP5/5Bzh8eIh5O4cizsjKbTKi8dmElE9Jac6zXz4tH+njlWD+j4QSFLitPr63iufXVrF9UsKB+HiJ3pjkA9QA/iRE8moDvAT/QWgemo76bIX3qwjCWTNEyNMH2oXH2Thg5rdZ6nDxfXsizZYVULIBpXdKZNAd8B2jvbmf3xd0Ek0GKHEVsWbKFpmVNrC1di0ndfN4ErTWxk6eMYLStjdTQECaXC8+WJ/A2NeG+916Udf7/vMXCckMBqFLqYeBLGEN6OoD7MdLAR6aroTdKOksxH432h+js8HGuw0dwLJtMaF0pdfXlRjKhBZDZcKrLYxG2H+njxSN9dI2EsVlMbLmjnG3rq3morhTbAkquJKbHTD0Dmu1f/xEoAH4M/J7W+vx013u9pE9deK41rct92WldmhbItC6JdIJ3+t6hvbudNy6/QSwdo9JdydbarTTWNnJb4W25mWM0nSZy4CCB1hYCO3eRCQQwFxbibdiKt7kZ57p1Mq2LmBdu5BnQXuAS8FfAi1rroFKqW2tdO71NvTHSWYr5IjQe59wBH50HBhm5HEIpWHRHEXWbK6hdW7LgkglNRBK0nhhg++E+DvaMA3DPsiK2ra+mYU0lXod8YyxyZ7qfAQWaMO6ALgX+N/B/gQeBP9Ba101HvTdC+tSF7XwkxnbfONunTOvyWLGHbWWFbCnx4jbP/yRu4WR4clqXvf17SekUy/KX0VDbQGNtI4u9i3NSTyaRIPzOOwRaWgi+vgcdi2GpqiS/qQlvczP2ujoZ0SNuWTcSgH4LeA44ifEt7UvACa31ss9Q6Vbg24AZ+K7W+o+usc/nga8DGjimtf6SUmoJsB1jiJIV+G9a67/+pLqksxS3sng0RdeRIc7u99HXOQ5XkgltrmDlpnJc3oWVPCeeSrPn/SG2H+ljz/vDJNIZVpTlsW19Nc+uq6Km0DXbTRTz1Aw8A7oH+Fut9Xsfeu8vtNb/z3TUeyNy0ae2Hh/AbjHxYF0Jdsv8D1jmI601x0NRXvCN8/LQBAPxJK4r07qUFfBIkXdBTOsyHhtnd89u2rrbOOQ7BMDq4tXGHKO1Wylz5SbDbToUJrTndfwtLYTfeRfSaewrV+BtasLb1IRt0aKc1CPETLnRIbgKI4X7FzGG4eYD/wpo01qHPqVCM9CJ8cxoL3AA+OLUxAtKqZXAD4HHtNbjSqkyrfWQUsqWbVtcKZWHEQTfp7Xu/7j6JAAVt5p0MkPPqVE6Owa5eHyUdCqDt9TJbfXl1NVXUFC+sIIsrTUHe8bZfqSP1uMD+KNJSvLsPLuuim3rq1ldtbCecxWzY5oD0AeuzNM5Zdv9Wut3p6O+m5GLPvWZv3yH471+PA4LT66qoPmuSu5fUSJD5W9RGa3ZNxFm+9A4rwwZ07oUWsw0lxWwrayQewoWxrQug+FBdnTvoK27jTNjZ1Ao7q64m8baRp5Y8gT59txkuE2NjRHcuRN/SyvRQ0bQ61y7Fm9zM96GrVhKcjOXqRDT6aaz4CqlrFxNRPSU1voTr3yl1L3A17XWT2XLvwGgtf7DKfv8F6BTa/3dTzhOMXAEuEcCUHGr0xnNwIUJznb4uHBoiHgkhdNjZcXGcurqyxdcMiGAruEQLx7pY/vRPi6PRXFazTy1upxtG2q4f3kxlgX2nKuYXdMcgB7WWm/4tG1zQS761EQqw7sXRmg9PsDOU4MEYynynVaeWl1O811V3Cf/v29ZV6Z12e4bZ0d2WpfKKdO6rFkg07p0+7tp726nrbuNnkAPFpOFB6oeoHFZIw/XPIzLmpsvkpP9/QTa2vC3tBJ//30wmXDfcw/e5mY8W57A7MnNXKZC5FrOpmHJHsyptY5+yj6fA7ZqrX8+W/4pYLPW+pem7PMixl3S+zGG6X5da70j+94ioBVYAfy61vq/X6OOrwJfBVi8ePHGnp6ez3wuQsyE0T4jmVDngUFCY3EsNhPL1pVSV19BzR2FCy6Z0GgoTsvxAV440sexyxOYFNy/ooRt66t5anUFbvvCes5VzB3TEYBmv5C9D/hV4M+nvOUFtmmt1+ayvlzI9Ze68VSad84Zweiu0z5C8RTFbhsNayp4+q4q7l5ahGkBDOWcj8LpNLtGAmz3jfN6dlqX5U4728oL2VZewHJXbubWnMu01pweO01bVxs7Lu5gKDKE0+Lk0UWP0ljbyH1V92E15yZfQfz8efytrQRaWklevoyy2ch7+GG8zc3kPfIwJvv8n0ZH3Dpu5BnQ72itv/opB/3Yfa4zAG0BksDngRrgLWCN1npiyj5VwIsYc4/6Pq4tcgdUzDWh8RidB3x07vcx2hdCmZSRTKi+fEEmE4ol07x6xsf2w3282TlMKqO5vcLD8xuqeXZdNeXe+f9Hipj7pikAfRjjcZZfBKbmMwgCr2itz+WyvlyYzj41lkzzZucwrxzr59UzPmLJDOVeO01rqnh6bSXrZBqlW9Z4MkXrsJ8XfOPsnQihgbs8TraVFfJsWQFVjvmfzyCjMxzyHaKtu43dPbvxx/3k2/PZsmQLjbWNbCzfmLtpXY4fN4LRtnbSIyOY8vLwbNmCt7kJ9+bNKMvC+jtDzD03EoAOAT/4pGNiBJgrP+bz1zME96+B/VcmxVZKvQZ8TWt94EPH+h7Gc6c//rjGSAAq5oJ4JMmFI8N0dgzS1zkBGsprvdTVV7BiY9mCSyaUyWj2dY/y4pE+2k8MEoynqPA6eHa98Vzn7RXe2W6iEB8wzUNwl2itb4mhOjPVp4bjKV57f4hXjvXz5lkj4djiIhdPr63k6bVV8jviFjYQT/Dy0AQv+MY5FjSmdbmnwJ2d1qWAogUwrUsyneS9/vdo625jz+U9RFNRylxlbF26lcZljawqWpWbaV1SKcL79xNobSO4axeZUAhzcTHehgbym5twrF0rX+qIWXEjAehXruO4Ua31Dz/m8xaM4bWPA30YSYi+pLU+NWWfrRiJib6ilCrBeNZzHeAERrXWUaVUIbAf+Amt9YmPa4gEoGK2pJMZLp4cobPDR88JI5lQQbmLuvpyVt5dTkHZwkomBNDpC/LC4T5eOtrHgD+G22amYU0lz6+vZvOyYswy1E7MUdN0B/RbWutfVUq9gpHx/QO01s/ksr5cmI0+1R9NsvPUIK8c6+fd8yNkNNSV5/HM2iqeXlvFkmL3jLZH5M6FSIwXfRNsHxrnfCSORcGjRV62lRfyVLEX9wLIkhxJRniz903autp4p/8dUpkUS7xLJqd1qc3PzSyHmXic0FtvEWhpJbRnDzqRwFpTg7epifzmJuwrr3nfSIhpkdNnQD9DpY3AtzCe7/ye1vqbSqlvAAe11i9ns+z+GbAVSAPf1Fr/QCm1JbtdY9xp/Uut9Xc+qS4JQMVM0hlN/7kJOjsGuXBk2Egm5LWxclMZdfUVlC3xLLhvG4cCMV4+1s8Lh/s4PRDAbFI8XFfKc+ur2XJHOU7b/P8DQ9z6pikA3ai1PpQdivsRWus3c1lfLsx2nzoSitN2YoCXj/ZPzv+7dlGBEYzeVUmZDNm/JWmtOZmd1uWloQn640mcJhNbS4xg9JEiDzbT/M+J4I/7ebXnVdq62zgweACN5o6iOyandalwV+SknnQoRHD3qwRaWwm/9x5kMthvuw1vcxP5jY1Yq6tzUo8QH2dWAtCZNNudpVgYRvtCnN0/yLkDPkLjcSx2M8vWlXBbfQU1txdiWmDJhCKJFDtPDfLC4b7JOxZra/LZtr6a5rVVlORJMgRxa5nmIbhujJFDmWzZDNi11pHpqO9mzKU+tW8iSsuxfl4+1s+p/gBKwT21xTyzroqGOysocC2sRxvmi4zW7PeH2e4bp2V4grFkmgKLmebSAraVF3BPQR7mBfBFri/sY+fFnbR3t3Ny9CQAG8s30ljbyJYlWyh0FOakntTICIEdOwm0tBA9ehQA54YNeJub8G7diqWoKCf1CDGVBKBC3KDgWIxzB3x0dgwy2hfGZFIsWp1NJnRXKVb7wrqzl85o3j0/wvYjfew8NUgkkaam0Mm29UYyoRVlebPdRCFu2DQHoPuAJ67Mo52d53qX1vq+6ajvZszVPvX8UIhXjvXzyrF+ukbCWM2Kh1aW8sy6KrasKsdlm//PFc5HyYzmzXFjWpf2ET+RdIYKm5Vny405Rtd6Fsa0Lj2BnslpXbr93ViUhXur7qWhtoHHFj+G25qbYeiJ3l4CLa0EWluInzsPZjPu++8jv6mJvMefwJwnw91FbtxwAKqUWvNJz17OFXO1sxS3plg4yYXDQ3R2+Og/NwFAxbKryYScnoX1jbvWmtMDAbYf7uPlY/0MBeN4HRaa7jKSCW1aUihTKIh5YZoD0KNa63Wftm0umOt9qtaaU/0BXs4GowP+GE6rmSdWlfPM2ioeqivBvgCeK5yPIukMu0b8bB8a5/XRIEmtWea081w2GF3pnv/Dr7XWnB0/S1t3G+3d7QyGB3GYHTy86GEaaxt5oPoBbObc/B0SO9tJoKWFQGsryf5+lMNB3qOPkN/cjPvBBzHZFtbfOyK3biYAfRuwA38P/F+ttX9aWniT5npnKea+VDJNz4lRzu4fpOfUKJmUpqDcxW2by1l5dwX5pc7ZbuKMG/BHefFIP9uP9NLpC2E1Kx65rYzn11fz6O1lOKzyB56YX6Y5AH0X+GWt9eFseSNGjoN7p6O+m3Er9amZjOZgzzgvH+uj9fgA45EkXoeFhjsreXZdlSQ+u4VNTJnW5b3stC5r8pxsKy/kuQU0rcvRoaO0dbex6+IuxuPjeGwenlj8BI3LGrm7/G7Mppvvi7XWRI8cJdDyCoEdO0mPjWHyevE8uYX85mZcd9+NMkufLz6bmxqCq5RaCfwc8C+ADuDvtNa7c97Km3ArdZZi7tAZTd+VZEKHh0lEU7i8NlZuKqduczmlixdeMqFgLEn7yUG2H+5jX/coWsPGJYU8t76a5jWVFLrnf4cvFq5pDkDvxpjerB8jwV4F8AWt9aHpqO9m3Kp9ajKd4Z3zI7xytJ+dpwYJJ9KUeew03VXJM2urZI7RW9hgPMnLQ+O84JvgaDCCAjbnG9O6NJctkGldMkn29e+jvbud1y69RiQVocRZwtalW2mobWBNyZrcTOuSTBLet49ASyvB3bvJRCJYSkvxNjbgbW7Gceed8v9IXJebfgY0myzhOeAvgABG5/mbWusXctjOG3ardpZi5mmtGe0L0bnfR+cBH+GJOFa7mWXrS7mtvoLq2woWXDKhZDrDW53DbD/Sx+7TPuKpDEuLXTy3vppt66tl+gOxYExnAJo9vhW4LVs8q7VOTlddN2M+9KmxZJrX3x/ipaN97Dk7TCJ1dY7RZ9dVU1fume0mihvUHYnz4tA4L/jGOZed1uWRIi/bygrYWpK/IKZ1iaaivNX7Fu3d7bzV+xbJTJKavBoaahtoWtbE8oLlOaknE4sReuMN/C0thN98C51MYl2ymPymZrzNTdiXLctJPWJ+upkhuHcBPws0AbuBv9VaH1ZKVQF7tdZLpqPBn9V86CzF9AqOxejsGKSzw8dYv5FMaPHqIurqK1i6tgTrApsmRGvNsV4/2w/38srxAcbCCQpdVp5eazzXKXcKxEI0AwHoncAq4P9n77/j2z7bw97/8wXBTQIEB0CRGhyitkRSoiRvydokQWpYTps0TZonydM2TZukpz1Nen6neZo2o2060qZNkz4nOWlzmmHZkkiQ2rYsy0MSJZLaEpcWB8CBwQViXb8/QMt6HNmWBEAcuN+vV14xAIL3jcTmhev7va/relzIJiL/M1brvaj5FlM9Xj8nrg/Q8MSM0RX5mdSVF1BfXsCi7Pib1zwfiAg3x718YHdyxO6kd8pPqk5jV66R/WYTb+dkkhwHY108Pg9n7p+huaeZiwMXCUmIZaZlVBdXU11cTWFGdMatBD0eRk+dwm2zMfHFBRAhedXKcDJaW0NifnTGxyjzRyQJ6MfAD4FDIjL5tdf+toj8r6ju9AXNt2CpRMeXzYTuXBigvzNcvpxfYmTZJktcNhMCeDgyweHWXo609tI9NE6SXsfOlRb2Vxby1rI8kvTzP1gryjeJ8RHcXwe2Ek5Am4Fq4LyIHIzFepGYzzF1cHR6xmh7H5enZ4xWLg7PGK1dtwBz5vxvcjMfhUS45B7nA7uTxumxLkZ9ArV5Rg5YTLwaJ2NdhiaHOHHvBM09zVwdvApARV4FNSU17Fqyi5zUnKis43c4GD1+HLetCe/Vq6BppFVVYaitJXP3LvSm6IyPUea2SBLQXxaR//S1535JRH4vuluMzHwOlsrzCfiD3Ls6zN2LA9y/PkwoKJjy01i2KX6bCbkn/DRd6+dw6yMu3Qt/4dpcnM2B9YVUr12AISVxhneoKLNDjBPQa0A50Coi5ZqmWYA/E5GdsVgvEvESUx+OTNB4tY+Gtj5uD4yi0+C10lzqywvYvSYfY6r62zgX+UPCuSfGuowHQ1iS9NSbs9hvMVGZmRYXJ3wejj7keM9xmnua6XR1kqAl8MqCV6gurmb74u1kJEVnbJrv/n08zc24G234urtBryfjjTfCyej2bejS1AmDeBVJAnpFRNZ/7blWEamM8h4jEi/BUnm6UEjou+vkzkU73Vcc+LzBcDOhjRaWbYrPZkJTgSAf3R7kSGsvH9524AuGWGrOmJ7XWcBCkwoIivJ1MU5AL4rIJk3TLgNvA6PALRFZEYv1IhGPMfWufZSGtj4a2vt4MDJBUoKOrcvDM0a3r7CQGmdlGvPFRDDE6WEPh+1Ozgx78IlQlJrEfrOJ/RYTy+JgrAvAXeddjvUc41jPMXrHeknSJbFl0Raqi6t5a+FbJCckR7yGiDB1+zZumw1PUzOBgQG01FQyt23DYK0l4/XX0dRYl7jy3Amopmk/DvwE8AbwyRMvZQIhEdkei42+qHgMlvFORBh6NMbdCwN0tDjCzYRSEiityGPZ5nwKl8ffbEoR4fJ9Jx+0hscRuCf95GYkU19ewIH1hawuMMRdIq4ozyPGCeh/A/458DeB/wMYA9pE5GdisV4k4jmmflkf39DWR+PVPgZHp0hPSmDX6nzqKwp4Y2kuiXHWqG6+cPsDNA25OWJ3ct45RghYnZHCfrOJfRYTC+NgrIuI0D7YTnNPMyfunWDEO0JGYgbbFm+jtriWTQs2oddF3lFYQiEmL1/G3dTE6LHjBN1uEoxGMnfvxmCtJa2qCi0O6nPj3YskoEuAYuC3gV994qVR4KqIBGKx0RcVz8Ey3niGJ+m4ZOfOBTvO/ulmQmtyWLbJQvG6XPRxeJW6Z2icw1cecbitl4cjk6Qk6ti9Op/9lYW8sTQXvfqypCjPJNZNiJ5YpwgwiMjVWK/1IlRMDQuGhAvdwzS099F8rR+PN0B2ehLVa/LZW1FI1ZL4u9A5Xzim/DQMuvjA7uSKZwIIj3XZZzFRl5dFbtL8H+sSCAW4OHCR5u5mzjw4w5h/jOyUbHYX7aamuIbyvPLojHXx+Rj77DM8Tc2MnjmDTEygt1gw1NZiqK0hZdUqdXF8nop4DMtsp4Ll/OYd99N52cHdi181E1qw1MiyTfksXW8mJSP+6nRGxn3YrvbxwZVe2h660DR4vTSX/ZWF7F6TT0by/A+eihJtL6EL7gHCJ4uEcAOiw7FaKxIqpv51U4Eg5+4O0dDex+mbdib9QQqMKVinO+mqEyZz1/3JKY7YXbxvd3J3wkuCBm+ZMtlvMVGdayQzDsa6TAWnOP/oPE09TZx7dI6p4BSFGYXsKdpDTUkNy0zLorJOaGKC0Q8/wtPUxNj58+D3k1RcjMFai7G2lqSioqiso8wOL3IH9LyIvKFp2ijhQPn4JUBExBCbrb4YFSznn4AvSM/VIe5etPPgxhPNhDbns2yjBUNu/DUT8vqDnL5l50hrL2fvDBIICSvyMzmwvpD68kLyjfFRy6IoT/KFQvRP+VmSGnkN00s4grsU+PPpp/4G0CUi/yAW60VCxdRvNz4V4PQtOw1tfXx8N/y3uCQvnfrpZLQkLzrNXZSXS0S4Ne7lsN3JYYeTR14/KTqNHTkGDlhMbMs2kBIHJ4rGfGN8+PBDmnua+aLvC4ISZGnW0sdjXRZlLorKOkGXC8/Jk3hsTUxcugQipKxZg8Fai6G6hkSLOSrrKDNH3QFV5oRQSOi94+TuxQG6Wgfxe4OkG6ebCW3OJ3dhRtxdYQ6FhAs9IxxufcSxawOMTgWwGJLZW1HI/spCVi6YVdeCFOWlEBFaPBMcGhihweFiUUoSJzcuj/j3xjgBvQ2slOnAq2maDrghIitjsV4kVEx9dq4JH8euD3C0rZcLPSOIwNpCI/XlBVjLF7DAGH8XS+eDkAgt7nEOO1w0OFwM+wNkJuiozQt30n09KwN9HBy/Hp4c5tT9UzT3NNPqaAVgXd46aopr2F20m9zU3Kis47fb8TQ142lqwnvjRnisy+bNGGprMOzaRYLRGJV1lJcrki64rxAOkKPTjzOBVSJyISY7fUEqWM5dIsLQwzHuXByg45KdCbcv3ExovZllmywULovPGpsO+ygftPZytLWXPreX9KQE9qxZwIH1hbxSkkNCHP7fRFG6J6Y4ZB/h/QEn970+UnUae3KNvJOfzfbsyLtdxzgBtQH/QETuTz9eAvy+iNTFYr1IqJj6YgbcXmxXw510rz5yo2mwqSib+ooCatYswJQ+/5vczEeBkPCJc5TDDifNg27GgiHykvTU52VxwGJivSE+xrr0jfU97qR7x3kHnaZjU/4maopr2L5kO4ak6FwQn+ruwdPUhMdmw3f/PlpiIulvvYXRWkvG1q3oUtVFnbkikgS0FVj/tSu2LV8fzTLTVLCcezxDk9y9aOfuxQGcAxPoEjSWrMlh2aZ8itbmxGUzIceol4a2Po609XK910OCTuPNsnBd565V+WoMgBKXhnwBjjqcvD/dLEQD3jRl8I4lm9o8IxlRrM+KcQL6MbARuEi4tGUT0AK4AUSkPhbrvggVUyPXMzQ+Pdall67BcfTTf8/3VhSyc5WFdFWnPydNBkOcGfZw2OHk9LCHqZCwOCWJ/RYT+y1ZrEiPj+Soy9VFc08zzd3NPBp7RKIukbcWvkV1cTVbFm4hRR95SZCI4L1xE09jI55jxwg4HOjS0sjYsR2j1Ur6q6+iJcZfD5C5JJIEtE1EKr723FURWRfdLUZGBcu5YXLMR9dlB3cv2unv+qqZ0PLN+ZSuN5OSHn9/SCZ8AU7dtPPBlV4+6RgkJLBuoZF9FYXUlReQlxl5XZuizDWTwRAnhty8b3fy0YiHgITHJRywZHPAksWC5NjcSYpxArrl214XkY9jse6LUDE1ekSEG30eGtv7aGzvo8/tJSVRx/aVFurLC9i6PI/kOGhyMx95AkGODbo5bHdyzjlKCFiZnsIBi4m95iwWR6EufbYTEa4PXae5p5nj944zNDlEmj6N7Yu3U11czSsFr5Coi/y7nQSDTLRcxmOz4TlxgpDHQ4LJROae3RitVlIrK9VYl1kokgT0A+As8AfTT/0C8LaI7IvyHiOiguXs5fcFuXd1iLsXBnhwY4RQSMguSGfZJgtlGy0YcuLjauGTgiHhs64hDl/p5fiNASZ8QQqzUtlXWcD+ykKWmjNneouK8tKFRPjMNcahASe2QRdjwRALkhM5YDFx0GJiZUbs/1a8rDEss52KqbERCgkt9500tPfSfG2AkXEfmSl6qtfkU19eyKulqrxirhr0+WlwuDhid3HJMw7ARkM6+yxZ1JuzyEua/xfYg6EgLfYWmnuaOXX/FKO+UUzJJnYV7aKmuIYKcwU6LfIkMeTzMX7+PO7GRsY+Oot4vegLFmCsrcVgtZK8bFlcHImeCyJJQM3Afwa2ET4ydAb4ZRFxxGKjL0oFy9klFBJ6bzu5c3GA7tZB/FNB0rOSWbbRwrLNFnIK46+ZEMDNPg+HWx9xtK0Px+gUmSl6atcuYH9lIRuLsuOy1lVRbo1Ncsju5LDdSd+Un4zpRh/v5pt4NSuDhJf4tyLGd0BfAf4LsBJIAhKA8dnWVR5UTH0Z/MEQn3YO0dDWx4kbA4z7guRlJlO7dgF7KwqoWJQVl3FyPngwOcVRh4vDdic3x8NjXd7MymSfJYuavCwMcXDH2xf0cb73PMd6jnH24Vm8QS/56flUF1dTU1zDctPyqPz7HRwbZ+yjD3HbbIyf/xSCQZKWlmK0WjHU1pK0KDode5UXo7rgKjEnIgw+GOXuBTsdLXYmPD6SnmgmVBCnzYT63ZMcbevjSGsvtwdG0es0ti43c2B9IdtWmElJnP+BSFG+bmDKz2G7k0P2EW6MedFr8Ha2gXcsJnbnGkmdoVEHMU5AW4C/CbwHVAE/BSwTkV+LxXqRUDH15fL6g3x428HRtl4+ujOILxBicXZaeKxLRQHLLOpUzFx1e3ySI3YXH9idPPD6SJ4e67LfbGJ7jmHG/ta9TBP+CT58+CHHeo7xWe9nBCRAsbGYmuIaaoprWGxYHJV1Ak4noydO4G60MXn5MgCp5eUYrFYM1XvQ50anY6/y7CK5A5oC/CywGnhcUSwi34v2JiOhguXMcQ9O0nFpgDsX7LjsXzUTWr45nyVrc9DHYYI1NhXg2LV+jrT18lnXMCJQuTiLA5WF1K4rIFt1QlTi0FggSPOQm0MDI3ziHEOAysw0Duab2Gs2kZs0801ZYp2AikjVk30UNE1rFZHKWKwXCRVTZ47H6+fE9QEa2vv4tHOIkMCK/EzqpmeMLspOm+ktKi9ARGj1TPCBw8lRh4tBX4CMBB3VeUYOmE28acqMi7EuLq+Lk/dPcqznGC328N+YNTlrqC6uZk/xHsxp0Zn96e/rw9PcjNvWxNTt26DTkf7KKxisVjJ37iAhU13UeRkiSUDfA24DPwH8BvC3gFsi8kux2OiLUsHy5Zoc89HZEm4mNNAdbiZUUJbFsk2WuG0m5A+GON8xxAetvZy6OYDXH2JJThr7pud1FuWmz/QWFeWlC4SE6sHu0wAAhjBJREFUj52jHBoY4fiQm8mQsCQliXfyTbxjMVGaFlmnxGAoyIWBCzi9TmpLaiPeb4wT0HPADuCHwADQD/wdESmPxXqRUDF1dhgcnaL5Wj8N7X1cvu8EYP3iLOrLC6hdp5rUzVVBET51jnHY4aRp0IUnECInUU+9OYv95iyqjOno4uD49cD4ACfunaCpu4lbI7fQ0NiYv5Ga4hp2LNmBMTk6sz+nOjtxNzXhsTXhf/gQLSmJjC1bMFitZGzdgi5Z/XcUKxGNYRGRyi+v2Gqalgh8IiKvxGqzL0IFy9jz+4Lcax/i7sUfbSa0fHM+ZRstZGZH3nJ7rhERrvW6+eBKL43tfQyP+8hKS8S6LlzXuX6xSdXwKHFHRGgfneSQfYQjdhdD/gAmfQL15iwO5mdTFeHMPBHhrvMujV2NNPc0Mzg5SJGhiIZ9DbN9DugSwE64/vNXACPw30SkMxbrRULF1Nnn4cgEjVf7aGjr4/bAKDoNXl+aS315AbvX5GNIib8Lv/PBVCjEh8MePrC7ODXsxhsSFqYkss9sYr/FxKr0lLj4HtHj7nk8Y/Se5x56nZ43Ct+gpriGLQu3kJYY+Z1/EcF79Wo4GW0+RnBoCF1GBpk7dmCwWkl/ZTOafuZP4swnkSSgF0Vk0/SV218gfNX2ooiUxGarL0YFy9gIBUM8uuPk7gU73W3hZkIZpmTKqiws25xP7sKMmd7ijHg4MsHRtl4Ot4bnuyUl6Ni+0sz+ykK2LjeTpJ//NR2K8nUPJqf4wO7kkN1J58QUSZrGzlwDBy3hWqekCFvkD4wP0NzTTGNXI52uTvQ6PW8WvkldaR1vLXyL5ITIr2LHOAFNByZFJDT9OAFIFpGJWKwXCRVTZ7e79lEa2vo42t7Lw5FJkvQ63l6ex94K1VtgLhsLBDk2FB7r8rFzlKDAsrQU9luy2G8xURQnY11ujdyiubuZY/eO4ZhwkKpP5e1Fb1NTXMNrBa+RmBCFsS6BABMXL+K2NTF68iShsTEScnIwVFdjtNaSUl4eF4l/rEWSgP4c8D6wDvgTIAP4v0XkD59h0T3A7xHu9PdDEfmdp/zMjwE/INxht11EfkLTtArCY18MQBD4TRH5y29bSwXL6PmymdCdCwN0tDiY9PhIStWzdH0eyzblU1CWhRYHdQpf557003ytn8NXerl4bwSATcXZ7K8spGbtAoyp6uqzEn9c/gCNgy4ODTi54A6PHnjFmM7B/Gzq8owYEyO7mjzuH+fU/VPYumxcHLiIIJTnlWMtsbKnaA9ZKVlR+BRfiXEC+gWwQ0TGph9nACdF5LVYrBcJFVPnBhGh7aGLhvY+bFf7GRydIiNZz65VFuorCnh9aS6JcdDkZj4a8oX/th6xf/W3tTIzjQMWE/XmLCzJ8/87R0hCXLZf5ljPMU7eP4l7yo0x2cjOJTupKa5hg2VDdMa6TE0xdu4cHlsTYx99hPh8JC5ciKG2FqO1luSysih8mvj00rvgTl/ZvQvsBB4Bl4AfF5GbT/xMGfBXwDYRcWqaZhYRh6ZpywARkQ5N0wqAy8BKEXF903oqWEbOPTjB3Yt27l6cbiak1yhak8uyzRaWrInPZkK+QIizdxwcbu3lzC0HvmCIkrx0DlQWsreiUDWDUOLSVCjEmWEP79udnBry4BOhLC2ZdywmDlhMEQ9fD4QCfNb3GbYuGx89/Ahv0MuizEVYS6xYS6xR65j4NDFOQNtEpOK7npsNVEyde4Ih4YvuYRra+mi+3s+oN0B2ehI1a/PZW1HIhsXx2Yl+Pnjk9XHE7uSIw8X1sUl0wOumDPabTdTkGcmK8ELfXOAP+vm8/3Oae5r58MGHTAYmMaeZ2VO0h5qSGlZlr4rSWJcxRk+fxmNrYvzzzyEYJHn5cgzWWow1NSQWFkbh08SPSO6A5hC+Q/k64buUnwD/SkSGv+N9rwI/EJHd049/DUBEfvuJn/m3wF0R+eF3/K524KCIdHzTz6hg+WImR310XnZw58IA9h4PEG4mtHxzPiWVeXHZTEhEuPLAxeHWR9iu9uOa8JOTnkRdeQEH1heyttCojmUocUdEuOQe55DdSYPDhSsQJDdRzwGLiXfyTazLSI24rvPm8E1s3Taae5oZ8Y5gTDayp2gP1hIr5Xkv5zhUjBPQT4F/KCJXph9vAH5fRF6NxXqRUDF1bpsKBPn4ziAN7X2cvmXH6w9RYEyhriLcSXfVAoOKY3PU3XEvh+1Ojjic9Ez6SNI0tuVkss9sYleukbQ4uOM94Z/g3KNzNPU0cb73PIFQgCWGJdQU11BdXE2xsTgq6wSGhvAcP4GnqYnJ1lYAUtevx2CtxbBnD/rs7KisM59FkoCeAs4Bfzb91N8CtorIju9430Fgj4j83PTjvw1sFpFffOJnjhC+S/o64WO6PxCR41/7PZuAPwVWf1k388Rr3we+D7B48eIN9+/f/9bPooT5fUF62ge5e9HOQ9VM6LF7Q+Mcbu3lSFsv94cnSEnUsWtVPvsrC3mjTB1jUuJT14SXQwNO3p+eYZeq06jOy+KgxcRbURgb0DfWh63bhq3bRo+7h0RdIlsXbcVaYuXNwjejUuvzPGKcgG4E/gLoAzQgH/gbInI5FutFQiWg88fYVIDTN+0cbevlk44hAiGhNC+dvRWF1JcXqA7tc5SI0DY6OX1n1IndFyAtQUd1rpH9FhNbTJkkxsEdb/eUm9P3T3Os59jjMo2V2SupKa5hT/Ee8tPzo7KO79EjPE3NeGw2pjo6ICGB9Ndew2itJWP7DhIy1H9HTxNJAnpdRNZ87blrIrL2O973LAmoDfADPwYsJJzorv3yqK2maQuAs8BPi8gX37aeCpbfLhQM8ei2k7sX7XS1DRL4spnQRgvLNsVvMyHnuA/b1T4+aO2l9YELTYNXS3LYX1nInjX5ZKqugkocGvT5Oepw8f6Ak9bRCXTAm6ZMDuabqM41kqGP7Di+x+fh1L1TNHY3ctkezr3Wm9dTV1rHziU7o9Z6/0XEMgGd/v2JwPLph3dExP+M77sHjBLuixD4+h41TTMBfwyUAl7geyJyffq1XwF+jvAppmvAz4iI99vWUzF1fhoZ93Hsej8NbX1cvDeCCJQvNFJXXkBdeQEWQ3xegJ7rgiJ87hrjiN2FbTB8QiU7MQFrXrh50eY4GevimHBw4t4JmrubuT58HYANlg3UFNewc8lOTCmmqKzjvXMXj82Gp6kJf18fWnIyGdvexlhbS/pbb6FLUrPevxRJAvofgIuEazUBDgKbROSffMf7nuUI7n8HLojIn0w/PgP8qohc0jTNQDj5/C0ROfRdH1AFy79ORHDcH+XuhQE6LoebCSWn6Sldb2bZJgsFS+OzmZDXH+TD2+G6zrN3HPiDwnJLJvvXF7K3ooAFxtSZ3qKivHSTwRAnhtwcsjv5aMRDUGB1RgoHLdnst5jIj7DhhT/o53zveRq7G/n44cf4Qj6KDEVYS6zUltSyMHNhlD5JZGKdgL6o6QS0SkSGvuH1fweMici/1DRtBfBfRWS7pmmFwHlglYhMapr2V0CziPy/37aeiqnzX797Elt7eMbotV43mgavFOdQX1FA9Zp8stLUl+i5yBcKcXZklA/sTk4MeZgMhShITmSvOZyMro2wXGKueOB5wLGeYzT3NNPt7kav6Xm14FVqSmrYtmhb1Ma6TLa2hZPR48cJjoygMxjI3LUTY20taZs2oSXEX/+UJ0WSgI4C6cCXx191wPj0P4uIGL7hfXrCx2u3A72EmxD9hIjceOJn9hBuTPTTmqblAq1ABeGrvMeARhH5T8/yAVWw/IrL8WUzoQHcjkl0eo3itbks25TPkjU5JCTG31HSUEi4dG+Ew629NF0LN2cwZyazt6KA/ZULWVXw1H+NFWVe+/Kq+aEBJ7ZBF2PB8BeVAxYT71hMrMyI7GKMiHB16Cq2LhvH7x3HNeUiOyWb6uJqrCVWVuesnnVfhOZwAtoE/I6IfDL9uAt4DdADXwDlgAc4AvxnETn5beupmBpfugfHaGgPzxjtHhonMUFjy7I86soL2LnKQlrS/G9yMx+NB4KcGPZwePrCYkBgaVry9IzRLErT5v8d7y/nRjf1NHG85zj94/2kJKSwddFWqoureaPwDZISIr/YIoEA459/gcfWyOip04QmJtDn5WGoqcZgtZKyZs2si3cvw0vvgju9aA3wnwjXd/6xiPympmm/AbSISIMW/v/Evwf28NW4lb/QNO0nCY98ufHEr/s7ItL2TWvFe7Cc8PjovBzuYGvv8YAGhcuyWLYpn9LKPJLT4vMoaadjjMOtjzjS2keva5K0pAT2rAnXdb5WmktCHN4BVpRbY5Mcsjv5wO6kf8pPRoIOa14WB/NNvJaVEfFRrYeeh9h6bDR1N3Hfc5/khGTeXvQ2daV1vFrwKom62fv3aBYnoD2Ak/Ax2j8UkT/62uu/BaSKyK9M9074jHDZy2VN034J+E1gkvDYl7/1DWuovgpxTkS40ed5nIwOeLykJiawc5WF+vIC3lqWp+Zcz1Ej/gBNgy4+sDv5wjWOAOsyUzlgNrHXksWC5Pl/xzskIdocbTT3NHPy3kmcU04ykzLZuWQn1cXVbLRsJEEX+R3LkNfL2NmP8TTZGDv7MeL3k7hkMcbaWgxWK8klJVH4NHNDRAnodG1JGfD4UomInIvqDiMUjwmofyrcTOjOBTsPb40gISGnMINlmyws22QhwzT/r2w9zeDoFI3tfRxu7eVarxudBm+W5XFgfaG6kqvErYEpPx/YnbxvH+HGmBe9Bm9nG3jHYmJ3rpHUCJtsuafcnLh3gsauRtoG29DQ2Ji/EWuJlZ1LdpKRNDfqzF9CDeg6oIjwnUkAROSDZ3hfoYj0appmBk4R7qZ77onXDYTnblcSrvNcAfw8cJ/wLO+/AbiA94BDIvJnfIt4jKnKjwqFhIv3Rmho76P5WrgjvDE1kZq1+dSVF7C5OEddxJ2j+qd8HLG7OOxwcnV0Eg14NSuD/ZYsavOyyI6HsS4hPxf6L3Cs5xin759mIjBBbmoue4r2UF1czdrctdEZ6+LxMHrqFG6bjYkLFyEUInnVSoy1Vgy1NSTmR6dJ0mwVyRHcnwN+iXCToDbgFeBzEdkWg32+sHgJlqFgiIe3nNy9OEB3+9DjZkLLNuWzbJOFnMK58SUv2iZ9QU7eHOBwa7jLXzAkrCk0sL9yIXXlCzBnxmcyrsS3sUCQ5iE3hwZG+MQ5hgDrDWm8YzGx12wiN8KLMb6gj3OPztHY1ci53nMEQgGWZi19XNcZre6DL1OMu+D+MbCO8OmeL8taRES+95y/5weE6z1/9xte14Ce6bV2E24I+LPTr/0U8IqI/MK3rREvMVV5Nr5AiPOdgzS09XHypp0JXxCLIRnrugL2VhSo8WRzWNeE93Ey2jkx9fji5H6Lid05BtIjbDo3F3gDXs49OkdzTzPnHp3DH/KzMGMh1cXV1JbUUppVGpV1/A4Ho8eP47Y14b16FTSNtA0bMFitZO7ehd4UnSZJs0kkCeg1YCPwhYhUTDc3+C0RORCbrb6Y+RwsRQTHvVHuXBygs8XO5Kj/cTOh5ZstLCiNz2ZCXw7d/uBKL8ev9zPuC1JgTGFfZSH7Kwsps2TO9BYV5aULhISPnaO8b3dybNDFZEhYkpLEO/nhus5Ia35CEqLV0Yqt28aJeycY9Y2Sm5pLTXEN1hIrK7JXzOkvojFOQG+KyKoXeF86oBOR0el/PgX8xpNjyzRNywImRMSnadrPA2+KyE9pmraZcHfcjYSP4P6/hMtg/su3rTmfY6oSmQlfgDO3HDS09/HxnUF8wRBFOWnUlxdQX1HAUrOKvXORiHB9bJLDdhdHHU56p/yk6nTszg0no29nZ5Kkm//Hrz0+D2fun+FYzzEuDFwgJCGWmZY9njFakFEQlXV89+/jaW7G3WjD190Nej0Zb7yBobaWzG1vo0ufH2NdIklAL4nIRk3T2gjXk0xpmnZDRFbHaK8vZD4Gy683E0rQ6yham8OyzfksWR2fzYQAbvV7ONLay9Hp+pTMZD3Va/PZX7mQzcXZ6OIwGVfim4hwdWySQwMjHLa7GPIHyNInUG/O4t38bKoMaREnhT3uHhq7GmnuaaZ3rJdUfSrbF2+nrqSOTQs2odfNjyNbMU5A/x/g34vIzed8XwlwePqhHvjf0z0V/h6AiPz36c7zf0q4RvQG8LMi4px+/78kfAQ3QLjZ38+JyNS3rTkfY6oSfe4JP8dvhDvpft41TEhg1QID9RXhsS6FWaqr/FwUEuGie5zDdieNgy5G/EGy9AnU5oVnjL6alUHCHL7Q+KyGJoc4ce8Ex3qO0T7YDkCluZLq4mp2LdlFTmpOxGuICFO3b+O22fA0NRMYGEBLTSVz2zYM1loyXn8dbQ6PdYkkAT0M/Azwy8A2wk0QEkWkJgb7fGHzJViqZkJPN+D20tDeywdXerk9MIpep7F1eR77KgvZsdJCSuL8PyKiKF/3YHJquq7TScfEFEmaxs7ccF3n9hwDyRFerR6eHOb4vePYumxcH76OTtPxyoJXsJZY2b54e1Ta2Ecq4HQyevw4oYkJcn72ZyP+fTFOQLcADcAAMAVohI/grovFepGYLzFVeXkcHi+2q+FktO2hC4CNRSbqywuoWbuAnIzkmd2g8kL8IeGcc5TDdifHhtyMB0NYkvTsNZvYZ8miMjPyC5xzwcPRhxzvOU5zTzOdrk4StAReWfAK1cXVbF+8PSp9DiQUYvLKFdw2G6PHTxB0uUgwGsncvRuDtZa0qiq0OXYXOipdcKeDpxE4LiK+KO4vYnM5WPqngnS3DXL34hPNhBZONxPaGL/NhMamApy4Hq7r/LRrCBGoWJTFgfWF1KpgpsQplz+AbTBc1/mFOzwR6xVjOgfzs7HmGcmKsHmEN+Dl7MOzNHY38mnvpwQlyIrsFVhLrNQU15CXlheFTxGZkM/H2EdncTc0MHbuHPj9pG7YwJI/+18RfxGKcQLaCfxjwk2CvqwBRURmXbvZuRxTlZl3f3icxvY+jrb10eEYI0Gn8cbSXOrLC9i12kJmSnxeTJ/rJoIhTk+PdTkz7MEnQlFqEvvNJvZZTCxPj4/vq3edd2nubub4veP0jvWSpEtiy6It1BTX8ObCN0lOiPz7qfh8jH32GZ6mZkbPnEEmJtBbLBhqajBYa0lZtWpOJP6R3AF9BbghIqPTjw3AShG5EJOdvqC5FixVM6GnCwRDnO8c4nBrLydv2Jn0B1mUncr+yoXsqyigJC8+/++ixDdfKMSZYQ+H7E5ODYWD/tK0ZN6xmDhgMbEkNbJgF5IQLQMtNHY3cur+Kcb941jSLNSU1FBXUkeZqSxKn+TFhQd+t+I+chTP8eOEPB4S8nIx1lox7q0neUV0ak9jnIB+LiKvxuJ3R9tci6nK7CQi3B4YfTzWpdc1SbJex/aVZurLC9m6PE+dYJqj3P4ATUNujtidnHeOEQJWZ6SwbzoZXZQyd4+NPisRoX2wnWM9xzh+7zgj3hEyEjPYvng7NcU1UStPCU1MMPrRR3iamhn75BPw+0kqLsZQW4uhtobk4uIofJrYiCQBbQXWy/QPapqmI9zAYH1MdvqC5kKw/MZmQhvMLN8Uv82ERITrvR4Ot/bS0N7H0NgUxtREatct4EBlIRuWmObEVR5FiSYRocUzwaGBERocLpyBILmJevZbsnjHkk15ZmrE/110Ojtp7G6kqbsJ+4Sd9MR0di7ZibXESpWlKirz0CLlu3cPd0MD7oZG/I8ehWtjduzAWF9P+quvoOmjW3sa4wT0vwFZQCPhI7jAs41hednmQkxV5hYR4coDJ0fb+mi62s/wuI/MZD171uRTX1HAqyU56CMcB6XMDMeUn4bpGaNXPBMAbDKms8+cRZ05i7yk+X/HOxAKcHHgIs3dzZx5cIYx/xjZKdnsLtpNTXEN5Xnl0Rnr4nLhOXkSj62JiUuXQISU1asxWK0YaqpJtFii8GmiJ5IEtE1EKr723NXZVrMym4Olyz7B3YsD3L1oxz043UxoXQ7LNsV3M6FHzgmOtoXndXY6xkhK0LFthZl9lYW8vSKP5Dho/a0oX9c9McUh+wjvDzi57/WRqtPYk2vkYH42W0yZ6CO8SDU4MUhzTzO2bhu3R26ToCXwWsFr1JXWsXXRVlL1M980JOB04jl2DM/RBibb20HTSH/1FQz19WTu2ElCRuy6A8Y4Af2Tpzz93GNYXobZHFOVuS8QDPFZ1zBH2/o4eWOA0akAuRnJWNctoK68gPWLs9SF5znq/uQUR+wu3rc7uTvhJUGDt0yZ7LeYqM41khkH3+2mglN88ugTmnua+fjhx/hCPgozCtlTtIeakhqWmZZFZR2/3Y6n+Rgemw3vjRvhsS6bNmGorcGwaxcJWVlRWScSkSSgHwBngT+YfuoXgLdFZF+U9xiR2RYsJzw+Olrs3L0wgOP+6HQzIRPLN1soqTSTnDo/OkY+L/ekn2PX+jnc2suFnhEg3KRgf+VCatcuwBinTZaU+DbsC3DU4eTQ9NVjDXjTlME7lmxq84xkRBiwJ/wTnHlwhqbuJj7v/5yQhFids5q60jr2FO2JSie/SD2trjN52TKMe+sxWK0v7apuLBPQuWS2xVRl/vL6g5y9Ex7rcvqWA18gxKLsVOrWhce6rMg3zPQWlRcgItwa93LY7uSIw8VDr48Uncb2HAMHLCa2ZxtIiYM73mO+MT58+CHN3c180f8FQQmyNGspNcU17Cnew6LMRVFZZ6q7B09zM57GRnz370NiIhlvvomhtobMt99GlzYzTQMjSUDNwH8m3AFXgDPAL4uIIxYbfVGzIVj6vAF6vmwmdNuJhITcRRks25RPWZWFDFN8Ns3xBUJ8fHeQw62PHgeXktx09lcWsq+ykEXZM99JU1FetslgiJPDbt4fcPLhiIeAwKr0FA7mZ7PfksWC5MjqZ4KhIBf6L2DrtnH6wWkmA5MUpBdQW1KLtdRKibEkSp/kxYlIuOPf0YbHdZ36vDwM1nBdZ8qKFS99Ty/hDuhfC7rqDqiihI16/Zy8Yedoex+fdg4RDAnLLBnsrSikbl0Bi3PU94W5SES47JngsN3JUUd4VFhmgo7qPCMHLCbeyIr8dM9cMDw5zKn7p2juaabV0QrAutx11JTUsLtoN7mpuRGvISJ4b9zEY7PhaW4m4HCgpaWRuX07Rmst6a+9hpb48m72RKUL7mw2U8EyGAzx8MYIdy8O0NM+RMAfIjM7hbJNlnAzoYL4bJojIrQ+dHH4Si+2q304J/xkpydRX17A/spC1i00quM1StwJifC5a4xDdic2h4vRYIj8pEQOWEwczDexKiOy468iwl3n3cfzOgcnB8lMzGRX0S7qSuuoNFei02b+ivNT6zp37sBYvzdc15kwc0e0YpyAvvPEwxRgP9AnIv8oFutFIhox9cHNYZJTEzEXZaq/98pzGxqb4ti1fo629dFy3wmEO+HvrSigdt0CzJnx0XF1vgmEhE9dYxy2O2kaDMfB3EQ9deYsDlhMUZlbPRf0jfVx/N5xmrubueO8g07TsSl/EzXFNWxfsh1DUuR3/iUYZOJSC56mJjwnTxJyu0nIyiJzz26MViup69fHfKyLSkCjSEJCf7ebjot2Oi878I77SU7Xs3RDOOlcUGKMy2ZCEG69fri1lyOtvdwbniBZr2PnKgv7Kwt5a1keiXFw3EJRvu7OuJdDAyN8YHfSO+UnPUFHbZ6Rdy3ZvGaKfKD3wPgAzT3NNHY10unqRK/T82bhm9SV1vHWwrei0hI+UgGnE09zM+6GBrztVx/XdRr37iVzxw506bGr63weL/MI7nRTv/Mi8trLWO95RCOm/sW/vsjwozEys1NYusFM6QYz5iUqGVWe3yPnBI3t4Rmjt/o96DR4rTQ81mX3mnyMqap8Zy7yBkN8OOLhA7uT08MevCFhYUoi+8wm9ltMrEpPiYu/F12uLpp7mjnWc4yHow9J1CXyZuGbVJdUs2Xhlqj0ZhCfj7Hzn+Kx2Rj98EPE60W/YAGGmmqMVmvUOsl/nUpAo2C4d4y7F+10XLIzOuJFn6ijuDyXsk35LF6VTYI+PpMr57gP27V+jrT2cvm+E02DV4pz2L++kOo1+WrelxKX7FN+jjicHBpwcm1skgQNtpoMHMw3sTvXSFqEF2PG/eOcun8KW7eNi/0XEYTyvHKsJVZ2F+3GlGKK0id5caGpqR+t6wwEZqSu83m85AR0OdAkIktfxnrPIxoxdWrCT0/7EJ2XHTy8OUIoJGTmhJPRpRvM5C1Wyajy/Drs4bEuR9v6eDAyQVKCjq3L89hbUcj2lWY11mWOGg0EOTbk5rDdyTnnKEGBZWkp7Ldksd9ioijCcWNzgYhwfeg6zT3hGaNDk0Ok6dPYtngbNcU1vFLwCom6yL9Th8bHGf3wQzy2JsY+/RQCAZJKSzFaazHU1pK0eHEUPk2YSkBfkGdoko6WcNI53DuOptNYtNLEsk35FJfnkpQSn82EvP4gH9128EFrL2fvOPAHw3Ua+ysXsreigIKsme+kqSgv23gwyLFBN+/bnXw8MkoIKM9M5d38bPZGoRV9IBTgs77PsHXb+OjBR3iDXhZlLsJaYsVaYmWxIXpB40WJCJOXL4frOk+cmBV1nc8jxkdwRwnXgGrT/3sA+DUReT8W60Ui2jHVO+6np32QzsuDPLoVTkYNeamUVZkpq7KQXZCuklHluYgI7Y/cNLT1Ybvah2N0ivSkBHatDo91eWNprjp1NUcN+QLYBl0ctju54B4HoDIzjf2WLPaaTViS5/+NjWAoyCX7JY71HOPU/VOM+kbJSs5i15Jd1JTURK2kJuB0MnriBG6bjcmWywCkrFvHov/2X9HnRl6TGkkToizgp4Ai4HG2NdtqVqIZLMfdU3RedtBxyY69xwNAfomBso0Wlm6wkGaY/8N1nyYUElruOznc+oimq/14vAHMmcnsrShgX2UhqxYY1BcIJe4ERfjEOcqhASfNQ24mgiEWpiTyjiWbgxYTZemR1SmJCDeHb2LrttHc08yIdwRjspE9RXuwllijNlssUrO5rvN5qC64YbE8VeQd99PdNkjHJTu9d5yIgGlBOmVV4TujpvzZcRxbmTuCIeFC9zAN7X00Xwt/P8lOT6J6TT715QVsLMpGF6elUXPdI6+Pow4XR+zh00Q64LWsDA5YTNTkGclKnP83gnxBH+d7z3Os5xhnH57FG/SSn55PdVE11cXVrMiOzvFZf18fnmPHGL94kUV/8AdRqQ+NJAH9DPgCuAaEvnxeRP404l1FUbSOCx3/o+uPA2JOYQZlG8NXZw258XtHr9MxxpHWXg639tLrmiQtKYHdq/PZX1nI60tzSVB/1JU4IyLcHPfy3sAIh+1O7L4ABr2O+rxwM6FNxnR0EQaDvrE+mrqbsHXb6HZ3k6hLZOuirVhLrLxZ+CaJCTN/BfjpdZ2vYtxbP6vqOp9HLBJQTdNWiMhtTdPWP+11EbkSzfWi4WX1VZjw+OhuddDR4qCv0wUCuYsyKKuysHSDOa5jr/JipgJBzt0dCo91uWln0h9kgTGFuvIC6ssLWF2gLpbPVR3jXg47nByxu+ienCJR09iWk8l+s4ldUShtmQsm/BN8+PBDjvUc47PezwhIgGJjMdXF1dQU17DEsGSmt/gjIklAr4jIU4PmbBKNYCki2H7/KuYlmY+PBMWrobEpGtr6ONLWy9VHbnQavFGWx4HKQnattpCWNP+vOCnK1/V5fXxgD8/rvD3ufRz8Dlqy2ZkT+Uwzj8/DqXunaOxu5LI9fBRmvXk91lIru5bswphsjMbHiMhT6zqXL8dY/2Vdp3mmtxiRGCWgfyQi39c07aOnvCwisi2a60XDTHSWH3NO0XXFQUfLV6ePLMWGx8loetb8rwFTomt8KsDpW3Ya2vr4+O4ggZBQkpdO/XQyWpIXn5MK5joR4erYJB/YnTQ4XPRP+UlL0LEn18h+cxZbsjNJinF319nA6XU+Huvy5XeG1TmrqS6uZk/RHizpM99nIZIE9FeAMcAGTH35vIiMRHuTkVAzyyI36Qty8uYAh1t7+aQjPH9rdYGB/ZWF1FcUqJbnSlwaDQSxDbp4f8DJp64xBKgypHEwP5t6cxbZER7/8Qf9nO89j63bxtmHZ/GFfBQZirCWWKktqWVh5sKofI5ISCgUrutsaMBz/ASh0VH0ZjOGOivG+npSli+f6S1GjTqCGzbTMdUzNBkuhWmxM/RwDDQoLMtiaZWF0vV5pGbEZymM8uKc4z6ar/fT0NbHxXsjiMDaQiN7Kwqwrisg36i+48xFIRG+cI1z2BEeb+YMBDHpE7Cas9hnzuLVrIyITyTNBQPjA5y4d4Km7iZujdxCQ6Mqv4qa4hp2Ltk5YxewI0lA/wHwm4CLrwZoi4jM/BTzJ8x0sJyrgiHhi+5hPrjSy/Hr/Yz7ghQYU9hbWcj+ykKWWTJneouK8tL5Q8LZEQ+H7E5ODLnxhoSi1CQOWrJ5x2KiOC2yOzEiwtWhq9i6bBy/dxzXlAtTsonq4mrqSutYnbN6VhwRm+ruwd1wFE+jDX9vL1paGoadOzHurSdt8+Y5U9f5PGKdgGqa9hp/vafC/4zVei9qNsVU58A4HS0OOlvsOAcmHjcDLKuyUFyRR3KqOpGjPJ8Btxfb1XAn3Wu9bjQNNhVls7ci3L3flK4ucMxFvlCIj0dGOexwcXy6J8OC5ETqzVnsN5soz0ydFbE11nrcPRzrOcaxnmPc89xDr9PzRsEbVBdXs3XRVtIS017aXiJJQLuBTSIyFKvNRcNsCpZzwa1+D4dbezna1ovdM0Vmsp6atQvYV1nI5mJVrK/EHxGhbXSSQwMjHHG4GPYHyE5MYK/ZxEGLifVRGI79cPQhtm4bTd1N3PfcJzkhmbcXvY21xMprha9Fpb16pAIjI3iapus6r10DnY70114L13Vu344u7eUFrpkQ4y64/wsoBdqA4PTTMtua+sHsjKkiwnDvGB2XwndGR4e96PQaS1bnULbRQtHaXBKT599FESW2ugfHaGzv52h7L92D4+h1GluW5VFfUcCOlRbSk9UFjrloPBjk1JCHIw4nZ4ZH8YtQnJr0eMbosggbBM4FIsLNkZsc6z7GsXvHcEw4SNWnsnXRVmqLa3mt4LWY95OIJAE9CewTkYlYbS4aZmOwnG0G3F6OtoWbCd0eGEWv09i6PI99lYXsWGlRs7OUuPRgcor37U7etzvpnJgiWaexK8fIwXwTb0ehjsQ95ebEvRM0djXSNtiGhsbG/I1YS6zsWLKDzKSZP2UQ8noZ++gj3EcbGDt/PlzXuXIlxro6DNZaEs1zu67zecQ4Ab0FrJI5MP9stsdUEcF+z0PHJTudlx1MuH3okxMoXpdLWZWZxatySEic/zVgSvSICDf6PDS299HQ3ke/20tqYgI7VlmoLy9gy7I8kuJ03vtc5/IHaB50c9jh5FPnGCFgTUYq+8xZ7LOYWJgy/+94hyTEZftljvUc4+T9k7in3BiSDOxcspPaklrWm9eToIt+HhBJAnoYWA18xI/WgM6qK7azPVjOlLGpAMevD3C49RGfdQ0jAhWLsthfWYh13QJyMlRTByX+uPwBGgddHBr4asbYq1npHLRkY80zYoywrtMX9HHu0Tkauxo513uOQChAqbEUa2l4Xmd+en40PkZEJBRioqUFd0MDo8dPEBobQ282Y6yvw1BfT8qyZTO9xRkR4wT0PeAfiUh/LH5/NM2lmBoKCf0dLjpa7HRdGcQ77icpVU9JZR5lVWYWLjehi4PumEr0fDl27mhbL83X+nFO+DGkhE+K1ZcXsLkkR00AmKPsU34aHC4OO5xc8YTvrW02prPPYqIuL4vcOGiy6Q/6+bz/c5p7mvnwwYdMBiYxp5rZXbyb2uJaVuWsitpR5UgS0J9+2vPzcQzLfBEIhvikc4jDV3o5eXMArz/EouxU9lcUsq+yUHV9U+KSLxTizHC4rvPUkAefCGVpyRy0ZHMg38SiCK+AigitjlYauxs5ce8Eo75RclJyqCmpoa6kLmpzuiI11d2N+2gDnsZG/H19cVHX+Txi1AW3kXAPhUygArjIj17QrY/metEwV2NqMBji0W0nHZfs9LQN4vMGSc1MpLTSTNlGCwtKjWgqcVCegz8Y4nznEA1tfZy8McC4L4g5MxnrugLqKwooX2icFX/bled3b3KKI3Ynhx0u7ox7SdDgLVMm+y0mqnONZOrnfzyc8E9w7tE5mnqaON97nkAowOLMxfxp9Z+Sm5ob8e9/4QR0rpirwTJaRIRrvW4Ot/bS2N7H0JgPY2oi1nUL2F9ZyIYlJvUHUok7IkKLZ4L3BkZonO6Ol5uoZ78li4P52azLiLwhwT33PWzdNmzdNnrHeknVp7Jt8TasJVZeWfAKet3MX00NDA9/Vdd5/Xrc1XU+jxgloFu+7XUR+Tia60XDfIipAX+QB9dH6Gixc+/qEAF/iPSsZJZWhed7m5dkqrioPJdJX5Azt8NjXc7eGcQXDLEkJ4368gL2VhSw1DzzJRXKi7k1Nsnh6WT0oddHik5je46BAxYT27MjH7M2F7in3Jy+f5oWewu/9cZvReXvYyR3QHv4qvvtY8/SBVfTtD3A7wEJwA9F5Hee8jM/Bvxgeo12EfmJ6eePA68A50XE+l1rzYdg+SIejkw8ruvsGhwnKUHHthVm9q8vZOvyPJLj4OqNonxd98QUh+wjvD/g5L7XR6pOozovi3csJraYMtFHeAdkxDvC8Z7j2LptXBu6hk7TsTl/M3WldWxfvP2ldpj7JiGvl7EPP/yqrjMYDNd11tdjqK2Jq7rO5xHjI7j/RkT+2Xc9NxvMt5jq8wa4d22IjksOHtwYJhQUDHmplE0nozmF6mSQ8nzck35OXB+gob2Pz7qGCAmsXGCgvryAuvIFLDTNfBxQnp+IcNkzwWG7k4ZBF4O+AJkJOqrzjOw3m3gzCt8h4kkkCWjOEw9TgHeBbBH5F9/xvgTgLrATeARcAn5cRG4+8TNlwF8B20TEqWmaWUQc069tB9KAv6sS0B/lnvTTfK2fw629XOwJj2PdVJTNvspCatcuwJg28500FeVlG/YFOOpwcsgeruvQgDdNGbxjyaY2z0hGhBdjvAEvZx+dxdZl49PeTwlIgOWm5VhLrNSU1GBOm/mE7ql1nRYLxjprXNd1Po8YJ6BXRGT91567KiLrYrFeJOZzTPWO++luG6Szxc6j205EILsgnbIqM0urLGSZVeKgPB/HqJfmq/0cbe+j9YELgKolJuorCqhZu4Bc1W9jTgqEhE9dYxy2O2kecuEJhMhJ1FNnzuKAOYsqY3pczBiNRFSP4E7/sg3f8TOvAj8Qkd3Tj38NQER++4mf+bfAXRH54Tf8jq3AP1EJKPgCIc7ecXC4tZcztxz4giFK8tI5UFnI3opCFmWrgKnEH28wxMlhD+/bRzgz7CEgsDI9hYP52RywZLEgObK6zi+7xjV2NXLq/inG/GOY08zUltRiLbGyzDQ7Erqpri7cRxtw2xoJ9PWjS0sjc9eucF3npk1xX9f5PGJ0BPfvA78AlABdT7yUCXwqIj8ZzfWiYb7H1C9NeHx0XQmPdenvdANgXpLJ0ioLSzeYycye/6MalOh6ODJBQ3sfDW193LGPkqDTeH1pLvXlBexebSEzRd0kmIu8wRAfjXj4wO7i1HB4PnhhciL7LCb2m7NYHYWSnvkokjugT16t1QFVwN8XkfLveN9BYI+I/Nz0478NbBaRX3ziZ44Qvkv6OuFjuj8QkeNPvL6VOE5ARYQrD1wcbn2E7Wo/rgk/uRlJ1JUXcKByIWsKDepfdiXuhET4wjXO+/YRGgfDVyTzkxLZb8ni3fxsVmWkRrxGl6uLxq5GmnqaGBgfIE2fxo4lO6grrWOjZWNMWpU/r6fWdb7+Osb6ejK3b1N1nS8oRgmoETABvw386hMvjYrISDTXipb5GFO/y+iIl87LDjpb7DjujwKwYKmRsioLpevNpBnm/6gGJbpuD3hoaAuPdXnknCRJr2P7CjP15QW8vcKsxt/NUWOBIMeH3By2uzjr9BAUKEtLZr/FxH6zieI0dcf7S5EkoB898TAA3AN+V0TufMf7niUBtQF+4MeAhcA5YK2IuKZf38q3JKCapn0f+D7A4sWLN9y/f/9bP8tc0TM0zuHWXo609vJgZIKURB27VuWzf30hby7NRR8HhdCK8nV3x73T8zpHeOT1k5agozbPyLuWbF43ZZAQ4cWYockhmrubsXXbuDVyiwQtgVcLXqWupI63F79Nqj7yxDZS31jXubceY20t+ry8md7inBejBNQgIh5N07Kf9vpsTELjMQF9kssxQWdL+M7oSN84mgaFy02UbbRQUpFHSrq6i6U8uy9vKDS292G72s/Q2BSZyXp2rc6nvqKA10tz1He7OWrYF8A26OKw3ckX02PdKjLT2G/JYq/ZRH5yfP+teOldcJ/xCO5/By6IyJ9MPz4D/KqIXJp+vJU4uQM6Mu7DdrWPD6700vbQhabB66W57KssZM+afDKSZ76TpqK8bIM+P0fsLt6zj3B1dBIdsCU7k3fzs9mdayA9wqOlE/4JPnz4IbYuG5/3f05IQqzKWUVdSR17ivdEpQV5pCQUYuJSC+6Go4yeOKnqOmMsRgmoTUSsTzT1e/JqiTxLU7+Xba7H1Gga7h2j87KDu5fseAYn0SVoLF6dQ1mVmaJ1uSSlqPisPLtAMMTn3cM0tPVx/MYAo94AuRlJj2eMrl9sQqea3MxJvV4fRx0ujtidXB2bRANezcrggMVEbZ4RU4Qzxuei505ANU37SRH5M03T/vHTXheR//AdC+oJH6/dDvQSbkL0EyJy44mf2UO4MdFPa5qWC7QCFSIyPP36VuZxAur1Bzl9y86R1l7O3hkkEBJW5Geyf7quM9+oak+U+DMRDHFiyM17AyN87BwlKLAuI5WD+Sb2mU2YI7yaGAwFuTBwAVuXjdMPTjMZmGRB+gKsJVasJVZKsmZHLqDqOmdGLJsQzSVzMabGmogw+GCUjkt2Oi87GHNOoU/UsWRtLmUbzSxZk4NeHalUnsNUIMhHtwdpbO/j9C07U4EQhVmp1JUXUF9ewMoFalTQXNU54eWI3cURh5POiSkSNY2t2eEZo7tzDKTHyZSKF0lA/66I/KGmab/+tNdF5F8+w6I1wH8iXN/5xyLym5qm/QbQIiINWvi/qn8P7AGCwG+KyF9Mv/cTYAWQAQwDPysiJ75prbkSLEMh4YueYY609nLs2gCjUwEshmT2VRSyr7KQlQsMM71FRXnpgiJ85hzjPfsITYNuxoMhCpMTOWAxcTA/m+XpkV+MuTNyh8auRpp7mhmcHCQzMZNdRbuwllhZb1mPTpv540/hus4m3Ecb8N648aN1nTu2o0ud+WPA812M7oCu/7bXReRKNNeLhrkSU2eKhIT+bjedl+x0XnEwOeonMSWBkoo8yqosLFxpIkEdqVSew9hUgJM3wmNdPukYIhgSyswZ1JcXUF9RwJKc9JneovICRITrY5N8YHdy1OGib8pPqk7HrlwD+80m3s7JJFk3f/9WvPQjuC/bbA+WdwZGOdzay9G2XvrdXtKTEqheu4D9lYW8UpJDgjpuocShm2OTHBpwctjhpH/KT2aCjjpzeF7nq1kZEbc3t4/bae5pprG7kQ5nB3pNzxsL36CupI4ti7aQnDDzjQKeWte5KjyvU9V1vnwxSkA/+paXRUS2RXO9aJjtMXU2CQVD9N5x0dFip7ttkKmJAMnpekrXh2eMFpRlqSOVynMZHpui+foAjW19XLwXLhEvX5QVnjG6bgFmgzohNxeFRLjoHuew3UnjoIsRfxCjPoHa6Rmjr0Whn8VsE0kTojzg54Ei4PHhZRH5XpT3GJHZGCztHi8NbX180NrLrX4PCTqNLcvy2FdZyM6VFlKT4uP2u6I8qX/Kx2G7i0MDI9wc96LXYFu2gYP52ezMMZAa4V2Dcf84p++fprG7kYv9FxGEdXnrqCupY3fRbkwppih9khcnoRATFy/hbmz40brO+jqM9fUkl5XN9BbjljqCGzYbY+pcEPSHeHBrhI5LdnquDhGYCpJmSGLpBjNlGy1YilX3euX59LomsbWHO+ne6POgafBqSQ715QVUr1Gz3+cqf0g45xzlsN3JsaHwyS9zkp56cxYHzCYqDWnz4m9FJAnoZ8AnwGXCx2QBEJH3o73JSMyWYDk2FeD49QGOtPbyadcQIlCxKIv9lYXUrlPDiJX4NB4I0jTk5tDACJ84xxBgvSGNdywm9ppN5CZFVpgfCAX4vO9zGrsb+ejBR3iDXhZmLKSutI7aklqWGJZE54NE6Kl1nbt3h+s6N25UdZ2zgEpAw2ZLTJ3L/L4g968N03HJzv3rwwQDITKzUyjbaGZplYXchRnz4gum8vJ0OsZoaO+jsb2PnqFxEhM0tiwzU19RwI6VZtIijKXKzJgMhjg97OGIw8npYQ9TIWFJShL7LCb2mbNYGYXxcjMlkgS0TUQqYrWxaJnJYOkPhvikY5DDrX2cujmA1x9icXYa+yoK2FdZSElexozsS1FmUmD66t77difNg24mQyEWpyRxMN/EOxYTpWmRHSESEW6O3MTWZaO5p5kR7wjGZCN7ivZgLbFSnlc+K77c/bW6zoQE0l9/DWP93vC8TlXXOauoBDRMJaDRNTUZoKd9kI5LDh7dGiEUErIsaZRVhe+MmvJVfZ/y7ESE670ejrb10ni1D7tnirSkBHauslBfXsCbZXkk6edvXeF85gkEaR50ccTu4hNXuBHjivQU9ptN7LNksSR1bt3IiiQB/dfAZyLSHKvNRcPLDpYiQutDF0dae7Fd7Wdk3IcpLRHrunDSuX5x1qz48qsoL5OIcG1skvcHnHzgcDLoC5ClT6DenMVBi4mNxvSI/7voG+ujqbsJW7eNbnc3ibpEtizcgrXUyluFb5GYMPPHkUJeL6NnzuBuaGD8/KcQDJKyahXGvfUYamvR5878eBfl6VQCGqYS0NiZHPPR3TpIR4ud3rsuEMhZmMGyjRaWbjBjyFUXpZRnFwwJF3tGaGjv49j1flwTfrLSEqles4C9FQVsKspWNchz1KDPT6PDxWG7i0ue8IzR9YY0DlhM1OdlRTwV4GV4kS64o3w1rywdmAL8049FRGZVu9aXFSy7Bsc42trL0fY+7g9PkKzXsWOlhf2Vhby1TF1xUuLTI6+Pw3Yn7w04uTvhJVHT2Jlj4GC+ie05hog7vHl8Hk7dO4Wt20aLPfzf+XrzeqylVnYt2YUx2RiNjxGRx3WdDQ2MnjhBaHwcfX4+xro6jHvrSV66dKa3qDwD1QU3TCWgL8e4a4rOyw46L9sZ6PYAYCk2UFYVTkbTs+bW3Q5lZvkC4RN5De19nLppZ8IXJN+QgnXdAvZWFLKmUNUgz1UPvT6O2J0ctju5Oe5FB7xuymC/2URNnpGsWTpjVHXBjYDD46Xxaj9H23q5+siNpsHrpbnsrShgz5p8MlNm/xUIRYk2TyCIbdDFoQEnn7vCdZ2bjOkctJioM2dFPHDZH/Rzvvc8tm4bZx+exRfyUWQowlpipbakloWZC6PyOSI11dk5XddpI9Dfjy49PVzXWV8Xntc5j9urz0cx7oKbAlQB7YQv5q4jPJbs1WiuFw0qAX35PEOTdF520NFiZ+jhGGhQWJbF0ioLpevzSM1ImuktKnPIhC/A6VsOGtr6+PiuA39QKM5NfzxjdKlZlYfNVXfGveFk1OHk3qSPRE1jW04m+80mduYaSJ9F/SQiOYJ7RkS2f9dzMy3awdI94efY9X4a2vv4vHsYEVhdYGB/ZSF15QVYVAtsJQ75Q8JHIx4O2Z2cHHLjDQklqcmP6zojrU0QEa4NXaOxq5Hj947jmnJhSjZRXVxNXWkdq3NWz4qrt4Ghoa/qOm/eDNd1vjE9r3Obquucy2J5BFfTtA+AXxeRa9OP1wA/EJGDsVgvEioBnVnOgXE6LtnpaHHgsk+g6TQWrTRRttFCcXkeyamz826HMju5J/wcv9HP0bYf/U5bX15AXXkBBVkqZs1FIkLb6CRHpmeMDvj8pCXo2JNrZJ85i63ZmSTN8EXwFzmCm0L46O2HwFbCV2sBDMBxEVkRm62+mGgEy6lAkBM37OpqkaI8QURoHZ3g0ICTIw4nI/4g2YkJ7DWbeNcSnVbhD0cfYuu20dTdxH3PfZITknl70dtYS6y8VvgaibqZP2UQmpxk9MyHuBuOMv7pZ+G6ztWrMdbXqbrOeSTGCegNEVn9Xc/NBioBnR1EhOHeMTouhe+Mjg57SdDrWLImh6VVZorW5ZKoRropz8Hh8WK72s/R9j7aH7oA2FSUTV1FATVr8slR0xrmpKAIX7jGOGx3YRt04QoEMekTqM3LYp8li1ezZmbG6IskoL8E/DJQAPQ98ZIH+B8i8vsx2OcLi0awnPQFqfrXp8hI0VO3rkCdl1fi2v3JKd63O3l/wEnX5BTJOo1dOUbezTfxdraBxAibGrin3Jy4d4LGrkbaBtvQ0NiYvxFriZUdS3aQmZQZpU/y4sJ1nRdxH21g9OTJcF3nggUYrVZV1zlPxTgB/XNgHPiz6af+FpAhIj8ei/UioRLQ2UdEsPd46Lhkp/OKgwm3D31yAsXrcimrMrN4VQ4JierIv/Ls7g+P09jex9G2PjocYyToNN5YGi4x27U6n4xkdad9LvKFQpwdGeWIw8XxITcTwRD5SYnsNWexz2KiIjP1peU2kRzB/Yci8l9itrMoiVaw7HSMUZybToLqGKbEIZc/QIPDxft2Jxfc4Y5rr2al864lG6s5C4M+sivtvqCPc4/O0djVyLnecwRCAUqNpVhLrVhLrOSn50fjY0RsqqMDd0MD7kYbgYGBJ+o660nbtFHVdc5jMU5AU4C/D7w1/dQ54A9ExBuL9SKhEtDZLRQS+jtcdLTY6boyiHfcT3KanuKKPJZVWShcnoUuQf2dUp6NiHB7YJSG9j4a2vrodU2SrNexfaWZ+vJCti7PIyVR3Wmfi8aDQU4NhWeMfjg8ik+E4tQk9plN7LeYWJYe25LCF7kDuk1EPtQ07cDTXheRD6K8x4ioYKkoL2YqFOLD4XBd56khDz4RytKSeTc/m/0WE4tSImt8ISK0DbbR2NXIiXsn8Pg85KTkUFNSg7XEysrslbPilEFgcBBPczOuo0eZunlL1XXGqViPYdE0LRVYLCJ3nvN994BRIAgEvr5HTdNMwB8DpYAX+J6IXJ9+LQv4IbCGcHf774nI59+2noqpc0cwGOLRbScdl+z0tA3i8wZJzUykdL2ZsioLC0qNaOqiuvKMQiGh9aGTo219NF3tZ3jcR2aynj1r8qmvKODVkhz06uLGnOTyB2gecnPE7uS8c4wQsDojhX1mE/ui8H3vaV4kAf2XIvLrmqb9yVNeFhH5XrQ3GQkVLBXl2YkILZ4J3hsYocERrhXITdRzwGLinXwT6zIiP55xz30PW7cNW7eN3rFeUvWpbFu8jbqSOjYv2IxeN/NHe0KTk4yenp7X+dkTdZ176zHU1Ki6zjgU4zug9cC/A5JEpFjTtArgN0Sk/hneew+oEpGhb3j93wFjIvIvNU1bAfzXL5sFapr2p8AnIvJDTdOSgDQRcX3beiqmzk0Bf5AH10foaLFz7+oQAX+IDFMypRvCyah5SeasuOCnzA2BYIjPuoZpaO/jxPUBRqcC5GYkYV0Xbl6kZt7PXY4pPw2DLg7bnVz2TACw0ZDOPksW9eYs8pKi03tDjWFRFIWeiSkO2Ud43x5u3Z2q09iTa+RgfjZbTJnoI7xK7vQ6OdZzDFu3jWtD19BpOjbnb8ZaamXH4h2kJaZF6ZO8uB+p6zxxgtDERLius64OY32dquuMczFOQC8D24CzIlI5/dw1EVn7DO+9x7cnoE3A74jIJ9OPu4DXCN8NbQNK5DkCvoqpc5/PG+DetSE6Ljl4cGOYUFAw5KVSVhVORnMKVWNF5dl5/UHO3nHQ0N7H6VsOfIEQC02p1JUXsLeigBX5hpneovKC7k9OcdTh4gO7k9vjXhI0aH11NebkyJPQF7kD+o+/7ReKyH+IeFdRpIKlojzdiD/AUYeL9wdGaPFMoAFvmDI4aMmmNs9IRoR1nd6Al7OPztLU1cT53vMEJMBy03LqSuuoLq7GnGaOzgeJ0FPrOvfsxli/l7SNVaquUwFinoB+ISKvaJrW+kQCelVE1j3De3sAJ+EjtH8oIn/0tdd/C0gVkV/RNG0T8BmwmfCR3T8CbgLlwGXgl0Rk/NvWUzF1fvGO++luG6Szxc6j205EILsgnbIqM0urLGSZZ/7ioDJ3jHr9nLxhp6G9j/OdQwRDwjJLBvXlBdSXF7I4R/37NFfdGpvkc9cY31uYF5Xf9yIJ6K9/2y8UkX8ZlZ1FiQqWivIVbzDEqWEP79tHODM8il+EFekpHLSYOGAxURDhOf+QhLhsv4yt28bJeycZ849hTjVTW1KLtdTKMtOyKH2SyAQGB3E3NeFuaHhc15nxxhsY6utUXafyVDFOQP8f4Azwq8A7wD8CEkXk7z3DewtFpFfTNDNwCviHInLuidcNwO8BlcA1YAXw84Ae+AJ4XUQuaJr2e4BHRP7vp6zxfeD7AIsXL95w//79iD6vMjtNeHx0XQmPdenvdAOQtziTso0Wlm4wk5mt5pwrz254bIrma/00tPdx6Z4TgIpFWdSXF2BdtwCzQf37FM/UEVxFmedCIlxwj/P+gJOGQSeeQAhLkp79FhPv5mezKj0l4lqNblc3jd2NNHU30T/eT5o+jR1LdlBXWsdGy0YSdDPfJe9b6zpra9Hn5Mz0FpVZLMYJaBrwfwG7pp86AfwrEZl6zt/zA8L1nr/7Da9rQA+wDkgDvhCRounX3gR+VURqv20NFVPjw+iIN5yMXrLjuD8KwIKlRsqqLJSuN5NmiH5TEmX+euScCM8YbevjVr8HnQavluZQX17AntULMKbN/Exv5eVSCaiizFMd417etzs5ZB/hkddPWoKOmlwjB/NNvGnKjHjw8NDkEMd6jtHY1citkVskaAm8UvAKdSV1bFu8jVT9zN9FlGDwR+d1TkygL1iA0VoXntdZWjrTW1TmiBgnoO+KyHvf9dxT3pcO6ERkdPqfTxFuXnT8iZ/JAiZExKdp2s8Db4rIT02/9gnwcyJyZzp5TReRf/pta6qYGn9cjgk6W8J3Rkf6xtE0KFxuomyjhZKKPFLSVfKgPLtOxyhH2/poaO/j/vAEiQkaW5aZ2VtRwI6VFlKTZv6CtRJ7KgFVlHlk0OfnqMPFewMjtI9OogO2ZGdy0GJiT56R9ITI/rBPBib58MGHNHY38kXfFwQlyKqcVVhLrFQXV5ObOju6w3rv3sXT0IDb1hSu68zIIHP3LlXXqbywGCegV0Rk/Xc995T3lQCHpx/qgf8tIr+padrfAxCR/65p2qvAnxKuEb0B/KyIOKffX0F4DEsS0A38zJevfRMVU+PbcO8YnZcd3L1kxzM4iS5BY/HqHMqqzBStyyUpZea7mCtzg4hw9ZGbhvY+bFf7sHumSEtKYOcqC/XlBbxZlkeSXsXq+UoloIoyx00GQ5wYcvPegJOzTg9BgbUZqbxjCQ8TtkTYrSwYCnJx4CK2bhun759mIjBBfno+1hIr1hIrpVmz4y5iYHAQt226rvPWV3Wdxr31ZGzbhi5F1ZsoLy4WCaimadVADfBjwF8+8ZIBWCUim6K5XjSomKpAOHkYfDBKR4uDzhY7Y84p9Ik6lqzNpWyjmSWrc9CrO1nKMwqGhAs9wzS299F8bQD3pJ+stESq1yxgb0UBm4qy0amZtfOK6oKrKHNQSITPXGMcGnBiG3QxFgxRkJwYntdpMbEyI/Ljr3dG7mDrttHc3Yxj0kFGYga7inZhLbGywbIBnTbzVyZ/pK7z008hFCJlzRqM9fUYamtUXacSNTFKQMuBCuA3gH/xxEujwEffdTdyJqiYqnydhIT+bjedl+x0XnEwOeonMSWBkvI8llaZWbQqm4SEmY8XytzgC4Q4d3eQhvY+Tt20M+kPkm9IwbpuAXsrCllTaFAzRueBSLrgLgc2Ag3Tj+uAiyLyk7HY6ItSwVKZT26NTfK+3ckHdid9U34yEnRY87I4mG/itawMdBH+UbaP22nuaaaxu5EOZwd6Tc8bC9/AWmJl66KtJCckR+mTvLhvrOusqw/XdZaUzPQWlXkoxkdwE0XEH4vfHW0qpirfJhQM0XvXRUeLne7WQaYmAiSn6yldH54xWlCWpe5kKc9swhfg9C0HDW29fHx3EH9QKM5ND491qSigNE/NrJ2rXvgIrqZp54BaERmdfpwJNInIWzHZ6QtSwVKZ6+xTfg7bnRyyO7k+NkmCBm9nGzhoMbEr10hahFeWx/3jnL5/msbuRi72X0QQ1uWto66kjt1FuzGlmKL0SSLzuK6z0UbAbg/Xde7ZjbG+nrQqVdepxFaME9Ay4LeBVcDjs+IiMuuupqiYqjyroD/Ew1sj3L1kp+fqEIGpIGmGJJZuMFO20YKlWN3JUp6da8LH8esDNLT38Xn3MCKwusDA3ooCrOsKKMia+caHyrOLJAG9A6z7sk28pmnJwFURWR6Tnb4gFSyVuWg8GOTYoJv37U4+HhklBFRkpnEw38RecxZ5SZHVdQZCAT7v+5zG7kY+evAR3qCXhRkLqSuto7akliWGJdH5IBHyOxx4mpp/tK7zzTfDdZ1vv63qOpWXJsYJ6Hng14H/SPg00c8Q7m77L771jTNAxVTlRfh9Qe5fG6ajxc79a8MEAyEys1NYWhVORnMXZqhkVHlmdo8X29XwjNH2hy4ANhVlU19RQM3aBWSnqzFBs10kCej/Rbhxwpcd+PYBfyUivxXtTUZCBUtlrgiKcN45xnsDIzQPuZkIhliYkshBSzbvWEyUpUeWbIkIN0duYuuy0dzTzIh3BEOSgT1Fe6grraM8r3xWfAEITUwweuYM7qPT8zpDIVLWrv2qrjM7e6a3qMShGCegl0Vkg6Zp10Rk7ZPPxWK9SKiYqkTKNxmgp32Qu5ccPLo1QigkZFnSKJtORk356TO9RWUOuTc0TmN7eKxLh2MMvU7jjbJc6ssL2LU6n4xk1Zl5NoqoC66maeuBN6cfnhOR1ijvL2IqWCqz3Y2xSQ4NjHDY7mLA58eg11GXl8XB/Gw2G9MjruvsG+sL13V2NdLt7iZRl8iWhVuwllp5q/AtEhNmfoabBINMXLgQrus8dYrQxASJBQUY6usw1qu6TmXmxTgB/Qx4AzgEfAj0Ar8z204UgYqpSnRNjvnobh2ko8VO710XCOQszAgno1UWDLnqWKXybESE2wOjNLT30dDWR69rkmS9jh0rLdSVF7B1eR4piaoz82wRaQL6BlAmIn+iaVoekCEiPc/wvj3A7wEJwA9F5Hee8jM/BvyA8OyydhH5iennfxr4/03/2L8WkT/9trVUsFRmo/4pHx/YXRwaGOHWuBe9BttzDBy0ZLMzx0BKhHWdo75RTt0/RWNXIy328L//683rsZZa2bVkF8ZkYzQ+RsS8d+7ibjiKp9FGwOFAl5mJYc9uDHV1qq5TmVVinIBuBG4BWcC/AozAvxWRL2KxXiRUTFViZdw9RWeLg87Ldga6PQBYig2UVVlYusFMetbMN8FT5gYR4coDJw1tfdiu9jM87iMzRc+e1fnUVxTwakkOetWZeUZFcgT314EqYLmILNM0rQB4T0Re/473JQB3gZ3AI+AS8OMicvOJnykD/grYJiJOTdPMIuLQNC0baJleV4DLwIZva1WvgqUyW4wFgjQNujlkH+G8cwwBNhjSeMdiYq/ZRE5SZMdE/CE/n/Z+SmNXI2cfnsUX8lFkKMJaYqW2pJaFmQuj8jki5Xc48Hw5r/P2bdDrw/M69+0N13Umqy8ZyuwTywR0LlExVXkZPEOTdF520NFiZ+jhGGhQWJbF0ioLpevzSM1QNX7KswkEQ3zWNUxDex8nrg8wOhUgNyOJ2rULqK8oZP3irFlRfhRvIklA24BK4IqIVE4/d1VE1n3H+14FfiAiu6cf/xqAiPz2Ez/zb4G7IvLDr733x4GtIvJ3px//IXBWRP78m9ZTwVKZSYGQ8LFzlEMDIxwfcjMZEpakJPFOvomDlmxK0iJLtkSEa0PXsHXbON5zHOeUE1OyiT3Fe6grqWNN7ppZ8Yc1NDHB6OnT4brOzz9XdZ3KnBOjOaCNhC+mPpWI1EdzvWhQMVV52ZwD43S0OOi4ZMdln0DTaSxaaaKsykJxRR7JqarGT3k2Xn+Qs3cGaWjv5cwtB1OBEAtNqdSVF7C3ooAV+YaZ3mLc+KaY+iz/NftERDRNk+lf9KxV44XAwycePwI2f+1nlk3/zk8JH9P9gYgc/4b3Fn59AU3Tvg98H2Dx4sXPuC1FiQ4R4erYJO8PODnscDLoC5ClT+Dd/Gzezc+mypAWcVL4cPQhTd1NNHU3cc9zj+SEZLYu2kpdSR2vFb5Gom521HWOf/EFnoYGPKdOI9N1nTnf/3lV16koYb870xtQlNnOlJ/OJmsxG2uLGO4do+NS+M7omT+9he7/u82S1TmUbbRQtC6XxCRV46d8s5TEBPasyWfPmnxGvX5O3rDT0N7HH53r5g/OdrHMkhGeMVpeyOKctJneblx6lgT0r6bvQGZpmvbzwPeAH37He55n/TJgK7AQOKdp2tpnfbOI/BHwRxC+WhulPSnKt3rk9fGB3cl7AyN0TEyRpGnszA3P69yWYyA5wnpG95SbE/dOYOu20eoI9/vamL+R7635HjuW7CAzKTMaHyNiT6vrNNbWYKyvJ3XDBlXXqSjTROTjmd6DoswVmqaRuzCT3IWZvLKvBPs9Dx2X7HRedtDTPoQ+OYHidbmUVZlZvCqHhEQVa5RvlpmSyDsbFvLOhoUMj03RfH2AhrZefvfkXX735F0qFmVRX16Add0CzAY18u1l+c4EVER+V9O0nYAHWA78CxE59Qy/uxdY9MTjhdPPPekRcEFE/ECPpml3CSekvYST0iffe/YZ1lSUmPAEgtgcLt6zj/C5axyAzcZ0/u2yPOrNWWQlRnY0yBf0ce7RORq7GjnXe45AKECpsZRfWv9L1BbXsiBjQTQ+RsSeWtf55psY//mvqbpORfkO030PfhtYBTz+piMi6piAojyFpmnkFxvJLzby+sEy+jtcdLTY6boySMclO0mpekoq8yirMrNwuQmdajijfIucjGT+9itL+NuvLKHXNYmtvY+jbX38hu0m/7rpJq+W5lBfXsCe1Qswps38CbP57FlqQP+NiPyz73ruKe/TE25CtJ1wQnkJ+AkRufHEz+wh3JjopzVNywVagQq+ajy0fvpHrxBuQjTyTeupehUl2vwh4aMRD4fsTk4OufGGhJLUZA7mm3jHYmJJauR1na2OVhq7Gzlx7wSjvlFyUnKoKamhrqSOFdkrZndd5969GGqqVV2nMq/EuAvueeDXgf8I1AE/A+hE5F/EYr1IqJiqzGbBYIhHt510XLLT0zaIzxskNTOR0vXhsS4LSo1oupmPn8rc0OkYpaG9n8b2PnqGxklM0NiyzEx9RQE7VppJi7B5ZDyLpAnRFRFZ/7XnvrMJ0fTP1QD/iXB95x+LyG9qmvYbQIuINGjhb9f/HtgDBIHfFJG/mH7v94B/Pv2rflNE/uTb1lLBUokGEaF1dIJDA06OOJyM+INkJyaw12ziXYuJyijUdd5z36Oxu5Gm7iZ6x3pJ1aeybfE26krq2LxgM3rdzP+he2pdZ2FheF5nXT3JJcUzvUVFiYkYJ6CXRWSDpmnXRGTtk8/FYr1IqJiqzBUBf5AH10foaLFz7+oQAX+IDFMypRvCyah5SeasuJirzH4iwrVe9+OxLgMeL2lJCexcZaG+vIA3y/JI0qu77M/juRNQTdP+PvALQAnQ9cRLmcCnIvKTsdjoi1LBUonE/ckp3rc7eX/ASdfkFMk6jV05Rt7NN/F2toHECK+kjnhHONZzjKbuJq4NXUOn6dicv5m60jq2L95OWuLsKIL33rmD+2gDHtuPzus07t1L6vr1qq5TmfdinIB+BrwBHAI+JHw66HdEZHks1ouEiqnKXOTzBrh3bYiOSw4e3BgmFBQMuSmUVVko22ghpzBjpreozBGhkHChZ4SG9j6OXe/HNeEnKy2R6jULqC8vYHNxNjp1l/07vUgCagRMhOtVfvWJl0a/7SjsTFHBUnleLn+AxkEXhwacXHCH6zpfzUrnXUs2VnMWBn1kXfa8AS9nH57F1m3j095PCUiA5abl1JXWUV1cjTnNHIVPETm/3YHHZgvXdd6581Vd5956VdepxJ0YJ6AbgVtAFvCvAAPw70Tki1isFwkVU5W5zjvup6d9kI4WB49uO5GQkF2QTlmVmaUbLGRZZseFX2X28wVCnO8cpKGtj5M37Uz4guQbUrCuW0B9RQFrC43qLvs3eOEjuE/8AjM/2jThQfS2FzkVLJVn4QuF+HB4lPfsI5wa8uAToSwtmYOWbA7km1iUEtnQ65CEaBlowdZt49T9U4z5xzCnmaktqcVaYmWZaVmUPklkQuPjX9V1fvFFuK5z3brwvE5V16nEsVgmoHOJiqnKfDLh8dF1JTzWpb/TDUDe4kzKqiwsrTKTma26nyrPZsIX4MwtB0fb+vj4rgN/UCjOTaeuvID68gKWmtVd9idFUgNaB/wHoABwAEuAWyKyOhYbfVEqWCrfRES47JngvYERGhwunIEguYl69luyOJifzbqM1IivXHU6Ox/Xddon7KTp09ixZAd1pXVstGwkQTfzM8skGGT88y9wNxxl9PQZVdepKE8R4zugp4B3RcQ1/dgE/IWI7I7FepFQMVWZr0ZHvOFk9JIdx/1RAPJLjJRtNFO63ky6UZ36UZ6Ne8LP8Rv9NLT38XnXMCGBVQsM1FcUUFdeQGFW6kxvccZFkoC2A9uA0yJSqWna28BPisjPxmarL0YFS+XreiamOGQf4X27k3uTPlJ1GntyjbyTn80WU2bEdZ2DE4M09zRj67Zxe+Q2CVoCrxW8Rl1pHVsXbSVVPzv+8Dy9rnMPxr31qq5TUb4mxgloq4hUftdzs4GKqUo8cA9O0NESTkZH+sbRNChcbqKsykJJZR4p6WoUh/JsHB4vtqvhZLTtoQuAqiUm9lYUULN2ATkZ8XlhI5IEtEVEqqYT0UoRCWma1i4i5bHa7ItQwVIBGPEHaHC4ODQwQotnAg14PSuDg/kmavOyyIywrnPCP8GZB2do6m7i8/7PCUmI1TmrqSutY3fRbnJTc6PzQSL01LrOt97CWF9PxttbVV2nonyDWHfBBfZ/WcKiadoS4PDXO83PBiqmKvFmuG+Mzulk1D04iU6nsWh1NmVVForLc0lKmfkO9crc8GB4gsarfRxt6+WufYwEncbrS3OpLy9g92oLmSnxc2EjkgT0NLCPcDOiXMLHcDeKyGsx2OcLU8Eyfk2FQpwe9nBowMnpYQ9+EVakp3DQYuKAxURBhHWdwVCQC/0XsHXbOP3gNJOBSQrSC8J1naVWSoyzY4b8U+s6y7+s66xBbzLN9BYVZdaLcQK6G/gfwMeABrwJfF9ETsRivUiomKrEKxFh6OEYHZfsdLTYGXNOkZCoo2hNDmUbLSxZk4M+aebLapS54faAh4a2Phra+3jknCRJr2P7CjP15QW8vcJMSuL8/ncpkgQ0HfASDpZ/CzAC/5+IDMdioy9KBcv4IiJcdI9zyO6kweHCHQhiTtKz3xKe17k6CnWdd0bu0NjVSHNPM4OTg2QmZrKraBd1pXVUmivRaTN/dPVH6jpPnUYmJ0lcuBBjfR2GujqSi1Vdp6I8j1gloJqm6YCDhMevvDL99BciMhTttaJBxVRFAQkJAz0eOlrsdF52MOnxkZicQHFFLmVVFhatzCZBzYVUnoGIcOWBi8b28IzRobEpMpL17FptYW9FIa+X5qBPmH//LkXcBXe2U8EyPnRNeDk04OSQ3clDr49UnY6aPCMHLSbeNGWij7Cu0z5up6mnCVu3jQ5nB3qdnjcL38RaYmXLoi0kJ8yOo6ve27e/quscHERnMPxoXadqB64oLyTGd0Bb5kqHXRVTFeVHhYIhejtcdF6y09U6yNREgOQ0PaWVeSzdaKFwmUnNhVSeSSAY4vPuYRra+jh+Y4BRb4Cc9CRq1i5gb0UB6xfPn3+XXmQO6CgghO98Mv3PTD8WETHEYqMvSgXL+WvIF+CIw8n7A05aRyfQAW+aMjmYb6Im10h6hHWd4/5xTt0/ha3bxsX+iwhCeV451hIre4r2kJWSFZXPESm/3R6u6zzawNTdu+G6zi1bwnWdW7eouk5FiYIYJ6C/AwwBfwmMf/m8mq2tKHNLMBDi4a0ROlrs9LQN4Z8KkmpIYukGM2VVFvKLDWjzJIFQYsvrD/Lx3fCM0dO37EwFQhRmpWItX0B9eQGrFhjm9E0FdQdUmVMmgyFODrs5NODkoxEPAYHVGSkctGSz32IiPzmyAm5/yM/nfZ9j67Lx0cOP8Aa9LMpchLXEirXEymLD4ih9ksiExsfxnDqFp6GB8c+/ABFV16koMRTjBLTnKU+LiMyOQvInqJiqKM8m4Aty79ownS127l0fJugPkZGdTNkGC2UbLeQuypjTCYTy8oxNBTh1c4CGtj4+6RgiEBKWmjOon54xWpSbPtNbfG4vcgc0Bfh7wFLgKvDHIhKI6S4joILl3BcS4QvXOIfsIzQ6XIwGQ+QnJXLAYuLdfBMrMyIbayIi3Bi+ga3bxrGeY4x4RzAmG9lTtAdriZXyvPJZESQkGGT8s89xNzQwelrVdSrKyxTLBHQuUTFVUZ6fbzJAz9UhOlrsPLwxQigkGM2plFVZKKuykF0w9xIIZWaMjPtovhYe63KxJ3xIZt1CI/Xl4RmjFkPKDO/w2bxIAvqXgB/4BKgG7ovIL8V0lxFQwXLuujvu5dBAeF5n75Sf9IRwXee7lmxeN2WQEGFS2DvWS1N3E41djdzz3CNJl8SWRVuwllh5s/BNEhNmRzvsL+s63bZGgoNDqq5TUWZAjO+ApgH/GFgsIt/XNK0MWC4itlisFwkVUxUlMt4xP91tg3S02Om940QEcgrTWVploazKjDEvbaa3qMwRfa5JbFfDnXSv93rQNNhcnE19eSE1a/PJSots2kMsvUgCek1E1k7/sx64OBtnlX1JBcu5ZdDn54jdxXv2Ea6OTqIDtmRn8m5+NrtzDaQnRFbX6fF5OHnvJI1djVxxXAFgg2UDdSV17CzaiSFpdpQw/7W6zsTEr+Z1qrpORXnpYpyA/iVwGfgpEVkznZB+JiIVsVgvEiqmKkr0jLun6LzsoLPFwUC3GwDzkkzKNlpYusFMhmlu3M1SZl7X4BgNbX00tvfRPTROYoLGW2V51FcUsGOlhfTk2TWv9kUS0CtPJpxffzzbqGA5+00EQ5wYcvPewAgfO0cJCqzNSOVgvon9ZhPmSOs6g34+6f0EW7eNsw/P4g/5KTIUUVdaR21JLYUZhdH5IBF6Wl1nank5hr31GKqrVV2nosygl9EFV9O0VhGpnH6uXUTKY7FeJFRMVZTY8AxPPk5GBx+MArBgqZFlGy2UrjeTmjl772Yps4eIcKPPQ0N7OBntd3tJTUxgxyoL9eUFbFmWR9IsGBH0IglokK+69GlAKjCB6oKrPIegCJ85xzhkd9I06GIsGKIwOVzX+U6+iRXpkdd1tg+2Y+u2cfzecdxTbrJTsqkurqaupI5VOatmxdFVCQSm53V+va6zHmN9HUlFRTO9RUVRiHkC+hmwHfhURNZrmlYK/LmIbIrFepFQMVVRYs9ln6CjxU5HiwNn/ziaTmPhChNlVWZKKvJITpsdJULK7BYKCS33nTS099J0tR/nhB9Dip7qNeGxLptLckiYoa7Mqguu8lLdGpvkkN3JB3Yn/VN+MhJ01JmzOGgx8WpWBroIk8IHngfYum3Yum08HH1IckIy2xZtw1pq5dWCV0nUzfwfbRFh6su6zibbV3Wd1dXhus7KylmRHCuK8pUYJ6C7gP8LWAWcBF4HfkZEPorFepFQMVVRXh4RYaRvnI5Ldjpa7HiGvOj0GotX5VC20UzR2lySUmbX0UpldvIHQ5zvHKKxrY8TNwYY9wUxZyZTu24BeysKKV9ofKnfPVUCqsScY8rPB3Ynh+xOro9Notfg7WwD71hM7M41kpoQ2VEAl9fF8XvHaexu5OrgVTQ0NuVvwlpqZcfiHWQkZUTpk0TGb7fjaWwM13V2dITrOrd8Wde5FV2SOl6jKLNVrLvgapqWA7xC+DTRFyIyFKu1IqFiqqLMDBHBcX+Ujkt2Oi87GHdNoU/UUbQul7IqC4vXZKNPjKxPhhIfvP4gZ245aGjv5aPbg/iCIZbkpFG3roC9FQWUWTJjvgeVgCoxMR4McmzQzft2Jx+PjBICKjLTOJhvYp/ZRG5SZFfspoJTfPzwYxq7Gzn/6DwBCbA0ayl1pXXUFNeQn54fnQ8SoeDYOKOnTuFuOMrEFxce13Ua9+0lc88eVdepKHNEjO+AnhGR7d/13GygYqqizDwJCf1dbjpa7HRdcTA56icxJYGSijzKqiwsXGkiIcKL+0p88Hj9nLg+QEN7H592DhESWJGfSX1FAXXrCliUHZuuzCoBVaImKMJ55xjvDYzQPORmIhhiYUoiBy3ZvGMxUZYeWTe3kIS4Yr+CrdvGyXsnGfWPkpeaR01xDXWldSzPXh6lTxKZcF3n57iPTtd1er0kLlqEsa5O1XUqyhwViwR0eq52GvARsJXw3U8AA3BcRFZEc71oUDFVUWaXUDBE7x0Xd1vsdLcO4psMkJKeSMn6cDJaUJaFbobq/JS5ZXB06vGM0cv3nQCsX5zF3opCatYuIC8zehMYVAKqROzm2CTvDYxw2O5iwOfHoNdRl5fFwfxsNhvTI67r7HZ3Y+uy0dTdRN94H6n6VHYs3oG11Mrm/M0k6Gb+yImIMHXrVrius7lJ1XUqyjwTowT0l4BfBgqAXr5KQD3A/xCR34/metGgYqqizF5Bf4gHt0bouGSn5+oQgakgaYYklm4wU7bRgqXYoL6LKM/k4cgEjVf7aGjr4/bAKDoNXl+ay3/8GxXkZkSeiKoEVHkh/VM+PrC7eH9ghJvjXvQabM8x8I4lm105BlIiPPoxNDnE8Z5wXefN4ZvoNB2vLniV2pJati/eTlri7BjU7B8YwN3YiKehgamOTlXXqSjzVIyP4P5DEfkvsfjd0aZiqqLMDX5fkPvXhum4ZOf+9WGCgRCZ2SksrTJTVmUhd1GGSkaVZ3LXPkpDWx8Xeob5i++/GpXOuSoBVZ7ZeCBI05CbQwMjfOIcQ4D1hjQOWkzsNZvIibCuczIwyUcPPqKxu5HP+z4nKEFWZq/EWmKlpqSG3NTc6HyQCAXHxhk9eRJ3QwMTF6brOisqMO6tV3WdijJPvYQmRK8BRcDjP6Qi8j9jtd6LUjFVUeaeqckAPe2DdFxy8OjWCKGQkGVJe5yMZi9In+ktKnHmm2Kq6umsABAICZ84Rzlkd9I86GYyFGJxShK/vMTCwXwTpWmR1XUGQ0Eu2S/R2NXI6funmQhMkJ+ez99Z/XeoK62jNKs0Sp8kMhIIMP7ZZ+G6zjNnwnWdixeT+wu/EK7rXLJkpreoKMocpWna/wJKgTYgOP20ALMuAVUUZe5JTtWz4pUFrHhlAd4xP12tDjpa7LQ036Ol6R45hRmUbTSzdIMFY15kc9gVJRIqAY1jIsL1sUkODTg57HDi8AUw6hN4N9/EQYuJjcb0iI9t3HXexdYdrut0TDjISMxgd9Fu6krr2GDZgE6b+e5tP1LX2dREcGgIndGIcd9ejPV7Sa2sUMdXFEWJhipglcyXo0eKosxaKRmJrH6zkNVvFjLunqLrioOOSw6+ONLNF0e6MRcZKKsKJ6MZpug1nVGUZxHTBFTTtD3A7wEJwA9F5He+9vrfAf4d4aYMAL8vIj+cfu3fALXTz/8rEfnLWO41nvR5fbw/Pa/zzriXRE1jR46Bg/kmduQYSNZFlhQ6Jhw0dzdj67Zxx3kHvabn9cLX+acb/ylbF24lRR/Z3dRoeVpdZ+bWLRjq68nYskXVdSqKEm3XgXygf6Y3oihK/Eg3JrPu7UWse3sRnuFJOi876Lhk59NDnXz6ficFS7MoqzJTut5Maqb67qPEXswSUE3TEoD/CuwEHgGXNE1rEJGbX/vRvxSRX/zae2uB9UAFkAyc1TTtmIh4YrXf+W4sEMQ26OLQgJNPXeG6zipDGr+zbCH15iyyEyP7V2HcP86ZB2do7GrkQv8FBGFd7jp+bdOvsad4D9kp2dH5IBF6al1nZSX5P/h1DHv2kJCVNdNbVBRl/soFbmqadhGY+vJJEan/rjdqmnYPGCV8dDfw9ZoaTdNMwB8TPuLrBb4nItefeD0BaAF6RcQa+UdRFGUuMuSksn7XEtbvWoLLPkFHi52OS3Y+/vO7nPvLDhauMFFWZaakIo/ktMSZ3q4yT8XyDugmoFNEugE0TfsLYC/w9QT0aVYB50QkAAQ0TbsK7AH+KlabnY8CIeGsc5RDAyOcGHIzGRKKUpP4P4ryOZhvoig1siMXgVCAL/q/oLGrkY8efsRkYJLCjEL+bvnfpba4liJjUXQ+SISeOq9T1XUqivLy/SDC978tIkPf8No/B9pEZL+maSsIXwDe/sTrvwTcIjx7VFEUhSxLGhtri6mqKWKkb5yOS3Y6Wux8+D9vc/Z/32HxqhzKNpopWptLUoqq2lOiJ5b/NhUCD594/AjY/JSfe0fTtLeAu8CviMhDoB34dU3T/j3h4d1v82yJa9wTEa6OTXJoel7nkD+ASZ/Aj+Vn825+NhsMaRHVM4oIt0Zu0djVyLGeYwx7hzEkGagrqcNaaqUib3bUS6q6TkVRZhsR+TiGv34V8DvT69zWNK1I0zSLiNg1TVtIuKTlN4F/HMM9KIoyB2maRk5hBjmFGWzeW4Lj/igdLXY6WxzcuzqEPlFH0bpcyqosLF6TjT5x5ueyK3PbTF/OaAT+XESmNE37u8CfAttE5KSmaRuBz4BB4HO+6hj4mKZp3we+D7B48eKXt+tZ6JHXxwd2J+8NjNAxMUWSprEz18BBi4ntOQaSIqzr7B/rp6mnCVuXjS53F4m6RLYs3IK1xMqbC98kKWF21Ayouk5FUWYbTdNGCXe7/WsvASIiz3JXUoCTmqYJ8Ici8kdfe70dOAB8omnaJmAJsBCwA/8J+D+BzO/Yp4qpihLnNE3DUmTAUmTg9QNL6e9y09Fip+uKg87LDhJTEiipyKOsysLClSYSIpwHr8SnmM0B1TTtVeAHIrJ7+vGvAYjIb3/DzycAIyJifMpr/xv4MxFp/qb14nFm2WggSON0XednrjEANhvTOZhvoi4vi6wI6zpHfaOcun+Kxq5GWuzh/9uuN6+ntqSW3UW7MSb/tf9XzYjg2Dijp07hPnr0R+o6jXvrVV2noijPJdZzQF+UpmmFItKraZoZOAX8QxE598TrBsJN/yqBa8AK4OcJJ6E1IvILmqZtBf7Js9SAxmNMVRTlm4WCIXrvuOhosdPdNsjURIDkdD2llWbKqswULDOh06mTZcqPmok5oJeAMk3Tigl3uf2bwE98bVMLROTLboD1hOtTvkxGs0RkWNO0dcA64GQM9zpn+EPC2REPh+xOTgy58YaEktRk/s/ifN6xmFgSYV2nP+jn075Paexq5OzDs/hCPooMRfxixS9SW1LLwsyF0fkgEXo8r7OhUdV1Kooy74lI7/T/dmiadphwn4VzT7zuAX4GQAvXF/QA3cDfAOo1TasBUgCDpml/JiI/+ZI/gqIoc5guQceiVdksWpXNlh9fzoNbI3RcsnP3kp2b5/tIMyRRusFMWZWF/GIDmkpGlW8RswRURAKapv0icILwGJY/FpEbmqb9BtAiIg3AP9I0rR4IACPA35l+eyLhY0QAHuAnpxsSxSURoW00XNd5xOFi2B8gOzGBv7kghx+zmKiMQl3ntaFrNHY1cvzecVxTLkzJJg4uO4i1xMqa3DWzol5S1XUqihKPNE1LB3QiMjr9z7uA3/jaz2QBEyLiA36OcCM/D/Br0//DE3dAVfKpKMoLS0jUUbwul+J1ufh9Qe5fG6azxc7NT/q49tEjMrKTWbrBQlmVmbzFmeq7mfLXxLQGdPrIbPPXnvsXT/zz48D4tZ/xEm6oENceen28PzDC+3YnHRNTJOs0duYYeDc/m7ezMyOu63w4+hBbt42m7ibue+6TnJDM1kVbqSup47XC10jUzY7226quU1GUOGcBDk9/idMD/1tEjmua9vcAROS/AyuBP52uEb0B/OxMbVZRlPiRmJTA0g1mlm4w45sM0HN1iI4WO1fPPKTt1AOMeamUbbSwtMpMTkHGTG9XmSViVgP6ss2XehVPIIjN4eKvBkb4wj0OwCvGdA7mZ1OXZ8QYYV2ny+vi5P2TNHY10jbYhobGxvyNWEus7Fiyg8ykb+1R8dJ807xOVdepKEoszdYa0JdtvsRURVFmhnfMT1druHFR7x0nIpBdkE5ZVTgZzTKnzfQWlZdgJmpAlWfkDwkfTdd1npyu6yxNTeafFedzIAp1nb6gj48ffYyty8a53nMEQgGWZi3ll9f/MrUlteSn50fpk0TmcV3n0QZGz5z5qq7zH/yDcF2n6sqoKIqiKIoy66X8/9u79+iqzvPO499H9yu66yBLCHQ5BoONhTlQ37ANToiJuSSxk2Y8nXE6ySSZlbRpVzxNJl1t02RlTZp2tclMM+3KOJm4K0njxI5rSRAwNji2a4IlATbGYOsCNmCQuErIgK7P/KGNrSjgGKSjc3T0+6zF4ux99jnneaWt9ejRfp/95qSyYFk5C5aV81Z3H+07jtHW3Mn2+g6213dQOjuX2kiI2sWl5BZmxDpcmWQqQGPkUn2d95UVce/MAhbljq+vc9iH2dm1k4b2Bp54/QnO9J+hOLOY++bdx+rq1cwrnBcXc/LdnfOvvEJPfT3d6zcwdPw4yRf6OtetI7NOfZ0iIiIiU1V2XjoLl1ewcHkFZ06ep625i7aWTp5/tI3nH22jrCaP2kiImhtKyM4b30UXmRpUgE6yC32dj3Seoi3o61xZlMdHZxawvHAGqeO8a1hHdweN7Y1s2L+Bw72HyUzJ5M7KO1lTvYalZUtJSYqPb/nAkSN0NzTS0zC6r/MO8tatJee22zD1dYqIiIgklNzCDBatrGTRykpOd52lrbmL1uZOnn34NZ772WuUzy0gHAlRvaiEjOz4uBeJTDz1gE6C7oFBGo918/MxfZ0fnVnI6gno6zxx7gQbD2ykob2BPSf2kGRJ3Fh2I6urV3Nn5Z1kpcbHPPuh3l7ObAr6Ol94QX2dIhJ31AM6Ip5zqogknhOHe2lr6aK1qZPuY+dISjJmLSgkHAlRtbCYtMz4uIAil0c9oJOsf3iYrSfP8POjJ9l8ooe+Yac2K50vB32dlePs6zw3eI6nDz5NQ3sDz7/5PEM+xLzCeTwQeYBVVasozSqdmIGMkw8O8ta///tIX+eWLerrFBEREZHfUFSeQ1F5DkvXVHH8YC+tTZ20tnTy+u4TJKcmMfvaIsKRELOvKyI1LTnW4co4qQCdQO7Ozp6z/LzzFI93neLkwBBFqSn8QVkR984spC43c9x9nU1Hm2hob+DJN57krYG3CGWFuH/B/ayuXk24IDyBo7lyl+zr/PCHyFu7Vn2dIiIiIvJbzIySylxKKnO56cM1HN3fQ2tzJ+0tXXTsPEZKejJVC4sJLwlReU0hyanjW5JQYkMF6AR4/Vwfjxw9xaOdp+g410dGkrGyOI97QxPT19l6qpWGjgY2dGyg82wn2anZvH/2+1ldvZolM5eQZPHxwzdw9Cjd9Q101z9Of1s7lppKjvo6RUREROQyWZJRVpNHWU0et340zJutp0eK0R0jU3XTMlOoXlRCOFJKxdwCkpLj4/dh+d1UgF6hUwODNHSd5pHOU7wQ9HXenJ/D52eXsroknxkp45secOzsMTbs30BDewOvnnqVFEvhlvJbeCDyAHfMuoOMlPi4ZfVF1+u84QZmfvWrzLjrA+rrFBEREZFxSUoyKuYWUDG3gNs+fjWH9p2itamTjh1d7Hv+CJm5qdQsKqU2UspVtfnYOC/+SHSpAL0MfcPDPHmih0eOnuLJEz0MuBPOSucr1WV8JFRARcb4rvCdHTjLU288RUN7A9uPbmfYh7mu+Dq+vPTLrKpaRWFG4QSNZHy0XqeIiIiIxEJychKzFxQxe0ERgwNDvLHnJK3Nnez79RFefuYw2Xlp1C4OUbuklNCcGWr7ikMqQH+HYXe2ne7lsc7TNBw7TffgEKVpKfyXimLuDRVwbc74+joHhwfZfmQ7jR2NPPXGU5wbPEd5Tjmfuu5TrK5eTVVe1QSO5sqpr1NERERE4klKajLVdSVU15Uw0DfEgd3HaW3qZPczh3hxy0FyizIIR0qpjYQorsjR76pxQgXoRbg7r7x1nkePnuLfuk7xZt8A2clJrCrO46MzC7m1IIfkcZzA7s6+k/to6Gjgl/t/yfFzx8lNy+Xu6rtZU72GRaWL4uYH5MJ6nRf6OkfW67ydGWvXknv77errFBEREZGYS01PJhwJEY6E6Ds3yP5dx2ht7mLn5oPs2PQG+aGst4vRwrLsWIc7rakAHeWtoSEePHicRztP8drZ86QYLC+cwV/WXMXK4jyyxtncfKT3COv3r6exvZH27nZSklK4veJ2Vlev5raK20hLjo9i7lLrdc786l9pvU4RERERiWvpmSnMu6mMeTeVca63n46dx2ht6qRpwwGa1h+gqDyH2kgp4UgpeSVZsQ532lEBOkqaJfG9Q8eoyUrnm1dXsKYkn6K08X2Jevp7ePL1J2nsaKTpaBMAi0oX8Rc3/gUfmPMB8tLzJiL0cdN6nSIiIiKSaDJz0liwrJwFy8p5q7uPtpYu2pq72P54B9sf76B0di61kRC1i0vJLYyPm3wmOhWgo6QmGdtuvGbcd7AdGBrgucPP0djRyNMHn6Z/uJ/ZM2bzubrPcXf13czKnTUxAY+Tu3N+zyt01z9Oz/oNDJ04ob5OEREREUlI2XnpXL9iFtevmMWZk+dpa+6itbmT5x9t4/lH2yirzSMcCVFzQylZM+JjZmIiUgE6xpUWn+7Oi8depLGjkU0HNnG67zQF6QXcc/U9rKlew7XF18ZNMTfw5ptBX2c9/e1ar1NEREREppfcwgwWraxk0cpKTnedfbsYfeanr/Hsw69RPreAcCRE9aISMrJTYx1uQlEBOk6v97xOY0cjje2NHOo9RHpyOstnLWd19WpuLr+Z1KT4OGEv2td5Yb3OVXeRnBcfU4FFRERERCZTfmkWkQ/OIfLBOZw43EtbSxetTZ1s/dE+fvWTV5k1v5BwpJSq60tIy1T5NF76Cl6BE+dOsPHARtZ3rGf38d0YxtKypXzm+s/wvsr3kZOWE+sQgTF9nU89hff1kTq7kuLPf468tWtJmxUfU4FFREREROJBUXkOReU5LF1TxfGDvbQ2ddLa0snrPzxBcsqrzL62iNpIKXMWFpOaNr62velKBeh7dHbgLFsObmF9x3q2vbmNIR9ibsFcvrj4i9xVdRczs2fGOkRgzHqdjevf7uvMv+cj5K1dS8b118fNVGARERERkXhkZpRU5lJSmctNH67h6P4e2po7aWvpomPXMVLSk6laWEw4Ukrl/CKSU8e3WsZ0ogL0XQwMD7DtzW2s71jP1oNbOTd4jrLsMj6x4BPcXX034YJwrEN829j1Oi01lZzly0f6OpctU1+niIiIiMgVsCSjrCaPspo8bvlomDdfO0VrSxcdO0aWd0nLTKG6rphwJET5vAKSx7l0Y6JTATrGsA+zq2sXG/ZvePtmQnnpeayuXs2qqlUsDi0myeLjpFJfp4iIiIjI5ElKMirmFVIxr5DbPn41h/adoq2pk46dx9i37SgZOanULCohHAlRFs4nKUkzD8dSATpKT38P99bfy5G3jpCRnMHyWcv5YPUHueWqW0hNjo+bCV10vU71dYqIiIiITKrk5CRmLyhi9oIibh8Y4o09J2lr6eLV7UfZ8+ybZOWlUXtDKeElIUJVM9QGF1ABOsqMtBncWXknC4oXsGLWCrJSs2IdEvDu63Xmr1unvk4RERERkRhKSU2muq6E6roSBvqGOLD7OG0tXex59k1e2nqInMJ0wotDhJeEKJ6VM61/d1cBOsaXln4p1iG87e31Ohvq3+nr1HqdIiIiIiJxKzU9mXAkRDgSov/cIPtfPEZrSxcvPnWQnZvfIK8kk/CSELWLSykqj4/VMyaTCtA4M9LXuYnux+s529Skvk4RERERkSkqLTOFuTeWMffGMs73DtCx6xitzZ20/PIAzRsOUHhVNuFIKbWLQ+SH4mP2ZbRFtQA1s7uA7wDJwIPu/s0xz38C+FvgcLDrH939weC5bwF3A0nAZuAL7u7RjDdWtF6niIiIiEhiy8hJZf6tVzH/1qs429NPW0sXbS2dbK/fz/b6/ZRU5lIbKaV2cSkzijJjHW7URK0ANbNk4LvA+4FDQJOZ1bv7K2MOfdjdPz/mtTcDtwALg13PAbcDT0cr3sl2qb5OrdcpIiIiIpLYsmaksXB5BQuXV3Dm5Hnad3TR2tTJtl+0s+0X7cysnkHt4pFputn56bEOd0JF8wroUqDN3TsAzOynwDpgbAF6MQ5kAGmAAalAZ5TinFRv93XW19PfrvU6RURERESms9zCDOreV0nd+yrpPnaW1uYu2pq7eO7nrTz3SCvl4XxqIyFqbighM2fq1wrRLEDLgYOjtg8Bv3eR4+4xs9uA14A/dfeD7r7NzLYCRxgpQP/R3feOfaGZfRr4NEBlZeVExz9hhs6c4cwTT4z0db7wAgCZixcz86//mhl3fUB9nSIiIiIiQl5JFpFVc4ismsPJI2/R1txJa3MXv/rJqzzz09eYNa+A2kgp1XUlpGfFxzKRlyvWNyFqAP7V3fvM7DPAQ8AKM6sFrgEqguM2m9kyd3929Ivd/XvA9wAikUhc9Yf6wAC9zz1Hd309vVu24n19pM2eTfEf/xF5a9aor1NERERERC6psCybpWuqWbK6iuOHet8uRrf8yz6e/smrVM4vIhwpZc7CYtIyYl3WvXfRjPQwMLrKquCdmw0B4O4nRm0+CHwrePxh4Nfu3gtgZr8EbgJ+owCNN+7O+d276a5voGfDBoZOniQ5P5/8e+4hb91aMhYuVF+niIiIiIi8Z2ZGyaxcSmblcuOHaug6cIbW5k7amjs58NJxUlKTmH1dEeFIiNnXFpGSlhzrkN9VNAvQJiBsZlWMFJ4fB+4bfYCZlbn7kWBzLXBhmu0bwH81s//JyBTc24FvRzHWcek/dIiehga6H6+n/8ABLC2NnBUryFu7hpxbb1Vfp4iIiIiIjJuZEaqaQahqBrfcU8uR9m5amztp39FF+45jpKYnU1VXTHhxiFnzC0lOSYp1yL8lagWouw+a2eeBTYwsw/IDd99jZl8Dmt29HvhjM1sLDAIngU8EL38EWAHsZuSGRBvdvSFasV6JodOn6dm4ie6GBs61tACQtWQJRZ/6JLkrV5I8Y0aMIxQRERERkURlScZV4XyuCuez7GNhDr92mtbmTjp2HuO17Z2kZ6VQXVdCOBKifG4+ScnxUYxaoiytGYlEvLm5OaqfMdzXR+/Tv6K7oZ7eXz0DAwOk1dSQt2YNeWtWk1peHtXPFxGR6DKzFnePxDqOWJuMnCoiItExNDjMwb0naW3uZP+u4wz0DZGZm0rNolLCS0opq8nHkqLfFnipnDp1ulVjxIeHOftCEz3rG+nZuInhM2dILimm8L77mLF2DRnz56uvU0RERERE4kJyShJzritmznXFDPYP8fqeE7Q2dbFv2xFefuYw2fnp1N5QSu2SUkJzZkx6LaMC9CLcnb69e+luaKRnwwYGOztJysoi5313krd2Hdk3/h6Woi+diIiIiIjEr5S0ZGoWlVKzqJT+84Mc2H2c1qYudj9ziBe3HCS3KINwpJTaSIjiipxJKUZVRY0yfPYsJx96iO6GRvo7OiAlhZxly8j70p+Rs3w5SZmZsQ5RRERERETksqVlpHD1kplcvWQmfWcH6Nh1nLaWTnZuPsiOTW+QH8qiNlJK3Z2zorrGqArQUSw1lZM/+jHpVVUU3n8/uSvfT0pBQazDEhERERERmTDpWalcc3MZ19xcxrnefjp2HqO1uZOXthxi8QdmR/WzVYCOYqmp1GzaRHJOdqxDERERERERibrMnDQWLCtnwbJy+s8PRn0d0fi4F28cUfEpIiIiIiLTUVpG9K9PqgAVERGJc2Z2wMx2m9kuM/ut9VHMrMDMHjOzl8zsBTO7Ntg/y8y2mtkrZrbHzL4w+dGLiIi8Q1NwRUREpobl7n78Es99Bdjl7h82s3nAd4E7gUHgi+6+w8xygRYz2+zur0xSzCIiIr9BV0BFRESmvvnAFgB33wfMMbOQux9x9x3B/jPAXqA8dmGKiMh0pwJUREQk/jnwhJm1mNmnL/L8i8BHAMxsKTAbqBh9gJnNARYB26MbqoiIyKVpCq6IiEj8u9XdD5tZKbDZzPa5+zOjnv8m8B0z2wXsBnYCQxeeNLMc4FHgT9y952IfEBS2nwaorKyMzihERGTa0xVQERGROOfuh4P/u4DHgKVjnu9x9z909zrgPwMlQAeAmaUyUnz+2N1/8S6f8T13j7h7pKSkJDoDERGRaU8FqIiISBwzs+zgBkKYWTawEnh5zDH5ZpYWbH4KeMbde8zMgO8De9397yczbhERkYvRFFwREZH4FgIeG6klSQF+4u4bzeyzAO7+z8A1wENm5sAe4JPBa28B/hOwO5ieC/AVd98wifGLiIi8TQWoiIhIHHP3DuD6i+z/51GPtwFXX+SY5wCLaoAiIiKXQVNwRUREREREZFKYu8c6hglhZseA1yfo7YqBSy32nag05ulBY54eNOYrN9vdp/0deCYwp+pcnB405ulBY54eJnLMF82pCVOATiQza3b3SKzjmEwa8/SgMU8PGrPEi+n4fdGYpweNeXrQmKNDU3BFRERERERkUqgAFRERERERkUmhAvTivhfrAGJAY54eNObpQWOWeDEdvy8a8/SgMU8PGnMUqAdUREREREREJoWugIqIiIiIiMikUAEqIiIiIiIik0IF6ChmdpeZvWpmbWb25VjHEy1m9gMz6zKzl0ftKzSzzWbWGvxfEMsYJ5KZzTKzrWb2ipntMbMvBPsTecwZZvaCmb0YjPmvg/1VZrY9OMcfNrO0WMc60cws2cx2mlljsD0dxnzAzHab2S4zaw72JfL5nW9mj5jZPjPba2Y3JfJ4pyLl08Q9F5VTp09OVT5N/HwKscmpKkADZpYMfBdYBcwH/oOZzY9tVFHzQ+CuMfu+DDzl7mHgqWA7UQwCX3T3+cCNwOeC720ij7kPWOHu1wN1wF1mdiPwN8A/uHstcAr4ZOxCjJovAHtHbU+HMQMsd/e6UWt3JfL5/R1go7vPA65n5PudyOOdUpRPE/5cVE6dPjlV+XREIp/bEIOcqgL0HUuBNnfvcPd+4KfAuhjHFBXu/gxwcszudcBDweOHgA9NZkzR5O5H3H1H8PgMIz9Y5ST2mN3de4PN1OCfAyuAR4L9CTVmADOrAO4GHgy2jQQf87tIyPPbzPKA24DvA7h7v7ufJkHHO0UpnybwuaicOj1yqvLpb0jYcztWOVUF6DvKgYOjtg8F+6aLkLsfCR4fBUKxDCZazGwOsAjYToKPOZg6swvoAjYD7cBpdx8MDknEc/zbwJ8Bw8F2EYk/Zhj5RegJM2sxs08H+xL1/K4CjgH/L5ga9qCZZZO4452KlE+nybmonJrQ+eXbKJ8mej6FGOVUFaDyW3xkbZ6EW5/HzHKAR4E/cfee0c8l4pjdfcjd64AKRq5IzIttRNFlZquBLndviXUsMXCru9/AyJTHz5nZbaOfTLDzOwW4Afgnd18EvMWYqUEJNl6ZwhL5XFROTdycqnw6bfIpxCinqgB9x2Fg1qjtimDfdNFpZmUAwf9dMY5nQplZKiOJ8sfu/otgd0KP+YJgKsVW4CYg38xSgqcS7Ry/BVhrZgcYmfK3gpG+hkQeMwDufjj4vwt4jJFfjhL1/D4EHHL37cH2I4wkz0Qd71SkfJrg56JyasLnVOXT6ZFPIUY5VQXoO5qAcHCHrzTg40B9jGOaTPXA/cHj+4HHYxjLhAr6Fr4P7HX3vx/1VCKPucTM8oPHmcD7GenT2QrcGxyWUGN29//h7hXuPoeRn98t7v4fSeAxA5hZtpnlXngMrAReJkHPb3c/Chw0s7nBrjuBV0jQ8U5RyqcJfC4qpyZ+TlU+nR75FGKXU23kqqoAmNkHGZnzngz8wN2/EduIosPM/hW4AygGOoG/Av4N+BlQCbwOfMzdx95YYUoys1uBZ4HdvNPL8BVGelYSdcwLGWkaT2bkD00/c/evmVk1I3/NLAR2An/g7n2xizQ6zOwO4AF3X53oYw7G91iwmQL8xN2/YWZFJO75XcfIjTHSgA7gDwnOcxJwvFOR8mninovKqdMrpyqfJnY+hdjkVBWgIiIiIiIiMik0BVdEREREREQmhQpQERERERERmRQqQEVERERERGRSqAAVERERERGRSaECVERERERERCaFClARERERERGZFCpARaLAzIrMbFfw76iZHQ4e95rZ/4nC5/3QzPab2Wcv83UbLiyufQWfWRes9Xclr80Mvh79ZlZ8Je8hIiKJT/n0d75W+VSmnJRYByCSiNz9BFAHYGZfBXrd/e+i/LH/3d0fuZwXuPsVJbxAHRABNlzuC939HFBnZgfG8fkiIpLglE9/5+cqn8qUoyugIpPIzO4ws8bg8VfN7CEze9bMXjezj5jZt8xst5ltNLPU4LjFZvYrM2sxs01mVvYePueHZvZPZvZrM+sIPvcHZrbXzH446rgDZlZsZnOC5/6vme0xsyfMLDM45mkziwSPi4PXpAFfA34/+Mvr75tZdvAZL5jZTjNbF7xmQbBvl5m9ZGbhCf/CiojItKJ8qnwqU5cKUJHYqgFWAGuBHwFb3f064Bxwd5A0/zdwr7svBn4AfOM9vncBcBPwp0A98A/AAuA6M6u7yPFh4LvuvgA4DdxzqTd2937gL4GH3b3O3R8G/hzY4u5LgeXA35pZNvBZ4DvuXsfIX3gPvcf4RURE3ivlU5EpQlNwRWLrl+4+YGa7gWRgY7B/NzAHmAtcC2w2M4JjjrzH925wdw/eu9PddwOY2Z7gvXeNOX6/u1/Y1xIcczlWAmvN7IFgOwOoBLYBf25mFcAv3L31Mt9XRETkd1E+FZkiVICKxFYfgLsPm9mAu3uwf5iRn08D9rj7TVf63sF79Y3af+G9L3U8wBCQGTwe5J3ZEhnv8nkG3OPur47Zv9fMtgN3AxvM7DPuvuU9xC8iIvJeKZ+KTBGagisS314FSszsJgAzSzWzBZMcwwFgcfD43lH7zwC5o7Y3AX9kwZ+WzWxR8H810OHu/wt4HFgY7YBFRETGUD4ViRMqQEXiWNAbci/wN2b2IiPTfG6e5DD+DvhvZrYTGH2L963A/As3TQC+DqQCLwXTkr4eHPcx4GUz28XI9Kd/mbTIRUREUD4ViSf2zgwFEZmqgjvxNV7ubeNjzUZuGx9x9+OxjkVERET5VCT6dAVUJDF0A1+3y1w4O1YsWDibkb/wDsc4HBERkQuUT0WiTFdARUREREREZFLoCqiIiIiIiIhMChWgIiIiIiIiMilUgIqIiIiIiMikUAEqIiIiIiIik+L/A0QPJCL+UbRzAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhUV/rA8e8Zy8TdE0jwECRA8FKkBpRSKNTdqezWtra7de+v7m6029JSo1QphVKguLuGCHH3ZGbO748ZAiEBAiSZBN7P89wnc++58t4h5M47x5TWGiGEEEIIIYQQoqUZ3B2AEEIIIYQQQoiTgySgQgghhBBCCCFahSSgQgghhBBCCCFahSSgQgghhBBCCCFahSSgQgghhBBCCCFahcndATSXkJAQHRcX5+4whBBCtGMrV67M01qHujsOd5NnqhBCiON1qGfqCZOAxsXFsWLFCneHIYQQoh1TSu1xdwxtgTxThRBCHK9DPVOlCa4QQgghhBBCiFYhCagQQgghhBBCiFYhCagQQgghhBBCiFZxwvQBFUII0bJqa2tJT0+nqqrK3aEcN6vVSkxMDGaz2d2hCCFEqziR/oaLtuVon6mSgAohhGiS9PR0fH19iYuLQynl7nCOmdaa/Px80tPTiY+Pd3c4QgjRKk6Uv+GibTmWZ6o0wRVCCNEkVVVVBAcHt/sPLkopgoODpRZACHFSOVH+hou25VieqZKACiGEaLIT5YPLiXIfQghxNORvn2gJR/t71eIJqFLKqJRarZSa3UjZqUqpVUopm1Jq6gHbRyul1hywVCmlJrV0rEIIIYQQQgghWk5r1IDeBmw+RFkqcBXwvwM3aq3naa2TtNZJwBigAvitBWMUQgjRxqWlpTF69Gh69uxJYmIiL7/8cl3Zc889R48ePUhKSmLgwIF88sknboxUCCFEY4xGI0lJSSQmJtK3b1+ef/55HA7HYY/Zu3cvU6dOPew+AE8++WRzhXlIH330Ebfeeuth95k/fz6LFy+uW3/rrbdOmGdSc73HLZqAKqVigLOB9xor11qnaK3XAYf7zZsK/Ky1rmiBEIUQQrQTJpOJ559/nk2bNrFkyRJef/11Nm3axFtvvcWcOXNYtmwZa9asYe7cuWit3R2uEEKIg3h6erJmzRo2btzInDlz+Pnnn3nkkUcOe0xUVBQzZ8484rmPJTmy2+1HfcyRHJyATps2jSuuuKLZr3M0bDbbYdebqrkS0JYeBfcl4B7A9zjOcRHwQmMFSqkbgBsAOnTocByXcKq1O7j8/aVMSormokHHfz4hhBDNJzIyksjISAB8fX1JSEggIyODJ598kvnz5+Pn5weAn58fV155pTtDFcegwu6g3G4n1GKmtqqaX5avpiovn9r8PHRxCaq6mvARwzltxFCKUtP45f+ew1FbjXLY0NoGDgcBUy5i/PjxZGzawPxnHgY0aO38iYOQy2/irDPGsnPZEpa+9qTriwrl+hZc0eH62xl56mjWzpvD2g/fQOMs3/d1RsI/7mXwwCEs+3E2m778yLld7S8fePdD9E7sxV9ffcm2n752bd3XN0pz6kNP0zUunrmfTmfX3J9QgHaVG5SDs555mZjQcH5+/13SFs+vd7xRO5j4ytuE+vgy6/XXyFy9pN77Z1Sai978GB+TiZkvPE/u5rWuqzqZLCaufvV9zAbF5089RcGurfWON/tYueHFtwD45LFHKUnfeUDsCmuAL9c98woAHzzwAOW56fWO9w4J5prHn8Ph0Lz/73upKsqtV+4XHcmVDzyJze7g/XvupKqiuF55cHwcl93zEDU2B+/96x/UVlfWlWkFEd26cdHt91FVa+e9O2/C7qj/ATq6V2+m3nQHFeVVvH/vLRycVsQNGMCkq2+mKL+Qjx+6i4N1G3YK4y65htw96fzvuQf3XxtnbU3P0adz+nmXkLplG9++8XSD4/uNP4dTx05m2+o1/PLRyw3KB02+gCGjxrHp78X8PuPdemUKzSkXXUW/IaNY9ecfLPrWWVt2YLe60666mYS+g1j2y48s//Wr+ifXmvG33E18114s+v5r1syf5Trv/vNPvMuZ5JUW5FNZXsL+3wznfgGRsZhNZkryc6muKK0XHWiCojpiNBopycuhurLsoPghKCYeg1IU52RRW12/zkgpRVC0a+RdrclL2wWu9/Xph//LmedM5uGHH8bhcHDHP27hr0WLqamp4ZorLuOqyy4hfW8ml157Ixs2bOCNl1/gp19+pbKykt17Uplw1pk8+tADPP3y61RWVtI7MZEe3brw9isv8OU33/HOh59gs9kYOvwUXn/9dcqzM4ju1pMrL72IPxcu5v8ee5jUzCxef+d9lFL06NKJt156jl/mzOW5V9+gtraG4OAQvvjyK8LCwqgoyKG6rJiitJ38PGcuz7/6BrV2O6Fh4Xw6fTo5u7fx5huvYzQY+fjDD3jmkQdZtHwlgaHh3HnHHSya8xN3/vsBKiqriO/Ygdf+72nCYzsybtIUBiUnM/f3ORSXlPDK/z3NsMEDAbD6BmD1D8JeXc1jjzzIl998h8Fg4PTRI3n4/nuYePEVvPDiSyT1SmTPto2MPnsS6/5ewP++nMkPP/9GZU0NGsUVl17CzK++oryiHLvdwVefvM89DzzC1p27sdnt/Pe+ezntlMF8PftXfvz1NyoqKti5cyeTJ0/m2Wef5b777qOysrKuBvuzzz5r8HveVC2WgCqlJgA5WuuVSqlRx3iOSKA38Gtj5Vrrd4B3AJKTk4/7626z0cCGjGK6hHkBkoAKIcSh/PXlNvLSyo6841EIifVhxAXdmrRvSkoKq1evZvDgwZSWltKpU6dmjUW0vAX5JWzbvYfi1Wtg0xoMeRup7T+Ye+54hPQ9O/n8+8cp9PCj2OxHpcEHm7JwyuoZnDZiKLM27+SR0M5ohwW0EbQRjYFxWUsZz3g+3JDKezEXgDYAqu7nlLx1nMVYXt6wl1lRNzaI6arCTYxkNC9szufPqOsalN9WvIXBDOHpbUWsiry6fqGy8WDJdnrTi8d3VbI1/KAaD2M5zxWn0JV4HtljJzX8svqHmwuJK8kkJjSchzLM5IReUq/c4JHFgMoiQn18eTDHl6KQi+uXe+5hXG0VPiYfHioMpzz4wnrlJq9tXKY1ZhQPl8VTHdynXrnFe4PzG33gkYqe2AMH1Cu3+qxm3zvyWO1AdMCQeuU+nsu4BrA5NE8wEgLq336A8W+uBEqrbDxlPgP865eH2BdyGZBdUsWz1vFgrV8eWb2Ai4CU/HKe8z6Xg3Usm89UYHNWKc/7nNegvGvhn0wCVqQW8aLPlAblvfP+Yhzwx+5cXvRuWD4o629OB77dlsWLXg3LR2es4FQmM33LXqZ7Nmwuek7GWoYwjjc2ZTHb2rA8e+9a+jGKlzZks8B6foPy6qwNJPQdxNOb8lnlcXC5DWvONq7t2otHt5Sy1eOC+sXGckLzdpPoEUlGlaZGBQKw7pNtznKlsZryMRqM+HTxInxABPZaBxs/31FX7mkuwKAM+CX4ENonjNoKG5tn7nKVO/CyFHLeXQNIrzVjV0H1Lq8M1QQARsCBYu8B5Za4IGwOBzk5OXz//fdo7yA+/nEBNdXVXDl5LAkjz8Fo3J+u5NutrNm0lRk//4nF4sG5owYy8drrefrpp3nttdf47NdFACzYvpXPZ8/h3W9/x2qt4fXHnmD6p58y4PRJlFdUENfvFG588Hl2bN3MU/fcz4qly/ALCGTp5lTSVCCxg87kg1nno5Ti+y/e5dlnn+Xxp58lHx9KsZKqgokddCbvzzofq7mMv2b/ypNPP8t1dz/EeZddi5eXN1dO+wcAJUuWEQiUVdu49o77uO/RZ0keOpzXn3uS/778Lg8/8R8Ayqtr+HD2n/z1x288+tIbvPP5WQD4VJfTCZgxazbf/TaPD3+Yh6enF8WFhaQSSI2rCXN2eQ3pBGLHQCpB5OPDqg2b+f2vOfTu0pPnX32dVRs2M/O3hfgHBvLg04/Sc/jpPPvWJLyUB/0GDODznxdQXFvLmjVrWL16NR4eHnTv3p1//OMfde/xmjVrGvx+Hq2WrAEdDkxUSo3H+WfETyn1qdb6siMcd6ALgG+11rUtEuFBah21VOhMlmeUAH1b45JCCCGOUllZGVOmTOGll15ydyjiKGVW1xDpYcFRU8PSu04n1d/OhpA49kbEYws4h2HeGQBsrPBksekmsAN2UMqByWAnYagHACFRcYSacjAbwKjAoJw/z+wxHoDBiT1ZnrEMhQODou7nOd3GATA+uS+55atQan8tkUHBhC6nAzB1aH8UzhpEXPsoFGPjRgJw+Sn9CVq1se6+lOv40THDALjm1H78sX5/DaNSYDTAkLCeAFw3og9/b92JPqCGy2K00MvP+eX3DSMSWbk7hQNrqTxMPnQ0BzjLT+nO+rS0/RcHrKYQAhzOj3XXD49jW2YmuM6gAG9LNGabA4wGrh0WRUpOdr2RK/08uuJwaAwGxTVDg8koyD/w9AR59arb94pBnuSV1q/BjPBNBsBkUFw60ExR+b5aNOcZYv1OAcDLw8jFA4yUVlXUxQfQJeg0AIJ9LJzfDypqquvOrTUkRjj/7aICPDkvSVNdW78GNClqIgCdIvyZ2MeO/aB+hYM6TAagd+cIJvRZj8Ox/73VGkZ2diaFQ/t0Znx62v4y188zuzuTvrGDe7GlZBH1aj0UnJvoPH7SsP7k2lfUKwM4r58zKb5w5CBqrWv3l7tONKGvM/7LxwzFc9XGer8bAKclnAnAlWOGEbxpG/tqJgGUMjOiy1AArjltCL9v3+26tsKBxmTwJTk2icqcbEL8vCmrqQHAaNwfpEE5e+V5Wy34eSnsNape+b7fFW+rBV8vRY0+sHx/j74gXyuVBzXvNBo899fGKvDxOnjEVIXWmt9++41Va9Yw95cfACgtKSEncxddu3Wt29PTamD4yJFERAQA0LVHD4oLCuvK/byN2BwOVi9bwJb1a7ls4hgMSmGrriY0NJSRXgaMRiPnTDkXo1GxevlfnHPeFEJCQrA5HERFB+PQmtTde7nvH9eQm52NrbaGrp07YzIoLBYwmRRWT8Ue1z55Odlom42OcXFYPRVGExjN4OH6EsVicb6oqiinrLSY4aOHAzD10ou5/dqr8PF1JuRTpkzBYoW+yUk8+1AqrsPw9nZ+YfD3ooWcd+ml+Ad6ARAaGej6d3T+v/fx9sTi4fzVsFjBZIbho0YRFeP8gtbDw8KwUaMIcR23ZOE8/pz7M5+//wZGpaitqSEvLx0PDyunnXYa/v7Ob4l69uzJnj17iI2Npbm0WAKqtb4fuB/AVQP6r6NMPgEu3neO1mBSJiyWCgpLrUfeWQghTmJNralsbrW1tUyZMoVLL72U885zfqDz8fFh165dUgvahq0sLmfGdz+iNv3Ff594iaIyG+92uJGamjAoN6DKHYR62Bjq2Q+AIV0iubB8J1528NEKD+1MAHvnRgNwVs8O7H59V4PrhHcJAWBEXDTbtoY0KPfp5uwRNCw6ip0b9zQot/T0gkQYFhZF6rr0BuX09YAuMDQ4mr2rsxoU2weYIRaG+keTtyqvQbljiAkiYbhvDKUrixqWn2qEUDjFGkP1stIG5fYxCgLgFFMMelnDoTHs4zR4wwhiMC+taVBuO9eB2QNG1EbjvbRhHzA9VYNBMaIymvVL6jcsMxiVs1oAOLU0mi1/G+uVe3iZ4DwwGBQj8iLZubr+R0yfIA+YBB4mI0MzI0jbVFCvPCjKG84GL4uJIXvCydpVUq88PN4HzgQ/q5lB20PJzyivX57gA6dBoLeF5I0hlObXn5MwLMkHToVwP0/6rQykqrx+3UaI3QuGQYcgP3ov8cVhq3//wUYrDIQuwQH0Wujd4L0L8LJCEiQGB9N7oVeDct8gC/SEvgHBrPvLs0G5V7QJOkN/vxC2NVLuEWeADjDYL5T0BakNyg3dgHAY6hVK3p97G5YnajCAjzLhKHXe+2kX9dgff7gXFquJyrIa13tnrFceGOmN2WKkoqSGssIqvDHXKw+O8gHAT5swljbSr9JXg1GhAJ/S/QloSupuTAYDYaFhaK15/ukXGT5wZL1DU9P2/1/1thvwUR74ljq/GbJoI6aS/b/LQXYT1RU2rFVw0ZRL+O99D2M0Gpy/X0BxbiUeHlZCaswAeNUqKmqd8ZgMBkJsJmprHTx1z73cdMOtjDvzbP5evojnXnoKs9GAr8OI1a4Irjby9L3OfSaeM5FV65fy8MMPE2Y342034G03ElrrvIaH3Zmge5iNGFB128tsJkxa4Vvr/L/k5+NNuN2CSXugbXbCba7ja03gCWaDws9hItxuAfZ/OeRhNOFwOPC1mPGrcGDUigi7BX+HkWBPX7ztzvN7mYyEePkS6XAeb9Lw4fuf0ycpEQ8vM3abg9KCKrI3bsTDw6PuPTUajcfcZ/RQWroPaANKqUeBFVrrWUqpgcC3QCBwjlLqEa11omu/OCAW+LPVgrPb8agpoKQq6Mj7CiGEaFVaa6699loSEhK4884767bff//93HLLLcyYMQM/Pz/Kysr45ptv3D7og4CNZZV8+MdC/Ga/xMaO+eyNiuDOwkzCAiOJdUQSXmkg1m4kwm4gPNybHmHOPr4hvlYum9IDk8WI1duEh5cJo8mIl7/zg5PBoLjyqWEYjAYMzipOZy2j2fVBz8vEja+ObBCPweD8yOYbZK1f7so1lNFZHhTpzQ0v7y/fN6jVvvOHxflx/Uun1jsWwGhxlkd3D+S6F0bUu7bWYLY6PwjG9Q7h2ufrl8P+8i7JYcT1bphAWzyd5T2HR9J1YFiDcg8v5wfWPmNi6Tk8qkG51VU+YGxH+o5pWJthMDnvf8i5nUgeF9egfJ9TLujG0MldDrg3Xa82ddRlPRhxUf0vqQ4sP/OaROy2+jWUyrC/fPxNfbDbGkmAXSbe1g+Hvf7xRtP+Wrgpdw+oV8MJYDLvL7/gPwPrD1SmweyxP6G+9OH6zYth/7+Nwai47LH95ftO4+Hl/Eht8TJx6SNDXGX7r+Hp4/zd9Q7w4OIHB7v6F1P3+7Pvd9s/1JML/jOw3u+V1hrfYGflSFCUN1PuHXBQOQSGO5PesI5+TL6rX13X530xhMT4sjstB7PViH+YV/2DD3h/LFYT/qGeztMf+Lvtev8tnkb8jJ7s22HfLqqu3FT3/6zuEtT/9/cJdN5Lbl4O9z90F9NuuAllUJx11ll8+PF7jB41GrPZzPbt24mKjMLLz1J3rMlixGQx1G0zmgxYPJ3vvdlsBqMDq4+Z0884nYsuP5/b/nkbYeHhFBQUUFpaSmhgJEpRd8yYMWO49MqL+PcD9xIcHExJeTH+vgGUlpUQ2yEGk8XIF1/t7+toMDj/5pjMBkpLS4iNicFoNPDxxx87y40KXz9fSktL9//Oun74+/sT4B/IkmWLGTZkOF99/QXDh51S771SB+x/sDPOOIOHHnyE8ydfgJeXFwWFBQQGBtGhQxwrV64kOXkg3//wLQAOh8bh+vev+z3UoB0ah925Pnrk6bz97pu8+uqrAKxatYrOsQkH/Ks2ZDabqa2tdb7Xx6FVElCt9Xxgvuv1gwdsXw7EHOKYFCC65aPbT5lM+OoySmxeDf6YCiGEcK9FixYxffp0evfuTVJSEuAcke+mm26irKyMgQMHYjabMZvN3HVXw0FGROvalprB/579F2khG1mTMIya3Guwlpvw9g3Fw2TkhdG9UQZFaAdfgqO9sVjrfyTpParRjweA88Psvg+xhyo3mY3HXm5Q9RKSgxkMqkG8BzIaDRi9Dj3RgNFkqJcwHcxkNh42PueH8EOXmy1GzIcpt1hNdc37jqXcw9NZI3MoVu/Dfzi1+hy+3NPXctjyAxOSxngHeBy23Dfo8C3d/EIOfXNKKfxDG9Zw7mMwKALCD11uNO2vjWuMyWIkNPbQY3darCYi4v0PWW71NhPVNfDQ1zcaMHq23O/mkX73KisrGXbqIGprazGZTFx++eXceeedKKW47rrrSElJYcTooWitCQ0N5bvvvsOrdv+/p9nDiNnDVPf/32Q21CX3N9xwA4OHJdO/f38+++wznnzyCc67cCIOhwOz2czrr79Ox44dAfALdv4bDx4+gAce+C8jR47EaDTSr18/PvroIx57/FGuvv5yAgMDGTNmDOkZzlpnq48Zi6cJ/1Av5z437N9n9+7d+AV7csHFU5g6dSq//v4Tr776ar2/FZ9+9gnTpk2joqKCTp068eGHH+Ltv//+AsK9sBm9MRgVgRH1f0/GjRvH2rVrOWPCSCwWC+PHj+fJJ5/kvvvv4YILLuCdd97h7LPPxmBUBEV64xPggdXbXPf+GIwGrN5mgiKd533ymUe5/fbbGTR0AA6Hg/j4eGbPnn3Yf98bbriBPn361L3Hx0qdKEPVJycn6xUrVhx5xyM454HbWV97BqsfOINA78P/gRNCiJPJ5s2bSUhIcHcYzaax+1FKrdRaJ7sppDajOZ6p21JXc+6PD1GbOQlbTThxtYqLQoK5/Oakeh+4hBCt40T7Gy7alqN5prZ6E9y2zObQGOzOPgOZxRWSgAohhBDHqKg0mso9N+LrgCl+/lwzOYHYnkHSukgIIU5ykoAewGRQWF3PxZ35efSMCnBrPEIIIUR7ldwjhGvDQ7hwTDxd+4RK4imEEAKQBLQBHw8LVMDO3FygyxH3F0IIIURDBqOBB+4Y7O4whBBCtDGH7mV8kvL3CQBgT3bD4dOFEEIIIYQQQhw7SUAP4h8UDcZyMgsazr8lhBBCCCGEEOLYSRPcA9jtDvJSvTGYSsktk7dGCCGEEEIIIZqT1IAewGg0YLAEYVYlFFbKYAlCCNHWXHPNNYSFhdGrV69625977jl69OhBUlISAwcO5JNPPnFThM1LKWVUSq1WSs12rccrpZYqpXYopWYopSyu7R6u9R2u8rgDznG/a/tWpdRZbroVIYTgiSeeIDExkT59+pCUlMTSpUsBeOmll6ioqDjkcddddx2bNm06pmvOmjWLp59++piObWvmz5/P4sWL3R3GcZME9CCe3oF46hLKa2WOMiGEaGuuuuoqfvnll3rb3nrrLebMmcOyZctYs2YNc+fO5USZ4xq4Ddh8wPozwIta6y5AIXCta/u1QKFr+4uu/VBK9QQuAhKBscAbSqlDzzIuhBAt5O+//2b27NmsWrWKdevW8fvvvxMbGwscPgG12+2899579OzZ85iuO3HiRO67775jjru52O32w643hSSgJ6hQqxUveynVdk8cjhPmA4wQQpwQTj31VIKCgupte/LJJ3nzzTfx8/MDwM/PjyuvvNId4TUrpVQMcDbwnmtdAWOAma5dPgYmuV6f61rHVX6aa/9zgS+01tVa693ADmBQq9yAEEIcIDMzk5CQEDw8nJU8ISEhREVF8corr7B3715Gjx7N6NGjAfDx8eGuu+6ib9++/P3334waNYoVK1bUld1xxx0kJiZy2mmnkZubC8CoUaO47bbbSEpKolevXixbtgyAjz76iFtvvRVwfon5z3/+k2HDhtGpUydmznT+OXU4HNx888306NGDM844g/Hjx9eVHWjHjh2cfvrp9O3bl/79+7Nz507mz5/PhAkT6va59dZb+eijjwCIi4vj3nvvpX///nz11VcN1n/77TeGDh1K//79Of/88ykrK6s77qGHHqJ///707t2bLVu2kJKSwltvvcWLL75IUlISf/31V3P/E7Ua6eh4kAhPC16OKsBIQUUNIT5SEyqEEAd7YHs6G8oqm/WcvXw8eaxrzFEdU1JSQmlpKZ06dWrWWI5EKVVypF2ATK11t+O4zEvAPYCvaz0YKNJa21zr6UC063U0kAagtbYppYpd+0cDSw4454HH1A9YqRuAGwA6dOhwHGELIdqDb59fRY+hkSQMi8RudzDrpTX0PCWK7oMjqK2xM/vVtfQaGU3X5HCqK2389MY6+oyJoXO/MCrLavjl7Q0kndGB+D4hlBdX4+1/+M/MZ555Jo8++ijdunXj9NNP58ILL2TkyJH885//5IUXXmDevHmEhIQAUF5ezuDBg3n++ecbnKe8vJzk5GRefPFFHn30UR555BFee+01ACoqKlizZg0LFizgmmuuYcOGDQ2Oz8zMZOHChWzZsoWJEycydepUvvnmG1JSUti0aRM5OTkkJCRwzTXXNDj20ksv5b777mPy5MlUVVXhcDhIS0s77H0HBwezatUqAO6777669by8PM477zx+//13vL29eeaZZ3jhhRd48MEHAWeCvmrVKt544w2ee+453nvvPaZNm4aPjw//+te/DnvNtk5qQA8S7W3BkxoAsoqb98OVEEKIE8ZOrbXfYRZfoPxYT66UmgDkaK1XNl/Ih6e1fkdrnay1Tg4NDW2tywohThI+Pj6sXLmSd955h9DQUC688MK6msKDGY1GpkyZ0miZwWDgwgsvBOCyyy5j4cKFdWUXX3wx4GwtU1JSQlFRUYPjJ02ahMFgoGfPnmRnZwOwcOFCzj//fAwGAxEREXU1sQcqLS0lIyODyZMnA2C1WvHy8jrife+L9eD1JUuWsGnTJoYPH05SUhIff/wxe/bsqdvvvPPOA2DAgAGkpKQc8TrtidSAHiTQz4oVZ9Pbnfl59IoOcG9AQgjRBh1tTWVL8fPzw8fHh127drV2LWjjn4yOfp9DGQ5MVEqNB6yAH/AyEKCUMrlqQWOADNf+GUAskK6UMgH+QP4B2/c58BghxEls8l39614bjYZ662aLsd66h6ep3rqnj6Xe+pFqP/dfx8ioUaMYNWoUvXv35uOPP+aqq65qsJ/VasVobFp3dWdvg4avG1sH6poAA80yXoDJZMLhcNStV1VV1Sv39vZudF1rzRlnnMHnn3/e6Hn3xWk0GrHZbI3u015JDehBvPwteLry8l25eW6ORgghxJHcf//93HLLLZSUOFvFlpWVtfgouFrrXQdvU0oFHWmfozj//VrrGK11HM5BhP7QWl8KzAOmuna7Evje9XqWax1X+R/a+clqFnCRa5TceKArsOxY4xJCiGO1detWtm/fXre+Zs0aOnbsCICvry+lpaVNOo/D4ajrn/m///2PU045pa5sxowZgLNG09/fH39//yadc/jw4Xz99dc4HA6ys7OZP39+g318fX2JiYnhu+++A6C6upqKigo6duzIpk2bqK6upqioiLlz5zbpmkOGDGHRokXs2LEDcDYt3rZt22GPOZr3qS2TBPQg3v4eWA3ObyZSc3LdHI0QQogDXXzxxQwdOpStW7cSExPD+++/z0033cTo0aMZOHAgvXr1YsSIERgMLft4U0oNV0ptVkptVEoNVkrNAZYrpdKUUkNb8NL3AncqpXbg7OP5vmv7+0Cwa/udwH0AWuuNwJfAJuAX4Bat9dEPvSiEEMeprKyMK6+8kp49e9KnTx82bdrEww8/DMANN9zA2LFjG236ejBvb2+WLVtGr169+OOPP+r6TIKz5rRfv35MmzaN999//zBnqW/KlCnExMTQs2dPLrvsMvr3799o8jp9+nReeeUV+vTpw7Bhw8jKyiI2NpYLLriAXr16ccEFF9CvX78mXTM0NJSPPvqIiy++mD59+jB06FC2bNly2GPOOeccvv3223Y/CJE6UYaqT05O1vtGxzoeRTkV3P/aK/xij2dQlIMZt1zcDNEJIUT7t3nzZhISEtwdRrNp7H6UUiu11slHOlYptQzn1Cc+wA/AJK31QqVUf+BVrfXwloi5tTTXM1UI0XacKH/DfXx86kaLPdCoUaN47rnnSE4+4p/wRpWVleHj40N+fj6DBg1i0aJFREREHG+4J42jeaZKH9CDePt7YFCRKFMJuaUyAq4QQohGmbXW6wGUUrla64UAWutVSilP94YmhBDiaE2YMIGioiJqamp44IEHJPlsQZKAHsTsYcRoCcFs20JRVZi7wxFCCNE2HdjG9/6DyiytGYgQQpxMGqv9BBrtt3k0jvd40XTSB7QRHr6BeDpKKKuVGlAhhBCNekAp5QWgtf5u30alVGegZUdAEkIIIdoxSUAbEWq14uUoo8buic3uOPIBQgghTipa61la64oDtymlIrTWO7XWz7orLiGEEKKtkwS0EeFWC16OCsBAfnmNu8MRQgjRPvzk7gCEEEKItk4S0EZEeVnw0rUAZBZXujkaIYQQ7UTDGc+FEEIIUY8koI0I8bNixTk9ze78fDdHI4QQYp+srCwuuugiOnfuzIABAxg/fnzdxN3jxo0jPT2dSy+9lO7du9OrVy+uueYaamtrWyu8d1vrQkII0d7k5+eTlJREUlISERERREdH163X1NRvcfjSSy9RUVFxiDPtN2rUKNrilFHfffcdmzZtcncYbZYkoI3w8rdgVc4BgnflSQIqhBBtgdaayZMnM2rUKHbu3MnKlSt56qmnyM7OprKykvz8fGJiYrj00kvZsmUL69evp7Kykvfee69F41JKBSql+gBLlFL9XXOBCiGEOEBwcDBr1qxhzZo1TJs2jTvuuKNu3WKpP3h4UxPQlmC32w+73hSSgB6eJKCN8Pa34KF8AAepOXnuDkcIIQQwb948zGYz06ZNq9vWt29fRowYwfz58xk1ahQA48ePRymFUopBgwaRnp7eYjEppR4D1gGvAM+7luda7IJCCHECmTt3Lv369aN3795cc801VFdX88orr7B3715Gjx7N6NGjAbjppptITk4mMTGRhx566IjnXb58OcOGDaNv374MGjSI0tJSPvroI2699da6fSZMmFA39YqPjw933XUXffv25e+//26w/umnnzJo0CCSkpK48cYb65JSHx8f/vOf/9C3b1+GDBlCdnY2ixcvZtasWdx9990kJSWxc+fO5n/j2jmZB7QRXv4eGAyhKFMZewukS48QQhws68knqd68pVnP6ZHQg4h///uQ5Rs2bGDAgAGNlv38889MmjSp3rba2lqmT5/Oyy+/3JxhHuwCoLPWWkasE0K0G399uY28tMbn0zxWIbE+jLigW5P3r6qq4qqrrmLu3Ll069aNK664gjfffJPbb7+dF154gXnz5hESEgLAE088QVBQEHa7ndNOO41169bRp0+fRs9bU1PDhRdeyIwZMxg4cCAlJSV4enoeNpby8nIGDx7M888/32B98+bNPPPMMyxatAiz2czNN9/MZ599xhVXXEF5eTlDhgzhiSee4J577uHdd9/lv//9LxMnTmTChAlMnTq1ye/HyURqQBvhHeCBwRCBMpWQV9ZqfYeEEEIco0WLFnHKKafU23bzzTdz6qmnMmLEiJa89AYgoCUvIIQQJyK73U58fDzdujmT1iuvvJIFCxY0uu+XX35J//796devHxs3bjxs89atW7cSGRnJwIEDAfDz88NkOnydm9FoZMqUKY2uz507l5UrVzJw4ECSkpKYO3cuu3btAsBisTBhwgQABgwYQEpKStNu/iQnNaCNsFiNGM0hmG2bKarycXc4QgjR5hyuprKlJCYmMnPmzAbbd+3aRWxsbL0+RI888gi5ubm8/fbbLR3WU8BqpdQGoHrfRq31xJa+sBBCHKujqal0t927d/Pcc8+xfPlyAgMDueqqq6iqqjrq85hMJhwOR936geewWq0YjcZG17XWXHnllTz11FMNzmk2m1HK2VrSaDRis9mOOq6TkdSANkIphYd3IJ66lLIaD3eHI4QQAhgzZgzV1dW88847ddvWrVvH9OnTGTt2bN229957j19//ZXPP/8cg6HFH3MfA88AT7O/D+jzLX1RIYRo74xGIykpKezYsQOA6dOnM3LkSAB8fX0pLS0FoKSkBG9vb/z9/cnOzubnn38+7Hm7d+9OZmYmy5cvB6C0tBSbzUZcXBxr1qzB4XCQlpbGsmXLmhTnaaedxsyZM8nJyQGgoKCAPXv2HPaYA+MXDUkN6CGEWK14OUopcnhSa3dgNkquLoQQ7qSU4ttvv+X222/nmWeewWq1EhcXh8Ph4M0336zbb9q0aXTs2JGhQ4cCcN555/Hggw+2VFgVWutXWurkQghxorJarXz44Yecf/752Gw2Bg4cWDfI3A033MDYsWOJiopi3rx59OvXjx49ehAbG8vw4cMPe16LxcKMGTP4xz/+QWVlJZ6envz+++8MHz6c+Ph4evbsSUJCAv37N23A8p49e/L4449z5pln4nA4MJvNvP7663Ts2PGQx1x00UVcf/31vPLKK8ycOZPOnTs3/Y05CSittbtjaBbJycm6OecB+uDDdfxvxxvssJ/D4vvGEBVw+M7LQghxotu8eTMJCQnuDqOe6upqhg8ffkzzwDV2P0qplVrr5KaeQyn1As6mt7Oo3wR31VEH1IY09zNVCOF+bfFvuDhxHM0zVWpADyHK2wMv16CGWcVVkoAKIUQb5OHh4e5JyPu5fg45YJsGxrghFiGEEKLNkwT0EEL8LFhxdlROKSigf8dAN0ckhBCirdFaj3Z3DEIIIUR7Ih0bD8Hbz4qnMgOwKy/PzdEIIYRoL5RSTetYJIQQrexE6Xon2paj/b2SBPQQvP0tWJQ3YCc1RxJQIYQQTXaTuwMQQoiDWa1W8vPzJQkVzUprTX5+PlartcnHSBPcQ/AO8MBgDENRyt4CeZuEEEI02c3uDkAIIQ4WExNDeno6ubm57g5FnGCsVisxMTFN3l8yq0Pw8rdgUJEoUwl5Zb7uDkcIIUQbppwzkY8BLgEmAOHujUgIIeozm83Ex8e7OwwhpAnuoVi9zShzMCZDCUVV8jYJIURbkJWVxUUXXUTnzp0ZMGAA48ePZ9u2bQCMGzeO9PT0un3/+c9/4uPj06LxKKWGKKVeAfYA3wMLgB4telEhhBCiHZPM6hCUUli8gvBylFBe6+HucIQQ4qSntWby5MmMGjWKnTt3snLlSp566imys7OprKwkPz+/rgnQihUrKCwsbLFYlFJPKqW2A08A63BOx5Krtf5Ya91yFxZCCCHaOUlADyPYwxMvRxm1DitVtXZ3hyOEECe1efPmYTabmTZtWt22vn37MmLECObPn8+oUaMAsNvt3H333Tz77LMtGc51QDbwJjBda52Pc/5PIYQQQhyG9AE9jAgPE972CgByS6uJDfJyc0RCCNE2PLPsGbYUbGnWc/YI6sG9g+49ZPmGDRsYMGBAo2U///wzkyZNAuC1115j4sSJREZGNmt8B4kEzgAuBl5SSs0DPJVSJq21rSUvLIQQQrRnUgN6GJFeHnjpWgCyiivdHI0QQohDWbRoEaeccgp79+7lq6++4h//+EeLXk9rbdda/6K1vhLoDHwHLAIylFL/a9GLCyGEEO2Y1IAeRpifBatytqhKKSxiYHywmyMSQoi24XA1lS0lMTGRmTNnNti+a9cuYmNjsVgsrF69mh07dtClSxcAKioq6NKlCzt27GixuLTW1cDXwNdKKT9gUotdTAghhGjnpAb0MLz9PLBiBGB3Xr6boxFCiJPbmDFjqK6u5p133qnbtm7dOqZPn87YsWMBOPvss8nKyiIlJYWUlBS8vLxaJPlUSk1obLvWukRr/cnh9hFCCCFOZlIDehjeAR5YDL7gsJGak+fucIQQ4qSmlOLbb7/l9ttv55lnnsFqtRIXF4fD4eDNN99s7XD+TymVAajD7PMkMLuV4hFCCCHaBUlAD8Pb3wODIQxlKiGzUKZiEUIId4uKiuLLL7+sW6+urmb48OHExcU1un9ZWVlLhZINvHCEfba31MWFEEKI9koS0MPw8rdgMESgDCXklQW6OxwhhBAH8fDwYMWKFa1+Xa31qFa/qBBCCHECkD6gh+Hpa0EbQzEbSimqOlwrKyGEEEIIIYQQRyIJ6GEYDAqLZyCejhLKa6UJrhBCCCGEEEIcD0lAjyDIasXbXorN4UFFjcwtLoQQQgghhBDHShLQIwi3mPF2VAKQU1Lt5miEEEK0JUqplUqpW5RSMlCAEEII0QQtnoAqpYxKqdVKqQZD0SulTlVKrVJK2ZRSUw8q66CU+k0ptVkptUkpFdfSsTYm0suCp64BIKukyh0hCCGEaLsuBKKA5UqpL5RSZymlZNAAIYQQ4hBaowb0NmDzIcpSgauA/zVS9gnwf1rrBGAQkNMi0R1BuK8HVjQAqYVF7ghBCCGES1ZWFhdddBGdO3dmwIABjB8/nm3btgEwbtw40tPTmTt3Lv379ycpKYlTTjmFHTt2tFg8WusdWuv/AN1wPss+APYopR5RSgW12IWFEEKIdqpFE1ClVAxwNvBeY+Va6xSt9TrAcdBxPQGT1nqOa78yrXVFS8Z6KD5+HliVc7aa3fkF7ghBCCEEoLVm8uTJjBo1ip07d7Jy5UqeeuopsrOzqaysJD8/n5iYGG666SY+++wz1qxZwyWXXMLjjz/eonEppfoAzwP/B3wNnA+UAH+06IWFEEKIdqil5wF9CbgH8D3K47oBRUqpb4B44HfgPq21/cCdlFI3ADcAdOjQ4biDbYx3gAdm5QuqhtSc/Ba5hhBCiCObN28eZrOZadOm1W3r27cvAD///DOjRo0CQClFSUkJAMXFxURFRbVYTEqplUAR8D7O59S+wQKWKqWGt9iFhRBCiHaqxRJQpdQEIEdrvVIpNeooDzcBI4B+OJvpzsDZVPf9A3fSWr8DvAOQnJysjy/ixnn5W1CGcAzmIlJyHUc+QAghTgKP/LCRTXtLmvWcPaP8eOicxEOWb9iwgQEDBjRa9vPPPzNp0iQA3nvvPcaPH4+npyd+fn4sWbKkWeM8yPla610HblBKxWutd2utz2vJCwshhBDtUUs2wR0OTFRKpQBfAGOUUp828dh0YI3WepfW2gZ8B/RvkSiPwNvfA4MhHINnGrsLjGjdInmuEEKI47Bo0SJOOeUUAF588UV++ukn0tPTufrqq7nzzjtb8tIzm7hNCCGEELRgDajW+n7gfgBXDei/tNaXNfHw5UCAUipUa50LjAFWtEScR+LlZ0EbQ/AwL6G8dgDphZXEBnm5IxQhhGgzDldT2VISExOZObNhbrdr1y5iY2OxWCzk5uaydu1aBg8eDMCFF17I2LFjmz0WpVQPIBHwV0odWNPpB1ib/YJCCCHECaLV5wFVSj2qlJroej1QKZWOc8CGt5VSGwFcfT3/BcxVSq0HFPBua8cKYDQZMFuDCbOlArA6rcgdYQghxElvzJgxVFdX884779RtW7duHdOnT69LMgMDAykuLq4bGXfOnDkkJCS0RDjdgQlAAHDOAUt/4PqWuKAQQghxImjpQYgA0FrPB+a7Xj94wPblQMwhjpkD9GmF8I4oyMNKl9xcUgw1rN5TyMS+LTeghRBCiMYppfj222+5/fbbeeaZZ7BarcTFxeFwOHjzzTcBMJlMvPvuu0yZMgWDwUBgYCAffPBBs8eitf4e+F4pNVRr/XezX0AIIYQ4QbVKAtrehVtM2Mr9MIRmsDQlAGerKyGEEK0tKiqKL7/8sm69urqa4cOHExcXV7dt8uTJTJ48uUXjUErdo7V+FrhEKXXxweVa63+2aABCCCFEOyUJaBNEeFrY7dEZg2cq27LiqLbZ8TAZ3R2WEEKc9Dw8PFixwi1DBGx2/XTLxYUQQoj2qtX7gLZHEb4WskL74mFJxeZQzT71gBBCiPZFa/2D6+fH+xZgOvCt6/VxUUrFKqXmKaU2KaU2KqVuc20PUkrNUUptd/0MdG1XSqlXlFI7lFLrlFL9DzjXla79tyulrjze2IQQQojjIQloE/j6W0mL6EqnEtdARKlF7g1ICCHc5ESZiqq57kMp9T+llJ9SyhvYAGxSSt3dDKe2AXdprXsCQ4BblFI9gfuAuVrrrsBc1zrAOKCra7kBeNMVXxDwEDAYGAQ8tC9pFUIIIdxBEtAm8Pb3wGEKpmtBBQZTEStTC9wdkhBCtDqr1Up+fn67T0K11uTn52O1NstsKT211iXAJOBnIB64/HhPqrXO1Fqvcr0uxdnkNxo4F9hXw/qx67q4tn+inZbgnMosEjgLmKO1LtBaFwJzgOafl0YIIYRoIukD2gRe/haiCu2YbZEYPFNZuSfE3SEJIUSri4mJIT09ndzcXHeHctysVisxMY0Own60zEopM85E8DWtda1SqlkzdKVUHNAPWAqEa60zXUVZQLjrdTSQdsBh6a5th9ouhBBCuIUkoE3g7W8hOt9OuU8CRs80snL6kFtaTaivh7tDE0KIVmM2m4mPj3d3GG3N20AKsBZYoJTqCDTbQAFKKR/ga+B2rXWJUqquTGutmzPZVUrdgLP5Lh06dGiu0wohhBD1SBPcJvDy9yCqwEZKdG98cfYDXZNW5N6ghBBCuJ3W+hWtdbTWeryr+eseYHRznNtVs/o18JnW+hvX5mxX01pcP3Nc2zOA2AMOj3FtO9T2xu7lHa11stY6OTQ0tDluQQghhGhAEtAmMFuMBBgMFMZ2oUd+OmBnTVqhu8MSQgjhZkopD6XUJUqpfyulHlRKPQj8uxnOq4D3gc1a6xcOKJoF7BvJ9krg+wO2X+EaDXcIUOxqqvsrcKZSKtA1+NCZrm1CCCGEW0gT3CbyC/UkyGEmptQDQ1AmK1KC3R2SEEII9/seKAZWAtXNeN7hOAczWq+UWuPa9m/gaeBLpdS1wB7gAlfZT8B4YAdQAVwNoLUuUEo9Bix37feo1lpG0hNCCOE2koA2UXicHyEZRWgVi9EzjbXpMdgdGqNBHflgIYQQJ6oYrXWzjyqrtV4IHOoBc1oj+2vglkOc6wPgg+aLTgghhDh20gS3icLi/AjLqqEgoDdGz1SqamF7Tqm7wxJCCOFei5VSvd0dhBBCCNFeSALaROFxfkQU2djVMZGIqj0ArEktcm9QQggh3O0UYKVSaqtSap1Sar1Sap27gxJCCCHaKmmC20SBkd54mozUhMfRa3MBqeYKVqUWctEgGapeCCFOYuPcHYAQQgjRnkgNaBMZDIqwDr6ElRkIqApCeaayYk+eu8MSQgjhRq5pV2KBMa7XFcizVQghhDgkeUgehfA4P4JTK6m2dMLomcbu3CpKq2rdHZYQQgg3UUo9BNwL3O/aZAY+dV9EQgghRNsmCehRCIvzIzLPRlZoXzwse9DAuvRid4clhBDCfSYDE4FyAK31XsDXrREJIYQQbZgkoEchPN6PkBI7KfHdiS9NA2B1aqGboxJCCOFGNa4pUDSAUsrbzfEIIYQQbZokoEfBJ9ADb18LHr6RdM6zYbTksEoSUCGEOJl9qZR6GwhQSl0P/A686+aYhBBCiDZLRsE9Ckop53QsuTV42CNQnqmsTI1Ea41Sh5ovXAghxIlKa/2cUuoMoAToDjyotZ7j5rCEEEKINksS0KMUHudL8Kp0yr26Y/RMpbg4mbSCSjoEe7k7NCGEEG7gSjgl6RRCCCGaQJrgHqWwOD+i8u3sie6Ln0oFYHWaNMMVQoiTiVKqVClVcqjF3fEJIYQQbZUkoEcprKMffpUOsjp2pUdeFkrVsDq1yN1hCSGEaEVaa1+ttR/wMnAfEA3E4JyS5SU3hiaEEEK0aZKAHiWrt5mAME+C8CWyxBOD5x4WbM9xd1hCCCHcY6LW+g2tdanWukRr/SZwrruDEkIIIdoqSUCPQXicH2GZ1WjVAZPvRnblVrAtu9TdYQkhhGh95UqpS5VSRqWUQSl1Ka45QYUQQgjRkCSgxyAszo/QvdUU+ffG5LcBhWb2ukx3hyWEEKL1XQJcAGS7lvNd24QQQgjRCElAj0F4nB+RBXZ2dOhJZGkpQT7Z/LhuL865yIUQQpwstNYpWutztdYhWutQrfUkrXWKu+MSQggh2ipJQI9BSKwP3naoiIqjd4qi2nspO3PL2SrNcIUQQgghhBDikCQBPQYms5HgGB8iKkx0KIpA+61DKfhRmuEKIYQQQgghxCFJAnqMwuP9CEmvIjVsCP41ZYQG5PHjukxphiuEECcRpVR8U7YJIYQQwkkS0GMUHudHeHYNf/UfxuCtmkqPRezKK2dTpsw/LoQQJ5GvG9k2s9WjEEIIIdoJk7sDaK/C4vwIL7KTFR5Jr6JwfvNdiyH7XH5cl0lilL+7wxNCCNGClFI9gETAXyl13gFFfoDVPVEJIYQQbZ/UgB6jwHAvPC1G4moURTGj8KstJzQwjx/XSzNcIYQ4CXQHJgABwDkHLP2B690XlhBCCNG2SQ3oMVIGRVhHP7pn2/gicQDDls1gXtxCsjMnsXFvCb2ipRZUCCFOVFrr74HvlVJDtdZ/uzseIYQQor2QGtDjEB7nR9ymMtIiokkqCsPhsw6jAWbLaLhCCHGy2KGU+rdS6h2l1Af7FncHJYQQQrRVh6wBVUq90oTjS7TW/23GeNqV8Dg/gn6108lspiR6FD61X+EbmMeP6z25d2x3lFLuDlEIIUTL+h74C/gdsLs5FiGEEKLNO1wT3HOBB49w/H3ASZuAhsX5ATCs1sTnPZMZuPJLFnT4i+LMyazPKKZPTIB7AxRCCNHSvLTW97o7CCGEEKK9OFwC+qLW+uPDHayUCmzmeNoVn0APvP0t9Eyv5dOYaG4oCGNe4jqM2ZP5cV2mJKBCCHHim62UGq+1/sndgQghhBDtweH6gC460sFa65eaL5T2KapbII61hXTytFAeMxLv2grCA/OZvU5GwxVCiJPAbTiT0CqlVIlSqlQpJRNCCyGEEIdwuAT0HaXUdqXUY0qpnq0WUTvTuX8o1WW1jDRY+V9CMsnbNeWWP8koqmRterG7wxNCCNGCtNa+WmuD1tqqtfZzrfu5Oy4hhBCirTpkAqq17odzjjMbMFMptVYpdZ9SKq61gmsPOiQGY7IY6JZSze7IGPoXhGL3dY6G++O6ve4OTwghRAtSTpcppR5wrccqpQa5Oy4hhBCirTrsNCxa661a60e01j2BKwB/YK5S6ojNc08WZouRjr1CcCzPo4PVQlXUSLxslUQG5fPdmr1U22RQRCGEOIG9AQwFLnGtlwGvuy8cIYQQom1r0jygSikDEAaEA95ATksG1d50GRBGVWkto0xWvkgYyIDtmkrPn8gtrWbWGqkFFUKIE9hgrfUtQBWA1roQsLg3JCGEEKLtOmwCqpQaoZR6A0gH/oVzrrPuWuvJrRFce9EhMQiT2UCPPdVsj4xmQH4I1d4biQ028t5fu2UwIiGEOHHVKqWMgAZQSoUCDveGJIQQQrRdh0xAlVJpwFPAJiBJa32W1vpDrbWMrHMQi9VEh17BsDyfKKuF2qiReNZoOkZuYmt2KQu257k7RCGEEC3jFeBbIEwp9QSwEHjSvSEJIYQQbdfhakBP0VqforV+TWstTW6PoHP/UCqLaxht9uTzhIEkb9fssM0gzNfCuwt2uTs8IYQQzczVPWU3cA/OL2wzgUla66/cGpgQQgjRhh0uAb36SAcrpR5uvlDat7heIRhNBhLSatgWGcNp6WGUqwr6dS1m4Y48Nu6VimMhhDiRaK0dwOta6y1a69ddX9hudndcQgghRFtmOkzZdUeYTFsBFwEPN2tE7ZTF00RszyBylucTPsGf/ISz6Jb+Kbs7foS35Vbe+2s3L16Y5O4whRBCNK+5SqkpwDdaOvwLIYQQR3S4GtB3Ad/DLD6ufYRLl/6hVBRWM9rDi1eTRzBhrYlM+x6G9YAf1u5lb1Glu0MUQgjRvG4EvgKqlVIlSqnSI3x5K4QQQpzUDlkDqrV+pDUDORHE9QnBYFQkpNfwhb83XTuNI7R4NsURX6OZzEeLU/j3+AR3hymEEKIZuPqAjtVay9zYQgghRBM1aR5Q0TQeXmZiE4LwWFZAsNnE96dNYNwKB5srlzC8mxf/W5pKSVWtu8MUQgjRDFx9QF9zdxxCCCFEeyIJaDPr3D+M8oIqzvT0YobZh7F+w/GsAY+APymrtjFjWZq7QxRCCNF85iqlpiillLsDEUIIIdqDFk9AlVJGpdRqpdTsRspOVUqtUkrZlFJTDyqzK6XWuJZZLR1nc4nvG4LBoBiebqNGa5adNYUxaxwsL/6Gfh19+GDRbmrtMke5EEKcIKQPqBBCCHEUjpiAKqW6KaXmKqU2uNb7KKX+exTXuA041LD0qcBVwP8aKavUWie5lolHcT23snqbiekRSOWKfE4P8uWFgCgmFndBOxzERG8hs7iKn9ZnujtMIYQQzUBr7au1NmitLVprP9e6n7vjEkIIIdqqptSAvgvcD9QCaK3X4Zx+5YiUUjHA2cB7jZVrrVNc5zuhqgQ79w+jJLeSC60+5NvsFI+9mEFbHawofJ9OIV689ecuHA4ZrV8IIdo7V0ueBou74xJCCCHaqqYkoF5a62UHbbM18fwvAfdwbAmmVSm1Qim1RCk1qbEdlFI3uPZZkZubewyXaBnxSSEogyJkcyk9va0816kX5+4KpIxKBiTkszmzhO/XZrg7TCGEEMfv7gOWB4AfkPmxhRBCiENqSgKap5TqDGgAV1/NI7YhVUpNAHK01iuPMbaOWutk4BLgJVcM9Wit39FaJ2utk0NDQ4/xMs3P08dCdLcAdqzI4bqYUDZW2wg/9VK6Zmg2lLxNr2g/nv1lK5U1dneHKoQQ4jhorc85YDkD6AUUujsuIYQQoq1qSgJ6C/A20EMplQHcDtzUhOOGAxOVUinAF8AYpdSnTQ1Ma53h+rkLmA/0a+qxbUHiiGhK8qrol2UnxGzizf7DOWetifSaLM4ZWE1mcRXv/rXL3WEKIYRoXumATPgshBBCHMIRE1Ct9S6t9elAKNBDa32K1jqlCcfdr7WO0VrH4ewz+ofW+rKmBKWUClRKebheh+BMZjc15di2olNSCL7BVjb/kcZV0SH8VO1gUOJ5hBTDopwPGNcrgjfn7yS7pMrdoQohhDhGSqlXlVKvuJbXgL+AVe6O62BKqbFKqa1KqR1KqfvcHY8QQoiTV1NGwb1TKXUnzqHmr3etX6uUSjqWCyqlHlVKTXS9HqiUSgfOB95WSm107ZYArFBKrQXmAU9rrdtVAmowGug7JpbMHcWMd3jgYVB8PWosE5Y7WF24njP6l2N3aJ77dau7QxVCCHHsVgArXcvfwL1N/bK1tSiljMDrwDigJ3CxUqqne6MSQghxsjI1YZ9k1/KDa30CsA6YppT6Smv97JFOoLWej7MZLVrrBw/YvhyIaWT/xUDvJsTWpiUMi2TZD7tIn7+X84YH8mF2Ib8EjeGXoj+ZvuU5rhj2FO8vTOHKYXH0ivZ3d7hCCCGO3kygSmtth7q5r7201hVujutAg4Adri4tKKW+AM6lhVsW9f7vK5TZGzzihRBCtHEL/nkKsZFhLXb+piSgMUB/rXUZgFLqIeBH4FSc3/geMQE9WVk8TfQ8JYq1f6Rz6dhoPs8sYOF5l3LJS3/wwqTdnN9tG4GrfHj8x018fv0QlFLuDlkIIcTRmQucDpS51j2B34BhbouooWgg7YD1dGDwwTsppW4AbgDo0KHDcV+0k7WMgpotx30eIYQQrcvb6/QWPX9TEtAwoPqA9VogXGtdqZSqPsQxwqX36BjWzk2jZkkep3b24dVyM7N7T2F2xre8a3mJW0a/x2OztzFnUzZnJka4O1whhBBHx7rvC1oArXWZUsrLnQEdK631O8A7AMnJycc9WfX3//33ccckhBDixNOUUXA/A5YqpR5y1X4uAv6nlPKmnQ0M5A5+wZ507h/GxoV7uSY8mKyaWlZcdAVXLDKRV1NAlffvdAnz4amft1BjO5bpUoUQQrhRuVKq/74VpdQAoNKN8TQmA4g9YD3GtU0IIYRodU0ZBfcxnAMQFbmWaVrrR7XW5VrrS1s2vBND39Njqam0EbGllK5eHrxRbmfYhBsYstnBx+vf59bTo9mdV870JXvcHaoQQoijczvwlVLqL6XUQmAGcKt7Q2pgOdBVKRWvlLLgHJl+lptjEkIIcZJqSg3ovsGCPge+BXKUUsffOeQkEhHvT0Qnf9bPTefm2DDWlVWy5OzJXL4xmFp7NWtKP2VE1xBe/n0bOaUyLYsQQrQXrudjD5zzY08DErTWK90bVX1aaxvOpPhXYDPwpdZ64+GPEkIIIVpGU6ZhmaiU2g7sBv50/fy5pQM70SSdHktJXhXJWXYSvK08nlFAz2vv5MyVDr7d8Q1Xj/ShyubgP99uQOvj7nojhBCilWita7XWG1xLrbvjaYzW+ietdTetdWet9RPujkcIIcTJqyk1oI8BQ4BtWut4nKP9LWnRqE5A8Umh+IVYWf9HGg92jmJPVQ3f9BvCJbldsdbAzF2vcfeZ3ZmzKZvv1kjXHCGEEEIIIcSJpykJaK3WOh8wKKUMWut5OOcFFUfBYFD0GR1L5o5iepbAyEBfXkzNJeK2eznvLxt/ZS4ksXM2AzoG8tD3G8kukaa4QgghhBBCiBNLUxLQIqWUD7AA+Ewp9TJQ3rJhnZgShkdisRpZOzeVB7tEUWSz81ZYB6b6jiS0BF5Y9izPTOlFjd3B/d+sl6a4QgjRRiml+h9ucXd8QgghRFvVlAT0XKACuAP4BdgJTGjJoE5UFquJxBHR7FiZQ0SxnQsigng/PQ/jrbdz6TzN1pIdLMr9lnvO6sEfW3KYuTLd3SELIYRo3POHWZ5zY1xCCCFEm9aUBPRBrbVDa23TWn+stX4FuLelAztR9T+rIxZPE4u/2cG98REYFTyrrYxPuoDk7ZpXV77MqF4wKC6IR3/YRGZxW5tOTgghhNZ69GGWMe6OTwghhGirmpKAntHItnHNHcjJwupjZsC4OFI3FmDbVcoNsWF8k11I9rU3Mm15IKZqOw8vfpBnpvbC5tDc+7U0xRVCiLZMKdVLKXWBUuqKfYu7YxJCCCHaqkMmoEqpm5RS64HuSql1Byy7gXWtF+KJp8+oGPxCrCz+egc3x4QSbDbxSE4JPe97jCt/q2V17hoW587i/vE9WLAtlxnL09wdshBCiEYopR4CXnUto4FngYluDUoIIYRoww5XA/o/4BxgluvnvmWA1vqyVojthGU0GxgyqTP5GeVkLM/hX/ER/F1Uzt+9+zGx80T67dS8tOJFRvY0MLRTMI//uJmUPBn3SQgh2qCpwGlAltb6aqAv4O/ekIQQQoi263AJqBEoAW4BSg9YUEoFtXxoJ7YuA8IIj/dj6axdXBDoT2dPDx7buZege+/lpqUBGKpreGTxgzw7tTdGg2LapyuprLG7O2whhBD1VWqtHYBNKeUH5ACxbo5JCCGEaLMOl4CuBFa4lpUHLStaPrQTm1KK4VO7UlFcw8Y/0nm4SxTbK6p5vaiaXvc+xuVzbCzPWcninNm8dFESW7NL+c+30h9UCCHamBVKqQDgXZzPx1XA326NSAghhGjDDpmAaq3jtdadXEv8QUun1gzyRBXZ2Z/O/cNY/dsehpmsTAkP5KU9WaQNGsLkuAn0SYEXlj9H92gbt5/WjW9WZ/Dp0lR3hy2EEMJFa32z1rpIa/0WzkH7rnQ1xRVCCCFEI5oyCi5KqYlKqedci8wB2oyGTu6Ew65Z+sMuHusaTYDJxO2bUwm579/cvMQPR3U1Dy18kFtHd2Z091Ae/WEjq1IL3R22EEKc1JRSPVw/++9bgCDA5HothBBCiEYcMQFVSj0N3AZsci23KaWebOnAThb+oV70Hh3D5sWZOLKreLpbDOvKKnm7pJo+dz/OZXNtLMleyvTNn/DihUlE+Fu55bNV5JVVuzt0IYQ4md3p+vl8I8tz7gpKCCGEaOuaUgM6HjhDa/2B1voDYCwgtaDNKHlcHB6eJhZ/vZ2zQ/2ZEOrPc7uz2Dt4KFNiz2bQNnhp5YvsKt3Am5cOoKC8hn9+vhqb3eHu0IUQ4qSktb7B9XN0I8sYd8cnhBBCtFVNaoILBBzwWoaXb2ZWbzMDJ8STtrmQ7SuyeapbDD4mA3dsSSXs3//hnytDCStR3DXvTiKCanl8Ui8W78zn+Tnb3B26EEKc1JRSt7gGIdq3HqiUutmNIQkhhBBtWlMS0KeA1Uqpj5RSH+Mc5e+Jlg3r5NN7VAzh8X4s+GIb3lWax7vGsKqkgvdLauj23Kvc+a2dkooC7l1wL+f1j+KSwR14c/5Ovl+T4e7QhRDiZHa91rpo34rWuhC43n3hCCGEEG3bIRNQpdTrSqnhWuvPgSHAN8DXwFCt9YzWCvBkYTAoTrsyAVu1gz//t5VJof6cFeLHM7sz2dupM4NvfIBrfrGxLGsZb6x9g4fO6cng+CD+9dVaFu/Mc3f4QghxsjIqpdS+FaWUEbC4MR4hhBCiTTtcDeg24DmlVApwB5CmtZ6ltc5qlchOQoER3gyaGM+uNbnsXJnLM91i8TAYuHNLGr7nT2Vy/ERGrXPwzrp3WJa1mHcuTyY+xJsbP1nJlqwSd4cvhBAno1+AGUqp05RSpwGfu7YJIYQQohGHmwf0Za31UGAkkA98oJTaopR6SCnVrdUiPMkknd6hrimuX7Xm0S7RLC0u5+U9OUQ8/BA37+pExzwD9y+4lwpHHh9dPQgvDyNXfbCcvUWV7g5fCCFONvcC84CbXMtc4B63RiSEEEK0YUfsA6q13qO1fkZr3Q+4GJgEbG7pwE5WBoNizBUJ1Fbb+fPzrZwfHsDU8ECeS8nir0obnV54hX/9aKSmopw7599BiK+Rj64eRHm1jas+XEZxZa27b0EIIU4aWmuH1vpNrfVU1/K21tru7riEEEKItqop84CalFLnKKU+A34GtgLntXhkJ7GgSG8GnRPPrtW57FyVyzPdY+jmbeWmTSnkR0bT/76nuemHWjbkb+ShxQ/RI8KXty8fwO68cm74ZAXVNvnsI4QQrUEp1VUpNVMptUkptWvf4u64hBBCiLbqcIMQnaGU+gBIxzmi349AZ631RVrr71srwJNV0umxhMU5m+KqcjvvJcZR5dDcuHEPnqefwfihV3Lhn3Zm75rN62teZ1iXEJ47vy9Ldxdw55drcTi0u29BCCFOBh8CbwI2YDTwCfCpWyMSQggh2rDD1YDeDywGErTWE7XW/9Nal7dSXCc9g9HAaVckUFNlY8EXW+nqbeWF7rEsLynn8V17CbvrTi5XQxmzTvP2urf5dvu3nJsUzf3jevDjukz+890GSUKFEKLleWqt5wLK1WXlYeBsN8ckhBBCtFmmQxVorce0ZiCioaAobwZNiGfJd7vYtGgvk4ZHsbS4nLfTchnk783Yl1/mlssvI99/F4+oRwj3DueGU4dSXFnLG/N3ohQ8fm4vDAZ15IsJIYQ4FtVKKQOwXSl1K5AB+Lg5JiGEEKLNOmIfUOFe/c7sSEyPQBZ8vo3c1FIe7hJFkq8Xt29OJdVgJv6tt7n7r0Bi8uDOP+5gW+E27j6rOzeN6sz/lqbywPdSEyqEEC3oNsAL+CcwALgMuNKtEQkhhBBtmCSgbZzBoDjz2kQ8fc388s56dKWdd3vFYVSK6zbuxhYSSvfX3+Xf35uwllZzy+83k1ORwz1ndWfayM58tjSVB2dtQGtJQoUQorkopaa7Xg7TWpdprdO11ldrradorZe4NTghhBCiDZMEtB3w9LVw1vW9KCusZu5Hm4ixmHk1oQObyqq4dfMeLF270veZ17j3KzslpXnc8vvNlNeWc+/Y7tw4shOfLnHWhEoSKoQQzWaAUioKuEYpFaiUCjpwcXdwQgghRFslCWg7EdHJn1PO70rK+nxW/rqHM0L8ebhLFD/mFvPIzr14DxnCsNse586Ztewo3M7Nc2+m0lbJfWN7cOOpziT0we83ShIqhBDN4y1gLtADWHnQssKNcQkhhBBt2iEHIRJtT6+R0WTuLGbZrF2Ex/txQ/dQ9lTW8HZaLh2sFq4991xOz8yk4rtXeHnSGm6deyuvn/46943rgQbeWbCLWruDxyf1wmSU7x6EEOJYaa1fAV5RSr2ptb7J3fEIIYQQ7YVkIe2IUorRl/UgIMKbOe9vpLyomse6RnNWiB8PbM/g17xigm+8kfGDLuPWWTZWZq3gn3/8kxpHDfeP68E/xnThi+VpTPt0FZU1dnffjhBCtGtKKSPOuT+FEEII0USSgLYzZg8j427sha3Gwa/vbgC75o2eHent68m0jXtYW1pJ+P33c07SxUz70cbSvUu47Y/bqHXUcteZ3Xns3ETmbsnmsveXUlRR4+7bEUKIdktrbQe2KqU6uDsWIYQQor2QBLQdCozwZswVCWTtKmHe9C14GQx82qcTIRYTl6/fRVpVDeEP/JdJPS/ghp/tLNq7iLvm30WtvZbLh8bxxiX9WZ9ezNS3/iajqNLdtyOEEO1ZILBRKTVXKTVr3+LuoIQQQoi2ShLQdqrLgDAGT4xn69Isls7aRajFzGd9OlHj0Fy6bhdFNjsRDz3IeV3P47pf7MxPn8/dC+6m1lHLuN6RfHLtILJLqpjyxmK2ZpW6+3aEEKK9egCYADwKPH/AIoQQQohGSALajg0YF0fPU6JY+fMeNv6VQTdvKx/2imdPZQ0Xr91FqUMT+eijnB83iavm2JmbOpc7591Jla2KIZ2C+WraUDSa899azJJd+e6+HSGEaHe01n8CKYDZ9Xo5sMqtQQkhhBBtmCSg7ZhSipEXd6Njr2D+/N9WUtbnMSzQh/d6xbGxrJKL1+6kzKGJfPwxLoqawLW/2vkzbT43zrmRkpoSekT48fVNwwjzs3LZe0uZvmSPTNMihBBHQSl1PTATeNu1KRr4zm0BCSGEEG2cJKDtnMFo4MzrEgmJ9eXXdzeQs6eEM0P8eTuxI2tKK7hs3S4qNEQ99RQXdDiX2763sy57Ndf8cjV5lXnEBHrxzc3DOLVbKA98t4F/f7uBGpvD3bclhBDtxS3AcKAEQGu9HQhza0RCCCFEGyYJ6AnAYjVx9i198PS1MPu1tRTnVjI+NIA3e8axoqScy9fvphJF5FNPMmHY1dw7w0ZK3g4u/+ky0krS8LOaefeKZG4e1ZnPl6VyybtLyC2tdvdtCSFEe1Ctta4bUlwpZQKkKYkQQghxCJKAniC8/T045x99cdg1s19bS2VZDRPDAng1oSNLisq4cv0uqhya8Lvv5oyp/+LBT2soLszi8p8uY2vBVowGxT1je/Dqxf3YsLeYia8tZF16kbtvSwgh2ro/lVL/BjyVUmcAXwE/uDkmIYQQos2SBPQEEhjhzfib+1CaX8Wsl9dQVV7LeeGBvJTQgYWFZVyzYTdVdgfB117Dqf94ikc+saGKSrjq5ytZnrUcgHP6RvH1TcMwKMX5b/3N1yvT3XxXQgjRpt0H5ALrgRuBn7TW/3FvSEIIIUTbJQnoCSaqSwDjb+pNYWYF37+0mqryWi6ICOL5HrHMKyjl8vW7KLPZCZg8iSGPvMqjn2kC8qu5/rfrmbltJgCJUf7MunU4SbEB3PXVWv711VoqamxuvjMhhGiT/qG1fldrfb7WeqrW+l2l1G3uDkoIIYRoqyQBPQF1SAxm3LTeFGSW19WEXhIZzCsJHVhcVMaUNTvIq7HhO3o0A17+kCe+stA7FR75+xGeXvY0NoeNYB8PPrtuMP8c04WvV6Uz8bVFbMkqcfetCSFEW3NlI9uuau0ghBBCiPZCEtATVMdewYy7sTf5GWX88MoaqiucNaEf9opna3kVk1ZvJ72qBq/+/Uj85AseWBTB+BXw2ebPuPn3mymuLsZkNHDnmd359NrBFFXUcu5ri/h8WapM1SKEOOkppS5WSv0AxCulZh2wzAMK3B2fEEII0VZJAnoCi+sdwtgbe5OXXsYPr66lutLGmSH+zOjbmZyaWs5ZtZ2t5VV4xMfTecaX3FI5hGk/2lm+dymX/ngpKcUpAAzvEsLPt41gUHwQ93+znn9+sYbSqlr33pwQQrjXYuB5YIvr577lLuAsN8YlhBBCtGmSgJ7g4vuEcNb1vcjdU8oPr6yhptLG4AAfvuvXFbvWTFq1nZXF5Rj9/Ih9602m9ruCBz6toTA/g0t+vJhFGYsACPX14OOrB3H3Wd35aX0m41/5iyW78t18d0II4R5a6z1a6/la66Fa6z8PWFZpraXTvBBCCHEIkoCeBDolhdYlod+9uJqKkhp6+njyQ/+u+JuNTF2zk9/zS1AmE+H338eYmx7nyY9sBOVUcdPvN/Ha6tewO+wYDIpbRnfhyxuHYFCKi99dwqM/bKKq1u7uWxRCCLdQSp2nlNqulCpWSpUopUqVUtJhXgghhDiEFk9AlVJGpdRqpdTsRspOVUqtUkrZlFJTGyn3U0qlK6Vea+k4T3Sd+oUy7qbeFGaW883/raQ4t5KOnh7M6teVLl4eXLFuF2+m5qC1JmDKFAa++jFPfePFqI2Kt9e9zQ1zbiCvMg+AAR2D+Pm2EVwxpCMfLNrN+Jf/YlVqoZvvUAgh3OJZYKLW2l9r7ae19tVa+7k7KCGEEKKtao0a0NuAzYcoS8U5WuD/DlH+GLCgBWI6KcX1DuHcO/pRVVHL1/+3kty0UsI8zHzXvwvjQv15ZOdebt+SRrXDgVf//vT48mvuzOjNzbPtrN27kqmzprA0cykAXhYTj5zbi8+uG0y1zcHUNxfzzC9bqLZJbagQ4qSSrbU+1DPumCil/k8ptUUptU4p9a1SKuCAsvuVUjuUUluVUmcdsH2sa9sOpdR9B2yPV0otdW2foZSyNGesQgghxNFq0QRUKRUDnA2811i51jpFa70OcDRy7AAgHPitJWM82UR08ue8fw3AaFR8+/wq0rcW4m008m5iHHfFhTMjq4Cpq3eSW1OLOSKCjh9/xJQh1/HE+9V45pRyw2838ObaN7E7nInm8C4h/HL7CM4fEMub83cy4ZWFLE+RASCFECeNFa7E7mJXc9zzlFLnHec55wC9tNZ9gG3A/QBKqZ7ARUAiMBZ4w9XKyAi8DowDegIXu/YFeAZ4UWvdBSgErj3O2IQQQojj0tI1oC8B99BIgnk4SikDztEE/3WE/W5QSq1QSq3Izc095iBPNkGR3ky5ZwA+gVZ+eHUNO1bmYFCKu+MjeScxjg1lFYxdsY31pRUok4mwu+5k+JNv8/QMC8O3wBtr3uDGOTeSVZ4FgK/VzDNT+/Dh1QOpqLFz/lt/c+/MdRRV1Lj5ToUQosX5ARXAmcA5rmXC8ZxQa/3bAQMZLQFiXK/PBb7QWldrrXcDO4BBrmWH1nqX1roG+AI4VymlgDHATNfxHwOTjic2IYQQ4ni1WAKqlJoA5GitVx7D4TcDP2mt0w+3k9b6Ha11stY6OTQ09JjiPFn5BFo571/9Cevgx6/vbWDt3DS01kwMC+D7/l3RwMRVO/g+x9m30+fUU+k58zvu3pPIjT/ZWbt3Bed9P5kfdv5QNy/o6O5hzLnzVG48tRMzV6Uz5vk/+XpluswbKoQ4YWmtr25kuaYZL3EN8LPrdTSQdkBZumvbobYHA0UHJLP7tjdKvtQVQgjRGlqyBnQ4MFEplYLz29gxSqlPm3jsUOBW17HPAVcopZ5ukShPYlZvMxNvTyK+TwgLv9rOvE+3YK910MfXi18GdCPRx8qNG/fw723pVDscmCMiiPv4Yy4YdB3PvlNDdEY1/174b+768y4Kq5yJqpfFxP3jE5j9j1OIC/birq/Wcsm7S9mZW+bmuxVCiOajlLrH9fNVpdQrBy9NOP53pdSGRpZzD9jnP4AN+Kzl7mQ/+VJXCCFEazC11Im11vezv9/KKOBfWuvLmnjspfteK6WuApK11vcd+ghxrMwWI+Nu7M2y2btZ8VMKhZkVjJvWmzA/C9/068ITOzN5Oz2XlSXlvJMYR0dPD8LuuhOfUSOJuu9evonO5MtRc1mdvYpHhj/KqTGnApAQ6cfMacP4YnkaT/+8mbEvLeCqYXHcOqYr/p5mN9+1EEIct30DD604loO11qcfrtz17JsAnKb3NyPJAGIP2C3GtY1DbM8HApRSJlct6IH7CyGEEG7R6vOAKqUeVUpNdL0eqJRKB84H3lZKbWzteAQog2LwxE6ceV0ieWmlfPXUcnL2lGAxGHikazQf9opjd2U1Z6zYyk+5RQB4DRhAl2+/56oOU3nygxq8s0q4Ze4tPLz4YUpqnFPgGQyKSwZ3YO5dozivXwzvLdzN6Ofm8+mSPdjsR9UtWAgh2hSt9Q+unx83thzPuZVSY3GOnzBRa11xQNEs4CKllIdSKh7oCiwDlgNdXSPeWnAOVDTLlbjOA/ZNc3Yl8P3xxCaEEEIcL3Wi9M9LTk7WK1Yc0xfR4gC5qaX89OY6KstqOe2KBLoODAdgT2U1N2xMYW1pJTfEhPLfzpFYDM7vL8r+/JPUB//LZ4lFzB6kCPIM4r7B93NmxzNxjoHhtCGjmMdmb2Lp7gK6h/vy4Dk9Gd4lxC33KYQQjVFKrdRaJ7s5hh2AB84aTIAlWutprrL/4OwXagNu11r/7No+HufAf0bgA631E67tnXB2gwkCVgOXaa2rjxSDPFOFEEIcr0M9UyUBFQ1UlNTwyzvrydxRTL8zOjB4UieMRgPVDgeP7tjL+xl59PX15LWEjnT1tgJgKywk+7HHWLPyZ96d7MXOwBpGxozkP4P/Q6RPZN25tdb8ujGLJ37aTFpBJacnhHH3WT3oHuHrrtsVQog6bSEBbQvkmSqEEOJ4SQIqjord5uCvL7ezcUEGEZ38OfO6RHyDnMnmj7lF3L01jQq7g/92juKa6BAMrprO0j/mkfH4o/wQnc2MMRYMZgv/6P8PLulxCUaDse78VbV2PlyUwhvzdlBWY2NyUjR3nNGN2CAvt9yvEEKAJKD7yDNVCCHE8ZIEVByT7cuzmffZFgxGxWlX9iS+j7PJbHZ1LXduSWNuQQmnBPjwUkIHYqwWABzl5eS+8gpbvv+UD862sKqDjZ7BPbl/0P0khSXVO39heQ1vLdjJR4tScGjNxYM6cOvoLoT5WVv7VoUQ4qgTUKXUx8BtWusi13og8HwzT8XS6uSZKoQQ4nhJAiqOWVF2Bb++t4G8tDL6nh7L0EmdMZoMaK35LLOAB3dkYASe6BbD+eGBdf0+KzdsZO+D/2W+YyvTx3uS71HDhE4TuL3/7YR7h9e7RnZJFa/M3c6M5WmYjIqrh8dz/YhOBHlb3HDHQoiT1TEkoKu11v2OtK29kWeqEEKI4yUJqDgutlo7i2fuYP2fGYTF+XHWdYn4hXgCzgGK/rk5laXF5YwN8eOpbjFEejgTR22zUTD9U9LeeoVv+tcye7ABk8mD6/tczxWJV+Bh9Kh3nZS8cl76fRvfr92Lp9nI5UM6ct2IToT6ejSISQghmtsxJKBrgVFa60LXehDwp9a6d0vF2BrkmSqEEOJ4SQIqmsXOVTn8MX0LWmtGXNCVHkMjUUph15q30nL5v92ZmJTiP52juDIquK5vaG1ODrkvvsS2ed8yfZwny+JqifaJ5u7kuxnTYUy90XIBtmeX8vq8Hcxauxez0cDFgzowbWRnIvylaa4QouUcQwJ6BfBv4CtA4Zzy5Amt9fQWCrFVyDNVCCHE8ZIEVDSbkrxK5n68mb3bi4jrHcyoy3rg7e+soUyprOaerWksKCxjgJ8Xz3WPJcHHs+7YyvXryX78CZYWr+OTsz1J9ashKTSJOwbcQf/w/g2utTuvnDfn7+CbVRkYlGJqcgw3ntqJjsHerXa/QoiTx7EMQqSU6gmMca3+obXe1PyRtS55pgohhDhekoCKZqUdmnXz0vn7u52YLAZGXtydrsnOfp1aa77OLuTBHRmU2Ozc0iGc2zuG42k0uI51UDJ7NpnPP8ecyDxmnuZJgcU5bcs/+/+TboHdGlwvraCCt/7cyVcr0ql1OBibGMF1IzoxoGNgq963EOLE1tQEVCnlp7UucTW5bUBrXdD80bUeeaYKIYQ4XpKAihZRmFXO7x9tJielhC7JYYy8qDtWHzMA+TU2Ht25lxlZBcR5WnikSzRnBvvVNbd1lJeT/9FHZH78Pj8mVvP9CAsVRjvndD6HW5JuIconqsH1ckqq+PjvFD5dkkpxZS0DOgZy/Yh4zugZgdGgGuwvhBBH4ygS0Nla6wlKqd3AgQ9SBWitdacWC7IVyDNVCCHE8ZIEVLQYh93Bqt9SWT57Nx5eJk45vytdB4bXJZoLC0u5f1s62yuqGRnoy6Ndo+nuvb8vp62ggLy33iLt28/5brDil2QD2mjgvK7ncW2va4n0iWxwzYoaG1+tSOe9hbtIK6ikY7AXVw6NY2pyDH5Wc6vduxDixHI0TXCV849crNY6tYXDanXyTBVCCHG8JAEVLS4vvZR507eQs6eU2IRARl7SHf9QLwBqHZqP9+bxf7uzKLPbuTo6hH/FRRBgNtUdX5OeQd6rr7Jr3iy+GWlhXqIGg4HJXSdzbe9rifaJbnBNu0Pz68Ys3vtrF6tSi/CyGJnUL5orhnakR4Rfq927EOLEcAyDEK1v7yPeNkaeqUIIIY6XJKCiVTgcmg1/ZrDk+5047Jrk8XH0O6MDRpOz/2d+jY1nd2cyfW8+AWYj98RHcmlkMOYDms9Wbd1G7quvkLJsLt+P8OCP3hptUJzbZRLX9r6WWN/YRq+9Pr2YT/5OYdbavVTbHAyKD+KKoR05KzECs6v/qRBCHM4xJKAfA69prZe3YFitTp6pQgghjpckoKJVlRVWs/CrbexclUtgpDejLu1OVJeAuvJNZZX8d3sGi4vK6Ozpwb2dIjkn1L/edCxVW7aQ9+ZbpCz+lVmnWPi9r8JhgLHxY7k68Wq6B3Vv9NqF5TV8tTKN6Uv2kFZQSYiPhfP6x3BBcixdwnxa+taFEO3YMSSgW4AuwB6gnP19QPu0UIitQp6pQgghjpckoMItUtbnseDzbZQWVNF1YDhDJ3fGN8jZ/1NrzZz8Ep7YlcnW8ir6+nry305RjAjyrXeOqm3byHvzTfYs/JUfhpn5I8lApcHGsKhhXJV4FUMihzSYRxSczXP/3JbDF8vS+GNLDjaHJrljIBcOjOXsPpF4WUwNjhFCnNyOIQHt2Nh2rfWe5ouq9ckzVQghxPGSBFS4TW21nVW/7mH1nFQU0O/MDvQ7qyNmixEAu9bMzCrk2d2ZZFTXMjLQl393jqSvr1e981Tv2EHeO++wd+7PzOmr+WWYB4XmGhKCErgq8SrOiDsDs6HxAYhyS6v5ZlU6M5ansSuvHB8PE2f3jmRy/2gGxQVhkBF0hRAcUwI6XWt9+ZG2tTfyTBVCCHG8JAEVbleSX8nf3+5kx4ocfAI9GDKpM90G7R8tt9rh4OOMPF7ak01BrZ2xIX7cERfRIBGtzcyk4ONPyPl6Bn92quLHUd6ke1UR5hXGBd0uYGq3qQR7Bjcag9aaFXsKmbE8jZ/XZ1JeYyc6wJPJ/aKZ3D+azqHSRFeIk9kxJKCrtNb9D1g3Auu11j1bJMBWIs9UIYQQx0sSUNFm7N1RxMIvt5ObWkp4vB/DzutMVNfAuvJSm5130nJ5Nz2XIpudM4L9uCMunP5+3vXOYy8poXDGDPI/+YRl/vn8dqo3a8KrMBvMjI0byyUJl9ArpNch46iosfHbxmy+WZ3Bwu25ODT0jfFnUr9ozu4dSZif9ZDHCiFOTEcxD+j9wL8BT6ACZ99PgBrgHa31/S0XZcuTZ6oQQojjJQmoaFO0Q7NlSRZLv99JeXENHRKDGHJuZ0I77O//WWqz80F6Hm+l5VBoszM6yJe74iJI9q+fiDpqaiiZ/SOFn37KzqxN/DrUgz97KSoNNvqE9OGC7hdwZtyZeJo8DxlPTkkVs9bu5ZtVGWzKLEEpGBQXxIS+UYzrFUGIj0eLvRdCiLbjGGpAn2rvyWZj5JkqhBDieEkCKtokW42d9fMzWPlLCtUVNrokhzH4nE4EhO9vdltms/NhRh5vpuVQUGtnaIA3N8eGcVqwH4YDBh/SWlO5eg2Fn35K1vzfmN/TwZxTvMjwrMLX7MP4TmcztdtUegT1OGxMO3LKmL1uLz+s3cvO3HKMBsWwzsGc3TuS03uGSzIqxAnsGBJQA3AJEK+1fkwpFQtEaq2XtViQrUCeqUIIIY6XJKCiTauuqGX1nFTWzk3DbtMkDItkwLiO+AXvr7Ust9mZvjefd9Jz2VtdSzcvKzd1COW88EA8DPXn+azNzqFoxgwKvpzBBs98/hjqzd+dbNQqOz2DezKl6xTGx4/Hx3LoPp9aa7ZklTJ73V5mr8tkT34FBgXJcUGMTYzgrF4RRAcculZVCNH+HEMC+ibgAMZorROUUoHAb1rrgS0WZCuQZ6oQQojjJQmoaBcqSmpY8XMKGxdkgIbuQyMYMLYj/qH7a0RrHZrvcwp5IzWHTeVVRFjMXBcTwmVRwQSY60+tomtqKJ03n6KZM8levpC/einmDfMhxbsCD6MHYzqMYWLniQyJHILJcOhpWbTWbMos4deN2fy6IYut2aUA9I7258ye4ZyWEE5CpG+j08EIIdqPYx2ESCm1Wmvdz7Vtrda6b8tF2fLkmSqEEOJ4SQIq2pXSgipW/5bKpoV7cTg03QaFM2BsRwIj9vf/1FrzZ2Epb6TmsKCwDE+DgakRgVwTHUKCT8OaydqMDIq+/obCb75mq8pmQbInixIUpcYaQjxDODv+bCZ2mUi3wG5HjG93Xjm/bszilw1ZrEkrAiDK38qYhDBO6xHO0M7BWM3GZns/hBCt4xgS0KXAMGC5KxENxVkD2q/FgmwF8kwVQghxvCQBFe1SeXE1q39LZeOCDGw2B10HhNHvrI6ExvrW229jWSXvp+fyTXYhVQ7N0ABvro0OZWyIP6aD5vjUdjvlCxdS9N13FM6fy8pYG38N8WFlVDV25aBbYDfGxY9jbNxYYnxjjhhjTmkV87fkMndLNn9tz6Oixo7VbGB45xBGdQ/l1G6hdAz2PuJ5hBDudwwJ6KXAhUB/4GNgKvBfrfVXLRRiq5BnqhBCiOMlCaho1ypKalg7N5X18zOorbYT0yOQfmd2IDYhqF6z14JaG59nFvBhRi7pVbVEeZi5NDKYiyODiLJaGpzXXlJCyc+/UPz992RvXsWiRAN/D/Jli385AH1C+jA2fixnxZ1FmFfYEeOsqrWzdHcBf2zO5o+tOaQVVAIQF+zFqd1CGdktlCGdgvH2OHRzXyGE+xxtAuo6pgdwGs6pWOZqrTe3SHCtSJ6pQgghjpckoOKEUF1Ry8a/9rLujzTKi2sIjvYm6YwOdE0Ox2jaPxCRXWvm5JXwQUYuCwrLMACjg/y4LCqI04P9MRsa9tWs2bOH4u9nUfzjbDKKUvk70cSSAd7s9ClHoegf3p/TO5zOaR1OI9In8oixaq1Jya9gwbZc/tyWy98786mstWM2KvrFBjKsSzDDu4SQFBuA2Wg44vmEEC3vGBPQQCAWqPtmSWu9qrlja03yTBVCCHG8JAEVJxS7zcH2FdmsmZNKfkY53v4Weo2KoefwKLz86td07qms5vPMAr7ILCCrppYwi4kLI4K4ODKYTl4Np1TRWlO1aRMlP/1EyU8/k1qdyeLeZpYleZHi5awZ7RXci9M6nsbpHU4nzj+uSTFX2+ysTCnkz+25LN6Rz4a9xWgNXhYjg+KDGNY5mCGdgukZ6YdJElIh3OIYmuA+BlwF7AT2PVC11npMC4TXauSZKoQQ4nhJAipOSFpr0jYVsOb3VNI2F2IwKboMCKP3qBjC4/zqNc+1OTR/FJTw6d58fs8vwQEk+3lxfkQQE8MCCDQ3bBarHQ4q16yhZPaPlM6ZQ5otl2U9TSzv58M23zIAOvl3YmTsSEbFjKJvaF+MhqYNPlRUUcOSXfks2pHPop157Mp1Jrc+HiaS4wIZHB/MoPgg+sT4Sw2pEK3kGBLQrUBvrXVNC4bV6uSZKoQQ4nhJAipOeIVZ5Wz4M4PNf2dSW2UnrKMvvUbG0DU5DJOlflKYVV3L19mFfJlVwNbyKixKcUaIHxdGBDE6yK/RJrrOZHQtpXPmUPrbb2SWZLCsh4FV/f3ZGFiOXTkI8AhgRPQIRsaOZHjU8MPOM3qwrOIqlqUUsHRXPkt3F7Ajx5ngepqNJMUGkBwXyICOgfTrEIi/p/n43iwhRKOOIQH9GrhJa53TgmG1OnmmCiGEOF6SgIqTRk2VjW1Ls1g3P4PCzHI8vEx0GxhOwilRDUbP1VqzvqySr7IK+Ca7iPxaG0FmI2eHBnBuWABDA3wwNjK3p9aa6s2bKfntN8rm/kFh6nbWxCtW9/NlVQcbpYYaTMpEUlgSw6OHMzxqON2DumNQTa/JzCurZvnuApbuLmDlnkI2ZZZgd2iUgm5hvgyIC6RfbAD9OgTQKcQHQyNJsxDi6BxDApoMfA9sAKr3bddaT2yB8FqNPFOFEEIcL0lAxUlHa03GtiI2LdzLrtW52G0OQjv40nN4JF0HhuPhVb8WsdahmVdQwrfZhfyaX0KF3UG4xcTEsADODQtkgJ9XvSa9B6pJT6fsj3mUzZ9HyYrlbAuzsTrRk/UJVnZ6lgIQbA1mePRwhkUNY3DkYEI8Q47qfsqrbaxNK2LFnkJW7Clk9Z5CSqttAPhaTfSNCSAp1rn0ifUnzNd6DO+aECe3Y0hANwJvA+sBx77tWus/WyC8ViPPVCGEEMdLElBxUqsqr2Xbsmw2LdpLfnoZJrOBTv1C6T44gpiEoAa1hxV2B7/nl/B9TiG/55dQ7dBEe5gZH+rP2aEBDPT3brRmFMBeVkb5woWUzf+TskULyavIY20nxYa+/qyJrqXE4Kwk6RLQhSGRQxgcOZjk8OSjaq4L4HBoduaWsTqtiDVpRaxJLWJrdil2h/P/dKS/ld7R/vSJ8ad3TAC9o/0J8m44FY0QYr9jSECXa60HtmRM7iDPVCGEEMdLElAhcNaK5qaWsmlRJjtWZFNdYcPL30K3geF0HxJJSEzDJLDUZufnvGJ+zC1ifkEp1Q5NiNnEuFB/xof4MzzQB4uh8aa1Wmuqt26l7K+/KP9rIWWrV7ErxMaGLhY2JfqwKaCcGmXHqIwkhiQyMHwgyRHJJIUmHXVCClBZY2d9RjHrM4pZl17E+vRiduWV15VHB3jSM8qPnpF+JEb5kRjtT5S/9ZA1u0KcbI4hAX0BZ9PbWdRvgivTsAghhDipSQIqxEHstQ5S1uexdWkWe9bn43BogqN96DY4nC4DwvAL9mxwTJnNztyCEn7KLeb3/BLK7Q58jQZGB/txZrAfY4L9CGpkNN26a5aVU7FsKeV/L6H878WU7d7JtmjFxh5WNnX3YptPKXYcGJSBhKAEksOTGRA+gH5h/QiwBhzTfZZU1bIho5j16cVs2FvCxr3F7M4rZ99//UAvMwmRfiRE+tEjwpeESD+6hPlgNTdtNF8hTiTHkIDOa2SzTMMihBDipCcJqBCHUVlWw44VOWxdmkX27hIAwuP96JocTuf+YfgENpwvtMruYEFhKb/kFTMnv4TcGhsGYJC/N2eE+HNGsB9dvTwOW7tYm51DxdIlzoR0yRLK8jLZFq3Y0tXKlu5ebPMtowY7APH+8fQL60dSaBL9wvrR0a/jMddcllfb2JJVwsa9JWzMKGFLVglbs0upqnV2YTMaFPEh3nSP8KV7uC/dwn3oFu5Lx2BvjDLYkTiBHW0CeqKSZ6oQQojjJQmoEE1UnFvJjpXZbF+RQ356GSiI6hJAlwFhxPcNbTQZdWjNmtIK5uSV8Ft+MRvLqgCIsZoZE+TH6CBfTgn0xdd06FpFrTW1GRlULFtOxbJlVCxfTnlWBjuiYFsnK9u7+7AlqJJS5WzlF2QNondI77qlV2gv/Cx+x3zfdodmT345W7JK2ZJZwqbMUrZll5JWWFFXW2oxGegc6kO3cB+6hPrQJcy5dAz2xmKSuUpF+3cMNaAPNrZda/1o80XV+uSZKoQQ4nhJAirEMSjMKmfHyhy2r8ihMNPZlzI83o9OSaF0SgolINyr0ePSq2qYm1/C/IJSFhSWUm53YFKQ7OfN6CA/Tg3ypY+v5yEHMtqndu9eKpYvp2LVaipXraJyxw72Bmm2djCyo6c/2yMhzVyKxvn/OM4vjt4hvUkMSSQxOJHuQd3xNDVsSnw0Kmps7MgpY1t2GduynUnp9uwyMooq6/YxGhQdg73oHOpDp1BvOoV40ynUh/gQb4K9LdLHVLQbx5CA3nXAqhWYAGzWWl/T7MG1InmmCiGEOF6SgApxnAoyy9m1Jpddq3PJTXVOrRIU5U2npFDieocQ1tEX1Ujz1BqHgxXFFcwrKGFeQSkbypyJm7/JyPAAH04J9OHUIF86ex6+uS6AvaSEyjVrqFi5ypmQbtxIub2CnRGKnZ092dnFm22BVRQanNcwKiOdAjqRGOxMSBOCE+ga0BUvc+OJ89Eor7axO6+cHTlldcvO3DL25FdQY6+bjQJfq4lOId7EhXjTMdib+BAv589gbwK8zJKcijbleJvgKqU8gF+11qOaL6rWJ89UIYQQx0sSUCGaUUl+JbvX5LFrTS6ZO4rQGjz9LMT1CiaudwgxCYFYrI0PRpRbU8vCwjL+KnTWjqZX1QIQ6WFmWIAPQwN8GBrgTacmJKTaZqN6504q16ylct1aqtato2rHTgq9NTsjFSldfdkd58kOvwqKlDMpNSgDHf060iOwBz2Ce9AjqAfdA7sT7BncLO+N3aHJKKxkV14Zu/PK2ZVbzu68clLyy8koquTAPzl+VhMdg73pEORFbJAXHQ5YIgOsmI3SrFe0rmZIQAOB5VrrLs0YVquTZ6oQQojjJQmoEC2kqqyWPRvzSVmfR+rGAmoqbRhMiuhugXToGUSHxGACI7waTSa11uypquGvwlL+Kizj76IycmtsAIRbTK5k1IdB/t5097ZiaEJtob2sjKqNm6jasIGqjRuo3LCRmtRU8v1gd7hiTxdfUjt6ssu/mhxDWd1xwdZgugV2o1tgN7oGdqVbYDc6BXTCw9iwz+uxqrbZSSuoZE9+OSn5FaTklZNaUEFaQQVphRXU2vf/PTIoiPT3JDrQk5hAT2ICvYgJcK5HB3gS4W+VkXpFszuGJrjrgX2/uEYgFHhUa/1aS8TXWuSZKoQQ4nhJAipEK7DbHWTuKCZlfR571udTlF0BgE+gBx0Sg+nQM4iYHoF4eJkbPV5rzc7Kaha7ktG/i8rJqnHWkPqbjAzw82KQvzcD/b3p5+eNVxNrCO1FRVRt2uRaNlO1eTM1KSmUWjUpYYq0Dp6kd/JlT4jm/9m77/i4rvPA+78zvWAGvYMFLJBEimIVqN4pEUWFiteOvU6cZLNOdjd5k3032ddpG68Tp2ySjZ3NbhKv4yRbYsd2RBUUFklUJwn2LoIkQJBogz69z3n/uEMQkiiJIgeFwPP9fOZz77lz555zwUscPHPPfU6PLUACIwg2KROLPYtZlr+M5QXLWVGwguUFy6nNr8VmtuXgJzaljRmNLxCjZ9QISHvHI/SOR7OvCIOBGJkP/boqybNnA1IHlflOKvMdVBVcXZbk2SVrr/hMbiAAXTKlmAJ8WutU7ls2s6RPFUIIcbMkABViFgRGo1w+PcalU2P0vj9GIpZGKShd4qXm9kJqbi+kclk+Ftu17+RprbkYTdDhD3PAH6bDH6YzYmTYtShYledko9fNBq+LDV7XdQ3bvSITDhM720nszGni758l1nmWeOc50rEog4VwscJE//J8+qrsXM5P0WcOkMZ4ttOkTNTk1VCbX8uy/GXU5tdOvvLt+bn54X1IMp1hYCJG30SUvoko/RNR+saj9PuvLq9MI3OFxaQo89gpz3dQ4XVQMWVZ7nUY73kduO0fP3erWFiuNwBVShV90vta67HctWrmSZ8qhBDiZkkAKsQsS6cz+LoCXD4zRu/74/guBtAZjdliomJ5PjW3FVJdV0DZUi/mT5jSZDyZ4mA2GD0ciHA0GCGcTfpTYDGz3utivdfFOo+LtR4X5fZr3229Fp3JkLx8mdjZs8TfP0v83Dni58+T6OkhqTIMFMHlcgsDy/IZqLTR603RZwlO3jEFKLAXsMS7hCXeJSz1Lp1cX+RZlJPkRx/bdq3xR5P0T8QY8EcZ8F9d+gIxBv0xfIE4ofhHb07l2S2UeeyUee2UeYzAtDT7KvM4JtcLnFZMckd1XvsMAWg3xtDba10QWmu9LOeNm0HSpwohhLhZEoAKMcckYin6z03Qe3ac3vfHjTlHAbPVRMUyL1UrC6leWUB5rfdj75ACpLWmMxzjcCDC4UCYQ4EIneEYV+4FVtqtrPU4WetxcZfHxZo8J2WfISgFyMTjJLq7iZ87bwSlFy6QuHCBxOXLZDJphvOhr1gxUOtlqNrFQBH0OaIME/rAcUqcJSz2LGaRZxGLvcayJq+Gak81hfbCGcmIG4wl8QWMYHQoaCx9gRhDU8rDwTjRZPojnzWbFMVuG8V5dkrybJTm2Snx2Ce3Gcur6/KM6q3nZpMQzRfSpwohhLhZEoAKMcdFQwkGzvvp75yg79w4I70h0GCyKMoWe6hYXkDlsnwqlufj8n7y85fhdJpTwSjHglGOBY27pOcj8cn3y2wW7sxzcpfHxZ15Tu70OFnssF1XkqOpdCJB4tIl4he6SHRdIN7VTaKnh0R3N5lgkJgVBguhv8zCyOJ8hirsDBRoBu0fDU5dFhfVnmojIM2rpjqvmqq8qsmX1+b9TG27GVprwok0w8H45GsoGGMkFGckmGA0HGc4lGAkGGckFCeeylzzOC6bmUKXjSL31Vehy0ahy0qB21gWumwUZJeFLhsOq0mmpplFNxKAKqWeAR7KFt/QWrfkvmUzS/pUIYQQN0sCUCFuMfFIkoELfvrPTTB4wc9QT5B0NtDxljqpXJ5PRa2X8tp8iqrdmD8lIVEwleZkKMrJYJTjoQgng1E6IzGuJJ51m03c4XawKs/JHXlOVrsd3J7nxGv57HfxtNakx8ZIXLx49dVzicQl46UjEeIW8BXAUKGJkcUeRipcDBWZ8LmSDJiCxEh+4Jh51jwq8yqpcldR4a6gwl1BpbuSSnclFe4KSl2lWE2f7c5uLmitiSTSjIaMwPTKciSUYDycYCySYCxsrI9ml+HER++uXmGzmChwWsl3WilwWcl32sjPlo2XhXzX1bLXYcWbXUrwevNuIAnRHwF3A/83u+mLGNOw/OZ0tG+mSJ8qhBDiZkkAKsQtLp3MMHw5yMB5PwMXJhjs8hMNGkGa2WqidJGH8lqv8VrqxVPs+NRgJJbO8H44xulQlFOhKKfDUU6HYvhTVwOkaruVOreD290Obnc7uc3tYKXbjtt8Y8NLtdakR0aMYLTnEsneXhK9l0leNpbp4RE0EHTCcD6MFFkYXeRltMzBcIGJYWeSYUuEgI5+4LgKRYmzhHJXOeXu8sllmauMcpexLHWWTutzqNcrnkrjjyQZjyQZjySYiCQYjySZiCSZiCbwR5L4o0Z5PJIgEDXKnxS4AtjMJrxOCx6HFY/DgsdhwTu5bizz7Ma2vOz6lW15DgtuuwW3zbKgMwffQAB6HFintc5ky2bgiNb6rulq40yQPlUIIcTN+rg+VVI/CnGLMJ4NzadiWT7rWYzWmuBoDN/FAL5u43XyrT6OvXYZALvbQtkSL2WLPZQu8VC2xEte4Qez5DrMJtZ5XazzXg3KtNb0x5OcCkU5G47xfjjG2XCM9yZGiE+ZB6XGYaXO5WCl22EsXXZWuh0UWj/514pSCktpKZbSUlwbN37k/Uw0SrKvz3j1908uE8f7SPb1kx4ZASBmhREvjHgVY1V5TJS7GCsyM5o3wgVHP/tMYcI6/pHje6weSl2lxstpvEqcJZS6ssts2W11T9vdRLvFTJnXTJnX8Zk+l0xnJoNRfzRJIJYiEE0SiGXL0RT+aJJgLEkwliIYSzIUiE+uf1oAe4XLZjaCUrsRlF4pu+wW8uxm3DZj3WUz47aZcdksuO1mnDZjm9NqxpXd7rSacdrM2D4hsdY8UABcyXo7PWmghRBCiHlCAlAhblFKKbwlTrwlTlZuKgeMTLujvSGGLwUZ6gky1BPgyK5LZLKBoyPPSumiPEpqPJQszqN0kYf8MtcHMrsqpah22Kh22Hiy5Orf0qmM5mIsztlsQHouHONcJM57EyPEpgSmRVYzK1wOljntLHfZWeGys8zlYInDhuM65i01OZ3YV6zAvmLFNd/PxOOkBgdJDgxQOzBIcqCfZH8/qUEfqRODJAd9ZIJBACI2GM+DMY9ioszJRLmbiSI7Y94oY84ueixnGCVMko8GZg6zg2JnsfFyFFPiLKHIUUSRo4hiZ7GxdBhLr92LSU1/gGU1m4wER3n2G/p8OqMJxY1gNBRPEYqljOA0niKcLYey6+GE8V4kkSYUT+ELxgiPpCffjybTfJYBNBaTwmk148gGqFcCU4fVZGzPbrNnlw6rCcfUpcWMPbtut5iwW4z37NnteXYL5Z8xoM+RPwSOKKX2YGTEfQj4Wi4OrJT6D8CfAqVa6xFlfCPybaARiAA/o7U+nN33K8BvZz/6+1rrf8hu3wj8PeAE2oBf0fNl6JMQQohbkgzBFWKeSyXTjPaGGeoJMHw5yMjlEKP9ITIp4/++xW6muMpNSU0exdV5k0ub8/q+n0prTW8sQWc4xvlInAuROOcjMbqicYYSV6c8UUCV3coyl51a59XXEqeNxU7bDQ/pvWabQmFSvkGSA4OkhoZIDflIDQ2R9A0ZZZ+P1MgIZDJoIOwwAtXxPIW/1Emw1EWgwM6Ex4TfpRm3JRkzxwjoCMYnPsiszBTYCyh0FFLkKKLQUUihvZBCR+Hk9qnLfHs+ToszZ+c7G7TWxJIZwokUkXjaWCaMgDWSSBPNLiOJFNFEmmjSeMWS6clyJJEmnsxc3Z5ME0tmiGXLqcz190+3V3jY8asPffqOn+IzTMPy34F/1Fq/q5SqxHgOFKBDaz2Yg3YsAr4L3A5szAagjcAvYwSgm4Fva603Z+ckPQhswpga5lD2M+NKqQ7g/wH2YwSgf6G1bv+0+qVPFUIIcbNkCK4QC5TFap58NvSKdCrD+GCY4UshRi4HGekNcf7QEKfe7p/cx1PsoLg6j+IqN0XVboqr8igod31kjlKzUixx2lnitLPlQ3UHUmkuROJ0ZQPSi9EEXZE4rwxNMJ764F3HMpuFpU47ix02Y+m0schhY7HDRoXdivkzDIc157kx5y3Hvnz5x+6j02nSY2Okhoc/+hoZJXV2lNTIMOmRMTLhMAAZZTyb6neD36UIFjkIlDoJ5tsJes0EXCEC9gADlnNMmGIEP/Sc6lR2s518Wz75jnzybfkU2Avw2r3k2/Lx2r14bd7JZb4tH6/Ni8fmwWPzYDbN/vQuSimcNuMuJnnTU0cqnSGWyhBPpomlrgam8VSGeDJDLGUEsPFUGpdtxruzTuBPs8HnD4Hva62P5PD4fw78R+ClKdueBf5X9g7mPqVUQbb+R4DdWusxAKXUbmCrUuoNwKu13pfd/r+A54BPDUCFEEKI6SIBqBALkNliMobh1niASsC4oxUajzPaF2KkN8Rob4jR/jA9J0fR2TtRJpMiv9xFUaWbokoXhZVuiirdFJS5MFs/OgTVazGz3utivfejiX/Gkym6o3EuRRNcjMbpiRnL9yZC/LNv/AP3Ga1KUe2wsshhBKU1V152GzUOK1V2G5bPmDhHmc2Tz6J+mkwkQmp01AhYR0eN9dExUmOjpEdGSfWOkR4bN94fH4eUcec3rYy7qwGXEbgGPRZCxU7CBXbCHhsht4mQM0jQ5uecpYuQKUGQGAlSn9get9X9gYDUY/VcXc++8qx55NnyJpceq2ey7LQ4b4lsuRaziTyzMbx2rtFafxv4tlJqCfCTwPeUUk7g+xjBaOeNHlsp9SzQp7U+9qF/p2rg8pRyb3bbJ23vvcb2j6v3q8BXARYvXnyjzRdCCCE+0dzr1YUQs0IphafIgafIwdI1JZPb08kME0MRRvtDjPWFGe0PM3wpwIUjQ1yJEpVJkV/qpLDCRWGFi4JyF4UVbgrKXTjc154apdBqodBqYYPX/ZH34pkMfbEkl2JxLscSXIomjGUswaujgQ8M7QUwAZV2IxCtdlxdVtttVDmsVNqtlFgtNxx0mVwubC4XLFr0qftqrckEg0aQOjFhvMYnSI+PZ8vZpc9vLP3GUicSk8dIWCDkMILXkAPCThPRQgcRr4OIx0rEbSbsgrA9QMTmp9eSJmRKElJxwjqOvsYw4Q+cjzLhtrhx29zkWfNwWV3kWfNwW924LC7cVvcHXi6rC7fFjdPqNLZl110WFy6rC5vJdksEtNNBa90D/DHwx0qp9cD3gP8EfOJtaqXUq0DFNd76LeA3gSdz3NRPpbX+DvAdMIbgznT9QgghFoZpD0CzKekPYnyb2/yh9x4CvgXcBfyk1vrH2e1LgO0Yf1dagf+mtf7r6W6rEOKjzFaTMRS3Ou/qU25AKpFmYijC2ECY8YEI4wNhxgaMO6aZ9NW/XZ0eKwXlLgrKjMA0v8xJQZmL/FInFtu1/0a3m0wsc9lZ5rp2sp1YOkN/PElvzAhMe2MJ+uIJ+mJJjgYjtA37SXzo+XabUlTajWC0ymGjwmasV2S3ldutlNss2Ew3l0xIKYXZ68Xs9X76zllaa3Q0SjoQIO0PkAn4jcDUHzCWwQAZf4B0MEh6zE/mYpB0IEAmYGzTsdjksTJAzAYR+9VX1K6Ieu1E8+3E3FZiLgtRl4WoQxGxh4laQ4ybB+kzp4ioFFGVIKLj13ze9VpMyoTL4sJpcV77ZTWWDrNjcpvDYqzbzfbJ8uS62YHdYv/A0mqyzskgVyllARow7oI+DrwBfP3TPqe1fuJjjrcGqAWu3P2sAQ4rpeqBPmDqtyA12W19GMNwp25/I7u95hr7CyGEELNmJu6A/gpwBrjWX2OXgJ8Bfu1D2weAe7XWcaVUHnBSKfWy1rr/wwcQQswOi808ZRjvVZl0hsBojInBCOODESZ8YcZ9ES6eHCX63sDVHRXkFdrJLzWC0clXmZHZ1+b4+F9PDvMnB6gZrRlNpuiNJRmIJ+iPJxmIJ+mPJRiIJzngD+OLJz8SpAKUWC2U2y2U2YzgtNx2NTgts1kpzS6d15HR93oppVAuFyaXC2vFtW6KfTKdSJAOhYyANBuUZoIhMqEg6WCITOhD6/0h0uFQdp8Q6VAIHYl88JhA3GpMdxOzXX1FHSbiHjtxt42Ey0rcZSXuMBNzmIjZFHFbmpglRNwSYMKcYdCUJqZSxEkRI0lMJ647sJ3KpEzYzUYwajPbJgPWK+Vl+cv4nXt/5zMf90YppbYAX8RICNQB/AD4qtY6fDPH1VqfAMqm1HMR2JRNQvQy8EtKqR9gJCHya60HlFI7gT9QShVmP/Yk8Bta6zGlVEApdQ9GEqKfBv7bzbRPCCGEuFnTGoAqpWqAJuCbwP/74fe11hez+2U+tD0xpWjHuBMqhLgFmMwm425nmYuld33wvUQ0xcRQBP9QlImhyOR697FhosHkB/Z1eqyT08x4ix14S6+u5xXaMX1CAGhSilKblVKblfV89PlTMO46jiXTDCaM4NSXDVJ9CWN9MJHkTCjGUCJJ5hqf91pMlNmMob2l2cDUeGXXrRaKbRZKbJacZvi9FmWzYSkqgqKiGz6GzmTIRCJkwmEjSM0u0+GwsR4OX30/HCETyZbHI+hw5Op70aixHo1C+qPT22ggbTKC27gVElaIW7LrLhvJbGCbdFpJOiwk7BYSdhMJu4mk1UTCCgmrImmBhClBwhwjbsoQCAD33vjP8Ab8BvCPwH/QWo/PUJ1tGAHveYxpWH4WIBto/h5wILvfN64kJAL+LVenYWlHEhAJIYSYZdN9B/RbGFn8PJ+y30dkU9C3AiuAX7/W3U9JmCDErcXmtFC2xEvZko8OiIhHUwSGo/iHo/iHIwSGowRGY/i6/Zw/NDSZCAmMZ07zCux4ih14Sxx4ip3G86vFDjxFdvIKHR/J1vthSimKbUaQuDrv46dESWvNaCKFL5FkKJFiKJFkOLscSqQYiic5E47y1ngKf+qjAReA05Sty2qhxGql2GamyGqUi7OBapHVQpHVTKHVQoHFjGmGh5sqkwlzXh7mvDwoL7/p42mt0YkEmUgEnQ1IjeA0SiYaQV9Zj0XRsRiZaCy7PUYmGkXHY8b7YzFj31h2eyxGJhZDx2IfeG7WvsoJn7/pZn+W83tshupZOmVdA//uY/b7Hsbzpx/efhC4c7raJ4QQQnxW0xaAKqWagSGt9SGl1COf9fNa68vAXUqpKuBFpdSPtda+D+0jCROEmCfsTguliz2ULv7o91WZdIbQeBz/SJTgaIzgaIzAaJTgSIzLZ8YJ+wf5wKhOBW6vjbxsUqW8QiMozcsGp3mFdlweG+o6MuealaLMbqXMfu1kSlPFMxlGEimGEymGE0lGkylGEilGkqnJ9eFEkvfDUUaTKWIfM8+lAgqtZgotFmNptXygXDClXGA1k28x9vGYTXPmOUmlFMpux2S3Q2Hhp3/gBuh0Gh2Pk4nFIHOt+9RCCCGEmGum8w7o/cAz2YmzHYBXKfV/tNZf/iwH0Vr3K6VOAg8CP56Gdgoh5jiT2TQ5HPda0skMoQkjMA2OxQiOxY3laIzhy0G6j4+QTmY+dEyFu8BOXqHdWBYYwam7wI4735Zd2q85vczHsZtMVDtsVDts17V/OJ1mLJlmLJliNJFiLJliPFseT2WXyRQD8SSnQ1HGU2ki6Y8PtMwK8i3m7Mu4k5qfDVCNdQv5FjNeixmvxYQ3u683+7LfZAKmmabM5slnZ8XcFAkkcHmv7/+DEEKIhWHaAlCt9W9gPCND9g7or11v8Jl9dnRUax3NJlV4AGNSbiGE+Aiz1ZRNZvTxz3vGwklC2cA0NB4nPHFlGWe4J0j3sY8GqQCOPCvufDvuAhuufDturw1Xvg2X1whUXfl2XPk2rB+T0feTuM1m3GYzi64zYAXjLutENkj1p9JMJNOMp1JMJNNMpNKMZ7f7k2n8qTSXYgkmUsa29KeME7GbFB6zEYx6sgGq12Imz2yUPWYznsltJtxmE57susdinEue2YTdpObMnVgxe0ZGImz74zf56ual/NTn7pjt5gghhJgjZnweUKXUN4CDWuuXlVJ3Y0y3Ugg8rZT6z1rr1cAdwJ8ppTTGaLQ/zWYGFEKIz0wphTPPhjPPds0hvmAEqfFIyghK/UZgGvHHCU0kJtdH+8JEAokPPI96hdVhxuXJBqceGy6vDafXhtNjlI11Ky6vDavdfMMBmt1kotxuovw6hgR/+Pwi6YwRnKbSBD60DKbSBFIZgmljWyC7bSiRIpRKE0ynCaauL3+tRTEZjLrMJvLMZtxmE26LKRt0m3CZjPemvtxms7Gefc955T2Tse6UwPaW4ouEGXEMMe7NAHcQHIsRj6Qoqcmb7aYJIYSYRTMSgGqt38CYkwyt9X+asv0AH5yj7Mr23RhzgwohxIxQSuFwW3G4rZ/4B7LOaKKhJJFAnLA/QcQfJxJIEAkkiGaXYwNhes+OE4+krnkMs8WE02PFkWfF6bHhzLPizLPhyMtuyy4dbuvkNvNNTvuilMJtMeO2mKm6wWNkskFsIJUmlM4QSqcJZYPWK8tIOkMolSaczhBKZwinjfVIOkNfLEk4HZssh9OfbUIWBTjNJhwmhfNKkJoNTuvcDv7ktkWfegwxc0zj77PC9ad4zj8DTzbxjX84RG9viO9941Gcbhs6o6/rOWwhhBDzy4zfARVCiFuZMilcXuMOZ8lHvj77oHQqQzSYJBpMEAlmA9RgglgwSTSUIBpKEg0m8Q9FiAaTJOPXzqILxh3WKwHyZHDqtmJ3W3C4rDjcFuxuK3aXFbvLgt1lbP8sz7B+GpNS5FnM5FlyM62M1ppoxghqI9lANZrOEMlkstuM9Wj6ajmWyRDN6Mlt0ez7iY9J6CRmj7uunsUnv8Htjz0AwPvqLL1FQbTtQcDG3/7JAZaUudnys6sBGOkN4Sl2YHfKnyZCiJmhMxoNmLJfhqVTxqM4VzLpJxNGv3zlMZtENAWKybnKY+EkJpPClv29FQ0mMFlMk7/Hwv44ZosJh9sYtRQci2G1myfLgZEoNocFR55RnhiKYHdZcOYZj+aMD4azX0zb0FozPhDB6TG+vM5kNOMDYVz5xgivTDrD2EAEd4FRTqczjPWHySu0G+VkhrGBMJ4iB448K6lkmrH+MN4SJw63lVQizdhAmPwy17T/Hpbf8kIIMU3MFlM2A6/9uvZPJdPEQili4SSxbIAaCyWN8pVX9n3/cJR4OEk8muKTbiNarCYjIHVnA1OnBZvLgt2RXTqN7VaH2Xgv+7qybrFNX2ZdpRQus8JlNiHd0fyz2GnnL7/03OT188BwG92pHjKJf81QLMbvjw/zdKmPLawmlkzxN39+kPs2VvDol24H4Id/cIC6+nLWPWFMs7bnf59hyZoSlq0rRWc0HS3dLLqjiKqVBaTTGY69epnqukLKa72kEmlOvd1PVV0BpYs8JONpTr/TT83thRRX55GIpjjz3gA1dxRSXJVHLJzk7L5BFq8uorDCTTSU4Oy+QZauKaGg3EUkkODs/kGWrSshv9RFeCJOZ4eP5RtK8ZY4CY7FOHfQx8pN5XiKHARGopw/NERdfQV5hXYmhiJ0HRnmtnsqcOfbGR8M03V0mDvuq8LltTHWH6b7+DCrH6jGkWdltC/ExRMj3PlQNXaXleFLQXpOjXLXozXYHBaGegJcOj3G2scXYbWZGez203tmnPVbFmO2mhg4P0Ff5wQbnlqMyWyi/9w4/ecm2NiwFKUUvWfHGezys6lhKQCXT48xdCnAxq1GuefUKKN9ITY8uQSAi8dHmBiKTP5bdB0dJjgaY+3jxqiDC4eHCPvj3PWoUT530EcslGTNI8a3dJ0HBklE09z5UDUAZ/cNkE5pVj1gjMc4814/WsOq+43y6Xf6MVkUt99TCcDJt/qw2s3ctrkCgON7enG4LdTVG+Vjr13GlW9j5SZjCqkjuy/hKXKwYmMZAId2XKSw3M2y9aUAHGzrprg6j9q1RrmjpZuyJR6WrikBYN9LF6hcUcCS1cUA7N1+nurbClm8qphMOsO+F7tYvLqImtuLSCcz7Hu5i6VriqmuKyQZT7P/lS6WrS2lamUBiWiKjle6Wb6xjMrl+cRCSQ60drOyvpyK2nwigQQHW7u57d5Kypd6CU/EOdB2kdUPVFG62ENgNMqh9h7WPFJNSY0H/3CEg+09rHt8EcXVeYwNhDm8s4cNTy2hqNLNaF+IQzt6qG+upaDcxVBPgMM7L3HvtuXklzoZ7PJzZNcl7v8XK/AWO+nrHOfo7ks8/KXbySu0c/n0GEdfu8TjX1mFy2vj4okRjr12mSd/fjXOPBsXjgxx/PVeGv/tXdidFjoPDHL89V6e/dX1WO1mzrzXz4k3+viJ/7gRs8XEybf6OPlmH1/47btRSnHstcuceW+An/yd+sl/m3MHhibLHa900XV0ZLL83j+f5/L7Y3zht4zyWz/oZODCxGT59f99hpHLIT7/m3cDsOtvT+EfivAvfsMot/3VccL+BP/ia5sAePkvjpKMpfiJ/2iUX/zzIwBs+w8bANj+Z4exOcw88yvrjfKfHsaVb6P5360F4J//5BAF5S4afmENAD/+44OULfbw5M8bs1396A8PUl1XwOM/s2ry99jSNSU8+mXj99o/fbODursreOgn6wD4we91sOrBKh743EoAvv+f97PuicXcu205AP/49f3c3bSU+qeXkUlrvv+N/Wx+dhmbGpaSSqT5we91cN9PrGD9lsUkomn+6fc7ePALK7nr0UXEQkl++M0DPPyl27jzoWrC/jg//IMDPPbTd3DHfZWExuL86A8PsuXnVlFXX4F/OMqP/vAgzb+0liV3Gtf+dJEeXwgh5giL1Uxeofm6A1aATEaTiBpBaTycIhZJEo8Y6/FIyliPpIhHjfWw3xgiHI+mSERS6E+5caiUMX+r1WHG5rBkX2ask0tju9VuntxutZs/9mW2zp2pYsT0m/pvvfaX/gbz++fIc7tIhePkF71IcCIJPM3Rngn+pzWM2XOeR7mdE73j/M9ML7+YMrGOxVweDdN6qp/nih0sW1fKeCjBzp1dbDFD1coCotEUb2w/z8PbVmQD0Azv/OgcD35hJaWLPCRiKd750Tke/tJtFFfnEYskeedH53jsp283AtCQUd7iWUVhhZuIP8G7Pz5PXqGDgnIXofEY7/3zeQrKjWRnwbEY771wnuJqN94SJ4GRKHtfuEDZEi+eIgcTQxH2bjeCmLxCOxODRrnm9kLc+XbGBsLse7GLJXeW4PLaGOkLsu/FLpatK8WRZwSc+17sYuWmcuwuK0M9Afa/1MUd91Zic1gY7DLKqx+sMgLQC372v9zFXY/WYLaa6D8/wf6Xu1i/ZTGYoffsBAdautl4JeA8M8bR3ZcmA9BLp0c5+Xb/1QD05Cid+wcnA9DuEyNcPDYyGYB2Hxum9+z41QD0yDBDPYHJAPTCoSHGfZHJAPTcgSFC47GrAWiHj0Q0NRmAnt03+IEA9Mx7A1jtpskA9My7/bi8tskA9PS7/RSUOicD0FNv91GyyDMZgJ58q4+qFfmTAejJN/tYcmfxZAB64o0+VmwsmwxAj++5zB33VU0GoMf39AJMBqDHXu/FYjOzeFUxWsOJN3px5FmNADSd4eSbveQV2KmuKySdynD67X4KylxUrSwgmUhz5r1+iqrdVC7PJ5lIc3b/IGVLvVTU5pOMpzh3cIiqukLKl3pJxFJ0HRliyZ3FlC72kIimuXhihOUbjLbGIyl6z4xxe/ZnkYim6D83MfmzjUdTDF0MkIgZj4AkYmnG+kOksnfykvE0E0MRMinjl38qmSE0ESeTzbCeTmeIhZKTuQ4yaU0qkfnoF53ZzsNsNmFzXB0VY7GZP5D52u604C1xGJ9X4PRYKaq8mjAwr9BB6ZKruRnyy1xUrsifLBdXu9FTOqrypR7srqvhS9XKArzFVzPkL15dRHRKrodl60tJRK+OLqqrL/9AwsE77q/8wLmtebga05RHXtY+VoPFfvX8Njy5GLvrag6Gu5tqceZdLW9+dhnu/Kvnf9/zK/AUOSbLD36+jvzSq+195F/eRkG58fPQWvPIV26nqNx9tfxzd1BaZTwWpBQ8/K9WUXalbFE8+POrqKwxztdsN/HgV1dRUWWULU4z9391NRXZx4qsHiv3/8IqShcZc7HbvFbu/cXVFC8y9ncU2LnnF1fjrXEz3SQAFUKIW5jJdPXZ1c9Ka00yniYeSZGIZl+xNImoEbAaZWNb8sp7MSPYDY7FjPfjaWPo8HWOgFXK+APFajdjsZux2sxY7SYsNrOx3Waa3G5sM13dbjMCWIvNjMVqMl7ZfWwOC+6C6w/cxczbWlnM1krjD/p8m4kvj1dhWm1861/piFLj+gG+iwVAM30+HxcSE7w3cpKfYCOvnzzHj4mRl27lAX6Jfz50mu954hS49nMvy/je3mP8RUGMgvxjbGQJf/nOYf6yIExJwRnuYhH/7d3DfKd4gpric9xJNd/ee4h/KBljRXE3d1DFf91/kO+XjnBn6WXqqOBPOw7wQvkg68uLWUEZ/+XgAVor+7i7uIxaSvijQx3squ7lvsJqFlPMNw/v581FfTxUWEsNhfzekX3sXdzH4wV1VJLPfz62j0NLL7PVu4oyvPzusb2cqO3lmfx1APynE/s4s+wSn/MYd2V+++Rezi+/xL/03AvAb53eS8/KS/yM+0EAfvPsXvrrevjXzkcA+I3OfQzffolftGfL5/czccdl/q3lUaPctZ/I6sv8W4zy1y52kFrVy7+5Ur50AHV7P7/Aw8b+vQex1vXz8zxklPsP414xwM9iDKf+2uARCpf5+Ar3G+8PH6Wsdogvcy/JdIbfGj9G1ZJRvshmook0vxM4xuJF43yBeoKxJL8bPs7yxQE+xybGwwm+Hj/B7bUhtrGBoWCM30ud4M6lMZ5hPQP+KL+vT7G+PEkTa7k8FuEPTKfYXJZhK2voGg7xh9bTPFCqeJLVdA4G+GPHGR4rsfA4qzjVO86f5L3PU0V2HuF2DncP8af5Z3m6sJcHqWPvuT7+vPAcP1E4yP2sYM+pi3yr5AJfzB/lHpbTeuw8f1Hexc8UBLibWl481sm3y7v4an6YDSzhh0fP8O2yblLeOGtZxP85fIJvlXRh8aa5k2r+7vBx/kdxF658E6uo4juHjvK3hV0UFli5jQr+8uBh/k/BBSoLnaygjG8dPMCPvN0s8nqppYQ/OdhBi+ciSz2FLKaYPzywn115l1juKaWaQn6vYy9vui9zh6uSCvL5T/v3ss95mTWuGsrw8lv73+WQvY8NrqUUk8d/3PsOJ219bHauoAAX/2HvO3Sa+3jAdQde4FfefZtuUx+POu7EDfzye29zmX6edBipWf7NO2/jy/TTYDeu3Z9/+y3GkgM02Yzyv3rrLQJ6gGaLccfwp994i5h5gEaT8fkv73mbtG2AJzHuGH7p9bdRzgEOYmTK/sKrb2P1DHKA2wD43O53cBUMsh/jd8W2ne+SXzLAXn4ZgOfa36OofID3+CUSqQzPtr9HaeUA72z5JcLxFM+0vUtlzRBvPvpv8UeSPN32LjWLh9nz4L9hOBjn6dZ3WVI7zKv3/hv6J6I0tb7LsuWj7Lr7F7g0GqGx9V3qVo7Rvv6rnB8K0tjyLnfcMUHLXT/PmYEAza+8w5rVfl5c/a84emmM5195hw13Bfnx7T/Lwa4RPv/KO9y9PsI/rfxp3jk7wE+//C733x3jfy/7Mq+e7OFfv3SAR+9J8r0lX+SVo138yktHeOr+DH+95PP8oOMsv/nySZ5+GP6i5nP83Xun+P0dZ/ncYxb+pPo5/ubt4/zZqxf4l1ud/H5FE3/++iH+6q1L/Hyzm9+qaOCPdx/g797r4989V8CvlT3BN3bs5QcdPn7986X825KH+Z3Wd3jhyCi/+y+r+Jni+/j/Wt6k7cQY3/ypZXyxYNNn+wX/GUkAKoQQC5RSavKu5s3QGU0yYQSiyVh2OeWViKVIJa6WU/HM5P6pyWWGaChJKp4mmUiTThr7XPmW/tMU1+Txk79df1PnIWaOslr59T/8z2SydzbKCwr5ydJHqFltDFu7r8LNr3b9I9bbvwjA/YWKnxj9U/KGnwbgDmuYjan/S/TyRgBqVZAVqoXhC7fDPVCRGKHGvIfecytg/ZMUhgcpo4OezmWw+hHcE/0UcYLu82G47X4co5fJ1+fo6tI8XHs31uEePOkeLna5ua9mLWZfN+5kH5culVNffSf0d+OK93N5cBnrq25D93fhjPoYGBpmTVktuq8LR2SEofExbi+uId3XhT00zEgozPJCyPRfxBYZZiIWZZEH0n3d2BPDBDMZyoFU/0WsqWHCmQwFQLr/ElbtI6E17itlhkgBNiA10ItF+YxveIDUYD8WNTh5BzrlG8RkHpgsp4d8mMz9k/8eqZFhrObeKeVRrP5LV8tj4+hgz2Q5PeEnE+6+WvYHSUe6ppRDJKPnAdBo0v4wiVhntgzpQJjYhfcny5lAhFjnGa5sSAcjRLLljIZ0KEL47PvZsiYTihJ8/+zk+5lwlOCZ8/AMZJIpdCRK4HQXNEEqGicTjeE/8z40fJlkOEwmGmXi9Dl48idJ+ANkYlHGTnfBY58nPjGOjkUYO3MRHnme+OgIOhZm9Ewv3P8MUd8gOh5m5P3jcE8TEV8/Oh5irPME3P0UkYF+dCLISOdJWPcYkf7LRvncKbjzQSJ9PeiEn+HzZ+C2e4n2XYSEn+GuTli2iWjvRUiOM3rpAixdS7y3GxJjjPddhEWrSfR2QWIcv68PqupI9ndBfJzAqA8qakn3n0clxgkExqF0EZmBC5gSY4TDQSisAN8FVGKUaDwGgMl3HpUeIZEx7hKahy+g9BCp7LeK5uHzmMw+rtwztI2ex2QZnPzO0TF2HqtlYPLf3jFxgZj16rXkDpxH2y5fLQfPk7BfvbbywufRyavXlid6HnPm6rXljV/AMX5hslyQPEfe2JRy6hwFo8a1ZlJQkD5L4bBxLZpNioLMWQqHjONZzIrCzBmKfEb9NouJAn2GkkGjfQ6rmQJOUTZo/N9w2EwUcJLywUGj7XYL+aYTVAyMGG11WPCaTlA5MGa0xWbCaz5OVb8fgHyzxmM9Tk1/CPhpCkiSZztOTb/xsy/IxPDajrFowPjpFqVC2bJxB7YkGcBrO0rNgHEHtTQxbpSHjDuW5bERvLajVA8UAU1URofw2o5SNWSMHKiKDmbLxkiGmkg/XttJKobqsuU+vLazlI8a9S8KX8ZjvUDp+NU7ttNGaz0vXhs3btRCCCHml3QqrePRpA7749o/HNGjfSHtu+jXfZ3juufUiL5wZEif7RjQXceGc1IfxjRhs96nzfZrrvSp6UxGa611KpXSp/sHtS8Q1FprHQuF9b539+vLg0Naa60jExP6vbZd+lJfv9Za69DIqN774xd1b7YcHPTpjn/6sR7oG9Baa+3vH9CHvv9DPTTgM8q9ffro93+oR4eM62ji0iV98vs/1BMjo0b5Yo8+84Mf6sD4uFG+0KU7/+lHOuQPGOXzF/T5f/qRjoRCRvlsp+7+4Y91LBo1yu+f1T0/+rFOxOJGfafP6Ms/+medTCaN90+e0n3//IJOZc/Xf+Kk7n9h++T5+48d04Mvvawz2XLgyFE99ErL1fLhI3qkrf1q+eAhPbpz5+TPMXjggB7ftftqeX+H9r/2+tXyvn068MYbk+XQ3r06+NbbV8vvvqtD7757df+339GhvXuvlt98U4f2779afuMNHT5wYLIceP11HT50+Gr5tdd05OjRq+Xdu3Xk+PHJsn/nTh05cfJqecdOHT19+mq5vV1H33//armtTcc6O7XWWmdSKaN8/rxRTiS0v71dxy50aa21Tsfj2t/eruPd3UY5GjXKly4Z5XBY+9t36PjlXq211qlgSPvbd+hEX59RDgS0f8dOnRgcNMoTE0bZZ1xLybEx7d+5UyeHjWspOTpqlEeNayk5PGyUx8a01lonfD7t37VLpyYmjPLgoFEOGNdWor/fKAeNayvR26v9u3bpdDistdY6fvmyDuzerdPZay3e06MDu3frTNy41uIXLxrlREJrrXWsq8sop1JG+cIFHdh99dqInTunA6++OlmOvn9WB15/fUr5fR3Ys+dq+fRpHXzzzcly5ORJHXz7navl4yd08J0p5aNHP3DtRI4c0aG9+ybL4UOHP3AthQ8e1OGDB6+WOzp0+NChyXJo7z4dOXJkSnnvB66t0LvvfuDaCr79jo6cvHptBd96S0dPnZosB/bs+cC1FXj9dR19/+zV8muv6di5c1fLr76qYxcuaK21zqTTRrnLuNYyyaQOvPaajl+8aJTjcaN85VqLxXTgtdd1ote41tKRiA68/rpO9Bu/t9KhkFG+cq0FgzqwZ8/ktZYKBHTwjTcmr7XUxIQOvvnm5LWWGh/Xwbfe0qns763k2JgOvvX25LWWHB3VwbffmbzWksPDOvTuuzqd/T2WCx/Xpyqt50fmwE2bNumDBw/OdjOEEELcwpRSh7TW0zv26BYgfaoQQoib9XF9au7y8wshhBBCCCGEEJ9AAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCAlAhhBBCCCGEEDNCaa1nuw05oZQaBnpydLgSYCRHx7pVyDkvDHLOC4Oc841borUuzcFxbmk57FPlWlwY5JwXBjnnhSGX53zNPnXeBKC5pJQ6qLXeNNvtmElyzguDnPPCIOcs5oqF+O8i57wwyDkvDHLO00OG4AohhBBCCCGEmBESgAohhBBCCCGEmBESgF7bd2a7AbNAznlhkHNeGOScxVyxEP9d5JwXBjnnhUHOeRrIM6BCCCGEEEIIIWaE3AEVQgghhBBCCDEjJAAVQgghhBBCCDEjJACdQim1VSl1Vil1Xin1tdluz3RRSn1PKTWklDo5ZVuRUmq3Uupcdlk4m23MJaXUIqXUHqXUaaXUKaXUr2S3z+dzdiilOpRSx7Ln/J+z22uVUvuz1/g/KaVss93WXFNKmZVSR5RSLdnyQjjni0qpE0qpo0qpg9lt8/n6LlBK/Vgp9b5S6oxS6t75fL63IulP5++1KH3qwulTpT+d//0pzE6fKgFollLKDPx3oAFYBXxRKbVqdls1bf4e2PqhbV8DXtNarwRey5bnixTwH7TWq4B7gH+X/bedz+ccBx7TWq8F1gFblVL3AH8M/LnWegUwDvyr2WvitPkV4MyU8kI4Z4BHtdbrpszdNZ+v728DO7TWtwNrMf695/P53lKkP53316L0qQunT5X+1DCfr22YhT5VAtCr6oHzWusurXUC+AHw7Cy3aVpord8Cxj60+VngH7Lr/wA8N5Ntmk5a6wGt9eHsehDjP1Y18/uctdY6lC1asy8NPAb8OLt9Xp0zgFKqBmgCvpstK+b5OX+CeXl9K6XygYeAvwXQWie01hPM0/O9RUl/Oo+vRelTF0afKv3pB8zba3u2+lQJQK+qBi5PKfdmty0U5Vrrgez6IFA+m42ZLkqppcB6YD/z/JyzQ2eOAkPAbuACMKG1TmV3mY/X+LeA/whksuVi5v85g/GH0C6l1CGl1Fez2+br9V0LDAN/lx0a9l2llJv5e763IulPF8i1KH3qvO5fvoX0p/O9P4VZ6lMlABUfoY25eebd/DxKqTzgn4Ff1VoHpr43H89Za53WWq8DajDuSNw+uy2aXkqpZmBIa31ottsyCx7QWm/AGPL475RSD019c55d3xZgA/BXWuv1QJgPDQ2aZ+crbmHz+VqUPnX+9qnSny6Y/hRmqU+VAPSqPmDRlHJNdttC4VNKVQJkl0Oz3J6cUkpZMTrK/6u1fiG7eV6f8xXZoRR7gHuBAqWUJfvWfLvG7weeUUpdxBjy9xjGcw3z+ZwB0Fr3ZZdDwHaMP47m6/XdC/Rqrfdnyz/G6Dzn6/neiqQ/nefXovSp875Plf50YfSnMEt9qgSgVx0AVmYzfNmAnwRenuU2zaSXga9k178CvDSLbcmp7HMLfwuc0Vr/1ylvzedzLlVKFWTXncAWjOd09gCfy+42r85Za/0bWusarfVSjP+/r2ut/yXz+JwBlFJupZTnyjrwJHCSeXp9a60HgctKqduymx4HTjNPz/cWJf3pPL4WpU+d/32q9KcLoz+F2etTlXFXVQAopRoxxrybge9prb85uy2aHkqp7wOPACWAD/hd4EXgh8BioAf4vNb6w4kVbklKqQeAt4ETXH2W4TcxnlmZr+d8F8ZD42aML5p+qLX+hlJqGca3mUXAEeDLWuv47LV0eiilHgF+TWvdPN/POXt+27NFC/CPWutvKqWKmb/X9zqMxBg2oAv4WbLXOfPwfG9F0p/O32tR+tSF1adKfzq/+1OYnT5VAlAhhBBCCCGEEDNChuAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKIYQQQgghhJgREoAKMQ2UUsVKqaPZ16BSqi+7HlJK/Y9pqO/vlVLdSqlf/Iyfa7syufYN1LkuO9ffjXzWmf15JJRSJTdyDCGEEPOf9Kef+lnpT8UtxzLbDRBiPtJajwLrAJRSXwdCWus/neZqf11r/ePP8gGt9Q11eFnrgE1A22f9oNY6CqxTSl28ifqFEELMc9Kffmq90p+KW47cARViBimlHlFKtWTXv66U+gel1NtKqR6l1PNKqf+ilDqhlNqhlLJm99uolHpTKXVIKbVTKVV5HfX8vVLqr5RS+5RSXdl6v6eUOqOU+vsp+11USpUopZZm3/ufSqlTSqldSilndp83lFKbsusl2c/YgG8AX8h+8/oFpZQ7W0eHUuqIUurZ7GdWZ7cdVUodV0qtzPkPVgghxIIi/an0p+LWJQGoELNrOfAY8Azwf4A9Wus1QBRoynaa/w34nNZ6I/A94JvXeexC4F7g3wMvA38OrAbWKKXWXWP/lcB/11qvBiaAn/i4A2utE8B/Av5Ja71Oa/1PwG8Br2ut64FHgT9RSrmBXwS+rbVeh/ENb+91tl8IIYS4XtKfCnGLkCG4Qsyudq11Uil1AjADO7LbTwBLgduAO4HdSimy+wxc57Ff0Vrr7LF9WusTAEqpU9ljH/3Q/t1a6yvbDmX3+SyeBJ5RSv1atuwAFgN7gd9SStUAL2itz33G4wohhBCfRvpTIW4REoAKMbviAFrrjFIqqbXW2e0ZjP+fCjiltb73Ro+dPVZ8yvYrx/64/QHSgDO7nuLqaAnHJ9SngJ/QWp/90PYzSqn9QBPQppT6Ba3169fRfiGEEOJ6SX8qxC1ChuAKMbedBUqVUvcCKKWsSqnVM9yGi8DG7PrnpmwPAp4p5Z3AL6vsV8tKqfXZ5TKgS2v9F8BLwF3T3WAhhBDiQ6Q/FWKOkABUiDks+2zI54A/Vkodwxjmc98MN+NPgX+jlDoCTE3xvgdYdSVpAvB7gBU4nh2W9HvZ/T4PnFRKHcUY/vS/ZqzlQgghBNKfCjGXqKsjFIQQt6psJr6Wz5o2frYpI238Jq31yGy3RQghhJD+VIjpJ3dAhZgf/MDvqc84cfZsUdmJszG+4c3McnOEEEKIK6Q/FWKayR1QIYQQQgghhBAzQu6ACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYERKACiGEEEIIIYSYEZbZbkCulJSU6KVLl852M4QQQtzCDh06NKK1Lp3tdsw26VOFEELcrI/rU+dNALp06VIOHjw4280QQghxC1NK9cx2G+YC6VOFEELcrI/rU2UIrhBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCCCGEEEKIGSEBqBBCiFtaIppitC80280QHxI/f5603z/bzRBCCDHHWGa7AUIIIcRnlU5m6Dk1SmeHj4snRsgvdfKTv1OPUmq2myayBn7rt4mePk3e/ffjbWwg77HHMOflzXazhBBCzDIJQIUQQtwSdEbTf36Czg4fFw4PEY+kcHqsrLq/irr68tlunviQ8t/+LQJt7QTa2wm98QbKZiPv4YeNYPSRRzA5nbPdRCGEELNAAlAhhBBzltaa0b4Qnft9nDvoIzQex2I3s2xtCXX1FdTcUYjZLE+TzEXONWtwrllD2a//GtGjR41gdOcOgrt3o1wuPI8+irepibwH7kfZbLPdXCGEEDNEAlAhhBBzTmA0yrkDPjo7fIz1hzGZFItWF3Hv88upvasUq908200U10mZTLg2bMC1YQPlv/E1IgcOEmhrI7hzJ4HWVkz5+Xif3IK3sRFXfT3KLP+2Qggxn0kAKoQQYk6IhZKcPzxEZ8cgA+eN5DUVy/J56CfrWLGpDGee3CW71SmzGfc9m3Hfs5mK3/4twnv34m9tJdDaxsSPfoy5tARvQwP5TU047rpLnukVQoh5SAJQIYQQsyaZSHPx2AidHYNcOjVGJqMprHCx+Zll1NWX4y2R5wTnqyvPhOY9/DCZaJTQm28SaG1l4vs/YPx//W+sixbhbWokv6kJ+8qVs91cIYQQOTKtAahSaivwbcAMfFdr/UfX2OfzwNcBDRzTWn8puz0NnMjudklr/cx0tlUIIcTMyKQz9L4/TmeHj66jwyTjadwFdu56fBF19eWU1OTJna8FxuR04t26Fe/WraQDAYK7XyXQ2srod/4no3/9N9hvuw1vcxP5jY1Yq6tnu7lCCCFugtJaT8+BlTIDncAWoBc4AHxRa316yj4rgR8Cj2mtx5VSZVrroex7Ia31dedr37Rpkz548GBOz0EIIURuaK3xXQzQ2eHj/EEf0WASm9PCig2l1NVXULmyAJNp9oNOpdQhrfWm2W7HbJsrfWpqeJjAjp0EWlqIHjsGgHPDBrxNjXi3bsVSXDzLLRRCCPFxPq5Pnc47oPXAea11V7YBPwCeBU5P2edfA/9daz0OcCX4FEIIMT9M+CKc7RjkXIcP/3AUs8XE0jXF1NVXsOTOYsxWyWArPp6ltJSin/oyRT/1ZRKXLxNobSPQ2oLv934f3x/8Ie5778Xb3ITniSdkjlEhhLhFTGcAWg1cnlLuBTZ/aJ86AKXUuxjDdL+utd6Rfc+hlDoIpIA/0lq/+OEKlFJfBb4KsHjx4pw2XgghxI0J++OcO+Dj3AEfQz1BUFBdV8iGrUtYvqEMu1PSDywEf3LgT4imomxdupWN5Rsxm24uu61t0SJKfvEXKPnFXyB2tpNAayuBlhYGvvYbDNq/Tt6jj+JtaiTvoYcw2e05OgshhBC5Ntt/BViAlcAjQA3wllJqjdZ6Aliite5TSi0DXldKndBaX5j6Ya31d4DvgDFcaEZbLoQQYlI8mqLryDCdHYP0nR1Hayhd7OH+z61g5aZy3AUSECw0kVSE1q5WftT5I0qcJWxZsoWtS7eyrmwdJnVzd74dt9XhuK2O0n//q0SPHCXQ0kJgxw6CO3Zg8njwPLmF/OZmmdZFCCHmoOkMQPuARVPKNdltU/UC+7XWSaBbKdWJEZAe0Fr3AWitu5RSbwDrgQsIIYSYE9LJDD2nRunsGOTi8VHSqQzeEgcbG5ZSV19OYYV7tpsoZtHv3vu7/PqmX+etvrfY2b2TF869wPff/z5lrjKeWvoUDUsbuLPkzptKOKWUwrVhPa4N6yn/zd8gvHcfgZYWgu078P/zC1endWluxrFmjSS3EkKIOWA6kxBZMJIQPY4ReB4AvqS1PjVln60YiYm+opQqAY4A64AMENFax7Pb9wLPTk1g9GFzJWGCEELMZzqj6T8/QWeHjwuHh4hHUjg9VlZsLKeuvpzyWu8t/Ue+JCEyTEefGk6G2XN5Dzu7d/JO/zukMilq8mpoqG2gobaBlYW5m2olE4sReuNNAq0thN54E51MYl282JjWpbkZ+/LlOatLCCHEtX1cnzptAWi20kbgWxjPd35Pa/1NpdQ3gINa65eV8VfKnwFbgTTwTa31D5RS9wF/gxGImoBvaa3/9pPqkgBUCCGmz0hviM6OQc4d8BEaj2Oxm1m2roS6+goW3V6IyTw/kgnN1QBUKVUAfBe4E2Pasp/TWu+d8r7CmPasEYgAP6O1PqyUWgf8FeDlaj/7T59W33T3qf64n9cvvU57dzv7B/eT0RlWFKxg69KtNNY2ssi76NMPcp2MaV12429pIbK/AzIZ7HfcQX5zE97GRqyVlTmrSwghxFWzEoDOJAlAhRAitwKjUc4d8NHZ4WOsP4zJpFi0uoi6+nJq7yrFap9/z9bN4QD0H4C3tdbfVUrZAFc2X8KV9xuBX8YIQDcD39Zab1ZK1QFaa31OKVUFHALumPrZa5nJPnUkOsKrPa/S3t3O4aHDANxZfCcNtQ1srd1KmassZ3Ulh4YI7tiBv6WV2PHjALg2bcLb3IznqSexFBbmrC4hhFjoJAAVQgjxqWKhJOcPD9HZMcjAeT8AlcvzWXl3OSs2leHMs81yC6fXXAxAlVL5wFFgmf6YTlsp9TfAG1rr72fLZ4FHtNYDH9rvGPA5rfW5T6pztvrUgdAAOy7uoL27nTNjZ1AoNlVsorG2kS1LtpBvz89ZXYmeHgJtbfhfaSHR1QUWC3kPPIC3qQnPY49icsszzEIIcTMkABVCCHFNyUSai8dG6OwY5NKpMTIZTWGlm7r6curuLsdb4pztJs6YORqArsPI+H4aWItxF/NXtNbhKfu0YExZ9k62/Brw/2mtD07Zpx74B2C11jpzjXqmTm22saenZ9rO6Xp0+7vZ0b2Dtu42LgYuYjFZuL/qfhpqG3h00aO4rK6c1KO1Jn7mDP7WVgJt7aQGBlBOJ57HHsPb1ETeA/ejbPP7ixchhJgOEoAKIYSYlElnuPz+OOc6fHQdHSYZT+MusFN3dzkr68spqcm7pZMJ3ag5GoBuAvYB92ut9yulvg0EtNa/M2WfTwxAlVKVwBvAV7TW+z6tzrnUp2qtOTN2hvbudtq72/FFfDgtTh6ueZiG2gYeqH4Amzk3AaLOZIgePoy/pYXgjp2kJyYw5+fjeeopvM1NuDZtQpnmx/POQggx3SQAFUKIBU5rje9igM4OH+cP+ogGk9icFpZvKOW2+gqqVhagTAsv6JxqjgagFcA+rfXSbPlB4Gta66Yp+3zsEFyllBcj+PwDrfWPr6fOudqnZnSGI0NHaOtqY1fPLibiE3hsHrYs2UJjbSObyjdhNuXm2WSdTBJ6910CrW0EX3sNHYlgKS/H29SEt6kRx6pVC/JLGiGEuF4SgAohxAI14YtwtmOQcx0+/MNRzBYTS9cUU1dfwZI7izFb5Y7OFXMxAAVQSr0N/LzW+qxS6uuAW2v961PebwJ+iatJiP5Ca12fTVjUDryitf7W9dZ3K/SpyUySff37aO9u57VLrxFJRSh1lvLU0qdorG286TlGp8pEIgT37CHQ2kbo7bchmcRWW4u3uYn8piZsS5fmpB4hhJhPJAAVQogFJOyPc/6gkUxoqCcICqrrCqmrL2f5+lLsLutsN3FOmsMB6DqMaVhsQBfws8AXALTWf52dhuUvMaY1iwA/q7U+qJT6MvB3wKkph/sZrfXRT6rvVutTo6kob/W+RXt3O2/1vkUyk2SRZxFbl26laVkTywtyN+9nemKCwM5dBFpbiRw4AFrjuPNOvM1NeBsasZbnLmuvEELcyiQAFUKIeS4RTdF1dJjOjkF63x9HayhZlEddfQUrN5WTV2if7SbOeXM1AJ1pt3KfGkgEeK3ntQ/MMVpXWEdDbQMNtQ1U51XnrK7k4CCBtnYCLS3ETp8GpXDV15P/dDOeLVsw5+cua68QQtxqJAAVQoh5KJ3K0HNylM4OHxdPjJBOZvCWOIyg8+5yiiplKonPQgJQw3zpU0eiI+y8uJO27jaODxvzfq4rXUdDbQNPLX2KYmdxzuqKd3URaGnF39pCsucSymrF/fBD5Dc1kffII5icCyebtBBCgASgQggxb+iMZuDCBGc7fFw4NEQ8ksKRZ2XlxjLqNldQXutdEMlRtNac7Auw/UgfqUyGbzx7500fUwJQw3zsU3uDvbR3t9PW3cb5ifOYlZnNlZtprG3k8cWPk2fLy0k9WmtiJ08RaGkh0NZGangYk8uFZ8sTeJubcd97L8piyUldQggxl0kAKoQQt7jRvhCdHYN0HvARGotjsZmoXVtKXX05i1YVYTYvjGRCveMRXjraz/YjfZwfCmE1KxrXVPKtL6y76cBbAlDDfO9Tz42fmwxG+0J92Ew2Hqp5iIbaBh6qeQiHxZGTenQ6TeTAAWNal127yQQCmIuK8G7dire5Gef6m79mhRBirpIAVAghbkHBsRjnDvjo7BhktC+MMikWrypi5d3l1K4tweZYGHdS/NEk7ScGeOFIHx3dYwDcvbSQ59ZX07SmkgJXbuaBlADUsFD6VK01x0eO097dzo7uHYzGRnFb3Ty++HEaahu4p/IeLKbc/B/LJBKE334bf0sLoT1voGMxrFVVxrQuzc04bqvLST1CCDFXSAAqhBC3iFg4yYXDQ3R2+Og/NwFAxTIvdfUVrNhYhtOTm2BrrkukMrxxdogXj/bx6pkhEqkMy0rcbFtfzbPrqllc7Mp5nRKAGhZin5rKpDgweID27nZe7XmVYDJIkaOILUu20LSsibWlazGp3IwySIfChF5/DX9LC+F334N0GvvKFXibmvE2N2GrqclJPUIIMZskABVCiDkslUhz8cQonR2D9JwcJZPWFFa4qKsvZ+XdFeSXLowEJlprDl+aYPuRXlqODzARSVLstvH02iq2ra/mrpr8aR2yKAGoYaH3qYl0grf73qatq403e98kno5T6a6kobaBxtpG6grrcnYdpsbGCOzYQaC1jeihQwA4160z7ow2bMVSUpKTeoQQYqZJACqEEHNMJqPpOztOZ8cgXUeGScTSuPJtrLy7nNvqKyhZlLdgng+7OBJm+5E+XjzaR89oBLvFxJOrK3h+fTUPrCzBOkPPt0oAapA+9apwMszrl16nrbuNvf17Ses0y/KX0VjbSGNtI4u8i3JWV7KvD39bG4HWNuLvvw8mE+5778Xb3IxnyxOY83KTKEkIIWaCBKBCCDEHaK0ZvhSkc7+Pcwd9RAIJrA4zy9eXUldfQfVthZhMCyPoHAsnaD3ezwtH+jhyaQKl4L7lxTy3rpqtd1bgcVhnvE0SgBqkT722sdgYuy/upq27jcNDhwFYU7KGhtoGti7dSqmrNGd1xc+dw9/aSqCllWRvL8pmI++RR/A2N5H38MOY7DKvrxBibpMAVAghZpF/OEJnh4/ODh8Tvggms2LJncXU1VewdE0xFpt5tps4I2LJNK+dGWL7kT7eODtEKqO5vcLDtvXVPLOuisr82R1qLAGoQfrUTzcQGmDHxR20d7dzZuwMJmXi7vK7aaht4IklT5Bvz89JPVprYseO4W9pJdDeTnp0FFNeHp4nn8Tb1Ih782aZ1kUIMSdJACqEEDMsEkhw/tAQnR2D+LoDAFStLKCuvpzlG8pwuGf+Dt9syGQ0HRfH2H64j7aTAwRjKcq9dp5dV81z66pZVeWd7SZOkgDUkIs+dTSRotBqxrQAhpF3+bto726nvbudnkAPFpOFB6ofoLG2kYdrHsZlzU3CLJ1KEd63n0BrK8Fdu8iEw5hLSvA2NJDf1Ihj7doFM2xfCDH3SQAqhBAzIBFL0X1shM4OH5fPjKEzmuLqvGwyoXI8RbmZX/BWcH4oyAuH+3jpaD99E1HcNjNb76xk2/pq7l1ejHkODjWWANSQiz71C0cvcC4S45myAp4tK2SdxznvgyOtNafHTtPW1caOizsYigzhtDh5dNGjNNY2cl/VfVjNufniKROLEXrzLQItLYTefBOdSGBdtAhvUyP5zc3YV6zIST1CCHGjJAAVQohpkk5nuHx6jM4OH93HhkklMuQV2qmrL6euvoLi6oWTOGQoGOPlo/28eLSPk30BzCbFAytKeH5DNVtWleOyze2hghKAGnLRp77oG+cF3zh7xoIktWaJw8azZQU8V17IHW7HvA9GMzrDId8h2rrb2N2zG3/cT749ny1LttBY28jG8o25m9YlGCS4azeB1lbC+/ZBJoP99tvJb27C29iItaoqJ/UIIcRnIQGoEELkkNYaX3eAzv2DnDs0RCyUxO6ysHxjGbfVl1O5vAA1B+/wTYdIIsWuUz5eONLHO+eGyWi4qyaf59ZV8/TaKko9t06yFAlADbnsUyeSKdpH/Lzkm+DtiSBpDStddp4rK2RbeSHLXLfO9XGjkukk7/W/R1t3G3su7yGailLmKmPr0q00LmtkVdGq3E3rMjxMoH0HgdZWoseOAeDctJH85mY8Tz2FpbAwJ/UIIcSnkQBUCCFyYHwwnE0mNEhgJIbZamLpmhLq6stZcmcxZsvMTBcy29IZzbvnR3jxSB87Tg0SSaSpLnCybX01z62vZkXZrXnXVwJQw3T1qSOJFC3DE7zoG2e/P4wG1nqcbCsr5NnyAirttpzXOddEkhHe7H2Ttu423ul7h1QmxRLvEhpqG2iobWBZ/rKc1ZW4fJlAayv+lhYS5y+AxYL7/vuMYPSxxzC53TmrSwghPkwCUCGEuEFhf5xzB4wMtsOXgigF1bcVUldfwfL1pdicc3tYaa5orTk9EGD74T5eOtbPcDCO12Gh6a4qtq2vZtOSW38KGQlADTPRp/bHErw0NMH2oXGOB6Mo4J4CN8+XF9JUWkCRdf7/v/LH/bza8yrt3e10DHag0dxRdMdkMFrhrshJPVpr4p2dBFpa8Le2kuofQDkceB57FG9zM3kPPICyzf/gXwgxsyQAFUKIzyARTXHhyDCdHYP0nR1Hayhd7JlMJuTOn//DBq/on4jy0tF+th/ppdMXwmpWPHJbGc+vr+bR28twWOfPFDISgBpmuk+9EInxom+CF4fGOReJY1HwaJGXbeWFPFXsxW2ZP9fYxxmKDLHz4k7au9s5MXICgA1lG2isbeTJpU9S6MjN0FmdyRA9cgR/SwvBHTtJj49jys/H++STeJubcW3aiDLP/5+3EGL6SQAqhBCfIp3K0HNylM4OHxdPjJBOZvCWOKirr6CuvpzCioUzXC0YS9J+YpDtR/rY1z2K1rBxSSHb1lfTtKaSQvf8vFsiAahhtvpUrTWnQlFeyAaj/fEkTpOJp0q8PF9eyCNFHmym+T/M/VLgEm3dbbR3t9Pl78KiLNxTdQ+NtY08tvgx3Nbc/C7SySThvXuNYPTV19CRCJayMryNjXibm3Gszt2zqUKIhWdWAlCl1Fbg24AZ+K7W+o+usc/nga8DGjimtf7SlPe8wGngRa31L31SXRKACiFuhM5oBi74OdsxyIVDQ8QjKRx5VlZuLKNucwXltd4F8wdYMp3hrc5hXjjSx6unfcRTGZYWu9i2vobn1lexpHj+B+ASgBrmQp+a0ZoOf5gXfOO0DE8wlkxTYDHTXFrAtvIC7i3Im/dzjGqt6RzvnAxGB8ID2M12Hq55mMZljTxY/SA2c26+DMpEo4T27MHf0kro7bchmcS2dCnepia8zU3Ya2tzUo8QYuGY8QBUKWUGOoEtQC9wAPii1vr0lH1WAj8EHtNajyulyrTWQ1Pe/zZQCoxJACqEyKXRvpCRTOjAIKGxOBabidq1pdTVl7NoVRFm8/y/ywLGH7hHL0+w/UgfLccHGAsnKHRZeXptFc+tr2b9ooIFE4CDBKBXzLU+NZnRvDkeZLtvnPYRP5F0hkq7lWfKCni+vJC78ub/HKMZneHY8DFau1rZ3bObsdgYHquHJ5Y8QUNtA/UV9ZhNuRk6m/b7CezaRaCllUhHB2iNY/VqvM3NeBsbsJaX56QeIcT8NhsB6L3A17XWT2XLvwGgtf7DKfv8F6BTa/3da3x+I/DrwA5gkwSgQoibFRyLTSYTGu0LoUyKRXcUUVdfTu3aEmyO+Z/05Iqe0TAvHjHm6+weCWOzmNiyqpxt66p5+LZSrAskAP8wCUANc7lPjaQz7Brxs31onNdHjTlGlzvtbCsvZFt5Actdjtlu4rRLZVLsH9hPW3cbr116jXAyTLGjmK21W2mobeCukrtyFpAnfT4Cbe0EWlqInToFSuG6+268zU14n3wSc0FBTuoRQsw/sxGAfg7YqrX++Wz5p4DNUwNJpdSLGHdJ78cYpvt1rfUOpZQJeB34MvAEHxOAKqW+CnwVYPHixRt7enqm5VyEELeueCTJhcPDnN0/SP/5CdBQXuulrr6CFRvLcHnn57OM1zIeTtByYoAXj/RxqGccgHuWFbFtfTUNayrxOqyz3MLZJwGoYS4HoFNNJFO0Dvt5wTfOexMhNHCXx8nzC2hal1gqxtt9b9PW1cZbvW+RyCSozqumsbaRhtoGVhauzFld8e5uAq1tBFpaSFy8CFYreQ88gLe5Cc+jj2JyuXJWlxDi1jdXA9AWIAl8HqgB3gLWYASeLq31f1FK/QxyB1QI8Rmkkml6TmSTCZ0cIZPSFJS7qKsvp66+nPzShfNHUiyZZs/7Q7xwpI83zg6RTGtWluWxbUM1z66rprrAOdtNnFMkADXcin3qQDzBy0MTvOAb51h2Wpd7C/Ky07rkU7gApnUJJoK8ful12rrb2D+wn7ROs6JgBU3Lmti6dCs1npqc1KO1JnbqNIGWFgJtbaSGhlAuF57HHye/uQn3ffehrPKFlhAL3VwdgvvXwH6t9d9ly68BXwN+FXgQyAB5gA34H1rrr31cfbdiZymEyJ1MRtPfOU5nh48LR4ZJRFO4vDZWbiqnbnM5pYs98/4ZsSsyGc3BnnG2H+ml9fgAgViKUo+dZ9dWsW1DNasqF05ipc9KAlDDrd6nXpnW5QXfOBeicaxK8WiRh23lhTxZ4sW9AKYZGY2OsqtnF21dbRwdPgrA2tK1NNQ28NTSpyhxluSkHp1OEzl4yAhGd+0i4/djLijA07CV/OZmnOvXoxZA5mIhxEfNRgBqwRhe+zjQh5GE6Eta61NT9tmKkZjoK0qpEuAIsE5rPTpln59B7oAKIa5Ba81Ir5FM6NwBH+GJOFa7meXrS6mrr6D69kJMpoUTaJ0fCvHikT5ePNpH73gUl83M1tUVPLe+mvtXlGBeQD+LGzUdAahS6vh17DastX48l/XejPnSp2qtORGK8oJvnJeGJhiIJ3GZTWwtyWdbWQGPFHmxLoD/F32hPtq722nvbqdzvBOTMrG5YjMNtQ08seQJPDZPTurRiQShd94l0NJC8PXX0bEYlqpK8rPTuthvu02+/BJiAZmtaVgagW9hPN/5Pa31N5VS3wAOaq1fVsZvoT8DtgJp4Jta6x986Bg/gwSgQogpAiNROrPJhMYHwphMisV3FlNXX87Su0qw2ub/3Y0rRkJxXjnWz/YjfRzv9WNS8MDKUp5fX82Tq8tx2eb/sMNcmqYA9BTQ+Em7AC9rre/KZb03Yz72qRmt2TsR4sWhCV4ZmmAilabQYubpsgK2lReyOd8976d1ATg/fn5yWpfeUC82k40Hax6ksbaRh2oewmHJTRKnTDhM8PU9BFpaCL37LqRS2FYsJ7+pCW9TE7bFi3NSjxBi7pqVAHQmzcfOUghxVSyU5PzhITo7Bhk47wegckW+kUxoQxmOvIXzvFE0kWbX6UFePNLHW+dGSGc0q6u8bFtfzTPrqijzzP8soNNlmgLQB7TW79zsPjNpvvepiUyGN8aMaV12jASIZjJU2a08V2Zk0r1zAUzrorXmxMgJ2rvb2XFxByPREdxWN48teozGZY1srtyM1ZSb36up8XGCO3fib2khevAQAI61d5Hf1Iy3YSuW0tKc1COEmFskABVC3HKSiTQXj4/Q2eHj0qlRMmlNYaXbSCZ0dznekoWTQCed0ezrGuWFw33sODlAOJGmKt/Bs+ur2ba+mrry3AyhW+jkGVDDQupTw6k0O0cDbPeNs2csQErDSld2WpeyQmpd9tlu4rRLZ9Ic8B2gvbud3T27CSaCFNoLeXLpkzTWNrKubB0mlZvnOJP9/QTa2vC3thE/cwZMJtz3bMbb1IznyS2YPfK7TIj5QgJQIcQtIZPO0HvWSCbUdWSYZDyNu8DOyruNDLYlNXnz/s7EVO8PBth+uI+XjvYzGIjhsVtoXFPJc+ur2VxbtKCecZ0J0xmAKqXuB74OLAEsGENvtdZ62XTUdzMWap86lkzRMjTB9qFx9k6EAVjncfF8eQHPlhVSbp//Iy0S6QTv9r1LW3cbb1x+g1g6RoW7goalDTTUNnB70e05+x0cv3CBQGsr/pZWkpcuoWw28h5+CG9TM3mPPIzJIaM5hLiVSQAqhJiztNYMXwrSud/HuYM+IoEENoeZ5RvKqNtcQdXKggUVaA36Y7x8rI8XDvfx/mAQi0nxyG2lbFtfw+N3lOGwLpxnXGfaNAeg7wP/HjiEkfcAgKmJ9+YK6VOhP5bgxaEJXvSNczxkTOtyf3Zal8bSfAoWwLQukWSE1y+/TltXG3v795LSKWrza2mobaCxtpEl3iU5qUdrTezECfwtLQTa20kPj2Byu/Fs2YK3uRn3PZtRlvn/8xZivpEAVAgx5/iHI3R2GMmEJnwRTBbF0jtLqKsvZ8maYiwLKNAKxVPsOGk81/nuhRG0hvWLC9i2vpqmNZUU583/YYBzwTQHoPu11pun49i5Jn3qB52PxNjuG2e7b4Ku7LQujxd7eK6skCdL8nGZ5/80I+OxcXb37Katu41DPuM5ztXFq2msbWRr7VbKXGU5qUen00Q6OvC3tBDctZtMMIi5uBjv1q14m5twrlu3oEbBCHErkwBUCDEnRIMJzh00kgn5ugMAVK0soK6+nOUbynC45/8QtytS6Qxvnx9h++E+dp0eJJbMsLjIxXPZ5zprS9yz3cQFZ5qSEG3Irn4eIyv8C0D8yvta68O5rC8XpE+9Nq01x0NRXhg0pnUZTCRxm000lOTzXHkhDxd6FsS0LoPhQXZ076Ctu40zY2dQKO6uuJuG2ga2LNlCvj0/J/Vk4nFCb71FoKWV0BtvoONxrNXVeJubyW9uwr5yZU7qEUJMDwlAhRCzJhlP031s2EgmdHoMndEUV7upq69g5d3leIoWznM+WmtO9Pl54XAfLcf7GQklKHBZaVpTyfMbqtmwuFC+3Z9F0xSA7vmEt7XW+rFc1pcL0qd+urTW7JsIsd03wSvDE/hTaYqsZp4uNaZ1qV8g07p0+7sn5xi9GLiIxWThgaoHaKht4JFFj+CyunJSTzoUIvjqqwRaWgnv3QvpNPa6OrzNzXgbG7HVVOekHiFE7kgAKoSYUZl0hsvvj9PZMUjX0RFS8TR5hXYjg219BcXVebPdxBl1eSzCS0f7eOFIH13DYWxmE4/fUca29dU8clsZNsv8H8J3K5jpLLhKqXKttW+m6rte0qd+NvHstC4v+MbZNeInmtFU2608V17ItrICVi+QaV3OjJ2hrauN9ovtDEWGcFqcPLLoERprG7m/6n6s5hxN6zI6SmDHDgKvtBA9ehQA54YNeJsa8W7diqW4OCf1CCFujgSgQohpp7Vm6GKQsx2DnD/oIxpMYndZjGRC9eVUrShALYDhaVf4I0laTwyw/UgvBy6OA1C/tIhtG6ppvLOSfNfCGW58q5iJAFQpVQD8BPAl4A6tddV01ncjpE+9ceFUmh0jfrYPTfDGAp3WJaMzHPYdpr27nZ09O/HH/XhtXrYs2ULTsiY2lG3AbMrNM/6J3l4CrW0EWl4hfu48mM2477sPb1MjnieewJy3sL7sFGIukQBUCDFtJnwROjsG6Tzgwz8UxWwxsXRNMXWbK1iyuhizdeHc3Yun0rxxdpjth/t4/f0hEukMy0vdPL+hhmfWVrGoKDfD0cT0mK4AVCnlBJ7FCDrXAx7gOeAtrXUm1/XdLOlTc2M0kaJleILtvnH2+Y1pXdZ7XGxbQNO6JNNJ9g7spa27jdcvvU40FaXMWcZTtU/RVNvEquJVObs7HDvbSaClhUBrK8n+fpTdTt6jj5Lf3IT7oYcw2Ww5qUcIcX0kABVC5FQkkODcQR+d+wcZ6gmCguq6AurqK1i+vhT7Arq7p7XmUM8424/00XJ8AH80SUmejafXVvH8+hrurPbO++F388U0PQP6j8CDwC7gB8DrwHmtdW0u68kl6VNzr2/KtC4nFui0LtFUlDcvv0lrdyvv9L1DKpNisWfx5LQuywpyMyWuzmSIHj1KoKWVwI4dpMfGMHk8eJ7cQn5zM676epR54WRZF2K2SAAqhLhpiViK7mMjdO4f5PL74+iMpmRRHnV3V7Dy7jLyChdOMiGA7pEw24/08eKRPi6NRXBYTTy1uoJt66t5YEUJlgUwNcN8M00B6FHABPwv4Ada616lVJfWOjd/bU8D6VOn17lwjO1D42z3jdMdTWBTiseKPWwrL2RL8cKY1sUf9/Papddo626jY6ADjeb2ottpqG2gYWkDlXmVOalHJ5OE9+0j0NJKcPduMpEI5tIS8hsb8TY14VizRr4gFGKafOYAVClVdB3HzWitJ26ybTkhnaUQ0yOdznD59BidHT66jw2TSmTwFDlYWV9OXX05xVUL6/ma0VCcluMDbD/Sx9HLEygF9y8vYdv6ap66s4I8+/y/izGfTeMQ3NuBLwJfAEaA24A752ICIpA+daZorTkajPKib5wXh8bxJVILclqX4cgwOy/upK27jRMjJwDYULaBxtpGtizdQpHjev4k/XSZWIzQG2/gb2kh/OZb6GQS6+LF5Dc34W1uxr5szn4nJMQt6UYC0BjQD3zSbz6z1npxbpp4c6SzFCJ3tNb4ugN0dvg4d9BHLJTE7rawYqMRdFYuy19QyYRiyTSvnvGx/XAfb3YOk8po7qj0sm19Fc+sraYif2Hd+Z3PZigJ0UaMYPTzQK/W+r7prO9GSJ8689Jas3cixHbfOC3D/gU7rcvlwGXaL7bT1tXGBf8FzMrMvVX30ljbyGOLH8Ntzc38yOlAgODu3fhbWojs2w9aY191B/lNTXgbG7FW5uYOrBAL2Y0EoEe01us/5aCfus9Mkc5SiJs3Phims8NH5wEfgeEoZquJ2rtKqKsvZ/HqYswLaKqQTEazv3uM7Ud6aT8xSDCeotxr57l11WzbUM3tFd7ZbqKYBjM5DYsyxv09qLV+aybq+yykT51d8UyGPaNBtg99cFqXZ8sKeb584Uzr0jneSVt3G+3d7QyEB7Cb7Txc8zCNyxp5sPpBbObcJBVKDg0R3LEDf0srsePHAXBt2oS3uQnPU09hKSzMST1CLDQ3EoA6tNaxTznop+4zU6SzFOLGhP1xzh8corPDSCakFFTfVjiZTMjmXFhDSjt9QbYf6eOlI330+2O4bWYa1lSybX019ywrxryA7vwuRNP0DOhXtdbfuZl9slO3fBe4E9DAz2mt9055XwHfBhqBCPAzWuvD2fe+Avx2dtff11r/w6e1WfrUuePKtC4v+CZ4c3zhTutybPgYbV1t7OrZxVhsDI/Vw+NLHqextpH6ivrcTevS04O/tZVASyuJri6wWMi7/368zc14HnsUkzs3d2CFWAhuKgmRUsoMlAOTf4lqrS/ltIU3STpLIa5fIpai6+gwnfsH6X1/HK2hdLGHuvpyVm4qx10w//+gmWooGOPlo/1sP9LHqf4AZpPioZUlPLe+midXVeC0SbbEhWKaAtAu4Nc+aRfgG1rr1Z9wjH8A3tZaf1cpZQNcU3MwKKUagV/GCEA3A9/WWm/O5nM4CGzCCFwPARu11uOf1GbpU+ema03rss7j4vkFNK1LKpNi/8B+2rrbeO3Sa4STYYodxWyt3UpDbQN3ldyVk7vDWmviZ84YwWhrG6nBQZTTiefRR/E2N5P3wP0omdZFiE90wwGoUuqXgd8FfMCVucq01vqunLfyJkhnKcQnS6cyXDo9RmfHIBePjZBKZvAUO6irL6euvoKiyoX1rW4kkWLXKR8vHOnjnXPDZDTcVZPPc+uqeXptFaWehRWEC8M0BaB/dx27+bXWv/oxn88HjgLL9Md02kqpvwHe0Fp/P1s+Czxy5aW1/oVr7fdxpE+d+/piCV4aMoLRhTqtSywV4+2+t2nrauOt3rdIZBJU51XTWNtIQ20DKwtX5qQenckQPXwYf0sLwfYdpP1+TPn5eJ96Cm9zE65Nm1CmhfOIihDX62YC0PPAZq316HQ1LheksxTio7TWDF7w09nh4/yhIWLhJA63lRUby6jbXEHFsoU1P2U6o3nvwgjbD/ex49QgkUSa6gIn29ZX89z6KlaUeWa7iWKWzeQzoNdLKbUO+A5wGliLcRfzV7TW4Sn7tAB/pLV+J1t+Dfj/MAJQh9b697PbfweIaq3/9Br1fBX4KsDixYs39vT0TONZiVw6H4nxgm+cF30TdEXjWJXi8QU2rUswEeT1S6/T3t3OvoF9pHWalYUraaxtZOvSrdR4anJSj04kCL33HoHWNoKvvYaORLCUl+NtbMTb3IRj1aoF1a8K8UluJgDdA2zRWqemq3G5IAGoEFeNDYTp7Bjk3AEfgZEYFquJ2rUl1NVXsGhV0YJKJqS15vRAgBeP9PHS0X6GgnE8DgtN2ec6715ahEme6xRZczQA3QTsA+7XWu9XSn0bCGitf2fKPjcdgE4lfeqtSWvNsWCU7UPjvOSbYDCRxG02sbUkn20LaFqX0egou3p20dbVxtHhowCsLV1LQ20DTy19ihJnSU7qyUQiBPfsIdDSSuiddyCZxFZbi7e5ifymJmxLl+akHiFuVTeShOj/za6uxpivrBWIX3lfa/1fp6GdN0w6S7HQhSfinDvoo7PDx/AlI5lQzR1F1NWXs2xdKTbH/B+ONdWAP8qLR/p58UgfZ31BrGbFI7eV8fz6ah69vQyHVZ7rFB81RwPQCmCf1npptvwg8DWtddOUfWQIrviAtNbsmwix3TdBy/AEE9lpXZqz07psXiDTuvSF+mjvbqe9u53O8U5MysTmis00Lmvk8cWP47HlZuRLemKCwM5dBFpbiRw4AFrjWLOG/OYmPA0NWMvKclKPELeSGwlAf/cTjqe11t/IVeNyQTpLsRAloikuHBmms2OQvrNGMqGyJR7q6itYsakMd/7Ceo4xGEvSfnKQ7Yf72Nc9itawYXEB2zbU0LymkkK3JIwQn2w6A1CllFlrnb7Bz74N/LzW+qxS6uuAW2v961PebwJ+iatJiP5Ca12fTUJ0CNiQ3fUwRhKisU+qT/rU+SWRyfDGWJAXfOPsHAkQzWSoslt5tqyA58sLuXMBTOsCcH78/OS0Lr2hXmwmGw/WPEhjbSMP1TyEw5KbOZ2Tg4ME2toJtLYSO3UKlMK1ebMRjG7Zgjk/Pyf1CDHX3VQW3A8dyAE8rbX+Ua4alwvSWYqFIp3KcOnUKJ0dPrqPj5BOZvCWOKjbXEHd3eUUViysZELJdIa3zw3zwuE+dp/2EU9lWFrsYtv6Gp5bX8WS4oX18xA3Z5oD0C7gn4G/01qf/oyfXYcxDYsN6AJ+FvgCgNb6r7PTsPwlsBVjGpaf1VofzH7254DfzB7qm1rrT02KJH3q/BVOpdk5GuAF3zhvjF2d1uW5skK2lReybAFM66K15sTICdq729lxcQcj0RHcVjePL36chtoG7qm8B4spN6OG4l3dBFpbCbS0kOjpQVmtuB96iPzmJvIeeQST05mTeoSYi3IxDctTwBeBLcA7WuvP5byVN0E6SzGf6YxmoMtP5/5Bzh8eIh5O4cizsjKbTKi8dmElE9Jac6zXz4tH+njlWD+j4QSFLitPr63iufXVrF9UsKB+HiJ3pjkA9QA/iRE8moDvAT/QWgemo76bIX3qwjCWTNEyNMH2oXH2Thg5rdZ6nDxfXsizZYVULIBpXdKZNAd8B2jvbmf3xd0Ek0GKHEVsWbKFpmVNrC1di0ndfN4ErTWxk6eMYLStjdTQECaXC8+WJ/A2NeG+916Udf7/vMXCckMBqFLqYeBLGEN6OoD7MdLAR6aroTdKOksxH432h+js8HGuw0dwLJtMaF0pdfXlRjKhBZDZcKrLYxG2H+njxSN9dI2EsVlMbLmjnG3rq3morhTbAkquJKbHTD0Dmu1f/xEoAH4M/J7W+vx013u9pE9deK41rct92WldmhbItC6JdIJ3+t6hvbudNy6/QSwdo9JdydbarTTWNnJb4W25mWM0nSZy4CCB1hYCO3eRCQQwFxbibdiKt7kZ57p1Mq2LmBdu5BnQXuAS8FfAi1rroFKqW2tdO71NvTHSWYr5IjQe59wBH50HBhm5HEIpWHRHEXWbK6hdW7LgkglNRBK0nhhg++E+DvaMA3DPsiK2ra+mYU0lXod8YyxyZ7qfAQWaMO6ALgX+N/B/gQeBP9Ba101HvTdC+tSF7XwkxnbfONunTOvyWLGHbWWFbCnx4jbP/yRu4WR4clqXvf17SekUy/KX0VDbQGNtI4u9i3NSTyaRIPzOOwRaWgi+vgcdi2GpqiS/qQlvczP2ujoZ0SNuWTcSgH4LeA44ifEt7UvACa31ss9Q6Vbg24AZ+K7W+o+usc/nga8DGjimtf6SUmoJsB1jiJIV+G9a67/+pLqksxS3sng0RdeRIc7u99HXOQ5XkgltrmDlpnJc3oWVPCeeSrPn/SG2H+ljz/vDJNIZVpTlsW19Nc+uq6Km0DXbTRTz1Aw8A7oH+Fut9Xsfeu8vtNb/z3TUeyNy0ae2Hh/AbjHxYF0Jdsv8D1jmI601x0NRXvCN8/LQBAPxJK4r07qUFfBIkXdBTOsyHhtnd89u2rrbOOQ7BMDq4tXGHKO1Wylz5SbDbToUJrTndfwtLYTfeRfSaewrV+BtasLb1IRt0aKc1CPETLnRIbgKI4X7FzGG4eYD/wpo01qHPqVCM9CJ8cxoL3AA+OLUxAtKqZXAD4HHtNbjSqkyrfWQUsqWbVtcKZWHEQTfp7Xu/7j6JAAVt5p0MkPPqVE6Owa5eHyUdCqDt9TJbfXl1NVXUFC+sIIsrTUHe8bZfqSP1uMD+KNJSvLsPLuuim3rq1ldtbCecxWzY5oD0AeuzNM5Zdv9Wut3p6O+m5GLPvWZv3yH471+PA4LT66qoPmuSu5fUSJD5W9RGa3ZNxFm+9A4rwwZ07oUWsw0lxWwrayQewoWxrQug+FBdnTvoK27jTNjZ1Ao7q64m8baRp5Y8gT59txkuE2NjRHcuRN/SyvRQ0bQ61y7Fm9zM96GrVhKcjOXqRDT6aaz4CqlrFxNRPSU1voTr3yl1L3A17XWT2XLvwGgtf7DKfv8F6BTa/3dTzhOMXAEuEcCUHGr0xnNwIUJznb4uHBoiHgkhdNjZcXGcurqyxdcMiGAruEQLx7pY/vRPi6PRXFazTy1upxtG2q4f3kxlgX2nKuYXdMcgB7WWm/4tG1zQS761EQqw7sXRmg9PsDOU4MEYynynVaeWl1O811V3Cf/v29ZV6Z12e4bZ0d2WpfKKdO6rFkg07p0+7tp726nrbuNnkAPFpOFB6oeoHFZIw/XPIzLmpsvkpP9/QTa2vC3tBJ//30wmXDfcw/e5mY8W57A7MnNXKZC5FrOpmHJHsyptY5+yj6fA7ZqrX8+W/4pYLPW+pem7PMixl3S+zGG6X5da70j+94ioBVYAfy61vq/X6OOrwJfBVi8ePHGnp6ez3wuQsyE0T4jmVDngUFCY3EsNhPL1pVSV19BzR2FCy6Z0GgoTsvxAV440sexyxOYFNy/ooRt66t5anUFbvvCes5VzB3TEYBmv5C9D/hV4M+nvOUFtmmt1+ayvlzI9Ze68VSad84Zweiu0z5C8RTFbhsNayp4+q4q7l5ahGkBDOWcj8LpNLtGAmz3jfN6dlqX5U4728oL2VZewHJXbubWnMu01pweO01bVxs7Lu5gKDKE0+Lk0UWP0ljbyH1V92E15yZfQfz8efytrQRaWklevoyy2ch7+GG8zc3kPfIwJvv8n0ZH3Dpu5BnQ72itv/opB/3Yfa4zAG0BksDngRrgLWCN1npiyj5VwIsYc4/6Pq4tcgdUzDWh8RidB3x07vcx2hdCmZSRTKi+fEEmE4ol07x6xsf2w3282TlMKqO5vcLD8xuqeXZdNeXe+f9Hipj7pikAfRjjcZZfBKbmMwgCr2itz+WyvlyYzj41lkzzZucwrxzr59UzPmLJDOVeO01rqnh6bSXrZBqlW9Z4MkXrsJ8XfOPsnQihgbs8TraVFfJsWQFVjvmfzyCjMxzyHaKtu43dPbvxx/3k2/PZsmQLjbWNbCzfmLtpXY4fN4LRtnbSIyOY8vLwbNmCt7kJ9+bNKMvC+jtDzD03EoAOAT/4pGNiBJgrP+bz1zME96+B/VcmxVZKvQZ8TWt94EPH+h7Gc6c//rjGSAAq5oJ4JMmFI8N0dgzS1zkBGsprvdTVV7BiY9mCSyaUyWj2dY/y4pE+2k8MEoynqPA6eHa98Vzn7RXe2W6iEB8wzUNwl2itb4mhOjPVp4bjKV57f4hXjvXz5lkj4djiIhdPr63k6bVV8jviFjYQT/Dy0AQv+MY5FjSmdbmnwJ2d1qWAogUwrUsyneS9/vdo625jz+U9RFNRylxlbF26lcZljawqWpWbaV1SKcL79xNobSO4axeZUAhzcTHehgbym5twrF0rX+qIWXEjAehXruO4Ua31Dz/m8xaM4bWPA30YSYi+pLU+NWWfrRiJib6ilCrBeNZzHeAERrXWUaVUIbAf+Amt9YmPa4gEoGK2pJMZLp4cobPDR88JI5lQQbmLuvpyVt5dTkHZwkomBNDpC/LC4T5eOtrHgD+G22amYU0lz6+vZvOyYswy1E7MUdN0B/RbWutfVUq9gpHx/QO01s/ksr5cmI0+1R9NsvPUIK8c6+fd8yNkNNSV5/HM2iqeXlvFkmL3jLZH5M6FSIwXfRNsHxrnfCSORcGjRV62lRfyVLEX9wLIkhxJRniz903autp4p/8dUpkUS7xLJqd1qc3PzSyHmXic0FtvEWhpJbRnDzqRwFpTg7epifzmJuwrr3nfSIhpkdNnQD9DpY3AtzCe7/ye1vqbSqlvAAe11i9ns+z+GbAVSAPf1Fr/QCm1JbtdY9xp/Uut9Xc+qS4JQMVM0hlN/7kJOjsGuXBk2Egm5LWxclMZdfUVlC3xLLhvG4cCMV4+1s8Lh/s4PRDAbFI8XFfKc+ur2XJHOU7b/P8DQ9z6pikA3ai1PpQdivsRWus3c1lfLsx2nzoSitN2YoCXj/ZPzv+7dlGBEYzeVUmZDNm/JWmtOZmd1uWloQn640mcJhNbS4xg9JEiDzbT/M+J4I/7ebXnVdq62zgweACN5o6iOyandalwV+SknnQoRHD3qwRaWwm/9x5kMthvuw1vcxP5jY1Yq6tzUo8QH2dWAtCZNNudpVgYRvtCnN0/yLkDPkLjcSx2M8vWlXBbfQU1txdiWmDJhCKJFDtPDfLC4b7JOxZra/LZtr6a5rVVlORJMgRxa5nmIbhujJFDmWzZDNi11pHpqO9mzKU+tW8iSsuxfl4+1s+p/gBKwT21xTyzroqGOysocC2sRxvmi4zW7PeH2e4bp2V4grFkmgKLmebSAraVF3BPQR7mBfBFri/sY+fFnbR3t3Ny9CQAG8s30ljbyJYlWyh0FOakntTICIEdOwm0tBA9ehQA54YNeJub8G7diqWoKCf1CDGVBKBC3KDgWIxzB3x0dgwy2hfGZFIsWp1NJnRXKVb7wrqzl85o3j0/wvYjfew8NUgkkaam0Mm29UYyoRVlebPdRCFu2DQHoPuAJ67Mo52d53qX1vq+6ajvZszVPvX8UIhXjvXzyrF+ukbCWM2Kh1aW8sy6KrasKsdlm//PFc5HyYzmzXFjWpf2ET+RdIYKm5Vny405Rtd6Fsa0Lj2BnslpXbr93ViUhXur7qWhtoHHFj+G25qbYeiJ3l4CLa0EWluInzsPZjPu++8jv6mJvMefwJwnw91FbtxwAKqUWvNJz17OFXO1sxS3plg4yYXDQ3R2+Og/NwFAxbKryYScnoX1jbvWmtMDAbYf7uPlY/0MBeN4HRaa7jKSCW1aUihTKIh5YZoD0KNa63Wftm0umOt9qtaaU/0BXs4GowP+GE6rmSdWlfPM2ioeqivBvgCeK5yPIukMu0b8bB8a5/XRIEmtWea081w2GF3pnv/Dr7XWnB0/S1t3G+3d7QyGB3GYHTy86GEaaxt5oPoBbObc/B0SO9tJoKWFQGsryf5+lMNB3qOPkN/cjPvBBzHZFtbfOyK3biYAfRuwA38P/F+ttX9aWniT5npnKea+VDJNz4lRzu4fpOfUKJmUpqDcxW2by1l5dwX5pc7ZbuKMG/BHefFIP9uP9NLpC2E1Kx65rYzn11fz6O1lOKzyB56YX6Y5AH0X+GWt9eFseSNGjoN7p6O+m3Er9amZjOZgzzgvH+uj9fgA45EkXoeFhjsreXZdlSQ+u4VNTJnW5b3stC5r8pxsKy/kuQU0rcvRoaO0dbex6+IuxuPjeGwenlj8BI3LGrm7/G7Mppvvi7XWRI8cJdDyCoEdO0mPjWHyevE8uYX85mZcd9+NMkufLz6bmxqCq5RaCfwc8C+ADuDvtNa7c97Km3ArdZZi7tAZTd+VZEKHh0lEU7i8NlZuKqduczmlixdeMqFgLEn7yUG2H+5jX/coWsPGJYU8t76a5jWVFLrnf4cvFq5pDkDvxpjerB8jwV4F8AWt9aHpqO9m3Kp9ajKd4Z3zI7xytJ+dpwYJJ9KUeew03VXJM2urZI7RW9hgPMnLQ+O84JvgaDCCAjbnG9O6NJctkGldMkn29e+jvbud1y69RiQVocRZwtalW2mobWBNyZrcTOuSTBLet49ASyvB3bvJRCJYSkvxNjbgbW7Gceed8v9IXJebfgY0myzhOeAvgABG5/mbWusXctjOG3ardpZi5mmtGe0L0bnfR+cBH+GJOFa7mWXrS7mtvoLq2woWXDKhZDrDW53DbD/Sx+7TPuKpDEuLXTy3vppt66tl+gOxYExnAJo9vhW4LVs8q7VOTlddN2M+9KmxZJrX3x/ipaN97Dk7TCJ1dY7RZ9dVU1fume0mihvUHYnz4tA4L/jGOZed1uWRIi/bygrYWpK/IKZ1iaaivNX7Fu3d7bzV+xbJTJKavBoaahtoWtbE8oLlOaknE4sReuMN/C0thN98C51MYl2ymPymZrzNTdiXLctJPWJ+upkhuHcBPws0AbuBv9VaH1ZKVQF7tdZLpqPBn9V86CzF9AqOxejsGKSzw8dYv5FMaPHqIurqK1i6tgTrApsmRGvNsV4/2w/38srxAcbCCQpdVp5eazzXKXcKxEI0AwHoncAq4P9n77/j2z7bw97/8wXBTQIEB0CRGhyitkRSoiRvydokQWpYTps0TZonydM2TZukpz1Nen6neZo2o2060qZNkz4nOWlzmmHZkkiQ2rYsy0MSJZLaEpcWB8CBwQViXb8/QMt6HNmWBEAcuN+vV14xAIL3jcTmhev7va/relzIJiL/M1brvaj5FlM9Xj8nrg/Q8MSM0RX5mdSVF1BfXsCi7Pib1zwfiAg3x718YHdyxO6kd8pPqk5jV66R/WYTb+dkkhwHY108Pg9n7p+huaeZiwMXCUmIZaZlVBdXU11cTWFGdMatBD0eRk+dwm2zMfHFBRAhedXKcDJaW0NifnTGxyjzRyQJ6MfAD4FDIjL5tdf+toj8r6ju9AXNt2CpRMeXzYTuXBigvzNcvpxfYmTZJktcNhMCeDgyweHWXo609tI9NE6SXsfOlRb2Vxby1rI8kvTzP1gryjeJ8RHcXwe2Ek5Am4Fq4LyIHIzFepGYzzF1cHR6xmh7H5enZ4xWLg7PGK1dtwBz5vxvcjMfhUS45B7nA7uTxumxLkZ9ArV5Rg5YTLwaJ2NdhiaHOHHvBM09zVwdvApARV4FNSU17Fqyi5zUnKis43c4GD1+HLetCe/Vq6BppFVVYaitJXP3LvSm6IyPUea2SBLQXxaR//S1535JRH4vuluMzHwOlsrzCfiD3Ls6zN2LA9y/PkwoKJjy01i2KX6bCbkn/DRd6+dw6yMu3Qt/4dpcnM2B9YVUr12AISVxhneoKLNDjBPQa0A50Coi5ZqmWYA/E5GdsVgvEvESUx+OTNB4tY+Gtj5uD4yi0+C10lzqywvYvSYfY6r62zgX+UPCuSfGuowHQ1iS9NSbs9hvMVGZmRYXJ3wejj7keM9xmnua6XR1kqAl8MqCV6gurmb74u1kJEVnbJrv/n08zc24G234urtBryfjjTfCyej2bejS1AmDeBVJAnpFRNZ/7blWEamM8h4jEi/BUnm6UEjou+vkzkU73Vcc+LzBcDOhjRaWbYrPZkJTgSAf3R7kSGsvH9524AuGWGrOmJ7XWcBCkwoIivJ1MU5AL4rIJk3TLgNvA6PALRFZEYv1IhGPMfWufZSGtj4a2vt4MDJBUoKOrcvDM0a3r7CQGmdlGvPFRDDE6WEPh+1Ozgx78IlQlJrEfrOJ/RYTy+JgrAvAXeddjvUc41jPMXrHeknSJbFl0Raqi6t5a+FbJCckR7yGiDB1+zZumw1PUzOBgQG01FQyt23DYK0l4/XX0dRYl7jy3Amopmk/DvwE8AbwyRMvZQIhEdkei42+qHgMlvFORBh6NMbdCwN0tDjCzYRSEiityGPZ5nwKl8ffbEoR4fJ9Jx+0hscRuCf95GYkU19ewIH1hawuMMRdIq4ozyPGCeh/A/458DeB/wMYA9pE5GdisV4k4jmmflkf39DWR+PVPgZHp0hPSmDX6nzqKwp4Y2kuiXHWqG6+cPsDNA25OWJ3ct45RghYnZHCfrOJfRYTC+NgrIuI0D7YTnNPMyfunWDEO0JGYgbbFm+jtriWTQs2oddF3lFYQiEmL1/G3dTE6LHjBN1uEoxGMnfvxmCtJa2qCi0O6nPj3YskoEuAYuC3gV994qVR4KqIBGKx0RcVz8Ey3niGJ+m4ZOfOBTvO/ulmQmtyWLbJQvG6XPRxeJW6Z2icw1cecbitl4cjk6Qk6ti9Op/9lYW8sTQXvfqypCjPJNZNiJ5YpwgwiMjVWK/1IlRMDQuGhAvdwzS099F8rR+PN0B2ehLVa/LZW1FI1ZL4u9A5Xzim/DQMuvjA7uSKZwIIj3XZZzFRl5dFbtL8H+sSCAW4OHCR5u5mzjw4w5h/jOyUbHYX7aamuIbyvPLojHXx+Rj77DM8Tc2MnjmDTEygt1gw1NZiqK0hZdUqdXF8nop4DMtsp4Ll/OYd99N52cHdi181E1qw1MiyTfksXW8mJSP+6nRGxn3YrvbxwZVe2h660DR4vTSX/ZWF7F6TT0by/A+eihJtL6EL7gHCJ4uEcAOiw7FaKxIqpv51U4Eg5+4O0dDex+mbdib9QQqMKVinO+mqEyZz1/3JKY7YXbxvd3J3wkuCBm+ZMtlvMVGdayQzDsa6TAWnOP/oPE09TZx7dI6p4BSFGYXsKdpDTUkNy0zLorJOaGKC0Q8/wtPUxNj58+D3k1RcjMFai7G2lqSioqiso8wOL3IH9LyIvKFp2ijhQPn4JUBExBCbrb4YFSznn4AvSM/VIe5etPPgxhPNhDbns2yjBUNu/DUT8vqDnL5l50hrL2fvDBIICSvyMzmwvpD68kLyjfFRy6IoT/KFQvRP+VmSGnkN00s4grsU+PPpp/4G0CUi/yAW60VCxdRvNz4V4PQtOw1tfXx8N/y3uCQvnfrpZLQkLzrNXZSXS0S4Ne7lsN3JYYeTR14/KTqNHTkGDlhMbMs2kBIHJ4rGfGN8+PBDmnua+aLvC4ISZGnW0sdjXRZlLorKOkGXC8/Jk3hsTUxcugQipKxZg8Fai6G6hkSLOSrrKDNH3QFV5oRQSOi94+TuxQG6Wgfxe4OkG6ebCW3OJ3dhRtxdYQ6FhAs9IxxufcSxawOMTgWwGJLZW1HI/spCVi6YVdeCFOWlEBFaPBMcGhihweFiUUoSJzcuj/j3xjgBvQ2slOnAq2maDrghIitjsV4kVEx9dq4JH8euD3C0rZcLPSOIwNpCI/XlBVjLF7DAGH8XS+eDkAgt7nEOO1w0OFwM+wNkJuiozQt30n09KwN9HBy/Hp4c5tT9UzT3NNPqaAVgXd46aopr2F20m9zU3Kis47fb8TQ142lqwnvjRnisy+bNGGprMOzaRYLRGJV1lJcrki64rxAOkKPTjzOBVSJyISY7fUEqWM5dIsLQwzHuXByg45KdCbcv3ExovZllmywULovPGpsO+ygftPZytLWXPreX9KQE9qxZwIH1hbxSkkNCHP7fRFG6J6Y4ZB/h/QEn970+UnUae3KNvJOfzfbsyLtdxzgBtQH/QETuTz9eAvy+iNTFYr1IqJj6YgbcXmxXw510rz5yo2mwqSib+ooCatYswJQ+/5vczEeBkPCJc5TDDifNg27GgiHykvTU52VxwGJivSE+xrr0jfU97qR7x3kHnaZjU/4maopr2L5kO4ak6FwQn+ruwdPUhMdmw3f/PlpiIulvvYXRWkvG1q3oUtVFnbkikgS0FVj/tSu2LV8fzTLTVLCcezxDk9y9aOfuxQGcAxPoEjSWrMlh2aZ8itbmxGUzIceol4a2Po609XK910OCTuPNsnBd565V+WoMgBKXhnwBjjqcvD/dLEQD3jRl8I4lm9o8IxlRrM+KcQL6MbARuEi4tGUT0AK4AUSkPhbrvggVUyPXMzQ+Pdall67BcfTTf8/3VhSyc5WFdFWnPydNBkOcGfZw2OHk9LCHqZCwOCWJ/RYT+y1ZrEiPj+Soy9VFc08zzd3NPBp7RKIukbcWvkV1cTVbFm4hRR95SZCI4L1xE09jI55jxwg4HOjS0sjYsR2j1Ur6q6+iJcZfD5C5JJIEtE1EKr723FURWRfdLUZGBcu5YXLMR9dlB3cv2unv+qqZ0PLN+ZSuN5OSHn9/SCZ8AU7dtPPBlV4+6RgkJLBuoZF9FYXUlReQlxl5XZuizDWTwRAnhty8b3fy0YiHgITHJRywZHPAksWC5NjcSYpxArrl214XkY9jse6LUDE1ekSEG30eGtv7aGzvo8/tJSVRx/aVFurLC9i6PI/kOGhyMx95AkGODbo5bHdyzjlKCFiZnsIBi4m95iwWR6EufbYTEa4PXae5p5nj944zNDlEmj6N7Yu3U11czSsFr5Coi/y7nQSDTLRcxmOz4TlxgpDHQ4LJROae3RitVlIrK9VYl1kokgT0A+As8AfTT/0C8LaI7IvyHiOiguXs5fcFuXd1iLsXBnhwY4RQSMguSGfZJgtlGy0YcuLjauGTgiHhs64hDl/p5fiNASZ8QQqzUtlXWcD+ykKWmjNneouK8tKFRPjMNcahASe2QRdjwRALkhM5YDFx0GJiZUbs/1a8rDEss52KqbERCgkt9500tPfSfG2AkXEfmSl6qtfkU19eyKulqrxirhr0+WlwuDhid3HJMw7ARkM6+yxZ1JuzyEua/xfYg6EgLfYWmnuaOXX/FKO+UUzJJnYV7aKmuIYKcwU6LfIkMeTzMX7+PO7GRsY+Oot4vegLFmCsrcVgtZK8bFlcHImeCyJJQM3Afwa2ET4ydAb4ZRFxxGKjL0oFy9klFBJ6bzu5c3GA7tZB/FNB0rOSWbbRwrLNFnIK46+ZEMDNPg+HWx9xtK0Px+gUmSl6atcuYH9lIRuLsuOy1lVRbo1Ncsju5LDdSd+Un4zpRh/v5pt4NSuDhJf4tyLGd0BfAf4LsBJIAhKA8dnWVR5UTH0Z/MEQn3YO0dDWx4kbA4z7guRlJlO7dgF7KwqoWJQVl3FyPngwOcVRh4vDdic3x8NjXd7MymSfJYuavCwMcXDH2xf0cb73PMd6jnH24Vm8QS/56flUF1dTU1zDctPyqPz7HRwbZ+yjD3HbbIyf/xSCQZKWlmK0WjHU1pK0KDode5UXo7rgKjEnIgw+GOXuBTsdLXYmPD6SnmgmVBCnzYT63ZMcbevjSGsvtwdG0es0ti43c2B9IdtWmElJnP+BSFG+bmDKz2G7k0P2EW6MedFr8Ha2gXcsJnbnGkmdoVEHMU5AW4C/CbwHVAE/BSwTkV+LxXqRUDH15fL6g3x428HRtl4+ujOILxBicXZaeKxLRQHLLOpUzFx1e3ySI3YXH9idPPD6SJ4e67LfbGJ7jmHG/ta9TBP+CT58+CHHeo7xWe9nBCRAsbGYmuIaaoprWGxYHJV1Ak4noydO4G60MXn5MgCp5eUYrFYM1XvQ50anY6/y7CK5A5oC/CywGnhcUSwi34v2JiOhguXMcQ9O0nFpgDsX7LjsXzUTWr45nyVrc9DHYYI1NhXg2LV+jrT18lnXMCJQuTiLA5WF1K4rIFt1QlTi0FggSPOQm0MDI3ziHEOAysw0Duab2Gs2kZs0801ZYp2AikjVk30UNE1rFZHKWKwXCRVTZ47H6+fE9QEa2vv4tHOIkMCK/EzqpmeMLspOm+ktKi9ARGj1TPCBw8lRh4tBX4CMBB3VeUYOmE28acqMi7EuLq+Lk/dPcqznGC328N+YNTlrqC6uZk/xHsxp0Zn96e/rw9PcjNvWxNTt26DTkf7KKxisVjJ37iAhU13UeRkiSUDfA24DPwH8BvC3gFsi8kux2OiLUsHy5Zoc89HZEm4mNNAdbiZUUJbFsk2WuG0m5A+GON8xxAetvZy6OYDXH2JJThr7pud1FuWmz/QWFeWlC4SE6sHu0wAAhjBJREFUj52jHBoY4fiQm8mQsCQliXfyTbxjMVGaFlmnxGAoyIWBCzi9TmpLaiPeb4wT0HPADuCHwADQD/wdESmPxXqRUDF1dhgcnaL5Wj8N7X1cvu8EYP3iLOrLC6hdp5rUzVVBET51jnHY4aRp0IUnECInUU+9OYv95iyqjOno4uD49cD4ACfunaCpu4lbI7fQ0NiYv5Ga4hp2LNmBMTk6sz+nOjtxNzXhsTXhf/gQLSmJjC1bMFitZGzdgi5Z/XcUKxGNYRGRyi+v2Gqalgh8IiKvxGqzL0IFy9jz+4Lcax/i7sUfbSa0fHM+ZRstZGZH3nJ7rhERrvW6+eBKL43tfQyP+8hKS8S6LlzXuX6xSdXwKHFHRGgfneSQfYQjdhdD/gAmfQL15iwO5mdTFeHMPBHhrvMujV2NNPc0Mzg5SJGhiIZ9DbN9DugSwE64/vNXACPw30SkMxbrRULF1Nnn4cgEjVf7aGjr4/bAKDoNXl+aS315AbvX5GNIib8Lv/PBVCjEh8MePrC7ODXsxhsSFqYkss9sYr/FxKr0lLj4HtHj7nk8Y/Se5x56nZ43Ct+gpriGLQu3kJYY+Z1/EcF79Wo4GW0+RnBoCF1GBpk7dmCwWkl/ZTOafuZP4swnkSSgF0Vk0/SV218gfNX2ooiUxGarL0YFy9gIBUM8uuPk7gU73W3hZkIZpmTKqiws25xP7sKMmd7ijHg4MsHRtl4Ot4bnuyUl6Ni+0sz+ykK2LjeTpJ//NR2K8nUPJqf4wO7kkN1J58QUSZrGzlwDBy3hWqekCFvkD4wP0NzTTGNXI52uTvQ6PW8WvkldaR1vLXyL5ITIr2LHOAFNByZFJDT9OAFIFpGJWKwXCRVTZ7e79lEa2vo42t7Lw5FJkvQ63l6ex94K1VtgLhsLBDk2FB7r8rFzlKDAsrQU9luy2G8xURQnY11ujdyiubuZY/eO4ZhwkKpP5e1Fb1NTXMNrBa+RmBCFsS6BABMXL+K2NTF68iShsTEScnIwVFdjtNaSUl4eF4l/rEWSgP4c8D6wDvgTIAP4v0XkD59h0T3A7xHu9PdDEfmdp/zMjwE/INxht11EfkLTtArCY18MQBD4TRH5y29bSwXL6PmymdCdCwN0tDiY9PhIStWzdH0eyzblU1CWhRYHdQpf557003ytn8NXerl4bwSATcXZ7K8spGbtAoyp6uqzEn9c/gCNgy4ODTi54A6PHnjFmM7B/Gzq8owYEyO7mjzuH+fU/VPYumxcHLiIIJTnlWMtsbKnaA9ZKVlR+BRfiXEC+gWwQ0TGph9nACdF5LVYrBcJFVPnBhGh7aGLhvY+bFf7GRydIiNZz65VFuorCnh9aS6JcdDkZj4a8oX/th6xf/W3tTIzjQMWE/XmLCzJ8/87R0hCXLZf5ljPMU7eP4l7yo0x2cjOJTupKa5hg2VDdMa6TE0xdu4cHlsTYx99hPh8JC5ciKG2FqO1luSysih8mvj00rvgTl/ZvQvsBB4Bl4AfF5GbT/xMGfBXwDYRcWqaZhYRh6ZpywARkQ5N0wqAy8BKEXF903oqWEbOPTjB3Yt27l6cbiak1yhak8uyzRaWrInPZkK+QIizdxwcbu3lzC0HvmCIkrx0DlQWsreiUDWDUOLSVCjEmWEP79udnBry4BOhLC2ZdywmDlhMEQ9fD4QCfNb3GbYuGx89/Ahv0MuizEVYS6xYS6xR65j4NDFOQNtEpOK7npsNVEyde4Ih4YvuYRra+mi+3s+oN0B2ehI1a/PZW1HIhsXx2Yl+Pnjk9XHE7uSIw8X1sUl0wOumDPabTdTkGcmK8ELfXOAP+vm8/3Oae5r58MGHTAYmMaeZ2VO0h5qSGlZlr4rSWJcxRk+fxmNrYvzzzyEYJHn5cgzWWow1NSQWFkbh08SPSO6A5hC+Q/k64buUnwD/SkSGv+N9rwI/EJHd049/DUBEfvuJn/m3wF0R+eF3/K524KCIdHzTz6hg+WImR310XnZw58IA9h4PEG4mtHxzPiWVeXHZTEhEuPLAxeHWR9iu9uOa8JOTnkRdeQEH1heyttCojmUocUdEuOQe55DdSYPDhSsQJDdRzwGLiXfyTazLSI24rvPm8E1s3Taae5oZ8Y5gTDayp2gP1hIr5Xkv5zhUjBPQT4F/KCJXph9vAH5fRF6NxXqRUDF1bpsKBPn4ziAN7X2cvmXH6w9RYEyhriLcSXfVAoOKY3PU3XEvh+1Ojjic9Ez6SNI0tuVkss9sYleukbQ4uOM94Z/g3KNzNPU0cb73PIFQgCWGJdQU11BdXE2xsTgq6wSGhvAcP4GnqYnJ1lYAUtevx2CtxbBnD/rs7KisM59FkoCeAs4Bfzb91N8CtorIju9430Fgj4j83PTjvw1sFpFffOJnjhC+S/o64WO6PxCR41/7PZuAPwVWf1k388Rr3we+D7B48eIN9+/f/9bPooT5fUF62ge5e9HOQ9VM6LF7Q+Mcbu3lSFsv94cnSEnUsWtVPvsrC3mjTB1jUuJT14SXQwNO3p+eYZeq06jOy+KgxcRbURgb0DfWh63bhq3bRo+7h0RdIlsXbcVaYuXNwjejUuvzPGKcgG4E/gLoAzQgH/gbInI5FutFQiWg88fYVIDTN+0cbevlk44hAiGhNC+dvRWF1JcXqA7tc5SI0DY6OX1n1IndFyAtQUd1rpH9FhNbTJkkxsEdb/eUm9P3T3Os59jjMo2V2SupKa5hT/Ee8tPzo7KO79EjPE3NeGw2pjo6ICGB9Ndew2itJWP7DhIy1H9HTxNJAnpdRNZ87blrIrL2O973LAmoDfADPwYsJJzorv3yqK2maQuAs8BPi8gX37aeCpbfLhQM8ei2k7sX7XS1DRL4spnQRgvLNsVvMyHnuA/b1T4+aO2l9YELTYNXS3LYX1nInjX5ZKqugkocGvT5Oepw8f6Ak9bRCXTAm6ZMDuabqM41kqGP7Di+x+fh1L1TNHY3ctkezr3Wm9dTV1rHziU7o9Z6/0XEMgGd/v2JwPLph3dExP+M77sHjBLuixD4+h41TTMBfwyUAl7geyJyffq1XwF+jvAppmvAz4iI99vWUzF1fhoZ93Hsej8NbX1cvDeCCJQvNFJXXkBdeQEWQ3xegJ7rgiJ87hrjiN2FbTB8QiU7MQFrXrh50eY4GevimHBw4t4JmrubuT58HYANlg3UFNewc8lOTCmmqKzjvXMXj82Gp6kJf18fWnIyGdvexlhbS/pbb6FLUrPevxRJAvofgIuEazUBDgKbROSffMf7nuUI7n8HLojIn0w/PgP8qohc0jTNQDj5/C0ROfRdH1AFy79ORHDcH+XuhQE6LoebCSWn6Sldb2bZJgsFS+OzmZDXH+TD2+G6zrN3HPiDwnJLJvvXF7K3ooAFxtSZ3qKivHSTwRAnhtwcsjv5aMRDUGB1RgoHLdnst5jIj7DhhT/o53zveRq7G/n44cf4Qj6KDEVYS6zUltSyMHNhlD5JZGKdgL6o6QS0SkSGvuH1fweMici/1DRtBfBfRWS7pmmFwHlglYhMapr2V0CziPy/37aeiqnzX797Elt7eMbotV43mgavFOdQX1FA9Zp8stLUl+i5yBcKcXZklA/sTk4MeZgMhShITmSvOZyMro2wXGKueOB5wLGeYzT3NNPt7kav6Xm14FVqSmrYtmhb1Ma6TLa2hZPR48cJjoygMxjI3LUTY20taZs2oSXEX/+UJ0WSgI4C6cCXx191wPj0P4uIGL7hfXrCx2u3A72EmxD9hIjceOJn9hBuTPTTmqblAq1ABeGrvMeARhH5T8/yAVWw/IrL8WUzoQHcjkl0eo3itbks25TPkjU5JCTG31HSUEi4dG+Ew629NF0LN2cwZyazt6KA/ZULWVXw1H+NFWVe+/Kq+aEBJ7ZBF2PB8BeVAxYT71hMrMyI7GKMiHB16Cq2LhvH7x3HNeUiOyWb6uJqrCVWVuesnnVfhOZwAtoE/I6IfDL9uAt4DdADXwDlgAc4AvxnETn5beupmBpfugfHaGgPzxjtHhonMUFjy7I86soL2LnKQlrS/G9yMx+NB4KcGPZwePrCYkBgaVry9IzRLErT5v8d7y/nRjf1NHG85zj94/2kJKSwddFWqoureaPwDZISIr/YIoEA459/gcfWyOip04QmJtDn5WGoqcZgtZKyZs2si3cvw0vvgju9aA3wnwjXd/6xiPympmm/AbSISIMW/v/Evwf28NW4lb/QNO0nCY98ufHEr/s7ItL2TWvFe7Cc8PjovBzuYGvv8YAGhcuyWLYpn9LKPJLT4vMoaadjjMOtjzjS2keva5K0pAT2rAnXdb5WmktCHN4BVpRbY5Mcsjv5wO6kf8pPRoIOa14WB/NNvJaVEfFRrYeeh9h6bDR1N3Hfc5/khGTeXvQ2daV1vFrwKom62fv3aBYnoD2Ak/Ax2j8UkT/62uu/BaSKyK9M9074jHDZy2VN034J+E1gkvDYl7/1DWuovgpxTkS40ed5nIwOeLykJiawc5WF+vIC3lqWp+Zcz1Ej/gBNgy4+sDv5wjWOAOsyUzlgNrHXksWC5Pl/xzskIdocbTT3NHPy3kmcU04ykzLZuWQn1cXVbLRsJEEX+R3LkNfL2NmP8TTZGDv7MeL3k7hkMcbaWgxWK8klJVH4NHNDRAnodG1JGfD4UomInIvqDiMUjwmofyrcTOjOBTsPb40gISGnMINlmyws22QhwzT/r2w9zeDoFI3tfRxu7eVarxudBm+W5XFgfaG6kqvErYEpPx/YnbxvH+HGmBe9Bm9nG3jHYmJ3rpHUCJtsuafcnLh3gsauRtoG29DQ2Ji/EWuJlZ1LdpKRNDfqzF9CDeg6oIjwnUkAROSDZ3hfoYj0appmBk4R7qZ77onXDYTnblcSrvNcAfw8cJ/wLO+/AbiA94BDIvJnfIt4jKnKjwqFhIv3Rmho76P5WrgjvDE1kZq1+dSVF7C5OEddxJ2j+qd8HLG7OOxwcnV0Eg14NSuD/ZYsavOyyI6HsS4hPxf6L3Cs5xin759mIjBBbmoue4r2UF1czdrctdEZ6+LxMHrqFG6bjYkLFyEUInnVSoy1Vgy1NSTmR6dJ0mwVyRHcnwN+iXCToDbgFeBzEdkWg32+sHgJlqFgiIe3nNy9OEB3+9DjZkLLNuWzbJOFnMK58SUv2iZ9QU7eHOBwa7jLXzAkrCk0sL9yIXXlCzBnxmcyrsS3sUCQ5iE3hwZG+MQ5hgDrDWm8YzGx12wiN8KLMb6gj3OPztHY1ci53nMEQgGWZi19XNcZre6DL1OMu+D+MbCO8OmeL8taRES+95y/5weE6z1/9xte14Ce6bV2E24I+LPTr/0U8IqI/MK3rREvMVV5Nr5AiPOdgzS09XHypp0JXxCLIRnrugL2VhSo8WRzWNeE93Ey2jkx9fji5H6Lid05BtIjbDo3F3gDXs49OkdzTzPnHp3DH/KzMGMh1cXV1JbUUppVGpV1/A4Ho8eP47Y14b16FTSNtA0bMFitZO7ehd4UnSZJs0kkCeg1YCPwhYhUTDc3+C0RORCbrb6Y+RwsRQTHvVHuXBygs8XO5Kj/cTOh5ZstLCiNz2ZCXw7d/uBKL8ev9zPuC1JgTGFfZSH7Kwsps2TO9BYV5aULhISPnaO8b3dybNDFZEhYkpLEO/nhus5Ia35CEqLV0Yqt28aJeycY9Y2Sm5pLTXEN1hIrK7JXzOkvojFOQG+KyKoXeF86oBOR0el/PgX8xpNjyzRNywImRMSnadrPA2+KyE9pmraZcHfcjYSP4P6/hMtg/su3rTmfY6oSmQlfgDO3HDS09/HxnUF8wRBFOWnUlxdQX1HAUrOKvXORiHB9bJLDdhdHHU56p/yk6nTszg0no29nZ5Kkm//Hrz0+D2fun+FYzzEuDFwgJCGWmZY9njFakFEQlXV89+/jaW7G3WjD190Nej0Zb7yBobaWzG1vo0ufH2NdIklAL4nIRk3T2gjXk0xpmnZDRFbHaK8vZD4Gy683E0rQ6yham8OyzfksWR2fzYQAbvV7ONLay9Hp+pTMZD3Va/PZX7mQzcXZ6OIwGVfim4hwdWySQwMjHLa7GPIHyNInUG/O4t38bKoMaREnhT3uHhq7GmnuaaZ3rJdUfSrbF2+nrqSOTQs2odfNjyNbMU5A/x/g34vIzed8XwlwePqhHvjf0z0V/h6AiPz36c7zf0q4RvQG8LMi4px+/78kfAQ3QLjZ38+JyNS3rTkfY6oSfe4JP8dvhDvpft41TEhg1QID9RXhsS6FWaqr/FwUEuGie5zDdieNgy5G/EGy9AnU5oVnjL6alUHCHL7Q+KyGJoc4ce8Ex3qO0T7YDkCluZLq4mp2LdlFTmpOxGuICFO3b+O22fA0NRMYGEBLTSVz2zYM1loyXn8dbQ6PdYkkAT0M/Azwy8A2wk0QEkWkJgb7fGHzJViqZkJPN+D20tDeywdXerk9MIpep7F1eR77KgvZsdJCSuL8PyKiKF/3YHJquq7TScfEFEmaxs7ccF3n9hwDyRFerR6eHOb4vePYumxcH76OTtPxyoJXsJZY2b54e1Ta2Ecq4HQyevw4oYkJcn72ZyP+fTFOQLcADcAAMAVohI/grovFepGYLzFVeXkcHi+2q+FktO2hC4CNRSbqywuoWbuAnIzkmd2g8kL8IeGcc5TDdifHhtyMB0NYkvTsNZvYZ8miMjPyC5xzwcPRhxzvOU5zTzOdrk4StAReWfAK1cXVbF+8PSp9DiQUYvLKFdw2G6PHTxB0uUgwGsncvRuDtZa0qiq0OXYXOipdcKeDpxE4LiK+KO4vYnM5WPqngnS3DXL34hPNhBZONxPaGL/NhMamApy4Hq7r/LRrCBGoWJTFgfWF1KpgpsQplz+AbTBc1/mFOzwR6xVjOgfzs7HmGcmKsHmEN+Dl7MOzNHY38mnvpwQlyIrsFVhLrNQU15CXlheFTxGZkM/H2EdncTc0MHbuHPj9pG7YwJI/+18RfxGKcQLaCfxjwk2CvqwBRURmXbvZuRxTlZl3f3icxvY+jrb10eEYI0Gn8cbSXOrLC9i12kJmSnxeTJ/rJoIhTk+PdTkz7MEnQlFqEvvNJvZZTCxPj4/vq3edd2nubub4veP0jvWSpEtiy6It1BTX8ObCN0lOiPz7qfh8jH32GZ6mZkbPnEEmJtBbLBhqajBYa0lZtWpOJP6R3AF9BbghIqPTjw3AShG5EJOdvqC5FixVM6GnCwRDnO8c4nBrLydv2Jn0B1mUncr+yoXsqyigJC8+/++ixDdfKMSZYQ+H7E5ODYWD/tK0ZN6xmDhgMbEkNbJgF5IQLQMtNHY3cur+Kcb941jSLNSU1FBXUkeZqSxKn+TFhQd+t+I+chTP8eOEPB4S8nIx1lox7q0neUV0ak9jnIB+LiKvxuJ3R9tci6nK7CQi3B4YfTzWpdc1SbJex/aVZurLC9m6PE+dYJqj3P4ATUNujtidnHeOEQJWZ6SwbzoZXZQyd4+NPisRoX2wnWM9xzh+7zgj3hEyEjPYvng7NcU1UStPCU1MMPrRR3iamhn75BPw+0kqLsZQW4uhtobk4uIofJrYiCQBbQXWy/QPapqmI9zAYH1MdvqC5kKw/MZmQhvMLN8Uv82ERITrvR4Ot/bS0N7H0NgUxtREatct4EBlIRuWmObEVR5FiSYRocUzwaGBERocLpyBILmJevZbsnjHkk15ZmrE/110Ojtp7G6kqbsJ+4Sd9MR0di7ZibXESpWlKirz0CLlu3cPd0MD7oZG/I8ehWtjduzAWF9P+quvoOmjW3sa4wT0vwFZQCPhI7jAs41hednmQkxV5hYR4coDJ0fb+mi62s/wuI/MZD171uRTX1HAqyU56CMcB6XMDMeUn4bpGaNXPBMAbDKms8+cRZ05i7yk+X/HOxAKcHHgIs3dzZx5cIYx/xjZKdnsLtpNTXEN5Xnl0Rnr4nLhOXkSj62JiUuXQISU1asxWK0YaqpJtFii8GmiJ5IEtE1EKr723NXZVrMym4Olyz7B3YsD3L1oxz043UxoXQ7LNsV3M6FHzgmOtoXndXY6xkhK0LFthZl9lYW8vSKP5Dho/a0oX9c9McUh+wjvDzi57/WRqtPYk2vkYH42W0yZ6CO8SDU4MUhzTzO2bhu3R26ToCXwWsFr1JXWsXXRVlL1M980JOB04jl2DM/RBibb20HTSH/1FQz19WTu2ElCRuy6A8Y4Af2Tpzz93GNYXobZHFOVuS8QDPFZ1zBH2/o4eWOA0akAuRnJWNctoK68gPWLs9SF5znq/uQUR+wu3rc7uTvhJUGDt0yZ7LeYqM41khkH3+2mglN88ugTmnua+fjhx/hCPgozCtlTtIeakhqWmZZFZR2/3Y6n+Rgemw3vjRvhsS6bNmGorcGwaxcJWVlRWScSkSSgHwBngT+YfuoXgLdFZF+U9xiR2RYsJzw+Olrs3L0wgOP+6HQzIRPLN1soqTSTnDo/OkY+L/ekn2PX+jnc2suFnhEg3KRgf+VCatcuwBinTZaU+DbsC3DU4eTQ9NVjDXjTlME7lmxq84xkRBiwJ/wTnHlwhqbuJj7v/5yQhFids5q60jr2FO2JSie/SD2trjN52TKMe+sxWK0v7apuLBPQuWS2xVRl/vL6g5y9Ex7rcvqWA18gxKLsVOrWhce6rMg3zPQWlRcgItwa93LY7uSIw8VDr48Uncb2HAMHLCa2ZxtIiYM73mO+MT58+CHN3c180f8FQQmyNGspNcU17Cnew6LMRVFZZ6q7B09zM57GRnz370NiIhlvvomhtobMt99GlzYzTQMjSUDNwH8m3AFXgDPAL4uIIxYbfVGzIVj6vAF6vmwmdNuJhITcRRks25RPWZWFDFN8Ns3xBUJ8fHeQw62PHgeXktx09lcWsq+ykEXZM99JU1FetslgiJPDbt4fcPLhiIeAwKr0FA7mZ7PfksWC5MjqZ4KhIBf6L2DrtnH6wWkmA5MUpBdQW1KLtdRKibEkSp/kxYlIuOPf0YbHdZ36vDwM1nBdZ8qKFS99Ty/hDuhfC7rqDqiihI16/Zy8Yedoex+fdg4RDAnLLBnsrSikbl0Bi3PU94W5SES47JngsN3JUUd4VFhmgo7qPCMHLCbeyIr8dM9cMDw5zKn7p2juaabV0QrAutx11JTUsLtoN7mpuRGvISJ4b9zEY7PhaW4m4HCgpaWRuX07Rmst6a+9hpb48m72RKUL7mw2U8EyGAzx8MYIdy8O0NM+RMAfIjM7hbJNlnAzoYL4bJojIrQ+dHH4Si+2q304J/xkpydRX17A/spC1i00quM1StwJifC5a4xDdic2h4vRYIj8pEQOWEwczDexKiOy468iwl3n3cfzOgcnB8lMzGRX0S7qSuuoNFei02b+ivNT6zp37sBYvzdc15kwc0e0YpyAvvPEwxRgP9AnIv8oFutFIhox9cHNYZJTEzEXZaq/98pzGxqb4ti1fo629dFy3wmEO+HvrSigdt0CzJnx0XF1vgmEhE9dYxy2O2kaDMfB3EQ9deYsDlhMUZlbPRf0jfVx/N5xmrubueO8g07TsSl/EzXFNWxfsh1DUuR3/iUYZOJSC56mJjwnTxJyu0nIyiJzz26MViup69fHfKyLSkCjSEJCf7ebjot2Oi878I77SU7Xs3RDOOlcUGKMy2ZCEG69fri1lyOtvdwbniBZr2PnKgv7Kwt5a1keiXFw3EJRvu7OuJdDAyN8YHfSO+UnPUFHbZ6Rdy3ZvGaKfKD3wPgAzT3NNHY10unqRK/T82bhm9SV1vHWwrei0hI+UgGnE09zM+6GBrztVx/XdRr37iVzxw506bGr63weL/MI7nRTv/Mi8trLWO95RCOm/sW/vsjwozEys1NYusFM6QYz5iUqGVWe3yPnBI3t4Rmjt/o96DR4rTQ81mX3mnyMqap8Zy7yBkN8OOLhA7uT08MevCFhYUoi+8wm9ltMrEpPiYu/F12uLpp7mjnWc4yHow9J1CXyZuGbVJdUs2Xhlqj0ZhCfj7Hzn+Kx2Rj98EPE60W/YAGGmmqMVmvUOsl/nUpAo2C4d4y7F+10XLIzOuJFn6ijuDyXsk35LF6VTYI+PpMr57gP27V+jrT2cvm+E02DV4pz2L++kOo1+WrelxKX7FN+jjicHBpwcm1skgQNtpoMHMw3sTvXSFqEF2PG/eOcun8KW7eNi/0XEYTyvHKsJVZ2F+3GlGKK0id5caGpqR+t6wwEZqSu83m85AR0OdAkIktfxnrPIxoxdWrCT0/7EJ2XHTy8OUIoJGTmhJPRpRvM5C1Wyajy/Drs4bEuR9v6eDAyQVKCjq3L89hbUcj2lWY11mWOGg0EOTbk5rDdyTnnKEGBZWkp7Ldksd9ioijCcWNzgYhwfeg6zT3hGaNDk0Ok6dPYtngbNcU1vFLwCom6yL9Th8bHGf3wQzy2JsY+/RQCAZJKSzFaazHU1pK0eHEUPk2YSkBfkGdoko6WcNI53DuOptNYtNLEsk35FJfnkpQSn82EvP4gH9128EFrL2fvOPAHw3Ua+ysXsreigIKsme+kqSgv23gwyLFBN+/bnXw8MkoIKM9M5d38bPZGoRV9IBTgs77PsHXb+OjBR3iDXhZlLsJaYsVaYmWxIXpB40WJCJOXL4frOk+cmBV1nc8jxkdwRwnXgGrT/3sA+DUReT8W60Ui2jHVO+6np32QzsuDPLoVTkYNeamUVZkpq7KQXZCuklHluYgI7Y/cNLT1Ybvah2N0ivSkBHatDo91eWNprjp1NUcN+QLYBl0ctju54B4HoDIzjf2WLPaaTViS5/+NjWAoyCX7JY71HOPU/VOM+kbJSs5i15Jd1JTURK2kJuB0MnriBG6bjcmWywCkrFvHov/2X9HnRl6TGkkToizgp4Ai4HG2NdtqVqIZLMfdU3RedtBxyY69xwNAfomBso0Wlm6wkGaY/8N1nyYUElruOznc+oimq/14vAHMmcnsrShgX2UhqxYY1BcIJe4ERfjEOcqhASfNQ24mgiEWpiTyjiWbgxYTZemR1SmJCDeHb2LrttHc08yIdwRjspE9RXuwllijNlssUrO5rvN5qC64YbE8VeQd99PdNkjHJTu9d5yIgGlBOmVV4TujpvzZcRxbmTuCIeFC9zAN7X00Xwt/P8lOT6J6TT715QVsLMpGF6elUXPdI6+Pow4XR+zh00Q64LWsDA5YTNTkGclKnP83gnxBH+d7z3Os5xhnH57FG/SSn55PdVE11cXVrMiOzvFZf18fnmPHGL94kUV/8AdRqQ+NJAH9DPgCuAaEvnxeRP404l1FUbSOCx3/o+uPA2JOYQZlG8NXZw258XtHr9MxxpHWXg639tLrmiQtKYHdq/PZX1nI60tzSVB/1JU4IyLcHPfy3sAIh+1O7L4ABr2O+rxwM6FNxnR0EQaDvrE+mrqbsHXb6HZ3k6hLZOuirVhLrLxZ+CaJCTN/BfjpdZ2vYtxbP6vqOp9HLBJQTdNWiMhtTdPWP+11EbkSzfWi4WX1VZjw+OhuddDR4qCv0wUCuYsyKKuysHSDOa5jr/JipgJBzt0dCo91uWln0h9kgTGFuvIC6ssLWF2gLpbPVR3jXg47nByxu+ienCJR09iWk8l+s4ldUShtmQsm/BN8+PBDjvUc47PezwhIgGJjMdXF1dQU17DEsGSmt/gjIklAr4jIU4PmbBKNYCki2H7/KuYlmY+PBMWrobEpGtr6ONLWy9VHbnQavFGWx4HKQnattpCWNP+vOCnK1/V5fXxgD8/rvD3ufRz8Dlqy2ZkT+Uwzj8/DqXunaOxu5LI9fBRmvXk91lIru5bswphsjMbHiMhT6zqXL8dY/2Vdp3mmtxiRGCWgfyQi39c07aOnvCwisi2a60XDTHSWH3NO0XXFQUfLV6ePLMWGx8loetb8rwFTomt8KsDpW3Ya2vr4+O4ggZBQkpdO/XQyWpIXn5MK5joR4erYJB/YnTQ4XPRP+UlL0LEn18h+cxZbsjNJinF319nA6XU+Huvy5XeG1TmrqS6uZk/RHizpM99nIZIE9FeAMcAGTH35vIiMRHuTkVAzyyI36Qty8uYAh1t7+aQjPH9rdYGB/ZWF1FcUqJbnSlwaDQSxDbp4f8DJp64xBKgypHEwP5t6cxbZER7/8Qf9nO89j63bxtmHZ/GFfBQZirCWWKktqWVh5sKofI5ISCgUrutsaMBz/ASh0VH0ZjOGOivG+npSli+f6S1GjTqCGzbTMdUzNBkuhWmxM/RwDDQoLMtiaZWF0vV5pGbEZymM8uKc4z6ar/fT0NbHxXsjiMDaQiN7Kwqwrisg36i+48xFIRG+cI1z2BEeb+YMBDHpE7Cas9hnzuLVrIyITyTNBQPjA5y4d4Km7iZujdxCQ6Mqv4qa4hp2Ltk5YxewI0lA/wHwm4CLrwZoi4jM/BTzJ8x0sJyrgiHhi+5hPrjSy/Hr/Yz7ghQYU9hbWcj+ykKWWTJneouK8tL5Q8LZEQ+H7E5ODLnxhoSi1CQOWrJ5x2KiOC2yOzEiwtWhq9i6bBy/dxzXlAtTsonq4mrqSutYnbN6VhwRm+ruwd1wFE+jDX9vL1paGoadOzHurSdt8+Y5U9f5PGKdgGqa9hp/vafC/4zVei9qNsVU58A4HS0OOlvsOAcmHjcDLKuyUFyRR3KqOpGjPJ8Btxfb1XAn3Wu9bjQNNhVls7ci3L3flK4ucMxFvlCIj0dGOexwcXy6J8OC5ETqzVnsN5soz0ydFbE11nrcPRzrOcaxnmPc89xDr9PzRsEbVBdXs3XRVtIS017aXiJJQLuBTSIyFKvNRcNsCpZzwa1+D4dbezna1ovdM0Vmsp6atQvYV1nI5mJVrK/EHxGhbXSSQwMjHHG4GPYHyE5MYK/ZxEGLifVRGI79cPQhtm4bTd1N3PfcJzkhmbcXvY21xMprha9Fpb16pAIjI3iapus6r10DnY70114L13Vu344u7eUFrpkQ4y64/wsoBdqA4PTTMtua+sHsjKkiwnDvGB2XwndGR4e96PQaS1bnULbRQtHaXBKT599FESW2ugfHaGzv52h7L92D4+h1GluW5VFfUcCOlRbSk9UFjrloPBjk1JCHIw4nZ4ZH8YtQnJr0eMbosggbBM4FIsLNkZsc6z7GsXvHcEw4SNWnsnXRVmqLa3mt4LWY95OIJAE9CewTkYlYbS4aZmOwnG0G3F6OtoWbCd0eGEWv09i6PI99lYXsWGlRs7OUuPRgcor37U7etzvpnJgiWaexK8fIwXwTb0ehjsQ95ebEvRM0djXSNtiGhsbG/I1YS6zsWLKDzKSZP2UQ8noZ++gj3EcbGDt/PlzXuXIlxro6DNZaEs1zu67zecQ4Ab0FrJI5MP9stsdUEcF+z0PHJTudlx1MuH3okxMoXpdLWZWZxatySEic/zVgSvSICDf6PDS299HQ3ke/20tqYgI7VlmoLy9gy7I8kuJ03vtc5/IHaB50c9jh5FPnGCFgTUYq+8xZ7LOYWJgy/+94hyTEZftljvUc4+T9k7in3BiSDOxcspPaklrWm9eToIt+HhBJAnoYWA18xI/WgM6qK7azPVjOlLGpAMevD3C49RGfdQ0jAhWLsthfWYh13QJyMlRTByX+uPwBGgddHBr4asbYq1npHLRkY80zYoywrtMX9HHu0Tkauxo513uOQChAqbEUa2l4Xmd+en40PkZEJBRioqUFd0MDo8dPEBobQ282Y6yvw1BfT8qyZTO9xRkR4wT0PeAfiUh/LH5/NM2lmBoKCf0dLjpa7HRdGcQ77icpVU9JZR5lVWYWLjehi4PumEr0fDl27mhbL83X+nFO+DGkhE+K1ZcXsLkkR00AmKPsU34aHC4OO5xc8YTvrW02prPPYqIuL4vcOGiy6Q/6+bz/c5p7mvnwwYdMBiYxp5rZXbyb2uJaVuWsitpR5UgS0J9+2vPzcQzLfBEIhvikc4jDV3o5eXMArz/EouxU9lcUsq+yUHV9U+KSLxTizHC4rvPUkAefCGVpyRy0ZHMg38SiCK+AigitjlYauxs5ce8Eo75RclJyqCmpoa6kLmpzuiI11d2N+2gDnsZG/H19cVHX+Txi1AW3kXAPhUygArjIj17QrY/metEwV2NqMBji0W0nHZfs9LQN4vMGSc1MpLTSTNlGCwtKjWgqcVCegz8Y4nznEA1tfZy8McC4L4g5MxnrugLqKwooX2icFX/bled3b3KKI3Ynhx0u7ox7SdDgLVMm+y0mqnONZOrnfzyc8E9w7tE5mnqaON97nkAowOLMxfxp9Z+Sm5ob8e9/4QR0rpirwTJaRIRrvW4Ot/bS2N7H0JgPY2oi1nUL2F9ZyIYlJvUHUok7IkKLZ4L3BkZonO6Ol5uoZ78li4P52azLiLwhwT33PWzdNmzdNnrHeknVp7Jt8TasJVZeWfAKet3MX00NDA9/Vdd5/Xrc1XU+jxgloFu+7XUR+Tia60XDfIipAX+QB9dH6Gixc+/qEAF/iPSsZJZWhed7m5dkqrioPJdJX5Azt8NjXc7eGcQXDLEkJ4368gL2VhSw1DzzJRXKi7k1Nsnh6WT0oddHik5je46BAxYT27MjH7M2F7in3Jy+f5oWewu/9cZvReXvYyR3QHv4qvvtY8/SBVfTtD3A7wEJwA9F5Hee8jM/Bvxgeo12EfmJ6eePA68A50XE+l1rzYdg+SIejkw8ruvsGhwnKUHHthVm9q8vZOvyPJLj4OqNonxd98QUh+wjvD/g5L7XR6pOozovi3csJraYMtFHeAdkxDvC8Z7j2LptXBu6hk7TsTl/M3WldWxfvP2ldpj7JiGvl7EPP/yqrjMYDNd11tdjqK2Jq7rO5xHjI7j/RkT+2Xc9NxvMt5jq8wa4d22IjksOHtwYJhQUDHmplE0nozmF6mSQ8nzck35OXB+gob2Pz7qGCAmsXGCgvryAuvIFLDTNfBxQnp+IcNkzwWG7k4ZBF4O+AJkJOqrzjOw3m3gzCt8h4kkkCWjOEw9TgHeBbBH5F9/xvgTgLrATeARcAn5cRG4+8TNlwF8B20TEqWmaWUQc069tB9KAv6sS0B/lnvTTfK2fw629XOwJj2PdVJTNvspCatcuwJg28500FeVlG/YFOOpwcsgeruvQgDdNGbxjyaY2z0hGhBdjvAEvZx+dxdZl49PeTwlIgOWm5VhLrNSU1GBOm/mE7ql1nRYLxjprXNd1Po8YJ6BXRGT91567KiLrYrFeJOZzTPWO++luG6Szxc6j205EILsgnbIqM0urLGSZVeKgPB/HqJfmq/0cbe+j9YELgKolJuorCqhZu4Bc1W9jTgqEhE9dYxy2O2kecuEJhMhJ1FNnzuKAOYsqY3pczBiNRFSP4E7/sg3f8TOvAj8Qkd3Tj38NQER++4mf+bfAXRH54Tf8jq3AP1EJKPgCIc7ecXC4tZcztxz4giFK8tI5UFnI3opCFmWrgKnEH28wxMlhD+/bRzgz7CEgsDI9hYP52RywZLEgObK6zi+7xjV2NXLq/inG/GOY08zUltRiLbGyzDQ7Erqpri7cRxtw2xoJ9PWjS0sjc9eucF3npk1xX9f5PGJ0BPfvA78AlABdT7yUCXwqIj8ZzfWiYb7H1C9NeHx0XQmPdenvdANgXpLJ0ioLSzeYycye/6MalOh6ODJBQ3sfDW193LGPkqDTeH1pLvXlBexebSEzRd0kmIu8wRAfjXj4wO7i1HB4PnhhciL7LCb2m7NYHYWSnvkokjugT16t1QFVwN8XkfLveN9BYI+I/Nz0478NbBaRX3ziZ44Qvkv6OuFjuj8QkeNPvL6VOE5ARYQrD1wcbn2E7Wo/rgk/uRlJ1JUXcKByIWsKDepfdiXuhET4wjXO+/YRGgfDVyTzkxLZb8ni3fxsVmWkRrxGl6uLxq5GmnqaGBgfIE2fxo4lO6grrWOjZWNMWpU/r6fWdb7+Osb6ejK3b1N1nS8oRgmoETABvw386hMvjYrISDTXipb5GFO/y+iIl87LDjpb7DjujwKwYKmRsioLpevNpBnm/6gGJbpuD3hoaAuPdXnknCRJr2P7CjP15QW8vcKsxt/NUWOBIMeH3By2uzjr9BAUKEtLZr/FxH6zieI0dcf7S5EkoB898TAA3AN+V0TufMf7niUBtQF+4MeAhcA5YK2IuKZf38q3JKCapn0f+D7A4sWLN9y/f/9bP8tc0TM0zuHWXo609vJgZIKURB27VuWzf30hby7NRR8HhdCK8nV3x73T8zpHeOT1k5agozbPyLuWbF43ZZAQ4cWYockhmrubsXXbuDVyiwQtgVcLXqWupI63F79Nqj7yxDZS31jXubceY20t+ry8md7inBejBNQgIh5N07Kf9vpsTELjMQF9kssxQWdL+M7oSN84mgaFy02UbbRQUpFHSrq6i6U8uy9vKDS292G72s/Q2BSZyXp2rc6nvqKA10tz1He7OWrYF8A26OKw3ckX02PdKjLT2G/JYq/ZRH5yfP+teOldcJ/xCO5/By6IyJ9MPz4D/KqIXJp+vJU4uQM6Mu7DdrWPD6700vbQhabB66W57KssZM+afDKSZ76TpqK8bIM+P0fsLt6zj3B1dBIdsCU7k3fzs9mdayA9wqOlE/4JPnz4IbYuG5/3f05IQqzKWUVdSR17ivdEpQV5pCQUYuJSC+6Go4yeOKnqOmMsRgmoTUSsTzT1e/JqiTxLU7+Xba7H1Gga7h2j87KDu5fseAYn0SVoLF6dQ1mVmaJ1uSSlqPisPLtAMMTn3cM0tPVx/MYAo94AuRlJj2eMrl9sQqea3MxJvV4fRx0ujtidXB2bRANezcrggMVEbZ4RU4Qzxuei505ANU37SRH5M03T/vHTXheR//AdC+oJH6/dDvQSbkL0EyJy44mf2UO4MdFPa5qWC7QCFSIyPP36VuZxAur1Bzl9y86R1l7O3hkkEBJW5Geyf7quM9+oak+U+DMRDHFiyM17AyN87BwlKLAuI5WD+Sb2mU2YI7yaGAwFuTBwAVuXjdMPTjMZmGRB+gKsJVasJVZKsmZHLqDqOmdGLJsQzSVzMabGmogw+GCUjkt2Oi87GHNOoU/UsWRtLmUbzSxZk4NeHalUnsNUIMhHtwdpbO/j9C07U4EQhVmp1JUXUF9ewMoFalTQXNU54eWI3cURh5POiSkSNY2t2eEZo7tzDKTHyZSKF0lA/66I/KGmab/+tNdF5F8+w6I1wH8iXN/5xyLym5qm/QbQIiINWvi/qn8P7AGCwG+KyF9Mv/cTYAWQAQwDPysiJ75prbkSLEMh4YueYY609nLs2gCjUwEshmT2VRSyr7KQlQsMM71FRXnpgiJ85hzjPfsITYNuxoMhCpMTOWAxcTA/m+XpkV+MuTNyh8auRpp7mhmcHCQzMZNdRbuwllhZb1mPTpv540/hus4m3Ecb8N648aN1nTu2o0ud+WPA812M7oCu/7bXReRKNNeLhrkSU2eKhIT+bjedl+x0XnEwOeonMSWBkoo8yqosLFxpIkEdqVSew9hUgJM3wmNdPukYIhgSyswZ1JcXUF9RwJKc9JneovICRITrY5N8YHdy1OGib8pPqk7HrlwD+80m3s7JJFk3f/9WvPQjuC/bbA+WdwZGOdzay9G2XvrdXtKTEqheu4D9lYW8UpJDgjpuocShm2OTHBpwctjhpH/KT2aCjjpzeF7nq1kZEbc3t4/bae5pprG7kQ5nB3pNzxsL36CupI4ti7aQnDDzjQKeWte5KjyvU9V1vnwxSkA/+paXRUS2RXO9aJjtMXU2CQVD9N5x0dFip7ttkKmJAMnpekrXh2eMFpRlqSOVynMZHpui+foAjW19XLwXLhEvX5QVnjG6bgFmgzohNxeFRLjoHuew3UnjoIsRfxCjPoHa6Rmjr0Whn8VsE0kTojzg54Ei4PHhZRH5XpT3GJHZGCztHi8NbX180NrLrX4PCTqNLcvy2FdZyM6VFlKT4uP2u6I8qX/Kx2G7i0MDI9wc96LXYFu2gYP52ezMMZAa4V2Dcf84p++fprG7kYv9FxGEdXnrqCupY3fRbkwppih9khcnoRATFy/hbmz40brO+jqM9fUkl5XN9BbjljqCGzYbY+pcEPSHeHBrhI5LdnquDhGYCpJmSGLpBjNlGy1YilX3euX59LomsbWHO+ne6POgafBqSQ715QVUr1Gz3+cqf0g45xzlsN3JsaHwyS9zkp56cxYHzCYqDWnz4m9FJAnoZ8AnwGXCx2QBEJH3o73JSMyWYDk2FeD49QGOtPbyadcQIlCxKIv9lYXUrlPDiJX4NB4I0jTk5tDACJ84xxBgvSGNdywm9ppN5CZFVpgfCAX4vO9zGrsb+ejBR3iDXhZmLKSutI7aklqWGJZE54NE6Kl1nbt3h+s6N25UdZ2zgEpAw2ZLTJ3L/L4g968N03HJzv3rwwQDITKzUyjbaGZplYXchRnz4gum8vJ0OsZoaO+jsb2PnqFxEhM0tiwzU19RwI6VZtIijKXKzJgMhjg97OGIw8npYQ9TIWFJShL7LCb2mbNYGYXxcjMlkgS0TUQqYrWxaJnJYOkPhvikY5DDrX2cujmA1x9icXYa+yoK2FdZSElexozsS1FmUmD66t77difNg24mQyEWpyRxMN/EOxYTpWmRHSESEW6O3MTWZaO5p5kR7wjGZCN7ivZgLbFSnlc+K77c/bW6zoQE0l9/DWP93vC8TlXXOauoBDRMJaDRNTUZoKd9kI5LDh7dGiEUErIsaZRVhe+MmvJVfZ/y7ESE670ejrb10ni1D7tnirSkBHauslBfXsCbZXkk6edvXeF85gkEaR50ccTu4hNXuBHjivQU9ptN7LNksSR1bt3IiiQB/dfAZyLSHKvNRcPLDpYiQutDF0dae7Fd7Wdk3IcpLRHrunDSuX5x1qz48qsoL5OIcG1skvcHnHzgcDLoC5ClT6DenMVBi4mNxvSI/7voG+ujqbsJW7eNbnc3ibpEtizcgrXUyluFb5GYMPPHkUJeL6NnzuBuaGD8/KcQDJKyahXGvfUYamvR5878eBfl6VQCGqYS0NiZHPPR3TpIR4ud3rsuEMhZmMGyjRaWbjBjyFUXpZRnFwwJF3tGaGjv49j1flwTfrLSEqles4C9FQVsKspWNchz1KDPT6PDxWG7i0ue8IzR9YY0DlhM1OdlRTwV4GV4kS64o3w1rywdmAL8049FRGZVu9aXFSy7Bsc42trL0fY+7g9PkKzXsWOlhf2Vhby1TF1xUuLTI6+Pw3Yn7w04uTvhJVHT2Jlj4GC+ie05hog7vHl8Hk7dO4Wt20aLPfzf+XrzeqylVnYt2YUx2RiNjxGRx3WdDQ2MnjhBaHwcfX4+xro6jHvrSV66dKa3qDwD1QU3TCWgL8e4a4rOyw46L9sZ6PYAYCk2UFYVTkbTs+bW3Q5lZvkC4RN5De19nLppZ8IXJN+QgnXdAvZWFLKmUNUgz1UPvT6O2J0ctju5Oe5FB7xuymC/2URNnpGsWTpjVHXBjYDD46Xxaj9H23q5+siNpsHrpbnsrShgz5p8MlNm/xUIRYk2TyCIbdDFoQEnn7vCdZ2bjOkctJioM2dFPHDZH/Rzvvc8tm4bZx+exRfyUWQowlpipbakloWZC6PyOSI11dk5XddpI9Dfjy49PVzXWV8Xntc5j9urz0cx7oKbAlQB7YQv5q4jPJbs1WiuFw0qAX35PEOTdF520NFiZ+jhGGhQWJbF0ioLpevzSM1ImuktKnPIhC/A6VsOGtr6+PiuA39QKM5NfzxjdKlZlYfNVXfGveFk1OHk3qSPRE1jW04m+80mduYaSJ9F/SQiOYJ7RkS2f9dzMy3awdI94efY9X4a2vv4vHsYEVhdYGB/ZSF15QVYVAtsJQ75Q8JHIx4O2Z2cHHLjDQklqcmP6zojrU0QEa4NXaOxq5Hj947jmnJhSjZRXVxNXWkdq3NWz4qrt4Ghoa/qOm/eDNd1vjE9r3Obquucy2J5BFfTtA+AXxeRa9OP1wA/EJGDsVgvEioBnVnOgXE6LtnpaHHgsk+g6TQWrTRRttFCcXkeyamz826HMju5J/wcv9HP0bYf/U5bX15AXXkBBVkqZs1FIkLb6CRHpmeMDvj8pCXo2JNrZJ85i63ZmSTN8EXwFzmCm0L46O2HwFbCV2sBDMBxEVkRm62+mGgEy6lAkBM37OpqkaI8QURoHZ3g0ICTIw4nI/4g2YkJ7DWbeNcSnVbhD0cfYuu20dTdxH3PfZITknl70dtYS6y8VvgaibqZP2UQmpxk9MyHuBuOMv7pZ+G6ztWrMdbXqbrOeSTGCegNEVn9Xc/NBioBnR1EhOHeMTouhe+Mjg57SdDrWLImh6VVZorW5ZKoRropz8Hh8WK72s/R9j7aH7oA2FSUTV1FATVr8slR0xrmpKAIX7jGOGx3YRt04QoEMekTqM3LYp8li1ezZmbG6IskoL8E/DJQAPQ98ZIH+B8i8vsx2OcLi0awnPQFqfrXp8hI0VO3rkCdl1fi2v3JKd63O3l/wEnX5BTJOo1dOUbezTfxdraBxAibGrin3Jy4d4LGrkbaBtvQ0NiYvxFriZUdS3aQmZQZpU/y4sJ1nRdxH21g9OTJcF3nggUYrVZV1zlPxTgB/XNgHPiz6af+FpAhIj8ei/UioRLQ2UdEsPd46Lhkp/OKgwm3D31yAsXrcimrMrN4VQ4JierIv/Ls7g+P09jex9G2PjocYyToNN5YGi4x27U6n4xkdad9LvKFQpwdGeWIw8XxITcTwRD5SYnsNWexz2KiIjP1peU2kRzB/Yci8l9itrMoiVaw7HSMUZybToLqGKbEIZc/QIPDxft2Jxfc4Y5rr2al864lG6s5C4M+sivtvqCPc4/O0djVyLnecwRCAUqNpVhLrVhLrOSn50fjY0RsqqMDd0MD7kYbgYGBJ+o660nbtFHVdc5jMU5AU4C/D7w1/dQ54A9ExBuL9SKhEtDZLRQS+jtcdLTY6boyiHfcT3KanuKKPJZVWShcnoUuQf2dUp6NiHB7YJSG9j4a2vrodU2SrNexfaWZ+vJCti7PIyVR3Wmfi8aDQU4NhWeMfjg8ik+E4tQk9plN7LeYWJYe25LCF7kDuk1EPtQ07cDTXheRD6K8x4ioYKkoL2YqFOLD4XBd56khDz4RytKSeTc/m/0WE4tSImt8ISK0DbbR2NXIiXsn8Pg85KTkUFNSg7XEysrslbPilEFgcBBPczOuo0eZunlL1XXGqViPYdE0LRVYLCJ3nvN994BRIAgEvr5HTdNMwB8DpYAX+J6IXJ9+LQv4IbCGcHf774nI59+2noqpc0cwGOLRbScdl+z0tA3i8wZJzUykdL2ZsioLC0qNaOqiuvKMQiGh9aGTo219NF3tZ3jcR2aynj1r8qmvKODVkhz06uLGnOTyB2gecnPE7uS8c4wQsDojhX1mE/ui8H3vaV4kAf2XIvLrmqb9yVNeFhH5XrQ3GQkVLBXl2YkILZ4J3hsYocERrhXITdRzwGLinXwT6zIiP55xz30PW7cNW7eN3rFeUvWpbFu8jbqSOjYv2IxeN/NHe0KTk4yenp7X+dkTdZ176zHU1Ki6zjgU4zug9cC/A5JEpFjTtArgN0Sk/hneew+oEpGhb3j93wFjIvIvNU1bAfzXL5sFapr2p8AnIvJDTdOSgDQRcX3beiqmzk0Bf5AH10foaLFz7+oQAX+IDFMypRvCyah5SeasuOCnzA2BYIjPuoZpaO/jxPUBRqcC5GYkYV0Xbl6kZt7PXY4pPw2DLg7bnVz2TACw0ZDOPksW9eYs8pKi03tDjWFRFIWeiSkO2Ud43x5u3Z2q09iTa+RgfjZbTJnoI7xK7vQ6OdZzDFu3jWtD19BpOjbnb8ZaamXH4h2kJaZF6ZO8uB+p6zxxgtDERLius64OY32dquuMczFOQC8D24CzIlI5/dw1EVn7DO+9x7cnoE3A74jIJ9OPu4DXCN8NbQNK5DkCvoqpc5/PG+DetSE6Ljl4cGOYUFAw5KVSVhVORnMKVWNF5dl5/UHO3nHQ0N7H6VsOfIEQC02p1JUXsLeigBX5hpneovKC7k9OcdTh4gO7k9vjXhI0aH11NebkyJPQF7kD+o+/7ReKyH+IeFdRpIKlojzdiD/AUYeL9wdGaPFMoAFvmDI4aMmmNs9IRoR1nd6Al7OPztLU1cT53vMEJMBy03LqSuuoLq7GnGaOzgeJ0FPrOvfsxli/l7SNVaquUwFinoB+ISKvaJrW+kQCelVE1j3De3sAJ+EjtH8oIn/0tdd/C0gVkV/RNG0T8BmwmfCR3T8CbgLlwGXgl0Rk/NvWUzF1fvGO++luG6Szxc6j205EILsgnbIqM0urLGSZZ/7ioDJ3jHr9nLxhp6G9j/OdQwRDwjJLBvXlBdSXF7I4R/37NFfdGpvkc9cY31uYF5Xf9yIJ6K9/2y8UkX8ZlZ1FiQqWivIVbzDEqWEP79tHODM8il+EFekpHLSYOGAxURDhOf+QhLhsv4yt28bJeycZ849hTjVTW1KLtdTKMtOyKH2SyAQGB3E3NeFuaHhc15nxxhsY6utUXafyVDFOQP8f4Azwq8A7wD8CEkXk7z3DewtFpFfTNDNwCviHInLuidcNwO8BlcA1YAXw84Ae+AJ4XUQuaJr2e4BHRP7vp6zxfeD7AIsXL95w//79iD6vMjtNeHx0XQmPdenvdAOQtziTso0Wlm4wk5mt5pwrz254bIrma/00tPdx6Z4TgIpFWdSXF2BdtwCzQf37FM/UEVxFmedCIlxwj/P+gJOGQSeeQAhLkp79FhPv5mezKj0l4lqNblc3jd2NNHU30T/eT5o+jR1LdlBXWsdGy0YSdDPfJe9b6zpra9Hn5Mz0FpVZLMYJaBrwfwG7pp86AfwrEZl6zt/zA8L1nr/7Da9rQA+wDkgDvhCRounX3gR+VURqv20NFVPjw+iIN5yMXrLjuD8KwIKlRsqqLJSuN5NmiH5TEmX+euScCM8YbevjVr8HnQavluZQX17AntULMKbN/Exv5eVSCaiizFMd417etzs5ZB/hkddPWoKOmlwjB/NNvGnKjHjw8NDkEMd6jtHY1citkVskaAm8UvAKdSV1bFu8jVT9zN9FlGDwR+d1TkygL1iA0VoXntdZWjrTW1TmiBgnoO+KyHvf9dxT3pcO6ERkdPqfTxFuXnT8iZ/JAiZExKdp2s8Db4rIT02/9gnwcyJyZzp5TReRf/pta6qYGn9cjgk6W8J3Rkf6xtE0KFxuomyjhZKKPFLSVfKgPLtOxyhH2/poaO/j/vAEiQkaW5aZ2VtRwI6VFlKTZv6CtRJ7KgFVlHlk0OfnqMPFewMjtI9OogO2ZGdy0GJiT56R9ITI/rBPBib58MGHNHY38kXfFwQlyKqcVVhLrFQXV5ObOju6w3rv3sXT0IDb1hSu68zIIHP3LlXXqbywGCegV0Rk/Xc995T3lQCHpx/qgf8tIr+padrfAxCR/65p2qvAnxKuEb0B/KyIOKffX0F4DEsS0A38zJevfRMVU+PbcO8YnZcd3L1kxzM4iS5BY/HqHMqqzBStyyUpZea7mCtzg4hw9ZGbhvY+bFf7sHumSEtKYOcqC/XlBbxZlkeSXsXq+UoloIoyx00GQ5wYcvPegJOzTg9BgbUZqbxjCQ8TtkTYrSwYCnJx4CK2bhun759mIjBBfno+1hIr1hIrpVmz4y5iYHAQt226rvPWV3Wdxr31ZGzbhi5F1ZsoLy4WCaimadVADfBjwF8+8ZIBWCUim6K5XjSomKpAOHkYfDBKR4uDzhY7Y84p9Ik6lqzNpWyjmSWrc9CrO1nKMwqGhAs9wzS299F8bQD3pJ+stESq1yxgb0UBm4qy0amZtfOK6oKrKHNQSITPXGMcGnBiG3QxFgxRkJwYntdpMbEyI/Ljr3dG7mDrttHc3Yxj0kFGYga7inZhLbGywbIBnTbzVyZ/pK7z008hFCJlzRqM9fUYamtUXacSNTFKQMuBCuA3gH/xxEujwEffdTdyJqiYqnydhIT+bjedl+x0XnEwOeonMSWBkvI8llaZWbQqm4SEmY8XytzgC4Q4d3eQhvY+Tt20M+kPkm9IwbpuAXsrCllTaFAzRueBSLrgLgc2Ag3Tj+uAiyLyk7HY6ItSwVKZT26NTfK+3ckHdid9U34yEnRY87I4mG/itawMdBH+UbaP22nuaaaxu5EOZwd6Tc8bC9/AWmJl66KtJCckR+mTvLhvrOusqw/XdZaUzPQWlXkoxkdwE0XEH4vfHW0qpirfJhQM0XvXRUeLne7WQaYmAiSn6yldH54xWlCWpe5kKc9swhfg9C0HDW29fHx3EH9QKM5ND491qSigNE/NrJ2rXvgIrqZp54BaERmdfpwJNInIWzHZ6QtSwVKZ6+xTfg7bnRyyO7k+NkmCBm9nGzhoMbEr10hahFeWx/3jnL5/msbuRi72X0QQ1uWto66kjt1FuzGlmKL0SSLzuK6z0UbAbg/Xde7ZjbG+nrQqVdepxFaME9Ay4LeBVcDjs+IiMuuupqiYqjyroD/Ew1sj3L1kp+fqEIGpIGmGJJZuMFO20YKlWN3JUp6da8LH8esDNLT38Xn3MCKwusDA3ooCrOsKKMia+caHyrOLJAG9A6z7sk28pmnJwFURWR6Tnb4gFSyVuWg8GOTYoJv37U4+HhklBFRkpnEw38RecxZ5SZHVdQZCAT7v+5zG7kY+evAR3qCXhRkLqSuto7akliWGJdH5IBHyOxx4mpp/tK7zzTfDdZ1vv63qOpWXJsYJ6Hng14H/SPg00c8Q7m77L771jTNAxVTlRfh9Qe5fG6ajxc79a8MEAyEys1NYWhVORnMXZqhkVHlmdo8X29XwjNH2hy4ANhVlU19RQM3aBWSnqzFBs10kCej/Rbhxwpcd+PYBfyUivxXtTUZCBUtlrgiKcN45xnsDIzQPuZkIhliYkshBSzbvWEyUpUeWbIkIN0duYuuy0dzTzIh3BEOSgT1Fe6grraM8r3xWfAEITUwweuYM7qPT8zpDIVLWrv2qrjM7e6a3qMShGCegl0Vkg6Zp10Rk7ZPPxWK9SKiYqkTKNxmgp32Qu5ccPLo1QigkZFnSKJtORk356TO9RWUOuTc0TmN7eKxLh2MMvU7jjbJc6ssL2LU6n4xk1Zl5NoqoC66maeuBN6cfnhOR1ijvL2IqWCqz3Y2xSQ4NjHDY7mLA58eg11GXl8XB/Gw2G9MjruvsG+sL13V2NdLt7iZRl8iWhVuwllp5q/AtEhNmfoabBINMXLgQrus8dYrQxASJBQUY6usw1qu6TmXmxTgB/Qx4AzgEfAj0Ar8z204UgYqpSnRNjvnobh2ko8VO710XCOQszAgno1UWDLnqWKXybESE2wOjNLT30dDWR69rkmS9jh0rLdSVF7B1eR4piaoz82wRaQL6BlAmIn+iaVoekCEiPc/wvj3A7wEJwA9F5Hee8jM/BvyA8OyydhH5iennfxr4/03/2L8WkT/9trVUsFRmo/4pHx/YXRwaGOHWuBe9BttzDBy0ZLMzx0BKhHWdo75RTt0/RWNXIy328L//683rsZZa2bVkF8ZkYzQ+RsS8d+7ibjiKp9FGwOFAl5mJYc9uDHV1qq5TmVVinIBuBG4BWcC/AozAvxWRL2KxXiRUTFViZdw9RWeLg87Ldga6PQBYig2UVVlYusFMetbMN8FT5gYR4coDJw1tfdiu9jM87iMzRc+e1fnUVxTwakkOetWZeUZFcgT314EqYLmILNM0rQB4T0Re/473JQB3gZ3AI+AS8OMicvOJnykD/grYJiJOTdPMIuLQNC0baJleV4DLwIZva1WvgqUyW4wFgjQNujlkH+G8cwwBNhjSeMdiYq/ZRE5SZMdE/CE/n/Z+SmNXI2cfnsUX8lFkKMJaYqW2pJaFmQuj8jki5Xc48Hw5r/P2bdDrw/M69+0N13Umqy8ZyuwTywR0LlExVXkZPEOTdF520NFiZ+jhGGhQWJbF0ioLpevzSM1QNX7KswkEQ3zWNUxDex8nrg8wOhUgNyOJ2rULqK8oZP3irFlRfhRvIklA24BK4IqIVE4/d1VE1n3H+14FfiAiu6cf/xqAiPz2Ez/zb4G7IvLDr733x4GtIvJ3px//IXBWRP78m9ZTwVKZSYGQ8LFzlEMDIxwfcjMZEpakJPFOvomDlmxK0iJLtkSEa0PXsHXbON5zHOeUE1OyiT3Fe6grqWNN7ppZ8Yc1NDHB6OnT4brOzz9XdZ3KnBOjOaCNhC+mPpWI1EdzvWhQMVV52ZwD43S0OOi4ZMdln0DTaSxaaaKsykJxRR7JqarGT3k2Xn+Qs3cGaWjv5cwtB1OBEAtNqdSVF7C3ooAV+YaZ3mLc+KaY+iz/NftERDRNk+lf9KxV44XAwycePwI2f+1nlk3/zk8JH9P9gYgc/4b3Fn59AU3Tvg98H2Dx4sXPuC1FiQ4R4erYJO8PODnscDLoC5ClT+Dd/Gzezc+mypAWcVL4cPQhTd1NNHU3cc9zj+SEZLYu2kpdSR2vFb5Gom521HWOf/EFnoYGPKdOI9N1nTnf/3lV16koYb870xtQlNnOlJ/OJmsxG2uLGO4do+NS+M7omT+9he7/u82S1TmUbbRQtC6XxCRV46d8s5TEBPasyWfPmnxGvX5O3rDT0N7HH53r5g/OdrHMkhGeMVpeyOKctJneblx6lgT0r6bvQGZpmvbzwPeAH37He55n/TJgK7AQOKdp2tpnfbOI/BHwRxC+WhulPSnKt3rk9fGB3cl7AyN0TEyRpGnszA3P69yWYyA5wnpG95SbE/dOYOu20eoI9/vamL+R7635HjuW7CAzKTMaHyNiT6vrNNbWYKyvJ3XDBlXXqSjTROTjmd6DoswVmqaRuzCT3IWZvLKvBPs9Dx2X7HRedtDTPoQ+OYHidbmUVZlZvCqHhEQVa5RvlpmSyDsbFvLOhoUMj03RfH2AhrZefvfkXX735F0qFmVRX16Add0CzAY18u1l+c4EVER+V9O0nYAHWA78CxE59Qy/uxdY9MTjhdPPPekRcEFE/ECPpml3CSekvYST0iffe/YZ1lSUmPAEgtgcLt6zj/C5axyAzcZ0/u2yPOrNWWQlRnY0yBf0ce7RORq7GjnXe45AKECpsZRfWv9L1BbXsiBjQTQ+RsSeWtf55psY//mvqbpORfkO030PfhtYBTz+piMi6piAojyFpmnkFxvJLzby+sEy+jtcdLTY6boySMclO0mpekoq8yirMrNwuQmdajijfIucjGT+9itL+NuvLKHXNYmtvY+jbX38hu0m/7rpJq+W5lBfXsCe1Qswps38CbP57FlqQP+NiPyz73ruKe/TE25CtJ1wQnkJ+AkRufHEz+wh3JjopzVNywVagQq+ajy0fvpHrxBuQjTyTeupehUl2vwh4aMRD4fsTk4OufGGhJLUZA7mm3jHYmJJauR1na2OVhq7Gzlx7wSjvlFyUnKoKamhrqSOFdkrZndd5969GGqqVV2nMq/EuAvueeDXgf8I1AE/A+hE5F/EYr1IqJiqzGbBYIhHt510XLLT0zaIzxskNTOR0vXhsS4LSo1oupmPn8rc0OkYpaG9n8b2PnqGxklM0NiyzEx9RQE7VppJi7B5ZDyLpAnRFRFZ/7XnvrMJ0fTP1QD/iXB95x+LyG9qmvYbQIuINGjhb9f/HtgDBIHfFJG/mH7v94B/Pv2rflNE/uTb1lLBUokGEaF1dIJDA06OOJyM+INkJyaw12ziXYuJyijUdd5z36Oxu5Gm7iZ6x3pJ1aeybfE26krq2LxgM3rdzP+he2pdZ2FheF5nXT3JJcUzvUVFiYkYJ6CXRWSDpmnXRGTtk8/FYr1IqJiqzBUBf5AH10foaLFz7+oQAX+IDFMypRvCyah5SeasuJirzH4iwrVe9+OxLgMeL2lJCexcZaG+vIA3y/JI0qu77M/juRNQTdP+PvALQAnQ9cRLmcCnIvKTsdjoi1LBUonE/ckp3rc7eX/ASdfkFMk6jV05Rt7NN/F2toHECK+kjnhHONZzjKbuJq4NXUOn6dicv5m60jq2L95OWuLsKIL33rmD+2gDHtuPzus07t1L6vr1qq5TmfdinIB+BrwBHAI+JHw66HdEZHks1ouEiqnKXOTzBrh3bYiOSw4e3BgmFBQMuSmUVVko22ghpzBjpreozBGhkHChZ4SG9j6OXe/HNeEnKy2R6jULqC8vYHNxNjp1l/07vUgCagRMhOtVfvWJl0a/7SjsTFHBUnleLn+AxkEXhwacXHCH6zpfzUrnXUs2VnMWBn1kXfa8AS9nH57F1m3j095PCUiA5abl1JXWUV1cjTnNHIVPETm/3YHHZgvXdd6581Vd5956VdepxJ0YJ6AbgVtAFvCvAAPw70Tki1isFwkVU5W5zjvup6d9kI4WB49uO5GQkF2QTlmVmaUbLGRZZseFX2X28wVCnO8cpKGtj5M37Uz4guQbUrCuW0B9RQFrC43qLvs3eOEjuE/8AjM/2jThQfS2FzkVLJVn4QuF+HB4lPfsI5wa8uAToSwtmYOWbA7km1iUEtnQ65CEaBlowdZt49T9U4z5xzCnmaktqcVaYmWZaVmUPklkQuPjX9V1fvFFuK5z3brwvE5V16nEsVgmoHOJiqnKfDLh8dF1JTzWpb/TDUDe4kzKqiwsrTKTma26nyrPZsIX4MwtB0fb+vj4rgN/UCjOTaeuvID68gKWmtVd9idFUgNaB/wHoABwAEuAWyKyOhYbfVEqWCrfRES47JngvYERGhwunIEguYl69luyOJifzbqM1IivXHU6Ox/Xddon7KTp09ixZAd1pXVstGwkQTfzM8skGGT88y9wNxxl9PQZVdepKE8R4zugp4B3RcQ1/dgE/IWI7I7FepFQMVWZr0ZHvOFk9JIdx/1RAPJLjJRtNFO63ky6UZ36UZ6Ne8LP8Rv9NLT38XnXMCGBVQsM1FcUUFdeQGFW6kxvccZFkoC2A9uA0yJSqWna28BPisjPxmarL0YFS+XreiamOGQf4X27k3uTPlJ1GntyjbyTn80WU2bEdZ2DE4M09zRj67Zxe+Q2CVoCrxW8Rl1pHVsXbSVVPzv+8Dy9rnMPxr31qq5TUb4mxgloq4hUftdzs4GKqUo8cA9O0NESTkZH+sbRNChcbqKsykJJZR4p6WoUh/JsHB4vtqvhZLTtoQuAqiUm9lYUULN2ATkZ8XlhI5IEtEVEqqYT0UoRCWma1i4i5bHa7ItQwVIBGPEHaHC4ODQwQotnAg14PSuDg/kmavOyyIywrnPCP8GZB2do6m7i8/7PCUmI1TmrqSutY3fRbnJTc6PzQSL01LrOt97CWF9PxttbVV2nonyDWHfBBfZ/WcKiadoS4PDXO83PBiqmKvFmuG+Mzulk1D04iU6nsWh1NmVVForLc0lKmfkO9crc8GB4gsarfRxt6+WufYwEncbrS3OpLy9g92oLmSnxc2EjkgT0NLCPcDOiXMLHcDeKyGsx2OcLU8Eyfk2FQpwe9nBowMnpYQ9+EVakp3DQYuKAxURBhHWdwVCQC/0XsHXbOP3gNJOBSQrSC8J1naVWSoyzY4b8U+s6y7+s66xBbzLN9BYVZdaLcQK6G/gfwMeABrwJfF9ETsRivUiomKrEKxFh6OEYHZfsdLTYGXNOkZCoo2hNDmUbLSxZk4M+aebLapS54faAh4a2Phra+3jknCRJr2P7CjP15QW8vcJMSuL8/ncpkgQ0HfASDpZ/CzAC/5+IDMdioy9KBcv4IiJcdI9zyO6kweHCHQhiTtKz3xKe17k6CnWdd0bu0NjVSHNPM4OTg2QmZrKraBd1pXVUmivRaTN/dPVH6jpPnUYmJ0lcuBBjfR2GujqSi1Vdp6I8j1gloJqm6YCDhMevvDL99BciMhTttaJBxVRFAQkJAz0eOlrsdF52MOnxkZicQHFFLmVVFhatzCZBzYVUnoGIcOWBi8b28IzRobEpMpL17FptYW9FIa+X5qBPmH//LkXcBXe2U8EyPnRNeDk04OSQ3clDr49UnY6aPCMHLSbeNGWij7Cu0z5up6mnCVu3jQ5nB3qdnjcL38RaYmXLoi0kJ8yOo6ve27e/quscHERnMPxoXadqB64oLyTGd0Bb5kqHXRVTFeVHhYIhejtcdF6y09U6yNREgOQ0PaWVeSzdaKFwmUnNhVSeSSAY4vPuYRra+jh+Y4BRb4Cc9CRq1i5gb0UB6xfPn3+XXmQO6CgghO98Mv3PTD8WETHEYqMvSgXL+WvIF+CIw8n7A05aRyfQAW+aMjmYb6Im10h6hHWd4/5xTt0/ha3bxsX+iwhCeV451hIre4r2kJWSFZXPESm/3R6u6zzawNTdu+G6zi1bwnWdW7eouk5FiYIYJ6C/AwwBfwmMf/m8mq2tKHNLMBDi4a0ROlrs9LQN4Z8KkmpIYukGM2VVFvKLDWjzJIFQYsvrD/Lx3fCM0dO37EwFQhRmpWItX0B9eQGrFhjm9E0FdQdUmVMmgyFODrs5NODkoxEPAYHVGSkctGSz32IiPzmyAm5/yM/nfZ9j67Lx0cOP8Aa9LMpchLXEirXEymLD4ih9ksiExsfxnDqFp6GB8c+/ABFV16koMRTjBLTnKU+LiMyOQvInqJiqKM8m4Aty79ownS127l0fJugPkZGdTNkGC2UbLeQuypjTCYTy8oxNBTh1c4CGtj4+6RgiEBKWmjOon54xWpSbPtNbfG4vcgc0Bfh7wFLgKvDHIhKI6S4joILl3BcS4QvXOIfsIzQ6XIwGQ+QnJXLAYuLdfBMrMyIbayIi3Bi+ga3bxrGeY4x4RzAmG9lTtAdriZXyvPJZESQkGGT8s89xNzQwelrVdSrKyxTLBHQuUTFVUZ6fbzJAz9UhOlrsPLwxQigkGM2plFVZKKuykF0w9xIIZWaMjPtovhYe63KxJ3xIZt1CI/Xl4RmjFkPKDO/w2bxIAvqXgB/4BKgG7ovIL8V0lxFQwXLuujvu5dBAeF5n75Sf9IRwXee7lmxeN2WQEGFS2DvWS1N3E41djdzz3CNJl8SWRVuwllh5s/BNEhNmRzvsL+s63bZGgoNDqq5TUWZAjO+ApgH/GFgsIt/XNK0MWC4itlisFwkVUxUlMt4xP91tg3S02Om940QEcgrTWVploazKjDEvbaa3qMwRfa5JbFfDnXSv93rQNNhcnE19eSE1a/PJSots2kMsvUgCek1E1k7/sx64OBtnlX1JBcu5ZdDn54jdxXv2Ea6OTqIDtmRn8m5+NrtzDaQnRFbX6fF5OHnvJI1djVxxXAFgg2UDdSV17CzaiSFpdpQw/7W6zsTEr+Z1qrpORXnpYpyA/iVwGfgpEVkznZB+JiIVsVgvEiqmKkr0jLun6LzsoLPFwUC3GwDzkkzKNlpYusFMhmlu3M1SZl7X4BgNbX00tvfRPTROYoLGW2V51FcUsGOlhfTk2TWv9kUS0CtPJpxffzzbqGA5+00EQ5wYcvPewAgfO0cJCqzNSOVgvon9ZhPmSOs6g34+6f0EW7eNsw/P4g/5KTIUUVdaR21JLYUZhdH5IBF6Wl1nank5hr31GKqrVV2nosygl9EFV9O0VhGpnH6uXUTKY7FeJFRMVZTY8AxPPk5GBx+MArBgqZFlGy2UrjeTmjl772Yps4eIcKPPQ0N7OBntd3tJTUxgxyoL9eUFbFmWR9IsGBH0IglokK+69GlAKjCB6oKrPIegCJ85xzhkd9I06GIsGKIwOVzX+U6+iRXpkdd1tg+2Y+u2cfzecdxTbrJTsqkurqaupI5VOatmxdFVCQSm53V+va6zHmN9HUlFRTO9RUVRiHkC+hmwHfhURNZrmlYK/LmIbIrFepFQMVVRYs9ln6CjxU5HiwNn/ziaTmPhChNlVWZKKvJITpsdJULK7BYKCS33nTS099J0tR/nhB9Dip7qNeGxLptLckiYoa7Mqguu8lLdGpvkkN3JB3Yn/VN+MhJ01JmzOGgx8WpWBroIk8IHngfYum3Yum08HH1IckIy2xZtw1pq5dWCV0nUzfwfbRFh6su6zibbV3Wd1dXhus7KylmRHCuK8pUYJ6C7gP8LWAWcBF4HfkZEPorFepFQMVVRXh4RYaRvnI5Ldjpa7HiGvOj0GotX5VC20UzR2lySUmbX0UpldvIHQ5zvHKKxrY8TNwYY9wUxZyZTu24BeysKKV9ofKnfPVUCqsScY8rPB3Ynh+xOro9Notfg7WwD71hM7M41kpoQ2VEAl9fF8XvHaexu5OrgVTQ0NuVvwlpqZcfiHWQkZUTpk0TGb7fjaWwM13V2dITrOrd8Wde5FV2SOl6jKLNVrLvgapqWA7xC+DTRFyIyFKu1IqFiqqLMDBHBcX+Ujkt2Oi87GHdNoU/UUbQul7IqC4vXZKNPjKxPhhIfvP4gZ245aGjv5aPbg/iCIZbkpFG3roC9FQWUWTJjvgeVgCoxMR4McmzQzft2Jx+PjBICKjLTOJhvYp/ZRG5SZFfspoJTfPzwYxq7Gzn/6DwBCbA0ayl1pXXUFNeQn54fnQ8SoeDYOKOnTuFuOMrEFxce13Ua9+0lc88eVdepKHNEjO+AnhGR7d/13GygYqqizDwJCf1dbjpa7HRdcTA56icxJYGSijzKqiwsXGkiIcKL+0p88Hj9nLg+QEN7H592DhESWJGfSX1FAXXrCliUHZuuzCoBVaImKMJ55xjvDYzQPORmIhhiYUoiBy3ZvGMxUZYeWTe3kIS4Yr+CrdvGyXsnGfWPkpeaR01xDXWldSzPXh6lTxKZcF3n57iPTtd1er0kLlqEsa5O1XUqyhwViwR0eq52GvARsJXw3U8AA3BcRFZEc71oUDFVUWaXUDBE7x0Xd1vsdLcO4psMkJKeSMn6cDJaUJaFbobq/JS5ZXB06vGM0cv3nQCsX5zF3opCatYuIC8zehMYVAKqROzm2CTvDYxw2O5iwOfHoNdRl5fFwfxsNhvTI67r7HZ3Y+uy0dTdRN94H6n6VHYs3oG11Mrm/M0k6Gb+yImIMHXrVrius7lJ1XUqyjwTowT0l4BfBgqAXr5KQD3A/xCR34/metGgYqqizF5Bf4gHt0bouGSn5+oQgakgaYYklm4wU7bRgqXYoL6LKM/k4cgEjVf7aGjr4/bAKDoNXl+ay3/8GxXkZkSeiKoEVHkh/VM+PrC7eH9ghJvjXvQabM8x8I4lm105BlIiPPoxNDnE8Z5wXefN4ZvoNB2vLniV2pJati/eTlri7BjU7B8YwN3YiKehgamOTlXXqSjzVIyP4P5DEfkvsfjd0aZiqqLMDX5fkPvXhum4ZOf+9WGCgRCZ2SksrTJTVmUhd1GGSkaVZ3LXPkpDWx8Xeob5i++/GpXOuSoBVZ7ZeCBI05CbQwMjfOIcQ4D1hjQOWkzsNZvIibCuczIwyUcPPqKxu5HP+z4nKEFWZq/EWmKlpqSG3NTc6HyQCAXHxhk9eRJ3QwMTF6brOisqMO6tV3WdijJPvYQmRK8BRcDjP6Qi8j9jtd6LUjFVUeaeqckAPe2DdFxy8OjWCKGQkGVJe5yMZi9In+ktKnHmm2Kq6umsABAICZ84Rzlkd9I86GYyFGJxShK/vMTCwXwTpWmR1XUGQ0Eu2S/R2NXI6funmQhMkJ+ez99Z/XeoK62jNKs0Sp8kMhIIMP7ZZ+G6zjNnwnWdixeT+wu/EK7rXLJkpreoKMocpWna/wJKgTYgOP20ALMuAVUUZe5JTtWz4pUFrHhlAd4xP12tDjpa7LQ036Ol6R45hRmUbTSzdIMFY15kc9gVJRIqAY1jIsL1sUkODTg57HDi8AUw6hN4N9/EQYuJjcb0iI9t3HXexdYdrut0TDjISMxgd9Fu6krr2GDZgE6b+e5tP1LX2dREcGgIndGIcd9ejPV7Sa2sUMdXFEWJhipglcyXo0eKosxaKRmJrH6zkNVvFjLunqLrioOOSw6+ONLNF0e6MRcZKKsKJ6MZpug1nVGUZxHTBFTTtD3A7wEJwA9F5He+9vrfAf4d4aYMAL8vIj+cfu3fALXTz/8rEfnLWO41nvR5fbw/Pa/zzriXRE1jR46Bg/kmduQYSNZFlhQ6Jhw0dzdj67Zxx3kHvabn9cLX+acb/ylbF24lRR/Z3dRoeVpdZ+bWLRjq68nYskXVdSqKEm3XgXygf6Y3oihK/Eg3JrPu7UWse3sRnuFJOi876Lhk59NDnXz6ficFS7MoqzJTut5Maqb67qPEXswSUE3TEoD/CuwEHgGXNE1rEJGbX/vRvxSRX/zae2uB9UAFkAyc1TTtmIh4YrXf+W4sEMQ26OLQgJNPXeG6zipDGr+zbCH15iyyEyP7V2HcP86ZB2do7GrkQv8FBGFd7jp+bdOvsad4D9kp2dH5IBF6al1nZSX5P/h1DHv2kJCVNdNbVBRl/soFbmqadhGY+vJJEan/rjdqmnYPGCV8dDfw9ZoaTdNMwB8TPuLrBb4nItefeD0BaAF6RcQa+UdRFGUuMuSksn7XEtbvWoLLPkFHi52OS3Y+/vO7nPvLDhauMFFWZaakIo/ktMSZ3q4yT8XyDugmoFNEugE0TfsLYC/w9QT0aVYB50QkAAQ0TbsK7AH+KlabnY8CIeGsc5RDAyOcGHIzGRKKUpP4P4ryOZhvoig1siMXgVCAL/q/oLGrkY8efsRkYJLCjEL+bvnfpba4liJjUXQ+SISeOq9T1XUqivLy/SDC978tIkPf8No/B9pEZL+maSsIXwDe/sTrvwTcIjx7VFEUhSxLGhtri6mqKWKkb5yOS3Y6Wux8+D9vc/Z/32HxqhzKNpopWptLUoqq2lOiJ5b/NhUCD594/AjY/JSfe0fTtLeAu8CviMhDoB34dU3T/j3h4d1v82yJa9wTEa6OTXJoel7nkD+ASZ/Aj+Vn825+NhsMaRHVM4oIt0Zu0djVyLGeYwx7hzEkGagrqcNaaqUib3bUS6q6TkVRZhsR+TiGv34V8DvT69zWNK1I0zSLiNg1TVtIuKTlN4F/HMM9KIoyB2maRk5hBjmFGWzeW4Lj/igdLXY6WxzcuzqEPlFH0bpcyqosLF6TjT5x5ueyK3PbTF/OaAT+XESmNE37u8CfAttE5KSmaRuBz4BB4HO+6hj4mKZp3we+D7B48eKXt+tZ6JHXxwd2J+8NjNAxMUWSprEz18BBi4ntOQaSIqzr7B/rp6mnCVuXjS53F4m6RLYs3IK1xMqbC98kKWF21Ayouk5FUWYbTdNGCXe7/WsvASIiz3JXUoCTmqYJ8Ici8kdfe70dOAB8omnaJmAJsBCwA/8J+D+BzO/Yp4qpihLnNE3DUmTAUmTg9QNL6e9y09Fip+uKg87LDhJTEiipyKOsysLClSYSIpwHr8SnmM0B1TTtVeAHIrJ7+vGvAYjIb3/DzycAIyJifMpr/xv4MxFp/qb14nFm2WggSON0XednrjEANhvTOZhvoi4vi6wI6zpHfaOcun+Kxq5GWuzh/9uuN6+ntqSW3UW7MSb/tf9XzYjg2Dijp07hPnr0R+o6jXvrVV2noijPJdZzQF+UpmmFItKraZoZOAX8QxE598TrBsJN/yqBa8AK4OcJJ6E1IvILmqZtBf7Js9SAxmNMVRTlm4WCIXrvuOhosdPdNsjURIDkdD2llWbKqswULDOh06mTZcqPmok5oJeAMk3Tigl3uf2bwE98bVMLROTLboD1hOtTvkxGs0RkWNO0dcA64GQM9zpn+EPC2REPh+xOTgy58YaEktRk/s/ifN6xmFgSYV2nP+jn075Paexq5OzDs/hCPooMRfxixS9SW1LLwsyF0fkgEXo8r7OhUdV1Kooy74lI7/T/dmiadphwn4VzT7zuAX4GQAvXF/QA3cDfAOo1TasBUgCDpml/JiI/+ZI/gqIoc5guQceiVdksWpXNlh9fzoNbI3RcsnP3kp2b5/tIMyRRusFMWZWF/GIDmkpGlW8RswRURAKapv0icILwGJY/FpEbmqb9BtAiIg3AP9I0rR4IACPA35l+eyLhY0QAHuAnpxsSxSURoW00XNd5xOFi2B8gOzGBv7kghx+zmKiMQl3ntaFrNHY1cvzecVxTLkzJJg4uO4i1xMqa3DWzol5S1XUqihKPNE1LB3QiMjr9z7uA3/jaz2QBEyLiA36OcCM/D/Br0//DE3dAVfKpKMoLS0jUUbwul+J1ufh9Qe5fG6azxc7NT/q49tEjMrKTWbrBQlmVmbzFmeq7mfLXxLQGdPrIbPPXnvsXT/zz48D4tZ/xEm6oENceen28PzDC+3YnHRNTJOs0duYYeDc/m7ezMyOu63w4+hBbt42m7ibue+6TnJDM1kVbqSup47XC10jUzY7226quU1GUOGcBDk9/idMD/1tEjmua9vcAROS/AyuBP52uEb0B/OxMbVZRlPiRmJTA0g1mlm4w45sM0HN1iI4WO1fPPKTt1AOMeamUbbSwtMpMTkHGTG9XmSViVgP6ss2XehVPIIjN4eKvBkb4wj0OwCvGdA7mZ1OXZ8QYYV2ny+vi5P2TNHY10jbYhobGxvyNWEus7Fiyg8ykb+1R8dJ807xOVdepKEoszdYa0JdtvsRURVFmhnfMT1druHFR7x0nIpBdkE5ZVTgZzTKnzfQWlZdgJmpAlWfkDwkfTdd1npyu6yxNTeafFedzIAp1nb6gj48ffYyty8a53nMEQgGWZi3ll9f/MrUlteSn50fpk0TmcV3n0QZGz5z5qq7zH/yDcF2n6sqoKIqiKIoy66X8/9u79+iqzvPO499H9yu66yBLCHQ5BoONhTlQ37ANToiJuSSxk2Y8nXE6ySSZlbRpVzxNJl1t02RlTZp2tclMM+3KOJm4K0njxI5rSRAwNji2a4IlATbGYOsCNmCQuErIgK7P/KGNrSjgGKSjc3T0+6zF4ux99jnneaWt9ejRfp/95qSyYFk5C5aV81Z3H+07jtHW3Mn2+g6213dQOjuX2kiI2sWl5BZmxDpcmWQqQGPkUn2d95UVce/MAhbljq+vc9iH2dm1k4b2Bp54/QnO9J+hOLOY++bdx+rq1cwrnBcXc/LdnfOvvEJPfT3d6zcwdPw4yRf6OtetI7NOfZ0iIiIiU1V2XjoLl1ewcHkFZ06ep625i7aWTp5/tI3nH22jrCaP2kiImhtKyM4b30UXmRpUgE6yC32dj3Seoi3o61xZlMdHZxawvHAGqeO8a1hHdweN7Y1s2L+Bw72HyUzJ5M7KO1lTvYalZUtJSYqPb/nAkSN0NzTS0zC6r/MO8tatJee22zD1dYqIiIgklNzCDBatrGTRykpOd52lrbmL1uZOnn34NZ772WuUzy0gHAlRvaiEjOz4uBeJTDz1gE6C7oFBGo918/MxfZ0fnVnI6gno6zxx7gQbD2ykob2BPSf2kGRJ3Fh2I6urV3Nn5Z1kpcbHPPuh3l7ObAr6Ol94QX2dIhJ31AM6Ip5zqogknhOHe2lr6aK1qZPuY+dISjJmLSgkHAlRtbCYtMz4uIAil0c9oJOsf3iYrSfP8POjJ9l8ooe+Yac2K50vB32dlePs6zw3eI6nDz5NQ3sDz7/5PEM+xLzCeTwQeYBVVasozSqdmIGMkw8O8ta///tIX+eWLerrFBEREZHfUFSeQ1F5DkvXVHH8YC+tTZ20tnTy+u4TJKcmMfvaIsKRELOvKyI1LTnW4co4qQCdQO7Ozp6z/LzzFI93neLkwBBFqSn8QVkR984spC43c9x9nU1Hm2hob+DJN57krYG3CGWFuH/B/ayuXk24IDyBo7lyl+zr/PCHyFu7Vn2dIiIiIvJbzIySylxKKnO56cM1HN3fQ2tzJ+0tXXTsPEZKejJVC4sJLwlReU0hyanjW5JQYkMF6AR4/Vwfjxw9xaOdp+g410dGkrGyOI97QxPT19l6qpWGjgY2dGyg82wn2anZvH/2+1ldvZolM5eQZPHxwzdw9Cjd9Q101z9Of1s7lppKjvo6RUREROQyWZJRVpNHWU0et340zJutp0eK0R0jU3XTMlOoXlRCOFJKxdwCkpLj4/dh+d1UgF6hUwODNHSd5pHOU7wQ9HXenJ/D52eXsroknxkp45secOzsMTbs30BDewOvnnqVFEvhlvJbeCDyAHfMuoOMlPi4ZfVF1+u84QZmfvWrzLjrA+rrFBEREZFxSUoyKuYWUDG3gNs+fjWH9p2itamTjh1d7Hv+CJm5qdQsKqU2UspVtfnYOC/+SHSpAL0MfcPDPHmih0eOnuLJEz0MuBPOSucr1WV8JFRARcb4rvCdHTjLU288RUN7A9uPbmfYh7mu+Dq+vPTLrKpaRWFG4QSNZHy0XqeIiIiIxEJychKzFxQxe0ERgwNDvLHnJK3Nnez79RFefuYw2Xlp1C4OUbuklNCcGWr7ikMqQH+HYXe2ne7lsc7TNBw7TffgEKVpKfyXimLuDRVwbc74+joHhwfZfmQ7jR2NPPXGU5wbPEd5Tjmfuu5TrK5eTVVe1QSO5sqpr1NERERE4klKajLVdSVU15Uw0DfEgd3HaW3qZPczh3hxy0FyizIIR0qpjYQorsjR76pxQgXoRbg7r7x1nkePnuLfuk7xZt8A2clJrCrO46MzC7m1IIfkcZzA7s6+k/to6Gjgl/t/yfFzx8lNy+Xu6rtZU72GRaWL4uYH5MJ6nRf6OkfW67ydGWvXknv77errFBEREZGYS01PJhwJEY6E6Ds3yP5dx2ht7mLn5oPs2PQG+aGst4vRwrLsWIc7rakAHeWtoSEePHicRztP8drZ86QYLC+cwV/WXMXK4jyyxtncfKT3COv3r6exvZH27nZSklK4veJ2Vlev5raK20hLjo9i7lLrdc786l9pvU4RERERiWvpmSnMu6mMeTeVca63n46dx2ht6qRpwwGa1h+gqDyH2kgp4UgpeSVZsQ532lEBOkqaJfG9Q8eoyUrnm1dXsKYkn6K08X2Jevp7ePL1J2nsaKTpaBMAi0oX8Rc3/gUfmPMB8tLzJiL0cdN6nSIiIiKSaDJz0liwrJwFy8p5q7uPtpYu2pq72P54B9sf76B0di61kRC1i0vJLYyPm3wmOhWgo6QmGdtuvGbcd7AdGBrgucPP0djRyNMHn6Z/uJ/ZM2bzubrPcXf13czKnTUxAY+Tu3N+zyt01z9Oz/oNDJ04ob5OEREREUlI2XnpXL9iFtevmMWZk+dpa+6itbmT5x9t4/lH2yirzSMcCVFzQylZM+JjZmIiUgE6xpUWn+7Oi8depLGjkU0HNnG67zQF6QXcc/U9rKlew7XF18ZNMTfw5ptBX2c9/e1ar1NEREREppfcwgwWraxk0cpKTnedfbsYfeanr/Hsw69RPreAcCRE9aISMrJTYx1uQlEBOk6v97xOY0cjje2NHOo9RHpyOstnLWd19WpuLr+Z1KT4OGEv2td5Yb3OVXeRnBcfU4FFRERERCZTfmkWkQ/OIfLBOZw43EtbSxetTZ1s/dE+fvWTV5k1v5BwpJSq60tIy1T5NF76Cl6BE+dOsPHARtZ3rGf38d0YxtKypXzm+s/wvsr3kZOWE+sQgTF9nU89hff1kTq7kuLPf468tWtJmxUfU4FFREREROJBUXkOReU5LF1TxfGDvbQ2ddLa0snrPzxBcsqrzL62iNpIKXMWFpOaNr62velKBeh7dHbgLFsObmF9x3q2vbmNIR9ibsFcvrj4i9xVdRczs2fGOkRgzHqdjevf7uvMv+cj5K1dS8b118fNVGARERERkXhkZpRU5lJSmctNH67h6P4e2po7aWvpomPXMVLSk6laWEw4Ukrl/CKSU8e3WsZ0ogL0XQwMD7DtzW2s71jP1oNbOTd4jrLsMj6x4BPcXX034YJwrEN829j1Oi01lZzly0f6OpctU1+niIiIiMgVsCSjrCaPspo8bvlomDdfO0VrSxcdO0aWd0nLTKG6rphwJET5vAKSx7l0Y6JTATrGsA+zq2sXG/ZvePtmQnnpeayuXs2qqlUsDi0myeLjpFJfp4iIiIjI5ElKMirmFVIxr5DbPn41h/adoq2pk46dx9i37SgZOanULCohHAlRFs4nKUkzD8dSATpKT38P99bfy5G3jpCRnMHyWcv5YPUHueWqW0hNjo+bCV10vU71dYqIiIiITKrk5CRmLyhi9oIibh8Y4o09J2lr6eLV7UfZ8+ybZOWlUXtDKeElIUJVM9QGF1ABOsqMtBncWXknC4oXsGLWCrJSs2IdEvDu63Xmr1unvk4RERERkRhKSU2muq6E6roSBvqGOLD7OG0tXex59k1e2nqInMJ0wotDhJeEKJ6VM61/d1cBOsaXln4p1iG87e31Ohvq3+nr1HqdIiIiIiJxKzU9mXAkRDgSov/cIPtfPEZrSxcvPnWQnZvfIK8kk/CSELWLSykqj4/VMyaTCtA4M9LXuYnux+s529Skvk4RERERkSkqLTOFuTeWMffGMs73DtCx6xitzZ20/PIAzRsOUHhVNuFIKbWLQ+SH4mP2ZbRFtQA1s7uA7wDJwIPu/s0xz38C+FvgcLDrH939weC5bwF3A0nAZuAL7u7RjDdWtF6niIiIiEhiy8hJZf6tVzH/1qs429NPW0sXbS2dbK/fz/b6/ZRU5lIbKaV2cSkzijJjHW7URK0ANbNk4LvA+4FDQJOZ1bv7K2MOfdjdPz/mtTcDtwALg13PAbcDT0cr3sl2qb5OrdcpIiIiIpLYsmaksXB5BQuXV3Dm5Hnad3TR2tTJtl+0s+0X7cysnkHt4pFputn56bEOd0JF8wroUqDN3TsAzOynwDpgbAF6MQ5kAGmAAalAZ5TinFRv93XW19PfrvU6RURERESms9zCDOreV0nd+yrpPnaW1uYu2pq7eO7nrTz3SCvl4XxqIyFqbighM2fq1wrRLEDLgYOjtg8Bv3eR4+4xs9uA14A/dfeD7r7NzLYCRxgpQP/R3feOfaGZfRr4NEBlZeVExz9hhs6c4cwTT4z0db7wAgCZixcz86//mhl3fUB9nSIiIiIiQl5JFpFVc4ismsPJI2/R1txJa3MXv/rJqzzz09eYNa+A2kgp1XUlpGfFxzKRlyvWNyFqAP7V3fvM7DPAQ8AKM6sFrgEqguM2m9kyd3929Ivd/XvA9wAikUhc9Yf6wAC9zz1Hd309vVu24n19pM2eTfEf/xF5a9aor1NERERERC6psCybpWuqWbK6iuOHet8uRrf8yz6e/smrVM4vIhwpZc7CYtIyYl3WvXfRjPQwMLrKquCdmw0B4O4nRm0+CHwrePxh4Nfu3gtgZr8EbgJ+owCNN+7O+d276a5voGfDBoZOniQ5P5/8e+4hb91aMhYuVF+niIiIiIi8Z2ZGyaxcSmblcuOHaug6cIbW5k7amjs58NJxUlKTmH1dEeFIiNnXFpGSlhzrkN9VNAvQJiBsZlWMFJ4fB+4bfYCZlbn7kWBzLXBhmu0bwH81s//JyBTc24FvRzHWcek/dIiehga6H6+n/8ABLC2NnBUryFu7hpxbb1Vfp4iIiIiIjJuZEaqaQahqBrfcU8uR9m5amztp39FF+45jpKYnU1VXTHhxiFnzC0lOSYp1yL8lagWouw+a2eeBTYwsw/IDd99jZl8Dmt29HvhjM1sLDAIngU8EL38EWAHsZuSGRBvdvSFasV6JodOn6dm4ie6GBs61tACQtWQJRZ/6JLkrV5I8Y0aMIxQRERERkURlScZV4XyuCuez7GNhDr92mtbmTjp2HuO17Z2kZ6VQXVdCOBKifG4+ScnxUYxaoiytGYlEvLm5OaqfMdzXR+/Tv6K7oZ7eXz0DAwOk1dSQt2YNeWtWk1peHtXPFxGR6DKzFnePxDqOWJuMnCoiItExNDjMwb0naW3uZP+u4wz0DZGZm0rNolLCS0opq8nHkqLfFnipnDp1ulVjxIeHOftCEz3rG+nZuInhM2dILimm8L77mLF2DRnz56uvU0RERERE4kJyShJzritmznXFDPYP8fqeE7Q2dbFv2xFefuYw2fnp1N5QSu2SUkJzZkx6LaMC9CLcnb69e+luaKRnwwYGOztJysoi5313krd2Hdk3/h6Woi+diIiIiIjEr5S0ZGoWlVKzqJT+84Mc2H2c1qYudj9ziBe3HCS3KINwpJTaSIjiipxJKUZVRY0yfPYsJx96iO6GRvo7OiAlhZxly8j70p+Rs3w5SZmZsQ5RRERERETksqVlpHD1kplcvWQmfWcH6Nh1nLaWTnZuPsiOTW+QH8qiNlJK3Z2zorrGqArQUSw1lZM/+jHpVVUU3n8/uSvfT0pBQazDEhERERERmTDpWalcc3MZ19xcxrnefjp2HqO1uZOXthxi8QdmR/WzVYCOYqmp1GzaRHJOdqxDERERERERibrMnDQWLCtnwbJy+s8PRn0d0fi4F28cUfEpIiIiIiLTUVpG9K9PqgAVERGJc2Z2wMx2m9kuM/ut9VHMrMDMHjOzl8zsBTO7Ntg/y8y2mtkrZrbHzL4w+dGLiIi8Q1NwRUREpobl7n78Es99Bdjl7h82s3nAd4E7gUHgi+6+w8xygRYz2+zur0xSzCIiIr9BV0BFRESmvvnAFgB33wfMMbOQux9x9x3B/jPAXqA8dmGKiMh0pwJUREQk/jnwhJm1mNmnL/L8i8BHAMxsKTAbqBh9gJnNARYB26MbqoiIyKVpCq6IiEj8u9XdD5tZKbDZzPa5+zOjnv8m8B0z2wXsBnYCQxeeNLMc4FHgT9y952IfEBS2nwaorKyMzihERGTa0xVQERGROOfuh4P/u4DHgKVjnu9x9z909zrgPwMlQAeAmaUyUnz+2N1/8S6f8T13j7h7pKSkJDoDERGRaU8FqIiISBwzs+zgBkKYWTawEnh5zDH5ZpYWbH4KeMbde8zMgO8De9397yczbhERkYvRFFwREZH4FgIeG6klSQF+4u4bzeyzAO7+z8A1wENm5sAe4JPBa28B/hOwO5ieC/AVd98wifGLiIi8TQWoiIhIHHP3DuD6i+z/51GPtwFXX+SY5wCLaoAiIiKXQVNwRUREREREZFKYu8c6hglhZseA1yfo7YqBSy32nag05ulBY54eNOYrN9vdp/0deCYwp+pcnB405ulBY54eJnLMF82pCVOATiQza3b3SKzjmEwa8/SgMU8PGrPEi+n4fdGYpweNeXrQmKNDU3BFRERERERkUqgAFRERERERkUmhAvTivhfrAGJAY54eNObpQWOWeDEdvy8a8/SgMU8PGnMUqAdUREREREREJoWugIqIiIiIiMikUAEqIiIiIiIik0IF6ChmdpeZvWpmbWb25VjHEy1m9gMz6zKzl0ftKzSzzWbWGvxfEMsYJ5KZzTKzrWb2ipntMbMvBPsTecwZZvaCmb0YjPmvg/1VZrY9OMcfNrO0WMc60cws2cx2mlljsD0dxnzAzHab2S4zaw72JfL5nW9mj5jZPjPba2Y3JfJ4pyLl08Q9F5VTp09OVT5N/HwKscmpKkADZpYMfBdYBcwH/oOZzY9tVFHzQ+CuMfu+DDzl7mHgqWA7UQwCX3T3+cCNwOeC720ij7kPWOHu1wN1wF1mdiPwN8A/uHstcAr4ZOxCjJovAHtHbU+HMQMsd/e6UWt3JfL5/R1go7vPA65n5PudyOOdUpRPE/5cVE6dPjlV+XREIp/bEIOcqgL0HUuBNnfvcPd+4KfAuhjHFBXu/gxwcszudcBDweOHgA9NZkzR5O5H3H1H8PgMIz9Y5ST2mN3de4PN1OCfAyuAR4L9CTVmADOrAO4GHgy2jQQf87tIyPPbzPKA24DvA7h7v7ufJkHHO0UpnybwuaicOj1yqvLpb0jYcztWOVUF6DvKgYOjtg8F+6aLkLsfCR4fBUKxDCZazGwOsAjYToKPOZg6swvoAjYD7cBpdx8MDknEc/zbwJ8Bw8F2EYk/Zhj5RegJM2sxs08H+xL1/K4CjgH/L5ga9qCZZZO4452KlE+nybmonJrQ+eXbKJ8mej6FGOVUFaDyW3xkbZ6EW5/HzHKAR4E/cfee0c8l4pjdfcjd64AKRq5IzIttRNFlZquBLndviXUsMXCru9/AyJTHz5nZbaOfTLDzOwW4Afgnd18EvMWYqUEJNl6ZwhL5XFROTdycqnw6bfIpxCinqgB9x2Fg1qjtimDfdNFpZmUAwf9dMY5nQplZKiOJ8sfu/otgd0KP+YJgKsVW4CYg38xSgqcS7Ry/BVhrZgcYmfK3gpG+hkQeMwDufjj4vwt4jJFfjhL1/D4EHHL37cH2I4wkz0Qd71SkfJrg56JyasLnVOXT6ZFPIUY5VQXoO5qAcHCHrzTg40B9jGOaTPXA/cHj+4HHYxjLhAr6Fr4P7HX3vx/1VCKPucTM8oPHmcD7GenT2QrcGxyWUGN29//h7hXuPoeRn98t7v4fSeAxA5hZtpnlXngMrAReJkHPb3c/Chw0s7nBrjuBV0jQ8U5RyqcJfC4qpyZ+TlU+nR75FGKXU23kqqoAmNkHGZnzngz8wN2/EduIosPM/hW4AygGOoG/Av4N+BlQCbwOfMzdx95YYUoys1uBZ4HdvNPL8BVGelYSdcwLGWkaT2bkD00/c/evmVk1I3/NLAR2An/g7n2xizQ6zOwO4AF3X53oYw7G91iwmQL8xN2/YWZFJO75XcfIjTHSgA7gDwnOcxJwvFOR8mninovKqdMrpyqfJnY+hdjkVBWgIiIiIiIiMik0BVdEREREREQmhQpQERERERERmRQqQEVERERERGRSqAAVERERERGRSaECVERERERERCaFClARERERERGZFCpARaLAzIrMbFfw76iZHQ4e95rZ/4nC5/3QzPab2Wcv83UbLiyufQWfWRes9Xclr80Mvh79ZlZ8Je8hIiKJT/n0d75W+VSmnJRYByCSiNz9BFAHYGZfBXrd/e+i/LH/3d0fuZwXuPsVJbxAHRABNlzuC939HFBnZgfG8fkiIpLglE9/5+cqn8qUoyugIpPIzO4ws8bg8VfN7CEze9bMXjezj5jZt8xst5ltNLPU4LjFZvYrM2sxs01mVvYePueHZvZPZvZrM+sIPvcHZrbXzH446rgDZlZsZnOC5/6vme0xsyfMLDM45mkziwSPi4PXpAFfA34/+Mvr75tZdvAZL5jZTjNbF7xmQbBvl5m9ZGbhCf/CiojItKJ8qnwqU5cKUJHYqgFWAGuBHwFb3f064Bxwd5A0/zdwr7svBn4AfOM9vncBcBPwp0A98A/AAuA6M6u7yPFh4LvuvgA4DdxzqTd2937gL4GH3b3O3R8G/hzY4u5LgeXA35pZNvBZ4DvuXsfIX3gPvcf4RURE3ivlU5EpQlNwRWLrl+4+YGa7gWRgY7B/NzAHmAtcC2w2M4JjjrzH925wdw/eu9PddwOY2Z7gvXeNOX6/u1/Y1xIcczlWAmvN7IFgOwOoBLYBf25mFcAv3L31Mt9XRETkd1E+FZkiVICKxFYfgLsPm9mAu3uwf5iRn08D9rj7TVf63sF79Y3af+G9L3U8wBCQGTwe5J3ZEhnv8nkG3OPur47Zv9fMtgN3AxvM7DPuvuU9xC8iIvJeKZ+KTBGagisS314FSszsJgAzSzWzBZMcwwFgcfD43lH7zwC5o7Y3AX9kwZ+WzWxR8H810OHu/wt4HFgY7YBFRETGUD4ViRMqQEXiWNAbci/wN2b2IiPTfG6e5DD+DvhvZrYTGH2L963A/As3TQC+DqQCLwXTkr4eHPcx4GUz28XI9Kd/mbTIRUREUD4ViSf2zgwFEZmqgjvxNV7ubeNjzUZuGx9x9+OxjkVERET5VCT6dAVUJDF0A1+3y1w4O1YsWDibkb/wDsc4HBERkQuUT0WiTFdARUREREREZFLoCqiIiIiIiIhMChWgIiIiIiIiMilUgIqIiIiIiMikUAEqIiIiIiIik+L/A0QPJCL+UbRzAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -314,11 +290,11 @@ { "data": { "text/plain": [ - "(
,\n", - " array([[,\n", - " ],\n", - " [,\n", - " ]],\n", + "(
,\n", + " array([[,\n", + " ],\n", + " [,\n", + " ]],\n", " dtype=object))" ] }, @@ -328,14 +304,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbA4d+ekpm0Se8JpFBDCxB6ryIfIoiIHdu19+699o5dLCh2sYsiNlRAEEXpBKSXECAhhfReZmZ/f0yIgJQASQbCep8nT+bs09YZMWfW7H3WVlprhBBCCCGEEEKIxmZwdwBCCCGEEEIIIU4PkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSJncH0FCCg4N1bGysu8MQQghxilm5cmWu1jrE3XGcrOT+KoQQ4ngc7v7abBLQ2NhYVqxY4e4whBBCnGKUUjvdHcPJTO6vQgghjsfh7q8yBFcIIYQQQgghRJOQBFQIIYQQQgghRJOQBFQIIYQQQgghRJNoNs+ACiGEaHg1NTWkp6dTWVnp7lBOmNVqJTo6GrPZ7O5QhBCiyTWnv+fi5HKs91dJQIUQQhxWeno6vr6+xMbGopRydzjHTWtNXl4e6enpxMXFuTscIYRocs3l77k4uRzP/VWG4AohhDisyspKgoKCTvkPK0opgoKC5Jt/IcRpq7n8PRcnl+O5v0oCKoQQ4oiay4eV5nIdQghxvOTvoGgMx/rvShJQIYQQQgghhBBNQhJQIYQQJ63du3czZMgQEhMT6dChAy+//HLduueee4527dqRlJREjx49+PDDD90YqRBCiKMxGo0kJSXRoUMHunTpwvPPP4/T6TziPnv27OHcc8896rGffPLJhgrzsN5//31uvPHGI26zcOFC/vzzz7rlN954o9ncnxrqPZYEVAghxEnLZDLx/PPPs2HDBpYsWcJrr73Ghg0beOONN5g7dy7Lli0jJSWF+fPno7V2d7hCCCGOwNPTk5SUFNavX8/cuXOZM2cOjzzyyBH3iYyMZObMmUc99vEkRw6H45j3OZqDE9Brr72WSy+9tMHPcyzsdvsRl+tLEtBGsG3TWp69eQTzZ3/q7lCEEEIAERERdOvWDQBfX1/at29PRkYGTz75JNOmTcNmswFgs9mYPHmyO0MVR7FzXZ58SSCEqBMaGsr06dN59dVX0VrjcDi466676NGjB507d+bNN98EIC0tjY4dOwKuHshzzjmHUaNG0bp1a+6++24A7r33XioqKkhKSuKiiy4C4KOPPqJnz54kJSVxzTXX1CWbPj4+3HHHHXTp0oW//vqLDz/8kM6dO9OlSxcuueQSAL777jt69epF165dGT58ONnZ2f+K/1DbpKWl8cYbb/Diiy+SlJTE77//zsMPP8xzzz0HQEpKCr1796Zz586MHz+egoICAAYPHsw999xDz549adOmDb///vsh37MpU6bQqVMnunTpwr333lu374oVKwDIzc0lNja27r0aO3YsQ4cOZdiwYf9aLisr44orrqBnz5507dqV2bNnH/N7fLxkGpb9ZJRX82H3LAq2/sYwLnB3OEIIcVL5/Yst5O4ubdBjBsf4MOC8NvXaNi0tjdWrV9OrVy9KSkqIj49v0FhE49m9MZ/vX13D8MsTadsr3N3hCCGAWc+v+ldbq+6hdBocTU21g+9fWfOv9e36RNC+bwQVpdX89Oa6A9aNv6PbMccQHx+Pw+EgJyeH2bNn4+fnx/Lly6mqqqJfv36MHDnyXwVuUlJSWL16NRaLhbZt23LTTTfx9NNP8+qrr5KSkgLAxo0b+fzzz1m8eDFms5nrr7+ejz/+mEsvvZSysjJ69erF888/z/r163n88cf5888/CQ4OJj8/H4D+/fuzZMkSlFK8/fbbPPPMMzz//PMHxHG4ba699lp8fHy48847AZg/f37dPpdeeimvvPIKgwYN4sEHH+SRRx7hpZdeAly9ksuWLePHH3/kkUceYd68eQecb86cOcyePZulS5fi5eVVF+uRrFq1irVr1xIYGMj7779/wPJ///tfhg4dyrvvvkthYSE9e/Zk+PDh9X6PT4QkoPtpG9cO++9dSC9v2A9YQgghTkxpaSkTJkyou1GLU0t0uwBGXtWBhG6h7g5FCHGS+uWXX1i7dm3dcNuioiK2bt1KmzYHfkk5bNgw/Pz8AEhMTGTnzp3ExMQcsM38+fNZuXIlPXr0AKCiooLQUNffH6PRyIQJEwD49ddfmThxIsHBwQAEBgYCrjlTJ02aRGZmJtXV1Yec37I+2+yvqKiIwsJCBg0aBMDkyZOZOHFi3fpzzjkHgO7du5OWlvav/efNm8fll1+Ol5fXAbEeyYgRIw7Ybv/lX375hW+//baud7ayspJdu3YB9XuPT4QkoPup0QYqMi8gwzLH3aEIIcRJp749lQ2tpqaGCRMmcNFFF9XdoH18fEhNTZVe0FOEUorWyWEAVJbVsHNdnvSECuFmR+qxNHsYj7je08fjuHo8D5aamorRaCQ0NBStNa+88gpnnHHGAdscnIxZLJa610aj8ZDPM2qtmTx5Mk899dS/1lmtVoxG4xHjuummm7j99tsZO3YsCxcu5OGHHz6ubY7Fvus63DUdjslkqivkdPBcnN7e3odd1lrz1Vdf0bZt2wO2Wbp0ab3e4xMhz4DuJ8LPCjgpVl7uDkUIIQSuG+SVV15J+/btuf322+va77vvPm644QaKi4sBVw9pc6ky2NytnruLBTM2UZxX4e5QhBButHfvXq699lpuvPFGlFKcccYZTJs2jZqaGgC2bNlCWVlZvY9nNpvr9h02bBgzZ84kJycHgPz8fHbu3PmvfYYOHcqXX35JXl5e3Xbg6q2MiooC4IMPPjjk+Q63ja+vLyUlJf/a3s/Pj4CAgLrnO2fMmFHXG1ofI0aM4L333qO8vPyAWGNjY1m5ciVAvYo17XPGGWfwyiuv1D2bv3r16qPus/97fCIkAd2PyWjAw1BKmcFXCiUIIcRJYPHixcyYMYNff/2VpKQkkpKS+PHHH7nuuusYMmQIPXr0oGPHjgwYMACD4dS+pSml3lVK5Sil1u3X9rBSKkMplVL7M3q/dfcppbYppTYrpc7Yr31Ubds2pdS9+7XHKaWW1rZ/rpTyaLqrg9TyKgB6jonjnLu6YQvybMrTCyFOAvuK2HTo0IHhw4czcuRIHnroIQCuuuoqEhMT6datGx07duSaa645pp63q6++ms6dO3PRRReRmJjI448/zsiRI+ncuTMjRowgMzPzX/t06NCB//3vfwwaNIguXbrUfdH58MMPM3HiRLp37143PPdgh9vmrLPOYtasWXVFiPb3wQcfcNddd9G5c2dSUlJ48MEH6319o0aNYuzYsSQnJ5OUlFQ3dPbOO+9k2rRpdO3aldzc3Hof74EHHqCmpobOnTvToUMHHnjggaPus/97fCJUc0m0kpOT9b4KUCci6f53KTGXs+zaCQSFRTRAZEIIcerauHEj7du3d3cYDeZQ16OUWqm1TnZTSPvHMRAoBT7UWnesbXsYKNVaP3fQtonAp0BPIBKYB+wbI70FGAGkA8uBC7TWG5RSXwBfa60/U0q9AazRWk87WlwNcX/9Pb+ESWu2807HWM4M8a9r37U+D3uNk/ikkBM6vhDi6Jrb33NxcjmW++up/XVxI/C3gLMmgBVrTzyZFUIIIepLa70IOHpZQ5ezgc+01lVa6x3ANlzJaE9gm9Y6VWtdDXwGnK1cZSSHAvvGZ30AjGvI+I+kl783d8SGMzDQt65Na83Kn3ay6uedaGfz+DJcCCHE0UkCepBImxfabmND2gZ3hyKEEEIA3KiUWls7RDegti0K2L3fNum1bYdrDwIKtdb2g9oPSSl1tVJqhVJqxd69e0/4AjwMBu6IC8fbaKTa6WRrWSVKKc68phNjb05CGdTRDyKEEKJZkAT0IB1aRAEGtudluTsUIYQQYhqQACQBmcDzR9y6gWitp2utk7XWySEhDTM8Vtc+y3XflnTOXr2Voho7Vh8zHp4mnA4nS79LpaKkukHOJYQQ4uQlCehB+rRLACD7oDLGQgghRFPTWmdrrR1aayfwFq4htgAZwP6TskXXth2uPQ/wV0qZDmpvEhXr17P9//6Pys2bubFFGI+1isLP/M9McAVZ5az+ZRfbV594b6sQQoiTmySgB2kd5g9Avrw1Qggh3EwptX81vPHAvgq53wLnK6UsSqk4oDWwDFfRoda1FW89gPOBb7Wr4uAC4Nza/ScDs5viGgBMwcGYQkJQJhNxXhYmhLsmQt9SVkmx3UFQlA8XPtSLjgMPOypYCCFEM2E6+ianl/DauUBLkPLwQgghmo5S6lNgMBCslEoHHgIGK6WSAA2kAdcAaK3X11a13QDYgRu01o7a49wI/AwYgXe11utrT3EP8JlS6nFgNfBO01wZmMPCaDljBq5aSKCdTsqdmvGrtzEwwIdpHWKxBbvuu4XZ5aSm7KXbGS2bKjwhhBBNSLr5DmI2GvBQZZQa/GQuUCGEOAlcccUVhIaG0rFjxwPan3vuOdq1a0dSUhI9evTgww8/dFOEDUNrfYHWOkJrbdZaR2ut39FaX6K17qS17qy1Hqu1ztxv+ye01gla67Za6zn7tf+otW5Tu+6J/dpTtdY9tdattNYTtdZVTXVtTu3k+9TvcWone6dOZc+dd+JlUDzbNpr/JkQesO2mvzJZPXcXZUVNFp4Qook88cQTdOjQgc6dO5OUlMTSpUsBeOmllygvLz/sfldddRUbNhxfgdBvv/2Wp59++rj2PdksXLiQP//8091hnDDpAT0EL2MFJdqf3OwsQsJlLlAhhHCnyy67jBtvvJFLL720ru2NN95g7ty5LFu2DJvNRnFxMbNmzXJjlOJIFqUv4r9//BdPkyddvb1Rnp7gcDB6vzlB15aU09nXi55j4+k4KApvP4v7AhZCNLi//vqL77//nlWrVmGxWMjNzaW62lV47KWXXuLiiy/Gy8vrX/s5HA7efvvt4z7v2LFjGTt27HHv31AcDgdGo/Gwy/WxcOFCfHx86Nu3b0OH16SkB/QQ/D00zppAVq5d7u5QhBDitDdw4EACAwMPaHvyySeZNm0aNpsNAJvNxuTJk90RnqiHQdGDeGvkWwxrMYzAK64g4vHHUWZz3UijzzPzGbliC0sLSzEYFD4BVgDW/55Bzs5id4YuhGggmZmZBAcHY7G4vlwKDg4mMjKSqVOnsmfPHoYMGcKQIUMA8PHx4Y477qBLly789ddfDB48mBUrVtStu+222+jQoQPDhg1j31RRgwcP5pZbbiEpKYmOHTuybNkyAN5//31uvPFGwPWF5s0330zfvn2Jj49n5kzX1MhOp5Prr7+edu3aMWLECEaPHl23bn/btm1j+PDhdOnShW7durF9+3YWLlzImDFj6ra58cYbef/99wGIjY3lnnvuoVu3bnz55Zf/Wv7ll1/o06cP3bp1Y+LEiZSWltbt99BDD9GtWzc6derEpk2bSEtL44033uDFF18kKSmJ33//vaH/EzUZ6QE9hEh/b9L2eLExbR2jcP83JkIIcTJ4YGs660orGvSYHX08eax19DHtU1xcTElJCfHx8Q0ay9EopY6WCSkgU2vdpiniOZUopegd0RuArLIsCioLaOUIIuPmWwi9607GJnWlxOGgh5933T7VlXZWzEkjpl0gQy+1uSt0IZqtWc+vol2fCNr3jcDhcPLtSykk9o+kba9waqodfP/KGjoOiqJ1chhVFXZ+fH0tnYdGk9A1lIrSan56cx1JI1oQ1zmYsqKqo45aGDlyJI8++iht2rRh+PDhTJo0iUGDBnHzzTfzwgsvsGDBAoKDgwEoKyujV69ePP/8v2eeKisrIzk5mRdffJFHH32URx55hFdffRWA8vJyUlJSWLRoEVdccQXr1q371/6ZmZn88ccfbNq0ibFjx3Luuefy9ddfk5aWxoYNG8jJyaF9+/ZcccUV/9r3oosu4t5772X8+PFUVlbidDrZvXv3v7bbX1BQEKtWrQLg3nvvrVvOzc3lnHPOYd68eXh7ezNlyhReeOEFHnzwQcCVoK9atYrXX3+d5557jrfffptrr70WHx8f7rzzziOe82QnPaCH0KFFNGAgNT/b3aEIIYQ4eWzXWtuO8OMLlLk7yJOZ1pq7fruLuxfdjTYb0XY7zrIyPI0GrooOwaAUhTV29lRW42E1cc6d3Rl8UVt3hy2EaAA+Pj6sXLmS6dOnExISwqRJk+p6Cg9mNBqZMGHCIdcZDAYmTZoEwMUXX8wff/xRt+6CCy4AXCNniouLKSws/Nf+48aNw2AwkJiYSHa267P+H3/8wcSJEzEYDISHh9f1xO6vpKSEjIwMxo8fD4DVaj3kkOGD7Yv14OUlS5awYcMG+vXrR1JSEh988AE7d+6s2+6cc84BoHv37qSlpR31PKcS6QE9hD5t43hryWqyZC5QIYSoc6w9lY3FZrPh4+NDampqU/eCHvrT0LFvc9pSSvFQn4dQSuHhH0TsF5+jDP98F6615oI1qTjRzOneBt9A11Dcqgo7a+btInl0LAajfHcuREMYf0e3utdGo+GAZbOH8YBli6fpgGVPH48Dluv7zLbRaGTw4MEMHjyYTp068cEHH3DZZZf9azur1Vrv5yP3Vdc++PWhloG6IcBAgxQcNZlMOJ3OuuXKg/IHb2/vQy5rrRkxYgSffvrpIY+7L06j0Yjdbj/hOE8m8lf8EFqF+gOQr+XtEUKIk9F9993HDTfcQHGxa1RsaWlpo1fB1VqnHtymlAo82jbiQK0CWpHgnwDA6r0paK0pnjOHjNtvB6eT/8ZH8EirKAz7fXDctT6PlXN2krVDngcV4lS1efNmtm7dWreckpJCy5au6ZZ8fX0pKSmp13GcTmfd85mffPIJ/fv3r1v3+eefA64eTT8/P/z8/Op1zH79+vHVV1/hdDrJzs5m4cKF/9rG19eX6OhovvnmGwCqqqooLy+nZcuWbNiwgaqqKgoLC5k/f369ztm7d28WL17Mtm3bANfQ4i1bthxxn2N5n05mkmEdQt1coOro3epCCCEa1wUXXECfPn3YvHkz0dHRvPPOO1x33XUMGTKEHj160LFjRwYMGIDB0Li3NKVUP6XURqXUeqVUL6XUXGC5Umq3UqpPo568GVqZvZLJP03mm23fYM/LpyYrG2d5OQMCfent7wPA1rJKtNa0Tg7jwkd6EdnK371BCyGOW2lpKZMnTyYxMZHOnTuzYcMGHn74YQCuvvpqRo0adcihrwfz9vZm2bJldOzYkV9//bXumUlw9Zx27dqVa6+9lnfeqf9UxxMmTCA6OprExEQuvvhiunXrdsjkdcaMGUydOpXOnTvTt29fsrKyiImJ4bzzzqNjx46cd955dO3atV7nDAkJ4f333+eCCy6gc+fO9OnTh02bNh1xn7POOotZs2ad8kWIVHOZ6zI5OVnvq47VENrc9xkmzy2sf+CBQ3bfCyHE6WDjxo20b9/e3WE0mENdj1JqpdY6+Wj7KqWWAVcCPsB3wDit9R9KqW7AK1rrfo0Rs7s1xP21uLKGF37Zwp1ntMXH4nr6R2vNN9u+YUz8GEwGE9jtKLO5bp+VRWWMXb2VF9u14LzwfzqaM7YUUFlWQ0LX0BOKSYjTTXP5e+7j41NXLXZ/gwcP5rnnniM5+ah/zg+ptLQUHx8f8vLy6NmzJ4sXLyY8PPxEwz1tHMv9VXpAD8PLWEEVAezNyjz6xkIIIU4HZq3131rrv4C9Wus/ALTWqwBP94Z2ctuwp5jPlu9iRVp+XZtSivGtx2M2mql0VJJekYWzspI9995HRUoKXW1e3BsXwZnB//RCaK1Z/sMOVvyYhtPZPL5AF0KcHMaMGUNSUhIDBgzggQcekOSzEUkRosPwt2iKqgNYsWYZoyPGuTscIYQQ7rf/l7b3HbTOoykDOdX0jg/i97uHEuJ76EIldy+6m60FW/l60AeUr16FtXMnPJOSuKllGAB2p2ZPVTUtPC2M+k8nUGAwyOgkIU5Hh+r9BA753OaxONH9Rf1JD+hhRNl80DU2Nu/a4O5QhBBCnBweUMpVHEBr/c2+RqVUAtC4FZCagX3J59LUPL5amX7Aums6X8O9Pe/FKziM+NmzCbzwwgPW371lN2ev3kaJ3YHVx4zV24zTqVnxYxoVJdVNdg1CCCFOnCSgh5HYMgowkponc4EKIYQArfW3Wuvy/duUUuFa6+1a62fcFdep5q3fd/DW76nUOP6ZtqBjcEcGxwwGIMuej9aayg0byHzkEbTTyVXRIdwVG46v6Z9pGQqzylkxJ42tK+Q+LYQQpxJJQA+jb1vX3HJZVTIXqBBCiMP60d0BnGpemNSFz6/pg/kQ83luzt/M2d+czaxtsyhfuYrShb9hz8kh0ceTCyODAEivrMahNYGR3lzwYE86D4lp6ksQQghxAiQBPYz4UBsABTIXqBBCiMOTBxGPkc1qxs/TjMOpmbZwO0XlNXXrWge05tIOlzIweiABF19E/LezMe9XCCSnqoaRKzYzJdVVINAvxDVdWnFuBat/2dW0FyKEEOK4SHZ1GBF+noCmWOYCFUIIt8rKyuL8888nISGB7t27M3r06LrJus8880zS09O56KKLaNu2LR07duSKK66gpqbmKEdtMG811Ymamy3ZJbwwdzPfrt1T12ZQBm7qehPBnsEAFJlr0FqTO/0typcvJ9Ri5oYWYVwQEXTAsTb+mcnKn9IoLahq0msQQtRfXl4eSUlJJCUlER4eTlRUVN1ydfWBz3K/9NJLlJeXH+ZI/xg8eDANOQ1jQ/nmm2/YsEHqyByOJKCH4WEy4KHKKDX40VzmShVCiFON1prx48czePBgtm/fzsqVK3nqqafIzs6moqKCvLw8oqOjueiii9i0aRN///03FRUVvP32240al1IqQCnVGViilOpWOxeoOAbtI2z8dOtALund8pDrn1r2FJfOuZTSor0UffMNxXN+AuCGFqHEebkKGu2scCWcPcbEcd5/e+ATcOgqu0II9wsKCiIlJYWUlBSuvfZabrvttrplD48DC4nXNwFtDA6H44jL9SEJ6JE1egKqlDIqpVYrpb4/xLqBSqlVSim7Uurc/dqHKKVS9vupVEqNa+xYD+aaC9SfnD0ZTX1qIYQQwIIFCzCbzVx77bV1bV26dGHAgAEsXLiQwYMHAzB69GiUUiil6NmzJ+np6Yc54olTSj0GrAWmAs/X/jzXaCdsxhJCfADYnV/O7JQD77WjYkcxrtU4fPxCaPnxR4Q9cP8B6z/IyGXQsk1sLK3AYFDYgl1TsW78M5Pdm/IRQpz85s+fT9euXenUqRNXXHEFVVVVTJ06lT179jBkyBCGDBkCwHXXXUdycjIdOnTgoYceOupxly9fTt++fenSpQs9e/akpKSE999/nxtvvLFumzFjxtRNveLj48Mdd9xBly5d+Ouvv/61/NFHH9GzZ0+SkpK45ppr6pJSHx8f/ve//9GlSxd69+5NdnY2f/75J99++y133XUXSUlJbN++veHfuFNcU8wDeguwEbAdYt0u4DLgzv0btdYLgCQApVQgsA34pTGDPJS6uUDXLuf/oqKb+vRCCHFSyXrySao2bmrQY1ratyP8v/897Pp169bRvXv3Q66bM2cO48aNO6CtpqaGGTNm8PLLLzdkmAc7D0jQWsv8Hw1k6vytzNuYzZB2odisZgC6hXWjW5irY7nc24gvYM/NJe+ddwm9/TbGhPizt9pOay9r3XEcdidr5u/CP9SLmHaB7rgUIU4Jv3+xhdzdh55P83gFx/gw4Lw29d6+srKSyy67jPnz59OmTRsuvfRSpk2bxq233soLL7zAggULCA52Dcd/4oknCAwMxOFwMGzYMNauXUvnzp0Pedzq6momTZrE559/To8ePSguLsbT0/OIsZSVldGrVy+ef/75fy1v3LiRKVOmsHjxYsxmM9dffz0ff/wxl156KWVlZfTu3ZsnnniCu+++m7feeov777+fsWPHMmbMGM4999wjnvd01ag9oEqpaOD/gEOOhdJap2mt1wLOQ62vdS4w5+DS900hys8bXeMnc4EKIcRJaPHixfTv3/+Atuuvv56BAwcyYMCAxjz1OsC/MU9wunl4bAe+vr5fXfK5v+yybCZ8O4GPNn5E2dKlFHz2GZWbtxDkYeLOuHBMBkWx3UFetR2jycDYW7oy4soObrgKIcSxcDgcxMXF0aaNK2mdPHkyixYtOuS2X3zxBd26daNr166sX7/+iMNbN2/eTEREBD169ADAZrNhMh25z81oNDJhwoRDLs+fP5+VK1fSo0cPkpKSmD9/PqmpqQB4eHgwZswYALp3705aWlr9Lv4019g9oC8BdwO+J3CM84EXDrVCKXU1cDVAixYtTuAUh9ahZTSL9xSwI1/mGBNCiCP1VDaWDh06MHPmzH+1p6amEhMTc8BzQ4888gh79+7lzTffbOywngJWK6XWAXVVb7TWYxv7xM2Vt8VEnMX1keT7tXvolxBMgLfrv22IVwhDY4aSHJaMX2J7vJJ7YA4LrdvXqTWTUrZjNSq+TmqFl821X02Vg7++3kbPs+Kx+vw7sRXidHYsPZXutmPHDp577jmWL19OQEAAl112GZWVxz5Noslkwun8p89r/2NYrVaMRuMhl7XWTJ48maeeeupfxzSbzSjlKoZuNBqx2+3HHNfpqNF6QJVSY4AcrfXKEzhGBNAJ+PlQ67XW07XWyVrr5JCQkOM9zWH1kblAhRDCrYYOHUpVVRXTp0+va1u7di0zZsxg1KhRdW1vv/02P//8M59++ikGQ6OXN/gAmAI8zT/PgD7f2Cc9HewprOD2L9bwxqJ/npkyKAP39bqP9kHtAagJdD03WvLrrxR9/wMGpbi5ZSi3tgyv+yAIkJ9ZxsYlWezZWtik1yCEqB+j0UhaWhrbtm0DYMaMGQwaNAgAX19fSkpKACguLsbb2xs/Pz+ys7OZM2fOEY/btm1bMjMzWb58OQAlJSXY7XZiY2NJSUnB6XSye/duli1bVq84hw0bxsyZM8nJyQEgPz+fnTt3HnGf/eMX/9aYPaD9gLFKqdGAFbAppT7SWl98DMc4D5iltW6yevr7iwt2ddwWaONRthRCCNEYlFLMmjWLW2+9lSlTpmC1WomNjcXpdDJt2rS67a699lpatmxJnz59ADjnnHN48MEHGyuscq311MY6+Oks0t+Tz67uTacov0Ou/3zT57yz7h0+OvMjKmbMQFdVYxt9JmeG+Ndts7mskjZeFsJibVzyWJ+6HlEhxMnFarXy3nvvMXHiROx2Oz169KgrOHf11VczatQoIiMjWbBgAV27dqVdu3bExMTQr1+/Ix7Xw8ODzz//nJtuuomKigo8PT2ZN28e/fr1Iy4ujsTERNq3b0+3bvUrXp6YmMjjjz/OyJEjcTqdmM1mXnvtNVq2PHQFb4Dzzz+f//znP0ydOpWZM2eSkJBQ/zfmNKCaYooRpdRg4E6t9ZjDrH8f+F5rPfOg9iXAfbVFiY4oOTlZN/Q8QFV2B23v/4lQz/kse+iQo4CFEKJZ27hxI+3bt3d3GAeoqqqiX79+xzX326GuRym1UmudXN9jKKVewDX09lsOHIK76pgDOgU0xv21Psqq7CzaspczO0XUtW3K38THGz/m/t73YyqrQplMGLz+ma97Y2kFI1ds4aFWkVwV/c/IqKzUIjYtyWLQ+W1QBoUQp6OT8e+5aD6O5f7aFFVwDw7kUWCF1vpbpVQPYBYQAJyllHpEa92hdrtYIAb4ralj3MdiMmJWpZTVzgW6/9AeIYQQ7mGxWNw98XjX2t+992vTwFA3xNJsvfnbdl5fuJ1fI/1oEeRKMtsFtuOxfo8BUOXtGp6rqqvJefllgi6/nHZBQfwvPoJzwwIOOFbmtiJ2b8ynorRGekSFEMLNmiQB1VovBBbWvn5wv/blwCHnN9FapwFRjR/dkXkbKyjRAWTu3k1kIxQ6EkIIcWrRWg9xdwyngxuGtqJ/65C65HN/NY4arvr5KhL8E7g3+EIKPvkUS3wC/hPO4doWrgJFDq1ZX1pBZ18vkkbE0GFgJB7WJv/eXQghxEEavVLDqc7fAs4af1b+7dZv24UQQpzElFL1e5hI1JvFZKRnnGsuz1W7CtiRW1a3zmw00zeqL30i+2Bt04aEn37Cf8I5B+z/QloWZ63ays6KKpRSeFhNaK358+ttrPl1d5NeixAni6Z49E6cfo7135UkoEfhmgvUn827ZS5QIYQQh3WduwNorqrsDm78eBUPf7v+gPbrulzHGbFnAFAd6O3adutWsp99Fq01V0aH8HSbaFp6Wur20RoKs8spyi6XD+LitGO1WsnLy5N/+6JBaa3Jy8vDarXWex8Zi3IUHWOjWbwnn7QCmQtUCCHEYV3v7gCaK4vJyPRLk4nwO/SHm5ScFG789UZeHPwicQtTKP72OwIvvZTAsDAuiAgCIK2iCofWJHhZOePqjhgMCqUU2qmlKJE4bURHR5Oens7evXvdHYpoZqxWK9HRh3yq8pAkAT2K3q3jePPPfHJkLlAhhBD7Ua7KdEOBC4ExQJh7I2q+OtZOy+J0ar5bu4ezOkdiqE0c4/3j6RvZl5a2lgRdlYz/hAmYAgPr9nVqzZXrdmBE8XNyG4xG1+CvsqIqfnhtLb3HxdMiMajpL0qIJmY2m4mLi3N3GELIENyjiQ1xzQWaL3OBCiGEW2RlZXH++eeTkJBA9+7dGT16NFu2bAHgzDPPJD09vW7bm2++GR8fn0aNRynVWyk1FdgJzAYWAe0a9aQCgF835XDLZyn8vD6rrs3mYeOZgc8Q6uUqPlTq5fpok/fuexT98AMGpXi5XQteSWx5QDV7o8mAycOAwSgfhYQQoinJX92j2Dfkp9jw7yp8QgghGpfWmvHjxzN48GC2b9/OypUreeqpp8jOzqaiooK8vLy6YT8rVqygoKCg0WJRSj2plNoKPAGsxTUdy16t9Qda68Y7sagzrH0oH17Rk1Edww+5/vkVz3PxnIspLsun9NdfKV3omsmto68Xbb1d9/PZOQUU2x1Yvc2Mv6Mb0W1dU7bUVDma5iKEEOI0JwnoUVjN++YCtclD20II0cQWLFiA2Wzm2muvrWvr0qULAwYMYOHChQwePBgAh8PBXXfdxTPPPNOY4VwFZAPTgBla6zxc8382GKXUu0qpHKXUuv3aApVSc5VSW2t/B9S2K6XUVKXUNqXU2v0r8SqlJtduv1UpNXm/9u5Kqb9r95mqTrEJrpVSDGwTglKKPYUV/LQu64D1w1sOZ3TcaHy9Aoh58w0in37qgPW7Kqq4ccMuXt+VU3c8gB1rc5lx/5/k7SltmgsRQojTmDwDWg/exkpKdAB7du0iqmVLd4cjhBBuMWXZFDblb2rQY7YLbMc9Pe857Pp169bRvXv3Q66bM2cO48aNA+DVV19l7NixRERENGh8B4kARgAXAC8ppRYAnkopk9ba3kDneB94Ffhwv7Z7gfla66eVUvfWLt8DnAm0rv3phSsx7qWUCgQeApJxJcgrlVLf1vbSTgP+AywFfgRGAXMaKPYm9dwvm/l1Uw59WwVhs5oBSApNIik0CYB8QyW+mDEWlbLnnnsJveN2WrRuzVdJCXS1eR9wrKBIb6LaBuATUP8qjkIIIY6P9IDWg2su0ACZC1QIIU4iixcvpn///uzZs4cvv/ySm266qVHPp7V2aK1/0lpPBhKAb4DFQIZS6pMGOsciIP+g5rOBD2pffwCM26/9Q+2yBPBXSkUAZwBztdb5tUnnXGBU7Tqb1nqJdg3p+XC/Y51yHj27I59f3acu+dxfhb2CS+ZcwqN/PYqjpISqrVup3u16Vrinvw9mg6LM7uC5HVnUODW2YE/OuKojFk8TDoeT0gIpPCiEEI1FekDrIcrfm7QMD7bsWgNMcHc4QgjhFkfqqWwsHTp0YObMmf9qT01NJSYmBg8PD1avXs22bdto1aoVAOXl5bRq1Ypt27Y1Wlxa6yrgK+ArpZSNxk3kwrTWmbWvs/in2m4UsHu/7dJr247Unn6I9n9RSl0NXA3QokWLEwy/cfhYTLQNdxUK/G7NHhIjbSSEuApQeZo8uSTxEjoGdcQjJJr4OT9i8PAAQDudKIOB+fklvLgzi34BPvTx/6dw1aLPtrBrXR7nP9gLi6d8TBJCiIYmPaD10DkuBjCSlrv7qNsKIYRoOEOHDqWqqorp06fXta1du5YZM2YwatQoAP7v//6PrKws0tLSSEtLw8vLq1GST6XUmEO1a62LtdYfHmmbhlLbc9noBQm01tO11sla6+SQkJDGPt0JKa2y8+j3G3h9wfYD2i9odwGdQjoBsLV0h2vbxYtJO28S9oICxob680fP9gcknwCdBkXT7YyWknwKIUQjkb+u9dC7dSzT/shlt73Q3aEIIcRpRSnFrFmzuPXWW5kyZQpWq5XY2FicTifTpk1r6nCeVUplAEcq3PMk8H0DnzdbKRWhtc6sHUabU9ueAcTst110bVsGMPig9oW17dGH2P6U5mMx8dnVvYny9zzk+pXZK7n8p8t5ov8TDDWHoYxGcLgq3sZ5WQBYWljK7JxCHm8dRXC0D8HRrqS0IKsMg9GAX8ihjy2EEOLYSQJaDzGBrmIFGV5WqsvL8fCSKVmEEKKpREZG8sUXX9QtV1VV0a9fP2JjYw+5fWlpo1UyzQZeOMo2WxvhvN8Ck4Gna3/P3q/9RqXUZ7iKEBXVJqk/A0/uq5YLjATu01rnK6WKlVK9cRUhuhR4pRHibXL7ht5W1jh47ufN3DS0NX5etYWJQpK4I/kOhrccjmeCJ16ffYpSCu10omtqMFgsLCks47f8EgrtDgLNro9G2qn5afo6TB5Gzr2nO6dYwWAhhDhpSQJaD9EBXhiUgyJDJHN/+o7/O2eSu0MSQojTlsViYcWKpi8Kp7Ue3NjnUEp9iqv3MlgplY6rmu3TwBdKqSuBncB5tZv/CIwGtgHlwOW1ceYrpR4Dltdu96jWel9ho+txVdr1xFX99pSsgHs4GzKLmbFkJ8mxAYzq6KqIbDQYmdzBNRNNtaOa5VnL6RfVj6zHHqN6Rxotpr/JzS1DuTI6GB+TsW7KNWVQDL88EaPRIMmnEEI0IElA68HDZKBVsAfbSuJYsuFnSUCFEEI0Cq31BYdZNewQ22rghsMc513g3UO0rwA6nkiMJ7NuLQJYdPcQwmyHnk7l7b/fZvra6Xw77lv8unbF6O8PZjNKqbrk86Fte7BrzROtowiJ8a3bd8Mfe4huF4AtWIbjCiHEiZAiRPU0qlMszspIdlTvdHcoQgghhDiMfcnn3+lF3PHFGmoczrp1l3e8nJeHvEwLWwv8xo4l9JZbUEpRk52Ds6oKAKXAeFCHZ0VpNX/O2kbKfClGKIQQJ0oS0HrqHR8MGNjmHYC9UuYHE0IIIU5m6/YUsSQ1j9zSqro2T5Mng2IGAbAxbyO/p/+Os7KSnRdfTOZ//4dSiocTInm0VRRKKfJr7Di1xtPHg3PvSabfua3cdTlCCNFsSAJaT11bBKBwkm+IY+G8n90djhBCCDdRSq1USt2wX5EfcRK6oGcLfrltIBF+nmitcToPnL3mpVUvMWX5FBweRoKvvYbAy1zPiSqlUEpRZncwdtVW/rfVVSjYP9QLo9FAdaWdH15fy95dJU1+TUII0RxIAlpPnh5GYgON2Mvj+H3tD+4ORwghhPtMAiKB5Uqpz5RSZyipUnNS8ra4Sl28OG8rd3y5Bsd+SegzA5/hzRFvYjaY8Z8wAc9OrjlDy5YsQVdX420ycl54IGeH+h9wzMqyGvIzyyjJk9FQQghxPCQBPQZndIzFWRFNWuX2o28shBCiQWRlZXH++eeTkJBA9+7dGT16NFu2bAHgzDPPJD09nfnz59OtWzeSkpLo378/27Zta7R4tNbbtNb/A9oAn+Aq9rNTKfWIUiqw0U4sjpuHUWE2qgMmcPWz+BHlEwXA9LXTWbh7IVWpqey64kry3nkHgJtbhtHb3zXFy9LCUmqcGluQJxc+2Iv4riEAVFfam/JShBDilCcJ6DHo0yoEMLLNy4azutrd4QghRLOntWb8+PEMHjyY7du3s3LlSp566imys7OpqKggLy+P6OhorrvuOj7++GNSUlK48MILefzxxxs1LqVUZ+B54FngK2AiUAz82qgnFsflxqGtmTKhMwaDoriy5oCe0CpHFQt2LWDh7oVY4uOJevklAi+77ID9d5RXcU7KNl7amQWA0ez6+JSVWsSM+/8iY3NBU12KEEKc8mQalmPQvaXrOdC9xjj+WDifgSPPdHdIQgjRrC1YsACz2cy1115b19alSxcA5syZw+DBgwHXc3vFxcUAFBUVERkZ2WgxKaVWAoXAO8C9Wut9VW6WKqX6NdqJxQlRSlFZ42DSm0tIivHnqXNcQ24tRgtvn/E2VqOreq7P8GEYlAFnVRW5r71O0NVXE+fjzbTEWIYG+h5wTL8QT6LaBBAQ4d3k1yOEEKcqSUCPgY/FRLSfgT3l8fy28jtJQIUQp5VHvlvPhj3FDXrMxEgbD53V4bDr161bR/fu3Q+5bs6cOYwbNw6At99+m9GjR+Pp6YnNZmPJkiUNGudBJmqtU/dvUErFaa13aK3PacwTixNjNRsZ0zmCTlF+B7R7m10JZFFVEdfPu57LOl5G3yw/8t57D8+kLvgOHcrY2mdBa5yap1IzuaFFKEG+Hoy62jWtqtaa3RvzaZEY1KTXJIQQpxoZgnuMRnRsiaMihtSKze4ORQghTmuLFy+mf//+ALz44ov8+OOPpKenc/nll3P77bc35qln1rNNnIRuGNKKgW1cz2+u3lVwwDyhBmXA0+SJl8kL7149afXTHHyHDgVcCSbA+tIK3s3Yy8L8A7+M2bw0i++mriF9U34TXYkQQpyapAf0GPVNCOHdxTvZ7umN027HYJK3UAhxejhST2Vj6dChAzNn/ju3S01NJSYmBg8PD/bu3cuaNWvo1asXAJMmTWLUqFENHotSqh3QAfBTSu3f02kDrA1+QtGoMgormDR9CVf2j+OeUe0A8PXw5a2Rb7GvqHG2TRMNVG7YQPaTTxH14gskhYTwZ6/2RFo9AHBqjUEp2vQMx2BURLWV2XmEEOJIpAf0GPWICwQ0WeZ4lv2+yN3hCCFEszZ06FCqqqqYPn16XdvatWuZMWNGXZIZEBBAUVFRXWXcuXPn0r59+8YIpy0wBvAHztrvpxvwn8Y4oWg8Uf6ePHtuZ64ZGH9A+77kc0PeBsZ+M5ZZW2fhKC7Gnp+Ptrsq3u5LPreUVTJk+WbWl1ZgMCja9AhHKUVpQRWLPtuCvcbRtBclhBCnAOm+O0Z+nmYifDU55bHMXz6b3kOGujskIYRotpRSzJo1i1tvvZUpU6ZgtVqJjY3F6XQybdo0AEwmE2+99RYTJkzAYDAQEBDAu+++2+CxaK1nA7OVUn201n81+AlEkzs7yTUNi8OpeX3BNi7tG4ufpxmANgFtuLLTlQxtMRTv1n7EfzsbZTKhtcaenY05PByDAk+DAW/jgd/np2/OZ/OSTDoOiiJQChQJIcQBJAE9DsMTWzBjmZ3Umu/dHYoQQjR7kZGRfPHFF3XLVVVV9OvXj9jY2Lq28ePHM378+EaNQyl1t9b6GeBCpdQFB6/XWt/cqAGIRrN+TxFTf91KmJ+V85JjADAZTNyQdAMADqeDb3d8x9iEsRR99Al7X36Z2Jlf0ioujjndW9f1mq4pKaeLrxftekfQIjEIL5urp7S60o6HVT5yCSEESAJ6XPq1DmXG0nR2WK1opxNlkJHMQgjRVCwWCytWrHDHqTfW/nbLyUXj6Rztzy+3DSIu2NVbqbWuSyoBfkv/jQf/fJAAawD9Ro7AXpCPR8uWwD9Ddn/YW8iV69L4pHM8Q4NsdcnntpU5LPp8C+Nu6yq9oUIIgTwDelx6xAYCkGGJZfWfMgpLCCFOB1rr72p/f7DvB5gBzKp9LU5h+5LP3fnlnP3aYjZnldStG9piKO+d8R6DYwZjDg8n9JZbUAYD9oICir7/AYARQTYebx3FoIPmCg2K8iamfQC2YKlTJYQQIAnocQnysRDs5cBeEc/cv752dzhCCNGo9k0/caprqOtQSn2ilLIppbyBdcAGpdRdDXJw4XZl1XaqapwY1IHtyeHJAGSUZnDVz1eRWZpJ3ttvk3n//dRk5+BhMHBVdAhGpSiqsfPA1nTK7A4Cwr0ZcXkHTGYj9moHW5ZnueGqhBDi5CEJ6HEamhiDozyWbcVr3R2KEEI0GqvVSl5e3imfhGqtycvLw2ptkF6oRK11MTAOmAPEAZc0xIGF+7ULtzHnlgG0DnP1ZG7LKT1gfU55Duml6ZTbywm99VZafvgB5rBQ4J8vOf4qLGPGnjw2llUesO+6RRnMfXcDuekHHlMIIU4n8gzocerfOowvVuxhh9X8r2dFhBCiuYiOjiY9PZ29e/e6O5QTZrVaiY6ObohDmZVSZlwJ6Kta6xql1KmdoYsDGGq7P+duyObqGSt4//KeDGoTAkDX0K58N/47zAZXtdyC+GA8gZIFC8h/732ip77MqBB/lvZOJMxSu02NnQCzic5DYwiO9iE42gcA7dSog7tahRCimZME9Dj1jnM9B5pubcmGFSvp0CPZzREJIUTDM5vNxMXFuTuMk82bQBqwBliklGoJFLs1ItEoBrQO5o4RbegTH3RA+77k8+e0n7n393t594x3SaiqQtvtKA9X8aF9yefSwlIuWpvKux3jGBjoS3Q71+eHvbtLmP/+RkZd3RH/MK8mvCohhHAvGYJ7nEJtVgKsDmoq4vlp0ZfuDkcIIUQT0VpP1VpHaa1Ha5edwBB3xyUantVs5MahrfEwGSirsjPlp01UVDvq1veJ7MPkxMl0DO6IbdQoWn40A4OXF7q6msoNGwBo7W3l7FB/kmwHJpkOuxOjSWG2Gpv0moQQwt0kAT0Bg9pF4iyPY2ueVMIVQojThVLKopS6UCn1X6XUg0qpB4H/ujsu0bj+3J7H27+nkrK7sK7N5mHj1u63YjaYKa8p57mVz1NWU8be118n7fwLqMnMJNBs4vl2LbCZjDi05pWd2ZTZHYTH+XHuvcl4+1nQWrNjbe4p/6y1EELUhySgJ2Bgm3C005M1wRZyd+52dzhCCCGaxmzgbMAOlO33I5qxEYlhLLhzMH0SXMNxS6vsB6xfkb2CTzd9yvrc9QRddhnhDz2EOSLigG2WFZXxVGomc/NcI7b31Y/YkZLLj6+vJe3vvCa4EiGEcK9GT0CVUkal1Gql1PeHWDdQKbVKKWVXSp170LoWSqlflFIblVIblFKxjR3rsepV+0xIvkrg489fdXM0Qgghmki01nqS1voZrfXz+37cHZRofNEBrmG0a3YX0n/Kryzellu3bmD0QOacM4eeET0x+vtjOGs4AFXbt7P7+huw5+fTx9+HBT3bMS4sAHAVJwKISwrmjP90JLaT63OF0yk9oUKI5qspekBvATYeZt0u4DLgk0Os+xB4VmvdHugJ5DRKdCcgyt+TVqHeOIo6sa5okbvDEUII0TT+VEp1cncQwn2iAjwZ2DqE9hG2A9rDvMMAWJe7jlEzR/F7+u9UpaZStWkTuroagLberqmAMiqr6b90E+9l5KKUolX3UJRSVJRU89ljy0j7OxchhGiOGjUBVUpFA/8HvH2o9VrrNK31WsB50H6JgElrPbd2u1KtdXljxnq8xneNxl4ZS0q4iZ3r17s7HCGEEI2vP7BSKbVZKbVWKfW3UkomhT6NBPtYmHpBVwK9PXA6NW8tSqWksqZufYxvDENbDHUVJxoxgvif5mAOD0drTcWaNQAEmU2MC/VnYIDPAcd22DVevma8/SxNek1CCNFUGrsH9CXgbg5KMOuhDVColPq6dvjus0qpf5WJU0pdrZRaoZRa4a456sZ2iQSgqLoLn8163S0xCCGEaFJnAq2BkcBZwJja3+I0tDajiKd/2sSPf2fWtflZ/Hi8/+MEWANwaidT/36djNIMSn7+hbRJ51O6eDFWo4En2kST4OXqEX1lZzYpxeX4BFg4+7auhLTwBWDz0izKiqrccm1CCNEYGi0BVUqNAXK01iuPY3cTMAC4E+gBxOMaqnsArfV0rXWy1jo5JCTkRMI9bjGBXnSJ9sNRlMTGqqVSwU4IIZq52mlXYoChta/LkaJ+p62kGH9+vHkA5yXHAFBYXn3A+t0lu/li8xcsSl+E79AhhD/0IN59+gDUfWYoqrHzfkYus7ILgH+KE1WUVPPbJ5tZ+dPOprocIYRodI15w+wHjFVKpQGfAUOVUh/Vc990IEVrnaq1tgPfAN0aJcoGML5rFI7qCFLC/Vj/1xJ3hyOEEKIRKaUeAu4B7qttMgP1vb+JZqhtuC9KKXJLqzjjpUW88dv2unUtbS2ZPW4257c9H+XhQflZA9EKHMXFpJ07kdLf/8DPbGJej7b8N8FVNXdnRRW51XY8fT04995kep8dD7gSUkfNsQ4qE0KIk0ujJaBa6/u01tFa61jgfOBXrfXF9dx9OeCvlNrXrTkU2NAIYTaI/+sciUJTXp7E1z+/4e5whBBCNK7xwFhqp17RWu8BfN0akTgp2KxmzuocyaA2B47KCvEKQSlFcXUxl/x4CU8ufRJnaSnKZMLo63oGNMBswmIwoLXmug07OS9lG06tCYzwxsNqQjs1c978m+9eSZHRVkKIU5qpqU+olHoUWKG1/lYp1QOYBQQAZymlHtFad9BaO5RSdwLzlWscykrgraaOtb5CfC30bRXMkrQkNhtfQDudKIOMxhJCiGaqWmutlVIaQCnl7e6AxMnBw2Tg/jGJdctv/Lad1qE+DGvvqo7ra/bl+qTr6RjcEXNgJC0+/QRD7eeFou9/wKtbV8yRkTzTJpqCGgcGpdBa4wSMBkXS8BY4HbpuiK4QQpyKmiRL0lov1FqPqX39oNb629rXy2t7Sb211kFa6w777TNXa91Za91Ja32Z1rr6cMc/GYxLisJhD2RNaDhLfvnZ3eEIIYRoPF8opd7ENVLnP8A8muBLUqVUWm3F3RSl1IratkCl1Fyl1Nba3wG17UopNVUpta22Um+3/Y4zuXb7rUqpyY0d9+mq2u7k+7V7+GV9dl2bUopz25xLu8B2ALy25jWmLJtCTXER2Y89xt7XXcUMO/p6MSDQ1an+eVY+Y1dtJa/aTnxSCK26hwKQunovv7y9jupKexNfmRBCnBjppmsgZ3QMx2SAqtKufP/He+4ORwghRCPRWj8HzAS+AtoCD2qtX2mi0w/RWidprZNrl+8F5mutWwPza5fhn0q9rYGrgWngSliBh4BeuObYfmhf0ioalofJwFfX9eXhsa7v1nfnl7M1u6Ruvdaa8ppyymrKMNv8iJ35JWF33QWAPTcXR1ERAF5GI6EeZgLMB04GUJJfSUl+JUazfJQTQpxa5K9WA7FZzQxvH4ajqDNbPLbgrD6pO2yFEEKcgNpROndpre/cN2e1m5wNfFD7+gNg3H7tH2qXJbh6ayOAM4C5Wut8rXUBMBcY1cQxnzYsJiOeHq7E8ZHvNnDh20uprHEArt7Qe3rew8N9HwYgN8DIN9nz0Fqz53//I+38C9B2O2ND/XmvUxwGpSixO7h5404yKqvpMiyG8Xd2x2g0YK92sOSb7VRXSG+oEOLkJwloAxqbFIXT6cv6oFh++Wamu8MRQgjRgJRSJUqp4sP9NEEIGvhFKbVSKXV1bVuY1nrfBJRZQFjt6yhg9377pte2Ha79ACfDPNvNzZPndOTlSUlYa3syi8prADAo10exTzd9yrMrniW3IpeQG28i5OabUCZXqQ7tcCWta0vKmbO3iKyq2n0NrmdB0zcXsOqXXeTsbIp/hkIIcWIkAW1AQ9uFYjUrqou7Mn/1p+4ORwghRAPSWvtqrW3Ay7iGukYB0bimZHmpCULor7Xuhmt47Q1KqYEHxadxJakn7GSYZ7u5CfW10rdVMABz/s5k4LML2Jj5T8J4W/fb+GT0J4R4heDZqSObuwajtab0999JHXs21bt30y/Al5V9O9Ddz1X36pvsAjIqq4ntFMzFj/Umul0gALs35FNVm+AKIcTJRhLQBmQ1GxndKRJncUc2+6ZTU17u7pCEEEI0vLFa69e11iVa62Kt9TRcQ14bldY6o/Z3Dq4K8j2B7NqhtdT+zqndPAOI2W/36Nq2w7WLJtQ23JfRnSJoFeqagkVrjUEZiPd3zfe5PGs5V/x8Bd+nfo8ymzFHRWIKc3Vu20yuHtQSu4N7tqTzfFqWqz3IE4CqCjtzpv/N4pnbmvqyhBCiXiQBbWBnJ0Xh1Fa2+Lblm0/fd3c4QgghGl6ZUuoipZRRKWVQSl1E7ZygjUUp5a2U8t33GhgJrAO+BfZVsp0MzK59/S1waW013N5AUe1Q3Z+BkUqpgNriQyNr20QTig/x4alzOmE2GqiscTDxjb+Yu+Gfarndw7rzeL/HGRU7Cu/evfF6+UmU2Yyurmb3dddTtmQJviYjvyS34b/xkQBkVFazsbQCi6eJcbd1pedZcQBUlFRTkl/plusUQohDkQS0gfVLCMLP04i9uAt/bv7S3eEIIYRoeBcC5wHZtT8Ta9saUxjwh1JqDbAM+EFr/RPwNDBCKbUVGF67DPAjkApswzVFzPUAWut84DFgee3Po7Vtwk0Ky2twaI3nflVuDcrA2a3Oxmw0U+Oo4aqfr+J/f/yPmpy9VO/cibO8AoCWnhaCPVzPiT6Vmsm41dsotTsIbWnDJ8AKwJ9fb+PzJ5bJdC1CiJOGcj0ycupLTk7WK1ascHcYADw4ex0z/tpOVOSjvNdnOq17dHd3SEIIIQ5DKbVyv2lNxEFOpvtrc6W1RilXQaEP/0qjvNrB1QPiMRgUTu1k1tZZhHuH0y+qH/aqSuxGsJqsFM76Bl1Tjf+551LgcLKmuJwhQTYAVheXk+TrSUl+Jdk7immd7BrCW5hdjn+Yl9uuVQhx+jjc/VV6QBvB2C6RaEzk6o588tXTR99BCCGEEKetfcknwKqdBSzfkc++JoMyMKHNBPpF9QNg5o5vOOfbc8ityKVk3jyK58wBpQg0m+qSz2WFpZy5cgtfZhdgC/KsSz6z04r5+OElbF6a1bQXKIQQ+5EEtBF0axFAi0AvnHl9WOW/ieKs7KPvJIQQQojT3kvnd+W1i7qhlCK3tIqHZq+joOyfucUT/BPoHdGbIGsQ0a++QugLz6KUwlFURPZTT2EvKKCrzZtn20ZzVog/AKnlVRTbHQRGetP77HjiOruq8ZbkV2KvdrjjMoUQpzFJQBuBwaC4vF8s1dUxbPWP4aO3pBdUCCGaC6VUXH3ahDhe++YKXZKax+crdpNf/k8C2iO8Bw/2eRClFCU1JZw173xmbZ1F2bJlFHz6GfasLMwGxSWRwXgaDWituXZDGhNTtmEyG+g+KhYPTxNaa+a+s55ZL6ymuTyOJYQ4NUgC2kgmJsfgYzHiyO3PsqoFOKqq3B2SEEKIhvHVIdpmNnkUotkb0zmSxfcMJSHENV3LK/O3HlAt1+600zO8J+0C22EbMYKYuXMwt20DQN4771Iybx5KKZ5tG8P98ZGunlKtWZDnmn+059h4uo9qiVIKrTVZqUVNf5FCiNOOJKCNxMdi4vweLagq7cSKFt58+8Hb7g5JCCHECVBKtVNKTQD8lFLn7PdzGWB1c3iimQrysQBQZXfw/dpMFm/LrVsXaA3kyQFP0j6oPQBv7P6UC3+8kKqqcoq+/57S3xYB0MXXiwGBvgD8sLeIC9am8mt+CdFtA4hPCgFgx5pcvnpmJWl/5yKEEI1JEtBGNLlvLAZloKawLwu2fSRDXIQQ4tTWFhgD+ANn7ffTDfiP+8ISpwOLycj3N/fn7lFtAdicVcIdX6xhb8k/I6w6BXeiX2Q/LBYv4r78AsdNriliq3bsIP3W26jJzmZ0sB9vdmjJkNqEdGF+MRtLK2jRIZDBF7WlRWIgAJnbCinaW97EVymEOB1IAtqIYgK9OKNDOPaC3iyJrSRl3lx3hySEEOI4aa1na60vB8ZorS/f7+dmrfWf7o5PNH9mowGv2nk/16YX8vvWvXgYXR/ltNaMjB3Jzd1uBiCjIouzfj6Xzzd9TtWWrZSvWIEymTAZFGODbBhqh90+uHUP925Jx2Q20mFAFIba50Z/+3Qzv7y93m3XKoRovkzuDqC5u7J/HHPWZVFU3Z2Zv7xE1xEj3R2SEEKIE7NNKfVfIJb97qNa6yvcFpE47UxMjmFsUiQWk6tg0VUfrKBztD+3DG8NuIbnXt/legbHDMbWLozCHq3ZZSwiniAybr0VU3gE4f/7L7O7tSKvxg5Amd3BPVvSubllGGfdnERFiav4kb3GweIvt9FleAz+oTKHqBDixBw2AVVKTa3H/sVa6/sbMJ5mp3vLADpH+bExeyDLwp8le/t2whIS3B2WEEKI4zcb+B2YB8gcFsJt9iWf1XYnwT4WbJ6uj3Vaa0orDfyn8z8jw19f/yaLdi9i3rlzMce0wBTsmoolwGzCJycbvKJYX1rB3LxirogKxtvPG4uvBwB7d5WyaUkmCd1D8Q/1Qmt9wNylQghxLNThnktUSu0EHjzK/vdqrds3eFTHITk5Wa9YscLdYRzS7JQMbvksBc+Y97gi08Zdj7/r7pCEEELUUkqt1FonH8P2KVrrpEYM6aRyMt9fxaEt2JzDNR+u5NOre9G9peuZzryKPDbmb6R/VH8AXln9CgOiBtB6RzW7LruMmDem4TNoEGUOB95GV2L7xPY9LC8q48ukVjgq7Fi8TCilWPHjDjK3FzH6us4YTfI0lxDi0A53fz3SENwXtdYfHOWgAScc2WngzI4RPOG7kcK9A1hpfoeq4hIsNl93hyWEEOL4fK+UGq21/tHdgQhxKK1DfbiifxydovwB13yiPhZTXfJZWFnIV1u+wsvkRcdW4wi86QYsPWo/Iy5fTnFJCb7DhhHraaHS6cRsUJi9zfxRUEI3mzcWLzNefpa65DMrtYiQGF+MZklGhRBHd6S/FIuPtrPW+qWGC6X58jAZmNw3lurKVqwND+WLt15wd0hCCCGO3y24ktBKpVSxUqpEKVXs7qCE2Cc6wIt7z2yHR22C+OzPm7nzyzV11fj9rf78NOEnLmx/IaagILadncRZcyaQWpRKwSefkvPcc6A1F0UG8WhCJAC51XYuWJPKlB2ZdBoczbBLXQPgKstqmP3iahZ/vc09FyuEOOUcKQGdrpTaqpR6TCmV2GQRNVMX9myBxWTAntefP/Z+g6Oiwt0hCSGEOA5aa1+ttUFrbdVa22qXbe6OS4jDee/yHky9oCtKKartTsa/vpiFmwrwNHkCYDVZaRPQhhifGKJeeJ6C529nR+lOtMPBjnHjyf/oY4LMRr5MSuCqaNe8oRtLK7hkbSqZysHo6zrTeXA0AIU55fw0fZ1M4SKEOKzDJqBa66645juzAzOVUmuUUvcqpWKbKrjmJMDbgwndo6kp6cafCR7MnPacu0MSQghxHJTLxUqpB2qXY5RSPd0dlxCHY7OaaRPmevQnr6wKi8mA1ex6zrOovAaLvRVTh07FbDSjTCZe2vkhd/12F47SUqyJiZjCQlFK0cOk8Pt1Hrq6mt2V1Wwqq8TPbCImMZACXyN7q2soyCpnz9YCTB6u45fkV1JZVuO2axdCnHyOOFhfa71Za/2I1joRuBTwA+YrpY46PFf82xX9YtHaiL2gL3P3foW9tNTdIQkhhDh2rwN9gAtrl0uB19wXjhD1F+HnyWdX92Fw21AAPl+xizGv/MGO3LK6baYOncrj/R7H5OdHyJOPMrn8dWZtnUXJL7+QcfsdVG7axMhgP5Z0b0Wg2VVO5KFtGYxasYXYTkFc9nQ/vP0sAPz51TY+e2wZ2nnoopdCiNNPvZ4WV0oZgFAgDPAGchozqOaqVagvIxLDqC4cxNJWZj577Wl3hySEEOLY9dJa3wBUAmitCwAP94YkxPGZlNyCVy7oSlywNwBP/biRJ79Lp11gOwBKqktI8E8g2DMYv3Fn4/fOq3xn2URJdQl5r7zKjgnnomtqeCAhkqfbRKOUQhkU41dv5c3dOXQb1ZL+E1ujDK5pW36ctpa1C3a77XqFEO53xARUKTVAKfU6kA7ciWves7Za6/FNEVxzdPuINjicZuy5g5hX8h3VxVK3QgghTjE1SikjoAGUUiGA070hCXF8/LzMnNUlsm7ZYjLg5WGsm+dzzpoSrmzzIAOiB6AMBpaGFvPYksfIKsvC0qY1Nb06U0ENrb2tdJ31BSXz5lHh1IR7mPE1GQmJ8SU6KZjnd2SRVlKB1rBvBkCnw0nKvF2UFlS549KFEG5y2ARUKbUbeArYACRprc/QWr+ntS5qsuiaofYRNsZ0jqC6cADL4zz55JXH3B2SEEKIYzMVmAWEKqWeAP4AnnRvSEI0jNtHtuWxcR0BKK2y89j3G/huzR4AtNZ0sg3n67Ff0zqgNX5nncWswRZGfjWSquoKir76mrK/luBlNDCtQyxnbVqLs6yMlJJynkvLYkd1Df93fWei+0ewpaySnJ0lLJ65jZydri/jq8prKM6VIo1CNHdH6gHtr7Xur7V+VWstQ24b0G0j2qAx4cgZwrzqn6nKL3B3SEIIIeqh9pGUHcDduL6kzQTGaa2/dGtgQjQCH4uJJfcN48r+cQCsTS9i+IuL2J7hA4Dd4WRk7BnclHQTFg9P4n/8gef65jFl2RSqUneQft31FH71Fb39fUhJbk0f5QDgi6x8Bi7bRE2kJ5c83oeAtn44tWbLsmxm3P8XhTmuCrr2akfd1DFCiObjSAno5UfbWSn1cMOFcvpICPHhnG7RVBf3ZXWMLzNefdjdIQkhhKgHrbUTeE1rvUlr/Vrtl7Qb3R2XEI3F38uDIB9XQaEWgV48fFYiveKCAPjh70yufTuXfmFnAaAMBkJ8wwm0BuIR25IWH37AC9Hr+D39d7xWLGNH//5UpKRwTlgAr7WJIsbqgS3Yk6d2ZdNv6UZadApi0IVt8QtxTQ/z1zfb+eThpTilgJEQzYrpCOuuOsrE2go4H3i4QSM6TdwyrDXfrM7AmT2M+XoWF+3NxTMk2N1hCSGEOLr5SqkJwNdaumfEaSTA24PL+sXVLYfbrAxoHUKknythnLZwO6m7h3HXRd1RBkV159as/nE9nUq70yuhD97XXcUrlT9xbqWNwXMXsf2zz4n7aibDg2y08vTAL8gTv4FRXLBmOy09LfynlT9WbzOG2gJGP01fh5efBwMntXHL9QshGsaRekDfAnyP8ONTu404DjGBXlzQswWVJT1YGxnIB6884O6QhBBC1M81wJdAlVKqWClVcpQvbIVolnrFB/HcxC51CaLRAB4mY93ya/MyGe77AhPaTMCjRQvyJw3h861fklOeg0dMDAX9Evlwx5f08HEy9v3p7L7uerTWdPDxpJWXhYRuoSSPjmXosk28k74XH38L3n6ugtNaa75+biV/L0x32/ULIY7PYXtAtdaPNGUgp6Mbh7biixW7cWQPZ57HF1ycmYlPRIS7wxJCCHEYtc+AjtJay3zYQhzk6oEJByznl1VT7TBhMrg+br4118nNrT4nOSwWU4SJnTGFPP/Xw5wZdybmmBjW2YpYuPEj7mwzkZzrbiYrLhafu+8h0ceTEJOR/ue1pqDGTvc/1/NQbARevh4YPQxorampcjDz6RX0PjuB+K4hdc+O7qvmK4Q4edRrHlDROMJsVi7t05LK0q5sCA3h/Vf+6+6QhBBCHEHtM6CvujsOIU4FL0xK4tGzXRV1axxOCiuqqbEbMBlMVNudfDg3nP91mEmYdxiBl01m3YAYXk95HZPBhCUhgV+jCpmxfjpT28XQ/sJzyX1zOqUOJz38vImuLmPUNZ2o7OBHh8XrWLK3BL9QL5yeBkrsDvIySvnwv3+Sua0QAHuNA3uNw43vhhBiH0lA3ezaQQl4eZhwZp/BL37Lyf77b3eHJIQQ4sjmK6UmKOlaEaLezEYDH1/Vm6sGxANQUF6NzWoi2MsfgJ155bz3fXv+2/FjTAYTfnfcydoW/izavQiqq7GNPIO3g9fx9YZpvBrph+eokez94AOsRgOjfD2J37mRMycnsNJP0eb3v9lZXUN4vB95XooVRWVsTdnLW7cuIj+zDICS/Epy00ukwJEQbiAJqJsF+Vi4sn8clWUd2eYfydvv3CElx4UQ4uQmz4AKcYLCbFZmXNmL4YlhdW1ndgynfXgoAH9tz+Ozn7twS+JUDFYr1VffxGbiyC8vQxkMhN13L9d7f81Xfz/HE5RRctWVLF/4GfGWKh7ygphfvmDo2BC+ryzn7NVb8Qv3ImlEC5YZa3hzdw4b/9rD508sx17t6hXdvSmfdYsy0JKQCtHojpqAKqXaKKXmK6XW1S53Vkrd3/ihnT6uGhCPzWpCZ57Nj633sHr2V+4OSQghxGForX211gattYfW2la7bHN3XEKcymKDvXl6QmdahbrmGG0V6sMDYxLpGBUAwNwN2SxY3oYbutyO0c+PlT1GUZl/Ie0DkvBIaEXwtGnckP8Gv277kAuLcsh96WVe+XsavSwZfFWaRfW915Pc05P5BSV8umkHbdpaOPOajjyxO5ur1u1g28oclv+wg9TKKnKqalgyezs/v72uLr7ivAqqymvc8t4I0dzUpwf0LeA+oAZAa70W1/QrooH4eZq5ZXgbKipjyXd2YMbvU3BWVro7LCGEEIeglBp4qB93xyVEcxIT6MWV/ePwsbgKGF3QswXf3NCPkNo5SfcUVlBUGMo5bcZg9PHmrYpQKrc/wrhW47GNHMmuT77m3c3byCzeQgcfKyUmO8MXnc9Qj3V8smMtaeOGs8NzOd6U0m19Ch2LFzDp3m7csWk3V/+9HZPZgNnDyMtp2XyamceCGZv49uUUSuwOtNas+XU3m5dm1cXrcDjd8j4JcSo60jyg+3hprZcd9KiLvZHiOW1d2qclny3bxc6sc/i1/VN8+9qTjLvjUXeHJYQQ4t/u2u+1FegJrASGuiccIZo/Tw8jSTH+dcuT+8YyuW9s3XKfhGD8PD1oG9gKgG83lhNcfiUT2vTF0t7Ce3u90BmbifCOIHBQAj/g4IVfp/Hq/91Gp93bWTPvCz6JW84F7W6g9duzYfWf+L7zFD/vqmbYlq2Mt1RjGDaSocs309/Xk75Lc7GFePJjGCT5erFn6gYiWvnR44I2+BgN/L0wncBIH6LbunpwnQ4nBqM8+SYE1C8BzVVKJQAaQCl1LpBZ3xMopYzACiBDaz3moHUDgZeAzsD5WuuZ+61zAPsq8uzSWo+t7zlPRWajgUfGduDCt0sx5Q/my/JZjMy4Fq+oSHeHJoQQYj9a67P2X1ZKxeC6lwkh3GRI21CGtA2tW35+YhK5pVVYjK4e0zahQYT59iAptB2EwvfzsmmtWpEclozfncOY7pvE7s1/c28vX8IH9OcpfxvffP0kMyc9ju2DBfxelcr3MT9wQdt7GPzM01SST/65l/F6WjmP/L2aRIPGq/142v/xN3d6KXy+zKT10Hie1yWMC/Fn86Or6TQ8Gu/BEbS0evD3NzuI6xxMVNsAtNYU5VTgHWDB7GF011soRJOpTwJ6AzAdaKeUygB2ABcfwzluATYCh3o+ZhdwGXDnIdZVaK2TjuE8p7y+rYIZ3Smcn9YNJSVhBe9MvYObpnzq7rCEEEIcWTrQ3t1BCCH+4elhJCbQq2752kEHzlE67aJkKmoc+Flcz5x2bxnNcK842gQkwBlt+HWlokdIF+L94rG+/DLPPvkzXtvTeG14DOrMUVy6OZctcz7nr6teoOTdV3mphT+/r5nNHYNfZfhtd7C+nQe/hHXg19yzGf/qC8R4W9kZPIJblxfzRtoGKn6roDpwBJcUZXO3t4XUl7fR6fw2pCRYGebtzcZ3N9NxVAssrW0EOBU7l+XQokMg/qFeOBxOKktr8PQxS6+qOCUdNQHVWqcCw5VS3oBBa11S34MrpaKB/wOeAG4/xLHTareTgfO1/vd/ify6MQfnnrP5NvwDxi39i5hefdwdlhBCiFpKqVeoHRWEq5ZCErDKbQEdI6XUKOBlwAi8rbV+2s0hCdHkIv09D1i+Z1S7A5YX3DmEarsTT5MHADcNTSQuuAcB1gD0+HFUv7yIi1p3JtAzkID3P+Db//1IN2M3bomPo+jGGxjzaxX+q34n5eYupH1t5GKvVhSvepd3J75K1AO38NjoIWTuvoeEbk8SfuVFLBrZlVXlgXyfOoHebzzD3ugwvsrvwdQliXzx20+sSzPhe9UQpqd68lT6bjb+UEbCjb351dfBRO3B5q920e7cePYEmOhgN5C+JIf4fuEY/S1YKhwUZJQSHueHh6cJR40Th8OJ2WLkdJxNqsbhun6nBo3GbrdTU1OJ1azQDjuF5VXUmD2wGj2hopqK8mIq7aX4WxVOp4OsMjtOmx++HgFQWEppST5ljgICrBqlNXtKNM6gELxMwZCVR1HpXioNRYT6asxodhWa0MGhWMwRGDIyKSzNwWEuJNTmxApsL/KEkDCsHi0w7thBQWUuWAsI83XiqWB7sR+OwGCs1ng8tm0l356D2bOIYF8HntpAamkA9sBgPD3bYNm8jr2OXDx9CgnytuOpjWyvCMEREILFoxVeG9eQY8jHx7eAAK8arA4zLSJ7ccaIEY363+CoCahS6vaDlgGKgJVa65Sj7P4ScDfgexyxWZVSK3A9b/q01vqbQ8R2NXA1QIsWLY7jFCefKH9Prh/SihfmOkkPbsX0T+/m0R6/oQzyDZcQQpwkVuz32g58qrVe7K5gjkXtYzGvASNw9dwuV0p9q7Xe4N7IhDi5eHmY8PL4Z/mK/nF1r5VS/HTroLplp9b8fOtAbFYzBmXAc8hQbjOk0iehL0opAh9/Gv93/mBix7aMDg1g9yefs2LaKkb4xPFW53jWX3czn2z0pd3e5Wwb1ZGUz8KYYh5K5Na5TD1jGDV3/8j00ZPx3fYmHTrdhv2JR/jgnLF4bZ5HTtClnHn3zXwybiReGy0sNw7h/ddf5K3E1nh7JfBLTXs++G4Wsyw++Ezqya+Vobzw5xLmZToIvmYAy6osXLUujZXbamhxZQ822Z0M2V3I6o2V+A+JZldNDa3KIW1HNl0HBVOtqihJKyAlvRJbWAA+eFKdU8DmojQGxpZipJINOQa22MOwWgPxqrZSlZXNNkcWPUJWA9XsKophp26NyRyAtcKEzs8l01JGl6Cv0TjJKO1OtrMDRoMf5kowlJdS5FVB6+DpaAWZRWdQVN0Bpbww1WgM9mqqraVERLyEVpCbewEVFe1QmFBOjQaURz7+sc/hVFCS/h8c5Qf2iBsse/COnwpA2Y4bcFbGHLDe6LkDr9g3Xeu3346zOvTA9d6b8GrxPgClW+9D26tw/Yl1MfluwjPaNaqxZPPD4CwACmrXmjH7pWGNdM2CUbLxSaAC2Fy73oY5cC3WsO/RTjOlmx8DnMA2QAFheASvw2KYi9PuQ9nWfZOVbMNVpiAaS+haPMyLcFYHUbZ9XxmDHbgGqNqwGFfjYVmKozKSbktMjZ6AqqPNOamU+gRIBr6rbRoDrAVigS+11s8cZr8xwGit9fVKqcHAnQc/A7rftu8D3x/0DGiU1jpDKRUP/AoM01pvP1ycycnJesWKFYdbfUqprHEw/IXfyClJxy/mOaZ63USfS/7j7rCEEKJZUkqt1FonH8P23kCl1tpRu2wELFrr8saKsaEopfoAD2utz6hdvg9Aa/3U4fZpiPtr0gMvUGSPPaFjCNGcaFypwz/LBsCJql2HNoJyotBoFGgTKPt+y2bAAUqDNgBGUDW4EhND7fr9Bxga/lmvja7t4cAoVA0oJziNHLKPSlW7zuc07bf//uurXIdzmjjkRBuqunb9vvMflIOofdPcGGuv6eD1+2qgGmrX70+Dcuy3/qCeXQWw33rUgYdXmn/er8N1+hxpvebAgTEnsv5wvdJHWn/AxZzgeriru4Ebzh13mDjq73D31/o8AxoNdNNal9Ye6CHgB2Agrqp/h0xAgX7AWKXUaFzpt00p9ZHWul7Pj2qtM2p/pyqlFgJdgcMmoM2J1WzkwTGJXD2jgpLSvry/41WSc8djDg52d2hCCCFgPjAcKK1d9gR+Afq6LaL6iwJ277ecDvQ6eKOGHmGUYK0ip2rTCR9HiFOJK6Uw4NRGnBgx4MCkanBioNQRhBMjunadAwNWUy4exgLs2oOCyvagza5ks5bFkobRIxu705fq0iTAdEDeYPTahsGSi7M6AEdZK5SyY3KC0WmnymjC6LUdk7kIR1Uw9uoYjIZSrHaNwa4oNftgtWzBQjnVNWGUO6KxWPbgXe3EafekwBCKj3UtXo4aKmoiKNEt8Pb8G1sVVNYEUGBsia/XanwrocIZQYGhJb4+S/EvM1BWE0q+KQY/7xT8yhQljggKjJH4+azErwyK7ZEUGsPw91qDrRwK7dEUm4Lx90rBVgYFzhaUGP0J8PobW5mTPGcspSYbAZ7rsJU5ydVxlJm8CLBswq/czl4dT7nZgr/HVvzK7eToeCpMJgI8UrGV2clR8VSaFQGmXfhW1JBDPFUmjb8pHd+KGrJJoNqjBn9DFr6V1WSTQI1HNf6GbHwrq8kigRpLJQFqLz6V1WSSgMNSjr/Kx6eyikwScFrK8FMFrmXVCqelGH9djHdVJZmqFdpShJ8uwbuykkxDK7AU4qdL8apbzsdPl+NVWcUeQwIGSx5+ugJrZTVZhniUJRc/XYm1soYsYywGj1xsugpLpZ1sY0uMHnvxdVZjqbKTbWyByZKLr6MajyoH2cYYTB578XXWYK5ykGOKweyRg4/DjrlKU2H0olVUv0b9f6M+CWgoULXfcg0QprWuUEpVHWYftNb34Zo/lP16QOuVfCqlAoByrXWVUioYVzJ7uES3WRqRGMbA1sEs3jaKP1qn8P5zt/Cfpz92d1hCCCHAuu9LWQCtdalSyutIO5xqtNbTcRUgJDk5+chDperhq//dd8IxCXGy0FqzalcBe0uqyC2tJr/M9dM1xp+hHWzsLsrh4je2UFzpxO74Z7/WYesIC1pMXpWDjO03AU78PC34FOVR4VFKVfBynH4pOO3emHNL8TBprAH/x3kz3+PvuCpKLbuwVRTi5fSmzLqdwoBWpCQM5cavPiQ9pJxyuwGDwZv+3p7k7kojLbIV62NDaJ25E+VhIabDUIIiA+hv8GXPknyKfI3stSp8PIz4eJho2/H/CPG3Yi13UJpbgdliwuRhwGwxYvIwYvEcjzLs33vmmqCixuGkssaBj2U0SimKK2soLKshJtC1nFVUQWpeHkkxw/DUJrbt3sua4lyGtR+ArcZEysadrKgpZFzS9QSUKv5K2cpfhjLG97iSwHwHS5dv4g+vaib0vpjgrCoW/7WBv/ydnDPwfCLTSlj453qWh9YwbvAEWmzJY+6SLayM0Jw9dBwJ67KYszyVNVFGRg8dS+LqNL5ZncHGKAMjh4+h61+b+Wx9LtsiNMOG/R99Fq3h/W0lpIXaGTh0NEPmL+ONXaXsCamk99DRjP7xN17KKWNvUAldh4xm4je/MKW4goKgAjoOGs0lX87m0aoqSgPzaTXw/7j248+5T1VTGZ5L3IDx3PLe+9zh6cAekENM/0ncPX0aN/oloAOzCO93EQ9MfZ7/hLXBGJhFSN/LeeC5x7i6ZVvMQRn497mGh5+8n/+0bos1eA++va7m4Ufu4+qObfEOycSzx3949IG7uaZrG3xDMzF3/w+P3Hcn1/Zsi2/YHgxJV/Pg3bdyQ98r8IvIxNH5Kv53523cPPBK/COzcLSdzD3/vY9VI8ZzRp9/fS/ZoOozBPcBYDwwu7bpLOBb4Hlgutb6oqOeZL8huEqpR4EVWutvlVI9gFlAAFAJZGmtOyil+gJvUjeOgJe01u8c6RzNaQjuPttySjnjxUV4eKUQYfuE6e2fpdXIM90dlhBCNCvHMQR3MXCT1npV7XJ34FWt9UlfMc5dQ3CFONnVOJyUVtoJ8HY9+DljyU525ZWRVVxFdlElOSWVdG5h5dJBZnLKc7jlXQc19n+GUloMNRj8/8IU9iNaQ1XmBDCWM6LtRFp+/BGpAZlsjc8huDoXn3Lw9InB2aYXs4LGcPeMt8n3riDfZqba7MfAkGjsSzzZHd6Wn7r7EJ6Xh8JKXGI47VoH0dvgwe5vd+L0MVHqYyLI00Swlwfx7YPwC/GkptpBRXE1Fm8zHhbjQUmjEE3ncPfXoyagtTv34J+hRYu11ifdnai53iCf+WkTry/cjmfMO4xK3cVzj/yG0cfb3WEJIUSzcRwJaA/gM2AProdpwoFJWuuVjRRig1FKmYAtwDAgA1gOXKi1Xn+4fZrr/VWcXuwOJwXlNYT4uuYFfeePHaxNLySjoIKMwgqyiyvpFOPJbWcZ2FO6h2e+slJcbiLcZiVCOaiqTGerbRkegUtcxyuLw8ti4Nzu99L38ZfZW7yG5W2MWJxe+Jv8ifSNp7rLOdwdHEDvdWtxKgMOX3+8osI4t1UsuVM2Um2Cda08CTYaCfUwkdQ5lB49IvB0alJX7cXLZsHTZsbTxwOrjxmjSQpSilPLCSWgtQcIxfUsJwBa610NF96Ja643yMoaB6Nf/p3dBTlY46dwf0ZvJj34mrvDEkKIZuNYE9DafcxA29rFzVrrmiNtfzKprc3wEq4qIO9qrZ840vbN9f4qmh+tdd20InP+zuTP7Xmk5ZWxK7+cjIIKogKsvHVVNDuKdvDst6VkFUJsoI0EDzM1RVv41boAs20dAKZqDyKDIji30z3Ev/Ql9tXzWd3OF2X0x887gh4BbanpeT4TPQrxLczFpM1YvWx0aBHAqGAbhc+tp6bSQX5LK5GeFqL8LMQlBtOqu6t6an5mGd7+Fjysp+dUKOL0cNwJqFJqLK7htpFADtAC2KS17tAYgR6v5nyDXLmzgHOn/YnVtoxYj694b8B0wnudCrUuhBDi5Hc8CejppDnfX8WpK6uokpTdhWzOKmFLTgnbc0rJKq5k1f0jqHJWcuvny/htcwlRAR60CwnEV+czO/9jTP6uKXu1hhDPIG5LvovWX6yj5Iv3WdXeCw9TMFafaAbFJ2I8+3LGZWSQXVEKRgshTgOdov3o5++Dz4dp7N1VQlWohSiblaBgTyJb+ZPYPxKAytIaLF4mGf4qTmsnUgX3MaA3ME9r3VUpNQSoVzEh0TC6twzgiv5xvPMHpLVIYernd/B4198weHgcfWchhBBCiFNUWZWdjZnF/J1RxIY9xdz/f4n4eZn5dNkuXp6/FaUgJsCL+BAv7NZ1jPnyVdIr03A6DZjiHYxMvJj/bIkm46nH8exnIDIfgo1hdAhrS9z9j3BpZgmrOviiH+1LqbcvcV4Wevp74/drIWnPpzDKZsDXqYgKMBIWa2PIKNd8oMVX+2D1MeNhPfRHaauPuSnfJiFOKfVJQGu01nlKKYNSyqC1XqCUeqmxAxMHunNkW35Zl0VWxvn8kPgMA199lFG3P+7usIQQQgghGkRljatkrNVsZPG2XB6cvY7U3DL2DdYL8DbRISGHErWJ1ZWphLXJoFeLFjwbdx05L77IHS0W47urml450DLHTs8bHmJry+HcX7ABfeXNrA2NZFdYBNrDg5+9w/n+o3Siqyrwx0BIkYOQ8gKufX4gZg8j6cqX9n0jCIryxjfIE8NBPZm2YM+mfnuEaDbqk4AWKqV8gEXAx0qpHKCsccMSB/P0MPLseV04f/oSqveeyZt8Q9+NF2Jrn+ju0IQQ4rSglOp2pPX7quIKIY5Oa016QQWrdhWwelchq3YVsGFPMS9MSmJsl0h8rQaCbU7atzQwLrEbHcO9uWneRTz/dyoGrWhRaGJwUHsGxA+mQhko2rKV6+x92RwTyx+9ornirGGE+Abw44YMVhn9iIzrQ7uMSh7tn0CvGH92Lc3GYXcyJjaYkBa+BMf4EBTpg9HsKvQT3TbAze+QEM1XfZ4B9QYqcE2HchHgB3yktc5v/PDq73R5RuX+WX/z0dKdeLWcxgVbSrn/mXkoswzzEEKI41XfZ0CVUguOsFprrYc2YFgnjdPl/ioal9aatLxyHE5Nq1AfdueXM+AZ1/9SnmYjnaP9aBHqwOq3jl1Vf7E+bz1Vjio8TZ78MW4+OwYPY51/CSYnxNUE4NshieCJE1nSuRuXrduBo/bjbEuLB939vbmwxsKaaRtcjQqCIr0Ji7XR9YyW+Ic2q2l7hThpncgzoA9qre/BNSfnB7UHmwLc07Ahivq4d3R75q3PJjfjAr5u/xy9X3mUEbc/5u6whBCi2dNaD3F3DEKcSrKKKlm0ZS+Lt+eyJDWP7OIqxnaJZOoFXQm1Gbl2uC8Vxs3c3ud8bB7evDLvUd7Z9TWti70Ysa2aTl5tGPbA61RavMg773zy/IP5JTKWxZ6+PNk2hvNtNrw27GVMkZGgtHL8U8sZeVYCSX1bUFFSjXVsPOHxNkJjbYd9VlMI0fTq83/jCP6dbJ55iDbRBHwsJp6d1IVL3qmiMn8ULxtm0XXpaIJ7nfTznwshRLOhlOoIJHLg9GQfui8iIdyvssZB6t4yEiNtAFz67lK2ZJcS7GOhT0IQnWOsVHv8zU3z32Vp1lIq7BUYlIGzE7sT/OCb9Fm6iP5O8IsLx5CcTPCA/mAJJvGPddQkD8XToOjm5cndITZ6eHny/r2LcTo0PbxMRLTyJ3JMBC07BgHg6etB8uhYN74bQojDOWwCqpS6DrgeiFdKrd1vlS+wuLEDE4c3oHUI53WL5otV/dneYhNTvryZpxN/xejr6+7QhBCi2VNKPQQMxpWA/ojrS9k/AElAxWlnb0kV8zdmM3dDNou352IyGFj94AjMRgMPjGnHnoqtdIkKpl1QOzbkrmfSD48R4fBl8A4Tnf6Gs977Gf+AcPZMOJfCAUP4Pr4dcxwGutu8+bRLAmWFVVyrvPHcUYpldQGRLR2Mv6MNAMaL2hEY6U1IC99/FQkSQpy8jtQD+gkwB3gKuHe/9pKT7fnP09HD4zqwZHseGekX82P7Z+n6zE1c+Nj77g5LCCFOB+cCXYDVWuvLlVJhwEdujkmIJqO1RinFB3+m8fB369Eaovw9mZQcQ+9Wfvy661cWZSxg4e6FFFcXM7FsIrdVDcR4//285LQTUVSMd3IyPmcPxtfsw31b0vnAHIIzKoRQbWJMiI0RQTZ++2Qz6xZl4A/4BlmJ7RtJy05BdXG07xvhrrdACHECjpSAGoFi4IaDVyilAiUJdS8vDxPTJndn7Ct/YE8/n2mh79Dz2y9oNfY8d4cmhBDNXYXW2qmUsiulbEAOEOPuoIRoTDvzyvhuzR6+W5PJg2cl0q9VMMmxAdw6rA3DE0NIjPBDKcVZs84irTgNX+VJz/wAhredxNDkqzCmZeDTsyfRfQfwU5uO/FDt5OukVhhNRrr4VHFVQAAJuyoxrCxg4t1tsXqb2dqmCp9AC7GdggmM9EYp6eUUojk4UgK6EthXIvfg/+M1EN8oEYl66xDpx32j2vH4HNhb3Y8nlj/Bm8n98YiMdHdoQgjRnK1QSvkDb+G6V5YCf7k1IiEaQWWNg4+W7OS7NXtYk14EQI/YAIwGRY2jhr2O1WR4/Mi9Szcy66yvqfj9Dy7Y4I95hZl2m0uw2IyE3hlJqdPMx2Zfvj3/ajaWVaLyyujl501abjklS3KoWZlD2N4Kyg2K6PYBVJbWYPU20zo5zM3vgBCiMRw2AdVaxzVlIOL4XDkwnl/XZfPX7jEsjdvB6y9cyS3P/IAyGNwdmhBCNEta6+trX76hlPoJsGmt1x5pHyFOFZU1DtLyymgXbsNkUExbuJ0Ifyv3ndmOMV0iqdAZfLzpVe5Y+gvF1cX4mX0ZGTeKCkcl2Y89TvfSUnxHnAk3j8SenIy/rzcbSyuYsiOLXn7ePBgVxjAvb9pG2yjMKeeTX3YR3S6A7qNaEt8lBKuPTC0nRHN31HlAAZRSY4GBtYsLtdbfN2pUx+F0nqcsr7SKoVMWUKb34hfzAq+q8+lztRQpFkKI+jiGeUDbaa03KaW6HWq91npVw0fnfqfz/fV0obXm74wivlixm9kpe7BZzSy6ewhGg6KgrBqHoRiFIsgziMUZi7l1wa30r4mlz58FdNhQRuKC31AeHpRu387vnja+yCtlXl4xZ4f682piS6qr7KxYnU3usr2kb8wnLimEM6/pBEBlmau3UwjR/Bz3PKBKqaeBHsDHtU23KKX6aq3/28AxiuMU5GPhlQu7cekHyynNPZunTDN4f/lAAnvI1CxCCNGAbgeuBp4/xDoNDG3acIQ4cfM3ZvPsz5vZlFWCxWRgdKcIJiZHo7WDRel/MmvrLBbuXsglHS7hes9RRL32CdMXV2CtXIe1S2f8b7wSrTUvpWXxVmY5+TUlhHiYuCI6mPPDA1n2XSop83dTU+nAJ9BC9zNjadsrvO78knwKcfqpzzygo4EkrbUTQCn1AbAakAT0JDKwfSiTk6L5IAW2RG3hkZk38nz8L5iCgo66rxBCiKPTWl9d+3uIu2MR4kRsyynFZjURarNiMCg8TAaeGN+Rs7pEYrOa+WjDRzwyawZ7yvYQ4OHPBbHnMK7VOJxb8qhenULUxZfhPW48v/sFMyLYhkEpqp2avv4+TAzxJ2ZnJW3jwjAaDazyMBKfFEK7PhFEtfZHyXQpQpz26pOAAvgD+6re+jVOKOJE3T+xE4u35bJ9z3nMTZjK9CmTue6p2Sij0d2hCSFEs6GUugH4WGtdWLscAFygtX7drYEJcQQOp2bBphw++CuN37fmcs2geO47sz2D24QwpG0o6SXp2Kyu3sh1eesIN/hzRUYkiV+uIuQcRfjAeHRyHN4//cx7uSV8nJlHzu4dfNo5niFBNq6z+fP36gw2vbeObWU1eFnNxHYOptsZLd185UKIk019EtCngNVKqQW4quEO5MB5QcVJwmw08N51vTnjud+o3n05b7V6iY6vPsTAWx53d2hCCNGc/Edr/dq+Ba11gVLqP4AkoOKk9PnyXUxbuJ20vHLCbVbuHNmG83u2QGvN7xm/8+GGD1mauZSZZ80kamMuV72bSc1fa1FeXviNHY//eRMpqLFz/9YMZucU4NAwLMjG5Mggelqs/PTm36Sm7AWliO8STIdBUUS3DXD3ZQshTlKHTUCVUq8Bn2itP1VKLcT1HCjAPVrrrKYIThy7mCBvXpmYxFVfrKY863we8f2QGfP7EjlstLtDE0KI5sKolFK6toqfUsoIeLg5JiEOUFnjwGp2jYD6c3seNk8zr17YlTM6hKOUk1/SfuGdde+wpWALoZ6h3NLtFsK9wyn56SN06k5C77oT28SJ7DFbsHpaMDk1G0oruCIqhCsig/AtshMU7IN2asqKquh6Rks6DYrGJ8Di5isXQpzsDlsFVyl1C3A+EAF8AXyqtV7dhLEdE6nSd6Apn65l2prdWIJ/oXfpQt688nusMTJPuhBCHKy+VXD32/5ZoCXwZm3TNcBurfUdjRGfu8n99dSSW1rFe4t3MOOvnXx+TR/aR9gor7bjaTailOv5y+LqYkbOHEmYZyiTCtvS9YNlxL48Fc8uXXAUFuKwevJ1QSmv7cqh0O5gee9ErEYD1dV2Nv+ZRcq8XVSV25n8VD/MFiNa67pjCyHEPsdcBVdr/TLwslKqJa5E9F2llCfwKa5kdEujRStO2N3nd2J1Wj5LckewLDqD51+5hPse+xmDRb6ZFEKIE3QPrqTzutrlucDb7gtHCCgoq+bNRal88GcalXYHZ3YMx8PkmhPcYLAzY8MnLMlcwmvDXsPHYea1qol4v/Y1Ou97vHr1AqOJaqeTL8sdvLxxO7sqq+ngY+XhhEi03cmahRms+mUn5UXVhMf70W9Ca4xm1/El+RRCHIt6zQNat7FSXYF3gc5a65Oqso18Q/tvxSXVjHjqV3J0OV6xL/NkXnvO/u8b7g5LCCFOKsfaA3q6kfvrya/a7qT/lF/ZW1rF2V0iuWlYaxJCfKhx1jBr6yzeXPsmOeU59AzvyfMDnyPvnIuo3rED7759CL7hBry6dwfgj4ISzk3ZTpKvF7fHhjEiyIZSiqzUIr56ZiVRbf3pMTqOyDb+knQKIY7qcPfXoyagSikTcCauXtBhwEJcPaCzGyHO4yY3yENbuyGXcz9citO8l+Dwqbxlu4JOl9zo7rCEEOKkcRxDcFvjKtCXCFj3tWut4xshPLeT++vJqbzazvdrM5nYPRqlFLNTMmgXbqNtuC8AO4p2cP2860kvTScpuAtXlHZl8MTbUAYDRd99jzkyAnPXbnySmUex3cFNLcPQWrOsqIxunlb+XphBVYWdPuMSAMhNLyE42tedlyyEOMUc8xBcpdQI4AJc84AuAz4DrtZalzValKLBdU4M5sEe8dy/XJOffz53VrzJ+7+1JWLQCHeHJoQQp6r3gIeAF4EhwOWAwa0RidOGw6mZuXI3z/2yhb0lVbQK9aFbiwDOTopCa012WTZh3mFE+0TTyr8Vt6jhJLzwI/aMlZS37I93717Yxvwf3+0t4qllG9lRUc2gAF9ubBGKdmp81xXz8fdrKCusIrZzMNqpUQYlyacQosEcaRqW+4BPgDu01gVNFI9oBBed047V2/L4qqADaR5ncseiO3kr6ku8W7Vxd2hCCHEq8tRaz6+thLsTeFgptRJ40N2Biebtz+25PP79RjZkFtOthT/TLupGtxau6U425m3kmeXPsKtkF9+N+w69ah23T8uict08jO3aEfH2o3j37sXfJeXctTmdlJJy2nlbmdEpjuFBNnLSSpj/wQYKssoJi7Mx4opEotrIVCpCiIZ3pCJEQ5syENF4lFI8cWNPdj2xiOUFg1gZVsAD717ClDvnYA4MdHd4QghxqqlSShmArUqpG4EMwMfNMYlmrsru4PbP12A0KF65oCtjOkeglCK3IpdXVr/CrK2z8LP4cWPSjZi1gZ3/+x/a4SDi6afwO+sstMHVSW82KPJr7LzcrgXnhgeAw1XB1upjxmA0cOY1nYhLCpZnPIUQjeaYihCdzOQZlaPL3lXCpNcWk6bseEZ/yLV7irn54W9R/8/efcfHUZwNHP/N9SKdepdc5N6bbLrp3WB6C6GGGhIIIQkJqfASCIQWAoTeS4BQTO8d3HvvsorV++n6zvvHnWTZ2OAi6VSeb7Kf3Z3ZvXsGyZp7bndnbDJ9nRCi/9qLZ0CnAquAZOAWwAPcqbWe3TURxpf0r/HT7A/x1DebueLQIdgsJlZXNDEozd0+v+eWpi2c9fZZBMIBzh16JmcudDDwZ1djcjgIrF+PNT+fBrOFf2zcSlM4wkNjBgEQ0ZrW+gDfvbaeoD/CjGsmAMh0KkKITrWr/lWeWelHsgYkct/J40jBjL/sPB4p0Lxx1zX0lS8hhBCiKymlno1tHqi1btFal2qtL9Zan95Xk08RH1pr3l22laPu/oK7P17L7I21AIzM9uCwmqnwVgBQkFjAT0b+hGcSf8Epv30P/wOP4f32OwDMhUN4qqaZA2ev4rmttaTbLES0JhyMsPDdzbzw19lsXFJDxsBEDCP6OUCSTyFEd/ihZ0BFHzThoDxu3tTIb1ZuxldyCbfk/Zv8Z+5i6oU3xDs0IYTo6aYopXKBS5RSzwDbfVrXWtfFJyzRl2ypbeXPs5bz+ZpqRud4+M/5U5gUe86zurWaf8z7B1+WfsmbM98kpayJk+6eg2/+AqzjxlHw0IM4x41jtdfHVSuKWeX1c3ByAv83PI+RbifVJc28959lNNf6GTI5gwNPG4on3RnnFgsh+htJQPuhE84ZSemdzdzZrGmsuJTr0x7gyXcKGHri2fEOTQgherL/AJ8AhcACtk9AdaxciH1y/cuLWbW1iT/NGM2FBwzEYjYRMSK8vPZl/rXwXwQjQS4bfxlpzjS23vJbgus3kH3LzSSffjrErmCmW62YleLxsYM4IT2JthudPOlOkjKcHHHBKPJHyABDQoj4kGdA+ylvY4Db/v4dz5lasNg3U5j4OE/tfye5Bx0V79CEEKJb7cUzoA9pra/qyph6Eulfu96SkgYGpbtJclpZV9lMgsNCTlL0ymQwEuTi9y9mac1S9s/Zn+utxzNs/KFY0tIIlpRgTkxEJSXxwtY63q1u4NnxhZiVQmuNEdEs+nALm5bWcNpvJmM2y5NXQojuI8+Aiu24k+xcfdlEjg04CPsHsdF7Pld99Rvqli2Md2hCCNFjKaXMROf+FGKfBcIR7nh/Nac++A3/+mQdAMOyEslJcraPz2Az25iaPZW/T/kzf/0sHa66idpHH4vWFRSw0ergtEXruWFNCX5D0xiOAFCxsYmX/z6PObM2kphqJxyIxKeRQgixA0lA+7Hcocn8/KQRHBS2E24dyYrw2Vzzxs9o2bQ+3qEJIUSPpLWOAGuUUgO64/2UUn9VSpUppRbHlhM61P1eKbVeKbVGKXVsh/LjYmXrlVI3digfrJSaEyv/r1JKhkCPo6WlDZx0/9c8+PkGzpiSz7VHDWuvW1O3hnPeOYflNcsBuKRmNCOu/BdNs94i7coryPjVdQQNg7s3V3DkvDWs9vq5e2QB/5s4hERD8fkLa3jtzgUEfWFOvHo8x10+DrvLGq+mCiHEduQZ0H5u3GH5XLa1Fd+yLSxsGcfcpBDXP30e9189C3tmdrzDE0KInigFWKGUmgt42wq11id30fvdo7X+Z8cCpdRo4BxgDJALfKyUGh6rfgA4GigF5imlZmmtVwL/iL3WS0qp/wCXAg91UcziB7y+qJQbXllKeoKNJy+ayuEjMwEIGSEeX/Y4Dy95mCR7Ei2hFmoff4KqO+/EMXo0Ax59BMeoUQBEIgavVtRzfEYS/zcsjwxbNME0WRSVmxqZcGQB004ajM0hH/WEED2L/FXq55RSHHL2MBqrWvHV1bKqcTKfJQe46d+nc/sN72HxeOIdohBC9DR/incAwEzgJa11ANiklFoPTIvVrddabwRQSr0EzFRKrQKOAM6LHfM08FckAe1WbfNs7jc4jbOnFvC7Y0eSFLsyua5+HTd9fROr6lZxwuAT+N2kX5OamEn4lGFgMpH60/MJm8w8WlLNT3LTcJlNvDdlGElWC0F/mG//t54pxw/E7rJyxu+KMFvkJjchRM8kf50EZrOJ4y4fy/nKzaAEB6GGA3gz4SBu++dpGD5fvMMTQogeRWv9BbAZsMa25wFd+QD9NUqppUqpJ5RSbUOX5gElHY4pjZXtqjwNaNBah3co3yml1OVKqflKqfnV1dWd1Y5+S2vNc7OLueLZBRiGJjfZyd9PHdeefAJ8suUTKlsruevA2/nV526arrweHYlgSUsj7eKLWBcIM2PhWv60voy3qhoASLJaKF1Tz0u3zGXxx1soWVUPIMmnEKJHk79QAgC7y8qMayZwfr2VrBQnobpDedYzln/+41SMQCDe4QkhRI+hlLoMeBV4OFaUB7yxD6/3sVJq+U6WmUSvUA4BJgJbgbv2KfjdpLV+RGtdpLUuysjI6I637LPqvUGueHYBf3xjOf6wQWto22BA9f56llUvA+CycZfx0vDbGPLLB6h/4UWc48ZBJIKhNY+UVHHM/DWU+IM8MmYQZ+ekEgpG+Oq/a3nznkWYTIpTb5jC0CmZ8WqmEELsti6/BTc2YuB8oExrPWOHuunAvcB44Byt9as71HuAlcAbWutrujrW/i4pw8UJV44jcO8iHh3spKHmaB5LN6FvO5Xf/OENTDYZr0IIIYCfE73ddQ6A1nqdUmqvP/lrrXdr/iul1KPA27HdMqCgQ3V+rIxdlNcCyUopS+wqaMfjRRf5bkMtv/rvYmq9Af544iguOWgwJlN0rs45W+fw+69+j8Vk4e2TZ9H0xFM0/PsBLGlpDHjyCdwHHADAn9aV8lhpDUenebhrRAGZ9uhV06/+u5ZV32xl3OH5HHDKEKx2c9zaKYQQe6I7roBeC6zaRd0W4CLghV3U3wJ82QUxiV3IHZbCET8ZxUUbNZ5sF8GaI3nMNZa7bjsVHQzGOzwhhOgJAlrr9j+ISikL0CWTaiulcjrsngosj23PAs5RStmVUoOBYcBcorcDD4uNeGsjOlDRLB2d0+Mz4IzY+RcCb3ZFzCIqGDa44ZUluGxmXr/6IH52SCEmkyJkhLhv4X1c9uFlJNgSuP+I+zEHIzS89jqeY46mcNabuA84gEhsGpaf5Wdw98gCnhk3mAxb9HlPgP1OKmTmdROZfvZwST6FEL1Kl14BVUrlAycCtwLX71ivtd4cO87YyblTgCzgfWC3JwgX+27UgTk0VLaiP97Mk6PcNJUeyiMpVvjHGdxw4/9QVhnKXQjRr32hlPoD4FRKHQ1cDbzVRe91h1JqItEEdzNwBYDWeoVS6mWidwmFgZ/HpohBKXUN8AFgBp7QWq+IvdbvgJeUUv8HLAIe76KY+7U6bxCPw4LNYuLJi6eSl+zEbY9+3GoKNnHVx1extHoppw87nV/ajyPZPQiT3c6g/76EOTmZoNb8bV0ZZYEgj40ZxCCnnUFOO61NQT59ZhWRsMHJv5yIO9mOO9ke59YKIcSe6+oroPcCvwW+l2D+EKWUiehzLjf8yHEySEIX2X9mIeOKcrhwdYTEQYmE6g/kEctk7vrHmehQKN7hCSFEPN0IVAPLiCaE72qtb+qKN9Ja/1RrPU5rPV5rfbLWemuHulu11kO01iO01u91KH9Xaz08Vndrh/KNWutpWuuhWuszYyPoik60cEs9J9z3Ff/8cC0Aw7MS25NPgERrIoVJhdx5yB1cszSHyp9eSu3DjwBgSUlhky/ISQvW8UhpNVk2K+HYdfWSVXX89//mUrq6nsKJGaC6vWlCCNFpuiwBVUrNAKq01gv24vSriXbopT90kAyS0HWUSXH4BSMZPiKNC1aFSRiaSKhxKv8xFXHXnWdLEiqE6M9+obV+NJbEnaG1flQpdW28gxLxo7Xm2dnFnP3wd1gtipMmbLtz2tAGTy5/kpLmEpRS/GX09Yy+7XWq770Xz/HHk3rJJQC8VlnP0fPXsMUf5Kmxg/n78HzMWvPdGxuY9a/F2F0WzrixiHGH5aOUZKBCiN6rK2/BPQg4WSl1AuAAPEqp57TW5+/GuQcAhyilrgYSAJtSqkVrfWMXxit2YDabOPaysfjvXcyFa7w8OcpD69pJ/CfRSssdp/GnX7+C2eGId5hCCNHdLgTu26Hsop2UiX7AF4xw0xvLeG1hGYePyODesye1T6/SFGzipq9v4vOSz2kNt3KJ5TBKr7mGSF0d2X/9K8lnn4VSisZQmD+tK2NsgpMHRw8kzxEd9C/oj7B2bgWjD8zh4LPkWU8hRN/QZQmo1vr3wO8BlFKHATfsZvKJ1vonbdtKqYuAIkk+48PmsDDjmvG8dudCLt4Q4vFRyfhXjeVZl4v6u07hzl++jC3RE+8whRCiyymlzgXOAwYrpWZ1qEoE6uITlYi34jov7y2r4FdHDecXRwxtH+V2Td0afvX5r9jaspUbp93IeSPPI7hpE+bkZAoefADH6NFUB0OkWS0kWS28OXkogxx2LCZF9ZZmUnPdONxWzr5pGg63jL0ghOg7un0eUKXUzUqpk2PbU5VSpcCZwMNKqRU/fLaIB2eCjZN+OYH0sOLSYoVzYhqR1oG8FTiLy/91Nv46ef5WCNEvfEt0fILVsXXb8mvg2DjGJeKgrMEHwMhsD1/89jCuPWpYe/K5sHIh5797PoFwgMePeoQZ6xIBsBcWMvj113CMHs13DS0cMW8N9xVXAjDU5cCsYMknJbx6+3wWflAMIMmnEKLP6ZYEVGv9edscoFrrP2utZ8W252mt87XWbq11mtZ6zE7OfUrmAI0/T5qTk34xkeT6MFduViTsnwvhVL7wXcC5D11CY3lxvEMUQogupbUujvVnB2itv+iwLIzNrSn6idcWlnL4nZ8za0k5AJmJ2z+OMjJ1JDOGzOD5g/9D2u/up/y3v8M3f357/cMlVZyxeD0es5kTMpIBCPrDfPj4Cr5+ZR0DxqYx/vD8bmuPEEJ0p26/Aip6r/T8BE68ejyOMh9XrjVIPGQgZuws8l7EGU/dQPWmXU33KoQQfYdS6jSl1DqlVKNSqkkp1ayUaop3XKLrGYbmjvdXc/3LS5gyMIXpw9Lb6/xhP/ctvA9vyIvL6uK3njNoPv8KfEuXknvHP3BNnUprxOCqlcX8ZX05x6Yl8X7RcEa4HTRUtfLqPxawYUEV+59SyAlXjsPukiufQoi+SRJQsUdyhyVzwtXjsWxp5aoVYTyHD8Fm1axr+ikzX/oHm5Z8Fe8QhRCiq90BnKy1TtJae7TWiVpreRi+j2sNhrnq+QU8+PkGzp02gGcunUayKzpYUHVrNRe/fzGPL3uc78q/o+mjjyg+7yegYeDzz5N08skArG7x8X5NI38ozOHxsYNItEQHFQoHI4QCYU66diJTjhuEMskot0KIvksSULHHCkalctwVY9GbWrhqSYjkI0didwcobzyTk995k+8+eDreIQohRFeq1FrLLR/9zDfra/l4VRV/OWk0fz91LFZz9CPUytqVnPPOOWxo3MA9h9/DUQOPwmSz4Rg7lsGvvoJz7BiqAtGpyyYnuZm9/2h+OTALgLK19QCk5ydy/s0HUDAyNT6NE0KIbiQJqNgrg8alc+xlYwmvb+bKRQHSjhyDPSNIc9PhXDCnhuefuTneIQohRFeZr5T6r1Lq3NjtuKcppU6Ld1Cia/hDEQCOHp3FJ9cfysUHDW6fh/Pb8m+56P2LMCkTzxz9JPuXJwCQcOihDHzuWSxpabxRWc9+s1fyXnUDANl2K5GwwRcvrOGNuxexeVkNAGaLfCQTQvQP8tdO7LXCiRkcfekY/KsbuWJBgLxDRmEaaiLUOow/rh/An+77OUYkEu8whRCis3mAVuAY4KTYMiOuEYkuMW9zHdPv+Ix5m6Oz7AxKd29XP9AzkP2y9+O5Qx/F9ft72HLJJQQ2bgJAA3ds2sqVK4sZn+hialI0OfW1BJl132JWfFXO5OMGMnBMWre2SQgh4q3L5gEV/cPQKZlEwqP5+KmVXKEULx0wlLlJW3EtCvBs5RGsu+NqnvrlnTjc8niUEKJv0FpfHO8YRNd7f/lWfvnSYvKTnWR7to1yq7Xmg+IPOGbgMeQl5HH3yBspueQqAps2kXPLzdgLB+OLGPxy1Rbeqm7gnOxU/jEiH7vJRN1WL+88sARvQ5CjLh7NiP2y49hCIYSID0lAxT4bsV82RsTg02dXc15Yk3J4Pu+6nGTOXs3sxhkcdffNvHrRZWQXjIh3qEIIsdeUUr/VWt+hlLqf6AWu7WitfxmHsEQXeOa7zfxl1gomFiTz+IVTSXVHBxsKGSFu/u5m3lj/BhwKh7UOYMsVV6D9AQY8+gjuAw4A4KPaJt6ubuDPQ3K5qiCj/ZbdunIv4aDBqb+eTNZg+WJWCNE/SQIqOsWoA3MxmU188tRKjg8apJ6YyXN2C0PmLKa0+XAOe/wd/j19GUcdcUa8QxVCiL3VNvDQ/B88SvRqn66u5M9vruCoUVncf+4knLboSLWtoVau/+J6vin7hqsmXMWxA4+l7smnUBYrA194AvuwYYQNjcWkODkzmWGuEYxKcALQVOPDk+5k6JRMBoxJxeaQj19CiP5Laf29L3F7paKiIj1/vnwmiLcNC6v48PEVpOYlsPmMXO4prWLCmjWsKXaizF5+OmATf7v8D+3fBgshRLwppRZorYviHUdP1d/6V8PQvDy/hDOm5GOJjXRb66vl6k+uZnXdav60/584NfsYzB4PWmuMpibMSUksaW7lihWb+c/oQUz0uIDo7boL3tvMvHc2c+oNk8kenBTPpgkhRLfaVf8qgxCJTjVkcibHXzmO+q1eBrxUyv8NzGHZyJEU7peAgzDPbBrPCX//C00tDfEOVQghhAAgFDG45e2VlNa3YjIpzpk2oD35BNjctJnS5lL+dfi/OHKxwYZjjiWwYQNKKcxJSXxS28Spi9YT1hp37LxIxOCz51YzZ9YmhhZlkpGfGK/mCSFEjyIJqOh0g8alM+OaCTTV+nE8tYlHB+dTkpaB+cgxFDq3sKp5Pw6481nmLe8/36gLIYTomfyhCFc/v5DHv97El2trtqtrDbUCMCVrCu+f9j5j3llFxZ//gmP8OKw5OQC8UF7LBcs2MsRp593JwxnmdhD0h3nngaWs+mYrRScM4qiLRmO2ykcuIYQASUBFF8kfkcLMayfiawlR8/AaXhiYj9vpZMOhB3FMQSneYD5nv7ieW59/PN6hCiGE6Kdag2F+9vR8PlpZyS0zx3DefgPa69bVr+Ok10/irQ1voQ0D7z/vp/re+/CcfBIFDzyAyeXiw5pGrl9TwvSURF6fNJRMuxWA1d9VULq6nsN/OpL9Ti6Ux06EEKIDSUBFl8kuTOKUX00iEjZY8q/lPJmaxSSPm1mj9+OsaRbsqoVHl2Vz2P/dQ0VdbbzDFUKI3aKUelopldxhP0Up9UQcQxJ7ockf4oLH5/LthhruOnMCPz1gUHvd8prlXPzBxWg0o9NGU//SS9Q/+yypF15I7u23o6zRRPOIVA+3DM3jmXGFJFjMtI2rMe6wPM68sYjRB+XGo2lCCNGjSQIqulTGgERO/20RDreVL+9fxu14ODcnlWeSCzjopGlMdC1ic8sQDr7rA578+KN4hyuEELtjvNa6oW1Ha10PTIpfOGJvaA0RrXngvMmcPiW/vXxexTwu/eBSEqwJPH380wxJHkLyGWeQe+cdZN74Owyl+MfGrVQFQlhMissKMrCaFLXlLbxy23waKltRSpExQJ75FEKInZEEVHS5pAwnp/92CukFCXzy6Aou2gp/GZLLO60GdceewXUjy1AqwN8+DnLKXY/Q5AvEO2QhhPghJqVUStuOUioVmdas12hoDeIPRUhyWvnflQdy/Lic9rqyljKu+vgqst3ZPHnkY9geeolwfT0mm42kk04iqDVXrNjMPcWVvFPT2H5excZGXv/nQrwNASJhIx7NEkKIXkMSUNEtnAk2Zv5qEoPHp/P1f9czYV4TL40vpCYU4v7Cg7j5pNEMss9mcXUO0259ldfnL413yEIIsSt3Ad8ppW5RSv0f8C1wR5xjEruh3hvk3Efn8MsXFwFgMm3/bGZeQh5/2O8PPHH4w4R+ezN1TzyB95tvAfBGIly4dBNvVzfy1yG5XJyXDkDxilrevHcRdreV034zhbS8hO5tlBBC9DKSgIpuY7WZOe6KcYydnseij7YQeKOE9ycOY6Tbwa9a7Rx69qVcnP4dIcL86tUSTr7neSqbfPEOWwghtqO1fgY4DagEKoDTtNbPxjcq8WPqvUHOe2wOG6tbOH//gdvVfVP2DStqVgBwSt5xtFz7e7xffU32LTeTNONEGkNhzlm8kS/rm7l7ZAFXDsgEoHR1He8+sJTkLBen/2YKSRnObm+XEEL0NpKAim5lMimmnzuc/U8pZN28SuY9uJznCgdwaV46D1c2sOCIi3n28BQK7J+xtCqBA29/l/s/nodh6HiHLoTo55RSntg6lWji+UJsqYiViR6qLfncUN3CoxcUMX14RnvdV6Vf8YtPf8E9C+4h3NzMlp9dRuvcueT+43ZSzjwTgJAGv2Hw8JhBnJeT1n5u1uAkxh6WxynXT8blsXV7u4QQojdSbSO29XZFRUV6/nyZV7I3Wb+gik+eXonDbeX4K8fxjSPC9atLcJtN3D8onfkv3MYjrUMI+YeQ7/HyyEXHMDo3Od5hCyH6GKXUAq110W4c97bWeoZSahPQsfNUgNZaF3ZZkHHUF/rX8x+bw9zNdTy2Q/L5ZemXXPfZdQxNHsqjxzyKqyHAlksvIeOaa/AcdxwNoTAuswmbyUREa8yx6VQ2LKqiYFQqNoc8+iuEELuyq/5VElARV9Ulzbz70FJ8zSGOvGAUxugkLlu+mbWtfi7Pz+D88iVc++mrrA4fi464mDnRw99OPoBkl3zTLIToHLubgMaOVUCB1npLF4fVY/SF/nVleRM1LYFdJp8PH/IvkhMzUGYzOhxGWSxUB0OctXgDoxOcPDB62y27Sz4t4euX1zHl+IHsP3NIPJojhBC9wq76V7kFV8RVRkEiZ944lcyBiXz4+ArqPyrj/cnDuCQvnUdKq7nCWchdV9/BTUmf40qYy5uLm5h26zv858vVhCIy0qAQonvp6Le278Q7DvHjWgJh/jtvC1prRud6tks+Ad5c/yZDk4fyyCH/ouma37D1pj8CoCwWqgIhTl+0gc2+AGdnb7u7euEHxXz98joKJ2Uw9cTB3doeIYToKyQBFXHn8tiYed0kRh+cy4L3i/ns0RX8pSCb58YXUh0Mc/zqMtR5N/PxkUdwjOVRIvZibn93Awfd/jYfr6ygr1zFF0L0GguVUlPjHYTYNV8wwqVPzeMPry9nfVXLdnVtfcbth9zOI9P/TeO1N9K6cCHugw4CoCIQ4rTF6ynxB3lufCHTUxPRWjPnrY189/oGhk3N4tifjcFskY9QQgixN+Svp+gRzBYTh/1kBNPPGU7x8lpe/vs8JngVn00bwcHJidy0rozfuAZy840v8XR2C4Xup6gO1PGzZxZw+n8+ZXlZ44+/iRBCdI79iE7DskEptVQptUwpJXNH9RDBsMFVzy9g7uY67j5rAsOyEtvrllQv4aL3L6LWV4s5FKHpVzdGBxy6/TaSTpqB1pqLlm1iayDEixMKOSgleq7fG2LV1+WMOjCHoy4ejcksH5+EEGJvyTOgosfZur6BDx5bgb8lxCFnD2PUQTk8VV7LzRvKsZtM/G1oLjPDXp555DoeSEinufFotOHiyNGp/P64sQzNTPzxNxFCiJg9eQY0dvzAnZVrrYs7L6qeozf1r+GIwS9fWsS7yyq47bRxnDttQHvd6rrVXPLBJSTbk3n6uKcJ/O4Wmj/+mJy//53kU09pP25BoxcDmJrkbr9aqpTC2xjAlWhD7TB3qBBCiJ2TQYhEr+JrDvLRkyspWVnH8P2yOPTcEZQYYX69uoTZjV4OT03kjuH5mL56nzs//SfvpRYRrD8EtI2TJ+bw66NHMSDNFe9mCCF6gb1IQJ/VWv/0x8r6it7Uv87ZWMu5j87mDyeM4meHbBuUeGPDRi56/yLsFjtPH/c0uQm5eOfOJVRSSvLpp1ETDPNRbSPndphiRWvNnFkbCfojHHLWMJSSxFMIIfaEDEIkehVnoo2TrpnAficPZt3cSl69fT7JDWFemzSUvw/LY06jl8PmreGjMQfxz798yEtJWRxivhNL6lfMWlLCYf/8lD+8tpTyBl+8myKE6HvGdNxRSpmBKXGKRXSwX2EaH1w3fbvks6SphJ99+DNMysSjRz1C0vISANzTppF8+mnUhcKctXg9f1hbSpk/CESTz7lvbWLBe8VEgpHtJ90RQgixTyQBFT2WMimKThjMyddOxN8a5tXb57Pq63Iuzkvn86kjKPK4uXFtKWesKiXxp9fxxLWzeCjUzBj3PzAnzebFuZs55B+fcsMri783CIUQQuwppdTvlVLNwHilVJNSqjm2XwW8uY+vfaZSaoVSylBKFe1Q93ul1Hql1Bql1LEdyo+Lla1XSt3YoXywUmpOrPy/SilbrNwe218fqx+0LzH3JPd/so5PV1cCbPfMJ4DVbCUvIY9Hjn4E+33PsOWii/AtjT6y2xAKc/biDWzwBXh6XCF5Dlt78jn/3c2MPiiHw34yUm67FUKITiQJqOjx8kemcvZNU8kuTOLz59fw7kPLSA8pXppQyN0jC1jp9XH43DXc0RTigBvv55XTn+CvdcsYmH4HpuRv+N/CzRx99xdc+ex8lpY2xLs5QoheSmt9m9Y6EbhTa+3RWifGljSt9e/38eWXA6cBX3YsVEqNBs4hetX1OOBBpZQ5dtX1AeB4YDRwbuxYgH8A92ithwL1wKWx8kuB+lj5PbHjer1nZxdz10dr+Whl1XblLcEWDG2Q7c7mmeOfIfnJt2l48SXSfnYpjnHjaA5HOHfJRtZ4/TwxdjDTU6OJ6/x3NzP/3c2MkuRTCCG6hCSgoldwJ9k5+ZcTOfjMYZSsrOOlW+aweVkt5+Wk8c1+ozg1K5l/bali+pzVfJqew7m3v84bU2/hd+VzGZRxG9a0T/lo1RZO/vc3/OSx2Xy5tlqmbxFC7K2blFLnK6X+BKCUKlBKTduXF9Rar9Jar9lJ1UzgJa11QGu9CVgPTIst67XWG7XWQeAlYKaKPqh4BPBq7PyngVM6vNbTse1XgSNVL3+w8b1lW/nzm8s5alQmt8zcdmd0a6iVKz6+gj998ycAah99jNpHHyX57LPJ+PWvUUrxRV0zK1p8PDp2EEemedrPTS9IZMwhuRwuyacQQnQJSUBFr6FMiglHFnDm74twJdl598GlfPb8apIMxb9GDeTNSUNJspi5dPlmfrJsE3VTD+TSez/if2P/xg3FCxmYfiu2zHeZu3kLFzwxl6Pv+YLnZhfTGgzHu2lCiN7lAeAA4LzYfkusrCvkASUd9ktjZbsqTwMatNbhHcq3e61YfWPs+O9RSl2ulJqvlJpfXV3dSU3pXN9tqOXalxYzqSCZ+8+djCU2NUrICPHrL37N8prlHFFwBL4VK6i++248M2aQ/ec/tQ8mNCMzmW/2H8Wx6UkANFa3AjB4fLpc+RRCiC4kCajoddLyEjjzd0VMOmYAK78u5+Vb57F1fQP7JSfwYdEI/m9YHvMbvRw2dzW3bNiK+fCjuOxfn/DK8L/w6/XLKEi7FUfOy5Q2beCPbyxn/79/wm3vrqK0vjXeTRNC9A77aa1/DvgBtNb1gO3HTlJKfayUWr6TZWZXB7yntNaPaK2LtNZFGRkZ8Q5npz5bU8WANBdPXDQVp80MgKEN/vzNn/m67Gv+tP+fOHLgkTjHjCH/wQfJve3vRJSJa1YW83V9MwAFjuiPbcVXZTz/lzmUrqmPW3uEEKK/kARU9Epmq4kDTxvKKb+ahBHRvPbPhXzx4hqMQISf5WfwzX6jOCUrmYdKqth/9ioeLash8YQZXP6vT3l50J/5/aotDLPfg3PgQ4StS3nkqw1Mv+MzLntmPp+triJiyO25QohdCsWewdQASqkMwPixk7TWR2mtx+5k+aEBjMqAgg77+bGyXZXXAslKKcsO5du9Vqw+KXZ8r/T740fyv6sOJNm1Lfe/b+F9vL3xba6ZeA3H1+TiW7IEgMQjDkdbLPxqzRZeraxnrdfffs6aORV8/sIaBoxJJWdIUre3Qwgh+htJQEWvljc8hXP+PI3xR+Sz/MsyXrx5DpuX1ZBpt/KvUQP5qGg44xKd/Hl9OYfMWc2sumbSTjmNCx78hOeL7uG2JZrJwadwDbkdR8qXfL2+lIufmsch//iUez5aK9O4CCF25l/A60CmUupW4Gvg7130XrOAc2Ij2A4GhgFzgXnAsNiItzaiAxXN0tGH2z8DzoidfyHbRuidFdsnVv+p7mUPw9d5g/z08Tmsr2pBKUWS07pd/fT86fxs3M/4qekgSq/5BZV/vw2tNVpr/rSujFcq6vnt4GwuyY9e1d2wsIpPnlpJ3vAUjrtsLGaLfCwSQoiupnpZ37NLvWmibNE1KjY28tlzq6kr9zKsKJODzxqOyxMdUv/zumZu3lDOKq+fyR4XNxXmcFBKIlprWmfPZt4L9/GyYxnfjrTibx2F23sktQ05mBQcOjyDs4oKOGJUJnaLOd7NFEJ0sl1NlP0j54wEjgQU8InWetU+xnAqcD+QATQAi7XWx8bqbgIuAcLAdVrr92LlJwD3AmbgCa31rbHyQqKDEqUCi4DztdYBpZQDeBaYBNQB52itN/5YbD2lf/WHIpz36GxWlDfx3M/2Y+qg1Pa6spYy8hKij7oGi4vZfO55mBwOBr74ItasTO7YtJW7N1dyRX4Gfx2ai1KKuq1e/vt/c8kc6OGkX07A5rDs6q2FEELshV31r5KAij4lEjZY+EEx89/djM1h4YDThjDqgByUSRHRmpcr6rhjUwVbAyEOSk7gN4Oz2T85AQDfsuVsfPEx3qj6hA8naGocqdibphNsmUaLz4zHYeHE8bmcOimPooEpmGSACiH6hL1MQFOI3s7anrVorRd2dmw9QU/oXw1Dc82LC3lveQUPnjeZ48fltNd9V/4dV39yNbcedCvHeKax+dzzMJqbGfjCC9gLB2NozbWrt2BRirtHFLQPQqS1ZsVX5QwrysTusu7qrYUQQuwlSUBFv1JX7uXz51ezdUMjmQMTmX7OCLIGR4fZ90cMnttay33FlVQHw0xPSeA3g3OYmuQGIFxdTc1/X+KD2c/x3vAWlg+wgHcYKaFjqazJJRiG/BQnp0zM45RJuQzNTPyhUIQQPdyeJqBKqVuAi4ANxJ4DBbTW+oguCC/uekL/ett7q3j4i43cdMIoLpte2F6+pm4NF75/IbkJuTx93NP47n+EuueeZ+BTT+KcMIGwobGYFIbWaMCsFNVbmjFbTKTmuuPXICGE6AckARX9jtaatXMr+fa19bQ2Bhl5YA4HnDIElyc6YEVrxOCZshru31JFbSjM4amJXD8ouz0RNYJBmt9/n8WvP857rvV8OdZEk8OG0zsNV+gISqpcGBqGZSZwwrgcThiXw/CshPZv14UQvcNeJKBrgHGx+Tf7vHj3r4FwhJ8+PpfhWQncMnNs+9/YSm8l5717Hmh4/sTnyXZno8NhAuvX4xg5ko9rm/jb+jJemDCkfbTb+govr/1zIYmpDs78fZH8vRZCiC4UtwQ0NlLgfKBMaz1jh7rpRJ9fGU/0WZRXY+UDiQ7wYAKswP1a6//80PvEu4MUPVfQH2b+O5tZ8mkJFquJqTMGM+7wfMyxOeO8kQhPltbwYEkVdaEI05LcXDMgk6PSPJhiH078q1ZR/cp/+XTlW3wyzM+SQhPhSCLZkWPQvslsqjCjgSEZbk4cl8OxY7MZneORDzdC9AJ7kYD+D7hKa13VhWH1GD2hfw2EI5iV2jbXZyTEue+cS2lLKU8d+xRpL3xM8llnYs3KAmBho5fTF29gmMvOa5OGkmAx01zn57U7FxAJG5x2wxSSs1zxbJIQQvR58UxArweKAM9OEtBBgAe4gejofW0JqC0WW0AplQAsBw7UWpfv6n16Qgcperb6Ci9fv7yOLSvrSM5ysf/MQgonZbQnid5IhBe31vHQlirKAiGGuxxcPSCD07JSsJmiH3oMn4+m9z9gw6wXeJ/lfDXWRFm6QoU9FKgZhFrGsX6rwtCQm+TgiFGZHDUqi/0L03BYZQAjIXqivUhAi4iOLLscCLSVa61P7oLw4i5e/evK8ibu+nANd501YbupVtq8svYVct25DHt1PrUP/YesP/ye1AsuYH2rn5MXriPRbObtKcPIsFnxtQR5/Z8L8TYEOOX6yWQMkEcnhBCiq8UlAVVK5QNPA7cC1++YgHY47ing7bYEdIe6NKKj+O0vCajYV1prNi+r5bvXN1C/1UvWYA8HnjaU3GHJ7ceEDM2sqnoe2FLFSq+fHLuVS/PSOS83jVTrtlESAxs20DBrFku+fp0vMmr5ZoyJWg9YI8kMtp5M2DuatWUmfCEDl83MIcPSOWJkJtOHZ5CT5IxD64UQO7MXCegK4GFgGR3m/9Raf9EF4cVdPPrXrY0+Tn3gW5SC168+iOwkBxD9G17aUkpBYnQK1Ib//Y+tN/2RpDNOJ+eWW6gMhpmxcC3+iOatycMY7LID8NXLa1nxZTkn/XICecNTurUtQgjRX8UrAX0VuA1IBG7YkwRUKVUAvAMMBX6jtX5gJ+ddDlwOMGDAgCnFxcWd3gbRNxkRg9WzK5g7ayPexiCDxqdzwClDthuUQmvNZ3XNPLClim8aWnCYFKdmpXBpXjpjE7fduqUNA9/ChdTPmsW8Je/y1SAfc0eaaXBpLIaDoY4TsAWmsL7cSWVT9JGxYZkJHDIsg+nD09lvcBpOm1wdFSJe9iIBnae1ntqVMfUk3Z2AegNhzvzPd2ypa+WVKw9gVI6nve6RpY/w6NJHeWnGS2StqKDkiitx77cfBf95CGW1UhMMc9XKzfxxSC4TOvydDoci1JS0kF2Y1G3tEEKI/q7bE1Cl1AzgBK311Uqpw9jDBLRDXS7wBnCS1rpyV+8nV0DF3ggFIyz9tISF7xcTCkQYsV82U04YRHLm9s8GrWrx8WRZDa9U1OMzDKYlubkkL50TM5KxdpiOxQgGafniCxree4+Faz9j9sAgc0eaqfZoTNrEcPehpOiDqK3LYlmpj2DYwGYxMXVQCgcUpnHAkDTG5SVjk8nQheg2e5GA3k301ttZbH8LrkzDso8MQ3Plcwv4eFUlj180lcNHZLbXfbD5A2744gZmFM7g1oNuZct5P8FobWXgC88TdrlQgM1kQmuNUgptaBa8v5mxh+bjcMs0K0II0d3ikYDeBvyU6MTZDqLPer6mtT5/J8c+xS4S0Fj9E8C7u6oHSUDFvvG1BFnwXjHLvyzDCBsM3y+bouMHfW+QioZQmJe21vFkWQ3F/iAZNgtnZqVyXm4qQ12O7Y41/H6833xD4wfvs2zZp8wu8LNguJnijOi/uRxHPkOcJ6BbR7KpwsaaihYAnFYzRYNSOGBIGvsXpjE2N0kSUiG60F4koJ/tpFimYekEFY1+Tn/oWy49eDCXHDy4vXx5zXIuev8iRqeN5rFjHsNmthFpasLw+TBnZnLVymKawhGeG1+IWSm01nz9yjqWflrK4eePZPTBud0SvxBCiG3iOg3Lnl4BjT07Wqu19sUm+54DnK61Xrar95AEVHQGb2OARR9tYcUXZUTCBsOnZVN0wvcTUUNrPq1r5vnyWj6qbSSsYVqSm/NyUjkpMxm3eftbao1gEO+339Ly6WdsnvcJ85LqWDDMxPLBJoJmjV3ZGJu2P5nqIHzNBawpN1hbGU1I7RYTE/KTmTIohamDUpg8IGWnA3IIIfbOniag/U1396/N/hAJdkv7AHHVrdWc9fZZ2M12nj3sMfTTr5D+86sx2aPPd96yoZwHtlTxx8IcrhkYGwX3w2K+e20DE44o4KAzh8qI5EIIEQc9JgFVSt0MzNdaz1JKTSU63UoK4AcqtNZjlFJHA3cRneBbAf/WWj/yQ+8hCajoTK1NQRZ9WMzyWCI6ZEomk44eQOZAz/eOrQqEeLmijhe31rHBFyDBbOLkzGROy0rhgOQEzDt88NFa41+xkpbPP6f2i09Y6F3NkkLFsiEWSlKj45kk25KYmDadVIrwteSypjzMivImwkb03+vQzAQm5CczsSCJ8fnJjMxJxG6R50iF2Bt7cQX0zzsr11rf3HlR9Rzd0b8uKK7jrSVbuenEUVjN29/xETbC3LfwPk4ePAPHH+6h5euvGfj0U7iKiniqrIYb15ZyYW4atw/PRynFmjkVfPzkSoYWZXLMJWNQJkk+hRAiHuKagHYHSUBFV2htCrL4oy0s/6qMkD9C3ohkJh41gIFj0r73oUZrzdxGLy9srePt6ga8EYNsm5WZWcmcnpXCuATnTr+FD1VW4f3mG7zffEPJ4q9ZktLE0kGKZUOt1DsjAKTb05iQOY0MNZVw6wA2VymWlTVS0xId1MhmNjEq18OE/CTG5iYxJs/DsMxEuXVXiN2wFwnorzvsOoAZwCqt9SWdHlwP0NX9a2l9KzP//Q2JDgtv/vxgklzR5zUjRoSmYBMpjuiotZW33U7d00+T/Zc/k3LuuXxY08hFyzZxZJqHJ8cOxmJSRMIGL948h4QUOyddMxGzVf4GCiFEvEgCKsQ+CPjCrPyqnCWfluBtCJCS42biUQWMmJa90w84rRGDj2obea2ynk9rmwlpzVCXnZmZyczISGak27HTZFQbBv5Vq/B+8y0tX3/FhuJFrMyJsHKAiVWFVmqdYQCSrB7GZUxgsHsytvAwGhuTWVneyvKyRrzBaNJqM5sYnp0QTUhzPYzM8TAiOxGPQwbjEKKjfb0FVyllBz7QWh/WeVH1HF3Zv7YEwpzx0LeUNfh44+cHMSQjob3urvl38f7m93l5xsvwxodU/PWvpPz0p2Tf9AcAlje3csemCh4aM3C7xx68jQEsNjN2p+V77yeEEKL7SAIqRCeIhA3WL6hi0YdbqC1rwZloZdRBuYydnkdiqmOn59SHwrxT3cj/KuuY3eBFA4VOOydmJHFiRjITEnd+ZRSiAxn5Fi+hde5cvHPnULx5CStzIqwuUKwbbKfEEwJAoRiaPJRx6ePJto1DBQdQ2+hiVXkLK8obqW8Ntb9mXrKTkdmJjMxJZES2h2GZCRRmuOUWXtFvdUICmgLM01oP7cSweoyu6l8jhubyZ+bz+dpqnrp4KocMy2ive33d6/z52z9z9oiz+f3YX7Hh2GNxjBlNwYMP4kWRsMPfq6YaH8u/KGP/UwoxmeWqpxBC9ASSgArRibTWlK6qZ+nnpRQvqwFg0Ph0xh6aR8HI1F0+c1QVCPFeTSPvVjfydUMzEQ15divHZyRxdFoS+ye7sZt2/eGpPSGdPx/f4sXUrFrMGo+XtXmKdYOsbMhRtFiiV0ltJhsjU0cyKnU0uY7RWMIDaGpOZG2ll9UVTWys9rY/U2pSMCjNzdDMBIZlJTAsM5HCDDeFGQkk2OUqgujb9uIW3GVExygAMAMZwM1a6393RXzx1lX966qtTZz24Lf84YSR/PSAQe3lCysXcumHlzI1ayoPHvUgFpOFYHEx5rQ0mu0OTlq4jhkZyfyuMAcAf0uI/925AF9zkLP+MBVPurPTYxVCCLHnJAEVoos01fpY8VU5q74px9ccIinTyZiD8xi+XxbuJPsuz6sPhfmgppF3qhv5qr4Zv6Fxm00cmpLIUekejkr1kGn/4dtltWEQ3LCB1kWL8C1aTOuSxZTUb2ZDNmzIUWwa5GBjegSfOXpbrkVZGJI8hBGpIxiaNBK3HkIkkEF5vcG6yhbWVTWzubaViLHt70Jmop3CDDeD0xMYkuFmUJqbgWkuClJdOKxy1VT0fnuRgA7ssBsGKrXW4c6PrGfoyv51a6OPnKRtCWN5SznnvnMuibZEnjnwQfj4K1LOOw+lFEHD4NwlG5nb6OW/E4ZwYEoC4VCEWfctpnJzEzOvnUTusOQuiVMIIcSekwRUiC4WCRlsWFTF8i/K2LqhEWVSDBybxqgDchg4Lg3zDwwI1Box+Lq+mY9rm/i4tonyQPSW2fEJTqanJnJoSiJTk9w4duPWskhLC/7lK/AvX4Zv2XJaly1li38rxVmKzZmK4gF2Nmcq6m3B9nPSHGkMSxnG0OShDPYMw6UHEgqkUl4fYVONl43VLWys8dLQ4VZepSDH42BAmotBaW4KUl3kpzgpSHVRkOIiPcEmUx+IXmF3E1ClVOoP1Wut6zovqp6js/vX7zbUsqG6hfP3H/i9ugZ/A3/97q/8ctxVmH91K77Fixn85pvYBg/iV6tLeKmijn+PGsAZ2aloQ/PhEytYP7+KY342hmFFWZ0WoxBCiH0nCagQ3ai+wsvq77ayenYFrY1BHAlWRkzLZsT+2aQXJPxgYqa1ZpXXz0c1TXxW18T8Ji9hDU6TYr+kBKanJjI9JYFRCc7vTfGyK+G6OvyrVhFYtQr/ylX4V62iqnozmzOgNB1KcqyU5Nko8YQImCLt52U4MyhMKmRQ0iAKkwpJtw3EFM6iudXBllofxXVeimtbKa71to/I28ZpNZOf4iQvxUluspO82JKbHC3LSrRjkWe1RA+wBwnoJrZND7YjrbUu7PTgeoDO7F831Xg55YFvyEi08/YvDm6/i8LQBhEjgtVsRWvN1j/9icZX/0funXeQdNJJ3F9cya0bt3L9oCx+Ozh6621teQuv3j6fqScOZvKx309mhRBCxJckoELEgREx2LKyjtXfbWXTkhqMiCYl28XQoiyGFWWSku3+0dfwhiN829DCl/XNfFHXwtpWPwBJFjPTktzsn5zAAcluxiW4sO7BfHeG14t/7VoC69YRWLuOwLp1+NauYatuoCRDUZYG5dk2tmZHE9NW87Y7DO1mOwWJBQxIHMBAz0AGeAaQ4cjHHMnA53NRVu+npN5HSV0r5Y0+yhv81Hm3T1BNCjIS7WQnOcn22MlJcpKd5CDb4yAz0U6mx0GWx77dhPRCdIV9HYSor+us/rWxNcSpD35DfWuQN35+EAPTtv39e2jxQ3y39Tv+c9R/8L/wCpW33U7alVeQed11AMyqauCzuibuHlGw3d+DphofiWk7H1VcCCFEfEkCKkSc+VtCbFhUxbp5lZStawAN6QUJDCvKYuiUzN0eOGNrIMg39S3MbvDyXUMLG3wBAFxmE0UeF0VJboo8bqZ4XCRZ92wAIa01kZqaaFK6YSOBjRsIbtiIf+MGan21lKUrtqbA1jQTlblOKlIVFc4AIWW0v4ZFmclNyCM/MZ/8hHxyE3LJTcgl1ZaFKZJOq89OeWOArY1+Khp9sXV0aQ58/zE6l80cTUgTHWQk2r+/JNhJS7CR5rbLvKdir+xNAqqUOhmYHtv9XGv9dudH1jN0Rv8aihhc9ORc5m6q4/mf7c+0wdvuZv6o+COu//x6Zg6ZyZ+H/JyNxxxLwmGHknffffg1OHe4U2Lzshpa6gOMnZ63TzEJIYToWpKACtGDeBsCrF9Qxbr5lVRuagKiyejgCRkUTswgLc+929/oVwVCzG6MJqNzGlpY7fXTlg4OdzkoSnJR5HEz0eNiuMuBZQ+uknYUaWwksGEjweJigsWbCW4uJlhcjK94EzVWP1XJispkqEwxUZPtoDLNTIU7RLM5tN3rWE1Wctw55LhzyHJnkeXKItudTbY7G48lExVJwuuzUtUcoLLJT1VzgIomP9XNAWqaA1Q3B3aaqAJ4HBbSE+2ku6NJaYrbRprbRmpsSXPbSXFbSXHZSHHZcNpkECWxV4MQ3Q5MBZ6PFZ1LdBqWP3RFfPHWGf3rZ2uquPjJedx5xnjOLCpoL19dt5oL3ruA4SnDeeLYJ7CZbbTOm4djzBhKlZlTFq3nr0PzODkzGYDqLc28dtdCUrJcnP7bKT/4bL0QQoj4kgRUiB6qsdrHxkXVbFpSzdaNjaDBk+5g8MQMCiekk1WYhHkPnpVsCUdY1NTK/CYv8xq9LGxqpSEcfa7TaTIxLtHJxEQXExKdTPS4GOy0Y9qH29e01oSrqgmVlhDcUkKopIRgyba1t6mW6iSoTlLRdbKZ2iwHtclmatwR6iwBDLX93yG72U6GM4NMVyaZrkwyXBlkODNId6aT4cogwZyKMpLw+a3UeoPUtgSpaQlQ2xKgxhukpjlAnTdInTdIfWsQYxd/5hxWEykuG8kuGymuaGKa5LKS7LSS7LKS7IzuJzmteBzW9m23zSy3/PUhe5GALgUmaq2N2L4ZWKS1Ht9VMcZTZ/WvqyuaGJntad+v8dVw7jvnorXm+UMexr1uKwmHHAxAUzjCjAXrqAyGeHvyMIa5HTTX+Xn19vmYLIozflf0g6OMCyGEiL9d9a8ywZ8QcZaU4WTSMQOYdMwAvI0BNi+tYePiGpZ9XsqSj0uwOS0UjEphwJg0Bo5Jw538wx+6EixmDklN5JDURAAMrdnoC7C4qZUlza0sbvLxbHkNj8SyMpfZxBi3kzGJTsYmOBmT4GSk2/G92952RSmFNSsTa1YmrilTvldv+HyEtm4lVFZOqKyMUHlsvbaC8Nat+KuraHCEqfVATaKiLhHqkwI0plVTl1zPMtcqam1B/B0GR2pjNVlJc6aR6kglzZFGWnoaQ/NT2c+RRqozlVR7Kh5bHhY8GGEXzT5NfWuQ+tZQdO2NbXuDNPhCrK5ootEXoqE11D5H6s5YTAqP00qiw4LHYcXjtJBoj60d0fJEh5VEu4VEh4UEh4WEtm27FbfdjNtmwbSXV6NFj5AMtI16mxTHOHqNjsknQHOwmURbIrfs91f8v/s/6hctYujHH6HT0rl8+WY2+vy8NGEIw9wOgr4w7zywhHAwwmnXTZHkUwghejFJQIXoQdxJdsYckseYQ/II+sKUrK6jeHktW5bXsmFhNRC9VXfA6DTyR6aQMyQJy4/cRmpSiqEuB0NdDs7Ijj53FTY0a1v9LG5uZUWzjxUtPl6tqOOpSPTmXRNQ6LIzwu1gpNvBSHc0KR3stO/xLbwmpxN7YSH2wp0PEKojEcK1tYQrKghtrSBcWUm4uopQZSXh4mrClZWEKivwhgM0JECDGxoSFPUJUJ8IzSl1NCY1Ue4qZpUjQoMlSLjDM6nb/fe1ukm2J0cXRzLJnmQyMlIYak9qL/fYPXhsHmwkog0XwZCFZl+ERl+ofWnyR9fN/jBNvhBN/jDVzS00+cI0+UO0Br+fLO80HpsZtz2anLrtlvbE1N22bzPjalvbzLhs0WOctmiZ0xY93hXbdtksmCWp7Q63AYuUUp8RHRF3OnBjfEPqPdruvBqcNJhXT3qVqlv+j/rZs8m57TbM6en8bm0pn9c3c/eIAg5OiX6RVryilvqKVmZcM4G03IR4hi+EEGIfyS24QvQCWmtqy1ooXl5L8fJaKjY2oQ2N2WIie4iH/BGp5I9MIXNgIqa9nNrE0JoSf5DlLT6WN/tY4/Wz2utnky9A218Jm1IUuuwMczkY6rIz3B1dD3E5cHXxlCqG10u4pia6VFcTro6ta2uI1NYRrq0lUltLqLaGFhWkyUVsUdu2Ey20JNloSTDT7IRmu6bJGqLVtPNnSgFMykSCNQGPzYPH7iHRlhjdtkW3E22JJFgTttt2WRLAcKC0k3DYii8Izf4QLYEw3kCElkCIlkCEFn8YbyBMSzBMa6zOG4yVBSL4gmG8u5nMtrFZTDit0YTVaY0mpm1rhzW23WHfYTVF1xZTe5ndEi1vW0eP21Zmt0TL+kqyuwfTsDwAvKC1/kYplUP0OVCAuVrrii4NMo46u399esXTbGzcyB/3/yPNL71C5c23kHrpJWT95jdorbljUwUhrfnjkNztzmuq8e32YG1CCCHiT54BFaIPCfrDlK9roHRNPWVr6qkpaQHAajeTXeghZ2gyuUOTyRrs+dErpD+mNWKwvjWajK5u8bOu1c/6Vj/FviAdrzPm2q0MdtopdNmja6edwS47Ax02HN0436fWGsPrJVJXR6SujnBdPZH6OsJ1dUTq6onU1xNpaIguse1ASxMtdk2LE1oc0OJU2217Eyz4Eqx4XSa8ToXXpvFaDbzm8Hbzpu6Kw+zAbXW3Ly6rK7pt2bbtsrpwWaLbTosTl9WF0+LEYXZi1g7QdrRhJxKxEIlY8IcMWoMRfKFo4uoLRvCFItGyYDhWt63cF4rgDxn4Y2WtwTD+sEEwvPOrxbvDYlLYLSbs1mhSareYsFm2Jam29n0TNosZm7njvql9f7vt2Nravlbt5daOdWYTLruZ9IR9vxVzDxLQa4FzgBzgZeBFrfWifQ6gh+vM/vXL0i/5xae/4MgBR3Jr7hVsPvV0Eg45hPwH/k1YmdqnktJao5Ri6WelpOe7yR2W0invL4QQovtIAipEH+ZrCVK2poGytfVsXd9AbbkXNJjMisyBieQMSSa7MImswZ4ffYZ0d/kjBpt8Ada1Bljf6mdja4BNvuhSF9o+Kcu2WRnotDHAaWOgw85Ap418h40Ch41sm3WvR+btLDoSwWhuJtLYuG1piK2bGjGamok0NWE0NxFpbCLS3IzR2EikpYVgawutVgOvA1rt4HUo/Lbodtvisyv8Lgt+lwWfw4QvdozPqvGZDXzmyE6fcf0hDrMDl9WFw+zAaXFGF6sTh9mBw+KIJa/RbbvZjtPixG6247BsK3OYHVjNNkzaDoYNra2grRiGGR2xYBhmQhFFIBxNXANhg0DbOlbmDxkEIxECIYNgxCAQMgiEo8cEw9vKgpHo/o51+9IFTRmYwv+uOnDvXyBmLwYhGkg0ET0HcAIvEk1G1+5zMD1QZ/WvGxo2cP6755OfmM/Txz2N0+Kk8fU3SDzmGFZoxc+Wb+bRsYOYkOgCYP2CKj54dDnD98vi6IvH7PP7CyGE6F6SgArRj/i9ISo2NrJ1fQPl6xqpKm7CiET/rSek2Mka7CFrUDQhTS9IwObo3MfBG0JhNvoCbGoNsMUfpNgXpNgfYIsvSHkgRMe/OmYFOXYr+XYbBU4beXYbuXYrOXYreQ4bOXYryZaeO+qsNgyM1tZoAtvcjNHcjOH1YrS0EGlpwWiJbhveFiJeb7TO68Xwtm7b9vkIt3oJhHz4bESTUxsErBCwKfzWaFnbOmiNlgXsJoIOMwG7maBdEbCZCFggaNUEzBq/2SBgNgiqCMZe/udTKOxmG3ZzNGm1mq3YzXbsZjs2sy26mGzt5TZTtMxqsrbXt23vuLYoCxZlQ2EFbYkuWNCGBbQZtBmtzRiGCa1NaMNExDBhGIqwASkuG0eOytrnn+HezAPa4dxJwBPAeK11n5zXpzP61wZ/A+e9ex6toVaePeghMv1W7EOHAlDuD3LCgnWYFbw3ZTiZdisVmxp54+5FZBQkMPO6Sft8J4cQQojuJ6PgCtGPONxWBo1LZ9C4dADCoQg1JS1UbmqiclMjlZub2gc1QkFKlouMAYlkDEgkc2Ai6QWJ+5SUJlstTLZamOxxf68uYBiU+IOU+oOU+kOU+oPt+9/Wt1ARDBHZ4Xsxp8lEtt1Ctt1Kts1KVixBzYptZ9osZNmsuM2mbk9UlcmEOSEBc0IC1pycfXotbRhony+a0La2YrRv+zBavdvqfH4Mvy+67/Nj+FrRTT4MfwDtj5X5/dF6f/TYYDhAIBwgYNEELRC0El1bIGhRBC0Qiu2HLB3qrIqQ2UfQ6iNkUYRsZsJWRchqImRVtFgVYXP0nJAZwiZNyKwJmTQhpQmZDCKq87/oVCgmpY7nyFHPdfpr/+h7K2UBjid6BfRI4HPgr90eSC+yoXEDLcEW7jvkLiI33EJxSQlDP/oQn9XGBcs20RKJ8NbkYWTarTRW+3j3waW4k2yccNV4ST6FEKKPkQRUiH7AYjWTXZhEdmESEJ0EvrUpSNXmJqq2NFO9pZmytQ2snVvZfo4n3UF6fiJpeW7S8hNIy0sgKd2J2sfbZe0mU/uovDsT0ZqqYIit/hBlgRBbA0HKAiEqAyEqAiEWNbdSURPCv5NpUpwmE1l2C5k2Kxk2C+lWCxk2K+nt2xbSbBbSrBaSLOZ9mv+0KyiTCeV2Y3J/P3HvDFprdCgUS0wD6GAA7fdjBILogB8dCGwrDwQwAgF0IIgOBqIJbTCEDgbRgQA6FMRoCWwr23EJBaN1oRDhUIBwJETQCBHUIcJGmLAZwqZo4ho2xxaT2rYdW0JmiLTXbyuPmBRZKdVwUpf8p9oppdTRwLnACcBc4CXgcq21t/ui6J2mZE3hvdPeo+EPf6Vp0SLy7r0Xw+7giuWbWNni47nxhYxKiA4wtOKrMgxDM+OaCTgTbXGOXAghRGeTBFSIfsrlsTFofDqDxqe3l7U2BakqbqKmpJnaMi81pS1sWlLd/pyexWYiNcdNSo67w9pFYpqz0+a0NCtFjt1Gjt3G5F0co7WmMRxhayBEdTBMVTBEZWxdFYhur/MG+C7U8r3nUbe9D6Rao8lo2zrFaibVaiHVaibFaiHFaiHVYibZaiHZaibJYsbcw5LWPaGUQtlsYLNhjuPMlVprCEWT0/YlGESHw9v227aDQXQojA5Hy2ivC2NO6faBaX4PvAD8Wmtd391v3tu1PvoUTW+/TcZ11+E57lh8EQOLgtuH53NE2rY5Qg84ZQhjDsklKcMVx2iFEEJ0FUlAhRDtXB7bdrfuAoSCEeq3RpPR2rIW6itaKVtTz5rZ22adMFtNJGc6Sc50kZTlIiXLRXKWi+RMF44Ea6fHqZSKJYUWRv3IsSFDUxcKUx2MJqu1oehSF4pQ22F/lddHXShMQyjCD40Lm2Qxk2wxkxRLSNsWj8VMssWCx2rGYzaR2KE8MbZOMJt63FXXeFBKgc0WTYZ7Ea31EV312kqpM4nexjsKmKa1nh8rHwSsAtbEDp2ttb4yVjcFeIroQEjvAtdqrbVSKhX4LzAI2AycpbWuV9H70+8jegW3FbhIa72wq9rUUcvX31Bz/79JmjmTtCsuJ2AYOM0mnhw7GKUU2tDMfnMjYw7JxZPulORTCCH6MElAhRA/yGozkznQQ+ZAz3blAV+Y+gov9Vu91G1tpaGyldpyL5uW1GB0uD3W7rLEPlA68WRE10npThLTHSQk2/d63tLdjt+kyLJHnxXdHUbs6mp9KEJ9KExdKExjOEJDOLrfEIpuN4QiNIbDVARCNIYjNIUjO70teEcJseS04zrBbMZtMZFoju1bzLjNJtxtdW3bsXJX22Lq/mdeRZdZDpwGPLyTug1a64k7KX8IuAyYQzQBPQ54D7gR+ERrfbtS6sbY/u+IPrc6LLbsFzt/v85txs65pk0l49fXk3rhhTxVXstz5TW8PGEoabbox5DZb25g4QdbcCfbGH94QXeEJIQQIk4kARVC7BW700L24CSyB29/L2ckYtBc46ehKpqUNlb7aKr2Ub2lmY2LqrdLTpVJkZBix5PmIDHNQWKak4QUO4kpDhJS7SSkOLDau3cAEpNS7bffwp5NWeOPGDSFIzRFoglpdDFoDkdoDEdoiURoCRs0RyI0h7dtVwbDtIQjeCPR/R0HYdoVBThjyanL1CExNZtwmrbfdu6w3bZ2mBQuswmHKbrtbN+O7jvMpl5923FvobVeBez2FwpKqRzAo7WeHdt/BjiFaAI6EzgsdujTRAdJ+l2s/BkdHf5+tlIqWSmVo7Xe2mkN2QWTzUb6ZZfxTnUDf1hbytFpHpIs0X/by78sY+EHWxg7PY9xh+V3dShCCCHiTBJQIUSnMptN0dtvs1wwbvs6I2LQXBegqdpHc52fplofzbV+mmv9lKyqx9tYATskX3aXhYQUB+5kOwnJNtzJ9u2XJDvOBOs+D47UGRxmEw6ziUz2/rZjrTV+Q9MSidAaMfDGlrYEta28ra41YtBqRLd9bfsRg7pQEF9E0xox8BnRuuBeTrtlVao9GbWbVHuCajcp7KZtZXaTwrbdtgmbUtu2TbFtte3YtmNsbftq27E2pbDG3sMaO6afJsODlVKLgCbgj1rrr4A8oLTDMaWxMoCsDkllBdA2V00eULKTc76XgCqlLgcuBxgwYECnNOK7hhauXlnMZI+L/4wZhMWk2Ly0hi9fXMPAcWkccvYwuaIvhBD9gCSgQohuYzKborfgZjh3Wh8JG3gbArTU+2mui65b6gOxxU91STO+5uD3klRlUrgSrbiS7LiSbLg80cWZ2GEd27a7LD0iWd0VpRROc/RKZGcLGxq/EU1ItyWmsbKI0WGt8RkG/ti234jWBWLbAUMTMAz8sXPrQwZBIxQt19vqg4YmYOgdf1z7xATYTAqrUkxNcvPChCGd+OpdSyn1MZC9k6qbtNZv7uK0rcAArXVt7JnPN5RSY3b3PWPPhO7xj0Br/QjwCETnAd3T83e0qsXHhcs2UuCw8ez4QlxmE1prFn5YTHpBIsdcOqbLb8cXQgjRM0gCKoToMcwWE550J570nSeoEL3Ft7UxiLchEF0ag7Q2BmhtCuKNlVcXRxPVnV3wUyaFw23BmWjD4bbiTLTiTLDhSLDicFtxuC3Y3dYO+1bszp6dtO4ui0mRYDKTQPfd1qy1JqR1ezIaMAxCOrodjCWpwfZ6o/3YoNaEdihrrzM0IW2QZ+91gxgdtRfnBIBAbHuBUmoDMBwoAzrer5ofKwOobLu1NnarblWsvIy2eZi+f06X8ljMTEp088+RBaRaox89lFKc+PMJGBFjn+YdFkII0bvIX3whRK9iNptITHWQmLrzeUTbaEPjbw3R2hTE1xzC1xSMbrcE8bWE8LeE8DUHqSv34mtuwN8a+t6V1XYq+syr3WXB7oolqS4rNpdlW7nTgs1lweaIbccWu9OC1W7uEwns3lCq7bZaSIh3ML2QUioDqNNaR5RShUQHENqota5TSjUppfYnOgjRBcD9sdNmARcCt8fWb3Yov0Yp9RLRwYcau+P5T4A8h43/Toxera4ta2HBe5s5/IJR2J3yMUQIIfob+csvhOiTlEnhTLDhTNi9q2SGoQm2hvF7Q9GlJdS+HWgNx5YQfm903VwXIOCLbhvhH7lDUYHNbsYWS0atDgs2hxmbw4LVYcZmN2N1mKN1dsu2bVt0bbG31W0rN1mUPC/XhyilTiWaQGYA7yilFmutjwWmAzcrpUKAAVypta6LnXY126ZheS+2QDTxfFkpdSlQDJwVK3+X6BQs64lOw3JxV7drRw2Vrbx532JMJoWvOYg1bdd3OwghhOibJAEVQgjAZFLR2273Yt7ScChCoDVM0BfetvaFCfkjBHzR/aA/ut9x3doUJOSPEApECAbCP57IdqBMCovNhNUWS1BtJiw2M5a2tXVbmdlmwmI1YbHG6q0mzNttR+uia9N2a7MlujaZJOHtSlrr14HXd1L+P+B/uzhnPjB2J+W1wJE7KdfAz/c52L3UXOfnzXsXoQ3NzOsn4ZHkUwgh+iVJQIUQYh9ZrGYsSWbcSXs2bcuOImGDUCCWkPrDhAMGoWB0PxwrDwUihIIRwsFItD60rS4Sih7f2hgkHGw7ziAcMogEIzt9JnZ3KcW2ZNRiwmJpS1BVtNxiwtRx22zCbFWYzdHjzWa13dpkbqtT3y/bbl9haitrW0zRfatj3/+bi+7hbQzw5j2LCPojnPKrSaRku+MdkhBCiDiRBFQIIXqItuTN4d77aVx2RWuNEdGEQ0Y0eQ0aREIG4VAktjY6rCNEwrq9LBKORLfDmki4rczosB0tNyIGIX+ISERjxOqNiN5uHQlrtNE54+JmFyZx+m+ndMpria7lbwmhteakX0wgY0BivMMRQggRR5KACiFEP6CUar9aGe+BX7QRTYYjke0TVKN9f9u2ETGiCW37YrRvd0WiLrpGWl4C5/1tf8wy1YoQQvR7koAKIYToVsqkMJsUZqskI/2JJJ9CCCEgOqe3EEIIIYQQQgjR5SQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLbo8AVVKmZVSi5RSb++kbrpSaqFSKqyUOqND+USl1HdKqRVKqaVKqbO7Ok4hhBBCCCGEEF2rO66AXgus2kXdFuAi4IUdyluBC7TWY4DjgHuVUsldFaAQQgghhBBCiK7XpQmoUiofOBF4bGf1WuvNWuulgLFD+Vqt9brYdjlQBWR0ZaxCCCGEEEIIIbpWV18BvRf4LTskmHtCKTUNsAEbdlJ3uVJqvlJqfnV19V4HKYQQQgghhBCi63VZAqqUmgFUaa0X7MNr5ADPAhdrrb+XxGqtH9FaF2mtizIy5AKpEEIIIYQQQvRkli587YOAk5VSJwAOwKOUek5rff7unKyU8gDvADdprWf/2PELFiyoUUoV71PE26QDNZ30Wr1Bf2sv9L8297f2Qv9rc39rL3Remwd2wmv0WZ3Yv8rvaN/X39oL/a/N/a290P/a3Jnt3Wn/qrTWnfT6u6aUOgy4QWs9Yxf1TwFva61fje3bgPeAt7TW93Z5gN+PZ77Wuqi73zde+lt7of+1ub+1F/pfm/tbe6F/trk3648/r/7W5v7WXuh/be5v7YX+1+buaG+3zwOqlLpZKXVybHuqUqoUOBN4WCm1InbYWcB04CKl1OLYMrG7YxVCCCGEEEII0Xm68hbcdlrrz4HPY9t/7lA+D8jfyfHPAc91R2xCCCGEEEIIIbpHt18B7SUeiXcA3ay/tRf6X5v7W3uh/7W5v7UX+mebe7P++PPqb23ub+2F/tfm/tZe6H9t7vL2dsszoEIIIYQQQgghhFwBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQB7UApdZxSao1Sar1S6sZ4x9MVlFJPKKWqlFLLO5SlKqU+Ukqti61T4hljZ1JKFSilPlNKrVRKrVBKXRsr78ttdiil5iqllsTa/LdY+WCl1JzY7/d/Y9Md9RlKKbNSapFS6u3Yfl9v72al1LLYKOHzY2V9+fc6WSn1qlJqtVJqlVLqgL7c3r6mr/ev/a1vhf7Xv0rfKn1rX/udbhOP/lUS0BillBl4ADgeGA2cq5QaHd+ousRTwHE7lN0IfKK1HgZ8EtvvK8LAr7XWo4H9gZ/Hfq59uc0B4Ait9QRgInCcUmp/4B/APVrroUA9cGn8QuwS1wKrOuz39fYCHK61nthhvq6+/Ht9H/C+1nokMIHoz7ovt7fP6Cf961P0r74V+l//Kn1rVF9vL/SvvhXi0L9KArrNNGC91nqj1joIvATMjHNMnU5r/SVQt0PxTODp2PbTwCndGVNX0lpv1VovjG03E/1HlUffbrPWWrfEdq2xRQNHAK/GyvtUm5VS+cCJwGOxfUUfbu8P6JO/10qpJKJzQz8OoLUOaq0b6KPt7YP6fP/a3/pW6H/9q/St0rfGtvtUm+PVv0oCuk0eUNJhvzRW1h9kaa23xrYrgKx4BtNVlFKDgEnAHPp4m2O3zCwGqoCPgA1Ag9Y6HDukr/1+3wv8FjBi+2n07fZC9IPPh0qpBUqpy2NlffX3ejBQDTwZuxXsMaWUm77b3r6mv/av/eb3s7/0r9K3St9KH/udJk79qySgYjs6Oi9Pn5ubRymVAPwPuE5r3dSxri+2WWsd0VpPBPKJXn0YGd+Iuo5SagZQpbVeEO9YutnBWuvJRG9r/LlSanrHyj72e20BJgMPaa0nAV52uB2oj7VX9DF9+fezP/Wv0rf2C/2pb4U49a+SgG5TBhR02M+PlfUHlUqpHIDYuirO8XQqpZSVaOf4vNb6tVhxn25zm9htFJ8BBwDJSilLrKov/X4fBJyslNpM9Na+I4g+z9BX2wuA1rostq4CXif6Yaiv/l6XAqVa6zmx/VeJdph9tb19TX/tX/v872d/7V+lb+2T7QX6Xd8KcepfJQHdZh4wLDa6lw04B5gV55i6yyzgwtj2hcCbcYylU8WeV3gcWKW1vrtDVV9uc4ZSKjm27QSOJvpszmfAGbHD+kybtda/11rna60HEf13+6nW+if00fYCKKXcSqnEtm3gGGA5ffT3WmtdAZQopUbEio4EVtJH29sH9df+tU//fva3/lX6VulbY4f1qTbHq39V0auqAkApdQLR+93NwBNa61vjG1HnU0q9CBwGpAOVwF+AN4CXgQFAMXCW1nrHwRR6JaXUwcBXwDK2PcPwB6LPqfTVNo8n+sC4meiXTC9rrW9WShUS/RYzFVgEnK+1DsQv0s6nlDoMuEFrPaMvtzfWttdjuxbgBa31rUqpNPru7/VEogNh2ICNwMXEfr/pg+3ta/p6/9rf+lbof/2r9K3St9LHfqfbxKN/lQRUCCGEEEIIIUS3kFtwhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhehESqk0pdTi2FKhlCqLbbcopR7sgvd7Sim1SSl15R6e927bhNp78Z4TY3P67c25zth/j6BSKn1vXkMIIUT/I/3rj54r/avoNSzxDkCIvkRrXQtMBFBK/RVo0Vr/s4vf9jda61f35ASt9V51cDETgSLg3T09UWvtAyYqpTbvw/sLIYToZ6R//dH3lf5V9BpyBVSIbqCUOkwp9XZs+69KqaeVUl8ppYqVUqcppe5QSi1TSr2vlLLGjpuilPpCKbVAKfWBUipnN97nKaXUQ0qp2UqpjbH3fUIptUop9VSH4zYrpdKVUoNidY8qpVYopT5USjljx3yulCqKbafHzrEBNwNnx75pPVsp5Y69x1yl1CKl1MzYOWNiZYuVUkuVUsM6/T+sEEKIfk36V+lfRe8jCagQ8TEEOAI4GXgO+ExrPQ7wASfGOsn7gTO01lOAJ4Bbd/O1U4ADgF8Bs4B7gDHAOKXUxJ0cPwx4QGs9BmgATt/VC2utg8Cfgf9qrSdqrf8L3AR8qrWeBhwO3KmUcgNXAvdprScS/Ua3dDfjF0IIIfaW9K9C9HByC64Q8fGe1jqklFoGmIH3Y+XLgEHACGAs8JFSitgxW3fztd/SWuvYa1dqrZcBKKVWxF578Q7Hb9Jat5UtiB2zJ44BTlZK3RDbdwADgO+Am5RS+cBrWut1e/i6QgghxJ6S/lWIHk4SUCHiIwCgtTaUUiGttY6VG0T/XSpghdb6gL197dhrBTqUt732ro4HiADO2HaYbXdJOH7g/RRwutZ6zQ7lq5RSc4ATgXeVUldorT/djfiFEEKIvSX9qxA9nNyCK0TPtAbIUEodAKCUsiqlxnRzDJuBKbHtMzqUNwOJHfY/AH6hYl8lK6UmxdaFwEat9b+AN4HxXR2wEEII8SOkfxUiziQBFaIHij0LcgbwD6XUEqK39RzYzWH8E7hKKbUI6Dik+2fA6LZBEoBbACuwNHYb0i2x484CliulFhO93emZbotcCCGE2AnpX4WIP7XtzgQhRG8TG3nv7T0dJj7eVHSY+CKtdU28YxFCCCF2JP2rEF1HroAK0bs1AreoPZwoO15UbKJsot/oGnEORwghhNgV6V+F6CJyBVQIIYQQQgghRLeQK6BCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJd4BdJb09HQ9aNCgeIchhBCil1mwYEGN1joj3nH0VNK/CiGE2Bu76l/7TAI6aNAg5s+fH+8whBBC9DJKqeJ4x9CTSf8qhBBib+yqf5VbcIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtLvAPoaSo2NpI5yIPJpOIdihBCCCGE6KO01kQMTURrtIaIoTG0xjDA0NFyQ2vQYOhomQYMQwOx/Wg1OlanNURLaK/bEx0//Sq1fWnbvgKUUrE1KFR7ncn0/fK2bZOKnmdqqzOBKfY6JrXtWJNSsSV6vOh7JAHtoHpLM/+7cwFTjhvI/jOHxDscIYQQQgixDwxD4w9HaA1G8AUj+ELb1oGwgT8UwR+KEAgZ+MMRgmGDQGwJxpZAOEIoYhCKaIKRaFl03yAU1oQMg3BEE4oYhI1oUhmKGEQM3b4f7rBvxBJPY0+zw35qW1K6LYFtS1I71plNapf10bptx7YnuabtE95o2bbX61jX9vrmHc7bdlzsHNMO76EUZtO21zZ3XKto0m6O7auO7xsrM5tof9+21/+h8o6vuS2+bf8dvhfvDuVmk8LjsGAxd92NspKAdpBekMCoA3NY8F4xGQMSGTIpM94hCSGEEEL0O4ahafaHafSF2pcmf4hmf4hmf5hmf5iWQJhmf4iWQBhvIII3EC1rDUa3vcEw/pCx1zHYLCbsZhM2S3SxmjuszQqL2YTVrEiwWrCYtu1bTCYsZoXFpDCbTLF1dOm43fGDf8ckwdQhieiYULVdKST6/+2uGna8Ctl2dTK6Ha3bHbrD9VKt28ra9rev08Suvu5wBZYOV2q3P27b1VtN9Iqujl3Bbb+yq7cd23bF12jfbzt2274Ru2oMHa4e621Xltte0zA6vl7Hq82xY2PHb/c6BtEvDdpi6fDFgda0X502Ylew269a7/BeHd870ou+fHjv2kMYlePpsteXBLQDpRSHnjOCunIvHz+1iuQsF2m5CfEOSwghhBCiV/OHItR6g9Q0B6hpiS613iD13iB13hD1rcHo4g1S3xpNNvWPfEh328wkOqwkOCy47RbcNjMFbhdumxlXbN9ps+CymXHZzDis0bXTGt12WE3YLTtuxxJOs0lu/xRdpi35jnRITNsS6o63ZhtGLNndLnnVRIydJbXbXqMtMe6YUEc6JsyxpHrb+3RYG5osj6NL2y8J6A7MVhPHXT6OV26bx3sPLeOMG4twuK3xDksIIYQQoseJGJqalgBlDT62NvipbPJT2eynqilAZZOfiiY/1U0BmgPhnZ7vsJpIddlIcdtIddsoSHGR4rKS5LTicW6/TnJaSXRYSLRHk06zjNcheinVdnswCqs53tF0P0lAdyIhxc5xl4/ljXsW8dETKznx5+NlUCIhhBBC9DuGoalo8rOlrpUtda2U1LVSWu+jrMFHeYOPikY/4R3uJ7SZTWR67GR5HIzK9jB9mJ2MRDtpbhvpCXbSEqLr9AQ7Tls//PQtRD8nCegu5AxN5pCzh/PFC2uY+9ZGGZRICCGEEH2S1prq5gAbqr1srGlhY7WXjdUtFNdGk81gZNtzlGaTItvjIC/ZSdHAFHKTneQkO8lLdpDtcZKd5CDFZZXbV4UQuyQJ6A8Yc0gu1cVNMiiREEIIIXq9tkRzTWUzayqaWVvZzJrKFjZUtdDS4RZZh9XE4PQERmQncvSYLAakutqX3GQn1i4cHVMI0fdJAvoDlFJMP2cEtW2DEmW6SMuTQYmEEEII0bNFDM2mmhaWlzWxvKyRFeVNrK5oor411H5MeoKN4VmJnD45j8KMBAoz3BRmJJDjccijR0KILiMJ6I8wW00cf8U4Xr5tHu88uJQzfleEy2OLd1hCCCGEEED0ymZpvY+FW+pZtKWBZWWNrCxvwheKANHpREbleDh2TDYjshMZkZ3I8KxE0hPscY5cCNEfSQK6G9zJdk68ejyv/3Mh7/1nKTN/NQlLfxyySgghhBBx5w9FWFrayILi+vaks6YlAIDTamZsnoezpxYwNi+JsXkehmQkyG2zQogeo0sTUKXUccB9gBl4TGt9+w7104F7gfHAOVrrV2PlE4GHAA8QAW7VWv+3K2P9MZkDPRx50Wg+eHQ5nz6zmqMvGS0P2AshhBCiy/lDERYW1zN7Ux1zNtayqKSBYDg6MNDgdDfTh6czaUAKkwckMyIrEYskm0KIHqzLElCllBl4ADgaKAXmKaVmaa1XdjhsC3ARcMMOp7cCF2it1ymlcoEFSqkPtNYNXRXv7hg6JZPG6kJmv7GR5CwX02YMjmc4QgghhOiDDEOzvLyRL9dW8+W6GhZvaSAYMTApGJ3r4YL9B7JfYRpTBqaQ6pbHgoQQvUtXXgGdBqzXWm8EUEq9BMwE2hNQrfXmWJ3R8USt9doO2+VKqSogA2jownh3y+RjB9JQ0cq8tzeRnOVk+NTseIckhBBCiF6uqtnPl2tr+HJtNV+vr6HOGwRgTK6Hiw4axP6FqRQNSsXjsMY5UiGE2DddmYDmASUd9kuB/fb0RZRS0wAbsGEndZcDlwMMGDBg76Lc83g47Ccjaazx8enTq/GkOckuTOqW9xZCCCFE36C1ZkN1Cx+sqOSjlZUsLmkAoiPTHjo8g+nD0zl4aAYZiTJQkBCib+nRgxAppXKAZ4ELtdbGjvVa60eARwCKiop0d8Vltpo4/spxvPqPBbz7UHRkXE+6s7veXgghhBC9kGFoFpXU8+GKSj5cWcmmGi8A4/OT+PXRwzl8ZCajczwyBYoQok/rygS0DCjosJ8fK9stSikP8A5wk9Z6difHts+cCTZm/Hw8/7tjAW/dv4TTfjMZZ4I8hyGEEKJrKaWSgceAsYAGLtFaf7fDMYcRHeTPCtRorQ/d3XNF59Jas7ysibeWlvP2knLKG/1YzYr9C9O45ODBHD0qi+wkR7zDFEKIbtOVCeg8YJhSajDRxPMc4LzdOVEpZQNeB55pGxm3J0rJdnPCVeOZdd9i3nlgKTOvm4TVLtOzCCGE6FL3Ae9rrc+I9ZeujpWxJPNB4Dit9RalVObunis6z7rKZmYtKeetJeVsrm3FalZMH5bBb44bwZGjsuRZTiFEv9VlCajWOqyUugb4gOg0LE9orVcopW4G5mutZymlphJNNFOAk5RSf9NajwHOAqYDaUqpi2IveZHWenFXxbu3coclc8zPxvD+w8v44NHlHH/VOMwy/LkQQoguoJRKIto/XgSgtQ4CwR0OOw94TWu9JXZM1R6cK/ZBoy/EW0vKeWV+CUtKGzEpOHBIOlcdNoRjx2ST7JI7pYQQokufAdVavwu8u0PZnztszyN6a+6O5z0HPNeVsXWmwokZHHreCD5/fg2fP7uaIy4cJXOECiGE6AqDgWrgSaXUBGABcK3W2tvhmOGAVSn1OZAI3Ke1fmY3zxV7yDA0szfW8vL8Et5bXkEgbDAyO5E/zRjNSRNyyEyU22uFEKKjHj0IUW8y5pA8vI1B5r29CVeSnQNOHRLvkIQQQvQ9FmAy8Aut9Ryl1H3AjcCfdjhmCnAk4AS+U0rN3s1zgfiMMt/b1HuD/Hd+Cc/PKaakzkeiw8JZRQWcVVTA2DyPfBEthBC7IAloJ5p64iC8jQEWflCMK8nGhCMKfvwkIYQQYveVAqVa6zmx/VeJJpE7HlMbu7LpVUp9CUwAvtqNc4H4jTLfG6wob+Tpbzfz5uJyAmGD/QancsMxIzh2TDYOq4wDIYQQP0YS0E6klOLQc0fgawry9SvrcCZaGT41O95hCSGE6CO01hVKqRKl1Ait9RqiVzlX7nDYm8C/lVIWovNo7wfcs5vnip0IRwzeW17B099uZn5xPU6rmdOn5HPhAYMYkZ0Y7/CEEKJXkQS0k5lMimMuHcNb9y/h4ydXYbGaKZyYEe+whBBC9B2/AJ6PjWK7EbhYKXUlgNb6P1rrVUqp94GlgAE8prVevqtzuz/83sMXjPDKghIe+XIjpfU+Bqa5+OOJozizqIAkp4xiK4QQe0Np3TfurCkqKtLz58+Pdxjtgv4ws+5bTHVJMydcNZ6BY9LiHZIQQoidUEot0FoXxTuOnqqn9a/dobE1xDPfbeapbzdT6w0yeUAyVx02lCNHZmIyybOdQgixO3bVv8oV0C5ic1g46RcTeOOeRbz3n2XMuGYC+SNS4h2WEEIIIXahqtnPo19u5IU5W/AGIxw+IoOrDhvK1EEpMqiQEEJ0EklAu5DdZeXkayfyxt2LeOfBpZz8iwnkDE2Od1hCCCGE6KDOG+ThLzfw9LebCUU0J43P4YpDhzAqxxPv0IQQos+RBLSLORNsnHztRF6/ayFv/3sJM381icyB0qEJIYQQ8dboC/H4Vxt5/OtNtIYinDIxj2uPHMagdHe8QxNCiD5LEtBu4E6yM/O6Sbx+10Jm3beYU66fTHp+QrzDEkIIIfql1mCYJ7/ZzMNfbKDJH+bEcTlcd9QwhmXJiLZCCNHVTPEOoL9ITHVwyq8mYbWbeeOehVRvaY53SEIIIUS/YhiaV+aXcNidn3PnB2uYNjiVd355MA/8ZLIkn0II0U0kAe1GnnQnp1w/GZvdwhv3LKJiU2O8QxJCCCH6he821HLSv7/mN68uJTfZyf+uOoDHLpzKmNykeIcmhBD9iiSg3Swpw8kpv56EI8HKrHsXU76uId4hCSGEEH3Wphovlz8zn3MfnU1Da4j7zpnI61cfyJSBqfEOTQgh+iVJQOPAk+bk1Osnk5Bi5637F1O6ui7eIQkhhBB9SmswzG3vreKYe77gm/U1/ObYEXzy60OZOTFPplQRQog4kgQ0ThJS7Jxy/WQ86U7efmApxStq4x2SEEII0Sd8vLKSo+/+koe/2MjMiXl89pvD+PnhQ3FYzfEOTQgh+j1JQOPI5bFxyvWTSMl28e5DS9m4uDreIQkhhBC9VlmDj8ufmc/PnpmP227mlSsP4J9nTiAz0RHv0IQQQsRIAhpnzgQbM6+bREZBIu8/vIyVX5fHOyQhhBCiVwlFDB75cgNH3fUFX66r5sbjR/LOLw9h6iB5zlMIIXoamQe0B3C4rcy8bhLvP7Kcz55bjbcxQNEJg+QZFSGEEOJHrKlo5tevLGZ5WRNHjcrkLyeNoSDVFe+whBBC7IIkoD2E1W7mhKvH8fmzq5n71iZaG4Mccs5wTCZJQoUQQogdhSMGD3+5kXs/XovHYeWhn0zm+HE58Q5LCCHEj5AEtAcxm00cceEoXEl2Fn5QTGtzkKMvGY1FBk0QQggh2q2rbObXryxhaWkjJ47P4eaTx5CWYI93WEIIIXaDJKA9jFKKA04dgivJxtevrOOtfy3hhKvGYXdZ4x2aEEIIEVfhiMGjX23ino/WkuCw8MB5kzlxvFz1FEKI3kQS0B5qwhEFuDw2Pn5yJf+7YwEn/nw8SRnyTIsQQoj+qbS+leteWsz84nqOG5PN/506lnS56imEEL2OjILbgw0ryuLkX06ktTnIq7cvoGxtfbxDEkIIIbrde8u2csJ9X7G6opl7zp7AQ+dPluRTCCF6KUlAe7i8ESmc8bsinIlWZt23mJXfyDQtQggh+gdfMMIfXl/GVc8vZHC6m3d+eTCnTsqXUeKFEKIXkwS0F0jOdHH6b6eQNyKFz55dzdevrsMwdLzDEkIIIbrMmopmZj7wNS/M2cIVhxbyypUHMjDNHe+whBBC7KMuTUCVUscppdYopdYrpW7cSf10pdRCpVRYKXXGDnXvK6UalFJvd2WMvYXdZWXGz8cz7vB8lnxcwrsPLiXoC8c7LCGEEKJTaa15ce4WTv7319R5QzxzyTR+f/wobBb5zlwIIfqCLvtrrpQyAw8AxwOjgXOVUqN3OGwLcBHwwk5e4k7gp10VX29kMpuYfvZwDj1vBFtW1vHqP+ZTt9Ub77CEEEKITuEPRfjd/5by+9eWMW1wKu9dewjTh2fEOywhhBCdqCtHwZ0GrNdabwRQSr0EzARWth2gtd4cqzN2PFlr/YlS6rAujK/XGjs9j+QsFx8+tpxXbp/PEeePZNjUrHiHJYQQ4kcopZbuxmHVWusjuzyYHqaswcdVzy1gaWkjvzhiKNcdNRyzSZ71FEKIvqYrE9A8oKTDfimwX2e+gVLqcuBygAEDBnTmS/d4+SNSOOsP0/jg0eV8+PgKtm5s5KDTh2KWW5SEEKInMwMn/EC9AmZ1Uyw9xjfra/jFi4sIhQ0e+ekUjhmTHe+QhNgprTVhI0wgEiAQCRAyQgQjwZ2uw0aYsBHetq3D7WVhI0xER7ZbG9ogoiNEjEj7dsf1jotGb9vWGoNt2xq9bY0m+v/o+CFtdW3b7W1j98YXUbH/QXT++vZtFNH/f7/+e+u27R33UZiUCZOKfp7d2XbbMe1rte0ckzJhYvsyhcKszN8r2+6cnZS1ndNx3fE9TKbYeofX+cHzYvU7O2fHczvu9zW9eh5QrfUjwCMARUVF/W5UnoQUO6f8ehLfvbaBJZ+UULW5ieMuH0tCiiPeoQkhhNi5K7TWxT90gFLq6u4KJt601jz85UbueH81QzISePinUyjMSIh3WKKXM7SBN+SlJdgSXYdaaA214g178Ya8tIZaaQ234gv72pfWUHQ/EAngD/vxR/wEwoHoOpZsBiNBApFAl8a+Y0JiUZadJjHtCU6HpKljAgfsNLlr873EsUP5D2lLamH7RLbj/k4T3Vi5oY3t6toS6bZjDGIJdMdt9HYJd8fzOu63JeB9TcefccfE1GTaPpnd422T+fuvGVvfMPUG8hLyuqxNXZmAlgEFHfbzY2WiE5nNJg4+cxjZhUl8+swq/nvrPI65ZAwFo1PjHZoQQogdaK2/7oxj+gJ/KMINryzh7aVbOXFcDnecMR63vVd/Ly46WSASoN5f3740BBpoDDbSGIguTcEmmgJN0XWwiZZQS3vSuTtX8xQKp8W5bbE6cZqd2C120qxpOCwO7GY7drMdh8WBzWTDZrZhN9uxmaPbbWVWkxWr2YrNZMNqtmI1WbGYLFhMlvZtq9pWZjaZo9squm1W5j57tau7aa2J6Eh7khvRkfYkNaIjALu8otx2bMd1+zEYGMa2RLfj8oPndThmV+fsav+Hynd83V1dOd/l6xgRQjq002NDkVCX/oy68i/9PGCYUmow0cTzHOC8Lny/fm3olEzS8ty89/ByZt2/mElHDWC/kwsxW+WWXCGE6GmUUgcBfwUGEu2LFaC11oXxjKu7VDX7ueyZBSwtbeDG40dyxfRC+eDdT4SMEDWtNVS2VlLtq6bWV0uNr4Zaf2ztq6XOX0edvw5f2LfL13FZXCTZk0iyJ+GxeRiQOIBEWyKJtkQSbAkkWBNItCXisrpIsCbgtrpxWVzRtdWFy+LCbrbL710fpJTCouTLrJ6sy346WuuwUuoa4AOiz7w8obVeoZS6GZivtZ6llJoKvA6kACcppf6mtR4DoJT6ChgJJCilSoFLtdYfdFW8fUFKtpszf1/EN6+uZ9FHWyhZXcfRl4whNUfmTRNCiB7mceBXwAIgEudYutXqiiYufWo+dd4g/zl/CsfK8559hqENan21lHvL2dqyla3erZS3lFPhraCytZKq1irq/HXfuzqpUKQ6UklzppHuTGeQZxApjhRSHCkk25Oj2/bodpI9CY/dg9VkjVMrhRD7SnW8d7s3Kyoq0vPnz493GD3GpiXVfPrsasKBCAedOYwxh+TKt3xCCLETSqkFWuuibn7POVrrTh2Yr6t0Zv/62ZoqfvHCItx2M49fOJWxeUmd8rqi+wQjQUqbS9nSvIWS5pL2pbS5lLKWMkLG9rfuJdoSyXHnkOnKJMuVRaYrc7sl3ZlOsj0Zi0muWAnR1+yqf5V/7X3U4AkZnDPIwydPr+KLF9ZQvLyWI346EmeiLd6hCSFEv6WUmhzb/EwpdSfwGtA+qonWemFcAusGT32ziZvfXsmoHA+PXziV7CQZMK8naww0srFxI5saN7GpcVP7dllL2XYDvbitbgoSCxiWMozDCw4nJyGHXHdu+zrBJoNKCSG2JwloH+ZOsnPSNRNY+lkp376+nhdvnsP0c0YwdEpmvEMTQoj+6q4d9jt+M6yBI7oxlm6hteZvb63kqW83c9SoLO47Z6IMNtSDBCNBNjZuZF39OtbVr2Ntw1rW1a2jylfVfozdbGegZyCj00ZzYuGJDPQMpCCxgILEAlLsKXKHlRBij0gP0Mcpk2LCkQXkj0zhk6dX8cGjy1k3P4Pp5wzHnWSPd3hCCNGvaK0P31WdUiqrO2PpLkopkl1WLjtkMDcePwqzSZKVeAlGgqyrX8eK2hWsrF3JytqVrGtYR9gIA2A1WRmSPIT9cvZjeMpwCpMLKUwqJMedg9lkjnP0Qoi+QhLQfiItL4EzfjeFxR+XMPetTby4Zg4HnzWMEftlyzeXQggRJ0qpZOB0oqPEjwJy4xpQF7n2yGHS13QzrTVbvVtZUr2ExVWLWVK9hDX1a9qTTY/Nw+i00Vww+gJGpo5keMpwBngGyOA+QoguJwloP2Iym5h87EAGT0jns2dX88lTq1g3r5LDfjKSxFR5FkcIIbqDUsoJzCSadE4CEoFTgC938/xk4DFgLNHbdi/RWn+3wzGHAfcCVqBGa31ohzozMB8o01rP2Je27C5JPrueoQ3W1q9lXsU8FlUtYknVkvbbaJ0WJ2PTx3LB6AsYnTaa0WmjyU/Il5+LECIuJAHth1Ky3Zz668ks+6KU797YyAt/m8PUEwYx4cgCzBaZN1QIIbqKUuoF4BDgQ+B+4FNgvdb68z14mfuA97XWZyilbIBrh/dIBh4EjtNab1FK7fjg/7XAKsCzV40QPYLWmvUN65lbMZd5FfOYXzmfxkAjALnuXIqyi5iQMYGJmRMZnjJcRpkVQvQY8teon1ImxfjDCxg0Lp2vXl7Hd69vYNW3W5l+9nAKRqfGOzwhhOirRgP1RBPAVVrriFJqt+dDU0olAdOBiwC01kEguMNh5wGvaa23xI6p6nB+PnAicCtw/d43Q8RDvb+e78q/4+uyr/mm/Bvq/HUA5CXkcXjB4UzLnsbU7Klku2VuVSFEz7XLBFQptTtZiKG1bui8cER386Q7OfHq8WxeVsNXL69j1r8WM2RSBgedOUxuyxVCiE6mtZ6olBoJnAt8rJSqARKVUlla68rdeInBQDXwpFJqArAAuFZr7e1wzHDAqpT6nOjtvfdprZ+J1d0L/DZWLno4Qxssr1nO12Vf83XZ1yyvWY5Gk2xP5sDcA9k/Z3+m5UwjLyEv3qEKIcRu+6EroOWx5YceEDADAzo1ojhb3NTK+EQnpn72XMSgcenkj0xh8UdbWPBeMcUraply3CAmHlWAxSYj3wkhRGfRWq8G/gL8RSk1hWgyOk8pVaq1PvBHTrcAk4FfaK3nKKX+n737DqyjuBYw/s3ert4lW8Vy7zY2xvTeCSXhQWihEwKEGkhCEtJIQkvDCQm919BCD71XYxtcwL1Lli1ZktWlW/a8P/ZKvpKbbEu6Kuf33mZ3Z2f3nmsZr87OzswM4Hrg1x3q7AkcDgSAz4wxn+MkpuUiMjvaR3SbjDEXAxcDFBX1q9t8rxeKhPhyw5e8u+Zd3lvzHuVN5RgME7Mncukel3LA4AMYlzlOR6VVSvVZ20tAF4rIlO2dbIz5qovjiat5dY0cN3sJVw3J5efDBsU7nB7n9riYdtxQRu2dxyfPLOOLl1bwzUelTD9hKKP3GYSlQ+crpVSXEpHZwGxjzE9x+obuSAlQIiJfRPefxUlAO9apjLaKNhhjPgQm4ySuJxpjjgP8QIox5jER+cFW4roHuAdg2rRpnX5FWO2alkgLH5V8xNtr3ubDtR9SF6oj4A6w/+D9OazoMA7MP5A0f1q8w1RKqS6xvQR0306c35k6fcbEpACnDcrg76s3MDLRz8m56fEOKS5SMgMce8lESpdU8+lzy3j3kUV8/fZa9jt5BEXjM3TUPKWU2kXGmIujyV07IiJER8HdVp1ovfXGmLXGmNEishinlfPbDtVeBO4wxrgBL7A38HcReQb4RfQzDgGu21ryqXpG2A4zc/1MXlvxGu+seYf6UD2pvlQOKzqMw4oOY7/B++F3a1cYpVT/s80EVESaW7ejQ7bnxtYXkTWxdfoDYwy3jipgZWML1yxaQ7Hfy9TUxHiHFTf5o9I55fppLJ9TwWcvLOeVO+aSPzqN/U4eQc4QHTxRKaV2wfXRfp/bYnBGqd1qAhp1BfB4dATcFcD5xphLAETkLhFZaIx5HZgH2MB9IrKga8JXu0NEWLBxAa+ufJXXV75OZXMlSZ4kDi86nOOGHsf0QdN1tFqlVL9nnIeu26lgzBU4fVU24NzIwHlYO6mbY9sp06ZNk1mzZnXJtSqDYY6bvYRG2+Z/e46iwO/tkuv2ZZGwzTcflfLlq6torg9RPCmL6ccPJbtIx7FQSvVtxpjZIjKthz7rwU5UqxGRq7s7ls7qyvvrQFXVXMXLy1/mv0v/y/Ka5XgtLwcXHsxxQ4/jwIID8bl88Q5RKaW63Lbur51JQJcBe4tIZXcF1xW6+ga5uKGZ42cvoSjg5aUpI0l0a2d/gJamMPPeXcvcd9bS0himeGImex0/VFtElVJ9Vk8moH2RJqC7JmJH+Lzsc55b+hzvrX2PsB1mUvYkTh5xMkcVH0WyVx/gKqX6t23dXzvznsdaoKbrQ+rdRif6uXt8MT+Yt4IfL1zNAxOGDriRcbfGF3Cz13eGMumwQua/t5av317LMzfPYsjETPY6bii5QzURVUopNXBVN1fz3NLneHrx05Q1lJHmS+OMMWdw8oiTGZE+It7hKaVU3G1vHtDWCapXAO8bY14FWlqPi8jfujm2uDssM4UbR+Zzw9JSbl5Rxq+GD453SL2GL+Bm2nFDmXRoIfPeL+Hrt9fw7K2zyB+Vxh5HFDFkQiZGR81VSik1QCyuWswTi57g1RWv0hJpYe+8vbl22rUcWngoXpd25VFKqVbbawFtfTdkTXTxRheAATMk+4X5WSxpaOafa8oZluDjjEGZ8Q6pV/EG3Ew7tphJhxbwzUfrmPfuWl799zzS8xKYfHgho/fJw+3R15eVUiqWMcYlIpF4x6F2T8SO8N7a93h84ePM2jALv8vPicNP5IwxZzAyfWS8w1NKqV5pe6Pg/n5r5cYYP3BCt0XUyxhj+NPIAlY3Bblu8VpyvB4Oz9TXTDvy+t1MObKISYcVsHx2OV+/vZb3H1/MFy+tYMLBBYw/cDCJqTrIglJKRS01xjwHPCgiHadRUb1cKBLi5RUv8+CCB1lVu4rBiYO5ds9r+d7I75HqS413eEop1at1aqzv6DQsRwNnAEcCHwPPdGNcvYrHMtw/oZjvfrWMH36ziuf3GMEeKQnxDqtXcrksRk3PY+Reuaxbsomv3l7Dl6+sZPZrqxg6OYvxB+VTMDpdX89VSg10k4HTgfuMMRbwAPCUiNTGNyy1PY2hRp5d8iwPf/sw5Y3ljM0Yy18O/gtHFB2By9K3fZRSqjO2OwquMeZg4EzgOGAmsD8wTEQaeya8zuuJUfo2tIT4zpwlNEeEV/ccyZCAtuh1xqYNjXzz8ToWfVpGc0OI1JwA4w/MZ+y+g/AneeIdnlJqgIv3KLjRe+0TQBrwLPAHEVkWr3g60lFwoS5Yx2MLH+OJhU+wqWUT03Kn8cOJP2TfwftidIBCpZTaqp2ehsUYU4LT9/NO4AURqTPGrBSRod0b6q7pqRvk0oZmTpyzlHSPm5emjiTLqxNGd1Y4FGH5nAq++aiUsmU1WG7D0ElZjN47j6IJmbhcVrxDVEoNQPFIQKNvFn0HOB8oBh4FHgcOBG4SkVE9Gc/2DOQEtDHUyBOLnuDBBQ9SG6zlkIJDuHDiheyRs0e8Q1NKqV5vV6ZheRb4LnAaEDHGvMgAGnxoW0Ym+nlk0jBO/XoZ58xfwbN7jCBBE6dOcXtcjN47j9F751FZWs+3n6xj6ZcbWD6nAn+Sh5F75TJ67zxyhiTrE2WlVH+3FHgP+LOIfBpT/qwx5qA4xaSiWiItPLP4Ge6dfy9VzVUcVHAQl+9xOWMzx8Y7NKWU6vN29AquAQ7B6ft5HJAKXAi8JiL1PRFgZ/X0E9r/VWziwgWrOCIzhQcmDMWtfRp3SSRis/bbKhZ/vp6VczcSCduk5yUwYs8chk/NIWNwoiajSqluFacW0ANE5OMOZfuLyCc9GUdnDKQW0LAd5sVlL3LXvLtY37Ce6XnTuWLKFdriqZRSu2CnX8HdygU8bB6I6GgRyeraEHdPPG6QD5Vu5PolJZyel8HfxhRiaaK0W1oaQyybXc6SmRtYt2wTCKTlJjB8ajYj9swhMz9Jk1GlVJeLUwI6R0Sm7qisNxgoCegnpZ/wl1l/YdmmZUzKmsQVU69gn0H7xDsspZTqs3blFdx2RCQEvAK8YowJdPJDjwFmAC7gPhG5pcPxg4DbgUnA6SLybMyxc4Ebort/FJGHOxtrTzkvP4uKYIi/rtpAosvijyPzNUHaDb4ED+MPzGf8gfk01LSw8usKls2pYM7rq5n9v9WkZgconpxF8YRMBo1Iw+XWV5+VUn2LMWZfYD8g2xjzk5hDKTj3StXDVtSs4C9f/oWPSj+iMLmQ2w+5ncOKDtP7uVJKdZNtJqDGmHtE5OKtHRORph3ViQ6w8C+caVtKgC+NMS91mO9sDXAecF2HczOA3wLTcPqdzo6eW93ZL9ZTrivOoz5ic/faCpLcLn4xbFC8Q+oXElN9TDi4gAkHF9BUF2TF1xWs+KqC+e+XMPfttXj9LgrHZTBkQhZDJmSSkOKNd8hKKdUZXiAJ5/6bHFNeC5wSl4gGqE3Nm7hz7p38Z/F/CLgDXLvntZw59ky8Lr2fKKVUd9peC+h3jTHN2zlugEO3c3w6sExEVgAYY54CTgLaElARWRU9Znc492jgLRGpih5/CzgGeHI7nxcXxhh+N3wwTRGbGas3kGBZXFWcG++w+pVAsretZTTYHKZkUTWr529k9YJKls+pAANZBUkUjMmgYEw6g0ek4fFpQ4JSqvcRkQ+AD4wxD4nI6njHMxDZYvPskmeZMWcG9aF6Th11KpftcRkZ/ox4h6aUUgPC9hLQn3bi/I+2cywfWBuzXwLs3ZmgtnFufifP7XHGGG4ZVUBDxObmlWUkui0uKsiOd1j9ktfvZtge2QzbIxsRYePaelYv2EjJomrmvbeWr99ag+Uy5A1LbUtGc4am4PFqQqqUij9jzO0icjVwhzFmi0EYROTEno9q4FhctZgbP7uReRvnMT1vOtdPv56R6SPjHZZSSg0o20xAe2Ofy46MMRcDFwMUFRXFNRbLGGaMKaIxYnPD0lISXBZnDsqMa0z9nTGG7KJksouSmXbcUELBCGXLNlGyqJqSRdXMfGUlCFiWIasomUEjUhk0PJVBw9P0lV2lVLw8Gl3/Ja5RDDCNoUb+/fW/eWzhY6T6UrnpgJs4ftjx2s9TKaXioNODEO2CUqAwZr8gWtbZcw/pcO77HSuJyD3APeCM0rcrQXYlt2W4a/wQzp23kmsXrcVvWZycmx7vsAYMj9dF0bhMisY5iX9zQ4j1K2ooW15D2bJNLHi/lLlvOw3ryZl+coakkFucQk6xk8R6/d35n4NSSoGIzI5uzgKaRMSGtnETfHELrB97b8173DTzJtY3rOeUUadw9dSrSfWlxjsspZQasLrzN+4vgZHGmKE4CeXpwJmdPPcN4CZjTGv2dhTwi64Psev5LIsHJg7lrHnLufzb1dginJKn/UriwZ/ooXhiFsUTnRmDIiGbirV1lC2rYcOqWspX17J8TrlT2UB6XiLZRUlk5SeTWZBIVkGytpQqpbrLO8ARQOuc2gHgTZwRclUXqG6u5o+f/5E3V7/JiLQRPHrsozqfp1JK9QI7TECNMRNFZP7OXlhEwsaYy3GSSRfwgIh8Y4y5EZglIi8ZY/YC/gukAycYY34vIuNFpMoY8wecJBbgxtYBifqCBJfFY5OGce68lVyxcA0hEc7Q13HjzuWxyBuWSt6wzU++m+qC0WS0jvLVtZQu3sSSLza0HQ+keMkqSCJjcCIZgxJJz0skPS8Bf6InHl9BKdV/+EWkNflEROqNMQnxDKg/eWf1O9z4+Y3UBmu5csqVnDfhPDyW/rutlFK9QWdaQP9tjPEBDwGPi0hNZy8uIq8Br3Uo+03M9pc4r9du7dwHgAc6+1m9TaLLxSOThnH+/JVcs2gtYRHOHpwV77BUB4Fkb7tWUoCm+iCVJfVsLKl31qX1LPhgE5HQ5sGaE1K8pA9KIC03kdTsAGk5AVKzE0jJ9uP26IBHSqkdajDGTBWROQDGmD2BpjjH1OfVtNRw88ybeXXFq4zNGMu9R93LqPRR8Q5LKaVUjB0moCJyoDFmJHABznycM4EHReStbo+uj0twWTw8cSgXLFjJTxeXELKFC3R03F4vkOSNTumy+dVp2xbqKpuoLmukan0D1WUNVK9vZNmsDbQ0hjefbCAp3UdqVoDkTD/JGX6SMwOkZPpJzvSTmO7D5bLi8K2UUr3M1cAzxph1ONOa5QGnxTWiPu7Dkg/53ae/o7q5mssmX8ZFky7SVk/VLUQEwmHslhakpQUJBpGWFuxgEGkJIsEWJBTavARb10EkHEbCzj7hsLMfCiORMEQiSDjibIcjSCS6HbHBjh6zIxCxnbUtYHfYFrttGxEn1ug2IggCQts+Iq1fylnRut/JPwwTu2nAxCwQ3d7Ksdhyy2pfZqzNZZZx9k1rvfbHjWUguh+73XZe67bl2qKOcVnR7c3Ht1rXZWEsCyxXzHGDcbnARK9jtcYQU8/lcmJ0ucByOdezXO3rx17D5YqeH3Osrb6rfZ2Yuq37WFafGVitU31ARWSpMeYGnEET/gFMMc43/KWIPN+dAfZ1TtZLqAAAdo5JREFUfpfFgxOH8sMFq/jl0lIiAj8s1CS0r7EsQ2p2AqnZCRRPat+S3dwQoqa8iZqKRjaVN1FT3khdZTNrF1bTUNPS/h9x47SeJqX5SEzzkZTuJyndR2Kql4QUHwmpXhJSvPgTPc4/VEqpfklEvjTGjAFGR4sWi0gonjH1Vc3hZm778jaeWfIMI9JGcMfhdzAuc1y8w1K9hN3Sgl1fj11XR6S+Abu+ztlvaMBubIxZNzrrpibspiakqQm7uXnzdksL0tzctsbuOIX9bnK5nITD7ca0bm+xtpzkp23tchIOK5oktSZqLqstsTNtSZuBLZJAnASpNYs021hvi0j77bYENyaJbZfoRhPijuW2HS2XtqS5LZHueNy2QaL7W0u0W+tGIpvLI5EtyzvW7eqfZ7xYW0lSt5KsbrGOJrmtf7fy//JnvMXF3RZmZ/qATgLOB74DvAWcICJzjDGDgc8ATUB3wGdZ3DehmEu/Xc2vl5XSbNtcXpTTZ55SqO3zJ3rwD/WQOzRli2ORkE1ddTN1ldGlupmG6hYaNrVQU9FE6ZJNBJvCW5xnLENCsodAipdAspdAkodAkhd/kodAsrPtS3TjS/DgT3TjS/Tg9vSdJ19KKcBJPscBfmCqMQYReSTOMfUpy6qX8dMPf8qyTcs4f/z5XD7lcrwuHTyuP7Kbm4lUVhKu3kRkU3Sprt68XVNDpLYGu6aWSK2z2LW1TktjJ1gJCZjEBKxAAlYggOX3YwIBPKmpGL8Pyx9w1j5/dN+P8fqcba8X4/NhPF6M11ksnxfj8YDHg+m4uN2b1263k3Ra+nZUvG0tWZXW1uNIpH1ZawLbuo4mts5xcVqsI06yvLUyaU16bdsp28oxiXRs7Y60r9tuHVN3O2vn+vbm77HVdQTc3fv2SGdaQP8J3IfT2tnWP0VE1kVbRVUneC2Lu8YVc8XC1fxpRRkbQ2F+O3wwliYM/ZrLY5GWk0BazrbHFgk2h2msCdJY27q00FgTpKE2SFNtkKb6EDXljTTVhQi1RLb9WW4LX4IbX4Ibb8CNL+CsvQlufH43Hr8Lb3Tt8cVse519j8+F2+fC47Ww9DVh1YuJLdi28xTd5embf1eNMb/FmW5sHM5YCccCHwOagHaCiPDMkme47cvbSPQkcvcRd7Nfvg4g3NdIJEKkqopQeTnh8nLC5RXOuqKCcFUlkY2VhKuqiGzciN3YuM3rWKmpuFJSnCU1BfegQbiSk3GlpmAlJWMlJ+FKSsJKTsZKTMJKSsSVmIiVmOgknoGAJoDKeYjvdlIj/e28e3UmAf2viDwaW2CMuUpEZnQsV9vnsQz/HjeEDI+bu9dWUBkM8/cxRXj0VcsBzet34/W7Scvd8QCY4VCE5voQTXUhWhpDNDeEo+sQLQ1hmhtDBJvCBJvCNDeGqa1spiW6HzuI0o5YboPH68LlsXB7LNxeV9va5bFwuZ1yl9ty9j0WLpfB5baw3BYud3Tb5WxbLoPlsqLrmG3LWUx027TuW86NYGv7xrTf3vxqkdNybGhfRvQto819UGK+aGf+03PeGmrrNyMx5RLzmpFA9HWfzfUl+kfe+sqRRI9v3u9wzG6tE7vd/hjRbVsEYuvEJGW2LVtex26/7bzF5NSx7fbH2+3b0vZZdtt1oteIfm7rZ7eeY8fWabeOOSaCHWndBjtib/78SPvjdmws9uZXvgYNT+Xkn+7Z6b/XvcwpwGTgKxE53xiTCzwW55j6hNpgLb/79He8tfot9hu8H3864E9kBXSQv97IbmggWFJKqLSEUFkZ4bIyQuvKCK1f7+yXlzstTh24MjJwZ2biyswkMHEirswM3JlZuDLScWdk4EpLw5We7qxTUpxWRKVUn9GZ/2LPAW7vUHYeMKOrgxkILGP408h8crxublm5nqpQmHsnFJPo0pFT1Y65PS6S0l0kpft3+txIxCbUHCHUEiHYFHbWzWHCLTahoFMejlmHg7azDtnOEi0LNoWJhG0i0fJIyHb2wzZ2uH2CoPouY6IJfWvS3/owwEQfCMTutz5AMGC5Ws9p/wDBsgzGvflBQ7uHC9H61hYPImLOtbY8NznDF+8/pt3RJCK2MSZsjEkByoHCeAfV282rmMdPP/gp5Y3lXLPnNZw3/jwsoy1X8RSuria4chXBVasIrllNaG0JwZK1hNaWEKlqP4Oe8XhwDxqEJy+PxOnTcefl4c7NwZOTgzs7G3dODu7MTIxXX6NWqj/bZgJqjDkDOBMYaox5KeZQMtBn5uTsjYwxXF2cR5bXw88Wr+XUr5fz2KRhZHj0CZ7qPi6XhSvR6vY5TG1bsCM2kbAQCdnYEWffWQu2HbstSHQdu93Wcmd32JfNLXyIRMcMiGl1jG1hdA45q9bR/WJz43Z5cuvONppE2w3oZ9qXY7Y83tpK21re2kLbmtRFm2SNFR0DIpqAtZ5nWdHt2Bbf1lZdy3mQFdsqHHteW3mHOrFJpDM2hWmXYHbc1/7E3W6WMSYNuBeYDdTjjKugtqL1ldubZ95MbkIuDx/7MJOyJ8U7rAFDbJtQaSktS5fRsnQpwRUrnIRz1SoiNTGz87lceAYPxltYgP/ww/EUFuItLMCTn49n0CBcmZn6qqtSarstoJ8CZUAW8NeY8jpgXncGNVD8YHAmGR4Xl367mpPmLOWpycPJ9+tTP9W3Oa/Vupz+64F4R6NU7yQil0U37zLGvA6kiIjeW7eiJdLCTV/cxPNLn2f//P259cBbSfWlxjusfitSU0PzwoU0L1xEy+LFtCxbRsvy5UjT5mlq3bm5eIcOJfnYY/ANHYq3uBhvcTGe/Hx9HVYptUPb/FdCRFYDq4F9ey6cgee47DSenOTm3PkrOG72Eh6eOIw9UnbcF1AppVTfZow5GTgApwn+Y/Th7hbK6su45v1r+KbyGy6edDGXTb4Ml6VdVrpKuLqa5nnzaPrmG1oWLqT524WESkvbjruys/CPHEn690/FO2IEvujiSk6OY9RKqb5ue6/gfiwiBxhj6thiJkNERLacc6KPi9TUUHbDr8m+5hp8w4b22Oful57ES1NHcvb8FXzvq6X8c+wQjs9J67HPV0op1bOMMf8GRgBPRot+ZIw5QkR+HMewepUvyr7gpx/8lKAdZMahMzis6LB4h9SnSTBI8+LFNH09l6Z582iaN5fQ6jVtx71DhhCYPIm000/DP3Yc/rFjcGdmxjFipVR/tb0W0AOi6wHzmCtSV0fj7Nms/dGPKH7qyR79h3dsUoD/7TmK8+av5KJvVvHLpkFcoXOFKqVUf3UYMFaiHZSNMQ8D38Q3pN5BRHhs4WP8ZdZfKE4p5vZDb2doas89FO4v7KYmmubOpfHLWTTOmkXT3LlIczMA7uxsAntMJu2UUwhMnox/3HhcSYlxjlgpNVDs8EV9Y8w+wDciUhfdTwbGicgX3R1cT/MWFFB4579Zfc65rL3sMoY8/DCWf+dHG91V2V4Pz+0xgmsWreGmFWUsbWzmL6ML8WmHfaWU6m+WAUU4XV3AGQF3WfzC6R1CdohbvriFp5c8zeFFh/OnA/5EokcTo86wg0Ga5nxFw6ef0jhzJk3ffAOhEFgW/jFjSD/t+wSmTCUweRLuvDx9wK2UipvO9BS/E5gas9+wlbJ+IzB5MoP/8mdKr7yKdT/9Gfm3/x3Tg1Ok+F0W/x43hBEJfv68aj1rmoLcP2EoWV7t1K+UUv1IMrDQGDMTp5vLdJyRcV8CEJET4xlcPNQF67jug+v4dN2nXDDhAq6aepVOsbIdIkJw+XIaPvmE+k8/pXHml85AQW43gfHjyTzvXBKmTSMwdar22VRK9SqdyWqMyObJC6LzlvXrbCjlyCMJX/9zNtx8C+W3/ZncX1zfo59vjOHaoXkMT/Bx9aI1HDN7MfeNH6qDEymlVP/xm109MTp9y33ABJzk9QIR+axDnUNw5vD2ABtF5GBjTCHwCJAbPe8eEekVc3qX1pfy47d/zOra1fx+v99z8siT4x1Sr2QHgzR+8QV1775L/XvvE16/HgBvcTFpJ59M4v77kTB9Oq6kpDhHqpRS29aZRHKFMeZKnFZPgMuAFd0XUu+Qfs45BNeWUPXww3gKCsg4+wc9HsN3c9MZEvBx0YKVnDhnKTePKuCswToggFJK9XUi8sFunD4DeF1ETjHGeIF2TyejCeq/gWNEZI0xJid6KAxcKyJzot1pZhtj3hKRb3cjlt02t2IuV757JSE7xF1H3sXeg/aOZzi9Tri6mvr3P6D+3Xep/+QTpLERk5BA0v77kXjZpSTtvz+e/Px4h6mUUp3WmQT0EuAfwA04T0zfAS7uzqB6A2MMub+4nlBZGRtuvhlP/mCSD+v5EfimpCTw5rTRXPbtaq5dvJZZtQ3cNLKAgEtfS1JKqb4qOr7CP4GxgBdwAQ07GmHeGJMKHAScByAiQSDYodqZwPMisiZapzy6LsOZ3xsRqTPGLATygbgloG+uepNffvxLsgPZ/OuIfzEsdVi8QulVwtXV1L31FnWvv07D51+AbePOzSX1pBNJPvRQEvbeG8vni3eYSim1S3aYgEZvXKf3QCy9jnG5yP/zbaw+9zxKf3ItQx55mMCkST0eR6bXzROTh/Hnleu5ffUGvqlr4t4JxQwJ6M1HKaX6qDtw7q3PANOAc4BRnThvKFABPGiMmQzMBq4SkYaYOqMAjzHmfZy+pjNE5JHYixhjioEpwFYHFDTGXEz0YXNRUVGnv9TOeGrRU9z0xU1Mzp7MPw77B+n+9G75nL4iUlND3dtvU/u/12n47DOIRPAMKSLz4h+SctRR+MaO1YGDlFL9gonp3rn1Csb4gQuB8UDbkLAickH3hrZzpk2bJrNmzeqWa4c3bmTV6Wdg19Ux5PHH8I0Y0S2f0xlvbqzh8oWrsTDcMW4IR2T2u+lYlVKqRxljZovItB7+zFkiMs0YM09EJkXLvhKRKTs4bxrwObC/iHxhjJkB1IrIr2Pq3IGT1B4OBIDPgO+IyJLo8STgA+BPIvL8jmLt6vuriHDn3Du5c+6dHFJwCH8++M/43T034nxvIqEQ9R9/TM1/X6DuvfcgFMJTWEjKMceQctyx+MaM0aRTKdVnbev+2plXcB8FFgFHAzcCZwELuza83s2dlUXRA/ez6qyzWHPBhQx54gm8BfHpb3FUVipv7DmaCxes5AfzVnBxQTa/HDYIv76Sq5RSfUljtP/m18aY23Beje3MP+QlQEnMVGjPAh1HyisBKqOtog3GmA+BycASY4wHeA54vDPJZ1eL2BFunnkz/1n8H7474rv8dt/f4rb69biGW9W8eAk1//0vNa+8QmTjRlwZGWSceQYpJ5yIf/w4TTqVUv1aZ252I6JPVhtE5GHgO8CAGyHAW1RE0X33Yzc3s+bCCwhXVMQtlqEJPl7dcxQX5GdxT0kFx81ewuKG5rjFo5RSaqedjXMPvhxnerNC4P92dJKIrAfWGmNGR4sOZ8s+nC8CBxhj3MaYBJx79kLjZDX3AwtF5G9d8zU6LxgJ8rMPf8Z/Fv+HCyZcwI373Tigkk+7sZHqp59m5cn/x8qTTqLq8cdJmDKFgn//m5EfvE/uL35BYMJ4TT6VUv1eZ/7lD0XXm4wxE4D1QM526vdb/tGjKLz7LtZccCFrLvohQx59BFdKfF6BDbgsbhpVwKEZyVy9aC1Hz1rM70bkc+7gTL15KaVU77cRCIpIM/B7Y4wL6GzH/iuAx6MtqCuA840xlwCIyF0istAY8zowD7CB+0RkgTHmAJzEd74x5uvotX4pIq913dfauoZQA1e9dxVflH3BddOu49zx53b3R/YaLcuXU/3kU9S88AJ2fT2+UaPI/dWvSDn+O7jTB3a/V6XUwNSZPqAX4byuMwl4EEgCfi0id3d/eJ3XnX1AO6r/+BPWXnopgQkTKLr/PqyE+M7PWd4S4qpFa3ivqo6js1L42+giMr0D56myUkrtjjj1Af0cOEJE6qP7ScCbIrJfT8bRGbt7fxURLnzzQuZsmMMf9v8DJww/oQuj650kHKbu7XeofvJJGr/4AuPxkHzMMaSfcTqBKVP0QbFSakDY1v11hwloX9GTCShA7etvUPqTn5C4//4U/usOjNfbY5+9NbYI95VU8MflZaR6XNw6qoDjstPiGpNSSvUFcUpAvxaRPXZU1ht0xf31s3WfEbJDHFRwUBdF1TvZDQ1seu55qh5+mFBpKZ78fNJOP420//s/3BkZ8Q5PKaV61C4PQmSMyQR+B+yPMw/oR8AfRKSyq4PsS1KOOZpI3e9Y/+vfUHrtteT/7W8Yjydu8VjGcHFhDvunJ3P1wjVcsGAVJ+akcdPIArK0NVQppXqbBmPMVBGZA2CM2RNoinNM3WbfwfvGO4RuFa6ooOqxx6l+6insmhoCU6eS+4vrSTr0UIzLFe/wlFKqV+lMZvIU8CGbB0c4C/gPcER3BdVXpJ96KtLUxIabbqb0J9eS/7e/xjUJBRifFOC1PUfxrzUb+NuqDXxcXcdNIws4KSdNX/lRSqne42rgGWPMOsAAecBpcY1I7bTg6tVU3ncfNS+8iITDJB95JBnnn0fClO3OpqOUUgNaZxLQQSLyh5j9PxpjOnWTNMYcA8wAXDiDINzS4bgPeATYE6gEThORVdGBFe7GmcfMxplk+/3OfGZPyzjnHBBhw8239Jok1GMZri7O45jsVK5ZuJZLvl3NC+XV3DqqkFxffGNTSikFIvKlMWYM0Dqa7WIRCW3vHNV7BFevZuNdd1Pz0ksYt5vUU/6PzPPOwztkSLxDU0qpXq8zCeibxpjTgaej+6cAb+zopOiIfv8CjsSZk+xLY8xLIhI7XPyFQLWIjIh+xq04T4B/CCAiE40xOcD/jDF7iYjd2S/WkzLOdUbz23DzLZReex35f/1L3JNQgDGJAV6eOpJ7Siq4bWUZB85cyM+HDuLcwVm4LW0NVUqpeIomnAviHYfqvI6JZ8YPziLjwgvx5AzIyQGUUmqXdGYe0B8CTwDB6PIU8CNjTJ0xpnY7500HlonIChFpPe+kDnVOAh6Obj8LHB6dp2wc8C6AiJQDm3BaQ3utjHPPJfcX11P35puUXnsdEuodD7LdluGyohze3WsMU5IT+dXSUo6ZvYQvaxriHZpSSinVJ4RKS1n3i1+y/LjvUPvaa2T84CyGv/Umub/4hSafSim1k3aYgIpIsohYIuKOLla0LFlEtjcJZj6wNma/JFq21ToiEgZqgExgLnBidBLtoTiv6BZ2/ABjzMXGmFnGmFkVFRU7+irdLuPcc8m5/udOEnrdT3tNEgowLMHHU5OHcd/4YqpCYU6Ys5SrF66hIth7YlRKKaV6k0hNDRtu+zPLjzlWE0+llOoinRoe1RiTDowE/K1lIvJhdwUFPACMBWYBq4FPgUjHSiJyD3APOMPEd2M8nZZ53nkAlN9yKyWRMPl//SuWr7Nzi3cvYwzH56RxaEYyf1+9gbvWlvO/jTX8bGge5wzOwqOv5SqlVI8xxkwCiom5F4vI83ELSLWxW1qofvwJNt59N3ZtLanf/S7ZV16BZ9CgeIemlFJ9XmemYbkIuAooAL4G9gE+Aw7bwamltG+1LIiWba1OiTHGDaQCleJMTnpNTAyfAkt2FGtvkXneeRi3hw1//CNrf3QJBXfcgSspMd5htUl0u7hh+GC+n5fBr5aW8KulpTxQspFfDR/EsVmpOlquUkp1M2PMA8Ak4BucwfbAmepME9A4Etum9tXXqPj73wmtW0figQeSc921+EeP3vHJSimlOqUzLaBXAXsBn4vIodFR+27qxHlfAiOjr9CWAqcDZ3ao8xJwLk5CewrwroiIMSYBMCLSYIw5Egh3GLyo18v4wVm4UpJZ94tfsub88ym8527c6enxDqudUYl+np48nLcqa/nD8nVcsGAVe6Uk8psRg9krtfckzEop1Q/tIyLj4h2E2qzpm2/Y8Ic/0vT11/jGjaXoj38gcb/94h2WUkr1O50ZhKhZRJrBmTZFRBaxedj4bYr26bwcZ8TchcDTIvKNMeZGY8yJ0Wr3A5nGmGXAT4Dro+U5wBxjzELg58DZO/OleovUE0+k4J//pGXxYlb/4GxC69fHO6QtGGM4KiuV9/Yaw19GF7K6uYUT5izlwgUrWd7YHO/wlFKqv/rMGKMJaC8Qqalh/Y03surU7xNcs4ZBN93E0Gef1eRTKaW6iXHedt1OBWP+C5yPM2n2YUA14BGR47o9up0wbdo0mTVrVrzD2KqGmTMpufQyXKmpFD1wP97i4niHtE0NkQh3r63gX2vKabZtTsnN4OohuQxN6B39WJVSqqsZY2aLSI+OtG6MORjnLaD1QAtgABGRST0ZR2f05vvr7hDbpub55yn/69+I1NSQfuaZZF95Ba6U7Y2vqJRSqrO2dX/dYQLa4SIH4/TTfD06tUqv0dtvkE0LvmHtD38IlkXRfffiHzs23iFtV0UwxB2ry3l43UZCIvxfbjrXDMnTRFQp1e/EKQFtffNnPpv7gCIiq3syjs7o7ffXXdG8cCFlv/sdzXPnEdhzT/J+fQP+MWPiHZZSSvUr27q/7vAVXGPMPsaYZAAR+QB4H5jS5RH2c4EJ4xny+GMYr5fVZ/2A+g+7cxDh3Zft9fD7kfnM3GccF+Vn81L5Jg6YuZArFq5mRWNLvMNTSqm+rkJEXhKRlSKyunWJd1D9nd3SQvnfb2flKacSKill8K23MOSxRzX5VEqpHtSZPqB3AvUx+/XRMrWTfMOGUfzUU3iKh7D2kkupfvLJeIe0Qzm+mES0IJtXyjdxwBcLuXDBSmbXNMQ7PKWU6qu+MsY8YYw5wxhzcusS76D6s8Y5X7HyeydTeffdpJ5wAsNffYXUk07Skd+VUqqHdWYUXCMx7+mKiB2dMkXtAk9uDsWPPkrptdex/vc3Ely9hpyfXodxueId2nbl+Dz8fkQ+Py7M4b6SCh5eV8mrFTVMT03k0sJsjspKxaU3caWU6qwATt/Po2LKdBqWbmA3NFB++wyqH3sM96A8Cu+9l6QDD4h3WGqAERGCIgRtocUWQmITtJ39ULQ8HLMOiRCKbscuESFm29lvW+OU2eK81x+J1rEBEbDZfMyO/mpvR8slpk7rdlvs0aX1e8SWd0brb4etD3vMFuWb9w3GWZvW/WhZzL5lTHQd3cfZaN02xmlhs4xpa2mzjHMsdm1i6lgm9roxZR2u54r5fJdpvZ6z3Xquq8NnuNqut/nzXSb2c5x9V2t80XJXtNxE67s61I+9Tl/TmURyhTHmSja3el4GrOi+kPo/KzGRgn/dwYZbbqXqoYcIlqwl/7bbsBIS4h3aDuX4PPxy+GCuGpLLk+uruHttBecvWMWwgI+LC7M5NTedRHfvTqaVUireROT8eMcwEDR8/gVlv/oVoXXrnEGGrrmmV83LrXqPkC3URSLUhyM0RGwaIjb1EWe7PmzTaNs0RmwaI5Ho2qbJtmmKCM227SwRocm2abFtmm2hxbZpia6b7c6PubK7WpOn2IQlNhEy0aTG2krSRszx1oRvc1l0m80Jz45Sn7bENbq1OZHtkNgibUlva7lTR9rt22xOnAUnkRZoS7Jb69vR7daEu7/bVsIamwxvL4F1sTmhdhnDv8YO6dZxXzqTgF4C/AO4Aedn/Q5wcbdFNEAYl4u8X/0Sb2EhG265hdXnnEvhnf/GnZ0d79A6JdHt4qKCbM4bnMWrGzdx55oKrl9Swh+Xr+OUvAzOHZzJ2KRAvMNUSqleyRjzIFtpQBCRC+IQTr9jB4NUzJhB1QMP4i0qYshjj5Kw557xDkt1s5AtVIfCVIbCVIXCVIcibApH2BQKUxOOUBOOUB2KUBvdro8423XhCE07kSAGLEPAZRGwLBJcFn7LWQIuQ7rHg99l4bcMPsvCF7s2Fl7LbF6i+x5j2tYey+A2zrbbMniNwWWcMpfBKTcGyxjchnbbmxPMvtci1t0kmqhGOiSmEm0hjsjmxNWOJsPtyyXacuwcj8jm5DcSe6xtO1qnw7Vaj9nRFmtb2pe3nhNbvrlVe3OLd+vnbq9+RITIdj6v/XU3X9sW5wFGd9phAioi5cDp3RvGwJVxztl4CgoovfZaVp5yKgX/mEFg8uR4h9VpbstwUk46J2anMae2kYfWbeTJskoeKt3I9NREzh2cyXey0/C7OtPdWCmlBoxXYrb9wPeAdXGKpV9pWbaM0p/+jJaFC0k7/TRyf/azPvGGkdq6FttmQ0uIDcEw61tCVARDVATDbAyFN28HnYSzLrLtti6PMaS6XaR5XKS6XaR7XBQFvKS4XCS7LVLcLpLdLpJcFomu1rVFkttFostJNBMsi4DL6pOvPA50Jua13R2326rutlPTsPRmfX2Y+OZFiyi5/ArCGzaQ++sbSP/+9+Md0i6rCoV5uqyKR9ZVsqKphQyPi+/mpPP9vAwmJwf0yZxSqleJxzQsW4nBAj4Wkf3iGcfW9JX7q4hQ/fgTlP/5z1iJiQz64x9JPuzQeIeltqPFtilrCVHSHKS0OURpS5DS5iDrWkKsbwmxIRiiKhTZ4jwDZHjcZHudJcvjJtPrJsMTu7hI97hJc7tIc7tIcFn6+4dSPWxb91cdTKiX8I8Zw9Bnn3EGJ/rNb2mev4DcX9+A5fXGO7SdluFxc0lRDhcXZvNxdT2PlVXyeFklD5RuZGSCj+/nZXBybjr5/r733ZRSqpuMBHLiHURfFd64kXW/+CUNH31E4sEHMfiPf+wzXVr6MxFhYyjMysYW1jQHWd0UZHVzC2uagqxuDlLWEtrinGyvm8E+D0MCXqanJpLn85Dr85DnddY50URTBz5Uqu/SBLQXcaWlUXjP3VTM+AeV99xD85LFFMyYgScvL96h7RLLGA7KSOagjGRqQmFerqjhmfVV/GlFGTetKOOA9CROyknnmKxUsrz6V1EpNXAYY+pw+oCa6Ho98PO4BtVHNcycSem112LX1jlvEJ15prZ09bCQLSxvamZpQwvLG5tZ1tjC8sYWVjS1UBNu34I52OehyO/loPRkCv1eCvweCvxe8n1eBvk82mVHqQFgh6/gGmPSgHOAYmISVhG5sjsD21l95RWhzqp9803Krv8FJhAg/+9/I3H69HiH1GVWNbXw7PpqnttQxcqmIC4D+6UlcXx2Gsdlp5Lt9cQ7RKXUANIbXsHtzXrr/VVsm8p776Nixgy8RUXkz5iBf/SoeIfVr9kirG4K8m1DE4sbmlnU0MzihmaWNzYTjvl1crDPw7CAj+EJzjI04KM44KPQ79UEU6kBZFv3184koJ8CnwPziRnJWEQe7uogd0dvvUHujpZlyyi5/AqCa9aQdemlZF16Ccbdf1oKRYRvG5p5uXwTL5dvYnlTCxawd1oiR2emcmRWCsMT/PEOUynVz/VkAmqMGSMii4wxU7d2XETm9EQcO6M33l8jmzax7ufXU//BB6Qcdyx5N/5Bp1fpYiFbWNrYzPy6JhbUNzK/rolv6pvaDfQzxO9ldKKfMYl+Rif6GZXoZ1jAp9OxKaWA3UtA54jIVm+UvUlvvEF2hUh9Axv+cCM1L75EYNqe5P/5z3gGDYp3WF1ORFjU0MzLFZt4taKGxQ3NAAwNeDkyM5UjMlPYJy0Rr6VPTpVSXauHE9B7RORiY8x7WzksInJYT8SxM3rb/bVp/nxKr7qaUEUFudf/XF+57QIiwrqWELNrG5lT28BXtY3Mq2tsm5okYBnGJQWYkBRgUnIC45ICjEr0kejSRFMptW27k4BeA9TjDBnf0louIlVdHeTu6G03yK5W8+KLrP/9jeDxMOiPfyDlyCPjHVK3WtPUwtuVtbxdWcsnm+ppsYVEl8X+aUkcmJ7MgRlJjE7w6y8dSqndpq/gbl9vur9WP/Uf1v/pT7izsyi4/XYCkybFO6Q+KSLCwvomPq9p4LNN9cyqaWBDMAyAzzJMSAowNSWBPZITmJicwPAEnw76o5TaabszCm4Q+DPwKzZPmi3AsK4LT+1I6kknEZg8mdJrr6P0iitpOON0cn/+cyx//3xFtSjg44KCbC4oyKYhEuGT6nrerqzlo+o63qysBSDH6+aA9GQOSE9iv7Qkhvi9mpAqpfoMY8x+bDm+wiNxC6gXk1CI9TfdxKYnnyLxwAMZfNutuNPT4x1WnxERYW5dI59W1/N5TQMza+qpDTuv0hb6vRyQnszUlASmpiQyPsmvbxsppbpVZxLQa4ERIrKxu4NR2+ctLqb4ySco//vtVD34II1ffsngm28mMHFivEPrVokuF0dlpXJUVioAa5uDfFRdx0dVdXxYVcfzG6oBJyGdnprI3qlJTE9LZHxiALelCalSqvcxxjwKDAe+BlqHCRVAE9AOwtXVlF51NY0zZ5Jx4QXk/OQnGH31c4dWN7XwQVUdH1TX8XF1fdtotCMTfJyUk84+qYnsnZZEgU6JppTqYZ1JQJcBjd0diOoc4/WS+/OfkbjffpTdcAOrTj+DzAsvJOvyH/fJOUN3RaHfy5mDMjlzUGZb39GZNQ3MrGngi5p6XqmoASDRZTEpOcAeyQnsEX2VqEhbSZVSvcM0YJzsqB/MANe8ZAkll/2YcHk5g2+9hdSTTop3SL1Wc8Tmk031vLmxhver6ljdHAScEWmPy07l4PRk9k9P0pHmlVJx15kEtAH4OjpgQmwf0F41DUtXCEVCzJgzg/MmnEdWICve4WxX0oEHMOzll9hwy61U3nMPde++MyBaQzsyxjA2KcDYpADn5js/s9LmIF9GE9Kvahu5v2QjwejveBkeF5OTE6KDKPgZnxRgaED7tiiletwCIA8oi3cgvVXdu++y7rqfYiUmMuTRRwhMnhzvkHqdimCItytreWtjLe9X19EYsQlYFgekJ/HDwmwOTk9mRIJPH7wqpXqVziSgL0SXfm9V7SqeXvI0M9fP5MFjHiTR07uHdHelpDD4pj+RcvRRlP3mt05r6EUXkfXjywZMa+jW5Pu95Pu9fDfX6R8UtG0WNjTzdW0jX9c18nVtIx9Vb2ibsyxgWYxJdJLRMUl+RiX4GZnoI8/r0Zu2UqpLGWNexnnVNhn41hgzk/YPd0+MV2y9hYhQdf/9lP/1b/jHj6fgX3fgyc2Nd1i9xrrmIK9UbOLl8hpm1TYgwCCfh1Ny0zk6K5X905J0rk2lVK+2w1Fw+4quGqXvw5IPufLdK5meN51/Hf4vPK6+8apKpLaWDbfcSs3zz+MdPpy83/yGxL2nxzusXqvFtlnS0Mw39U18W9+6bqI6HGmrk+yyGJnoZ2SCnxHRibSHJvgoDnh16Hml+pEenobl4O0dF5EPeiKOndGTo+BKJMKGP/2J6ieeJOW4Yxl00039drC9nVHWEuSV8hpertjEzJoGAMYn+TkuK42jslKYkBTQB6ZKqV5nd6ZhWcnm0W/biEivGgW3K2+QLyx7gV9/8mu+M+w73HTATVim7zxJrP/wQ9b//kZCpaWknHgCuT/7Ge6s3v06cW8hIlQEwyxpbGZJQzNLG1tY0tDMksZmKqLD07fK83ooDngpDvgo8HspbF0CXgZ5PTr4kVJ9SDymYTHG3CoiP99R2TbOTQPuAybg3J8vEJHPOtQ5BLgd8AAbReTgaPkxwAzABdwnIrfs6PN6KgG1m5oove6n1L/zDpkXXUj2T36CGcCjsdaGI7xcvoln1lfxeTTpHJfo58ScNE7ISWN4gibmSqnebXemYYk9yQ+cCmR0VWC90XdHfJeNTRuZMWcG2YFsrp12bbxD6rSkgw5i2Csvs/Huu6m8/wHq33uf7KuvIv3003XUwB0wxpDj85Dj83BAenK7Y3XhCKuaWljR1MKqxiArmlpY2dTCB9V1rG8JtXtC4zJOgjrY5yXP52Gwz8Mgn4dBfg+DvM71s71ubUVVamA7EuiYbB67lbKtmQG8LiKnGGO8QELswWiC+m/gGBFZY4zJiZa7gH9FP7sE+NIY85KIfLtb36QLhKuqWHvppTTPm0/ur28g46yz4h1SXERE+LCqjqfXV/G/jTU028KIBB8/Lc7jxJw0RiZq0qmU6vt2mICKSGWHotuNMbOB33RPSL3DhRMupLyxnIe+eYisQBbnjj833iF1mhUIkHP11aSeeBLr/3AjG/7wR2qe/y95v/2NTtq9i5LdLiZGJ+TuqMW2WdccYm1zkLXNQdY0ByltDrK+JcS39U28XVlDk73lmwaJLoscr5tcr4dMr5tMT3TxusmK2U5zu0jzuAlYRl+xUqqPM8ZcClwGDDPGzIs5lAx80onzU4GDgPMARCSIM193rDOB50VkTbROebR8OrBMRFZEr/UUcBIQ1wQ0uHo1ay6+mPD6DRT88x8kH3FEPMOJi1VNLTy2rpJn11ezPhgize3itLwMTsvLYEpKgv7br5TqV3aYgBpjpsbsWjgtop1pOe3TjDH8fK+fs7FpI3+Z9ReyA9kcN+y4eIe1U3zDhlL0wAPU/e9/bLj5FlZ9/zRSTjiBnKuvwpOfH+/w+g2fZTE0wekfujUiQk04wrqWEBtaQpQHw5QHQ1QEw2wIhigPhljS0ExlKEx1KLLl++5tn2PaktE0t4tkt4sUt4tkl0VqzH6SyyLJ7SLRZZHcuu9ykeCySHBZOuKvUvH1BPA/4Gbg+pjyOhGp6sT5Q4EK4EFjzGRgNnCViDTE1BkFeIwx7+MktjNE5BEgH1gbU68E2HtrH2KMuRi4GKCoqKgTYe2apnnzWPujS0CEooceJGHKlG77rN4mbAtvV9by8LqNvFdVh8vAYRkp/CEvn6OyUvAN4NePlVL9W2cSyb/GbIeBVcD3O3PxHfU1Mcb4cCbd3hOoBE4TkVXGGA9O/5ap0RgfEZGbO/OZXcllubj5wJupbq7mV5/8ilRfKvvn79/TYewWYwwpxx1H4kEHUXnvfVQ99BB1b7xBxrnnkHnxxbiSk3d8EbVbjDFO0uhxMy4psN26ERGqQmEqQ2Eqg2GqQhFqwhGqQ2E2hSNsaltHKG8JsbShmbqIUyfSyfHEfJYh0WURsJyENBDdDljOtt8y+F0WPsvCZxn80XXrvtcYPNF9rzF4LWdxG4Mnurit6Dpa12UMbgPuaJnbGCwDLpxjLgPWAEuMRQQbsAVshIhsLovEHmvbFiLRtbTWEYggiDj7kZhzIrHXitazhXblkS32N9dtO7aVOpEO14u0fX7MdrQ8vLVzd3COU7Zl3dZrhaN190hO4InJw+Py89sNEr3P/bjjAWNMRieSUDfOvfEKEfnCGDMDJ5H9dYc6ewKHAwHgM2PM5zsZ5D3APeD0Ad2Zczur4fPPWXvZj3FnZFB47z34hg7tjo/pdda3hHiirJLH1lWyriVEntfDdcV5nDU4g0G+gTuCvVJq4OjMK7iH7sqFO9nX5EKgWkRGGGNOB24FTsPpZ+oTkYnGmAScoeqfFJFVuxLL7vC5fMw4bAYXvH4BV793Nf8+4t/slbdXT4ex21xJSeRcczXpp59Gxe0zqLz3PjY9+xxZP/4x6ad9H+PpG6P99ncuY8j2epyJwndiFiARodG2qQvb1Eci1EfXDRGbunCE+ohNY+xi2zRGjzdHhGbbpi4SoTwYotkWmmybFtumxRZabLttypru5oompZYBQ2tiCla0DJxtY5zXMSxjaE1b29bRc7dWvi2tY7G1fk0BJLoXe0yi+xI9asvmuiKb67QmjU79zXXtaNJm7+KfT29jQdvDBSv6IMFtDFb0Z+c8XDBtP9e27dh1TF2fZbY4x4p5cNG63VpnaKBP/rL+BHA8TsulsPmvKNH9HQ3wVwKUiMgX0f1nad+S2lqnMtoq2mCM+RCYHC0vjKlXAJTuypfYXXXvvkfp1VfjHTKEwvvvw5OTE48wetSCukbuWlvBC+XVhAUOTk/mjyPzOSozVQeuU0oNKNtMQI0xPxCRx4wxP9nacRH52w6u3Zm+JicBv4tuPwvcYZyODgIkGmPcOE9vg0Dtjr9O90jxpnDPUfdw/uvnc/k7l3P3kXezR84e8Qpnt3gGDWLwrbeQfs7ZlN96Gxv++EeqH32UrMsuJeX443Wgoj7KGEOiyxUd2KjrHyaEbaFFnIQ0FE1KQyIEbSEYXYdsp4UqKELYFkLiLK0tV87itGSFbGFbLXF2TLnEtg6yufWvNRGMxCSJbYkgm5PGVrGJ5fZ+zYs95iSyreVOQttaZqJlbUlxNBFuXVymff3W4y5jsKLlVluivbl+63ErmtC1Jtku0z7xbq3nMk5Za6Lm2so5reWuaHnsvsuYtrqx19i833qdDslk2/fQX5p3logcH13vUnOfiKw3xqw1xowWkcU4rZwd+3C+iHM/dQNenNds/w4sAkYaY4biJJ6n4/QX7VE1r7zKup//HP+4cRTeczfu9PSeDqHH2CK8W1XHXWvK+XhTPYkui/Pzszg/P5th2+i2oZRS/d32WkBb21929R3NzvQ1aasjImFjTA2QiZOMngSU4Yzud83WXkvqqT4qABn+DO476j7Oe/08Lnv7Mu47+j7GZY7r1s/sToHx4yl6+CHq33+fittnsO7n17PxzrvI+vFlpBx3nCaiqh23ZXDjIlH/Wii1WzqMq7AFEZnTictcATweHQF3BXC+MeaS6Pl3ichCY8zrwDycBvf7RGRB9PMvB97A6RrzgIh8s+vfZudV/+dp1v/udyRMm0bBnXfiStqJVz36kKBt8+z6au5cW87SxhYG+TzcMGwQZw/OJNXT74fRUEqp7drhPKC7fGFjTsEZAv6i6P7ZwN4icnlMnQXROiXR/eU4SeponFECzwPSgY+AY1tbU7emp+YpK6sv47zXz6Mx3MgDRz/AyPSR3f6Z3U1sm7q332bjHf+iZckSvMOGkXXZZaQce4wmokqpfq8n5wE1xry3ncMiIof1RBw7o6vur5X3P0D5n/9M0sEHkz/jdix//5tSpMW2ebKsin+u3kBpS4gJSQEuKczmxJw0vDqokFJqgNnleUCNMdnAD4Hi2PoicsEOTi1lx31NWuuURF8VSsUZjOhMnDnOQkC5MeYTnNF3t5mA9pRBSYPaWkIvevMiHjrmIYam9u2BE4xlkXLUUSQfcQR1b77Fxn/9i3XXXcfGf/+bzAvOJ+XEE7G8fbKvlVJK9Sq7Oq5CXyYibPznP9n47ztJOe5YBt9yC6af3VOaIzaPlVXyrzXllLWE2Cslkb+MLuSQjGR9VV0ppTrozOO4F3ESw7eBV2OWHfmSaF+T6GtCpwMvdajzEtA6weYpwLviNMmuAQ4DMMYkAvvg9F3pFQpTCrn36HsBuOjNi1hbu3YHZ/QNxrJIOeZohr74Avl//xvG56Pshl+z7PDD2Xj3PURqauIdolJKqT7Ibmwi7dRTGPznP/er5LM5YnPP2nL2/vxbblhayhC/l2cmD+elqSM4NDNFk0+llNqKHb6Ca4z5WkT22KWLG3MccDub+5r8yRhzIzBLRF4yxviBR4EpQBVwuoisMMYkAQ8C43DG6HhQRP68vc/qqVdwYy2pXsIFb1yAz+XjvqPu6/MtoR2JCI2ffUbl/Q/Q8MknmIQE0k75PzLPPVfnEVVK9Rs9+QpuX9QV99fW3zX6S0IWEeHZ9dXctrKM0pYQ+6cl8ZPiXPZP16nNlFKq1bbur51JQP8IfCoir3VXcF0hHgkowOKqxVz81sUYDPcedW+/6BO6Nc2LF1P1wAPUvPoa2DZJhxxC+hlnkLj/fhjt16KU6sM0Ad2+eN1feyMR4e3KWv60ooxFDc1MTg7w6+GDOUATT6WU2sJOJ6DGmDo2z1qQCLQAoei+iEhK94W78+J5g1xRs4IfvvFDgnaQu4+8u0+PjrsjobIyqp98ik3PPUekshJPURHpp32f1JNP7tdD6Sul+q8eHoSoK0bB7VGagDpm1zTwh+Xr+LymgaEBL78YNpgTslP7TauuUkp1tV1uAe0r4n2DXFu7lovevIi6YB13Hnknk7Mnxy2WniDBILVvvUX1k0/SNGs2xusl+ZijSTv5ZBKmT9dWUaVUnxGnUXD9OIPrzcV5sDsJp3vKvj0Rx86I9/013spagvxheRnPb6gm2+vm2uI8zhqUicfSxFMppbZnW/fXHWYJxph3OlM20BWmFPLQMQ+R7k/n4jcvZtb6/n2zNl4vqd/5DsWPPcbQl14k7ZT/o/7d91hz3vksO/wIyv9+Oy0rVsY7TKWU6lVE5NDoSLhlwFQRmSYie+KMhdBxpHgVRy22zT9Xb2D/LxbxasUmrhmSy+d7j+W8/CxNPpVSajdsMwE1xviNMZlAljEm3RiTEV2KAR2BZisGJQ3iwWMeJC8xj0vfvpRPSj+Jd0g9wj9qFHm/+Q0jP/6IwX/9C74RI6i8915WHHccK087jaonniBcWRnvMJVSqjcZLSLzW3dEZAEwNo7xqBhvbazhkJmL+NOKMg5OT+bD6WP4+bBBJLp1bmyllNpd2+sDehVwNTAYWBdzqBa4V0Tu6PbodkJvekWoqrmKH731I5ZVL+P3+/+eE4efGO+QelyovJzal1+h5oUXaFm6FCyLhL32IuWYo0k+8kjcWVnxDlEppYD4DEJkjHkSaAAeixadBSSJyBk9GUdn9Kb7a3db3dTCL5eU8k5VLSMTfPxhZD6HZPSqIS+UUqrP2J1RcK8QkX92W2RdpLfdIOuD9Vz9/tV8UfYFV029igsnXDggByoQEVqWLKXujdepff0NgitWOMnotGkkH30UyYcdhmfQoHiHqZQawOKUgPqBS4GDokUfAneKSHNPxtEZve3+2h3CtnBPSQV/XlmGyxiuK87jgoIsvDqegVJK7bJdGQX3MBF51xhz8taOi8jzXRzjbumNN8hQJMQNn9zAaytf4/TRp3P99OtxWQP39R0RoWXpUupef4PaN94guHw5AL7Ro0k6+GCSDjmEwORJGNfA/TNSSvW8eE3DYowJAEUisrinP3tn9Mb7a1eaX9fItYvWMq++iaOzUrh5ZAGD/d54h6WUUn3etu6v7u2cczDwLnDCVo4J0KsS0N7I4/Jw84E3k5uQy4PfPEhFUwW3HHgLfrc/3qHFhTEG/6hR+EeNIvvKK2hZsYL6996n/oMPqLz/firvuQdXWhqJBx1I4n77kbjvvnhyc+MdtlJKdTljzInAnwEvMNQYswdwo4gMvD4bcdIYsfnrqvXctbacDI+be8cXc7xOq6KUUt1Op2HpIY99+xi3fXkbe+TswT8P+yepvtR4h9SrRGprafj4Y+o/+ID6Dz8iUl0NgHfYMBL33ZfEffchYfp0XCnaF0cp1bXi9ArubOAw4H0RmRItmy8iE3syjs7o7ffXXfHZpnquXriG1c1BzhyUwW+GDybNs71n8koppXbWTreAGmN+sr0LisjfuiKwgeIH435AVkIWv/zol5z12ln847B/MCx1WLzD6jVcKSmkHHccKccdh9g2LYsX0/DpZzR8/jmbnn+e6scfB8vCN2Y0CVOmkrDnVAJ77qktpEqpviokIjUdWtv6xxPhXqw5YnPryjLuWlvBkICXZ/cYzgHpyfEOSymlBpTtPe7Tf5G72DHFx5ATyOGa96/hB6/+gNsOvo0D8g+Id1i9jrEs/GPH4h87lswLL0CCQZrmzqXh8y9onDN7c0IKePLzCUydSmDSJAITJ+AbOxbL54vzN1BKqR36xhhzJuAyxowErgQ+jXNM/do39U38+NvVLGpo5pzBmfx2+GCdVkUppeJAX8GNg3X167jy3StZumkpP9nzJ5wz7hztc7ITJBSiedFimubMpnHOVzTOmU2kYqNz0O3GN2okgQkT8U+cgH/sOHwjR2hSqpTapji9gpsA/Ao4Klr0BvAHEWnpyTg6oy/dX7cmIsK/15Rz28r1pHtc/G1MEUdkancOpZTqbrs8DUtf0ddukI2hRn718a94e83bnDT8JH6z72/wunTUvV0hIoQ3bKBp/nya5y+gecF8mhZ8g11b61RwufAWF+MfPRrf6NH4x4zGN2IE7kGDMDrEvlIDXpwS0FNF5JkdlfUGfe3+Gmt1UwtXLFzDzJoGjs9O5dZRhWR6ta+nUkr1BE1AeyFbbO6aexd3zr2TydmTuf3Q28kKZMU7rH5BbJvQmjU0L1pMy5LFznrxYkKlpW11TCCAb+hQvMOH4xs+HO/wYfiKi/EUFmL5B+ZIxUoNRHFKQOeIyNQdlfUGffH+CvBqxSauWbQGEbh5VAH/l5uubxsppVQP2pVpWFQ3s4zFZXtcxvC04dzw8Q2c+vKp3HbQbeyVt1e8Q+vzjGXhLS7GW1wMxxzdVh6pq6NlyRJali0nuGI5LctX0DhrFrUvv9zufHdeHt4hQ/AWFeEdUoSnoABPfj6ewYNxZWToLzFKqV1ijDkWOA7IN8b8I+ZQChCOT1T9S4tt8/tl63igdCN7JCdw9/ghDAloNwyllOotdBTcXuDo4qMpTinm2g+u5aI3L+KKKVdwwYQLsIy+HtrVXMnJJOy5Jwl77tmu3G5ooGXFSoKrVxNcs5rQ6jUE16yh7t13iVRWtqtr/H48gwc7y6BBuHNz8eTl4s51Fk9uLlZKiiapSqmtWQfMAk4EZseU1wHXxCWifmRVUwsXf7OKeXVNXFyQzQ3DB+HVrhZKKdWrdGYU3NHAXsBL0f0TgJndGdRANDpjNP85/j/8/tPfM2PODGZvmM1NB9xEuj893qENCFZiIoGJEwhMnLDFsUh9PaHS0uiyzlmvW0eopITmhQu3SFABjM+HOysLd1YWrujanZWFKzMDd0YGrvQMXOlpznZaGsatLyMoNRCIyFxgrjHmCREJxTue/uSl8k1cu2gNljE8NGEox2TrfNtKKdUb7bAPqDHmQ+A7IlIX3U8GXhWRg3ogvk7rq31UOhIRnl78NLd+eSsZ/gz+cvBf2CNnj3iHpbbDDgYJl1cQLt9AeMMGQus3EK6oILyxgsjGjYQ3VhLeuJFIVdU2r2GlpuJKScGVmhpdUqJlqbiSk7CSkrGSk3AlJzvbSYm4EhOxoovxeHrwGyvVv8SpD+hI4GZgHNDW6VxEet0E0b39/hqyhd8vL+W+ko1MTUng7vHFFPp1UD+llIq33ekDmgsEY/aD0TLVDYwxnDbmNCZmT+Ta96/l/NfP54qpV3DuuHNxWTpfWW9keb14C/LxFuRvt56EQoSrq4lUbyJSXU2kusrZr6p29mtridTWYG+qIVRaSqSmhkhtLUQiO4zBeDxOMpqQgEkIYAUSsAIBTMDvbPv9zrbPj/H7nH2fH8vvw3h9GK8X4/NivF4sX3Tf68V4PFsubje4PRiPG+N2Y1z697IriW1DJIKIOOuIDbKVMjt2HQHb3mJNJLL5ejHnSCS8uV7Ha4UjiO2Uix2B2P1IpK1Ou3XrNdutI9HPjbS/bru1DeEwEokpiz0vum5XFg4j0dgDkyYx5KEH4/0j21UPAr8F/g4cCpwP6LuiO2ljMMzF36zi0031/LAgi18PH6yv3CqlVC/XmQT0EWCmMea/0f3vAg93W0QKgHGZ4/jPCf/hd5/+jr/P/jsflnzInw74E/lJ209yVO9lPB48OTl4cnI6fY6IIE1NROrqsetqidTVYdfXO0tDA3ZjY/t1QyN2U1N0acTeWEmoqQS7qQlpbsZuaUGam53kpMu+mIkmpU4yalwuaF273c5UNy7XFmssgzEWWFb7bWPAgME42zFlzscZYnacZdt/gO3XSNufKxItj1mEbZSLOH9mIojYYEeP2fbm/bbj0XI70lbeVqc1iYxNMm27LUns0p9LT2j9+UbX7X72W6wtjMvdtm47z+XCeNxYlgvcLufYVs4z7mhZTD1PYUG8/wR2R0BE3jHGGBFZDfzOGDMb+E28A+sr5tU1cv78lWwMhfnn2CJOzcuId0hKKaU6YYcJqIj8yRjzP+DAaNH5IvJV94alAFK8Kfz14L/y0vKXuHnmzfzfS//H9dOv56ThJ+kANwOEMQaTkICVkAC5nU9ct0dEIBRqS0YlGMRuCSLBFiQYRFpanP1wCAmFnLrBIBKK7ofDSCiMhMNOnXA42oplQyTstHS1toKFwx1a6mLWW0ngJJrEtUv+ImHnuBM8EpNUCtvoQiBszlFjk9WO6w7JrjFW+/LWZNfliu7HJsnGSaLaEmgD0fONy3K2XZZTJ7bcikm+W69rRRMtywWW1eF81+brtJ4bW98VTfysba1dbZ9rXNbmxK5jueVykrwt9mOu445JKrWVaXe1GGMsYKkx5nKgFEiKc0x9xnPrq7h28VoyPG5enDKSPVIS4h2SUkqpTursyCcJQK2IPGiMyTbGDBWRld0ZmHIYYzhpxElMy5vGrz7+Fb/+5Ne8v/Z9frPvb8jw69NetfOMMeD14vJ6ITl5xycopbrDVTj31iuBPwCHAefGNaI+IGwLf1yxjrvWVrBPaiL3Tigm26t94JVSqi/Z4SNsY8xvgZ8Dv4gWeYDHujMotaX8pHzuP+p+rt3zWj4s+ZCTXzyZ99a8F++wlFJK7QIR+VJE6kWkRETOF5GTReTzeMfVm9WFI5w9fwV3ra3ggvwsntljhCafSinVB3WmBfR7wBRgDoCIrIuOhKt6mMtycd6E89gvfz9+8dEvuPK9KzlqyFFcP/16shOy4x2eUkqpHTDGvAzbenccROTEHgynzyhtDnL2vBUsbmzmL6ML+cHgzHiHpJRSahd1JgENiogYYwTAGJPYzTGpHRiVPoqnvvMUD37zIHfPvZvP1n3GT6b9hJNHnoxltF+WUkr1Yn+JdwB9zfy6Rs6et5KGSIQnJg3n4Ax9Bq6UUn1ZZxLQp40xdwNpxpgfAhcA93Xm4saYY4AZgAu4T0Ru6XDchzPK7p5AJXCaiKwyxpwF/DSm6iRgqoh83ZnPHQg8Lg8XT7qYo4YcxY2f38jvP/s9Ly9/md/u91uGpfa6aeSUUkoBIvJBvGPoS97aWMOPvl1NutvFS1NHMjYpEO+QlOoxti3YYRs7ItgRIRLZvG1HbGxbEFs2l9mCtK7tzWuxnWu1jgAvEi1v3Rba9oF2x2gb9y96XNg8AGDMuxxtAwTuhC0G1IwdPDBmkPu2em1lZvMg+Ma0r9c6jmBruTFt+8SUd6zrDAjoDFtojAGrfV0TPd56DcvqcD0rpq7VoSw6UOFWy6wO5wyQQUZNZ/7CGGOOBI7C+avxhoi81YlzXMAS4EigBPgSOENEvo2pcxkwSUQuMcacDnxPRE7rcJ2JwAsiMnx7n9fbJ8ruTiLCC8te4C+z/kJTuIkLJ17IBRMuIODWG7VSSu3ItibK7ubPHAncDIwD/K3lItLrniDG6/76QEkFNywtZUJygEcnDiPXp/09VXzZthBqiRBqDhNsjhBqiRBuiRAKRreDEcJBe/N2yCYcsokEI4SCNpHW/bCzHQk7SzhkY4db952kMxJxkkQ1wLQlse0TU2tbCavVoc4WCa6JDt4fPWbFJtDRY23nbT6+7/eGk5zh33G8O/o627i/7rAF1Bhzq4j8HHhrK2XbMx1YJiIrouc8BZwEfBtT5yTgd9HtZ4E7onOixf4Xdwbw1I7iHMiMMXxv5Pc4sOBAbvvyNu6aexcvLHuBn+z5E44pPmbAPE1RSqk+5EHgt8DfgUOB8+nEwIADgYhw4/J13Lm2gqMyU7hz/BASXa54h6X6gUjEpqUhTHN9iObGEC2NYVoaQ7Q0RNdNYYJNYYJNkc3bzc461OwklDvD5bZwey1cHgu3x8LtdeH2RPe9Fr5ENy635SweC5fL4HJbWG4Llzu67TJYLmftitluK7cMpnXfak04NicbVofkojWRIZqwQPsWuq21ErbVgQ5zckfrt37hnfl1s2MjakxLa+u+OAXtpvJuna+7rYW2tVzat9o6h5zW39brir35nNb91m3bjjkv5lpiR9t77fatxbYtW1y33bYdc370mnaHMrE7ntO+NTr2uC0CtjjTkLeVtz/Xtls/J+Z8u/2+HRHEttt9j46fb9tCOBjZiR/mzuvMK7hH4oyCG+vYrZR1lA+sjdkvAfbeVh0RCRtjaoBMYGNMndNwEtUtGGMuBi4GKCoq2kE4/V9WIIvbDrqN00afxq0zb+VnH/6MJxc9yc+n/5zxmePjHZ5SSqnNAiLyTvSh62rgd8aY2cBvdnSiMSYNpyvMBJzf0S4Qkc9ijh8CvAi0Tpf2vIjcGD12DXBR9Lz5OHN7N3fVl9pdYVu4dvFa/rO+ivPzs/jjyHxc+hBVbYOI0NIYpqGmhabaII11QZpqQzTWBmmqc/ab60PO0uAknNvj9bvwBtx4A258ATcJKV7ScgJ4Am68fjdevwuPL7r4XXh8bmfb68Lts5y114Xb6ySbrQmeUqq9bSagxphLgcuAYcaYeTGHkoFPujuwaAx7A40ismBrx0XkHuAecF4R6omY+oI9c/fkye88yYvLX2TGnBmc8coZfHfEd7ly6pVkBbLiHZ5SSiloMcZYwFJjzOVAKZDUyXNnAK+LyCnGGC/OfKIdfSQix8cWGGPyceYdHSciTcaYp4HTgYd29Ut0paaIzSXfruKNjbX8tDiPnxTn6hs8A5jYQmNtkLrqZuqrWqiraqa+upmGTUEaa1poqGmhYVOQSHjLVknLMgSSPQRSvASSPKRkBfAnefAneghE175EN74ED74EN/4ED96AC8ulLyEo1RO21wL6BPA/nD4q18eU14lIVSeuXQoUxuwXRMu2VqfEGOMGUnEGI2p1OvBkJz5LdeCyXJw88mSOHHIk98y7h8cWPsbrq17n7HFnc+74c0nxpsQ7RKWUGsiuwkkcrwT+gPMa7rk7OskYkwocBJwHICJBILgTn+sGAsaYUPTz1+1U1N2kNhzh3Pkr+HxTAzeNzOeCAp1arL8TEZobQtRWNFO7sYnayiZqK5qo2dhMXWUT9dUt2JH2bQtun4ukNB+JqV7yhqWSmOojMc1HQqqXhGQvgRQvCSlefAG3M2CMUqpX6tQgRADGmBzaD5SwZgf13TiDEB2Ok2h+CZwpIt/E1PkxMDFmEKKTReT70WMWzuu5B7b2I92egTwIUWesrl3NHV/dweurXifFm8IFEy7gzLFn6kBFSqkBLx6DEO0qY8weOG/+fAtMBmYDV4lIQ0ydQ4DncLq+rAOua733GmOuAv4ENAFvishZ2/ic2C4ue65evbp7vhBQEQxx5twVLGxo4p9jh/C93PRu+yzV88KhCJs2NLFpQ+PmpdxZd3wlNpDiJTXLT3JmgOQMP8kZPpLS/SRFt70Bt7aKK9WHbOv+usME1BhzAvA3YDBQDgwBForIDjsVGmOOA27HmYblARH5kzHmRmCWiLxkjPEDjwJTgCrg9JhBiw4BbhGRfTrzBTUB7ZxFVYv451f/5MOSD8kKZHHxpIs5ZeQpeFw6uqBSamCK0yi4bwGnisim6H468JSIHL2D86YBnwP7i8gXxpgZQK2I/DqmTgpgi0h99D48Q0RGRj/jOZyxFTYBzwDPishj2/vM7ry/rmlq4fS5KyhrCXLfhKEcnqlv5/RVkYjNpg2NVK1r2LyUNVBT3kjsr5pJ6T7SchNIy0kgNSdAanaAlCxn8fh0sCml+pPdSUDnAocBb4vIFGPMocAPROTC7gl112gCunO+Kv+KGXNmMHvDbAYlDuK88edx8siT8bt3f8hlpZTqS+KUgH4lIlN2VLaV8/KAz0WkOLp/IHC9iHxnO+esAqbhvOZ7TOv92xhzDrCPiFy2vc/srvvrysYW/u/rZTREbB6bNIy9UhO7/DNU9wi1RKgsradiTR0b19ZRsbaeqnUNbf0xjYHUnAQyBic6y6DEtqRTk0ylBo5dnoYFCIlIpTHGMsZYIvKeMeb2rg8x/uqaQ/z8uXlcd9RohmV3diyIvmlKzhQePPpBPl33KXfNvYubZ97M3fPu5gdjf8BpY07TPqJKKdW9bGNMUWt3FmPMENpN6751IrLeGLPWGDNaRBbjdHOJnd6sNUndICJijJmOM71LJbAG2McYk4DzCu7hQFye3C5rbOaUr5YTFJvn9hjOhOStjaOkegM7YlNV1sCGlbVsWFnL+pW1VK9vaPvb6kt0k12YzMRDC8gqSCIz30k23R5NNJVSW9eZBHSTMSYJ+BB43BhTDjTs4Jw+aWN9kC9WVHHmvV/w9I/2pSizf98QjTHsn78/+w3ej9kbZnPfgvv4x1f/4IEFD3Da6NP4wbgf6Ki5SinVPX4JfGyM+QBn9rwDifa57IQrcO7HXmAFcL4x5hIAEbkLOAW41BgTxkk0T4/Or/2FMeZZYA4QBr4iOpJ8T1rc0MypXy8jIvDcHiMYm6RjEfQmLU1h1i+vYd3STaxfUUP56lrCQadl05/oIXdoCiOmZpNdlExWYTJJ6T7tl6mU2imdeQU3EWjGuUGehTNS7eMiUrndE3tYV70itLCsljPu/Zwkn5v//Ghf8tMG1o1xYeVC7l9wP2+uehOP5eGYocdw1tizGJc5Lt6hKaVUt+jpV3Cjg+ydArwLtI5z8LmIbNz2WfHTla/gLqxv4pSvl2MZeHaPEYxO1G4f8dZUH2Td0k1tS2VJPSLOVCZZRcnkDU0hN7qkZAU02VRKddou9wHtK7ryBjm/pIYz7/2czCQv//nRvuSmDLwb5KqaVTy28DFeWv4STeEmpuRM4cwxZ3L4kMPxWDpgkVKq/4hTH9BZfWXk3a66v35T38SpXy/DayyenTKcEQkD797aG4RDEcqW11CysIo131axcW09AG6PRe6wVAaPTGPwiFRyh6Xi8eprtEqpXbfTCagxpg7nDf/WR12tFQ0gItKrOgl29SAJs1dXc/b9XzA4LcBTF+9DVpKvy67dl9QGa3lx2Ys8sfAJSupLyAnkcOroU/neiO+Rm5gb7/CUUmq3xSkBvQXYCPyHmG4tnZxnu0d1xf11Xl0jp329nIDL4rk9RjA0YWDeU+Nl04ZGVs3fyJpvq1i3dBORkI3lMuQNS6VwbDr5ozPIGZKMy23FO1SlVD+iLaC74PMVlZz34EyKMxN56uJ9SEvwdun1+xJbbD4u/ZjHFz7Op+s+xTIW+w3ej5NHnswhBYfoNC5KqT4rTgnoyq0Ui4gM68k4OmN3768iwolzlrGuJcjzU0YwJKDJZ3ezIzZly2tYNW8jq+ZXsmlDIwDpeQkUjsugcGwGg0em4fV3ZigQpZTaNbvSAuoHLgFGAPNw5vEMb7VyL9Bdw8R/tLSCCx+exejcZB67aG9SA5poraldwwvLXuDF5S9S3lhOui+d44cfz3dHfJdR6aPiHZ5SSu2UeCSgfUlX3F83tIQIilDoH7gPcrtbOBRh7bdVLJtTzur5lbQ0hrFchvzR6RRPzKJ4YiYpWQNrXAulVHztSgL6HyAEfAQcC6wWkau6Ncrd0J3zgL67aAM/enQ2Y/JSeOSC6aQn6g0UIGJH+HTdp/x32X95b+17hO0wI9NHcmzxsRwz9BgKkwvjHaJSSu1QnFpAE4CfAEUicrExZiQwWkRe6ck4OkPn2e69YpPOlXM3EmqO4EtwM3RSFsWTsigcl6GtnEqpuNmVBHS+iEyMbruBmSIytXvD3HXdfYN8d9EGLnlsDsOyEnn0wr3JTtZXiGJVNVfxv5X/4/WVr/N1xdcATMyayDHFx3B08dHaX1Qp1WvFKQH9DzAbOEdEJkQT0k9FZI+ejKMzNAHtXWxbKF1czeLP17NibkVb0jlsj2xG7JlD/ph0XC7ty6mUir9dSUDnxCacHfd7m564QX6ybCMXPTyLQWl+nrhoH/JSdQS/rVlXv443Vr3B/1b+j4VVCwGYlDWJQ4sO5dDCQxmWOkyHcVdK9RrxHAXXGPOViEyJls0Vkck9GUdnaALaO1Svb2DRZ+tZMnM99dUteANuhk1xks4CTTqVUr3QriSgETaPzGeAANDIABkFd1u+XFXF+Q9+SUail8cv2pvCjIRu/8y+bGXNSt5a/RbvrXmPBZULAChKLuLQwkM5tOhQJmdPxm3p60FKqfiJUwL6KXA48ImITDXGDAeeFJHpPRlHZ2gCGj8tTWGWfLGeRZ+VUb66DmMZisZlMHqfPIZOysKt06QopXoxHQW3C81du4lzHphJgtfF4xftzbDspB753L5uQ8MGPij5gHfXvsvMspmE7BBJniSm501n//z92XfwvtpvVCnV4+KUgB4F/AoYB7wJ7A+cLyLv9WQcnaEJaM+rWFPHgg9KWPLlBsJBm8z8JMbsm8fIvXJJTNUuQEqpvkET0C727bpafnD/F1jG8NhF0xmT16sahHu9+mA9n5V9xqfrPuXT0k9Z17AOgMLkQvYbvB/T8qYxLXcaWYGsOEeqlOrv4jUKrjEmE9gH582iz0VkY0/H0BmagPaMUDDC0i838M2HpZSvrsPtsRg5PZcJB+WTM0R/x1BK9T2agHaDZeV1nHXfFzQGI9xz9jT2HZ7Zo5/fX4gIa+rW8EnpJ3y27jNmrp9JY9iZs6w4pZg9c/dkz9w9mZY7jUFJg+IcrVKqv4lTC+g7InL4jsp6A01Au1d9dQvz31/LNx+to6UxTPqgRCYcNJjRe+fhS9Cp35RSfZcmoN2kdFMT5z4wkzWVjfz1+5M5YfLgHo+hvwnbYRZVLWLW+lnM3jCb2eWzqQvWAZATyGFi9kQmZk1kUvYkxmeOJ8Gj/XCVUruuJxPQ6BzbCcB7wCE4rZ8AKcDrIjKmJ+LYGZqAdo+KtXV8/fYaln1ZjogwbEo2kw4tYNCINB2oTynVL2zr/qqjv+ym/LQAz16yLxc/MpsrnvyKDbXNXHTgsHiH1ae5LTcTsiYwIWsC5004D1tsllYvZfaG2czbOI/5FfN5Z807AFjGYnjacMZljGNs5ljGZIxhdPpokrzaL1cp1Sv9CLgaGIwzDUtrplEL3BGnmFQPERFWL6jk67fXUrq4GrfPxYRD8pl8WCEpWYF4h6eUUj1CW0C7SHMowk+e/prX5q/ngv2HcsN3xmJZ+gSzu1Q3VzN/43xnqZjPwqqFVDVXtR0vTC5kTMYYRqaPZETaCIanDqcwpRCPpa8zKaXai9MruFeIyD978jN3Vbzvr/2B2MKKuRXMem0VG9fWk5jmY9JhBYw/YLC+ZquU6re0BbSb+T0u7jhjKn9I+ZYHPlnJhtpm/vr9yfg9OkR6d0j3p3NQwUEcVHAQ4DxVrmiqYFHVorZlYeVC3l79NoLzkMVtuSlOKWZE2giKU4sZkjKE4pRiilKKSPHqAA9KqZ4jIv80xuwHFBNzLxaRR+IWlOpyti0sn1POrNdWUbWugdScAIedM5ZRe+fqvJ1KqQFLE9AuZFmG354wnvy0AH98dSFlNU3cdfae5CT74x1av2eMISchh5yEnLakFKAp3MTKmpUs37ScZZuWsWLTChZsXMCbq9/EFrutXoY/gyEpQyhIKiA/OZ/8JGcpSCogJyEHl6UPEpRSXccY8ygwHPgaiESLBdAEtB+wbWHplxuY/b9VVK9vJD0vgSMvGMeIPXOwNPFUSg1wmoB2g4sOHMbgtADXPj2Xk+74hHvOnsbEgtR4hzUgBdwBxmWOY1zmuHblwUiQkroSVtWuYk3tGlbVrmJ17Wq+3PAlr6x4pa3VFJyW09yEXHITcslLzCMvMa9tOzchl8xAJpmBTH29Vym1M6YB46S/9INRQLSP5/xKPnthOVXrGsjMT+ToH05g+JRsjHbLUUopQBPQbnPcxEEMyUzg4kdmc8pdn3LbKZM4aY/8eIelorwuL8PShjEsbcsBo0KREGUNZZTUl1BaX0ppXSllDWVsaNzA3Iq5vLn6TcJ2uN05BkO6P52sQBbZgWwyA5lk+DPI8GeQ7k9vt53qTSXRk6ijHCo1sC0A8oCyeAeiukbZsk189sJyypbVkJoT4KiLxjNiao4mnkop1YEmoN1o/OBUXrx8fy57bA5XPfU1i9bXcd1Ro3HpzahX87g8FKUUUZRStNXjtthUNVexoWED5Y3lVDRVsLFpo7NudNYralZQ2VRJ0A5u9Rpu4ybFl0KaL41UXyqp3lSSvclbLEmeJJI8SSR6E0l0J5LkTSLBk0CiO1FfC1YDkogQkQgRiSAi+N19totDFvCtMWYm0NJaKCInxi8ktSsqS+v5/MUVrJq3kYQULwefOZqx+w/SPp5KKbUNmoB2s6wkH49dtDe/e/kb7nx/OYvX13H76XuQ4tfXNfsqy1hkBbLICmQxnvHbrCciNIYbqWqucpamKja1bKKmpYaaYM3m7ZYayhrKWLppKbXBWuqD9e1eAd4Wr+UlwZNAwB1ot/jdfvwuv7OObvtcPnxuHz6XD6/lxevyOmUuHx7Lg8flwevy4rE8eC0vHpcHj+XBbblxW+52227jrF3GpUnwThIRbLGxsZ212G0JVet+7HbsfmvCFbtv2+2Pdzw/Ym/9WNgOb/Ocjsda922xCUu47brbu2br8dbtrZ0be3xnzontuz0lZwqPHNtnu0z+Lt4BqN3TVB/ki5dW8u1HpXh8LvY+aRiTDyvE49N/F5VSans0Ae0BXrfFTd+byNhBKfz+pW846Y5PuOPMKYwfrP1C+zNjDImeRBI9iRQmF3b6PFtsGkIN1AXrqAvW0RBqaLfUh+ppDDXSFG6iMeys27ZDTVQ3V9MSaaEp3ERzuJmWSAvN4WbCEt7xh+/sd8Tgsly4jRvLWLiMC8ty1i7jwjLW1hcsjDHOgsEyFobN+yY6NWLrvvP/pt3ndhSbtLdty+ZtEaHt/6Ld7lq3O5bbYrc71pqAtR6LPd663TGhbC1rTRxb6/U1rT+z1p/p1n7Gbsvdvo7Vvm7r3w+vy4vL7dpmPZdxbXGt1ut3rO+yXOQl5sX7j2eXicgH8Y5B7Ro7YrPgw3XMfHkFweYIEw4pYPp3huJP0gfLSinVGd2agBpjjgFmAC7gPhG5pcNxH86If3sClcBpIrIqemwScDeQAtjAXiLS3J3xdrez9xnC6NxkrnhyDt/796f89oRxnDm9SPsCqnYsY7W9gtuVInaEoB0kGAnSEmmhJdJCMBIkZIcIRoJt2637YTtMyA4RtsOEJUwo4my3tkSF7FBby1RrecdWt9YyEXFa/ezNrX+xSVnHZA6iiaPQLjFsK4/Z3lZi2vrfVWsC27q9RaJr2pdbxmr7ObSWW5a11UQ5NqluOx69hsu4nG2stvKtJeWt523tWGxZa5JmsbncZbm2qNtubW1Z7jbuduXtjsUkf7HfQXUdY0wdbPVJhAFERHROqF6sZFEVHz29lKp1DRSMSeeA748kc3BSvMNSSqk+pdsSUGOMC/gXcCRQAnxpjHlJRL6NqXYhUC0iI4wxpwO3AqcZY9zAY8DZIjLXGJMJhLor1p40fWgGr115INc8PZdf/XcBX6yo4qaTJ5Lk08Zo1b1clouA5bymq5SKDxHp2idLqkfUVTXzyTNLWf5VBcmZfo790USG7pGlD2iUUmoXdGfWMx1YJiIrAIwxTwEnAbEJ6Els7gfzLHCHcf41PwqYJyJzAUSkshvj7HGZST4eOm8v7vxgOX99czHzS2v415lTGTdYH3wrpZRSvYVtCws+KOHzF1YgtrD3iUPZ44gi3F7t56mUUruqO4doywfWxuyXRMu2WkdEwkANkAmMAsQY84YxZo4x5mdb+wBjzMXGmFnGmFkVFRVd/gW6k2UZfnzoCJ784T40tIT53r8/4dHPV7d71VAppZRS8bGxpJ7nbpvNR/9ZyqARqZzx272ZdtxQTT6VUmo39dYxwt3AAcBZ0fX3jDGHd6wkIveIyDQRmZadnd3TMXaJvYdl8tpVB7L3sEx+/cICzn3wS9bX9OmurkoppVSfFQ5G+Oy/y3nmpi+pq2ziyAvHcfzlk0nJ0u4LSinVFbozAS0FYof+LIiWbbVOtN9nKs5gRCXAhyKyUUQagdeAqd0Ya1xlJfl4+Py9+MNJ45m5spKjb/+Ql+aui3dYSiml1IBSuqSaJ/8wkzlvrGb0Pnmc+bt9GLVXnvb1VEqpLtSdCeiXwEhjzFBjjBc4HXipQ52XgHOj26cA74rzDuobwERjTEI0MT2Y9n1H+x1jDGfvW8z/rjqIYdmJXPnkV1z+xByqG4LxDk0ppZTq18KhCB8/u5QX/v4VACddM4XDzhmLP1GnVlFKqa7WbYMQiUjYGHM5TjLpAh4QkW+MMTcCs0TkJeB+4FFjzDKgCidJRUSqjTF/w0liBXhNRF7trlh7k6FZiTzzo325+8MV3P72Er5YWcUtJ0/k8LG58Q5NKaWU6nfKV9fy9oPfUr2+kQkH57PfySPw+LSfp1JKdRfTXwa9mTZtmsyaNSveYXSpb9bV8JP/zGXxhjq+M3EQvz1hHDkp/niHpZRS/YoxZraITIt3HL1Vf7y/AkQiNrP/t5pZr60iIcXLYeeMoWhcZrzDUkqpfmNb91edfLIXGz84lZevOIB7PlzOP95dxodLKvjZsWM4a3oRlqX9UZRSSqldUb2+gbcf/Jby1XWMmp7LgaeN0tdtlVKqh2gC2st53RaXHzaS4ycN5lcvzOfXLyzg+Tkl3HzyRMbk6byhSiml1M5Y/HkZ7z+5BJfbcPQPJzBiz5x4h6SUUgNKb52GRXVQnJXIYxfuzd++P5nVlY0c/4+Pufm1hdQ1h+IdmlJKqR5kjEkzxjxrjFlkjFlojNm3w/FDjDE1xpivo8tvOntufxZsDvPOQ9/y9kMLySlK5vQbpmvyqZRScaAtoH2IMYaTpxZw6Ogcbv7fQu7+cAXPzSnhuqNGc+q0Qlz6Wq5SSg0EM4DXReSU6CjzCVup85GIHL+L5/Y7G0vqeOPeb9hU3si07xSz13HFWC59Bq+UUvGg//r2QemJXm47ZTIvXb4/xZmJXP/8fI7/58d8trwy3qEppZTqRsaYVOAgnFHkEZGgiGzq7nP7KhFhwQclPHvLbILNYU66egp7nzBMk0+llIoj/Re4D5tUkMYzl+zLHWdOobYpxBn3fs6PHp3Fqo0N8Q5NKaVU9xgKVAAPGmO+MsbcZ4xJ3Eq9fY0xc40x/zPGjN/JczHGXGyMmWWMmVVRUdE936SbhVoivPXAt3zw5BLyR6Vx2q+mUzA6Pd5hKaXUgKcJaB9njOH4SYN559qDue6oUXy0dCNH/O0DfvH8fMpqmuIdnlJKqa7lBqYCd4rIFKABuL5DnTnAEBGZDPwTeGEnzgVARO4RkWkiMi07O7vrv0U3q6lo5LnbZrN01gb2PmkYx18+mYQUb7zDUkophSag/Ybf4+Lyw0by/nWHcObeRTw7ey0H//l9fv/yN1TUtcQ7PKWUUl2jBCgRkS+i+8/iJJVtRKRWROqj268BHmNMVmfO7Q9Wf1PJMzfPor66meMvn8y0Y4sxOkaCUkr1GpqA9jM5KX5uPGkC7113CN/bI59HPlvNQbe9x62vL2JTYzDe4SmllNoNIrIeWGuMGR0tOhz4NraOMSbPGGOi29Nx7vWVnTm3LxMRZv1vFa/cMZekdD+n/mIvhozPjHdYSimlOtBRcPupgvQEbj1lEj86eBgz3lnKXR8s55FPV3HWPkO4YP+h5KX64x2iUkqpXXMF8Hh0FNsVwPnGmEsAROQu4BTgUmNMGGgCThcR2da5PR59Nwg2h3nn4YWs+KqCkXvlcugPxuDxueIdllJKqa0wm+9Jfdu0adNk1qxZ8Q6j11q8vo5/v7+Ml+euw2UZTp5SwMUHD2N4dlK8Q1NKqbgyxswWkWnxjqO36u3317qqZl7911yqyhrZ7+ThTD68kGgDsFJKqTja1v1VW0AHiNF5ycw4fQrXHTWaez9awX++XMvTs9dy9Lg8fnTwMKYU6ciASiml+pYNq2p59d/ziAQjHH/5JIrG6Su3SinV22kCOsAUZiRw40kTuPLwkTz86Soe/nQVr3+znskFqZy9bzHHTxqE36OvLSmllOrdln9VztsPfEsgxct3r55CxuCtziijlFKql9FBiAaorCQf1x41mk9/cTg3njSe+pYw1z0zl31vfodb/reIkurGeIeolFJKbUFEmPPGal6/ewGZBUmc8vNpmnwqpVQfoi2gA1ySz805+xZz9j5D+HR5JY98top7PlzOPR8u57AxOZw6rZDDxuTgcemzCqWUUvEVidh88MRiFn5SxohpORx+zljcXn1rRyml+hJNQBUAxhj2H5HF/iOyKN3UxBNfrObpWSW8vbCczEQv352Sz6nTChiTlxLvUJVSSg1AweYwr9+zgLXfVjHtuGKmHz9U5/dUSqk+SBNQtYX8tAA/PXoM1xwxig+WVPDMrBIe+WwV93+8kon5qfzf1HyOmzSInGSdykUppVT3a6oL8sodc6lYW8+hZ49h3P6D4x2SUkqpXaQJqNomt8vi8LG5HD42l6qGIC9+Xcozs0r43cvfcuMr37L30EyOnzyIY8bnkZnki3e4Siml+qHayiZe/sdc6qqaOfaSiQydlBXvkJRSSu0GnQdU7bQlG+p4Ze46XplXxoqNDbgsw77DMvnOpEEcPjZHW0aVUn2KzgO6ffG8v1aW1vPyP74mHLI57rJJDB6RFpc4lFJK7TydB1R1mVG5yfzkqNFcc+QoFpbV8ep8Jxn9xfPzAZhcmMYRY3I4YlwuY/KSdUJwpZRSO23dsk289u95uD0W37t2Kpn5SfEOSSmlVBfQBFTtMmMM4wanMG5wCtcdNZqFZXW8s3ADby8q569vLeGvby0hPy3A4WNzOHBkNvsMyyDZ74l32EoppXq5VfM28vq9C0jO8HPClZNJyQzEOySllFJdRBNQ1SVik9ErDh9JeW0z7y4q5+2F5Tw9ay2PfLYal2WYUpjG/iOyOHBkFpML03R6F6WUUu0sn1POm/d9Q1ZhEsdfPplAsjfeISmllOpCmoCqbpGT4uf06UWcPr2IlnCE2aur+WTZRj5eupF/vLuUGe8sJcnnZuqQdPYaks5eQzPYozANv0fnc1NKqYFqycz1vP3QQnKLUzj+isn4AvprilJK9Tf6L7vqdj63i/2GZ7Hf8Cx+ejRsagzy2fJKPlm+kS9XVvPXt5YA4HVZTCxIZVpxOlMK09mjMI28VB3QSCmlBoJvP1nHe48tIn9kGsddNgmvX39FUUqp/qhb/3U3xhwDzABcwH0ickuH4z7gEWBPoBI4TURWGWOKgYXA4mjVz0Xkku6MVfWctAQvx04cxLETBwFOQjprVTVfrqriy1VVPPDxSkKRFQDkpviYXJDG5MI0JhekMX5wCumJ+jqWUkr1Jws+LOWDJxZTOC6DYy+ZiMerb8MopVR/1W0JqDHGBfwLOBIoAb40xrwkIt/GVLsQqBaREcaY04FbgdOix5aLyB7dFZ/qPdISvBwxLpcjxuUC0ByK8G1ZLXPXbmLu2k3MK6nhzW83tNUflOpn7KAUxg5KZtygVMYOSmZIZiIuS0fbVUqpvmbuO2v5+JmlFE/K4ugfjsetXTGUUqpf684W0OnAMhFZAWCMeQo4CYhNQE8Cfhfdfha4w+icHQOe3+NialE6U4vS28pqGkPMK93EwrJavl1Xy8KyOj5YUkHEduax9bothmUlMjI3mRHZSYzMTWJEThJDMhPwufWXGaWU6o3mvLmaz55fzvAp2Rx54Xhcbh2YTiml+rvuTEDzgbUx+yXA3tuqIyJhY0wNkBk9NtQY8xVQC9wgIh91Y6yql0tN8HDgyGwOHJndVtYcirCsvJ5vy2pZVl7P0g11fL22mpfnrmurYwwMTg1QnJVAcWais2QlUpgRoCA9gSSf9jFSSql4+PrtNXz2/HJGTsvhiPPHYemo6EopNSD01t++y4AiEak0xuwJvGCMGS8itbGVjDEXAxcDFBUVxSFMFU9+j4sJ+alMyE9tV94YDLOiooFl5fWs3NjAqsoGVlU28ur8MjY1htrVTUvwUJAeoCAtgYL0AIPSAgxK9ZOX6mdQqp/sJB9u/aVIKaW61Pz3S/jk2WUMn5qtyadSSg0w3ZmAlgKFMfsF0bKt1SkxxriBVKBSRARoARCR2caY5cAoYFbsySJyD3APwLRp06Q7voTqexK87q0mpuAMeLRyYwMl1U2UbmqipLqRkuomllXU8/6ScppDdrv6loHsZB+5KU4ymp0csyT5yEzykZHoISPRR1rAg6X9UJVSaru++aiUD59awtDJWRx54XhNPpVSaoDpzgT0S2CkMWYoTqJ5OnBmhzovAecCnwGnAO+KiBhjsoEqEYkYY4YBI4EV3RirGiDSErxMKfIyJaZ/aSsRoaYpRFlNM+trmqPrJspqmimva6Gsppl5pTVU1rdgb+Vxh2Wc62ckeslI8JKa4CE14CEt4CEtwUNqgpcUv5uUgIcUv5tkv4fk6DrR60K7Pyul+ruFn5bx/uOLGTIhk6MvmoBLk0+llBpwui0BjfbpvBx4A2calgdE5BtjzI3ALBF5CbgfeNQYswyowklSAQ4CbjTGhAAbuEREqrorVqUAjDGkJXhJS/AydlDKNutFbKGqIUh5XTNVDcF2S2VDkKr6IJuagqytamRBU4iaphCNwch2P9sykOh1k+hzk+BzkeRzR/ddBLxuEjwuAl4XCdHF74ldLPzuzds+twuv28LnttqtvW4Lj2VpK20fJiJEbCEigm3jrEWw7fblYdtuOx6xnToRe/N22N7ynEj0OmF7y3Na60W2dywi7a8Rs922FiEc2fJa4cjmuCIdl46fFVM+YXAq/zprarx/LKqTFn+xnncfXUjh2HSO+dEEXB5NPpVSaiDq1j6gIvIa8FqHst/EbDcDp27lvOeA57ozNqV2lcsyba/hdlZLOEJNY4ja5hC1zWHqmsPUNYeoaw5T2xSiviVMfUuYhpYwDS2Rtu3STSGagmEagxGaghEaQ5G2kX93ldsyeFwWHpfB67ZwWxYuy+BxGdwuq+2422VwWwaXZdrquCyDZQwuy/lzMMbgMia6DS7jHLcsJ6G3DBii62gLr2Wcuq1psIk5Ztr+Zztky00RQcTZd9bOftuxmHJbiB5zEq/WurbEbjv17OhF7dZET5zrtR6L2LH1o+WtCVpbXSFix5Y757QmUiKtSRYx2zF1WhNM2fydeju3ZbCs6N8fY3C5Nv89af075N5WmbW53Ove/PfOHVPHMs7+sOykeH9V1UnLZpfzzkPfkj8qjWMvnaRTrSil1ADWWwchUqpf8bld5KS4yEnx79Z1RIRgxKY5aNMcjtAcitAcsmkJO+vmUIRg2KYlbBOMxGyHbYIRm1BYCEYihCLSVhaO2IQjQsgWIrZNKCJOWUxrU3Mo0m6/rQUsJjmy7fbJWeu6NQG0bWfdmtBFNzcnimw7wRLa56Wxbyub6JHWpNYY05bItu3HbFvRg05S7JzfetyKJjmWcRLl1mu0Jkgm5piJrp1jm6/tjiZNrfuu6Hkdk3bLbP48l3ESNpdF9PM3J/pWTEJmdUjYYuu7okmfK5qcxV6vNalrTQq3fk1wWVa0Hu2Svo5J49auE/sZSsUSERZ/Xkbe8FSOu3QSHq8mn0opNZBpAqpUH2KMwed24XO7SMUT73CUUmqHjDEcffEE7Ijg9euvHUopNdDpnUAppZRS3crtcaHPzJRSSgHoCABKKaWUUkoppXrE/7d3r6GWlXUcx78/xhkcLLIckWgytYZEy44XwqkQnUgsQyNFiwKJoAsRFll0gTLFF5V0xYQyG6ObYpkm5oWcyhelOTk16iSWjqSok5WVIZrNvxf7Ocxp8DJn2metOWt9P3DYaz177bWe39nP4X+evdde2wmoJEmSJKkTTkAlSZIkSZ1wAipJkiRJ6oQTUEmSJElSJ5yASpIkSZI64QRUkiRJktQJJ6CSJEmSpE44AZUkSZIkdcIJqCRJkiSpE6mqvvswFUn+DNwzpd2tAB6a0r4Wg7HlhfFlHlteGF/mseWF6WV+UVXtPYX9DNIU66tjdPjGlhfGl3lseWF8maeZ90nr62AmoNOU5OaqOqLvfnRlbHlhfJnHlhfGl3lseWGcmRezMT5fY8s8trwwvsxjywvjy9xFXk/BlSRJkiR1wgmoJEmSJKkTTkCf3Nf67kDHxpYXxpd5bHlhfJnHlhfGmXkxG+PzNbbMY8sL48s8trwwvswLntfPgEqSJEmSOuE7oJIkSZKkTjgBlSRJkiR1wgnoHEmOS3JHkj8k+Wjf/VkISS5MsiXJrXPanpfkuiR3ttvn9tnHaUrywiTrktye5LYkp7f2IWfePclNSX7bMn+6te+f5MY2vi9Osqzvvk5TkiVJbklyZVsfet7NSTYm2ZDk5tY25HG9Z5JLk/w+yaYkq4ecd2iGXl/HVlthfPXV2mptHdqYntVHfXUC2iRZApwHvB44CHhrkoP67dWCWAsct13bR4GfVtUq4KdtfSieAD5UVQcBRwLva8/rkDM/BqypqlcAM8BxSY4EPgN8oapeAvwNeGd/XVwQpwOb5qwPPS/AMVU1M+f7uoY8rr8EXF1VBwKvYPJcDznvYIykvq5lXLUVxldfra0TQ88L46qt0EN9dQK6zSuBP1TVXVX1OPB94MSe+zR1VfUL4K/bNZ8IXNSWLwLe1GWfFlJV3V9Vv2nL/2TyR/UChp25quqRtrq0/RSwBri0tQ8qc5KVwPHABW09DDjv0xjkuE7yHOAo4BsAVfV4VT3MQPMO0ODr69hqK4yvvlpbra1teVCZ+6qvTkC3eQHwpznr97a2Mdinqu5vyw8A+/TZmYWSZD/gUOBGBp65nTKzAdgCXAf8EXi4qp5omwxtfH8R+Aiwta3vxbDzwuQfn2uTrE/yrtY21HG9P/Bn4JvtVLALkuzBcPMOzVjr62jG51jqq7XV2srAxjQ91VcnoPofNflensF9N0+SZwE/AD5QVf+Ye98QM1fVf6pqBljJ5N2HA/vt0cJJ8kZgS1Wt77svHXtNVR3G5LTG9yU5au6dAxvXuwGHAedX1aHAv9judKCB5dXADHl8jqm+WltHYUy1FXqqr05At7kPeOGc9ZWtbQweTPJ8gHa7pef+TFWSpUyK43eq6oetedCZZ7XTKNYBq4E9k+zW7hrS+H41cEKSzUxO7VvD5PMMQ80LQFXd1263AJcx+WdoqOP6XuDeqrqxrV/KpGAONe/QjLW+Dn58jrW+WlsHmRcYXW2FnuqrE9Btfg2salf3Wga8Bbii5z515QrgtLZ8GnB5j32ZqvZ5hW8Am6rq83PuGnLmvZPs2ZaXA69j8tmcdcDJbbPBZK6qj1XVyqraj8nf7fVV9TYGmhcgyR5Jnj27DBwL3MpAx3VVPQD8KclLW9NrgdsZaN4BGmt9HfT4HFt9tbZaW9tmg8rcV33N5F1VASR5A5Pz3ZcAF1bVOf32aPqSfA84GlgBPAh8CvgRcAmwL3APcEpVbX8xhUUpyWuAG4CNbPsMw8eZfE5lqJkPYfKB8SVMXmS6pKrOSnIAk1cxnwfcAry9qh7rr6fTl+Ro4IyqeuOQ87Zsl7XV3YDvVtU5SfZiuON6hsmFMJYBdwHvoI1vBph3aIZeX8dWW2F89dXaam1lYGN6Vh/11QmoJEmSJKkTnoIrSZIkSeqEE1BJkiRJUiecgEqSJEmSOuEEVJIkSZLUCSegkiRJkqROOAGVJEmSJHXCCag0RUn2SrKh/TyQ5L62/EiSry7A8dYmuTvJe+b5uKtmv1B7J445077Tb2ceu7z9Ph5PsmJn9iFJGh/r6zM+1vqqRWO3vjsgDUlV/QWYAUhyJvBIVZ27wIf9cFVdOp8HVNVOFbhmBjgCuGq+D6yqR4GZJJv/j+NLkkbG+vqMx7W+atHwHVCpA0mOTnJlWz4zyUVJbkhyT5I3J/lsko1Jrk6ytG13eJKfJ1mf5Jokz9+B46xNcn6SXyW5qx33wiSbkqyds93mJCuS7Nfu+3qS25Jcm2R52+ZnSY5oyyvaY5YBZwGntldaT02yRzvGTUluSXJie8zBrW1Dkt8lWTX1X6wkadSsr9ZXLT5OQKV+vBhYA5wAfBtYV1UvBx4Fjm9F8ivAyVV1OHAhcM4O7vu5wGrgg8AVwBeAg4GXJ5l5ku1XAedV1cHAw8BJT7Xjqnoc+CRwcVXNVNXFwCeA66vqlcAxwOeS7AG8B/hSVc0weUX33h3svyRJO8v6Ku3iPAVX6sdPqurfSTYCS4CrW/tGYD/gpcDLgOuS0La5fwf3/eOqqrbvB6tqI0CS29q+N2y3/d1VNdu2vm0zH8cCJyQ5o63vDuwL/BL4RJKVwA+r6s557leSpPmyvkq7OCegUj8eA6iqrUn+XVXV2rcy+bsMcFtVrd7Zfbd9PTanfXbfT7U9wH+A5W35CbadJbH70xwvwElVdcd27ZuS3AgcD1yV5N1Vdf0O9F+SpJ1lfZV2cZ6CK+2a7gD2TrIaIMnSJAd33IfNwOFt+eQ57f8Enj1n/Rrg/WkvJSc5tN0eANxVVV8GLgcOWegOS5L0DKyvUs+cgEq7oPZZkJOBzyT5LZPTel7VcTfOBd6b5BZg7iXd1wEHzV4kATgbWAr8rp2GdHbb7hTg1iQbmJzu9K3Oei5J0pOwvkr9y7YzEyQtNu3Ke1fO9zLxfcvkMvFHVNVDffdFkqTtWV+lheM7oNLi9nfg7Mzzi7L7kvZF2Uxe0d3ac3ckSXoq1ldpgfgOqCRJkiSpE74DKkmSJEnqhBNQSZIkSVInnIBKkiRJkjrhBFSSJEmS1In/AkC1A3VXzKRGAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6AAAAKACAYAAACCHhUzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbA4d+ekpm0Se8JpFBDCxB6ryIfIoiIHdu19+699o5dLCh2sYsiNlRAEEXpBKSXECAhhfReZmZ/f0yIgJQASQbCep8nT+bs09YZMWfW7H3WVlprhBBCCCGEEEKIxmZwdwBCCCGEEEIIIU4PkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSkoAKIYQQQgghhGgSJncH0FCCg4N1bGysu8MQQghxilm5cmWu1jrE3XGcrOT+KoQQ4ngc7v7abBLQ2NhYVqxY4e4whBBCnGKUUjvdHcPJTO6vQgghjsfh7q8yBFcIIYQQQgghRJOQBFQIIYQQQgghRJOQBFQIIYQQQgghRJNoNs+ACiGEaHg1NTWkp6dTWVnp7lBOmNVqJTo6GrPZ7O5QhBCiyTWnv+fi5HKs91dJQIUQQhxWeno6vr6+xMbGopRydzjHTWtNXl4e6enpxMXFuTscIYRocs3l77k4uRzP/VWG4AohhDisyspKgoKCTvkPK0opgoKC5Jt/IcRpq7n8PRcnl+O5v0oCKoQQ4oiay4eV5nIdQghxvOTvoGgMx/rvShJQIYQQQgghhBBNQhJQIYQQJ63du3czZMgQEhMT6dChAy+//HLduueee4527dqRlJREjx49+PDDD90YqRBCiKMxGo0kJSXRoUMHunTpwvPPP4/T6TziPnv27OHcc8896rGffPLJhgrzsN5//31uvPHGI26zcOFC/vzzz7rlN954o9ncnxrqPZYEVAghxEnLZDLx/PPPs2HDBpYsWcJrr73Ghg0beOONN5g7dy7Lli0jJSWF+fPno7V2d7hCCCGOwNPTk5SUFNavX8/cuXOZM2cOjzzyyBH3iYyMZObMmUc99vEkRw6H45j3OZqDE9Brr72WSy+9tMHPcyzsdvsRl+tLEtBGsG3TWp69eQTzZ3/q7lCEEEIAERERdOvWDQBfX1/at29PRkYGTz75JNOmTcNmswFgs9mYPHmyO0MVR7FzXZ58SSCEqBMaGsr06dN59dVX0VrjcDi466676NGjB507d+bNN98EIC0tjY4dOwKuHshzzjmHUaNG0bp1a+6++24A7r33XioqKkhKSuKiiy4C4KOPPqJnz54kJSVxzTXX1CWbPj4+3HHHHXTp0oW//vqLDz/8kM6dO9OlSxcuueQSAL777jt69epF165dGT58ONnZ2f+K/1DbpKWl8cYbb/Diiy+SlJTE77//zsMPP8xzzz0HQEpKCr1796Zz586MHz+egoICAAYPHsw999xDz549adOmDb///vsh37MpU6bQqVMnunTpwr333lu374oVKwDIzc0lNja27r0aO3YsQ4cOZdiwYf9aLisr44orrqBnz5507dqV2bNnH/N7fLxkGpb9ZJRX82H3LAq2/sYwLnB3OEIIcVL5/Yst5O4ubdBjBsf4MOC8NvXaNi0tjdWrV9OrVy9KSkqIj49v0FhE49m9MZ/vX13D8MsTadsr3N3hCCGAWc+v+ldbq+6hdBocTU21g+9fWfOv9e36RNC+bwQVpdX89Oa6A9aNv6PbMccQHx+Pw+EgJyeH2bNn4+fnx/Lly6mqqqJfv36MHDnyXwVuUlJSWL16NRaLhbZt23LTTTfx9NNP8+qrr5KSkgLAxo0b+fzzz1m8eDFms5nrr7+ejz/+mEsvvZSysjJ69erF888/z/r163n88cf5888/CQ4OJj8/H4D+/fuzZMkSlFK8/fbbPPPMMzz//PMHxHG4ba699lp8fHy48847AZg/f37dPpdeeimvvPIKgwYN4sEHH+SRRx7hpZdeAly9ksuWLePHH3/kkUceYd68eQecb86cOcyePZulS5fi5eVVF+uRrFq1irVr1xIYGMj7779/wPJ///tfhg4dyrvvvkthYSE9e/Zk+PDh9X6PT4QkoPtpG9cO++9dSC9v2A9YQgghTkxpaSkTJkyou1GLU0t0uwBGXtWBhG6h7g5FCHGS+uWXX1i7dm3dcNuioiK2bt1KmzYHfkk5bNgw/Pz8AEhMTGTnzp3ExMQcsM38+fNZuXIlPXr0AKCiooLQUNffH6PRyIQJEwD49ddfmThxIsHBwQAEBgYCrjlTJ02aRGZmJtXV1Yec37I+2+yvqKiIwsJCBg0aBMDkyZOZOHFi3fpzzjkHgO7du5OWlvav/efNm8fll1+Ol5fXAbEeyYgRIw7Ybv/lX375hW+//baud7ayspJdu3YB9XuPT4QkoPup0QYqMi8gwzLH3aEIIcRJp749lQ2tpqaGCRMmcNFFF9XdoH18fEhNTZVe0FOEUorWyWEAVJbVsHNdnvSECuFmR+qxNHsYj7je08fjuHo8D5aamorRaCQ0NBStNa+88gpnnHHGAdscnIxZLJa610aj8ZDPM2qtmTx5Mk899dS/1lmtVoxG4xHjuummm7j99tsZO3YsCxcu5OGHHz6ubY7Fvus63DUdjslkqivkdPBcnN7e3odd1lrz1Vdf0bZt2wO2Wbp0ab3e4xMhz4DuJ8LPCjgpVl7uDkUIIQSuG+SVV15J+/btuf322+va77vvPm644QaKi4sBVw9pc6ky2NytnruLBTM2UZxX4e5QhBButHfvXq699lpuvPFGlFKcccYZTJs2jZqaGgC2bNlCWVlZvY9nNpvr9h02bBgzZ84kJycHgPz8fHbu3PmvfYYOHcqXX35JXl5e3Xbg6q2MiooC4IMPPjjk+Q63ja+vLyUlJf/a3s/Pj4CAgLrnO2fMmFHXG1ofI0aM4L333qO8vPyAWGNjY1m5ciVAvYo17XPGGWfwyiuv1D2bv3r16qPus/97fCIkAd2PyWjAw1BKmcFXCiUIIcRJYPHixcyYMYNff/2VpKQkkpKS+PHHH7nuuusYMmQIPXr0oGPHjgwYMACD4dS+pSml3lVK5Sil1u3X9rBSKkMplVL7M3q/dfcppbYppTYrpc7Yr31Ubds2pdS9+7XHKaWW1rZ/rpTyaLqrg9TyKgB6jonjnLu6YQvybMrTCyFOAvuK2HTo0IHhw4czcuRIHnroIQCuuuoqEhMT6datGx07duSaa645pp63q6++ms6dO3PRRReRmJjI448/zsiRI+ncuTMjRowgMzPzX/t06NCB//3vfwwaNIguXbrUfdH58MMPM3HiRLp37143PPdgh9vmrLPOYtasWXVFiPb3wQcfcNddd9G5c2dSUlJ48MEH6319o0aNYuzYsSQnJ5OUlFQ3dPbOO+9k2rRpdO3aldzc3Hof74EHHqCmpobOnTvToUMHHnjggaPus/97fCJUc0m0kpOT9b4KUCci6f53KTGXs+zaCQSFRTRAZEIIcerauHEj7du3d3cYDeZQ16OUWqm1TnZTSPvHMRAoBT7UWnesbXsYKNVaP3fQtonAp0BPIBKYB+wbI70FGAGkA8uBC7TWG5RSXwBfa60/U0q9AazRWk87WlwNcX/9Pb+ESWu2807HWM4M8a9r37U+D3uNk/ikkBM6vhDi6Jrb33NxcjmW++up/XVxI/C3gLMmgBVrTzyZFUIIIepLa70IOHpZQ5ezgc+01lVa6x3ANlzJaE9gm9Y6VWtdDXwGnK1cZSSHAvvGZ30AjGvI+I+kl783d8SGMzDQt65Na83Kn3ay6uedaGfz+DJcCCHE0UkCepBImxfabmND2gZ3hyKEEEIA3KiUWls7RDegti0K2L3fNum1bYdrDwIKtdb2g9oPSSl1tVJqhVJqxd69e0/4AjwMBu6IC8fbaKTa6WRrWSVKKc68phNjb05CGdTRDyKEEKJZkAT0IB1aRAEGtudluTsUIYQQYhqQACQBmcDzR9y6gWitp2utk7XWySEhDTM8Vtc+y3XflnTOXr2Voho7Vh8zHp4mnA4nS79LpaKkukHOJYQQ4uQlCehB+rRLACD7oDLGQgghRFPTWmdrrR1aayfwFq4htgAZwP6TskXXth2uPQ/wV0qZDmpvEhXr17P9//6Pys2bubFFGI+1isLP/M9McAVZ5az+ZRfbV594b6sQQoiTmySgB2kd5g9Avrw1Qggh3EwptX81vPHAvgq53wLnK6UsSqk4oDWwDFfRoda1FW89gPOBb7Wr4uAC4Nza/ScDs5viGgBMwcGYQkJQJhNxXhYmhLsmQt9SVkmx3UFQlA8XPtSLjgMPOypYCCFEM2E6+ianl/DauUBLkPLwQgghmo5S6lNgMBCslEoHHgIGK6WSAA2kAdcAaK3X11a13QDYgRu01o7a49wI/AwYgXe11utrT3EP8JlS6nFgNfBO01wZmMPCaDljBq5aSKCdTsqdmvGrtzEwwIdpHWKxBbvuu4XZ5aSm7KXbGS2bKjwhhBBNSLr5DmI2GvBQZZQa/GQuUCGEOAlcccUVhIaG0rFjxwPan3vuOdq1a0dSUhI9evTgww8/dFOEDUNrfYHWOkJrbdZaR2ut39FaX6K17qS17qy1Hqu1ztxv+ye01gla67Za6zn7tf+otW5Tu+6J/dpTtdY9tdattNYTtdZVTXVtTu3k+9TvcWone6dOZc+dd+JlUDzbNpr/JkQesO2mvzJZPXcXZUVNFp4Qook88cQTdOjQgc6dO5OUlMTSpUsBeOmllygvLz/sfldddRUbNhxfgdBvv/2Wp59++rj2PdksXLiQP//8091hnDDpAT0EL2MFJdqf3OwsQsJlLlAhhHCnyy67jBtvvJFLL720ru2NN95g7ty5LFu2DJvNRnFxMbNmzXJjlOJIFqUv4r9//BdPkyddvb1Rnp7gcDB6vzlB15aU09nXi55j4+k4KApvP4v7AhZCNLi//vqL77//nlWrVmGxWMjNzaW62lV47KWXXuLiiy/Gy8vrX/s5HA7efvvt4z7v2LFjGTt27HHv31AcDgdGo/Gwy/WxcOFCfHx86Nu3b0OH16SkB/QQ/D00zppAVq5d7u5QhBDitDdw4EACAwMPaHvyySeZNm0aNpsNAJvNxuTJk90RnqiHQdGDeGvkWwxrMYzAK64g4vHHUWZz3UijzzPzGbliC0sLSzEYFD4BVgDW/55Bzs5id4YuhGggmZmZBAcHY7G4vlwKDg4mMjKSqVOnsmfPHoYMGcKQIUMA8PHx4Y477qBLly789ddfDB48mBUrVtStu+222+jQoQPDhg1j31RRgwcP5pZbbiEpKYmOHTuybNkyAN5//31uvPFGwPWF5s0330zfvn2Jj49n5kzX1MhOp5Prr7+edu3aMWLECEaPHl23bn/btm1j+PDhdOnShW7durF9+3YWLlzImDFj6ra58cYbef/99wGIjY3lnnvuoVu3bnz55Zf/Wv7ll1/o06cP3bp1Y+LEiZSWltbt99BDD9GtWzc6derEpk2bSEtL44033uDFF18kKSmJ33//vaH/EzUZ6QE9hEh/b9L2eLExbR2jcP83JkIIcTJ4YGs660orGvSYHX08eax19DHtU1xcTElJCfHx8Q0ay9EopY6WCSkgU2vdpiniOZUopegd0RuArLIsCioLaOUIIuPmWwi9607GJnWlxOGgh5933T7VlXZWzEkjpl0gQy+1uSt0IZqtWc+vol2fCNr3jcDhcPLtSykk9o+kba9waqodfP/KGjoOiqJ1chhVFXZ+fH0tnYdGk9A1lIrSan56cx1JI1oQ1zmYsqKqo45aGDlyJI8++iht2rRh+PDhTJo0iUGDBnHzzTfzwgsvsGDBAoKDgwEoKyujV69ePP/8v2eeKisrIzk5mRdffJFHH32URx55hFdffRWA8vJyUlJSWLRoEVdccQXr1q371/6ZmZn88ccfbNq0ibFjx3Luuefy9ddfk5aWxoYNG8jJyaF9+/ZcccUV/9r3oosu4t5772X8+PFUVlbidDrZvXv3v7bbX1BQEKtWrQLg3nvvrVvOzc3lnHPOYd68eXh7ezNlyhReeOEFHnzwQcCVoK9atYrXX3+d5557jrfffptrr70WHx8f7rzzziOe82QnPaCH0KFFNGAgNT/b3aEIIYQ4eWzXWtuO8OMLlLk7yJOZ1pq7fruLuxfdjTYb0XY7zrIyPI0GrooOwaAUhTV29lRW42E1cc6d3Rl8UVt3hy2EaAA+Pj6sXLmS6dOnExISwqRJk+p6Cg9mNBqZMGHCIdcZDAYmTZoEwMUXX8wff/xRt+6CCy4AXCNniouLKSws/Nf+48aNw2AwkJiYSHa267P+H3/8wcSJEzEYDISHh9f1xO6vpKSEjIwMxo8fD4DVaj3kkOGD7Yv14OUlS5awYcMG+vXrR1JSEh988AE7d+6s2+6cc84BoHv37qSlpR31PKcS6QE9hD5t43hryWqyZC5QIYSoc6w9lY3FZrPh4+NDampqU/eCHvrT0LFvc9pSSvFQn4dQSuHhH0TsF5+jDP98F6615oI1qTjRzOneBt9A11Dcqgo7a+btInl0LAajfHcuREMYf0e3utdGo+GAZbOH8YBli6fpgGVPH48Dluv7zLbRaGTw4MEMHjyYTp068cEHH3DZZZf9azur1Vrv5yP3Vdc++PWhloG6IcBAgxQcNZlMOJ3OuuXKg/IHb2/vQy5rrRkxYgSffvrpIY+7L06j0Yjdbj/hOE8m8lf8EFqF+gOQr+XtEUKIk9F9993HDTfcQHGxa1RsaWlpo1fB1VqnHtymlAo82jbiQK0CWpHgnwDA6r0paK0pnjOHjNtvB6eT/8ZH8EirKAz7fXDctT6PlXN2krVDngcV4lS1efNmtm7dWreckpJCy5au6ZZ8fX0pKSmp13GcTmfd85mffPIJ/fv3r1v3+eefA64eTT8/P/z8/Op1zH79+vHVV1/hdDrJzs5m4cKF/9rG19eX6OhovvnmGwCqqqooLy+nZcuWbNiwgaqqKgoLC5k/f369ztm7d28WL17Mtm3bANfQ4i1bthxxn2N5n05mkmEdQt1coOro3epCCCEa1wUXXECfPn3YvHkz0dHRvPPOO1x33XUMGTKEHj160LFjRwYMGIDB0Li3NKVUP6XURqXUeqVUL6XUXGC5Umq3UqpPo568GVqZvZLJP03mm23fYM/LpyYrG2d5OQMCfent7wPA1rJKtNa0Tg7jwkd6EdnK371BCyGOW2lpKZMnTyYxMZHOnTuzYcMGHn74YQCuvvpqRo0adcihrwfz9vZm2bJldOzYkV9//bXumUlw9Zx27dqVa6+9lnfeqf9UxxMmTCA6OprExEQuvvhiunXrdsjkdcaMGUydOpXOnTvTt29fsrKyiImJ4bzzzqNjx46cd955dO3atV7nDAkJ4f333+eCCy6gc+fO9OnTh02bNh1xn7POOotZs2ad8kWIVHOZ6zI5OVnvq47VENrc9xkmzy2sf+CBQ3bfCyHE6WDjxo20b9/e3WE0mENdj1JqpdY6+Wj7KqWWAVcCPsB3wDit9R9KqW7AK1rrfo0Rs7s1xP21uLKGF37Zwp1ntMXH4nr6R2vNN9u+YUz8GEwGE9jtKLO5bp+VRWWMXb2VF9u14LzwfzqaM7YUUFlWQ0LX0BOKSYjTTXP5e+7j41NXLXZ/gwcP5rnnniM5+ah/zg+ptLQUHx8f8vLy6NmzJ4sXLyY8PPxEwz1tHMv9VXpAD8PLWEEVAezNyjz6xkIIIU4HZq3131rrv4C9Wus/ALTWqwBP94Z2ctuwp5jPlu9iRVp+XZtSivGtx2M2mql0VJJekYWzspI9995HRUoKXW1e3BsXwZnB//RCaK1Z/sMOVvyYhtPZPL5AF0KcHMaMGUNSUhIDBgzggQcekOSzEUkRosPwt2iKqgNYsWYZoyPGuTscIYQQ7rf/l7b3HbTOoykDOdX0jg/i97uHEuJ76EIldy+6m60FW/l60AeUr16FtXMnPJOSuKllGAB2p2ZPVTUtPC2M+k8nUGAwyOgkIU5Hh+r9BA753OaxONH9Rf1JD+hhRNl80DU2Nu/a4O5QhBBCnBweUMpVHEBr/c2+RqVUAtC4FZCagX3J59LUPL5amX7Aums6X8O9Pe/FKziM+NmzCbzwwgPW371lN2ev3kaJ3YHVx4zV24zTqVnxYxoVJdVNdg1CCCFOnCSgh5HYMgowkponc4EKIYQArfW3Wuvy/duUUuFa6+1a62fcFdep5q3fd/DW76nUOP6ZtqBjcEcGxwwGIMuej9aayg0byHzkEbTTyVXRIdwVG46v6Z9pGQqzylkxJ42tK+Q+LYQQpxJJQA+jb1vX3HJZVTIXqBBCiMP60d0BnGpemNSFz6/pg/kQ83luzt/M2d+czaxtsyhfuYrShb9hz8kh0ceTCyODAEivrMahNYGR3lzwYE86D4lp6ksQQghxAiQBPYz4UBsABTIXqBBCiMOTBxGPkc1qxs/TjMOpmbZwO0XlNXXrWge05tIOlzIweiABF19E/LezMe9XCCSnqoaRKzYzJdVVINAvxDVdWnFuBat/2dW0FyKEEOK4SHZ1GBF+noCmWOYCFUIIt8rKyuL8888nISGB7t27M3r06LrJus8880zS09O56KKLaNu2LR07duSKK66gpqbmKEdtMG811Ymamy3ZJbwwdzPfrt1T12ZQBm7qehPBnsEAFJlr0FqTO/0typcvJ9Ri5oYWYVwQEXTAsTb+mcnKn9IoLahq0msQQtRfXl4eSUlJJCUlER4eTlRUVN1ydfWBz3K/9NJLlJeXH+ZI/xg8eDANOQ1jQ/nmm2/YsEHqyByOJKCH4WEy4KHKKDX40VzmShVCiFON1prx48czePBgtm/fzsqVK3nqqafIzs6moqKCvLw8oqOjueiii9i0aRN///03FRUVvP32240al1IqQCnVGViilOpWOxeoOAbtI2z8dOtALund8pDrn1r2FJfOuZTSor0UffMNxXN+AuCGFqHEebkKGu2scCWcPcbEcd5/e+ATcOgqu0II9wsKCiIlJYWUlBSuvfZabrvttrplD48DC4nXNwFtDA6H44jL9SEJ6JE1egKqlDIqpVYrpb4/xLqBSqlVSim7Uurc/dqHKKVS9vupVEqNa+xYD+aaC9SfnD0ZTX1qIYQQwIIFCzCbzVx77bV1bV26dGHAgAEsXLiQwYMHAzB69GiUUiil6NmzJ+np6Yc54olTSj0GrAWmAs/X/jzXaCdsxhJCfADYnV/O7JQD77WjYkcxrtU4fPxCaPnxR4Q9cP8B6z/IyGXQsk1sLK3AYFDYgl1TsW78M5Pdm/IRQpz85s+fT9euXenUqRNXXHEFVVVVTJ06lT179jBkyBCGDBkCwHXXXUdycjIdOnTgoYceOupxly9fTt++fenSpQs9e/akpKSE999/nxtvvLFumzFjxtRNveLj48Mdd9xBly5d+Ouvv/61/NFHH9GzZ0+SkpK45ppr6pJSHx8f/ve//9GlSxd69+5NdnY2f/75J99++y133XUXSUlJbN++veHfuFNcU8wDeguwEbAdYt0u4DLgzv0btdYLgCQApVQgsA34pTGDPJS6uUDXLuf/oqKb+vRCCHFSyXrySao2bmrQY1ratyP8v/897Pp169bRvXv3Q66bM2cO48aNO6CtpqaGGTNm8PLLLzdkmAc7D0jQWsv8Hw1k6vytzNuYzZB2odisZgC6hXWjW5irY7nc24gvYM/NJe+ddwm9/TbGhPizt9pOay9r3XEcdidr5u/CP9SLmHaB7rgUIU4Jv3+xhdzdh55P83gFx/gw4Lw29d6+srKSyy67jPnz59OmTRsuvfRSpk2bxq233soLL7zAggULCA52Dcd/4oknCAwMxOFwMGzYMNauXUvnzp0Pedzq6momTZrE559/To8ePSguLsbT0/OIsZSVldGrVy+ef/75fy1v3LiRKVOmsHjxYsxmM9dffz0ff/wxl156KWVlZfTu3ZsnnniCu+++m7feeov777+fsWPHMmbMGM4999wjnvd01ag9oEqpaOD/gEOOhdJap2mt1wLOQ62vdS4w5+DS900hys8bXeMnc4EKIcRJaPHixfTv3/+Atuuvv56BAwcyYMCAxjz1OsC/MU9wunl4bAe+vr5fXfK5v+yybCZ8O4GPNn5E2dKlFHz2GZWbtxDkYeLOuHBMBkWx3UFetR2jycDYW7oy4soObrgKIcSxcDgcxMXF0aaNK2mdPHkyixYtOuS2X3zxBd26daNr166sX7/+iMNbN2/eTEREBD169ADAZrNhMh25z81oNDJhwoRDLs+fP5+VK1fSo0cPkpKSmD9/PqmpqQB4eHgwZswYALp3705aWlr9Lv4019g9oC8BdwO+J3CM84EXDrVCKXU1cDVAixYtTuAUh9ahZTSL9xSwI1/mGBNCiCP1VDaWDh06MHPmzH+1p6amEhMTc8BzQ4888gh79+7lzTffbOywngJWK6XWAXVVb7TWYxv7xM2Vt8VEnMX1keT7tXvolxBMgLfrv22IVwhDY4aSHJaMX2J7vJJ7YA4LrdvXqTWTUrZjNSq+TmqFl821X02Vg7++3kbPs+Kx+vw7sRXidHYsPZXutmPHDp577jmWL19OQEAAl112GZWVxz5Noslkwun8p89r/2NYrVaMRuMhl7XWTJ48maeeeupfxzSbzSjlKoZuNBqx2+3HHNfpqNF6QJVSY4AcrfXKEzhGBNAJ+PlQ67XW07XWyVrr5JCQkOM9zWH1kblAhRDCrYYOHUpVVRXTp0+va1u7di0zZsxg1KhRdW1vv/02P//8M59++ikGQ6OXN/gAmAI8zT/PgD7f2Cc9HewprOD2L9bwxqJ/npkyKAP39bqP9kHtAagJdD03WvLrrxR9/wMGpbi5ZSi3tgyv+yAIkJ9ZxsYlWezZWtik1yCEqB+j0UhaWhrbtm0DYMaMGQwaNAgAX19fSkpKACguLsbb2xs/Pz+ys7OZM2fOEY/btm1bMjMzWb58OQAlJSXY7XZiY2NJSUnB6XSye/duli1bVq84hw0bxsyZM8nJyQEgPz+fnTt3HnGf/eMX/9aYPaD9gLFKqdGAFbAppT7SWl98DMc4D5iltW6yevr7iwt2ddwWaONRthRCCNEYlFLMmjWLW2+9lSlTpmC1WomNjcXpdDJt2rS67a699lpatmxJnz59ADjnnHN48MEHGyuscq311MY6+Oks0t+Tz67uTacov0Ou/3zT57yz7h0+OvMjKmbMQFdVYxt9JmeG+Ndts7mskjZeFsJibVzyWJ+6HlEhxMnFarXy3nvvMXHiROx2Oz169KgrOHf11VczatQoIiMjWbBgAV27dqVdu3bExMTQr1+/Ix7Xw8ODzz//nJtuuomKigo8PT2ZN28e/fr1Iy4ujsTERNq3b0+3bvUrXp6YmMjjjz/OyJEjcTqdmM1mXnvtNVq2PHQFb4Dzzz+f//znP0ydOpWZM2eSkJBQ/zfmNKCaYooRpdRg4E6t9ZjDrH8f+F5rPfOg9iXAfbVFiY4oOTlZN/Q8QFV2B23v/4lQz/kse+iQo4CFEKJZ27hxI+3bt3d3GAeoqqqiX79+xzX326GuRym1UmudXN9jKKVewDX09lsOHIK76pgDOgU0xv21Psqq7CzaspczO0XUtW3K38THGz/m/t73YyqrQplMGLz+ma97Y2kFI1ds4aFWkVwV/c/IqKzUIjYtyWLQ+W1QBoUQp6OT8e+5aD6O5f7aFFVwDw7kUWCF1vpbpVQPYBYQAJyllHpEa92hdrtYIAb4ralj3MdiMmJWpZTVzgW6/9AeIYQQ7mGxWNw98XjX2t+992vTwFA3xNJsvfnbdl5fuJ1fI/1oEeRKMtsFtuOxfo8BUOXtGp6rqqvJefllgi6/nHZBQfwvPoJzwwIOOFbmtiJ2b8ynorRGekSFEMLNmiQB1VovBBbWvn5wv/blwCHnN9FapwFRjR/dkXkbKyjRAWTu3k1kIxQ6EkIIcWrRWg9xdwyngxuGtqJ/65C65HN/NY4arvr5KhL8E7g3+EIKPvkUS3wC/hPO4doWrgJFDq1ZX1pBZ18vkkbE0GFgJB7WJv/eXQghxEEavVLDqc7fAs4af1b+7dZv24UQQpzElFL1e5hI1JvFZKRnnGsuz1W7CtiRW1a3zmw00zeqL30i+2Bt04aEn37Cf8I5B+z/QloWZ63ays6KKpRSeFhNaK358+ttrPl1d5NeixAni6Z49E6cfo7135UkoEfhmgvUn827ZS5QIYQQh3WduwNorqrsDm78eBUPf7v+gPbrulzHGbFnAFAd6O3adutWsp99Fq01V0aH8HSbaFp6Wur20RoKs8spyi6XD+LitGO1WsnLy5N/+6JBaa3Jy8vDarXWex8Zi3IUHWOjWbwnn7QCmQtUCCHEYV3v7gCaK4vJyPRLk4nwO/SHm5ScFG789UZeHPwicQtTKP72OwIvvZTAsDAuiAgCIK2iCofWJHhZOePqjhgMCqUU2qmlKJE4bURHR5Oens7evXvdHYpoZqxWK9HRh3yq8pAkAT2K3q3jePPPfHJkLlAhhBD7Ua7KdEOBC4ExQJh7I2q+OtZOy+J0ar5bu4ezOkdiqE0c4/3j6RvZl5a2lgRdlYz/hAmYAgPr9nVqzZXrdmBE8XNyG4xG1+CvsqIqfnhtLb3HxdMiMajpL0qIJmY2m4mLi3N3GELIENyjiQ1xzQWaL3OBCiGEW2RlZXH++eeTkJBA9+7dGT16NFu2bAHgzDPPJD09vW7bm2++GR8fn0aNRynVWyk1FdgJzAYWAe0a9aQCgF835XDLZyn8vD6rrs3mYeOZgc8Q6uUqPlTq5fpok/fuexT98AMGpXi5XQteSWx5QDV7o8mAycOAwSgfhYQQoinJX92j2Dfkp9jw7yp8QgghGpfWmvHjxzN48GC2b9/OypUreeqpp8jOzqaiooK8vLy6YT8rVqygoKCg0WJRSj2plNoKPAGsxTUdy16t9Qda68Y7sagzrH0oH17Rk1Edww+5/vkVz3PxnIspLsun9NdfKV3omsmto68Xbb1d9/PZOQUU2x1Yvc2Mv6Mb0W1dU7bUVDma5iKEEOI0JwnoUVjN++YCtclD20II0cQWLFiA2Wzm2muvrWvr0qULAwYMYOHChQwePBgAh8PBXXfdxTPPPNOY4VwFZAPTgBla6zxc8382GKXUu0qpHKXUuv3aApVSc5VSW2t/B9S2K6XUVKXUNqXU2v0r8SqlJtduv1UpNXm/9u5Kqb9r95mqTrEJrpVSDGwTglKKPYUV/LQu64D1w1sOZ3TcaHy9Aoh58w0in37qgPW7Kqq4ccMuXt+VU3c8gB1rc5lx/5/k7SltmgsRQojTmDwDWg/exkpKdAB7du0iqmVLd4cjhBBuMWXZFDblb2rQY7YLbMc9Pe857Pp169bRvXv3Q66bM2cO48aNA+DVV19l7NixRERENGh8B4kARgAXAC8ppRYAnkopk9ba3kDneB94Ffhwv7Z7gfla66eVUvfWLt8DnAm0rv3phSsx7qWUCgQeApJxJcgrlVLf1vbSTgP+AywFfgRGAXMaKPYm9dwvm/l1Uw59WwVhs5oBSApNIik0CYB8QyW+mDEWlbLnnnsJveN2WrRuzVdJCXS1eR9wrKBIb6LaBuATUP8qjkIIIY6P9IDWg2su0ACZC1QIIU4iixcvpn///uzZs4cvv/ySm266qVHPp7V2aK1/0lpPBhKAb4DFQIZS6pMGOsciIP+g5rOBD2pffwCM26/9Q+2yBPBXSkUAZwBztdb5tUnnXGBU7Tqb1nqJdg3p+XC/Y51yHj27I59f3acu+dxfhb2CS+ZcwqN/PYqjpISqrVup3u16Vrinvw9mg6LM7uC5HVnUODW2YE/OuKojFk8TDoeT0gIpPCiEEI1FekDrIcrfm7QMD7bsWgNMcHc4QgjhFkfqqWwsHTp0YObMmf9qT01NJSYmBg8PD1avXs22bdto1aoVAOXl5bRq1Ypt27Y1Wlxa6yrgK+ArpZSNxk3kwrTWmbWvs/in2m4UsHu/7dJr247Unn6I9n9RSl0NXA3QokWLEwy/cfhYTLQNdxUK/G7NHhIjbSSEuApQeZo8uSTxEjoGdcQjJJr4OT9i8PAAQDudKIOB+fklvLgzi34BPvTx/6dw1aLPtrBrXR7nP9gLi6d8TBJCiIYmPaD10DkuBjCSlrv7qNsKIYRoOEOHDqWqqorp06fXta1du5YZM2YwatQoAP7v//6PrKws0tLSSEtLw8vLq1GST6XUmEO1a62LtdYfHmmbhlLbc9noBQm01tO11sla6+SQkJDGPt0JKa2y8+j3G3h9wfYD2i9odwGdQjoBsLV0h2vbxYtJO28S9oICxob680fP9gcknwCdBkXT7YyWknwKIUQjkb+u9dC7dSzT/shlt73Q3aEIIcRpRSnFrFmzuPXWW5kyZQpWq5XY2FicTifTpk1r6nCeVUplAEcq3PMk8H0DnzdbKRWhtc6sHUabU9ueAcTst110bVsGMPig9oW17dGH2P6U5mMx8dnVvYny9zzk+pXZK7n8p8t5ov8TDDWHoYxGcLgq3sZ5WQBYWljK7JxCHm8dRXC0D8HRrqS0IKsMg9GAX8ihjy2EEOLYSQJaDzGBrmIFGV5WqsvL8fCSKVmEEKKpREZG8sUXX9QtV1VV0a9fP2JjYw+5fWlpo1UyzQZeOMo2WxvhvN8Ck4Gna3/P3q/9RqXUZ7iKEBXVJqk/A0/uq5YLjATu01rnK6WKlVK9cRUhuhR4pRHibXL7ht5W1jh47ufN3DS0NX5etYWJQpK4I/kOhrccjmeCJ16ffYpSCu10omtqMFgsLCks47f8EgrtDgLNro9G2qn5afo6TB5Gzr2nO6dYwWAhhDhpSQJaD9EBXhiUgyJDJHN/+o7/O2eSu0MSQojTlsViYcWKpi8Kp7Ue3NjnUEp9iqv3MlgplY6rmu3TwBdKqSuBncB5tZv/CIwGtgHlwOW1ceYrpR4Dltdu96jWel9ho+txVdr1xFX99pSsgHs4GzKLmbFkJ8mxAYzq6KqIbDQYmdzBNRNNtaOa5VnL6RfVj6zHHqN6Rxotpr/JzS1DuTI6GB+TsW7KNWVQDL88EaPRIMmnEEI0IElA68HDZKBVsAfbSuJYsuFnSUCFEEI0Cq31BYdZNewQ22rghsMc513g3UO0rwA6nkiMJ7NuLQJYdPcQwmyHnk7l7b/fZvra6Xw77lv8unbF6O8PZjNKqbrk86Fte7BrzROtowiJ8a3bd8Mfe4huF4AtWIbjCiHEiZAiRPU0qlMszspIdlTvdHcoQgghhDiMfcnn3+lF3PHFGmoczrp1l3e8nJeHvEwLWwv8xo4l9JZbUEpRk52Ds6oKAKXAeFCHZ0VpNX/O2kbKfClGKIQQJ0oS0HrqHR8MGNjmHYC9UuYHE0IIIU5m6/YUsSQ1j9zSqro2T5Mng2IGAbAxbyO/p/+Os7KSnRdfTOZ//4dSiocTInm0VRRKKfJr7Di1xtPHg3PvSabfua3cdTlCCNFsSAJaT11bBKBwkm+IY+G8n90djhBCCDdRSq1USt2wX5EfcRK6oGcLfrltIBF+nmitcToPnL3mpVUvMWX5FBweRoKvvYbAy1zPiSqlUEpRZncwdtVW/rfVVSjYP9QLo9FAdaWdH15fy95dJU1+TUII0RxIAlpPnh5GYgON2Mvj+H3tD+4ORwghhPtMAiKB5Uqpz5RSZyipUnNS8ra4Sl28OG8rd3y5Bsd+SegzA5/hzRFvYjaY8Z8wAc9OrjlDy5YsQVdX420ycl54IGeH+h9wzMqyGvIzyyjJk9FQQghxPCQBPQZndIzFWRFNWuX2o28shBCiQWRlZXH++eeTkJBA9+7dGT16NFu2bAHgzDPPJD09nfnz59OtWzeSkpLo378/27Zta7R4tNbbtNb/A9oAn+Aq9rNTKfWIUiqw0U4sjpuHUWE2qgMmcPWz+BHlEwXA9LXTWbh7IVWpqey64kry3nkHgJtbhtHb3zXFy9LCUmqcGluQJxc+2Iv4riEAVFfam/JShBDilCcJ6DHo0yoEMLLNy4azutrd4QghRLOntWb8+PEMHjyY7du3s3LlSp566imys7OpqKggLy+P6OhorrvuOj7++GNSUlK48MILefzxxxs1LqVUZ+B54FngK2AiUAz82qgnFsflxqGtmTKhMwaDoriy5oCe0CpHFQt2LWDh7oVY4uOJevklAi+77ID9d5RXcU7KNl7amQWA0ez6+JSVWsSM+/8iY3NBU12KEEKc8mQalmPQvaXrOdC9xjj+WDifgSPPdHdIQgjRrC1YsACz2cy1115b19alSxcA5syZw+DBgwHXc3vFxcUAFBUVERkZ2WgxKaVWAoXAO8C9Wut9VW6WKqX6NdqJxQlRSlFZ42DSm0tIivHnqXNcQ24tRgtvn/E2VqOreq7P8GEYlAFnVRW5r71O0NVXE+fjzbTEWIYG+h5wTL8QT6LaBBAQ4d3k1yOEEKcqSUCPgY/FRLSfgT3l8fy28jtJQIUQp5VHvlvPhj3FDXrMxEgbD53V4bDr161bR/fu3Q+5bs6cOYwbNw6At99+m9GjR+Pp6YnNZmPJkiUNGudBJmqtU/dvUErFaa13aK3PacwTixNjNRsZ0zmCTlF+B7R7m10JZFFVEdfPu57LOl5G3yw/8t57D8+kLvgOHcrY2mdBa5yap1IzuaFFKEG+Hoy62jWtqtaa3RvzaZEY1KTXJIQQpxoZgnuMRnRsiaMihtSKze4ORQghTmuLFy+mf//+ALz44ov8+OOPpKenc/nll3P77bc35qln1rNNnIRuGNKKgW1cz2+u3lVwwDyhBmXA0+SJl8kL7149afXTHHyHDgVcCSbA+tIK3s3Yy8L8A7+M2bw0i++mriF9U34TXYkQQpyapAf0GPVNCOHdxTvZ7umN027HYJK3UAhxejhST2Vj6dChAzNn/ju3S01NJSYmBg8PD/bu3cuaNWvo1asXAJMmTWLUqFENHotSqh3QAfBTSu3f02kDrA1+QtGoMgormDR9CVf2j+OeUe0A8PXw5a2Rb7GvqHG2TRMNVG7YQPaTTxH14gskhYTwZ6/2RFo9AHBqjUEp2vQMx2BURLWV2XmEEOJIpAf0GPWICwQ0WeZ4lv2+yN3hCCFEszZ06FCqqqqYPn16XdvatWuZMWNGXZIZEBBAUVFRXWXcuXPn0r59+8YIpy0wBvAHztrvpxvwn8Y4oWg8Uf6ePHtuZ64ZGH9A+77kc0PeBsZ+M5ZZW2fhKC7Gnp+Ptrsq3u5LPreUVTJk+WbWl1ZgMCja9AhHKUVpQRWLPtuCvcbRtBclhBCnAOm+O0Z+nmYifDU55bHMXz6b3kOGujskIYRotpRSzJo1i1tvvZUpU6ZgtVqJjY3F6XQybdo0AEwmE2+99RYTJkzAYDAQEBDAu+++2+CxaK1nA7OVUn201n81+AlEkzs7yTUNi8OpeX3BNi7tG4ufpxmANgFtuLLTlQxtMRTv1n7EfzsbZTKhtcaenY05PByDAk+DAW/jgd/np2/OZ/OSTDoOiiJQChQJIcQBJAE9DsMTWzBjmZ3Umu/dHYoQQjR7kZGRfPHFF3XLVVVV9OvXj9jY2Lq28ePHM378+EaNQyl1t9b6GeBCpdQFB6/XWt/cqAGIRrN+TxFTf91KmJ+V85JjADAZTNyQdAMADqeDb3d8x9iEsRR99Al7X36Z2Jlf0ioujjndW9f1mq4pKaeLrxftekfQIjEIL5urp7S60o6HVT5yCSEESAJ6XPq1DmXG0nR2WK1opxNlkJHMQgjRVCwWCytWrHDHqTfW/nbLyUXj6Rztzy+3DSIu2NVbqbWuSyoBfkv/jQf/fJAAawD9Ro7AXpCPR8uWwD9Ddn/YW8iV69L4pHM8Q4NsdcnntpU5LPp8C+Nu6yq9oUIIgTwDelx6xAYCkGGJZfWfMgpLCCFOB1rr72p/f7DvB5gBzKp9LU5h+5LP3fnlnP3aYjZnldStG9piKO+d8R6DYwZjDg8n9JZbUAYD9oICir7/AYARQTYebx3FoIPmCg2K8iamfQC2YKlTJYQQIAnocQnysRDs5cBeEc/cv752dzhCCNGo9k0/caprqOtQSn2ilLIppbyBdcAGpdRdDXJw4XZl1XaqapwY1IHtyeHJAGSUZnDVz1eRWZpJ3ttvk3n//dRk5+BhMHBVdAhGpSiqsfPA1nTK7A4Cwr0ZcXkHTGYj9moHW5ZnueGqhBDi5CEJ6HEamhiDozyWbcVr3R2KEEI0GqvVSl5e3imfhGqtycvLw2ptkF6oRK11MTAOmAPEAZc0xIGF+7ULtzHnlgG0DnP1ZG7LKT1gfU55Duml6ZTbywm99VZafvgB5rBQ4J8vOf4qLGPGnjw2llUesO+6RRnMfXcDuekHHlMIIU4n8gzocerfOowvVuxhh9X8r2dFhBCiuYiOjiY9PZ29e/e6O5QTZrVaiY6ObohDmZVSZlwJ6Kta6xql1KmdoYsDGGq7P+duyObqGSt4//KeDGoTAkDX0K58N/47zAZXtdyC+GA8gZIFC8h/732ip77MqBB/lvZOJMxSu02NnQCzic5DYwiO9iE42gcA7dSog7tahRCimZME9Dj1jnM9B5pubcmGFSvp0CPZzREJIUTDM5vNxMXFuTuMk82bQBqwBliklGoJFLs1ItEoBrQO5o4RbegTH3RA+77k8+e0n7n393t594x3SaiqQtvtKA9X8aF9yefSwlIuWpvKux3jGBjoS3Q71+eHvbtLmP/+RkZd3RH/MK8mvCohhHAvGYJ7nEJtVgKsDmoq4vlp0ZfuDkcIIUQT0VpP1VpHaa1Ha5edwBB3xyUantVs5MahrfEwGSirsjPlp01UVDvq1veJ7MPkxMl0DO6IbdQoWn40A4OXF7q6msoNGwBo7W3l7FB/kmwHJpkOuxOjSWG2Gpv0moQQwt0kAT0Bg9pF4iyPY2ueVMIVQojThVLKopS6UCn1X6XUg0qpB4H/ujsu0bj+3J7H27+nkrK7sK7N5mHj1u63YjaYKa8p57mVz1NWU8be118n7fwLqMnMJNBs4vl2LbCZjDi05pWd2ZTZHYTH+XHuvcl4+1nQWrNjbe4p/6y1EELUhySgJ2Bgm3C005M1wRZyd+52dzhCCCGaxmzgbMAOlO33I5qxEYlhLLhzMH0SXMNxS6vsB6xfkb2CTzd9yvrc9QRddhnhDz2EOSLigG2WFZXxVGomc/NcI7b31Y/YkZLLj6+vJe3vvCa4EiGEcK9GT0CVUkal1Gql1PeHWDdQKbVKKWVXSp170LoWSqlflFIblVIblFKxjR3rsepV+0xIvkrg489fdXM0Qgghmki01nqS1voZrfXz+37cHZRofNEBrmG0a3YX0n/Kryzellu3bmD0QOacM4eeET0x+vtjOGs4AFXbt7P7+huw5+fTx9+HBT3bMS4sAHAVJwKISwrmjP90JLaT63OF0yk9oUKI5qspekBvATYeZt0u4DLgk0Os+xB4VmvdHugJ5DRKdCcgyt+TVqHeOIo6sa5okbvDEUII0TT+VEp1cncQwn2iAjwZ2DqE9hG2A9rDvMMAWJe7jlEzR/F7+u9UpaZStWkTuroagLberqmAMiqr6b90E+9l5KKUolX3UJRSVJRU89ljy0j7OxchhGiOGjUBVUpFA/8HvH2o9VrrNK31WsB50H6JgElrPbd2u1KtdXljxnq8xneNxl4ZS0q4iZ3r17s7HCGEEI2vP7BSKbVZKbVWKfW3UkomhT6NBPtYmHpBVwK9PXA6NW8tSqWksqZufYxvDENbDHUVJxoxgvif5mAOD0drTcWaNQAEmU2MC/VnYIDPAcd22DVevma8/SxNek1CCNFUGrsH9CXgbg5KMOuhDVColPq6dvjus0qpf5WJU0pdrZRaoZRa4a456sZ2iQSgqLoLn8163S0xCCGEaFJnAq2BkcBZwJja3+I0tDajiKd/2sSPf2fWtflZ/Hi8/+MEWANwaidT/36djNIMSn7+hbRJ51O6eDFWo4En2kST4OXqEX1lZzYpxeX4BFg4+7auhLTwBWDz0izKiqrccm1CCNEYGi0BVUqNAXK01iuPY3cTMAC4E+gBxOMaqnsArfV0rXWy1jo5JCTkRMI9bjGBXnSJ9sNRlMTGqqVSwU4IIZq52mlXYoChta/LkaJ+p62kGH9+vHkA5yXHAFBYXn3A+t0lu/li8xcsSl+E79AhhD/0IN59+gDUfWYoqrHzfkYus7ILgH+KE1WUVPPbJ5tZ+dPOprocIYRodI15w+wHjFVKpQGfAUOVUh/Vc990IEVrnaq1tgPfAN0aJcoGML5rFI7qCFLC/Vj/1xJ3hyOEEKIRKaUeAu4B7qttMgP1vb+JZqhtuC9KKXJLqzjjpUW88dv2unUtbS2ZPW4257c9H+XhQflZA9EKHMXFpJ07kdLf/8DPbGJej7b8N8FVNXdnRRW51XY8fT04995kep8dD7gSUkfNsQ4qE0KIk0ujJaBa6/u01tFa61jgfOBXrfXF9dx9OeCvlNrXrTkU2NAIYTaI/+sciUJTXp7E1z+/4e5whBBCNK7xwFhqp17RWu8BfN0akTgp2KxmzuocyaA2B47KCvEKQSlFcXUxl/x4CU8ufRJnaSnKZMLo63oGNMBswmIwoLXmug07OS9lG06tCYzwxsNqQjs1c978m+9eSZHRVkKIU5qpqU+olHoUWKG1/lYp1QOYBQQAZymlHtFad9BaO5RSdwLzlWscykrgraaOtb5CfC30bRXMkrQkNhtfQDudKIOMxhJCiGaqWmutlVIaQCnl7e6AxMnBw2Tg/jGJdctv/Lad1qE+DGvvqo7ra/bl+qTr6RjcEXNgJC0+/QRD7eeFou9/wKtbV8yRkTzTJpqCGgcGpdBa4wSMBkXS8BY4HbpuiK4QQpyKmiRL0lov1FqPqX39oNb629rXy2t7Sb211kFa6w777TNXa91Za91Ja32Z1rr6cMc/GYxLisJhD2RNaDhLfvnZ3eEIIYRoPF8opd7ENVLnP8A8muBLUqVUWm3F3RSl1IratkCl1Fyl1Nba3wG17UopNVUpta22Um+3/Y4zuXb7rUqpyY0d9+mq2u7k+7V7+GV9dl2bUopz25xLu8B2ALy25jWmLJtCTXER2Y89xt7XXcUMO/p6MSDQ1an+eVY+Y1dtJa/aTnxSCK26hwKQunovv7y9jupKexNfmRBCnBjppmsgZ3QMx2SAqtKufP/He+4ORwghRCPRWj8HzAS+AtoCD2qtX2mi0w/RWidprZNrl+8F5mutWwPza5fhn0q9rYGrgWngSliBh4BeuObYfmhf0ioalofJwFfX9eXhsa7v1nfnl7M1u6Ruvdaa8ppyymrKMNv8iJ35JWF33QWAPTcXR1ERAF5GI6EeZgLMB04GUJJfSUl+JUazfJQTQpxa5K9WA7FZzQxvH4ajqDNbPLbgrD6pO2yFEEKcgNpROndpre/cN2e1m5wNfFD7+gNg3H7tH2qXJbh6ayOAM4C5Wut8rXUBMBcY1cQxnzYsJiOeHq7E8ZHvNnDh20uprHEArt7Qe3rew8N9HwYgN8DIN9nz0Fqz53//I+38C9B2O2ND/XmvUxwGpSixO7h5404yKqvpMiyG8Xd2x2g0YK92sOSb7VRXSG+oEOLkJwloAxqbFIXT6cv6oFh++Wamu8MRQgjRgJRSJUqp4sP9NEEIGvhFKbVSKXV1bVuY1nrfBJRZQFjt6yhg9377pte2Ha79ACfDPNvNzZPndOTlSUlYa3syi8prADAo10exTzd9yrMrniW3IpeQG28i5OabUCZXqQ7tcCWta0vKmbO3iKyq2n0NrmdB0zcXsOqXXeTsbIp/hkIIcWIkAW1AQ9uFYjUrqou7Mn/1p+4ORwghRAPSWvtqrW3Ay7iGukYB0bimZHmpCULor7Xuhmt47Q1KqYEHxadxJakn7GSYZ7u5CfW10rdVMABz/s5k4LML2Jj5T8J4W/fb+GT0J4R4heDZqSObuwajtab0999JHXs21bt30y/Al5V9O9Ddz1X36pvsAjIqq4ntFMzFj/Umul0gALs35FNVm+AKIcTJRhLQBmQ1GxndKRJncUc2+6ZTU17u7pCEEEI0vLFa69e11iVa62Kt9TRcQ14bldY6o/Z3Dq4K8j2B7NqhtdT+zqndPAOI2W/36Nq2w7WLJtQ23JfRnSJoFeqagkVrjUEZiPd3zfe5PGs5V/x8Bd+nfo8ymzFHRWIKc3Vu20yuHtQSu4N7tqTzfFqWqz3IE4CqCjtzpv/N4pnbmvqyhBCiXiQBbWBnJ0Xh1Fa2+Lblm0/fd3c4QgghGl6ZUuoipZRRKWVQSl1E7ZygjUUp5a2U8t33GhgJrAO+BfZVsp0MzK59/S1waW013N5AUe1Q3Z+BkUqpgNriQyNr20QTig/x4alzOmE2GqiscTDxjb+Yu+Gfarndw7rzeL/HGRU7Cu/evfF6+UmU2Yyurmb3dddTtmQJviYjvyS34b/xkQBkVFazsbQCi6eJcbd1pedZcQBUlFRTkl/plusUQohDkQS0gfVLCMLP04i9uAt/bv7S3eEIIYRoeBcC5wHZtT8Ta9saUxjwh1JqDbAM+EFr/RPwNDBCKbUVGF67DPAjkApswzVFzPUAWut84DFgee3Po7Vtwk0Ky2twaI3nflVuDcrA2a3Oxmw0U+Oo4aqfr+J/f/yPmpy9VO/cibO8AoCWnhaCPVzPiT6Vmsm41dsotTsIbWnDJ8AKwJ9fb+PzJ5bJdC1CiJOGcj0ycupLTk7WK1ascHcYADw4ex0z/tpOVOSjvNdnOq17dHd3SEIIIQ5DKbVyv2lNxEFOpvtrc6W1RilXQaEP/0qjvNrB1QPiMRgUTu1k1tZZhHuH0y+qH/aqSuxGsJqsFM76Bl1Tjf+551LgcLKmuJwhQTYAVheXk+TrSUl+Jdk7immd7BrCW5hdjn+Yl9uuVQhx+jjc/VV6QBvB2C6RaEzk6o588tXTR99BCCGEEKetfcknwKqdBSzfkc++JoMyMKHNBPpF9QNg5o5vOOfbc8ityKVk3jyK58wBpQg0m+qSz2WFpZy5cgtfZhdgC/KsSz6z04r5+OElbF6a1bQXKIQQ+5EEtBF0axFAi0AvnHl9WOW/ieKs7KPvJIQQQojT3kvnd+W1i7qhlCK3tIqHZq+joOyfucUT/BPoHdGbIGsQ0a++QugLz6KUwlFURPZTT2EvKKCrzZtn20ZzVog/AKnlVRTbHQRGetP77HjiOruq8ZbkV2KvdrjjMoUQpzFJQBuBwaC4vF8s1dUxbPWP4aO3pBdUCCGaC6VUXH3ahDhe++YKXZKax+crdpNf/k8C2iO8Bw/2eRClFCU1JZw173xmbZ1F2bJlFHz6GfasLMwGxSWRwXgaDWituXZDGhNTtmEyG+g+KhYPTxNaa+a+s55ZL6ymuTyOJYQ4NUgC2kgmJsfgYzHiyO3PsqoFOKqq3B2SEEKIhvHVIdpmNnkUotkb0zmSxfcMJSHENV3LK/O3HlAt1+600zO8J+0C22EbMYKYuXMwt20DQN4771Iybx5KKZ5tG8P98ZGunlKtWZDnmn+059h4uo9qiVIKrTVZqUVNf5FCiNOOJKCNxMdi4vweLagq7cSKFt58+8Hb7g5JCCHECVBKtVNKTQD8lFLn7PdzGWB1c3iimQrysQBQZXfw/dpMFm/LrVsXaA3kyQFP0j6oPQBv7P6UC3+8kKqqcoq+/57S3xYB0MXXiwGBvgD8sLeIC9am8mt+CdFtA4hPCgFgx5pcvnpmJWl/5yKEEI1JEtBGNLlvLAZloKawLwu2fSRDXIQQ4tTWFhgD+ANn7ffTDfiP+8ISpwOLycj3N/fn7lFtAdicVcIdX6xhb8k/I6w6BXeiX2Q/LBYv4r78AsdNriliq3bsIP3W26jJzmZ0sB9vdmjJkNqEdGF+MRtLK2jRIZDBF7WlRWIgAJnbCinaW97EVymEOB1IAtqIYgK9OKNDOPaC3iyJrSRl3lx3hySEEOI4aa1na60vB8ZorS/f7+dmrfWf7o5PNH9mowGv2nk/16YX8vvWvXgYXR/ltNaMjB3Jzd1uBiCjIouzfj6Xzzd9TtWWrZSvWIEymTAZFGODbBhqh90+uHUP925Jx2Q20mFAFIba50Z/+3Qzv7y93m3XKoRovkzuDqC5u7J/HHPWZVFU3Z2Zv7xE1xEj3R2SEEKIE7NNKfVfIJb97qNa6yvcFpE47UxMjmFsUiQWk6tg0VUfrKBztD+3DG8NuIbnXt/legbHDMbWLozCHq3ZZSwiniAybr0VU3gE4f/7L7O7tSKvxg5Amd3BPVvSubllGGfdnERFiav4kb3GweIvt9FleAz+oTKHqBDixBw2AVVKTa3H/sVa6/sbMJ5mp3vLADpH+bExeyDLwp8le/t2whIS3B2WEEKI4zcb+B2YB8gcFsJt9iWf1XYnwT4WbJ6uj3Vaa0orDfyn8z8jw19f/yaLdi9i3rlzMce0wBTsmoolwGzCJycbvKJYX1rB3LxirogKxtvPG4uvBwB7d5WyaUkmCd1D8Q/1Qmt9wNylQghxLNThnktUSu0EHjzK/vdqrds3eFTHITk5Wa9YscLdYRzS7JQMbvksBc+Y97gi08Zdj7/r7pCEEELUUkqt1FonH8P2KVrrpEYM6aRyMt9fxaEt2JzDNR+u5NOre9G9peuZzryKPDbmb6R/VH8AXln9CgOiBtB6RzW7LruMmDem4TNoEGUOB95GV2L7xPY9LC8q48ukVjgq7Fi8TCilWPHjDjK3FzH6us4YTfI0lxDi0A53fz3SENwXtdYfHOWgAScc2WngzI4RPOG7kcK9A1hpfoeq4hIsNl93hyWEEOL4fK+UGq21/tHdgQhxKK1DfbiifxydovwB13yiPhZTXfJZWFnIV1u+wsvkRcdW4wi86QYsPWo/Iy5fTnFJCb7DhhHraaHS6cRsUJi9zfxRUEI3mzcWLzNefpa65DMrtYiQGF+MZklGhRBHd6S/FIuPtrPW+qWGC6X58jAZmNw3lurKVqwND+WLt15wd0hCCCGO3y24ktBKpVSxUqpEKVXs7qCE2Cc6wIt7z2yHR22C+OzPm7nzyzV11fj9rf78NOEnLmx/IaagILadncRZcyaQWpRKwSefkvPcc6A1F0UG8WhCJAC51XYuWJPKlB2ZdBoczbBLXQPgKstqmP3iahZ/vc09FyuEOOUcKQGdrpTaqpR6TCmV2GQRNVMX9myBxWTAntefP/Z+g6Oiwt0hCSGEOA5aa1+ttUFrbdVa22qXbe6OS4jDee/yHky9oCtKKartTsa/vpiFmwrwNHkCYDVZaRPQhhifGKJeeJ6C529nR+lOtMPBjnHjyf/oY4LMRr5MSuCqaNe8oRtLK7hkbSqZysHo6zrTeXA0AIU55fw0fZ1M4SKEOKzDJqBa66645juzAzOVUmuUUvcqpWKbKrjmJMDbgwndo6kp6cafCR7MnPacu0MSQghxHJTLxUqpB2qXY5RSPd0dlxCHY7OaaRPmevQnr6wKi8mA1ex6zrOovAaLvRVTh07FbDSjTCZe2vkhd/12F47SUqyJiZjCQlFK0cOk8Pt1Hrq6mt2V1Wwqq8TPbCImMZACXyN7q2soyCpnz9YCTB6u45fkV1JZVuO2axdCnHyOOFhfa71Za/2I1joRuBTwA+YrpY46PFf82xX9YtHaiL2gL3P3foW9tNTdIQkhhDh2rwN9gAtrl0uB19wXjhD1F+HnyWdX92Fw21AAPl+xizGv/MGO3LK6baYOncrj/R7H5OdHyJOPMrn8dWZtnUXJL7+QcfsdVG7axMhgP5Z0b0Wg2VVO5KFtGYxasYXYTkFc9nQ/vP0sAPz51TY+e2wZ2nnoopdCiNNPvZ4WV0oZgFAgDPAGchozqOaqVagvIxLDqC4cxNJWZj577Wl3hySEEOLY9dJa3wBUAmitCwAP94YkxPGZlNyCVy7oSlywNwBP/biRJ79Lp11gOwBKqktI8E8g2DMYv3Fn4/fOq3xn2URJdQl5r7zKjgnnomtqeCAhkqfbRKOUQhkU41dv5c3dOXQb1ZL+E1ujDK5pW36ctpa1C3a77XqFEO53xARUKTVAKfU6kA7ciWves7Za6/FNEVxzdPuINjicZuy5g5hX8h3VxVK3QgghTjE1SikjoAGUUiGA070hCXF8/LzMnNUlsm7ZYjLg5WGsm+dzzpoSrmzzIAOiB6AMBpaGFvPYksfIKsvC0qY1Nb06U0ENrb2tdJ31BSXz5lHh1IR7mPE1GQmJ8SU6KZjnd2SRVlKB1rBvBkCnw0nKvF2UFlS549KFEG5y2ARUKbUbeArYACRprc/QWr+ntS5qsuiaofYRNsZ0jqC6cADL4zz55JXH3B2SEEKIYzMVmAWEKqWeAP4AnnRvSEI0jNtHtuWxcR0BKK2y89j3G/huzR4AtNZ0sg3n67Ff0zqgNX5nncWswRZGfjWSquoKir76mrK/luBlNDCtQyxnbVqLs6yMlJJynkvLYkd1Df93fWei+0ewpaySnJ0lLJ65jZydri/jq8prKM6VIo1CNHdH6gHtr7Xur7V+VWstQ24b0G0j2qAx4cgZwrzqn6nKL3B3SEIIIeqh9pGUHcDduL6kzQTGaa2/dGtgQjQCH4uJJfcN48r+cQCsTS9i+IuL2J7hA4Dd4WRk7BnclHQTFg9P4n/8gef65jFl2RSqUneQft31FH71Fb39fUhJbk0f5QDgi6x8Bi7bRE2kJ5c83oeAtn44tWbLsmxm3P8XhTmuCrr2akfd1DFCiObjSAno5UfbWSn1cMOFcvpICPHhnG7RVBf3ZXWMLzNefdjdIQkhhKgHrbUTeE1rvUlr/Vrtl7Qb3R2XEI3F38uDIB9XQaEWgV48fFYiveKCAPjh70yufTuXfmFnAaAMBkJ8wwm0BuIR25IWH37AC9Hr+D39d7xWLGNH//5UpKRwTlgAr7WJIsbqgS3Yk6d2ZdNv6UZadApi0IVt8QtxTQ/z1zfb+eThpTilgJEQzYrpCOuuOsrE2go4H3i4QSM6TdwyrDXfrM7AmT2M+XoWF+3NxTMk2N1hCSGEOLr5SqkJwNdaumfEaSTA24PL+sXVLYfbrAxoHUKknythnLZwO6m7h3HXRd1RBkV159as/nE9nUq70yuhD97XXcUrlT9xbqWNwXMXsf2zz4n7aibDg2y08vTAL8gTv4FRXLBmOy09LfynlT9WbzOG2gJGP01fh5efBwMntXHL9QshGsaRekDfAnyP8ONTu404DjGBXlzQswWVJT1YGxnIB6884O6QhBBC1M81wJdAlVKqWClVcpQvbIVolnrFB/HcxC51CaLRAB4mY93ya/MyGe77AhPaTMCjRQvyJw3h861fklOeg0dMDAX9Evlwx5f08HEy9v3p7L7uerTWdPDxpJWXhYRuoSSPjmXosk28k74XH38L3n6ugtNaa75+biV/L0x32/ULIY7PYXtAtdaPNGUgp6Mbh7biixW7cWQPZ57HF1ycmYlPRIS7wxJCCHEYtc+AjtJay3zYQhzk6oEJByznl1VT7TBhMrg+br4118nNrT4nOSwWU4SJnTGFPP/Xw5wZdybmmBjW2YpYuPEj7mwzkZzrbiYrLhafu+8h0ceTEJOR/ue1pqDGTvc/1/NQbARevh4YPQxorampcjDz6RX0PjuB+K4hdc+O7qvmK4Q4edRrHlDROMJsVi7t05LK0q5sCA3h/Vf+6+6QhBBCHEHtM6CvujsOIU4FL0xK4tGzXRV1axxOCiuqqbEbMBlMVNudfDg3nP91mEmYdxiBl01m3YAYXk95HZPBhCUhgV+jCpmxfjpT28XQ/sJzyX1zOqUOJz38vImuLmPUNZ2o7OBHh8XrWLK3BL9QL5yeBkrsDvIySvnwv3+Sua0QAHuNA3uNw43vhhBiH0lA3ezaQQl4eZhwZp/BL37Lyf77b3eHJIQQ4sjmK6UmKOlaEaLezEYDH1/Vm6sGxANQUF6NzWoi2MsfgJ155bz3fXv+2/FjTAYTfnfcydoW/izavQiqq7GNPIO3g9fx9YZpvBrph+eokez94AOsRgOjfD2J37mRMycnsNJP0eb3v9lZXUN4vB95XooVRWVsTdnLW7cuIj+zDICS/Epy00ukwJEQbiAJqJsF+Vi4sn8clWUd2eYfydvv3CElx4UQ4uQmz4AKcYLCbFZmXNmL4YlhdW1ndgynfXgoAH9tz+Ozn7twS+JUDFYr1VffxGbiyC8vQxkMhN13L9d7f81Xfz/HE5RRctWVLF/4GfGWKh7ygphfvmDo2BC+ryzn7NVb8Qv3ImlEC5YZa3hzdw4b/9rD508sx17t6hXdvSmfdYsy0JKQCtHojpqAKqXaKKXmK6XW1S53Vkrd3/ihnT6uGhCPzWpCZ57Nj633sHr2V+4OSQghxGForX211gattYfW2la7bHN3XEKcymKDvXl6QmdahbrmGG0V6sMDYxLpGBUAwNwN2SxY3oYbutyO0c+PlT1GUZl/Ie0DkvBIaEXwtGnckP8Gv277kAuLcsh96WVe+XsavSwZfFWaRfW915Pc05P5BSV8umkHbdpaOPOajjyxO5ur1u1g28oclv+wg9TKKnKqalgyezs/v72uLr7ivAqqymvc8t4I0dzUpwf0LeA+oAZAa70W1/QrooH4eZq5ZXgbKipjyXd2YMbvU3BWVro7LCGEEIeglBp4qB93xyVEcxIT6MWV/ePwsbgKGF3QswXf3NCPkNo5SfcUVlBUGMo5bcZg9PHmrYpQKrc/wrhW47GNHMmuT77m3c3byCzeQgcfKyUmO8MXnc9Qj3V8smMtaeOGs8NzOd6U0m19Ch2LFzDp3m7csWk3V/+9HZPZgNnDyMtp2XyamceCGZv49uUUSuwOtNas+XU3m5dm1cXrcDjd8j4JcSo60jyg+3hprZcd9KiLvZHiOW1d2qclny3bxc6sc/i1/VN8+9qTjLvjUXeHJYQQ4t/u2u+1FegJrASGuiccIZo/Tw8jSTH+dcuT+8YyuW9s3XKfhGD8PD1oG9gKgG83lhNcfiUT2vTF0t7Ce3u90BmbifCOIHBQAj/g4IVfp/Hq/91Gp93bWTPvCz6JW84F7W6g9duzYfWf+L7zFD/vqmbYlq2Mt1RjGDaSocs309/Xk75Lc7GFePJjGCT5erFn6gYiWvnR44I2+BgN/L0wncBIH6LbunpwnQ4nBqM8+SYE1C8BzVVKJQAaQCl1LpBZ3xMopYzACiBDaz3moHUDgZeAzsD5WuuZ+61zAPsq8uzSWo+t7zlPRWajgUfGduDCt0sx5Q/my/JZjMy4Fq+oSHeHJoQQYj9a67P2X1ZKxeC6lwkh3GRI21CGtA2tW35+YhK5pVVYjK4e0zahQYT59iAptB2EwvfzsmmtWpEclozfncOY7pvE7s1/c28vX8IH9OcpfxvffP0kMyc9ju2DBfxelcr3MT9wQdt7GPzM01SST/65l/F6WjmP/L2aRIPGq/142v/xN3d6KXy+zKT10Hie1yWMC/Fn86Or6TQ8Gu/BEbS0evD3NzuI6xxMVNsAtNYU5VTgHWDB7GF011soRJOpTwJ6AzAdaKeUygB2ABcfwzluATYCh3o+ZhdwGXDnIdZVaK2TjuE8p7y+rYIZ3Smcn9YNJSVhBe9MvYObpnzq7rCEEEIcWTrQ3t1BCCH+4elhJCbQq2752kEHzlE67aJkKmoc+Flcz5x2bxnNcK842gQkwBlt+HWlokdIF+L94rG+/DLPPvkzXtvTeG14DOrMUVy6OZctcz7nr6teoOTdV3mphT+/r5nNHYNfZfhtd7C+nQe/hHXg19yzGf/qC8R4W9kZPIJblxfzRtoGKn6roDpwBJcUZXO3t4XUl7fR6fw2pCRYGebtzcZ3N9NxVAssrW0EOBU7l+XQokMg/qFeOBxOKktr8PQxS6+qOCUdNQHVWqcCw5VS3oBBa11S34MrpaKB/wOeAG4/xLHTareTgfO1/vd/ify6MQfnnrP5NvwDxi39i5hefdwdlhBCiFpKqVeoHRWEq5ZCErDKbQEdI6XUKOBlwAi8rbV+2s0hCdHkIv09D1i+Z1S7A5YX3DmEarsTT5MHADcNTSQuuAcB1gD0+HFUv7yIi1p3JtAzkID3P+Db//1IN2M3bomPo+jGGxjzaxX+q34n5eYupH1t5GKvVhSvepd3J75K1AO38NjoIWTuvoeEbk8SfuVFLBrZlVXlgXyfOoHebzzD3ugwvsrvwdQliXzx20+sSzPhe9UQpqd68lT6bjb+UEbCjb351dfBRO3B5q920e7cePYEmOhgN5C+JIf4fuEY/S1YKhwUZJQSHueHh6cJR40Th8OJ2WLkdJxNqsbhun6nBo3GbrdTU1OJ1azQDjuF5VXUmD2wGj2hopqK8mIq7aX4WxVOp4OsMjtOmx++HgFQWEppST5ljgICrBqlNXtKNM6gELxMwZCVR1HpXioNRYT6asxodhWa0MGhWMwRGDIyKSzNwWEuJNTmxApsL/KEkDCsHi0w7thBQWUuWAsI83XiqWB7sR+OwGCs1ng8tm0l356D2bOIYF8HntpAamkA9sBgPD3bYNm8jr2OXDx9CgnytuOpjWyvCMEREILFoxVeG9eQY8jHx7eAAK8arA4zLSJ7ccaIEY363+CoCahS6vaDlgGKgJVa65Sj7P4ScDfgexyxWZVSK3A9b/q01vqbQ8R2NXA1QIsWLY7jFCefKH9Prh/SihfmOkkPbsX0T+/m0R6/oQzyDZcQQpwkVuz32g58qrVe7K5gjkXtYzGvASNw9dwuV0p9q7Xe4N7IhDi5eHmY8PL4Z/mK/nF1r5VS/HTroLplp9b8fOtAbFYzBmXAc8hQbjOk0iehL0opAh9/Gv93/mBix7aMDg1g9yefs2LaKkb4xPFW53jWX3czn2z0pd3e5Wwb1ZGUz8KYYh5K5Na5TD1jGDV3/8j00ZPx3fYmHTrdhv2JR/jgnLF4bZ5HTtClnHn3zXwybiReGy0sNw7h/ddf5K3E1nh7JfBLTXs++G4Wsyw++Ezqya+Vobzw5xLmZToIvmYAy6osXLUujZXbamhxZQ822Z0M2V3I6o2V+A+JZldNDa3KIW1HNl0HBVOtqihJKyAlvRJbWAA+eFKdU8DmojQGxpZipJINOQa22MOwWgPxqrZSlZXNNkcWPUJWA9XsKophp26NyRyAtcKEzs8l01JGl6Cv0TjJKO1OtrMDRoMf5kowlJdS5FVB6+DpaAWZRWdQVN0Bpbww1WgM9mqqraVERLyEVpCbewEVFe1QmFBOjQaURz7+sc/hVFCS/h8c5Qf2iBsse/COnwpA2Y4bcFbGHLDe6LkDr9g3Xeu3346zOvTA9d6b8GrxPgClW+9D26tw/Yl1MfluwjPaNaqxZPPD4CwACmrXmjH7pWGNdM2CUbLxSaAC2Fy73oY5cC3WsO/RTjOlmx8DnMA2QAFheASvw2KYi9PuQ9nWfZOVbMNVpiAaS+haPMyLcFYHUbZ9XxmDHbgGqNqwGFfjYVmKozKSbktMjZ6AqqPNOamU+gRIBr6rbRoDrAVigS+11s8cZr8xwGit9fVKqcHAnQc/A7rftu8D3x/0DGiU1jpDKRUP/AoM01pvP1ycycnJesWKFYdbfUqprHEw/IXfyClJxy/mOaZ63USfS/7j7rCEEKJZUkqt1FonH8P23kCl1tpRu2wELFrr8saKsaEopfoAD2utz6hdvg9Aa/3U4fZpiPtr0gMvUGSPPaFjCNGcaFypwz/LBsCJql2HNoJyotBoFGgTKPt+y2bAAUqDNgBGUDW4EhND7fr9Bxga/lmvja7t4cAoVA0oJziNHLKPSlW7zuc07bf//uurXIdzmjjkRBuqunb9vvMflIOofdPcGGuv6eD1+2qgGmrX70+Dcuy3/qCeXQWw33rUgYdXmn/er8N1+hxpvebAgTEnsv5wvdJHWn/AxZzgeriru4Ebzh13mDjq73D31/o8AxoNdNNal9Ye6CHgB2Agrqp/h0xAgX7AWKXUaFzpt00p9ZHWul7Pj2qtM2p/pyqlFgJdgcMmoM2J1WzkwTGJXD2jgpLSvry/41WSc8djDg52d2hCCCFgPjAcKK1d9gR+Afq6LaL6iwJ277ecDvQ6eKOGHmGUYK0ip2rTCR9HiFOJK6Uw4NRGnBgx4MCkanBioNQRhBMjunadAwNWUy4exgLs2oOCyvagza5ks5bFkobRIxu705fq0iTAdEDeYPTahsGSi7M6AEdZK5SyY3KC0WmnymjC6LUdk7kIR1Uw9uoYjIZSrHaNwa4oNftgtWzBQjnVNWGUO6KxWPbgXe3EafekwBCKj3UtXo4aKmoiKNEt8Pb8G1sVVNYEUGBsia/XanwrocIZQYGhJb4+S/EvM1BWE0q+KQY/7xT8yhQljggKjJH4+azErwyK7ZEUGsPw91qDrRwK7dEUm4Lx90rBVgYFzhaUGP0J8PobW5mTPGcspSYbAZ7rsJU5ydVxlJm8CLBswq/czl4dT7nZgr/HVvzK7eToeCpMJgI8UrGV2clR8VSaFQGmXfhW1JBDPFUmjb8pHd+KGrJJoNqjBn9DFr6V1WSTQI1HNf6GbHwrq8kigRpLJQFqLz6V1WSSgMNSjr/Kx6eyikwScFrK8FMFrmXVCqelGH9djHdVJZmqFdpShJ8uwbuykkxDK7AU4qdL8apbzsdPl+NVWcUeQwIGSx5+ugJrZTVZhniUJRc/XYm1soYsYywGj1xsugpLpZ1sY0uMHnvxdVZjqbKTbWyByZKLr6MajyoH2cYYTB578XXWYK5ykGOKweyRg4/DjrlKU2H0olVUv0b9f6M+CWgoULXfcg0QprWuUEpVHWYftNb34Zo/lP16QOuVfCqlAoByrXWVUioYVzJ7uES3WRqRGMbA1sEs3jaKP1qn8P5zt/Cfpz92d1hCCCHAuu9LWQCtdalSyutIO5xqtNbTcRUgJDk5+chDperhq//dd8IxCXGy0FqzalcBe0uqyC2tJr/M9dM1xp+hHWzsLsrh4je2UFzpxO74Z7/WYesIC1pMXpWDjO03AU78PC34FOVR4VFKVfBynH4pOO3emHNL8TBprAH/x3kz3+PvuCpKLbuwVRTi5fSmzLqdwoBWpCQM5cavPiQ9pJxyuwGDwZv+3p7k7kojLbIV62NDaJ25E+VhIabDUIIiA+hv8GXPknyKfI3stSp8PIz4eJho2/H/CPG3Yi13UJpbgdliwuRhwGwxYvIwYvEcjzLs33vmmqCixuGkssaBj2U0SimKK2soLKshJtC1nFVUQWpeHkkxw/DUJrbt3sua4lyGtR+ArcZEysadrKgpZFzS9QSUKv5K2cpfhjLG97iSwHwHS5dv4g+vaib0vpjgrCoW/7WBv/ydnDPwfCLTSlj453qWh9YwbvAEWmzJY+6SLayM0Jw9dBwJ67KYszyVNVFGRg8dS+LqNL5ZncHGKAMjh4+h61+b+Wx9LtsiNMOG/R99Fq3h/W0lpIXaGTh0NEPmL+ONXaXsCamk99DRjP7xN17KKWNvUAldh4xm4je/MKW4goKgAjoOGs0lX87m0aoqSgPzaTXw/7j248+5T1VTGZ5L3IDx3PLe+9zh6cAekENM/0ncPX0aN/oloAOzCO93EQ9MfZ7/hLXBGJhFSN/LeeC5x7i6ZVvMQRn497mGh5+8n/+0bos1eA++va7m4Ufu4+qObfEOycSzx3949IG7uaZrG3xDMzF3/w+P3Hcn1/Zsi2/YHgxJV/Pg3bdyQ98r8IvIxNH5Kv53523cPPBK/COzcLSdzD3/vY9VI8ZzRp9/fS/ZoOozBPcBYDwwu7bpLOBb4Hlgutb6oqOeZL8huEqpR4EVWutvlVI9gFlAAFAJZGmtOyil+gJvUjeOgJe01u8c6RzNaQjuPttySjnjxUV4eKUQYfuE6e2fpdXIM90dlhBCNCvHMQR3MXCT1npV7XJ34FWt9UlfMc5dQ3CFONnVOJyUVtoJ8HY9+DljyU525ZWRVVxFdlElOSWVdG5h5dJBZnLKc7jlXQc19n+GUloMNRj8/8IU9iNaQ1XmBDCWM6LtRFp+/BGpAZlsjc8huDoXn3Lw9InB2aYXs4LGcPeMt8n3riDfZqba7MfAkGjsSzzZHd6Wn7r7EJ6Xh8JKXGI47VoH0dvgwe5vd+L0MVHqYyLI00Swlwfx7YPwC/GkptpBRXE1Fm8zHhbjQUmjEE3ncPfXoyagtTv34J+hRYu11ifdnai53iCf+WkTry/cjmfMO4xK3cVzj/yG0cfb3WEJIUSzcRwJaA/gM2AProdpwoFJWuuVjRRig1FKmYAtwDAgA1gOXKi1Xn+4fZrr/VWcXuwOJwXlNYT4uuYFfeePHaxNLySjoIKMwgqyiyvpFOPJbWcZ2FO6h2e+slJcbiLcZiVCOaiqTGerbRkegUtcxyuLw8ti4Nzu99L38ZfZW7yG5W2MWJxe+Jv8ifSNp7rLOdwdHEDvdWtxKgMOX3+8osI4t1UsuVM2Um2Cda08CTYaCfUwkdQ5lB49IvB0alJX7cXLZsHTZsbTxwOrjxmjSQpSilPLCSWgtQcIxfUsJwBa610NF96Ja643yMoaB6Nf/p3dBTlY46dwf0ZvJj34mrvDEkKIZuNYE9DafcxA29rFzVrrmiNtfzKprc3wEq4qIO9qrZ840vbN9f4qmh+tdd20InP+zuTP7Xmk5ZWxK7+cjIIKogKsvHVVNDuKdvDst6VkFUJsoI0EDzM1RVv41boAs20dAKZqDyKDIji30z3Ev/Ql9tXzWd3OF2X0x887gh4BbanpeT4TPQrxLczFpM1YvWx0aBHAqGAbhc+tp6bSQX5LK5GeFqL8LMQlBtOqu6t6an5mGd7+Fjysp+dUKOL0cNwJqFJqLK7htpFADtAC2KS17tAYgR6v5nyDXLmzgHOn/YnVtoxYj694b8B0wnudCrUuhBDi5Hc8CejppDnfX8WpK6uokpTdhWzOKmFLTgnbc0rJKq5k1f0jqHJWcuvny/htcwlRAR60CwnEV+czO/9jTP6uKXu1hhDPIG5LvovWX6yj5Iv3WdXeCw9TMFafaAbFJ2I8+3LGZWSQXVEKRgshTgOdov3o5++Dz4dp7N1VQlWohSiblaBgTyJb+ZPYPxKAytIaLF4mGf4qTmsnUgX3MaA3ME9r3VUpNQSoVzEh0TC6twzgiv5xvPMHpLVIYernd/B4198weHgcfWchhBBCiFNUWZWdjZnF/J1RxIY9xdz/f4n4eZn5dNkuXp6/FaUgJsCL+BAv7NZ1jPnyVdIr03A6DZjiHYxMvJj/bIkm46nH8exnIDIfgo1hdAhrS9z9j3BpZgmrOviiH+1LqbcvcV4Wevp74/drIWnPpzDKZsDXqYgKMBIWa2PIKNd8oMVX+2D1MeNhPfRHaauPuSnfJiFOKfVJQGu01nlKKYNSyqC1XqCUeqmxAxMHunNkW35Zl0VWxvn8kPgMA199lFG3P+7usIQQQgghGkRljatkrNVsZPG2XB6cvY7U3DL2DdYL8DbRISGHErWJ1ZWphLXJoFeLFjwbdx05L77IHS0W47urml450DLHTs8bHmJry+HcX7ABfeXNrA2NZFdYBNrDg5+9w/n+o3Siqyrwx0BIkYOQ8gKufX4gZg8j6cqX9n0jCIryxjfIE8NBPZm2YM+mfnuEaDbqk4AWKqV8gEXAx0qpHKCsccMSB/P0MPLseV04f/oSqveeyZt8Q9+NF2Jrn+ju0IQQ4rSglOp2pPX7quIKIY5Oa016QQWrdhWwelchq3YVsGFPMS9MSmJsl0h8rQaCbU7atzQwLrEbHcO9uWneRTz/dyoGrWhRaGJwUHsGxA+mQhko2rKV6+x92RwTyx+9ornirGGE+Abw44YMVhn9iIzrQ7uMSh7tn0CvGH92Lc3GYXcyJjaYkBa+BMf4EBTpg9HsKvQT3TbAze+QEM1XfZ4B9QYqcE2HchHgB3yktc5v/PDq73R5RuX+WX/z0dKdeLWcxgVbSrn/mXkoswzzEEKI41XfZ0CVUguOsFprrYc2YFgnjdPl/ioal9aatLxyHE5Nq1AfdueXM+AZ1/9SnmYjnaP9aBHqwOq3jl1Vf7E+bz1Vjio8TZ78MW4+OwYPY51/CSYnxNUE4NshieCJE1nSuRuXrduBo/bjbEuLB939vbmwxsKaaRtcjQqCIr0Ji7XR9YyW+Ic2q2l7hThpncgzoA9qre/BNSfnB7UHmwLc07Ahivq4d3R75q3PJjfjAr5u/xy9X3mUEbc/5u6whBCi2dNaD3F3DEKcSrKKKlm0ZS+Lt+eyJDWP7OIqxnaJZOoFXQm1Gbl2uC8Vxs3c3ud8bB7evDLvUd7Z9TWti70Ysa2aTl5tGPbA61RavMg773zy/IP5JTKWxZ6+PNk2hvNtNrw27GVMkZGgtHL8U8sZeVYCSX1bUFFSjXVsPOHxNkJjbYd9VlMI0fTq83/jCP6dbJ55iDbRBHwsJp6d1IVL3qmiMn8ULxtm0XXpaIJ7nfTznwshRLOhlOoIJHLg9GQfui8iIdyvssZB6t4yEiNtAFz67lK2ZJcS7GOhT0IQnWOsVHv8zU3z32Vp1lIq7BUYlIGzE7sT/OCb9Fm6iP5O8IsLx5CcTPCA/mAJJvGPddQkD8XToOjm5cndITZ6eHny/r2LcTo0PbxMRLTyJ3JMBC07BgHg6etB8uhYN74bQojDOWwCqpS6DrgeiFdKrd1vlS+wuLEDE4c3oHUI53WL5otV/dneYhNTvryZpxN/xejr6+7QhBCi2VNKPQQMxpWA/ojrS9k/AElAxWlnb0kV8zdmM3dDNou352IyGFj94AjMRgMPjGnHnoqtdIkKpl1QOzbkrmfSD48R4fBl8A4Tnf6Gs977Gf+AcPZMOJfCAUP4Pr4dcxwGutu8+bRLAmWFVVyrvPHcUYpldQGRLR2Mv6MNAMaL2hEY6U1IC99/FQkSQpy8jtQD+gkwB3gKuHe/9pKT7fnP09HD4zqwZHseGekX82P7Z+n6zE1c+Nj77g5LCCFOB+cCXYDVWuvLlVJhwEdujkmIJqO1RinFB3+m8fB369Eaovw9mZQcQ+9Wfvy661cWZSxg4e6FFFcXM7FsIrdVDcR4//285LQTUVSMd3IyPmcPxtfsw31b0vnAHIIzKoRQbWJMiI0RQTZ++2Qz6xZl4A/4BlmJ7RtJy05BdXG07xvhrrdACHECjpSAGoFi4IaDVyilAiUJdS8vDxPTJndn7Ct/YE8/n2mh79Dz2y9oNfY8d4cmhBDNXYXW2qmUsiulbEAOEOPuoIRoTDvzyvhuzR6+W5PJg2cl0q9VMMmxAdw6rA3DE0NIjPBDKcVZs84irTgNX+VJz/wAhredxNDkqzCmZeDTsyfRfQfwU5uO/FDt5OukVhhNRrr4VHFVQAAJuyoxrCxg4t1tsXqb2dqmCp9AC7GdggmM9EYp6eUUojk4UgK6EthXIvfg/+M1EN8oEYl66xDpx32j2vH4HNhb3Y8nlj/Bm8n98YiMdHdoQgjRnK1QSvkDb+G6V5YCf7k1IiEaQWWNg4+W7OS7NXtYk14EQI/YAIwGRY2jhr2O1WR4/Mi9Szcy66yvqfj9Dy7Y4I95hZl2m0uw2IyE3hlJqdPMx2Zfvj3/ajaWVaLyyujl501abjklS3KoWZlD2N4Kyg2K6PYBVJbWYPU20zo5zM3vgBCiMRw2AdVaxzVlIOL4XDkwnl/XZfPX7jEsjdvB6y9cyS3P/IAyGNwdmhBCNEta6+trX76hlPoJsGmt1x5pHyFOFZU1DtLyymgXbsNkUExbuJ0Ifyv3ndmOMV0iqdAZfLzpVe5Y+gvF1cX4mX0ZGTeKCkcl2Y89TvfSUnxHnAk3j8SenIy/rzcbSyuYsiOLXn7ePBgVxjAvb9pG2yjMKeeTX3YR3S6A7qNaEt8lBKuPTC0nRHN31HlAAZRSY4GBtYsLtdbfN2pUx+F0nqcsr7SKoVMWUKb34hfzAq+q8+lztRQpFkKI+jiGeUDbaa03KaW6HWq91npVw0fnfqfz/fV0obXm74wivlixm9kpe7BZzSy6ewhGg6KgrBqHoRiFIsgziMUZi7l1wa30r4mlz58FdNhQRuKC31AeHpRu387vnja+yCtlXl4xZ4f682piS6qr7KxYnU3usr2kb8wnLimEM6/pBEBlmau3UwjR/Bz3PKBKqaeBHsDHtU23KKX6aq3/28AxiuMU5GPhlQu7cekHyynNPZunTDN4f/lAAnvI1CxCCNGAbgeuBp4/xDoNDG3acIQ4cfM3ZvPsz5vZlFWCxWRgdKcIJiZHo7WDRel/MmvrLBbuXsglHS7hes9RRL32CdMXV2CtXIe1S2f8b7wSrTUvpWXxVmY5+TUlhHiYuCI6mPPDA1n2XSop83dTU+nAJ9BC9zNjadsrvO78knwKcfqpzzygo4EkrbUTQCn1AbAakAT0JDKwfSiTk6L5IAW2RG3hkZk38nz8L5iCgo66rxBCiKPTWl9d+3uIu2MR4kRsyynFZjURarNiMCg8TAaeGN+Rs7pEYrOa+WjDRzwyawZ7yvYQ4OHPBbHnMK7VOJxb8qhenULUxZfhPW48v/sFMyLYhkEpqp2avv4+TAzxJ2ZnJW3jwjAaDazyMBKfFEK7PhFEtfZHyXQpQpz26pOAAvgD+6re+jVOKOJE3T+xE4u35bJ9z3nMTZjK9CmTue6p2Sij0d2hCSFEs6GUugH4WGtdWLscAFygtX7drYEJcQQOp2bBphw++CuN37fmcs2geO47sz2D24QwpG0o6SXp2Kyu3sh1eesIN/hzRUYkiV+uIuQcRfjAeHRyHN4//cx7uSV8nJlHzu4dfNo5niFBNq6z+fP36gw2vbeObWU1eFnNxHYOptsZLd185UKIk019EtCngNVKqQW4quEO5MB5QcVJwmw08N51vTnjud+o3n05b7V6iY6vPsTAWx53d2hCCNGc/Edr/dq+Ba11gVLqP4AkoOKk9PnyXUxbuJ20vHLCbVbuHNmG83u2QGvN7xm/8+GGD1mauZSZZ80kamMuV72bSc1fa1FeXviNHY//eRMpqLFz/9YMZucU4NAwLMjG5Mggelqs/PTm36Sm7AWliO8STIdBUUS3DXD3ZQshTlKHTUCVUq8Bn2itP1VKLcT1HCjAPVrrrKYIThy7mCBvXpmYxFVfrKY863we8f2QGfP7EjlstLtDE0KI5sKolFK6toqfUsoIeLg5JiEOUFnjwGp2jYD6c3seNk8zr17YlTM6hKOUk1/SfuGdde+wpWALoZ6h3NLtFsK9wyn56SN06k5C77oT28SJ7DFbsHpaMDk1G0oruCIqhCsig/AtshMU7IN2asqKquh6Rks6DYrGJ8Di5isXQpzsDlsFVyl1C3A+EAF8AXyqtV7dhLEdE6nSd6Apn65l2prdWIJ/oXfpQt688nusMTJPuhBCHKy+VXD32/5ZoCXwZm3TNcBurfUdjRGfu8n99dSSW1rFe4t3MOOvnXx+TR/aR9gor7bjaTailOv5y+LqYkbOHEmYZyiTCtvS9YNlxL48Fc8uXXAUFuKwevJ1QSmv7cqh0O5gee9ErEYD1dV2Nv+ZRcq8XVSV25n8VD/MFiNa67pjCyHEPsdcBVdr/TLwslKqJa5E9F2llCfwKa5kdEujRStO2N3nd2J1Wj5LckewLDqD51+5hPse+xmDRb6ZFEKIE3QPrqTzutrlucDb7gtHCCgoq+bNRal88GcalXYHZ3YMx8PkmhPcYLAzY8MnLMlcwmvDXsPHYea1qol4v/Y1Ou97vHr1AqOJaqeTL8sdvLxxO7sqq+ngY+XhhEi03cmahRms+mUn5UXVhMf70W9Ca4xm1/El+RRCHIt6zQNat7FSXYF3gc5a65Oqso18Q/tvxSXVjHjqV3J0OV6xL/NkXnvO/u8b7g5LCCFOKsfaA3q6kfvrya/a7qT/lF/ZW1rF2V0iuWlYaxJCfKhx1jBr6yzeXPsmOeU59AzvyfMDnyPvnIuo3rED7759CL7hBry6dwfgj4ISzk3ZTpKvF7fHhjEiyIZSiqzUIr56ZiVRbf3pMTqOyDb+knQKIY7qcPfXoyagSikTcCauXtBhwEJcPaCzGyHO4yY3yENbuyGXcz9citO8l+Dwqbxlu4JOl9zo7rCEEOKkcRxDcFvjKtCXCFj3tWut4xshPLeT++vJqbzazvdrM5nYPRqlFLNTMmgXbqNtuC8AO4p2cP2860kvTScpuAtXlHZl8MTbUAYDRd99jzkyAnPXbnySmUex3cFNLcPQWrOsqIxunlb+XphBVYWdPuMSAMhNLyE42tedlyyEOMUc8xBcpdQI4AJc84AuAz4DrtZalzValKLBdU4M5sEe8dy/XJOffz53VrzJ+7+1JWLQCHeHJoQQp6r3gIeAF4EhwOWAwa0RidOGw6mZuXI3z/2yhb0lVbQK9aFbiwDOTopCa012WTZh3mFE+0TTyr8Vt6jhJLzwI/aMlZS37I93717Yxvwf3+0t4qllG9lRUc2gAF9ubBGKdmp81xXz8fdrKCusIrZzMNqpUQYlyacQosEcaRqW+4BPgDu01gVNFI9oBBed047V2/L4qqADaR5ncseiO3kr6ku8W7Vxd2hCCHEq8tRaz6+thLsTeFgptRJ40N2Biebtz+25PP79RjZkFtOthT/TLupGtxau6U425m3kmeXPsKtkF9+N+w69ah23T8uict08jO3aEfH2o3j37sXfJeXctTmdlJJy2nlbmdEpjuFBNnLSSpj/wQYKssoJi7Mx4opEotrIVCpCiIZ3pCJEQ5syENF4lFI8cWNPdj2xiOUFg1gZVsAD717ClDvnYA4MdHd4QghxqqlSShmArUqpG4EMwMfNMYlmrsru4PbP12A0KF65oCtjOkeglCK3IpdXVr/CrK2z8LP4cWPSjZi1gZ3/+x/a4SDi6afwO+sstMHVSW82KPJr7LzcrgXnhgeAw1XB1upjxmA0cOY1nYhLCpZnPIUQjeaYihCdzOQZlaPL3lXCpNcWk6bseEZ/yLV7irn54W9R/8/efcfHUZwNHP/N9SKdepdc5N6bbLrp3WB6C6GGGhIIIQkJqfASCIQWAoTeS4BQTO8d3HvvsorV++n6zvvHnWTZ2OAi6VSeb7Kf3Z3ZvXsGyZp7bndnbDJ9nRCi/9qLZ0CnAquAZOAWwAPcqbWe3TURxpf0r/HT7A/x1DebueLQIdgsJlZXNDEozd0+v+eWpi2c9fZZBMIBzh16JmcudDDwZ1djcjgIrF+PNT+fBrOFf2zcSlM4wkNjBgEQ0ZrW+gDfvbaeoD/CjGsmAMh0KkKITrWr/lWeWelHsgYkct/J40jBjL/sPB4p0Lxx1zX0lS8hhBCiKymlno1tHqi1btFal2qtL9Zan95Xk08RH1pr3l22laPu/oK7P17L7I21AIzM9uCwmqnwVgBQkFjAT0b+hGcSf8Epv30P/wOP4f32OwDMhUN4qqaZA2ev4rmttaTbLES0JhyMsPDdzbzw19lsXFJDxsBEDCP6OUCSTyFEd/ihZ0BFHzThoDxu3tTIb1ZuxldyCbfk/Zv8Z+5i6oU3xDs0IYTo6aYopXKBS5RSzwDbfVrXWtfFJyzRl2ypbeXPs5bz+ZpqRud4+M/5U5gUe86zurWaf8z7B1+WfsmbM98kpayJk+6eg2/+AqzjxlHw0IM4x41jtdfHVSuKWeX1c3ByAv83PI+RbifVJc28959lNNf6GTI5gwNPG4on3RnnFgsh+htJQPuhE84ZSemdzdzZrGmsuJTr0x7gyXcKGHri2fEOTQgherL/AJ8AhcACtk9AdaxciH1y/cuLWbW1iT/NGM2FBwzEYjYRMSK8vPZl/rXwXwQjQS4bfxlpzjS23vJbgus3kH3LzSSffjrErmCmW62YleLxsYM4IT2JthudPOlOkjKcHHHBKPJHyABDQoj4kGdA+ylvY4Db/v4dz5lasNg3U5j4OE/tfye5Bx0V79CEEKJb7cUzoA9pra/qyph6Eulfu96SkgYGpbtJclpZV9lMgsNCTlL0ymQwEuTi9y9mac1S9s/Zn+utxzNs/KFY0tIIlpRgTkxEJSXxwtY63q1u4NnxhZiVQmuNEdEs+nALm5bWcNpvJmM2y5NXQojuI8+Aiu24k+xcfdlEjg04CPsHsdF7Pld99Rvqli2Md2hCCNFjKaXMROf+FGKfBcIR7nh/Nac++A3/+mQdAMOyEslJcraPz2Az25iaPZW/T/kzf/0sHa66idpHH4vWFRSw0ergtEXruWFNCX5D0xiOAFCxsYmX/z6PObM2kphqJxyIxKeRQgixA0lA+7Hcocn8/KQRHBS2E24dyYrw2Vzzxs9o2bQ+3qEJIUSPpLWOAGuUUgO64/2UUn9VSpUppRbHlhM61P1eKbVeKbVGKXVsh/LjYmXrlVI3digfrJSaEyv/r1JKhkCPo6WlDZx0/9c8+PkGzpiSz7VHDWuvW1O3hnPeOYflNcsBuKRmNCOu/BdNs94i7coryPjVdQQNg7s3V3DkvDWs9vq5e2QB/5s4hERD8fkLa3jtzgUEfWFOvHo8x10+DrvLGq+mCiHEduQZ0H5u3GH5XLa1Fd+yLSxsGcfcpBDXP30e9189C3tmdrzDE0KInigFWKGUmgt42wq11id30fvdo7X+Z8cCpdRo4BxgDJALfKyUGh6rfgA4GigF5imlZmmtVwL/iL3WS0qp/wCXAg91UcziB7y+qJQbXllKeoKNJy+ayuEjMwEIGSEeX/Y4Dy95mCR7Ei2hFmoff4KqO+/EMXo0Ax59BMeoUQBEIgavVtRzfEYS/zcsjwxbNME0WRSVmxqZcGQB004ajM0hH/WEED2L/FXq55RSHHL2MBqrWvHV1bKqcTKfJQe46d+nc/sN72HxeOIdohBC9DR/incAwEzgJa11ANiklFoPTIvVrddabwRQSr0EzFRKrQKOAM6LHfM08FckAe1WbfNs7jc4jbOnFvC7Y0eSFLsyua5+HTd9fROr6lZxwuAT+N2kX5OamEn4lGFgMpH60/MJm8w8WlLNT3LTcJlNvDdlGElWC0F/mG//t54pxw/E7rJyxu+KMFvkJjchRM8kf50EZrOJ4y4fy/nKzaAEB6GGA3gz4SBu++dpGD5fvMMTQogeRWv9BbAZsMa25wFd+QD9NUqppUqpJ5RSbUOX5gElHY4pjZXtqjwNaNBah3co3yml1OVKqflKqfnV1dWd1Y5+S2vNc7OLueLZBRiGJjfZyd9PHdeefAJ8suUTKlsruevA2/nV526arrweHYlgSUsj7eKLWBcIM2PhWv60voy3qhoASLJaKF1Tz0u3zGXxx1soWVUPIMmnEKJHk79QAgC7y8qMayZwfr2VrBQnobpDedYzln/+41SMQCDe4QkhRI+hlLoMeBV4OFaUB7yxD6/3sVJq+U6WmUSvUA4BJgJbgbv2KfjdpLV+RGtdpLUuysjI6I637LPqvUGueHYBf3xjOf6wQWto22BA9f56llUvA+CycZfx0vDbGPLLB6h/4UWc48ZBJIKhNY+UVHHM/DWU+IM8MmYQZ+ekEgpG+Oq/a3nznkWYTIpTb5jC0CmZ8WqmEELsti6/BTc2YuB8oExrPWOHuunAvcB44Byt9as71HuAlcAbWutrujrW/i4pw8UJV44jcO8iHh3spKHmaB5LN6FvO5Xf/OENTDYZr0IIIYCfE73ddQ6A1nqdUmqvP/lrrXdr/iul1KPA27HdMqCgQ3V+rIxdlNcCyUopS+wqaMfjRRf5bkMtv/rvYmq9Af544iguOWgwJlN0rs45W+fw+69+j8Vk4e2TZ9H0xFM0/PsBLGlpDHjyCdwHHADAn9aV8lhpDUenebhrRAGZ9uhV06/+u5ZV32xl3OH5HHDKEKx2c9zaKYQQe6I7roBeC6zaRd0W4CLghV3U3wJ82QUxiV3IHZbCET8ZxUUbNZ5sF8GaI3nMNZa7bjsVHQzGOzwhhOgJAlrr9j+ISikL0CWTaiulcjrsngosj23PAs5RStmVUoOBYcBcorcDD4uNeGsjOlDRLB2d0+Mz4IzY+RcCb3ZFzCIqGDa44ZUluGxmXr/6IH52SCEmkyJkhLhv4X1c9uFlJNgSuP+I+zEHIzS89jqeY46mcNabuA84gEhsGpaf5Wdw98gCnhk3mAxb9HlPgP1OKmTmdROZfvZwST6FEL1Kl14BVUrlAycCtwLX71ivtd4cO87YyblTgCzgfWC3JwgX+27UgTk0VLaiP97Mk6PcNJUeyiMpVvjHGdxw4/9QVhnKXQjRr32hlPoD4FRKHQ1cDbzVRe91h1JqItEEdzNwBYDWeoVS6mWidwmFgZ/HpohBKXUN8AFgBp7QWq+IvdbvgJeUUv8HLAIe76KY+7U6bxCPw4LNYuLJi6eSl+zEbY9+3GoKNnHVx1extHoppw87nV/ajyPZPQiT3c6g/76EOTmZoNb8bV0ZZYEgj40ZxCCnnUFOO61NQT59ZhWRsMHJv5yIO9mOO9ke59YKIcSe6+oroPcCvwW+l2D+EKWUiehzLjf8yHEySEIX2X9mIeOKcrhwdYTEQYmE6g/kEctk7vrHmehQKN7hCSFEPN0IVAPLiCaE72qtb+qKN9Ja/1RrPU5rPV5rfbLWemuHulu11kO01iO01u91KH9Xaz08Vndrh/KNWutpWuuhWuszYyPoik60cEs9J9z3Ff/8cC0Aw7MS25NPgERrIoVJhdx5yB1cszSHyp9eSu3DjwBgSUlhky/ISQvW8UhpNVk2K+HYdfWSVXX89//mUrq6nsKJGaC6vWlCCNFpuiwBVUrNAKq01gv24vSriXbopT90kAyS0HWUSXH4BSMZPiKNC1aFSRiaSKhxKv8xFXHXnWdLEiqE6M9+obV+NJbEnaG1flQpdW28gxLxo7Xm2dnFnP3wd1gtipMmbLtz2tAGTy5/kpLmEpRS/GX09Yy+7XWq770Xz/HHk3rJJQC8VlnP0fPXsMUf5Kmxg/n78HzMWvPdGxuY9a/F2F0WzrixiHGH5aOUZKBCiN6rK2/BPQg4WSl1AuAAPEqp57TW5+/GuQcAhyilrgYSAJtSqkVrfWMXxit2YDabOPaysfjvXcyFa7w8OcpD69pJ/CfRSssdp/GnX7+C2eGId5hCCNHdLgTu26Hsop2UiX7AF4xw0xvLeG1hGYePyODesye1T6/SFGzipq9v4vOSz2kNt3KJ5TBKr7mGSF0d2X/9K8lnn4VSisZQmD+tK2NsgpMHRw8kzxEd9C/oj7B2bgWjD8zh4LPkWU8hRN/QZQmo1vr3wO8BlFKHATfsZvKJ1vonbdtKqYuAIkk+48PmsDDjmvG8dudCLt4Q4vFRyfhXjeVZl4v6u07hzl++jC3RE+8whRCiyymlzgXOAwYrpWZ1qEoE6uITlYi34jov7y2r4FdHDecXRwxtH+V2Td0afvX5r9jaspUbp93IeSPPI7hpE+bkZAoefADH6NFUB0OkWS0kWS28OXkogxx2LCZF9ZZmUnPdONxWzr5pGg63jL0ghOg7un0eUKXUzUqpk2PbU5VSpcCZwMNKqRU/fLaIB2eCjZN+OYH0sOLSYoVzYhqR1oG8FTiLy/91Nv46ef5WCNEvfEt0fILVsXXb8mvg2DjGJeKgrMEHwMhsD1/89jCuPWpYe/K5sHIh5797PoFwgMePeoQZ6xIBsBcWMvj113CMHs13DS0cMW8N9xVXAjDU5cCsYMknJbx6+3wWflAMIMmnEKLP6ZYEVGv9edscoFrrP2utZ8W252mt87XWbq11mtZ6zE7OfUrmAI0/T5qTk34xkeT6MFduViTsnwvhVL7wXcC5D11CY3lxvEMUQogupbUujvVnB2itv+iwLIzNrSn6idcWlnL4nZ8za0k5AJmJ2z+OMjJ1JDOGzOD5g/9D2u/up/y3v8M3f357/cMlVZyxeD0es5kTMpIBCPrDfPj4Cr5+ZR0DxqYx/vD8bmuPEEJ0p26/Aip6r/T8BE68ejyOMh9XrjVIPGQgZuws8l7EGU/dQPWmXU33KoQQfYdS6jSl1DqlVKNSqkkp1ayUaop3XKLrGYbmjvdXc/3LS5gyMIXpw9Lb6/xhP/ctvA9vyIvL6uK3njNoPv8KfEuXknvHP3BNnUprxOCqlcX8ZX05x6Yl8X7RcEa4HTRUtfLqPxawYUEV+59SyAlXjsPukiufQoi+SRJQsUdyhyVzwtXjsWxp5aoVYTyHD8Fm1axr+ikzX/oHm5Z8Fe8QhRCiq90BnKy1TtJae7TWiVpreRi+j2sNhrnq+QU8+PkGzp02gGcunUayKzpYUHVrNRe/fzGPL3uc78q/o+mjjyg+7yegYeDzz5N08skArG7x8X5NI38ozOHxsYNItEQHFQoHI4QCYU66diJTjhuEMskot0KIvksSULHHCkalctwVY9GbWrhqSYjkI0didwcobzyTk995k+8+eDreIQohRFeq1FrLLR/9zDfra/l4VRV/OWk0fz91LFZz9CPUytqVnPPOOWxo3MA9h9/DUQOPwmSz4Rg7lsGvvoJz7BiqAtGpyyYnuZm9/2h+OTALgLK19QCk5ydy/s0HUDAyNT6NE0KIbiQJqNgrg8alc+xlYwmvb+bKRQHSjhyDPSNIc9PhXDCnhuefuTneIQohRFeZr5T6r1Lq3NjtuKcppU6Ld1Cia/hDEQCOHp3FJ9cfysUHDW6fh/Pb8m+56P2LMCkTzxz9JPuXJwCQcOihDHzuWSxpabxRWc9+s1fyXnUDANl2K5GwwRcvrOGNuxexeVkNAGaLfCQTQvQP8tdO7LXCiRkcfekY/KsbuWJBgLxDRmEaaiLUOow/rh/An+77OUYkEu8whRCis3mAVuAY4KTYMiOuEYkuMW9zHdPv+Ix5m6Oz7AxKd29XP9AzkP2y9+O5Qx/F9ft72HLJJQQ2bgJAA3ds2sqVK4sZn+hialI0OfW1BJl132JWfFXO5OMGMnBMWre2SQgh4q3L5gEV/cPQKZlEwqP5+KmVXKEULx0wlLlJW3EtCvBs5RGsu+NqnvrlnTjc8niUEKJv0FpfHO8YRNd7f/lWfvnSYvKTnWR7to1yq7Xmg+IPOGbgMeQl5HH3yBspueQqAps2kXPLzdgLB+OLGPxy1Rbeqm7gnOxU/jEiH7vJRN1WL+88sARvQ5CjLh7NiP2y49hCIYSID0lAxT4bsV82RsTg02dXc15Yk3J4Pu+6nGTOXs3sxhkcdffNvHrRZWQXjIh3qEIIsdeUUr/VWt+hlLqf6AWu7WitfxmHsEQXeOa7zfxl1gomFiTz+IVTSXVHBxsKGSFu/u5m3lj/BhwKh7UOYMsVV6D9AQY8+gjuAw4A4KPaJt6ubuDPQ3K5qiCj/ZbdunIv4aDBqb+eTNZg+WJWCNE/SQIqOsWoA3MxmU188tRKjg8apJ6YyXN2C0PmLKa0+XAOe/wd/j19GUcdcUa8QxVCiL3VNvDQ/B88SvRqn66u5M9vruCoUVncf+4knLboSLWtoVau/+J6vin7hqsmXMWxA4+l7smnUBYrA194AvuwYYQNjcWkODkzmWGuEYxKcALQVOPDk+5k6JRMBoxJxeaQj19CiP5Laf29L3F7paKiIj1/vnwmiLcNC6v48PEVpOYlsPmMXO4prWLCmjWsKXaizF5+OmATf7v8D+3fBgshRLwppRZorYviHUdP1d/6V8PQvDy/hDOm5GOJjXRb66vl6k+uZnXdav60/584NfsYzB4PWmuMpibMSUksaW7lihWb+c/oQUz0uIDo7boL3tvMvHc2c+oNk8kenBTPpgkhRLfaVf8qgxCJTjVkcibHXzmO+q1eBrxUyv8NzGHZyJEU7peAgzDPbBrPCX//C00tDfEOVQghhAAgFDG45e2VlNa3YjIpzpk2oD35BNjctJnS5lL+dfi/OHKxwYZjjiWwYQNKKcxJSXxS28Spi9YT1hp37LxIxOCz51YzZ9YmhhZlkpGfGK/mCSFEjyIJqOh0g8alM+OaCTTV+nE8tYlHB+dTkpaB+cgxFDq3sKp5Pw6481nmLe8/36gLIYTomfyhCFc/v5DHv97El2trtqtrDbUCMCVrCu+f9j5j3llFxZ//gmP8OKw5OQC8UF7LBcs2MsRp593JwxnmdhD0h3nngaWs+mYrRScM4qiLRmO2ykcuIYQASUBFF8kfkcLMayfiawlR8/AaXhiYj9vpZMOhB3FMQSneYD5nv7ieW59/PN6hCiGE6Kdag2F+9vR8PlpZyS0zx3DefgPa69bVr+Ok10/irQ1voQ0D7z/vp/re+/CcfBIFDzyAyeXiw5pGrl9TwvSURF6fNJRMuxWA1d9VULq6nsN/OpL9Ti6Ux06EEKIDSUBFl8kuTOKUX00iEjZY8q/lPJmaxSSPm1mj9+OsaRbsqoVHl2Vz2P/dQ0VdbbzDFUKI3aKUelopldxhP0Up9UQcQxJ7ockf4oLH5/LthhruOnMCPz1gUHvd8prlXPzBxWg0o9NGU//SS9Q/+yypF15I7u23o6zRRPOIVA+3DM3jmXGFJFjMtI2rMe6wPM68sYjRB+XGo2lCCNGjSQIqulTGgERO/20RDreVL+9fxu14ODcnlWeSCzjopGlMdC1ic8sQDr7rA578+KN4hyuEELtjvNa6oW1Ha10PTIpfOGJvaA0RrXngvMmcPiW/vXxexTwu/eBSEqwJPH380wxJHkLyGWeQe+cdZN74Owyl+MfGrVQFQlhMissKMrCaFLXlLbxy23waKltRSpExQJ75FEKInZEEVHS5pAwnp/92CukFCXzy6Aou2gp/GZLLO60GdceewXUjy1AqwN8+DnLKXY/Q5AvEO2QhhPghJqVUStuOUioVmdas12hoDeIPRUhyWvnflQdy/Lic9rqyljKu+vgqst3ZPHnkY9geeolwfT0mm42kk04iqDVXrNjMPcWVvFPT2H5excZGXv/nQrwNASJhIx7NEkKIXkMSUNEtnAk2Zv5qEoPHp/P1f9czYV4TL40vpCYU4v7Cg7j5pNEMss9mcXUO0259ldfnL413yEIIsSt3Ad8ppW5RSv0f8C1wR5xjEruh3hvk3Efn8MsXFwFgMm3/bGZeQh5/2O8PPHH4w4R+ezN1TzyB95tvAfBGIly4dBNvVzfy1yG5XJyXDkDxilrevHcRdreV034zhbS8hO5tlBBC9DKSgIpuY7WZOe6KcYydnseij7YQeKOE9ycOY6Tbwa9a7Rx69qVcnP4dIcL86tUSTr7neSqbfPEOWwghtqO1fgY4DagEKoDTtNbPxjcq8WPqvUHOe2wOG6tbOH//gdvVfVP2DStqVgBwSt5xtFz7e7xffU32LTeTNONEGkNhzlm8kS/rm7l7ZAFXDsgEoHR1He8+sJTkLBen/2YKSRnObm+XEEL0NpKAim5lMimmnzuc/U8pZN28SuY9uJznCgdwaV46D1c2sOCIi3n28BQK7J+xtCqBA29/l/s/nodh6HiHLoTo55RSntg6lWji+UJsqYiViR6qLfncUN3CoxcUMX14RnvdV6Vf8YtPf8E9C+4h3NzMlp9dRuvcueT+43ZSzjwTgJAGv2Hw8JhBnJeT1n5u1uAkxh6WxynXT8blsXV7u4QQojdSbSO29XZFRUV6/nyZV7I3Wb+gik+eXonDbeX4K8fxjSPC9atLcJtN3D8onfkv3MYjrUMI+YeQ7/HyyEXHMDo3Od5hCyH6GKXUAq110W4c97bWeoZSahPQsfNUgNZaF3ZZkHHUF/rX8x+bw9zNdTy2Q/L5ZemXXPfZdQxNHsqjxzyKqyHAlksvIeOaa/AcdxwNoTAuswmbyUREa8yx6VQ2LKqiYFQqNoc8+iuEELuyq/5VElARV9Ulzbz70FJ8zSGOvGAUxugkLlu+mbWtfi7Pz+D88iVc++mrrA4fi464mDnRw99OPoBkl3zTLIToHLubgMaOVUCB1npLF4fVY/SF/nVleRM1LYFdJp8PH/IvkhMzUGYzOhxGWSxUB0OctXgDoxOcPDB62y27Sz4t4euX1zHl+IHsP3NIPJojhBC9wq76V7kFV8RVRkEiZ944lcyBiXz4+ArqPyrj/cnDuCQvnUdKq7nCWchdV9/BTUmf40qYy5uLm5h26zv858vVhCIy0qAQonvp6Le278Q7DvHjWgJh/jtvC1prRud6tks+Ad5c/yZDk4fyyCH/ouma37D1pj8CoCwWqgIhTl+0gc2+AGdnb7u7euEHxXz98joKJ2Uw9cTB3doeIYToKyQBFXHn8tiYed0kRh+cy4L3i/ns0RX8pSCb58YXUh0Mc/zqMtR5N/PxkUdwjOVRIvZibn93Awfd/jYfr6ygr1zFF0L0GguVUlPjHYTYNV8wwqVPzeMPry9nfVXLdnVtfcbth9zOI9P/TeO1N9K6cCHugw4CoCIQ4rTF6ynxB3lufCHTUxPRWjPnrY189/oGhk3N4tifjcFskY9QQgixN+Svp+gRzBYTh/1kBNPPGU7x8lpe/vs8JngVn00bwcHJidy0rozfuAZy840v8XR2C4Xup6gO1PGzZxZw+n8+ZXlZ44+/iRBCdI79iE7DskEptVQptUwpJXNH9RDBsMFVzy9g7uY67j5rAsOyEtvrllQv4aL3L6LWV4s5FKHpVzdGBxy6/TaSTpqB1pqLlm1iayDEixMKOSgleq7fG2LV1+WMOjCHoy4ejcksH5+EEGJvyTOgosfZur6BDx5bgb8lxCFnD2PUQTk8VV7LzRvKsZtM/G1oLjPDXp555DoeSEinufFotOHiyNGp/P64sQzNTPzxNxFCiJg9eQY0dvzAnZVrrYs7L6qeozf1r+GIwS9fWsS7yyq47bRxnDttQHvd6rrVXPLBJSTbk3n6uKcJ/O4Wmj/+mJy//53kU09pP25BoxcDmJrkbr9aqpTC2xjAlWhD7TB3qBBCiJ2TQYhEr+JrDvLRkyspWVnH8P2yOPTcEZQYYX69uoTZjV4OT03kjuH5mL56nzs//SfvpRYRrD8EtI2TJ+bw66NHMSDNFe9mCCF6gb1IQJ/VWv/0x8r6it7Uv87ZWMu5j87mDyeM4meHbBuUeGPDRi56/yLsFjtPH/c0uQm5eOfOJVRSSvLpp1ETDPNRbSPndphiRWvNnFkbCfojHHLWMJSSxFMIIfaEDEIkehVnoo2TrpnAficPZt3cSl69fT7JDWFemzSUvw/LY06jl8PmreGjMQfxz798yEtJWRxivhNL6lfMWlLCYf/8lD+8tpTyBl+8myKE6HvGdNxRSpmBKXGKRXSwX2EaH1w3fbvks6SphJ99+DNMysSjRz1C0vISANzTppF8+mnUhcKctXg9f1hbSpk/CESTz7lvbWLBe8VEgpHtJ90RQgixTyQBFT2WMimKThjMyddOxN8a5tXb57Pq63Iuzkvn86kjKPK4uXFtKWesKiXxp9fxxLWzeCjUzBj3PzAnzebFuZs55B+fcsMri783CIUQQuwppdTvlVLNwHilVJNSqjm2XwW8uY+vfaZSaoVSylBKFe1Q93ul1Hql1Bql1LEdyo+Lla1XSt3YoXywUmpOrPy/SilbrNwe218fqx+0LzH3JPd/so5PV1cCbPfMJ4DVbCUvIY9Hjn4E+33PsOWii/AtjT6y2xAKc/biDWzwBXh6XCF5Dlt78jn/3c2MPiiHw34yUm67FUKITiQJqOjx8kemcvZNU8kuTOLz59fw7kPLSA8pXppQyN0jC1jp9XH43DXc0RTigBvv55XTn+CvdcsYmH4HpuRv+N/CzRx99xdc+ex8lpY2xLs5QoheSmt9m9Y6EbhTa+3RWifGljSt9e/38eWXA6cBX3YsVEqNBs4hetX1OOBBpZQ5dtX1AeB4YDRwbuxYgH8A92ithwL1wKWx8kuB+lj5PbHjer1nZxdz10dr+Whl1XblLcEWDG2Q7c7mmeOfIfnJt2l48SXSfnYpjnHjaA5HOHfJRtZ4/TwxdjDTU6OJ6/x3NzP/3c2MkuRTCCG6hCSgoldwJ9k5+ZcTOfjMYZSsrOOlW+aweVkt5+Wk8c1+ozg1K5l/bali+pzVfJqew7m3v84bU2/hd+VzGZRxG9a0T/lo1RZO/vc3/OSx2Xy5tlqmbxFC7K2blFLnK6X+BKCUKlBKTduXF9Rar9Jar9lJ1UzgJa11QGu9CVgPTIst67XWG7XWQeAlYKaKPqh4BPBq7PyngVM6vNbTse1XgSNVL3+w8b1lW/nzm8s5alQmt8zcdmd0a6iVKz6+gj998ycAah99jNpHHyX57LPJ+PWvUUrxRV0zK1p8PDp2EEemedrPTS9IZMwhuRwuyacQQnQJSUBFr6FMiglHFnDm74twJdl598GlfPb8apIMxb9GDeTNSUNJspi5dPlmfrJsE3VTD+TSez/if2P/xg3FCxmYfiu2zHeZu3kLFzwxl6Pv+YLnZhfTGgzHu2lCiN7lAeAA4LzYfkusrCvkASUd9ktjZbsqTwMatNbhHcq3e61YfWPs+O9RSl2ulJqvlJpfXV3dSU3pXN9tqOXalxYzqSCZ+8+djCU2NUrICPHrL37N8prlHFFwBL4VK6i++248M2aQ/ec/tQ8mNCMzmW/2H8Wx6UkANFa3AjB4fLpc+RRCiC4kCajoddLyEjjzd0VMOmYAK78u5+Vb57F1fQP7JSfwYdEI/m9YHvMbvRw2dzW3bNiK+fCjuOxfn/DK8L/w6/XLKEi7FUfOy5Q2beCPbyxn/79/wm3vrqK0vjXeTRNC9A77aa1/DvgBtNb1gO3HTlJKfayUWr6TZWZXB7yntNaPaK2LtNZFGRkZ8Q5npz5bU8WANBdPXDQVp80MgKEN/vzNn/m67Gv+tP+fOHLgkTjHjCH/wQfJve3vRJSJa1YW83V9MwAFjuiPbcVXZTz/lzmUrqmPW3uEEKK/kARU9Epmq4kDTxvKKb+ahBHRvPbPhXzx4hqMQISf5WfwzX6jOCUrmYdKqth/9ioeLash8YQZXP6vT3l50J/5/aotDLPfg3PgQ4StS3nkqw1Mv+MzLntmPp+triJiyO25QohdCsWewdQASqkMwPixk7TWR2mtx+5k+aEBjMqAgg77+bGyXZXXAslKKcsO5du9Vqw+KXZ8r/T740fyv6sOJNm1Lfe/b+F9vL3xba6ZeA3H1+TiW7IEgMQjDkdbLPxqzRZeraxnrdfffs6aORV8/sIaBoxJJWdIUre3Qwgh+htJQEWvljc8hXP+PI3xR+Sz/MsyXrx5DpuX1ZBpt/KvUQP5qGg44xKd/Hl9OYfMWc2sumbSTjmNCx78hOeL7uG2JZrJwadwDbkdR8qXfL2+lIufmsch//iUez5aK9O4CCF25l/A60CmUupW4Gvg7130XrOAc2Ij2A4GhgFzgXnAsNiItzaiAxXN0tGH2z8DzoidfyHbRuidFdsnVv+p7mUPw9d5g/z08Tmsr2pBKUWS07pd/fT86fxs3M/4qekgSq/5BZV/vw2tNVpr/rSujFcq6vnt4GwuyY9e1d2wsIpPnlpJ3vAUjrtsLGaLfCwSQoiupnpZ37NLvWmibNE1KjY28tlzq6kr9zKsKJODzxqOyxMdUv/zumZu3lDOKq+fyR4XNxXmcFBKIlprWmfPZt4L9/GyYxnfjrTibx2F23sktQ05mBQcOjyDs4oKOGJUJnaLOd7NFEJ0sl1NlP0j54wEjgQU8InWetU+xnAqcD+QATQAi7XWx8bqbgIuAcLAdVrr92LlJwD3AmbgCa31rbHyQqKDEqUCi4DztdYBpZQDeBaYBNQB52itN/5YbD2lf/WHIpz36GxWlDfx3M/2Y+qg1Pa6spYy8hKij7oGi4vZfO55mBwOBr74ItasTO7YtJW7N1dyRX4Gfx2ai1KKuq1e/vt/c8kc6OGkX07A5rDs6q2FEELshV31r5KAij4lEjZY+EEx89/djM1h4YDThjDqgByUSRHRmpcr6rhjUwVbAyEOSk7gN4Oz2T85AQDfsuVsfPEx3qj6hA8naGocqdibphNsmUaLz4zHYeHE8bmcOimPooEpmGSACiH6hL1MQFOI3s7anrVorRd2dmw9QU/oXw1Dc82LC3lveQUPnjeZ48fltNd9V/4dV39yNbcedCvHeKax+dzzMJqbGfjCC9gLB2NozbWrt2BRirtHFLQPQqS1ZsVX5QwrysTusu7qrYUQQuwlSUBFv1JX7uXz51ezdUMjmQMTmX7OCLIGR4fZ90cMnttay33FlVQHw0xPSeA3g3OYmuQGIFxdTc1/X+KD2c/x3vAWlg+wgHcYKaFjqazJJRiG/BQnp0zM45RJuQzNTPyhUIQQPdyeJqBKqVuAi4ANxJ4DBbTW+oguCC/uekL/ett7q3j4i43cdMIoLpte2F6+pm4NF75/IbkJuTx93NP47n+EuueeZ+BTT+KcMIGwobGYFIbWaMCsFNVbmjFbTKTmuuPXICGE6AckARX9jtaatXMr+fa19bQ2Bhl5YA4HnDIElyc6YEVrxOCZshru31JFbSjM4amJXD8ouz0RNYJBmt9/n8WvP857rvV8OdZEk8OG0zsNV+gISqpcGBqGZSZwwrgcThiXw/CshPZv14UQvcNeJKBrgHGx+Tf7vHj3r4FwhJ8+PpfhWQncMnNs+9/YSm8l5717Hmh4/sTnyXZno8NhAuvX4xg5ko9rm/jb+jJemDCkfbTb+govr/1zIYmpDs78fZH8vRZCiC4UtwQ0NlLgfKBMaz1jh7rpRJ9fGU/0WZRXY+UDiQ7wYAKswP1a6//80PvEu4MUPVfQH2b+O5tZ8mkJFquJqTMGM+7wfMyxOeO8kQhPltbwYEkVdaEI05LcXDMgk6PSPJhiH078q1ZR/cp/+XTlW3wyzM+SQhPhSCLZkWPQvslsqjCjgSEZbk4cl8OxY7MZneORDzdC9AJ7kYD+D7hKa13VhWH1GD2hfw2EI5iV2jbXZyTEue+cS2lLKU8d+xRpL3xM8llnYs3KAmBho5fTF29gmMvOa5OGkmAx01zn57U7FxAJG5x2wxSSs1zxbJIQQvR58UxArweKAM9OEtBBgAe4gejofW0JqC0WW0AplQAsBw7UWpfv6n16Qgcperb6Ci9fv7yOLSvrSM5ysf/MQgonZbQnid5IhBe31vHQlirKAiGGuxxcPSCD07JSsJmiH3oMn4+m9z9gw6wXeJ/lfDXWRFm6QoU9FKgZhFrGsX6rwtCQm+TgiFGZHDUqi/0L03BYZQAjIXqivUhAi4iOLLscCLSVa61P7oLw4i5e/evK8ibu+nANd501YbupVtq8svYVct25DHt1PrUP/YesP/ye1AsuYH2rn5MXriPRbObtKcPIsFnxtQR5/Z8L8TYEOOX6yWQMkEcnhBCiq8UlAVVK5QNPA7cC1++YgHY47ing7bYEdIe6NKKj+O0vCajYV1prNi+r5bvXN1C/1UvWYA8HnjaU3GHJ7ceEDM2sqnoe2FLFSq+fHLuVS/PSOS83jVTrtlESAxs20DBrFku+fp0vMmr5ZoyJWg9YI8kMtp5M2DuatWUmfCEDl83MIcPSOWJkJtOHZ5CT5IxD64UQO7MXCegK4GFgGR3m/9Raf9EF4cVdPPrXrY0+Tn3gW5SC168+iOwkBxD9G17aUkpBYnQK1Ib//Y+tN/2RpDNOJ+eWW6gMhpmxcC3+iOatycMY7LID8NXLa1nxZTkn/XICecNTurUtQgjRX8UrAX0VuA1IBG7YkwRUKVUAvAMMBX6jtX5gJ+ddDlwOMGDAgCnFxcWd3gbRNxkRg9WzK5g7ayPexiCDxqdzwClDthuUQmvNZ3XNPLClim8aWnCYFKdmpXBpXjpjE7fduqUNA9/ChdTPmsW8Je/y1SAfc0eaaXBpLIaDoY4TsAWmsL7cSWVT9JGxYZkJHDIsg+nD09lvcBpOm1wdFSJe9iIBnae1ntqVMfUk3Z2AegNhzvzPd2ypa+WVKw9gVI6nve6RpY/w6NJHeWnGS2StqKDkiitx77cfBf95CGW1UhMMc9XKzfxxSC4TOvydDoci1JS0kF2Y1G3tEEKI/q7bE1Cl1AzgBK311Uqpw9jDBLRDXS7wBnCS1rpyV+8nV0DF3ggFIyz9tISF7xcTCkQYsV82U04YRHLm9s8GrWrx8WRZDa9U1OMzDKYlubkkL50TM5KxdpiOxQgGafniCxree4+Faz9j9sAgc0eaqfZoTNrEcPehpOiDqK3LYlmpj2DYwGYxMXVQCgcUpnHAkDTG5SVjk8nQheg2e5GA3k301ttZbH8LrkzDso8MQ3Plcwv4eFUlj180lcNHZLbXfbD5A2744gZmFM7g1oNuZct5P8FobWXgC88TdrlQgM1kQmuNUgptaBa8v5mxh+bjcMs0K0II0d3ikYDeBvyU6MTZDqLPer6mtT5/J8c+xS4S0Fj9E8C7u6oHSUDFvvG1BFnwXjHLvyzDCBsM3y+bouMHfW+QioZQmJe21vFkWQ3F/iAZNgtnZqVyXm4qQ12O7Y41/H6833xD4wfvs2zZp8wu8LNguJnijOi/uRxHPkOcJ6BbR7KpwsaaihYAnFYzRYNSOGBIGvsXpjE2N0kSUiG60F4koJ/tpFimYekEFY1+Tn/oWy49eDCXHDy4vXx5zXIuev8iRqeN5rFjHsNmthFpasLw+TBnZnLVymKawhGeG1+IWSm01nz9yjqWflrK4eePZPTBud0SvxBCiG3iOg3Lnl4BjT07Wqu19sUm+54DnK61Xrar95AEVHQGb2OARR9tYcUXZUTCBsOnZVN0wvcTUUNrPq1r5vnyWj6qbSSsYVqSm/NyUjkpMxm3eftbao1gEO+339Ly6WdsnvcJ85LqWDDMxPLBJoJmjV3ZGJu2P5nqIHzNBawpN1hbGU1I7RYTE/KTmTIohamDUpg8IGWnA3IIIfbOniag/U1396/N/hAJdkv7AHHVrdWc9fZZ2M12nj3sMfTTr5D+86sx2aPPd96yoZwHtlTxx8IcrhkYGwX3w2K+e20DE44o4KAzh8qI5EIIEQc9JgFVSt0MzNdaz1JKTSU63UoK4AcqtNZjlFJHA3cRneBbAf/WWj/yQ+8hCajoTK1NQRZ9WMzyWCI6ZEomk44eQOZAz/eOrQqEeLmijhe31rHBFyDBbOLkzGROy0rhgOQEzDt88NFa41+xkpbPP6f2i09Y6F3NkkLFsiEWSlKj45kk25KYmDadVIrwteSypjzMivImwkb03+vQzAQm5CczsSCJ8fnJjMxJxG6R50iF2Bt7cQX0zzsr11rf3HlR9Rzd0b8uKK7jrSVbuenEUVjN29/xETbC3LfwPk4ePAPHH+6h5euvGfj0U7iKiniqrIYb15ZyYW4atw/PRynFmjkVfPzkSoYWZXLMJWNQJkk+hRAiHuKagHYHSUBFV2htCrL4oy0s/6qMkD9C3ohkJh41gIFj0r73oUZrzdxGLy9srePt6ga8EYNsm5WZWcmcnpXCuATnTr+FD1VW4f3mG7zffEPJ4q9ZktLE0kGKZUOt1DsjAKTb05iQOY0MNZVw6wA2VymWlTVS0xId1MhmNjEq18OE/CTG5iYxJs/DsMxEuXVXiN2wFwnorzvsOoAZwCqt9SWdHlwP0NX9a2l9KzP//Q2JDgtv/vxgklzR5zUjRoSmYBMpjuiotZW33U7d00+T/Zc/k3LuuXxY08hFyzZxZJqHJ8cOxmJSRMIGL948h4QUOyddMxGzVf4GCiFEvEgCKsQ+CPjCrPyqnCWfluBtCJCS42biUQWMmJa90w84rRGDj2obea2ynk9rmwlpzVCXnZmZyczISGak27HTZFQbBv5Vq/B+8y0tX3/FhuJFrMyJsHKAiVWFVmqdYQCSrB7GZUxgsHsytvAwGhuTWVneyvKyRrzBaNJqM5sYnp0QTUhzPYzM8TAiOxGPQwbjEKKjfb0FVyllBz7QWh/WeVH1HF3Zv7YEwpzx0LeUNfh44+cHMSQjob3urvl38f7m93l5xsvwxodU/PWvpPz0p2Tf9AcAlje3csemCh4aM3C7xx68jQEsNjN2p+V77yeEEKL7SAIqRCeIhA3WL6hi0YdbqC1rwZloZdRBuYydnkdiqmOn59SHwrxT3cj/KuuY3eBFA4VOOydmJHFiRjITEnd+ZRSiAxn5Fi+hde5cvHPnULx5CStzIqwuUKwbbKfEEwJAoRiaPJRx6ePJto1DBQdQ2+hiVXkLK8obqW8Ntb9mXrKTkdmJjMxJZES2h2GZCRRmuOUWXtFvdUICmgLM01oP7cSweoyu6l8jhubyZ+bz+dpqnrp4KocMy2ive33d6/z52z9z9oiz+f3YX7Hh2GNxjBlNwYMP4kWRsMPfq6YaH8u/KGP/UwoxmeWqpxBC9ASSgArRibTWlK6qZ+nnpRQvqwFg0Ph0xh6aR8HI1F0+c1QVCPFeTSPvVjfydUMzEQ15divHZyRxdFoS+ye7sZt2/eGpPSGdPx/f4sXUrFrMGo+XtXmKdYOsbMhRtFiiV0ltJhsjU0cyKnU0uY7RWMIDaGpOZG2ll9UVTWys9rY/U2pSMCjNzdDMBIZlJTAsM5HCDDeFGQkk2OUqgujb9uIW3GVExygAMAMZwM1a6393RXzx1lX966qtTZz24Lf84YSR/PSAQe3lCysXcumHlzI1ayoPHvUgFpOFYHEx5rQ0mu0OTlq4jhkZyfyuMAcAf0uI/925AF9zkLP+MBVPurPTYxVCCLHnJAEVoos01fpY8VU5q74px9ccIinTyZiD8xi+XxbuJPsuz6sPhfmgppF3qhv5qr4Zv6Fxm00cmpLIUekejkr1kGn/4dtltWEQ3LCB1kWL8C1aTOuSxZTUb2ZDNmzIUWwa5GBjegSfOXpbrkVZGJI8hBGpIxiaNBK3HkIkkEF5vcG6yhbWVTWzubaViLHt70Jmop3CDDeD0xMYkuFmUJqbgWkuClJdOKxy1VT0fnuRgA7ssBsGKrXW4c6PrGfoyv51a6OPnKRtCWN5SznnvnMuibZEnjnwQfj4K1LOOw+lFEHD4NwlG5nb6OW/E4ZwYEoC4VCEWfctpnJzEzOvnUTusOQuiVMIIcSekwRUiC4WCRlsWFTF8i/K2LqhEWVSDBybxqgDchg4Lg3zDwwI1Box+Lq+mY9rm/i4tonyQPSW2fEJTqanJnJoSiJTk9w4duPWskhLC/7lK/AvX4Zv2XJaly1li38rxVmKzZmK4gF2Nmcq6m3B9nPSHGkMSxnG0OShDPYMw6UHEgqkUl4fYVONl43VLWys8dLQ4VZepSDH42BAmotBaW4KUl3kpzgpSHVRkOIiPcEmUx+IXmF3E1ClVOoP1Wut6zovqp6js/vX7zbUsqG6hfP3H/i9ugZ/A3/97q/8ctxVmH91K77Fixn85pvYBg/iV6tLeKmijn+PGsAZ2aloQ/PhEytYP7+KY342hmFFWZ0WoxBCiH0nCagQ3ai+wsvq77ayenYFrY1BHAlWRkzLZsT+2aQXJPxgYqa1ZpXXz0c1TXxW18T8Ji9hDU6TYr+kBKanJjI9JYFRCc7vTfGyK+G6OvyrVhFYtQr/ylX4V62iqnozmzOgNB1KcqyU5Nko8YQImCLt52U4MyhMKmRQ0iAKkwpJtw3EFM6iudXBllofxXVeimtbKa71to/I28ZpNZOf4iQvxUluspO82JKbHC3LSrRjkWe1RA+wBwnoJrZND7YjrbUu7PTgeoDO7F831Xg55YFvyEi08/YvDm6/i8LQBhEjgtVsRWvN1j/9icZX/0funXeQdNJJ3F9cya0bt3L9oCx+Ozh6621teQuv3j6fqScOZvKx309mhRBCxJckoELEgREx2LKyjtXfbWXTkhqMiCYl28XQoiyGFWWSku3+0dfwhiN829DCl/XNfFHXwtpWPwBJFjPTktzsn5zAAcluxiW4sO7BfHeG14t/7VoC69YRWLuOwLp1+NauYatuoCRDUZYG5dk2tmZHE9NW87Y7DO1mOwWJBQxIHMBAz0AGeAaQ4cjHHMnA53NRVu+npN5HSV0r5Y0+yhv81Hm3T1BNCjIS7WQnOcn22MlJcpKd5CDb4yAz0U6mx0GWx77dhPRCdIV9HYSor+us/rWxNcSpD35DfWuQN35+EAPTtv39e2jxQ3y39Tv+c9R/8L/wCpW33U7alVeQed11AMyqauCzuibuHlGw3d+DphofiWk7H1VcCCFEfEkCKkSc+VtCbFhUxbp5lZStawAN6QUJDCvKYuiUzN0eOGNrIMg39S3MbvDyXUMLG3wBAFxmE0UeF0VJboo8bqZ4XCRZ92wAIa01kZqaaFK6YSOBjRsIbtiIf+MGan21lKUrtqbA1jQTlblOKlIVFc4AIWW0v4ZFmclNyCM/MZ/8hHxyE3LJTcgl1ZaFKZJOq89OeWOArY1+Khp9sXV0aQ58/zE6l80cTUgTHWQk2r+/JNhJS7CR5rbLvKdir+xNAqqUOhmYHtv9XGv9dudH1jN0Rv8aihhc9ORc5m6q4/mf7c+0wdvuZv6o+COu//x6Zg6ZyZ+H/JyNxxxLwmGHknffffg1OHe4U2Lzshpa6gOMnZ63TzEJIYToWpKACtGDeBsCrF9Qxbr5lVRuagKiyejgCRkUTswgLc+929/oVwVCzG6MJqNzGlpY7fXTlg4OdzkoSnJR5HEz0eNiuMuBZQ+uknYUaWwksGEjweJigsWbCW4uJlhcjK94EzVWP1XJispkqEwxUZPtoDLNTIU7RLM5tN3rWE1Wctw55LhzyHJnkeXKItudTbY7G48lExVJwuuzUtUcoLLJT1VzgIomP9XNAWqaA1Q3B3aaqAJ4HBbSE+2ku6NJaYrbRprbRmpsSXPbSXFbSXHZSHHZcNpkECWxV4MQ3Q5MBZ6PFZ1LdBqWP3RFfPHWGf3rZ2uquPjJedx5xnjOLCpoL19dt5oL3ruA4SnDeeLYJ7CZbbTOm4djzBhKlZlTFq3nr0PzODkzGYDqLc28dtdCUrJcnP7bKT/4bL0QQoj4kgRUiB6qsdrHxkXVbFpSzdaNjaDBk+5g8MQMCiekk1WYhHkPnpVsCUdY1NTK/CYv8xq9LGxqpSEcfa7TaTIxLtHJxEQXExKdTPS4GOy0Y9qH29e01oSrqgmVlhDcUkKopIRgyba1t6mW6iSoTlLRdbKZ2iwHtclmatwR6iwBDLX93yG72U6GM4NMVyaZrkwyXBlkODNId6aT4cogwZyKMpLw+a3UeoPUtgSpaQlQ2xKgxhukpjlAnTdInTdIfWsQYxd/5hxWEykuG8kuGymuaGKa5LKS7LSS7LKS7IzuJzmteBzW9m23zSy3/PUhe5GALgUmaq2N2L4ZWKS1Ht9VMcZTZ/WvqyuaGJntad+v8dVw7jvnorXm+UMexr1uKwmHHAxAUzjCjAXrqAyGeHvyMIa5HTTX+Xn19vmYLIozflf0g6OMCyGEiL9d9a8ywZ8QcZaU4WTSMQOYdMwAvI0BNi+tYePiGpZ9XsqSj0uwOS0UjEphwJg0Bo5Jw538wx+6EixmDklN5JDURAAMrdnoC7C4qZUlza0sbvLxbHkNj8SyMpfZxBi3kzGJTsYmOBmT4GSk2/G92952RSmFNSsTa1YmrilTvldv+HyEtm4lVFZOqKyMUHlsvbaC8Nat+KuraHCEqfVATaKiLhHqkwI0plVTl1zPMtcqam1B/B0GR2pjNVlJc6aR6kglzZFGWnoaQ/NT2c+RRqozlVR7Kh5bHhY8GGEXzT5NfWuQ+tZQdO2NbXuDNPhCrK5ootEXoqE11D5H6s5YTAqP00qiw4LHYcXjtJBoj60d0fJEh5VEu4VEh4UEh4WEtm27FbfdjNtmwbSXV6NFj5AMtI16mxTHOHqNjsknQHOwmURbIrfs91f8v/s/6hctYujHH6HT0rl8+WY2+vy8NGEIw9wOgr4w7zywhHAwwmnXTZHkUwghejFJQIXoQdxJdsYckseYQ/II+sKUrK6jeHktW5bXsmFhNRC9VXfA6DTyR6aQMyQJy4/cRmpSiqEuB0NdDs7Ijj53FTY0a1v9LG5uZUWzjxUtPl6tqOOpSPTmXRNQ6LIzwu1gpNvBSHc0KR3stO/xLbwmpxN7YSH2wp0PEKojEcK1tYQrKghtrSBcWUm4uopQZSXh4mrClZWEKivwhgM0JECDGxoSFPUJUJ8IzSl1NCY1Ue4qZpUjQoMlSLjDM6nb/fe1ukm2J0cXRzLJnmQyMlIYak9qL/fYPXhsHmwkog0XwZCFZl+ERl+ofWnyR9fN/jBNvhBN/jDVzS00+cI0+UO0Br+fLO80HpsZtz2anLrtlvbE1N22bzPjalvbzLhs0WOctmiZ0xY93hXbdtksmCWp7Q63AYuUUp8RHRF3OnBjfEPqPdruvBqcNJhXT3qVqlv+j/rZs8m57TbM6en8bm0pn9c3c/eIAg5OiX6RVryilvqKVmZcM4G03IR4hi+EEGIfyS24QvQCWmtqy1ooXl5L8fJaKjY2oQ2N2WIie4iH/BGp5I9MIXNgIqa9nNrE0JoSf5DlLT6WN/tY4/Wz2utnky9A218Jm1IUuuwMczkY6rIz3B1dD3E5cHXxlCqG10u4pia6VFcTro6ta2uI1NYRrq0lUltLqLaGFhWkyUVsUdu2Ey20JNloSTDT7IRmu6bJGqLVtPNnSgFMykSCNQGPzYPH7iHRlhjdtkW3E22JJFgTttt2WRLAcKC0k3DYii8Izf4QLYEw3kCElkCIlkCEFn8YbyBMSzBMa6zOG4yVBSL4gmG8u5nMtrFZTDit0YTVaY0mpm1rhzW23WHfYTVF1xZTe5ndEi1vW0eP21Zmt0TL+kqyuwfTsDwAvKC1/kYplUP0OVCAuVrrii4NMo46u399esXTbGzcyB/3/yPNL71C5c23kHrpJWT95jdorbljUwUhrfnjkNztzmuq8e32YG1CCCHiT54BFaIPCfrDlK9roHRNPWVr6qkpaQHAajeTXeghZ2gyuUOTyRrs+dErpD+mNWKwvjWajK5u8bOu1c/6Vj/FviAdrzPm2q0MdtopdNmja6edwS47Ax02HN0436fWGsPrJVJXR6SujnBdPZH6OsJ1dUTq6onU1xNpaIguse1ASxMtdk2LE1oc0OJU2217Eyz4Eqx4XSa8ToXXpvFaDbzm8Hbzpu6Kw+zAbXW3Ly6rK7pt2bbtsrpwWaLbTosTl9WF0+LEYXZi1g7QdrRhJxKxEIlY8IcMWoMRfKFo4uoLRvCFItGyYDhWt63cF4rgDxn4Y2WtwTD+sEEwvPOrxbvDYlLYLSbs1mhSareYsFm2Jam29n0TNosZm7njvql9f7vt2Nravlbt5daOdWYTLruZ9IR9vxVzDxLQa4FzgBzgZeBFrfWifQ6gh+vM/vXL0i/5xae/4MgBR3Jr7hVsPvV0Eg45hPwH/k1YmdqnktJao5Ri6WelpOe7yR2W0invL4QQovtIAipEH+ZrCVK2poGytfVsXd9AbbkXNJjMisyBieQMSSa7MImswZ4ffYZ0d/kjBpt8Ada1Bljf6mdja4BNvuhSF9o+Kcu2WRnotDHAaWOgw85Ap418h40Ch41sm3WvR+btLDoSwWhuJtLYuG1piK2bGjGamok0NWE0NxFpbCLS3IzR2EikpYVgawutVgOvA1rt4HUo/Lbodtvisyv8Lgt+lwWfw4QvdozPqvGZDXzmyE6fcf0hDrMDl9WFw+zAaXFGF6sTh9mBw+KIJa/RbbvZjtPixG6247BsK3OYHVjNNkzaDoYNra2grRiGGR2xYBhmQhFFIBxNXANhg0DbOlbmDxkEIxECIYNgxCAQMgiEo8cEw9vKgpHo/o51+9IFTRmYwv+uOnDvXyBmLwYhGkg0ET0HcAIvEk1G1+5zMD1QZ/WvGxo2cP6755OfmM/Txz2N0+Kk8fU3SDzmGFZoxc+Wb+bRsYOYkOgCYP2CKj54dDnD98vi6IvH7PP7CyGE6F6SgArRj/i9ISo2NrJ1fQPl6xqpKm7CiET/rSek2Mka7CFrUDQhTS9IwObo3MfBG0JhNvoCbGoNsMUfpNgXpNgfYIsvSHkgRMe/OmYFOXYr+XYbBU4beXYbuXYrOXYreQ4bOXYryZaeO+qsNgyM1tZoAtvcjNHcjOH1YrS0EGlpwWiJbhveFiJeb7TO68Xwtm7b9vkIt3oJhHz4bESTUxsErBCwKfzWaFnbOmiNlgXsJoIOMwG7maBdEbCZCFggaNUEzBq/2SBgNgiqCMZe/udTKOxmG3ZzNGm1mq3YzXbsZjs2sy26mGzt5TZTtMxqsrbXt23vuLYoCxZlQ2EFbYkuWNCGBbQZtBmtzRiGCa1NaMNExDBhGIqwASkuG0eOytrnn+HezAPa4dxJwBPAeK11n5zXpzP61wZ/A+e9ex6toVaePeghMv1W7EOHAlDuD3LCgnWYFbw3ZTiZdisVmxp54+5FZBQkMPO6Sft8J4cQQojuJ6PgCtGPONxWBo1LZ9C4dADCoQg1JS1UbmqiclMjlZub2gc1QkFKlouMAYlkDEgkc2Ai6QWJ+5SUJlstTLZamOxxf68uYBiU+IOU+oOU+kOU+oPt+9/Wt1ARDBHZ4Xsxp8lEtt1Ctt1Kts1KVixBzYptZ9osZNmsuM2mbk9UlcmEOSEBc0IC1pycfXotbRhony+a0La2YrRv+zBavdvqfH4Mvy+67/Nj+FrRTT4MfwDtj5X5/dF6f/TYYDhAIBwgYNEELRC0El1bIGhRBC0Qiu2HLB3qrIqQ2UfQ6iNkUYRsZsJWRchqImRVtFgVYXP0nJAZwiZNyKwJmTQhpQmZDCKq87/oVCgmpY7nyFHPdfpr/+h7K2UBjid6BfRI4HPgr90eSC+yoXEDLcEW7jvkLiI33EJxSQlDP/oQn9XGBcs20RKJ8NbkYWTarTRW+3j3waW4k2yccNV4ST6FEKKPkQRUiH7AYjWTXZhEdmESEJ0EvrUpSNXmJqq2NFO9pZmytQ2snVvZfo4n3UF6fiJpeW7S8hNIy0sgKd2J2sfbZe0mU/uovDsT0ZqqYIit/hBlgRBbA0HKAiEqAyEqAiEWNbdSURPCv5NpUpwmE1l2C5k2Kxk2C+lWCxk2K+nt2xbSbBbSrBaSLOZ9mv+0KyiTCeV2Y3J/P3HvDFprdCgUS0wD6GAA7fdjBILogB8dCGwrDwQwAgF0IIgOBqIJbTCEDgbRgQA6FMRoCWwr23EJBaN1oRDhUIBwJETQCBHUIcJGmLAZwqZo4ho2xxaT2rYdW0JmiLTXbyuPmBRZKdVwUpf8p9oppdTRwLnACcBc4CXgcq21t/ui6J2mZE3hvdPeo+EPf6Vp0SLy7r0Xw+7giuWbWNni47nxhYxKiA4wtOKrMgxDM+OaCTgTbXGOXAghRGeTBFSIfsrlsTFofDqDxqe3l7U2BakqbqKmpJnaMi81pS1sWlLd/pyexWYiNcdNSo67w9pFYpqz0+a0NCtFjt1Gjt3G5F0co7WmMRxhayBEdTBMVTBEZWxdFYhur/MG+C7U8r3nUbe9D6Rao8lo2zrFaibVaiHVaibFaiHFaiHVYibZaiHZaibJYsbcw5LWPaGUQtlsYLNhjuPMlVprCEWT0/YlGESHw9v227aDQXQojA5Hy2ivC2NO6faBaX4PvAD8Wmtd391v3tu1PvoUTW+/TcZ11+E57lh8EQOLgtuH53NE2rY5Qg84ZQhjDsklKcMVx2iFEEJ0FUlAhRDtXB7bdrfuAoSCEeq3RpPR2rIW6itaKVtTz5rZ22adMFtNJGc6Sc50kZTlIiXLRXKWi+RMF44Ea6fHqZSKJYUWRv3IsSFDUxcKUx2MJqu1oehSF4pQ22F/lddHXShMQyjCD40Lm2Qxk2wxkxRLSNsWj8VMssWCx2rGYzaR2KE8MbZOMJt63FXXeFBKgc0WTYZ7Ea31EV312kqpM4nexjsKmKa1nh8rHwSsAtbEDp2ttb4yVjcFeIroQEjvAtdqrbVSKhX4LzAI2AycpbWuV9H70+8jegW3FbhIa72wq9rUUcvX31Bz/79JmjmTtCsuJ2AYOM0mnhw7GKUU2tDMfnMjYw7JxZPulORTCCH6MElAhRA/yGozkznQQ+ZAz3blAV+Y+gov9Vu91G1tpaGyldpyL5uW1GB0uD3W7rLEPlA68WRE10npThLTHSQk2/d63tLdjt+kyLJHnxXdHUbs6mp9KEJ9KExdKExjOEJDOLrfEIpuN4QiNIbDVARCNIYjNIUjO70teEcJseS04zrBbMZtMZFoju1bzLjNJtxtdW3bsXJX22Lq/mdeRZdZDpwGPLyTug1a64k7KX8IuAyYQzQBPQ54D7gR+ERrfbtS6sbY/u+IPrc6LLbsFzt/v85txs65pk0l49fXk3rhhTxVXstz5TW8PGEoabbox5DZb25g4QdbcCfbGH94QXeEJIQQIk4kARVC7BW700L24CSyB29/L2ckYtBc46ehKpqUNlb7aKr2Ub2lmY2LqrdLTpVJkZBix5PmIDHNQWKak4QUO4kpDhJS7SSkOLDau3cAEpNS7bffwp5NWeOPGDSFIzRFoglpdDFoDkdoDEdoiURoCRs0RyI0h7dtVwbDtIQjeCPR/R0HYdoVBThjyanL1CExNZtwmrbfdu6w3bZ2mBQuswmHKbrtbN+O7jvMpl5923FvobVeBez2FwpKqRzAo7WeHdt/BjiFaAI6EzgsdujTRAdJ+l2s/BkdHf5+tlIqWSmVo7Xe2mkN2QWTzUb6ZZfxTnUDf1hbytFpHpIs0X/by78sY+EHWxg7PY9xh+V3dShCCCHiTBJQIUSnMptN0dtvs1wwbvs6I2LQXBegqdpHc52fplofzbV+mmv9lKyqx9tYATskX3aXhYQUB+5kOwnJNtzJ9u2XJDvOBOs+D47UGRxmEw6ziUz2/rZjrTV+Q9MSidAaMfDGlrYEta28ra41YtBqRLd9bfsRg7pQEF9E0xox8BnRuuBeTrtlVao9GbWbVHuCajcp7KZtZXaTwrbdtgmbUtu2TbFtte3YtmNsbftq27E2pbDG3sMaO6afJsODlVKLgCbgj1rrr4A8oLTDMaWxMoCsDkllBdA2V00eULKTc76XgCqlLgcuBxgwYECnNOK7hhauXlnMZI+L/4wZhMWk2Ly0hi9fXMPAcWkccvYwuaIvhBD9gCSgQohuYzKborfgZjh3Wh8JG3gbArTU+2mui65b6gOxxU91STO+5uD3klRlUrgSrbiS7LiSbLg80cWZ2GEd27a7LD0iWd0VpRROc/RKZGcLGxq/EU1ItyWmsbKI0WGt8RkG/ti234jWBWLbAUMTMAz8sXPrQwZBIxQt19vqg4YmYOgdf1z7xATYTAqrUkxNcvPChCGd+OpdSyn1MZC9k6qbtNZv7uK0rcAArXVt7JnPN5RSY3b3PWPPhO7xj0Br/QjwCETnAd3T83e0qsXHhcs2UuCw8ez4QlxmE1prFn5YTHpBIsdcOqbLb8cXQgjRM0gCKoToMcwWE550J570nSeoEL3Ft7UxiLchEF0ag7Q2BmhtCuKNlVcXRxPVnV3wUyaFw23BmWjD4bbiTLTiTLDhSLDicFtxuC3Y3dYO+1bszp6dtO4ui0mRYDKTQPfd1qy1JqR1ezIaMAxCOrodjCWpwfZ6o/3YoNaEdihrrzM0IW2QZ+91gxgdtRfnBIBAbHuBUmoDMBwoAzrer5ofKwOobLu1NnarblWsvIy2eZi+f06X8ljMTEp088+RBaRaox89lFKc+PMJGBFjn+YdFkII0bvIX3whRK9iNptITHWQmLrzeUTbaEPjbw3R2hTE1xzC1xSMbrcE8bWE8LeE8DUHqSv34mtuwN8a+t6V1XYq+syr3WXB7oolqS4rNpdlW7nTgs1lweaIbccWu9OC1W7uEwns3lCq7bZaSIh3ML2QUioDqNNaR5RShUQHENqota5TSjUppfYnOgjRBcD9sdNmARcCt8fWb3Yov0Yp9RLRwYcau+P5T4A8h43/Toxera4ta2HBe5s5/IJR2J3yMUQIIfob+csvhOiTlEnhTLDhTNi9q2SGoQm2hvF7Q9GlJdS+HWgNx5YQfm903VwXIOCLbhvhH7lDUYHNbsYWS0atDgs2hxmbw4LVYcZmN2N1mKN1dsu2bVt0bbG31W0rN1mUPC/XhyilTiWaQGYA7yilFmutjwWmAzcrpUKAAVypta6LnXY126ZheS+2QDTxfFkpdSlQDJwVK3+X6BQs64lOw3JxV7drRw2Vrbx532JMJoWvOYg1bdd3OwghhOibJAEVQgjAZFLR2273Yt7ScChCoDVM0BfetvaFCfkjBHzR/aA/ut9x3doUJOSPEApECAbCP57IdqBMCovNhNUWS1BtJiw2M5a2tXVbmdlmwmI1YbHG6q0mzNttR+uia9N2a7MlujaZJOHtSlrr14HXd1L+P+B/uzhnPjB2J+W1wJE7KdfAz/c52L3UXOfnzXsXoQ3NzOsn4ZHkUwgh+iVJQIUQYh9ZrGYsSWbcSXs2bcuOImGDUCCWkPrDhAMGoWB0PxwrDwUihIIRwsFItD60rS4Sih7f2hgkHGw7ziAcMogEIzt9JnZ3KcW2ZNRiwmJpS1BVtNxiwtRx22zCbFWYzdHjzWa13dpkbqtT3y/bbl9haitrW0zRfatj3/+bi+7hbQzw5j2LCPojnPKrSaRku+MdkhBCiDiRBFQIIXqItuTN4d77aVx2RWuNEdGEQ0Y0eQ0aREIG4VAktjY6rCNEwrq9LBKORLfDmki4rczosB0tNyIGIX+ISERjxOqNiN5uHQlrtNE54+JmFyZx+m+ndMpria7lbwmhteakX0wgY0BivMMRQggRR5KACiFEP6CUar9aGe+BX7QRTYYjke0TVKN9f9u2ETGiCW37YrRvd0WiLrpGWl4C5/1tf8wy1YoQQvR7koAKIYToVsqkMJsUZqskI/2JJJ9CCCEgOqe3EEIIIYQQQgjR5SQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLbo8AVVKmZVSi5RSb++kbrpSaqFSKqyUOqND+USl1HdKqRVKqaVKqbO7Ok4hhBBCCCGEEF2rO66AXgus2kXdFuAi4IUdyluBC7TWY4DjgHuVUsldFaAQQgghhBBCiK7XpQmoUiofOBF4bGf1WuvNWuulgLFD+Vqt9brYdjlQBWR0ZaxCCCGEEEIIIbpWV18BvRf4LTskmHtCKTUNsAEbdlJ3uVJqvlJqfnV19V4HKYQQQgghhBCi63VZAqqUmgFUaa0X7MNr5ADPAhdrrb+XxGqtH9FaF2mtizIy5AKpEEIIIYQQQvRkli587YOAk5VSJwAOwKOUek5rff7unKyU8gDvADdprWf/2PELFiyoUUoV71PE26QDNZ30Wr1Bf2sv9L8297f2Qv9rc39rL3Remwd2wmv0WZ3Yv8rvaN/X39oL/a/N/a290P/a3Jnt3Wn/qrTWnfT6u6aUOgy4QWs9Yxf1TwFva61fje3bgPeAt7TW93Z5gN+PZ77Wuqi73zde+lt7of+1ub+1F/pfm/tbe6F/trk3648/r/7W5v7WXuh/be5v7YX+1+buaG+3zwOqlLpZKXVybHuqUqoUOBN4WCm1InbYWcB04CKl1OLYMrG7YxVCCCGEEEII0Xm68hbcdlrrz4HPY9t/7lA+D8jfyfHPAc91R2xCCCGEEEIIIbpHt18B7SUeiXcA3ay/tRf6X5v7W3uh/7W5v7UX+mebe7P++PPqb23ub+2F/tfm/tZe6H9t7vL2dsszoEIIIYQQQgghhFwBFUIIIYQQQgjRLSQBFUIIIYQQQgjRLSQB7UApdZxSao1Sar1S6sZ4x9MVlFJPKKWqlFLLO5SlKqU+Ukqti61T4hljZ1JKFSilPlNKrVRKrVBKXRsr78ttdiil5iqllsTa/LdY+WCl1JzY7/d/Y9Md9RlKKbNSapFS6u3Yfl9v72al1LLYKOHzY2V9+fc6WSn1qlJqtVJqlVLqgL7c3r6mr/ev/a1vhf7Xv0rfKn1rX/udbhOP/lUS0BillBl4ADgeGA2cq5QaHd+ousRTwHE7lN0IfKK1HgZ8EtvvK8LAr7XWo4H9gZ/Hfq59uc0B4Ait9QRgInCcUmp/4B/APVrroUA9cGn8QuwS1wKrOuz39fYCHK61nthhvq6+/Ht9H/C+1nokMIHoz7ovt7fP6Cf961P0r74V+l//Kn1rVF9vL/SvvhXi0L9KArrNNGC91nqj1joIvATMjHNMnU5r/SVQt0PxTODp2PbTwCndGVNX0lpv1VovjG03E/1HlUffbrPWWrfEdq2xRQNHAK/GyvtUm5VS+cCJwGOxfUUfbu8P6JO/10qpJKJzQz8OoLUOaq0b6KPt7YP6fP/a3/pW6H/9q/St0rfGtvtUm+PVv0oCuk0eUNJhvzRW1h9kaa23xrYrgKx4BtNVlFKDgEnAHPp4m2O3zCwGqoCPgA1Ag9Y6HDukr/1+3wv8FjBi+2n07fZC9IPPh0qpBUqpy2NlffX3ejBQDTwZuxXsMaWUm77b3r6mv/av/eb3s7/0r9K3St9KH/udJk79qySgYjs6Oi9Pn5ubRymVAPwPuE5r3dSxri+2WWsd0VpPBPKJXn0YGd+Iuo5SagZQpbVeEO9YutnBWuvJRG9r/LlSanrHyj72e20BJgMPaa0nAV52uB2oj7VX9DF9+fezP/Wv0rf2C/2pb4U49a+SgG5TBhR02M+PlfUHlUqpHIDYuirO8XQqpZSVaOf4vNb6tVhxn25zm9htFJ8BBwDJSilLrKov/X4fBJyslNpM9Na+I4g+z9BX2wuA1rostq4CXif6Yaiv/l6XAqVa6zmx/VeJdph9tb19TX/tX/v872d/7V+lb+2T7QX6Xd8KcepfJQHdZh4wLDa6lw04B5gV55i6yyzgwtj2hcCbcYylU8WeV3gcWKW1vrtDVV9uc4ZSKjm27QSOJvpszmfAGbHD+kybtda/11rna60HEf13+6nW+if00fYCKKXcSqnEtm3gGGA5ffT3WmtdAZQopUbEio4EVtJH29sH9df+tU//fva3/lX6VulbY4f1qTbHq39V0auqAkApdQLR+93NwBNa61vjG1HnU0q9CBwGpAOVwF+AN4CXgQFAMXCW1nrHwRR6JaXUwcBXwDK2PcPwB6LPqfTVNo8n+sC4meiXTC9rrW9WShUS/RYzFVgEnK+1DsQv0s6nlDoMuEFrPaMvtzfWttdjuxbgBa31rUqpNPru7/VEogNh2ICNwMXEfr/pg+3ta/p6/9rf+lbof/2r9K3St9LHfqfbxKN/lQRUCCGEEEIIIUS3kFtwhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhRBCCCGEEEJ0C0lAhehESqk0pdTi2FKhlCqLbbcopR7sgvd7Sim1SSl15R6e927bhNp78Z4TY3P67c25zth/j6BSKn1vXkMIIUT/I/3rj54r/avoNSzxDkCIvkRrXQtMBFBK/RVo0Vr/s4vf9jda61f35ASt9V51cDETgSLg3T09UWvtAyYqpTbvw/sLIYToZ6R//dH3lf5V9BpyBVSIbqCUOkwp9XZs+69KqaeVUl8ppYqVUqcppe5QSi1TSr2vlLLGjpuilPpCKbVAKfWBUipnN97nKaXUQ0qp2UqpjbH3fUIptUop9VSH4zYrpdKVUoNidY8qpVYopT5USjljx3yulCqKbafHzrEBNwNnx75pPVsp5Y69x1yl1CKl1MzYOWNiZYuVUkuVUsM6/T+sEEKIfk36V+lfRe8jCagQ8TEEOAI4GXgO+ExrPQ7wASfGOsn7gTO01lOAJ4Bbd/O1U4ADgF8Bs4B7gDHAOKXUxJ0cPwx4QGs9BmgATt/VC2utg8Cfgf9qrSdqrf8L3AR8qrWeBhwO3KmUcgNXAvdprScS/Ua3dDfjF0IIIfaW9K9C9HByC64Q8fGe1jqklFoGmIH3Y+XLgEHACGAs8JFSitgxW3fztd/SWuvYa1dqrZcBKKVWxF578Q7Hb9Jat5UtiB2zJ44BTlZK3RDbdwADgO+Am5RS+cBrWut1e/i6QgghxJ6S/lWIHk4SUCHiIwCgtTaUUiGttY6VG0T/XSpghdb6gL197dhrBTqUt732ro4HiADO2HaYbXdJOH7g/RRwutZ6zQ7lq5RSc4ATgXeVUldorT/djfiFEEKIvSX9qxA9nNyCK0TPtAbIUEodAKCUsiqlxnRzDJuBKbHtMzqUNwOJHfY/AH6hYl8lK6UmxdaFwEat9b+AN4HxXR2wEEII8SOkfxUiziQBFaIHij0LcgbwD6XUEqK39RzYzWH8E7hKKbUI6Dik+2fA6LZBEoBbACuwNHYb0i2x484CliulFhO93emZbotcCCGE2AnpX4WIP7XtzgQhRG8TG3nv7T0dJj7eVHSY+CKtdU28YxFCCCF2JP2rEF1HroAK0bs1AreoPZwoO15UbKJsot/oGnEORwghhNgV6V+F6CJyBVQIIYQQQgghRLeQK6BCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJKBCCCGEEEIIIbqFJd4BdJb09HQ9aNCgeIchhBCil1mwYEGN1joj3nH0VNK/CiGE2Bu76l/7TAI6aNAg5s+fH+8whBBC9DJKqeJ4x9CTSf8qhBBib+yqf5VbcIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtJQIUQQgghhBBCdAtLvAPoaSo2NpI5yIPJpOIdihBCCCGE6KO01kQMTURrtIaIoTG0xjDA0NFyQ2vQYOhomQYMQwOx/Wg1OlanNURLaK/bEx0//Sq1fWnbvgKUUrE1KFR7ncn0/fK2bZOKnmdqqzOBKfY6JrXtWJNSsSV6vOh7JAHtoHpLM/+7cwFTjhvI/jOHxDscIYQQQgixDwxD4w9HaA1G8AUj+ELb1oGwgT8UwR+KEAgZ+MMRgmGDQGwJxpZAOEIoYhCKaIKRaFl03yAU1oQMg3BEE4oYhI1oUhmKGEQM3b4f7rBvxBJPY0+zw35qW1K6LYFtS1I71plNapf10bptx7YnuabtE95o2bbX61jX9vrmHc7bdlzsHNMO76EUZtO21zZ3XKto0m6O7auO7xsrM5tof9+21/+h8o6vuS2+bf8dvhfvDuVmk8LjsGAxd92NspKAdpBekMCoA3NY8F4xGQMSGTIpM94hCSGEEEL0O4ahafaHafSF2pcmf4hmf4hmf5hmf5iWQJhmf4iWQBhvIII3EC1rDUa3vcEw/pCx1zHYLCbsZhM2S3SxmjuszQqL2YTVrEiwWrCYtu1bTCYsZoXFpDCbTLF1dOm43fGDf8ckwdQhieiYULVdKST6/+2uGna8Ctl2dTK6Ha3bHbrD9VKt28ra9rev08Suvu5wBZYOV2q3P27b1VtN9Iqujl3Bbb+yq7cd23bF12jfbzt2274Ru2oMHa4e621Xltte0zA6vl7Hq82xY2PHb/c6BtEvDdpi6fDFgda0X502Ylew269a7/BeHd870ou+fHjv2kMYlePpsteXBLQDpRSHnjOCunIvHz+1iuQsF2m5CfEOSwghhBCiV/OHItR6g9Q0B6hpiS613iD13iB13hD1rcHo4g1S3xpNNvWPfEh328wkOqwkOCy47RbcNjMFbhdumxlXbN9ps+CymXHZzDis0bXTGt12WE3YLTtuxxJOs0lu/xRdpi35jnRITNsS6o63ZhtGLNndLnnVRIydJbXbXqMtMe6YUEc6JsyxpHrb+3RYG5osj6NL2y8J6A7MVhPHXT6OV26bx3sPLeOMG4twuK3xDksIIYQQoseJGJqalgBlDT62NvipbPJT2eynqilAZZOfiiY/1U0BmgPhnZ7vsJpIddlIcdtIddsoSHGR4rKS5LTicW6/TnJaSXRYSLRHk06zjNcheinVdnswCqs53tF0P0lAdyIhxc5xl4/ljXsW8dETKznx5+NlUCIhhBBC9DuGoalo8rOlrpUtda2U1LVSWu+jrMFHeYOPikY/4R3uJ7SZTWR67GR5HIzK9jB9mJ2MRDtpbhvpCXbSEqLr9AQ7Tls//PQtRD8nCegu5AxN5pCzh/PFC2uY+9ZGGZRICCGEEH2S1prq5gAbqr1srGlhY7WXjdUtFNdGk81gZNtzlGaTItvjIC/ZSdHAFHKTneQkO8lLdpDtcZKd5CDFZZXbV4UQuyQJ6A8Yc0gu1cVNMiiREEIIIXq9tkRzTWUzayqaWVvZzJrKFjZUtdDS4RZZh9XE4PQERmQncvSYLAakutqX3GQn1i4cHVMI0fdJAvoDlFJMP2cEtW2DEmW6SMuTQYmEEEII0bNFDM2mmhaWlzWxvKyRFeVNrK5oor411H5MeoKN4VmJnD45j8KMBAoz3BRmJJDjccijR0KILiMJ6I8wW00cf8U4Xr5tHu88uJQzfleEy2OLd1hCCCGEEED0ymZpvY+FW+pZtKWBZWWNrCxvwheKANHpREbleDh2TDYjshMZkZ3I8KxE0hPscY5cCNEfSQK6G9zJdk68ejyv/3Mh7/1nKTN/NQlLfxyySgghhBBx5w9FWFrayILi+vaks6YlAIDTamZsnoezpxYwNi+JsXkehmQkyG2zQogeo0sTUKXUccB9gBl4TGt9+w7104F7gfHAOVrrV2PlE4GHAA8QAW7VWv+3K2P9MZkDPRx50Wg+eHQ5nz6zmqMvGS0P2AshhBCiy/lDERYW1zN7Ux1zNtayqKSBYDg6MNDgdDfTh6czaUAKkwckMyIrEYskm0KIHqzLElCllBl4ADgaKAXmKaVmaa1XdjhsC3ARcMMOp7cCF2it1ymlcoEFSqkPtNYNXRXv7hg6JZPG6kJmv7GR5CwX02YMjmc4QgghhOiDDEOzvLyRL9dW8+W6GhZvaSAYMTApGJ3r4YL9B7JfYRpTBqaQ6pbHgoQQvUtXXgGdBqzXWm8EUEq9BMwE2hNQrfXmWJ3R8USt9doO2+VKqSogA2jownh3y+RjB9JQ0cq8tzeRnOVk+NTseIckhBBCiF6uqtnPl2tr+HJtNV+vr6HOGwRgTK6Hiw4axP6FqRQNSsXjsMY5UiGE2DddmYDmASUd9kuB/fb0RZRS0wAbsGEndZcDlwMMGDBg76Lc83g47Ccjaazx8enTq/GkOckuTOqW9xZCCCFE36C1ZkN1Cx+sqOSjlZUsLmkAoiPTHjo8g+nD0zl4aAYZiTJQkBCib+nRgxAppXKAZ4ELtdbGjvVa60eARwCKiop0d8Vltpo4/spxvPqPBbz7UHRkXE+6s7veXgghhBC9kGFoFpXU8+GKSj5cWcmmGi8A4/OT+PXRwzl8ZCajczwyBYoQok/rygS0DCjosJ8fK9stSikP8A5wk9Z6difHts+cCTZm/Hw8/7tjAW/dv4TTfjMZZ4I8hyGEEKJrKaWSgceAsYAGLtFaf7fDMYcRHeTPCtRorQ/d3XNF59Jas7ysibeWlvP2knLKG/1YzYr9C9O45ODBHD0qi+wkR7zDFEKIbtOVCeg8YJhSajDRxPMc4LzdOVEpZQNeB55pGxm3J0rJdnPCVeOZdd9i3nlgKTOvm4TVLtOzCCGE6FL3Ae9rrc+I9ZeujpWxJPNB4Dit9RalVObunis6z7rKZmYtKeetJeVsrm3FalZMH5bBb44bwZGjsuRZTiFEv9VlCajWOqyUugb4gOg0LE9orVcopW4G5mutZymlphJNNFOAk5RSf9NajwHOAqYDaUqpi2IveZHWenFXxbu3coclc8zPxvD+w8v44NHlHH/VOMwy/LkQQoguoJRKIto/XgSgtQ4CwR0OOw94TWu9JXZM1R6cK/ZBoy/EW0vKeWV+CUtKGzEpOHBIOlcdNoRjx2ST7JI7pYQQokufAdVavwu8u0PZnztszyN6a+6O5z0HPNeVsXWmwokZHHreCD5/fg2fP7uaIy4cJXOECiGE6AqDgWrgSaXUBGABcK3W2tvhmOGAVSn1OZAI3Ke1fmY3zxV7yDA0szfW8vL8Et5bXkEgbDAyO5E/zRjNSRNyyEyU22uFEKKjHj0IUW8y5pA8vI1B5r29CVeSnQNOHRLvkIQQQvQ9FmAy8Aut9Ryl1H3AjcCfdjhmCnAk4AS+U0rN3s1zgfiMMt/b1HuD/Hd+Cc/PKaakzkeiw8JZRQWcVVTA2DyPfBEthBC7IAloJ5p64iC8jQEWflCMK8nGhCMKfvwkIYQQYveVAqVa6zmx/VeJJpE7HlMbu7LpVUp9CUwAvtqNc4H4jTLfG6wob+Tpbzfz5uJyAmGD/QancsMxIzh2TDYOq4wDIYQQP0YS0E6klOLQc0fgawry9SvrcCZaGT41O95hCSGE6CO01hVKqRKl1Ait9RqiVzlX7nDYm8C/lVIWovNo7wfcs5vnip0IRwzeW17B099uZn5xPU6rmdOn5HPhAYMYkZ0Y7/CEEKJXkQS0k5lMimMuHcNb9y/h4ydXYbGaKZyYEe+whBBC9B2/AJ6PjWK7EbhYKXUlgNb6P1rrVUqp94GlgAE8prVevqtzuz/83sMXjPDKghIe+XIjpfU+Bqa5+OOJozizqIAkp4xiK4QQe0Np3TfurCkqKtLz58+Pdxjtgv4ws+5bTHVJMydcNZ6BY9LiHZIQQoidUEot0FoXxTuOnqqn9a/dobE1xDPfbeapbzdT6w0yeUAyVx02lCNHZmIyybOdQgixO3bVv8oV0C5ic1g46RcTeOOeRbz3n2XMuGYC+SNS4h2WEEIIIXahqtnPo19u5IU5W/AGIxw+IoOrDhvK1EEpMqiQEEJ0EklAu5DdZeXkayfyxt2LeOfBpZz8iwnkDE2Od1hCCCGE6KDOG+ThLzfw9LebCUU0J43P4YpDhzAqxxPv0IQQos+RBLSLORNsnHztRF6/ayFv/3sJM381icyB0qEJIYQQ8dboC/H4Vxt5/OtNtIYinDIxj2uPHMagdHe8QxNCiD5LEtBu4E6yM/O6Sbx+10Jm3beYU66fTHp+QrzDEkIIIfql1mCYJ7/ZzMNfbKDJH+bEcTlcd9QwhmXJiLZCCNHVTPEOoL9ITHVwyq8mYbWbeeOehVRvaY53SEIIIUS/YhiaV+aXcNidn3PnB2uYNjiVd355MA/8ZLIkn0II0U0kAe1GnnQnp1w/GZvdwhv3LKJiU2O8QxJCCCH6he821HLSv7/mN68uJTfZyf+uOoDHLpzKmNykeIcmhBD9iiSg3Swpw8kpv56EI8HKrHsXU76uId4hCSGEEH3Wphovlz8zn3MfnU1Da4j7zpnI61cfyJSBqfEOTQgh+iVJQOPAk+bk1Osnk5Bi5637F1O6ui7eIQkhhBB9SmswzG3vreKYe77gm/U1/ObYEXzy60OZOTFPplQRQog4kgQ0ThJS7Jxy/WQ86U7efmApxStq4x2SEEII0Sd8vLKSo+/+koe/2MjMiXl89pvD+PnhQ3FYzfEOTQgh+j1JQOPI5bFxyvWTSMl28e5DS9m4uDreIQkhhBC9VlmDj8ufmc/PnpmP227mlSsP4J9nTiAz0RHv0IQQQsRIAhpnzgQbM6+bREZBIu8/vIyVX5fHOyQhhBCiVwlFDB75cgNH3fUFX66r5sbjR/LOLw9h6iB5zlMIIXoamQe0B3C4rcy8bhLvP7Kcz55bjbcxQNEJg+QZFSGEEOJHrKlo5tevLGZ5WRNHjcrkLyeNoSDVFe+whBBC7IIkoD2E1W7mhKvH8fmzq5n71iZaG4Mccs5wTCZJQoUQQogdhSMGD3+5kXs/XovHYeWhn0zm+HE58Q5LCCHEj5AEtAcxm00cceEoXEl2Fn5QTGtzkKMvGY1FBk0QQggh2q2rbObXryxhaWkjJ47P4eaTx5CWYI93WEIIIXaDJKA9jFKKA04dgivJxtevrOOtfy3hhKvGYXdZ4x2aEEIIEVfhiMGjX23ino/WkuCw8MB5kzlxvFz1FEKI3kQS0B5qwhEFuDw2Pn5yJf+7YwEn/nw8SRnyTIsQQoj+qbS+leteWsz84nqOG5PN/506lnS56imEEL2OjILbgw0ryuLkX06ktTnIq7cvoGxtfbxDEkIIIbrde8u2csJ9X7G6opl7zp7AQ+dPluRTCCF6KUlAe7i8ESmc8bsinIlWZt23mJXfyDQtQggh+gdfMMIfXl/GVc8vZHC6m3d+eTCnTsqXUeKFEKIXkwS0F0jOdHH6b6eQNyKFz55dzdevrsMwdLzDEkIIIbrMmopmZj7wNS/M2cIVhxbyypUHMjDNHe+whBBC7KMuTUCVUscppdYopdYrpW7cSf10pdRCpVRYKXXGDnXvK6UalFJvd2WMvYXdZWXGz8cz7vB8lnxcwrsPLiXoC8c7LCGEEKJTaa15ce4WTv7319R5QzxzyTR+f/wobBb5zlwIIfqCLvtrrpQyAw8AxwOjgXOVUqN3OGwLcBHwwk5e4k7gp10VX29kMpuYfvZwDj1vBFtW1vHqP+ZTt9Ub77CEEEKITuEPRfjd/5by+9eWMW1wKu9dewjTh2fEOywhhBCdqCtHwZ0GrNdabwRQSr0EzARWth2gtd4cqzN2PFlr/YlS6rAujK/XGjs9j+QsFx8+tpxXbp/PEeePZNjUrHiHJYQQ4kcopZbuxmHVWusjuzyYHqaswcdVzy1gaWkjvzhiKNcdNRyzSZ71FEKIvqYrE9A8oKTDfimwX2e+gVLqcuBygAEDBnTmS/d4+SNSOOsP0/jg0eV8+PgKtm5s5KDTh2KWW5SEEKInMwMn/EC9AmZ1Uyw9xjfra/jFi4sIhQ0e+ekUjhmTHe+QhNgprTVhI0wgEiAQCRAyQgQjwZ2uw0aYsBHetq3D7WVhI0xER7ZbG9ogoiNEjEj7dsf1jotGb9vWGoNt2xq9bY0m+v/o+CFtdW3b7W1j98YXUbH/QXT++vZtFNH/f7/+e+u27R33UZiUCZOKfp7d2XbbMe1rte0ckzJhYvsyhcKszN8r2+6cnZS1ndNx3fE9TKbYeofX+cHzYvU7O2fHczvu9zW9eh5QrfUjwCMARUVF/W5UnoQUO6f8ehLfvbaBJZ+UULW5ieMuH0tCiiPeoQkhhNi5K7TWxT90gFLq6u4KJt601jz85UbueH81QzISePinUyjMSIh3WKKXM7SBN+SlJdgSXYdaaA214g178Ya8tIZaaQ234gv72pfWUHQ/EAngD/vxR/wEwoHoOpZsBiNBApFAl8a+Y0JiUZadJjHtCU6HpKljAgfsNLlr873EsUP5D2lLamH7RLbj/k4T3Vi5oY3t6toS6bZjDGIJdMdt9HYJd8fzOu63JeB9TcefccfE1GTaPpnd422T+fuvGVvfMPUG8hLyuqxNXZmAlgEFHfbzY2WiE5nNJg4+cxjZhUl8+swq/nvrPI65ZAwFo1PjHZoQQogdaK2/7oxj+gJ/KMINryzh7aVbOXFcDnecMR63vVd/Ly46WSASoN5f3740BBpoDDbSGIguTcEmmgJN0XWwiZZQS3vSuTtX8xQKp8W5bbE6cZqd2C120qxpOCwO7GY7drMdh8WBzWTDZrZhN9uxmaPbbWVWkxWr2YrNZMNqtmI1WbGYLFhMlvZtq9pWZjaZo9squm1W5j57tau7aa2J6Eh7khvRkfYkNaIjALu8otx2bMd1+zEYGMa2RLfj8oPndThmV+fsav+Hynd83V1dOd/l6xgRQjq002NDkVCX/oy68i/9PGCYUmow0cTzHOC8Lny/fm3olEzS8ty89/ByZt2/mElHDWC/kwsxW+WWXCGE6GmUUgcBfwUGEu2LFaC11oXxjKu7VDX7ueyZBSwtbeDG40dyxfRC+eDdT4SMEDWtNVS2VlLtq6bWV0uNr4Zaf2ztq6XOX0edvw5f2LfL13FZXCTZk0iyJ+GxeRiQOIBEWyKJtkQSbAkkWBNItCXisrpIsCbgtrpxWVzRtdWFy+LCbrbL710fpJTCouTLrJ6sy346WuuwUuoa4AOiz7w8obVeoZS6GZivtZ6llJoKvA6kACcppf6mtR4DoJT6ChgJJCilSoFLtdYfdFW8fUFKtpszf1/EN6+uZ9FHWyhZXcfRl4whNUfmTRNCiB7mceBXwAIgEudYutXqiiYufWo+dd4g/zl/CsfK8559hqENan21lHvL2dqyla3erZS3lFPhraCytZKq1irq/HXfuzqpUKQ6UklzppHuTGeQZxApjhRSHCkk25Oj2/bodpI9CY/dg9VkjVMrhRD7SnW8d7s3Kyoq0vPnz493GD3GpiXVfPrsasKBCAedOYwxh+TKt3xCCLETSqkFWuuibn7POVrrTh2Yr6t0Zv/62ZoqfvHCItx2M49fOJWxeUmd8rqi+wQjQUqbS9nSvIWS5pL2pbS5lLKWMkLG9rfuJdoSyXHnkOnKJMuVRaYrc7sl3ZlOsj0Zi0muWAnR1+yqf5V/7X3U4AkZnDPIwydPr+KLF9ZQvLyWI346EmeiLd6hCSFEv6WUmhzb/EwpdSfwGtA+qonWemFcAusGT32ziZvfXsmoHA+PXziV7CQZMK8naww0srFxI5saN7GpcVP7dllL2XYDvbitbgoSCxiWMozDCw4nJyGHXHdu+zrBJoNKCSG2JwloH+ZOsnPSNRNY+lkp376+nhdvnsP0c0YwdEpmvEMTQoj+6q4d9jt+M6yBI7oxlm6hteZvb63kqW83c9SoLO47Z6IMNtSDBCNBNjZuZF39OtbVr2Ntw1rW1a2jylfVfozdbGegZyCj00ZzYuGJDPQMpCCxgILEAlLsKXKHlRBij0gP0Mcpk2LCkQXkj0zhk6dX8cGjy1k3P4Pp5wzHnWSPd3hCCNGvaK0P31WdUiqrO2PpLkopkl1WLjtkMDcePwqzSZKVeAlGgqyrX8eK2hWsrF3JytqVrGtYR9gIA2A1WRmSPIT9cvZjeMpwCpMLKUwqJMedg9lkjnP0Qoi+QhLQfiItL4EzfjeFxR+XMPetTby4Zg4HnzWMEftlyzeXQggRJ0qpZOB0oqPEjwJy4xpQF7n2yGHS13QzrTVbvVtZUr2ExVWLWVK9hDX1a9qTTY/Nw+i00Vww+gJGpo5keMpwBngGyOA+QoguJwloP2Iym5h87EAGT0jns2dX88lTq1g3r5LDfjKSxFR5FkcIIbqDUsoJzCSadE4CEoFTgC938/xk4DFgLNHbdi/RWn+3wzGHAfcCVqBGa31ohzozMB8o01rP2Je27C5JPrueoQ3W1q9lXsU8FlUtYknVkvbbaJ0WJ2PTx3LB6AsYnTaa0WmjyU/Il5+LECIuJAHth1Ky3Zz668ks+6KU797YyAt/m8PUEwYx4cgCzBaZN1QIIbqKUuoF4BDgQ+B+4FNgvdb68z14mfuA97XWZyilbIBrh/dIBh4EjtNab1FK7fjg/7XAKsCzV40QPYLWmvUN65lbMZd5FfOYXzmfxkAjALnuXIqyi5iQMYGJmRMZnjJcRpkVQvQY8teon1ImxfjDCxg0Lp2vXl7Hd69vYNW3W5l+9nAKRqfGOzwhhOirRgP1RBPAVVrriFJqt+dDU0olAdOBiwC01kEguMNh5wGvaa23xI6p6nB+PnAicCtw/d43Q8RDvb+e78q/4+uyr/mm/Bvq/HUA5CXkcXjB4UzLnsbU7Klku2VuVSFEz7XLBFQptTtZiKG1bui8cER386Q7OfHq8WxeVsNXL69j1r8WM2RSBgedOUxuyxVCiE6mtZ6olBoJnAt8rJSqARKVUlla68rdeInBQDXwpFJqArAAuFZr7e1wzHDAqpT6nOjtvfdprZ+J1d0L/DZWLno4Qxssr1nO12Vf83XZ1yyvWY5Gk2xP5sDcA9k/Z3+m5UwjLyEv3qEKIcRu+6EroOWx5YceEDADAzo1ojhb3NTK+EQnpn72XMSgcenkj0xh8UdbWPBeMcUraply3CAmHlWAxSYj3wkhRGfRWq8G/gL8RSk1hWgyOk8pVaq1PvBHTrcAk4FfaK3nKKX+n737DqyjuBYw/s3ert4lW8Vy7zY2xvTeCSXhQWihEwKEGkhCEtJIQkvDCQm919BCD71XYxtcwL1Lli1ZktWlW/a8P/ZKvpKbbEu6Kuf33mZ3Z2f3nmsZr87OzswM4Hrg1x3q7AkcDgSAz4wxn+MkpuUiMjvaR3SbjDEXAxcDFBX1q9t8rxeKhPhyw5e8u+Zd3lvzHuVN5RgME7Mncukel3LA4AMYlzlOR6VVSvVZ20tAF4rIlO2dbIz5qovjiat5dY0cN3sJVw3J5efDBsU7nB7n9riYdtxQRu2dxyfPLOOLl1bwzUelTD9hKKP3GYSlQ+crpVSXEpHZwGxjzE9x+obuSAlQIiJfRPefxUlAO9apjLaKNhhjPgQm4ySuJxpjjgP8QIox5jER+cFW4roHuAdg2rRpnX5FWO2alkgLH5V8xNtr3ubDtR9SF6oj4A6w/+D9OazoMA7MP5A0f1q8w1RKqS6xvQR0306c35k6fcbEpACnDcrg76s3MDLRz8m56fEOKS5SMgMce8lESpdU8+lzy3j3kUV8/fZa9jt5BEXjM3TUPKWU2kXGmIujyV07IiJER8HdVp1ovfXGmLXGmNEishinlfPbDtVeBO4wxrgBL7A38HcReQb4RfQzDgGu21ryqXpG2A4zc/1MXlvxGu+seYf6UD2pvlQOKzqMw4oOY7/B++F3a1cYpVT/s80EVESaW7ejQ7bnxtYXkTWxdfoDYwy3jipgZWML1yxaQ7Hfy9TUxHiHFTf5o9I55fppLJ9TwWcvLOeVO+aSPzqN/U4eQc4QHTxRKaV2wfXRfp/bYnBGqd1qAhp1BfB4dATcFcD5xphLAETkLhFZaIx5HZgH2MB9IrKga8JXu0NEWLBxAa+ufJXXV75OZXMlSZ4kDi86nOOGHsf0QdN1tFqlVL9nnIeu26lgzBU4fVU24NzIwHlYO6mbY9sp06ZNk1mzZnXJtSqDYY6bvYRG2+Z/e46iwO/tkuv2ZZGwzTcflfLlq6torg9RPCmL6ccPJbtIx7FQSvVtxpjZIjKthz7rwU5UqxGRq7s7ls7qyvvrQFXVXMXLy1/mv0v/y/Ka5XgtLwcXHsxxQ4/jwIID8bl88Q5RKaW63Lbur51JQJcBe4tIZXcF1xW6+ga5uKGZ42cvoSjg5aUpI0l0a2d/gJamMPPeXcvcd9bS0himeGImex0/VFtElVJ9Vk8moH2RJqC7JmJH+Lzsc55b+hzvrX2PsB1mUvYkTh5xMkcVH0WyVx/gKqX6t23dXzvznsdaoKbrQ+rdRif6uXt8MT+Yt4IfL1zNAxOGDriRcbfGF3Cz13eGMumwQua/t5av317LMzfPYsjETPY6bii5QzURVUopNXBVN1fz3NLneHrx05Q1lJHmS+OMMWdw8oiTGZE+It7hKaVU3G1vHtDWCapXAO8bY14FWlqPi8jfujm2uDssM4UbR+Zzw9JSbl5Rxq+GD453SL2GL+Bm2nFDmXRoIfPeL+Hrt9fw7K2zyB+Vxh5HFDFkQiZGR81VSik1QCyuWswTi57g1RWv0hJpYe+8vbl22rUcWngoXpd25VFKqVbbawFtfTdkTXTxRheAATMk+4X5WSxpaOafa8oZluDjjEGZ8Q6pV/EG3Ew7tphJhxbwzUfrmPfuWl799zzS8xKYfHgho/fJw+3R15eVUiqWMcYlIpF4x6F2T8SO8N7a93h84ePM2jALv8vPicNP5IwxZzAyfWS8w1NKqV5pe6Pg/n5r5cYYP3BCt0XUyxhj+NPIAlY3Bblu8VpyvB4Oz9TXTDvy+t1MObKISYcVsHx2OV+/vZb3H1/MFy+tYMLBBYw/cDCJqTrIglJKRS01xjwHPCgiHadRUb1cKBLi5RUv8+CCB1lVu4rBiYO5ds9r+d7I75HqS413eEop1at1aqzv6DQsRwNnAEcCHwPPdGNcvYrHMtw/oZjvfrWMH36ziuf3GMEeKQnxDqtXcrksRk3PY+Reuaxbsomv3l7Dl6+sZPZrqxg6OYvxB+VTMDpdX89VSg10k4HTgfuMMRbwAPCUiNTGNyy1PY2hRp5d8iwPf/sw5Y3ljM0Yy18O/gtHFB2By9K3fZRSqjO2OwquMeZg4EzgOGAmsD8wTEQaeya8zuuJUfo2tIT4zpwlNEeEV/ccyZCAtuh1xqYNjXzz8ToWfVpGc0OI1JwA4w/MZ+y+g/AneeIdnlJqgIv3KLjRe+0TQBrwLPAHEVkWr3g60lFwoS5Yx2MLH+OJhU+wqWUT03Kn8cOJP2TfwftidIBCpZTaqp2ehsUYU4LT9/NO4AURqTPGrBSRod0b6q7pqRvk0oZmTpyzlHSPm5emjiTLqxNGd1Y4FGH5nAq++aiUsmU1WG7D0ElZjN47j6IJmbhcVrxDVEoNQPFIQKNvFn0HOB8oBh4FHgcOBG4SkVE9Gc/2DOQEtDHUyBOLnuDBBQ9SG6zlkIJDuHDiheyRs0e8Q1NKqV5vV6ZheRb4LnAaEDHGvMgAGnxoW0Ym+nlk0jBO/XoZ58xfwbN7jCBBE6dOcXtcjN47j9F751FZWs+3n6xj6ZcbWD6nAn+Sh5F75TJ67zxyhiTrE2WlVH+3FHgP+LOIfBpT/qwx5qA4xaSiWiItPLP4Ge6dfy9VzVUcVHAQl+9xOWMzx8Y7NKWU6vN29AquAQ7B6ft5HJAKXAi8JiL1PRFgZ/X0E9r/VWziwgWrOCIzhQcmDMWtfRp3SSRis/bbKhZ/vp6VczcSCduk5yUwYs8chk/NIWNwoiajSqluFacW0ANE5OMOZfuLyCc9GUdnDKQW0LAd5sVlL3LXvLtY37Ce6XnTuWLKFdriqZRSu2CnX8HdygU8bB6I6GgRyeraEHdPPG6QD5Vu5PolJZyel8HfxhRiaaK0W1oaQyybXc6SmRtYt2wTCKTlJjB8ajYj9swhMz9Jk1GlVJeLUwI6R0Sm7qisNxgoCegnpZ/wl1l/YdmmZUzKmsQVU69gn0H7xDsspZTqs3blFdx2RCQEvAK8YowJdPJDjwFmAC7gPhG5pcPxg4DbgUnA6SLybMyxc4Ebort/FJGHOxtrTzkvP4uKYIi/rtpAosvijyPzNUHaDb4ED+MPzGf8gfk01LSw8usKls2pYM7rq5n9v9WkZgconpxF8YRMBo1Iw+XWV5+VUn2LMWZfYD8g2xjzk5hDKTj3StXDVtSs4C9f/oWPSj+iMLmQ2w+5ncOKDtP7uVJKdZNtJqDGmHtE5OKtHRORph3ViQ6w8C+caVtKgC+NMS91mO9sDXAecF2HczOA3wLTcPqdzo6eW93ZL9ZTrivOoz5ic/faCpLcLn4xbFC8Q+oXElN9TDi4gAkHF9BUF2TF1xWs+KqC+e+XMPfttXj9LgrHZTBkQhZDJmSSkOKNd8hKKdUZXiAJ5/6bHFNeC5wSl4gGqE3Nm7hz7p38Z/F/CLgDXLvntZw59ky8Lr2fKKVUd9peC+h3jTHN2zlugEO3c3w6sExEVgAYY54CTgLaElARWRU9Znc492jgLRGpih5/CzgGeHI7nxcXxhh+N3wwTRGbGas3kGBZXFWcG++w+pVAsretZTTYHKZkUTWr529k9YJKls+pAANZBUkUjMmgYEw6g0ek4fFpQ4JSqvcRkQ+AD4wxD4nI6njHMxDZYvPskmeZMWcG9aF6Th11KpftcRkZ/ox4h6aUUgPC9hLQn3bi/I+2cywfWBuzXwLs3ZmgtnFufifP7XHGGG4ZVUBDxObmlWUkui0uKsiOd1j9ktfvZtge2QzbIxsRYePaelYv2EjJomrmvbeWr99ag+Uy5A1LbUtGc4am4PFqQqqUij9jzO0icjVwhzFmi0EYROTEno9q4FhctZgbP7uReRvnMT1vOtdPv56R6SPjHZZSSg0o20xAe2Ofy46MMRcDFwMUFRXFNRbLGGaMKaIxYnPD0lISXBZnDsqMa0z9nTGG7KJksouSmXbcUELBCGXLNlGyqJqSRdXMfGUlCFiWIasomUEjUhk0PJVBw9P0lV2lVLw8Gl3/Ja5RDDCNoUb+/fW/eWzhY6T6UrnpgJs4ftjx2s9TKaXioNODEO2CUqAwZr8gWtbZcw/pcO77HSuJyD3APeCM0rcrQXYlt2W4a/wQzp23kmsXrcVvWZycmx7vsAYMj9dF0bhMisY5iX9zQ4j1K2ooW15D2bJNLHi/lLlvOw3ryZl+coakkFucQk6xk8R6/d35n4NSSoGIzI5uzgKaRMSGtnETfHELrB97b8173DTzJtY3rOeUUadw9dSrSfWlxjsspZQasLrzN+4vgZHGmKE4CeXpwJmdPPcN4CZjTGv2dhTwi64Psev5LIsHJg7lrHnLufzb1dginJKn/UriwZ/ooXhiFsUTnRmDIiGbirV1lC2rYcOqWspX17J8TrlT2UB6XiLZRUlk5SeTWZBIVkGytpQqpbrLO8ARQOuc2gHgTZwRclUXqG6u5o+f/5E3V7/JiLQRPHrsozqfp1JK9QI7TECNMRNFZP7OXlhEwsaYy3GSSRfwgIh8Y4y5EZglIi8ZY/YC/gukAycYY34vIuNFpMoY8wecJBbgxtYBifqCBJfFY5OGce68lVyxcA0hEc7Q13HjzuWxyBuWSt6wzU++m+qC0WS0jvLVtZQu3sSSLza0HQ+keMkqSCJjcCIZgxJJz0skPS8Bf6InHl9BKdV/+EWkNflEROqNMQnxDKg/eWf1O9z4+Y3UBmu5csqVnDfhPDyW/rutlFK9QWdaQP9tjPEBDwGPi0hNZy8uIq8Br3Uo+03M9pc4r9du7dwHgAc6+1m9TaLLxSOThnH+/JVcs2gtYRHOHpwV77BUB4Fkb7tWUoCm+iCVJfVsLKl31qX1LPhgE5HQ5sGaE1K8pA9KIC03kdTsAGk5AVKzE0jJ9uP26IBHSqkdajDGTBWROQDGmD2BpjjH1OfVtNRw88ybeXXFq4zNGMu9R93LqPRR8Q5LKaVUjB0moCJyoDFmJHABznycM4EHReStbo+uj0twWTw8cSgXLFjJTxeXELKFC3R03F4vkOSNTumy+dVp2xbqKpuoLmukan0D1WUNVK9vZNmsDbQ0hjefbCAp3UdqVoDkTD/JGX6SMwOkZPpJzvSTmO7D5bLi8K2UUr3M1cAzxph1ONOa5QGnxTWiPu7Dkg/53ae/o7q5mssmX8ZFky7SVk/VLUQEwmHslhakpQUJBpGWFuxgEGkJIsEWJBTavARb10EkHEbCzj7hsLMfCiORMEQiSDjibIcjSCS6HbHBjh6zIxCxnbUtYHfYFrttGxEn1ug2IggCQts+Iq1fylnRut/JPwwTu2nAxCwQ3d7Ksdhyy2pfZqzNZZZx9k1rvfbHjWUguh+73XZe67bl2qKOcVnR7c3Ht1rXZWEsCyxXzHGDcbnARK9jtcYQU8/lcmJ0ucByOdezXO3rx17D5YqeH3Osrb6rfZ2Yuq37WFafGVitU31ARWSpMeYGnEET/gFMMc43/KWIPN+dAfZ1TtZLqAAAdo5JREFUfpfFgxOH8sMFq/jl0lIiAj8s1CS0r7EsQ2p2AqnZCRRPat+S3dwQoqa8iZqKRjaVN1FT3khdZTNrF1bTUNPS/h9x47SeJqX5SEzzkZTuJyndR2Kql4QUHwmpXhJSvPgTPc4/VEqpfklEvjTGjAFGR4sWi0gonjH1Vc3hZm778jaeWfIMI9JGcMfhdzAuc1y8w1K9hN3Sgl1fj11XR6S+Abu+ztlvaMBubIxZNzrrpibspiakqQm7uXnzdksL0tzctsbuOIX9bnK5nITD7ca0bm+xtpzkp23tchIOK5oktSZqLqstsTNtSZuBLZJAnASpNYs021hvi0j77bYENyaJbZfoRhPijuW2HS2XtqS5LZHueNy2QaL7W0u0W+tGIpvLI5EtyzvW7eqfZ7xYW0lSt5KsbrGOJrmtf7fy//JnvMXF3RZmZ/qATgLOB74DvAWcICJzjDGDgc8ATUB3wGdZ3DehmEu/Xc2vl5XSbNtcXpTTZ55SqO3zJ3rwD/WQOzRli2ORkE1ddTN1ldGlupmG6hYaNrVQU9FE6ZJNBJvCW5xnLENCsodAipdAspdAkodAkhd/kodAsrPtS3TjS/DgT3TjS/Tg9vSdJ19KKcBJPscBfmCqMQYReSTOMfUpy6qX8dMPf8qyTcs4f/z5XD7lcrwuHTyuP7Kbm4lUVhKu3kRkU3Sprt68XVNDpLYGu6aWSK2z2LW1TktjJ1gJCZjEBKxAAlYggOX3YwIBPKmpGL8Pyx9w1j5/dN+P8fqcba8X4/NhPF6M11ksnxfj8YDHg+m4uN2b1263k3Ra+nZUvG0tWZXW1uNIpH1ZawLbuo4mts5xcVqsI06yvLUyaU16bdsp28oxiXRs7Y60r9tuHVN3O2vn+vbm77HVdQTc3fv2SGdaQP8J3IfT2tnWP0VE1kVbRVUneC2Lu8YVc8XC1fxpRRkbQ2F+O3wwliYM/ZrLY5GWk0BazrbHFgk2h2msCdJY27q00FgTpKE2SFNtkKb6EDXljTTVhQi1RLb9WW4LX4IbX4Ibb8CNL+CsvQlufH43Hr8Lb3Tt8cVse519j8+F2+fC47Ww9DVh1YuJLdi28xTd5embf1eNMb/FmW5sHM5YCccCHwOagHaCiPDMkme47cvbSPQkcvcRd7Nfvg4g3NdIJEKkqopQeTnh8nLC5RXOuqKCcFUlkY2VhKuqiGzciN3YuM3rWKmpuFJSnCU1BfegQbiSk3GlpmAlJWMlJ+FKSsJKTsZKTMJKSsSVmIiVmOgknoGAJoDKeYjvdlIj/e28e3UmAf2viDwaW2CMuUpEZnQsV9vnsQz/HjeEDI+bu9dWUBkM8/cxRXj0VcsBzet34/W7Scvd8QCY4VCE5voQTXUhWhpDNDeEo+sQLQ1hmhtDBJvCBJvCNDeGqa1spiW6HzuI0o5YboPH68LlsXB7LNxeV9va5bFwuZ1yl9ty9j0WLpfB5baw3BYud3Tb5WxbLoPlsqLrmG3LWUx027TuW86NYGv7xrTf3vxqkdNybGhfRvQto819UGK+aGf+03PeGmrrNyMx5RLzmpFA9HWfzfUl+kfe+sqRRI9v3u9wzG6tE7vd/hjRbVsEYuvEJGW2LVtex26/7bzF5NSx7fbH2+3b0vZZdtt1oteIfm7rZ7eeY8fWabeOOSaCHWndBjtib/78SPvjdmws9uZXvgYNT+Xkn+7Z6b/XvcwpwGTgKxE53xiTCzwW55j6hNpgLb/79He8tfot9hu8H3864E9kBXSQv97IbmggWFJKqLSEUFkZ4bIyQuvKCK1f7+yXlzstTh24MjJwZ2biyswkMHEirswM3JlZuDLScWdk4EpLw5We7qxTUpxWRKVUn9GZ/2LPAW7vUHYeMKOrgxkILGP408h8crxublm5nqpQmHsnFJPo0pFT1Y65PS6S0l0kpft3+txIxCbUHCHUEiHYFHbWzWHCLTahoFMejlmHg7azDtnOEi0LNoWJhG0i0fJIyHb2wzZ2uH2CoPouY6IJfWvS3/owwEQfCMTutz5AMGC5Ws9p/wDBsgzGvflBQ7uHC9H61hYPImLOtbY8NznDF+8/pt3RJCK2MSZsjEkByoHCeAfV282rmMdPP/gp5Y3lXLPnNZw3/jwsoy1X8RSuria4chXBVasIrllNaG0JwZK1hNaWEKlqP4Oe8XhwDxqEJy+PxOnTcefl4c7NwZOTgzs7G3dODu7MTIxXX6NWqj/bZgJqjDkDOBMYaox5KeZQMtBn5uTsjYwxXF2cR5bXw88Wr+XUr5fz2KRhZHj0CZ7qPi6XhSvR6vY5TG1bsCM2kbAQCdnYEWffWQu2HbstSHQdu93Wcmd32JfNLXyIRMcMiGl1jG1hdA45q9bR/WJz43Z5cuvONppE2w3oZ9qXY7Y83tpK21re2kLbmtRFm2SNFR0DIpqAtZ5nWdHt2Bbf1lZdy3mQFdsqHHteW3mHOrFJpDM2hWmXYHbc1/7E3W6WMSYNuBeYDdTjjKugtqL1ldubZ95MbkIuDx/7MJOyJ8U7rAFDbJtQaSktS5fRsnQpwRUrnIRz1SoiNTGz87lceAYPxltYgP/ww/EUFuItLMCTn49n0CBcmZn6qqtSarstoJ8CZUAW8NeY8jpgXncGNVD8YHAmGR4Xl367mpPmLOWpycPJ9+tTP9W3Oa/Vupz+64F4R6NU7yQil0U37zLGvA6kiIjeW7eiJdLCTV/cxPNLn2f//P259cBbSfWlxjusfitSU0PzwoU0L1xEy+LFtCxbRsvy5UjT5mlq3bm5eIcOJfnYY/ANHYq3uBhvcTGe/Hx9HVYptUPb/FdCRFYDq4F9ey6cgee47DSenOTm3PkrOG72Eh6eOIw9UnbcF1AppVTfZow5GTgApwn+Y/Th7hbK6su45v1r+KbyGy6edDGXTb4Ml6VdVrpKuLqa5nnzaPrmG1oWLqT524WESkvbjruys/CPHEn690/FO2IEvujiSk6OY9RKqb5ue6/gfiwiBxhj6thiJkNERLacc6KPi9TUUHbDr8m+5hp8w4b22Oful57ES1NHcvb8FXzvq6X8c+wQjs9J67HPV0op1bOMMf8GRgBPRot+ZIw5QkR+HMewepUvyr7gpx/8lKAdZMahMzis6LB4h9SnSTBI8+LFNH09l6Z582iaN5fQ6jVtx71DhhCYPIm000/DP3Yc/rFjcGdmxjFipVR/tb0W0AOi6wHzmCtSV0fj7Nms/dGPKH7qyR79h3dsUoD/7TmK8+av5KJvVvHLpkFcoXOFKqVUf3UYMFaiHZSNMQ8D38Q3pN5BRHhs4WP8ZdZfKE4p5vZDb2doas89FO4v7KYmmubOpfHLWTTOmkXT3LlIczMA7uxsAntMJu2UUwhMnox/3HhcSYlxjlgpNVDs8EV9Y8w+wDciUhfdTwbGicgX3R1cT/MWFFB4579Zfc65rL3sMoY8/DCWf+dHG91V2V4Pz+0xgmsWreGmFWUsbWzmL6ML8WmHfaWU6m+WAUU4XV3AGQF3WfzC6R1CdohbvriFp5c8zeFFh/OnA/5EokcTo86wg0Ga5nxFw6ef0jhzJk3ffAOhEFgW/jFjSD/t+wSmTCUweRLuvDx9wK2UipvO9BS/E5gas9+wlbJ+IzB5MoP/8mdKr7yKdT/9Gfm3/x3Tg1Ok+F0W/x43hBEJfv68aj1rmoLcP2EoWV7t1K+UUv1IMrDQGDMTp5vLdJyRcV8CEJET4xlcPNQF67jug+v4dN2nXDDhAq6aepVOsbIdIkJw+XIaPvmE+k8/pXHml85AQW43gfHjyTzvXBKmTSMwdar22VRK9SqdyWqMyObJC6LzlvXrbCjlyCMJX/9zNtx8C+W3/ZncX1zfo59vjOHaoXkMT/Bx9aI1HDN7MfeNH6qDEymlVP/xm109MTp9y33ABJzk9QIR+axDnUNw5vD2ABtF5GBjTCHwCJAbPe8eEekVc3qX1pfy47d/zOra1fx+v99z8siT4x1Sr2QHgzR+8QV1775L/XvvE16/HgBvcTFpJ59M4v77kTB9Oq6kpDhHqpRS29aZRHKFMeZKnFZPgMuAFd0XUu+Qfs45BNeWUPXww3gKCsg4+wc9HsN3c9MZEvBx0YKVnDhnKTePKuCswToggFJK9XUi8sFunD4DeF1ETjHGeIF2TyejCeq/gWNEZI0xJid6KAxcKyJzot1pZhtj3hKRb3cjlt02t2IuV757JSE7xF1H3sXeg/aOZzi9Tri6mvr3P6D+3Xep/+QTpLERk5BA0v77kXjZpSTtvz+e/Px4h6mUUp3WmQT0EuAfwA04T0zfAS7uzqB6A2MMub+4nlBZGRtuvhlP/mCSD+v5EfimpCTw5rTRXPbtaq5dvJZZtQ3cNLKAgEtfS1JKqb4qOr7CP4GxgBdwAQ07GmHeGJMKHAScByAiQSDYodqZwPMisiZapzy6LsOZ3xsRqTPGLATygbgloG+uepNffvxLsgPZ/OuIfzEsdVi8QulVwtXV1L31FnWvv07D51+AbePOzSX1pBNJPvRQEvbeG8vni3eYSim1S3aYgEZvXKf3QCy9jnG5yP/zbaw+9zxKf3ItQx55mMCkST0eR6bXzROTh/Hnleu5ffUGvqlr4t4JxQwJ6M1HKaX6qDtw7q3PANOAc4BRnThvKFABPGiMmQzMBq4SkYaYOqMAjzHmfZy+pjNE5JHYixhjioEpwFYHFDTGXEz0YXNRUVGnv9TOeGrRU9z0xU1Mzp7MPw77B+n+9G75nL4iUlND3dtvU/u/12n47DOIRPAMKSLz4h+SctRR+MaO1YGDlFL9gonp3rn1Csb4gQuB8UDbkLAickH3hrZzpk2bJrNmzeqWa4c3bmTV6Wdg19Ux5PHH8I0Y0S2f0xlvbqzh8oWrsTDcMW4IR2T2u+lYlVKqRxljZovItB7+zFkiMs0YM09EJkXLvhKRKTs4bxrwObC/iHxhjJkB1IrIr2Pq3IGT1B4OBIDPgO+IyJLo8STgA+BPIvL8jmLt6vuriHDn3Du5c+6dHFJwCH8++M/43T034nxvIqEQ9R9/TM1/X6DuvfcgFMJTWEjKMceQctyx+MaM0aRTKdVnbev+2plXcB8FFgFHAzcCZwELuza83s2dlUXRA/ez6qyzWHPBhQx54gm8BfHpb3FUVipv7DmaCxes5AfzVnBxQTa/HDYIv76Sq5RSfUljtP/m18aY23Beje3MP+QlQEnMVGjPAh1HyisBKqOtog3GmA+BycASY4wHeA54vDPJZ1eL2BFunnkz/1n8H7474rv8dt/f4rb69biGW9W8eAk1//0vNa+8QmTjRlwZGWSceQYpJ5yIf/w4TTqVUv1aZ252I6JPVhtE5GHgO8CAGyHAW1RE0X33Yzc3s+bCCwhXVMQtlqEJPl7dcxQX5GdxT0kFx81ewuKG5rjFo5RSaqedjXMPvhxnerNC4P92dJKIrAfWGmNGR4sOZ8s+nC8CBxhj3MaYBJx79kLjZDX3AwtF5G9d8zU6LxgJ8rMPf8Z/Fv+HCyZcwI373Tigkk+7sZHqp59m5cn/x8qTTqLq8cdJmDKFgn//m5EfvE/uL35BYMJ4TT6VUv1eZ/7lD0XXm4wxE4D1QM526vdb/tGjKLz7LtZccCFrLvohQx59BFdKfF6BDbgsbhpVwKEZyVy9aC1Hz1rM70bkc+7gTL15KaVU77cRCIpIM/B7Y4wL6GzH/iuAx6MtqCuA840xlwCIyF0istAY8zowD7CB+0RkgTHmAJzEd74x5uvotX4pIq913dfauoZQA1e9dxVflH3BddOu49zx53b3R/YaLcuXU/3kU9S88AJ2fT2+UaPI/dWvSDn+O7jTB3a/V6XUwNSZPqAX4byuMwl4EEgCfi0id3d/eJ3XnX1AO6r/+BPWXnopgQkTKLr/PqyE+M7PWd4S4qpFa3ivqo6js1L42+giMr0D56myUkrtjjj1Af0cOEJE6qP7ScCbIrJfT8bRGbt7fxURLnzzQuZsmMMf9v8DJww/oQuj650kHKbu7XeofvJJGr/4AuPxkHzMMaSfcTqBKVP0QbFSakDY1v11hwloX9GTCShA7etvUPqTn5C4//4U/usOjNfbY5+9NbYI95VU8MflZaR6XNw6qoDjstPiGpNSSvUFcUpAvxaRPXZU1ht0xf31s3WfEbJDHFRwUBdF1TvZDQ1seu55qh5+mFBpKZ78fNJOP420//s/3BkZ8Q5PKaV61C4PQmSMyQR+B+yPMw/oR8AfRKSyq4PsS1KOOZpI3e9Y/+vfUHrtteT/7W8Yjydu8VjGcHFhDvunJ3P1wjVcsGAVJ+akcdPIArK0NVQppXqbBmPMVBGZA2CM2RNoinNM3WbfwfvGO4RuFa6ooOqxx6l+6insmhoCU6eS+4vrSTr0UIzLFe/wlFKqV+lMZvIU8CGbB0c4C/gPcER3BdVXpJ96KtLUxIabbqb0J9eS/7e/xjUJBRifFOC1PUfxrzUb+NuqDXxcXcdNIws4KSdNX/lRSqne42rgGWPMOsAAecBpcY1I7bTg6tVU3ncfNS+8iITDJB95JBnnn0fClO3OpqOUUgNaZxLQQSLyh5j9PxpjOnWTNMYcA8wAXDiDINzS4bgPeATYE6gEThORVdGBFe7GmcfMxplk+/3OfGZPyzjnHBBhw8239Jok1GMZri7O45jsVK5ZuJZLvl3NC+XV3DqqkFxffGNTSikFIvKlMWYM0Dqa7WIRCW3vHNV7BFevZuNdd1Pz0ksYt5vUU/6PzPPOwztkSLxDU0qpXq8zCeibxpjTgaej+6cAb+zopOiIfv8CjsSZk+xLY8xLIhI7XPyFQLWIjIh+xq04T4B/CCAiE40xOcD/jDF7iYjd2S/WkzLOdUbz23DzLZReex35f/1L3JNQgDGJAV6eOpJ7Siq4bWUZB85cyM+HDuLcwVm4LW0NVUqpeIomnAviHYfqvI6JZ8YPziLjwgvx5AzIyQGUUmqXdGYe0B8CTwDB6PIU8CNjTJ0xpnY7500HlonIChFpPe+kDnVOAh6Obj8LHB6dp2wc8C6AiJQDm3BaQ3utjHPPJfcX11P35puUXnsdEuodD7LdluGyohze3WsMU5IT+dXSUo6ZvYQvaxriHZpSSinVJ4RKS1n3i1+y/LjvUPvaa2T84CyGv/Umub/4hSafSim1k3aYgIpIsohYIuKOLla0LFlEtjcJZj6wNma/JFq21ToiEgZqgExgLnBidBLtoTiv6BZ2/ABjzMXGmFnGmFkVFRU7+irdLuPcc8m5/udOEnrdT3tNEgowLMHHU5OHcd/4YqpCYU6Ys5SrF66hIth7YlRKKaV6k0hNDRtu+zPLjzlWE0+llOoinRoe1RiTDowE/K1lIvJhdwUFPACMBWYBq4FPgUjHSiJyD3APOMPEd2M8nZZ53nkAlN9yKyWRMPl//SuWr7Nzi3cvYwzH56RxaEYyf1+9gbvWlvO/jTX8bGge5wzOwqOv5SqlVI8xxkwCiom5F4vI83ELSLWxW1qofvwJNt59N3ZtLanf/S7ZV16BZ9CgeIemlFJ9XmemYbkIuAooAL4G9gE+Aw7bwamltG+1LIiWba1OiTHGDaQCleJMTnpNTAyfAkt2FGtvkXneeRi3hw1//CNrf3QJBXfcgSspMd5htUl0u7hh+GC+n5fBr5aW8KulpTxQspFfDR/EsVmpOlquUkp1M2PMA8Ak4BucwfbAmepME9A4Etum9tXXqPj73wmtW0figQeSc921+EeP3vHJSimlOqUzLaBXAXsBn4vIodFR+27qxHlfAiOjr9CWAqcDZ3ao8xJwLk5CewrwroiIMSYBMCLSYIw5Egh3GLyo18v4wVm4UpJZ94tfsub88ym8527c6enxDqudUYl+np48nLcqa/nD8nVcsGAVe6Uk8psRg9krtfckzEop1Q/tIyLj4h2E2qzpm2/Y8Ic/0vT11/jGjaXoj38gcb/94h2WUkr1O50ZhKhZRJrBmTZFRBaxedj4bYr26bwcZ8TchcDTIvKNMeZGY8yJ0Wr3A5nGmGXAT4Dro+U5wBxjzELg58DZO/OleovUE0+k4J//pGXxYlb/4GxC69fHO6QtGGM4KiuV9/Yaw19GF7K6uYUT5izlwgUrWd7YHO/wlFKqv/rMGKMJaC8Qqalh/Y03surU7xNcs4ZBN93E0Gef1eRTKaW6iXHedt1OBWP+C5yPM2n2YUA14BGR47o9up0wbdo0mTVrVrzD2KqGmTMpufQyXKmpFD1wP97i4niHtE0NkQh3r63gX2vKabZtTsnN4OohuQxN6B39WJVSqqsZY2aLSI+OtG6MORjnLaD1QAtgABGRST0ZR2f05vvr7hDbpub55yn/69+I1NSQfuaZZF95Ba6U7Y2vqJRSqrO2dX/dYQLa4SIH4/TTfD06tUqv0dtvkE0LvmHtD38IlkXRfffiHzs23iFtV0UwxB2ry3l43UZCIvxfbjrXDMnTRFQp1e/EKQFtffNnPpv7gCIiq3syjs7o7ffXXdG8cCFlv/sdzXPnEdhzT/J+fQP+MWPiHZZSSvUr27q/7vAVXGPMPsaYZAAR+QB4H5jS5RH2c4EJ4xny+GMYr5fVZ/2A+g+7cxDh3Zft9fD7kfnM3GccF+Vn81L5Jg6YuZArFq5mRWNLvMNTSqm+rkJEXhKRlSKyunWJd1D9nd3SQvnfb2flKacSKill8K23MOSxRzX5VEqpHtSZPqB3AvUx+/XRMrWTfMOGUfzUU3iKh7D2kkupfvLJeIe0Qzm+mES0IJtXyjdxwBcLuXDBSmbXNMQ7PKWU6qu+MsY8YYw5wxhzcusS76D6s8Y5X7HyeydTeffdpJ5wAsNffYXUk07Skd+VUqqHdWYUXCMx7+mKiB2dMkXtAk9uDsWPPkrptdex/vc3Ely9hpyfXodxueId2nbl+Dz8fkQ+Py7M4b6SCh5eV8mrFTVMT03k0sJsjspKxaU3caWU6qwATt/Po2LKdBqWbmA3NFB++wyqH3sM96A8Cu+9l6QDD4h3WGqAERGCIgRtocUWQmITtJ39ULQ8HLMOiRCKbscuESFm29lvW+OU2eK81x+J1rEBEbDZfMyO/mpvR8slpk7rdlvs0aX1e8SWd0brb4etD3vMFuWb9w3GWZvW/WhZzL5lTHQd3cfZaN02xmlhs4xpa2mzjHMsdm1i6lgm9roxZR2u54r5fJdpvZ6z3Xquq8NnuNqut/nzXSb2c5x9V2t80XJXtNxE67s61I+9Tl/TmURyhTHmSja3el4GrOi+kPo/KzGRgn/dwYZbbqXqoYcIlqwl/7bbsBIS4h3aDuX4PPxy+GCuGpLLk+uruHttBecvWMWwgI+LC7M5NTedRHfvTqaVUireROT8eMcwEDR8/gVlv/oVoXXrnEGGrrmmV83LrXqPkC3URSLUhyM0RGwaIjb1EWe7PmzTaNs0RmwaI5Ho2qbJtmmKCM227SwRocm2abFtmm2hxbZpia6b7c6PubK7WpOn2IQlNhEy0aTG2krSRszx1oRvc1l0m80Jz45Sn7bENbq1OZHtkNgibUlva7lTR9rt22xOnAUnkRZoS7Jb69vR7daEu7/bVsIamwxvL4F1sTmhdhnDv8YO6dZxXzqTgF4C/AO4Aedn/Q5wcbdFNEAYl4u8X/0Sb2EhG265hdXnnEvhnf/GnZ0d79A6JdHt4qKCbM4bnMWrGzdx55oKrl9Swh+Xr+OUvAzOHZzJ2KRAvMNUSqleyRjzIFtpQBCRC+IQTr9jB4NUzJhB1QMP4i0qYshjj5Kw557xDkt1s5AtVIfCVIbCVIXCVIcibApH2BQKUxOOUBOOUB2KUBvdro8423XhCE07kSAGLEPAZRGwLBJcFn7LWQIuQ7rHg99l4bcMPsvCF7s2Fl7LbF6i+x5j2tYey+A2zrbbMniNwWWcMpfBKTcGyxjchnbbmxPMvtci1t0kmqhGOiSmEm0hjsjmxNWOJsPtyyXacuwcj8jm5DcSe6xtO1qnw7Vaj9nRFmtb2pe3nhNbvrlVe3OLd+vnbq9+RITIdj6v/XU3X9sW5wFGd9phAioi5cDp3RvGwJVxztl4CgoovfZaVp5yKgX/mEFg8uR4h9VpbstwUk46J2anMae2kYfWbeTJskoeKt3I9NREzh2cyXey0/C7OtPdWCmlBoxXYrb9wPeAdXGKpV9pWbaM0p/+jJaFC0k7/TRyf/azPvGGkdq6FttmQ0uIDcEw61tCVARDVATDbAyFN28HnYSzLrLtti6PMaS6XaR5XKS6XaR7XBQFvKS4XCS7LVLcLpLdLpJcFomu1rVFkttFostJNBMsi4DL6pOvPA50Jua13R2326rutlPTsPRmfX2Y+OZFiyi5/ArCGzaQ++sbSP/+9+Md0i6rCoV5uqyKR9ZVsqKphQyPi+/mpPP9vAwmJwf0yZxSqleJxzQsW4nBAj4Wkf3iGcfW9JX7q4hQ/fgTlP/5z1iJiQz64x9JPuzQeIeltqPFtilrCVHSHKS0OURpS5DS5iDrWkKsbwmxIRiiKhTZ4jwDZHjcZHudJcvjJtPrJsMTu7hI97hJc7tIc7tIcFn6+4dSPWxb91cdTKiX8I8Zw9Bnn3EGJ/rNb2mev4DcX9+A5fXGO7SdluFxc0lRDhcXZvNxdT2PlVXyeFklD5RuZGSCj+/nZXBybjr5/r733ZRSqpuMBHLiHURfFd64kXW/+CUNH31E4sEHMfiPf+wzXVr6MxFhYyjMysYW1jQHWd0UZHVzC2uagqxuDlLWEtrinGyvm8E+D0MCXqanJpLn85Dr85DnddY50URTBz5Uqu/SBLQXcaWlUXjP3VTM+AeV99xD85LFFMyYgScvL96h7RLLGA7KSOagjGRqQmFerqjhmfVV/GlFGTetKOOA9CROyknnmKxUsrz6V1EpNXAYY+pw+oCa6Ho98PO4BtVHNcycSem112LX1jlvEJ15prZ09bCQLSxvamZpQwvLG5tZ1tjC8sYWVjS1UBNu34I52OehyO/loPRkCv1eCvweCvxe8n1eBvk82mVHqQFgh6/gGmPSgHOAYmISVhG5sjsD21l95RWhzqp9803Krv8FJhAg/+9/I3H69HiH1GVWNbXw7PpqnttQxcqmIC4D+6UlcXx2Gsdlp5Lt9cQ7RKXUANIbXsHtzXrr/VVsm8p776Nixgy8RUXkz5iBf/SoeIfVr9kirG4K8m1DE4sbmlnU0MzihmaWNzYTjvl1crDPw7CAj+EJzjI04KM44KPQ79UEU6kBZFv3184koJ8CnwPziRnJWEQe7uogd0dvvUHujpZlyyi5/AqCa9aQdemlZF16Ccbdf1oKRYRvG5p5uXwTL5dvYnlTCxawd1oiR2emcmRWCsMT/PEOUynVz/VkAmqMGSMii4wxU7d2XETm9EQcO6M33l8jmzax7ufXU//BB6Qcdyx5N/5Bp1fpYiFbWNrYzPy6JhbUNzK/rolv6pvaDfQzxO9ldKKfMYl+Rif6GZXoZ1jAp9OxKaWA3UtA54jIVm+UvUlvvEF2hUh9Axv+cCM1L75EYNqe5P/5z3gGDYp3WF1ORFjU0MzLFZt4taKGxQ3NAAwNeDkyM5UjMlPYJy0Rr6VPTpVSXauHE9B7RORiY8x7WzksInJYT8SxM3rb/bVp/nxKr7qaUEUFudf/XF+57QIiwrqWELNrG5lT28BXtY3Mq2tsm5okYBnGJQWYkBRgUnIC45ICjEr0kejSRFMptW27k4BeA9TjDBnf0louIlVdHeTu6G03yK5W8+KLrP/9jeDxMOiPfyDlyCPjHVK3WtPUwtuVtbxdWcsnm+ppsYVEl8X+aUkcmJ7MgRlJjE7w6y8dSqndpq/gbl9vur9WP/Uf1v/pT7izsyi4/XYCkybFO6Q+KSLCwvomPq9p4LNN9cyqaWBDMAyAzzJMSAowNSWBPZITmJicwPAEnw76o5TaabszCm4Q+DPwKzZPmi3AsK4LT+1I6kknEZg8mdJrr6P0iitpOON0cn/+cyx//3xFtSjg44KCbC4oyKYhEuGT6nrerqzlo+o63qysBSDH6+aA9GQOSE9iv7Qkhvi9mpAqpfoMY8x+bDm+wiNxC6gXk1CI9TfdxKYnnyLxwAMZfNutuNPT4x1WnxERYW5dI59W1/N5TQMza+qpDTuv0hb6vRyQnszUlASmpiQyPsmvbxsppbpVZxLQa4ERIrKxu4NR2+ctLqb4ySco//vtVD34II1ffsngm28mMHFivEPrVokuF0dlpXJUVioAa5uDfFRdx0dVdXxYVcfzG6oBJyGdnprI3qlJTE9LZHxiALelCalSqvcxxjwKDAe+BlqHCRVAE9AOwtXVlF51NY0zZ5Jx4QXk/OQnGH31c4dWN7XwQVUdH1TX8XF1fdtotCMTfJyUk84+qYnsnZZEgU6JppTqYZ1JQJcBjd0diOoc4/WS+/OfkbjffpTdcAOrTj+DzAsvJOvyH/fJOUN3RaHfy5mDMjlzUGZb39GZNQ3MrGngi5p6XqmoASDRZTEpOcAeyQnsEX2VqEhbSZVSvcM0YJzsqB/MANe8ZAkll/2YcHk5g2+9hdSTTop3SL1Wc8Tmk031vLmxhver6ljdHAScEWmPy07l4PRk9k9P0pHmlVJx15kEtAH4OjpgQmwf0F41DUtXCEVCzJgzg/MmnEdWICve4WxX0oEHMOzll9hwy61U3nMPde++MyBaQzsyxjA2KcDYpADn5js/s9LmIF9GE9Kvahu5v2QjwejveBkeF5OTE6KDKPgZnxRgaED7tiiletwCIA8oi3cgvVXdu++y7rqfYiUmMuTRRwhMnhzvkHqdimCItytreWtjLe9X19EYsQlYFgekJ/HDwmwOTk9mRIJPH7wqpXqVziSgL0SXfm9V7SqeXvI0M9fP5MFjHiTR07uHdHelpDD4pj+RcvRRlP3mt05r6EUXkfXjywZMa+jW5Pu95Pu9fDfX6R8UtG0WNjTzdW0jX9c18nVtIx9Vb2ibsyxgWYxJdJLRMUl+RiX4GZnoI8/r0Zu2UqpLGWNexnnVNhn41hgzk/YPd0+MV2y9hYhQdf/9lP/1b/jHj6fgX3fgyc2Nd1i9xrrmIK9UbOLl8hpm1TYgwCCfh1Ny0zk6K5X905J0rk2lVK+2w1Fw+4quGqXvw5IPufLdK5meN51/Hf4vPK6+8apKpLaWDbfcSs3zz+MdPpy83/yGxL2nxzusXqvFtlnS0Mw39U18W9+6bqI6HGmrk+yyGJnoZ2SCnxHRibSHJvgoDnh16Hml+pEenobl4O0dF5EPeiKOndGTo+BKJMKGP/2J6ieeJOW4Yxl00039drC9nVHWEuSV8hpertjEzJoGAMYn+TkuK42jslKYkBTQB6ZKqV5nd6ZhWcnm0W/biEivGgW3K2+QLyx7gV9/8mu+M+w73HTATVim7zxJrP/wQ9b//kZCpaWknHgCuT/7Ge6s3v06cW8hIlQEwyxpbGZJQzNLG1tY0tDMksZmKqLD07fK83ooDngpDvgo8HspbF0CXgZ5PTr4kVJ9SDymYTHG3CoiP99R2TbOTQPuAybg3J8vEJHPOtQ5BLgd8AAbReTgaPkxwAzABdwnIrfs6PN6KgG1m5oove6n1L/zDpkXXUj2T36CGcCjsdaGI7xcvoln1lfxeTTpHJfo58ScNE7ISWN4gibmSqnebXemYYk9yQ+cCmR0VWC90XdHfJeNTRuZMWcG2YFsrp12bbxD6rSkgw5i2Csvs/Huu6m8/wHq33uf7KuvIv3003XUwB0wxpDj85Dj83BAenK7Y3XhCKuaWljR1MKqxiArmlpY2dTCB9V1rG8JtXtC4zJOgjrY5yXP52Gwz8Mgn4dBfg+DvM71s71ubUVVamA7EuiYbB67lbKtmQG8LiKnGGO8QELswWiC+m/gGBFZY4zJiZa7gH9FP7sE+NIY85KIfLtb36QLhKuqWHvppTTPm0/ur28g46yz4h1SXERE+LCqjqfXV/G/jTU028KIBB8/Lc7jxJw0RiZq0qmU6vt2mICKSGWHotuNMbOB33RPSL3DhRMupLyxnIe+eYisQBbnjj833iF1mhUIkHP11aSeeBLr/3AjG/7wR2qe/y95v/2NTtq9i5LdLiZGJ+TuqMW2WdccYm1zkLXNQdY0ByltDrK+JcS39U28XVlDk73lmwaJLoscr5tcr4dMr5tMT3TxusmK2U5zu0jzuAlYRl+xUqqPM8ZcClwGDDPGzIs5lAx80onzU4GDgPMARCSIM193rDOB50VkTbROebR8OrBMRFZEr/UUcBIQ1wQ0uHo1ay6+mPD6DRT88x8kH3FEPMOJi1VNLTy2rpJn11ezPhgize3itLwMTsvLYEpKgv7br5TqV3aYgBpjpsbsWjgtop1pOe3TjDH8fK+fs7FpI3+Z9ReyA9kcN+y4eIe1U3zDhlL0wAPU/e9/bLj5FlZ9/zRSTjiBnKuvwpOfH+/w+g2fZTE0wekfujUiQk04wrqWEBtaQpQHw5QHQ1QEw2wIhigPhljS0ExlKEx1KLLl++5tn2PaktE0t4tkt4sUt4tkl0VqzH6SyyLJ7SLRZZHcuu9ykeCySHBZOuKvUvH1BPA/4Gbg+pjyOhGp6sT5Q4EK4EFjzGRgNnCViDTE1BkFeIwx7+MktjNE5BEgH1gbU68E2HtrH2KMuRi4GKCoqKgTYe2apnnzWPujS0CEooceJGHKlG77rN4mbAtvV9by8LqNvFdVh8vAYRkp/CEvn6OyUvAN4NePlVL9W2cSyb/GbIeBVcD3O3PxHfU1Mcb4cCbd3hOoBE4TkVXGGA9O/5ap0RgfEZGbO/OZXcllubj5wJupbq7mV5/8ilRfKvvn79/TYewWYwwpxx1H4kEHUXnvfVQ99BB1b7xBxrnnkHnxxbiSk3d8EbVbjDFO0uhxMy4psN26ERGqQmEqQ2Eqg2GqQhFqwhGqQ2E2hSNsaltHKG8JsbShmbqIUyfSyfHEfJYh0WURsJyENBDdDljOtt8y+F0WPsvCZxn80XXrvtcYPNF9rzF4LWdxG4Mnurit6Dpa12UMbgPuaJnbGCwDLpxjLgPWAEuMRQQbsAVshIhsLovEHmvbFiLRtbTWEYggiDj7kZhzIrHXitazhXblkS32N9dtO7aVOpEO14u0fX7MdrQ8vLVzd3COU7Zl3dZrhaN190hO4InJw+Py89sNEr3P/bjjAWNMRieSUDfOvfEKEfnCGDMDJ5H9dYc6ewKHAwHgM2PM5zsZ5D3APeD0Ad2Zczur4fPPWXvZj3FnZFB47z34hg7tjo/pdda3hHiirJLH1lWyriVEntfDdcV5nDU4g0G+gTuCvVJq4OjMK7iH7sqFO9nX5EKgWkRGGGNOB24FTsPpZ+oTkYnGmAScoeqfFJFVuxLL7vC5fMw4bAYXvH4BV793Nf8+4t/slbdXT4ex21xJSeRcczXpp59Gxe0zqLz3PjY9+xxZP/4x6ad9H+PpG6P99ncuY8j2epyJwndiFiARodG2qQvb1Eci1EfXDRGbunCE+ohNY+xi2zRGjzdHhGbbpi4SoTwYotkWmmybFtumxRZabLttypru5oompZYBQ2tiCla0DJxtY5zXMSxjaE1b29bRc7dWvi2tY7G1fk0BJLoXe0yi+xI9asvmuiKb67QmjU79zXXtaNJm7+KfT29jQdvDBSv6IMFtDFb0Z+c8XDBtP9e27dh1TF2fZbY4x4p5cNG63VpnaKBP/rL+BHA8TsulsPmvKNH9HQ3wVwKUiMgX0f1nad+S2lqnMtoq2mCM+RCYHC0vjKlXAJTuypfYXXXvvkfp1VfjHTKEwvvvw5OTE48wetSCukbuWlvBC+XVhAUOTk/mjyPzOSozVQeuU0oNKNtMQI0xPxCRx4wxP9nacRH52w6u3Zm+JicBv4tuPwvcYZyODgIkGmPcOE9vg0Dtjr9O90jxpnDPUfdw/uvnc/k7l3P3kXezR84e8Qpnt3gGDWLwrbeQfs7ZlN96Gxv++EeqH32UrMsuJeX443Wgoj7KGEOiyxUd2KjrHyaEbaFFnIQ0FE1KQyIEbSEYXYdsp4UqKELYFkLiLK0tV87itGSFbGFbLXF2TLnEtg6yufWvNRGMxCSJbYkgm5PGVrGJ5fZ+zYs95iSyreVOQttaZqJlbUlxNBFuXVymff3W4y5jsKLlVluivbl+63ErmtC1Jtku0z7xbq3nMk5Za6Lm2so5reWuaHnsvsuYtrqx19i833qdDslk2/fQX5p3logcH13vUnOfiKw3xqw1xowWkcU4rZwd+3C+iHM/dQNenNds/w4sAkYaY4biJJ6n4/QX7VE1r7zKup//HP+4cRTeczfu9PSeDqHH2CK8W1XHXWvK+XhTPYkui/Pzszg/P5th2+i2oZRS/d32WkBb21929R3NzvQ1aasjImFjTA2QiZOMngSU4Yzud83WXkvqqT4qABn+DO476j7Oe/08Lnv7Mu47+j7GZY7r1s/sToHx4yl6+CHq33+fittnsO7n17PxzrvI+vFlpBx3nCaiqh23ZXDjIlH/Wii1WzqMq7AFEZnTictcATweHQF3BXC+MeaS6Pl3ichCY8zrwDycBvf7RGRB9PMvB97A6RrzgIh8s+vfZudV/+dp1v/udyRMm0bBnXfiStqJVz36kKBt8+z6au5cW87SxhYG+TzcMGwQZw/OJNXT74fRUEqp7drhPKC7fGFjTsEZAv6i6P7ZwN4icnlMnQXROiXR/eU4SeponFECzwPSgY+AY1tbU7emp+YpK6sv47zXz6Mx3MgDRz/AyPSR3f6Z3U1sm7q332bjHf+iZckSvMOGkXXZZaQce4wmokqpfq8n5wE1xry3ncMiIof1RBw7o6vur5X3P0D5n/9M0sEHkz/jdix//5tSpMW2ebKsin+u3kBpS4gJSQEuKczmxJw0vDqokFJqgNnleUCNMdnAD4Hi2PoicsEOTi1lx31NWuuURF8VSsUZjOhMnDnOQkC5MeYTnNF3t5mA9pRBSYPaWkIvevMiHjrmIYam9u2BE4xlkXLUUSQfcQR1b77Fxn/9i3XXXcfGf/+bzAvOJ+XEE7G8fbKvlVJK9Sq7Oq5CXyYibPznP9n47ztJOe5YBt9yC6af3VOaIzaPlVXyrzXllLWE2Cslkb+MLuSQjGR9VV0ppTrozOO4F3ESw7eBV2OWHfmSaF+T6GtCpwMvdajzEtA6weYpwLviNMmuAQ4DMMYkAvvg9F3pFQpTCrn36HsBuOjNi1hbu3YHZ/QNxrJIOeZohr74Avl//xvG56Pshl+z7PDD2Xj3PURqauIdolJKqT7Ibmwi7dRTGPznP/er5LM5YnPP2nL2/vxbblhayhC/l2cmD+elqSM4NDNFk0+llNqKHb6Ca4z5WkT22KWLG3MccDub+5r8yRhzIzBLRF4yxviBR4EpQBVwuoisMMYkAQ8C43DG6HhQRP68vc/qqVdwYy2pXsIFb1yAz+XjvqPu6/MtoR2JCI2ffUbl/Q/Q8MknmIQE0k75PzLPPVfnEVVK9Rs9+QpuX9QV99fW3zX6S0IWEeHZ9dXctrKM0pYQ+6cl8ZPiXPZP16nNlFKq1bbur51JQP8IfCoir3VXcF0hHgkowOKqxVz81sUYDPcedW+/6BO6Nc2LF1P1wAPUvPoa2DZJhxxC+hlnkLj/fhjt16KU6sM0Ad2+eN1feyMR4e3KWv60ooxFDc1MTg7w6+GDOUATT6WU2sJOJ6DGmDo2z1qQCLQAoei+iEhK94W78+J5g1xRs4IfvvFDgnaQu4+8u0+PjrsjobIyqp98ik3PPUekshJPURHpp32f1JNP7tdD6Sul+q8eHoSoK0bB7VGagDpm1zTwh+Xr+LymgaEBL78YNpgTslP7TauuUkp1tV1uAe0r4n2DXFu7lovevIi6YB13Hnknk7Mnxy2WniDBILVvvUX1k0/SNGs2xusl+ZijSTv5ZBKmT9dWUaVUnxGnUXD9OIPrzcV5sDsJp3vKvj0Rx86I9/013spagvxheRnPb6gm2+vm2uI8zhqUicfSxFMppbZnW/fXHWYJxph3OlM20BWmFPLQMQ+R7k/n4jcvZtb6/n2zNl4vqd/5DsWPPcbQl14k7ZT/o/7d91hz3vksO/wIyv9+Oy0rVsY7TKWU6lVE5NDoSLhlwFQRmSYie+KMhdBxpHgVRy22zT9Xb2D/LxbxasUmrhmSy+d7j+W8/CxNPpVSajdsMwE1xviNMZlAljEm3RiTEV2KAR2BZisGJQ3iwWMeJC8xj0vfvpRPSj+Jd0g9wj9qFHm/+Q0jP/6IwX/9C74RI6i8915WHHccK087jaonniBcWRnvMJVSqjcZLSLzW3dEZAEwNo7xqBhvbazhkJmL+NOKMg5OT+bD6WP4+bBBJLp1bmyllNpd2+sDehVwNTAYWBdzqBa4V0Tu6PbodkJvekWoqrmKH731I5ZVL+P3+/+eE4efGO+QelyovJzal1+h5oUXaFm6FCyLhL32IuWYo0k+8kjcWVnxDlEppYD4DEJkjHkSaAAeixadBSSJyBk9GUdn9Kb7a3db3dTCL5eU8k5VLSMTfPxhZD6HZPSqIS+UUqrP2J1RcK8QkX92W2RdpLfdIOuD9Vz9/tV8UfYFV029igsnXDggByoQEVqWLKXujdepff0NgitWOMnotGkkH30UyYcdhmfQoHiHqZQawOKUgPqBS4GDokUfAneKSHNPxtEZve3+2h3CtnBPSQV/XlmGyxiuK87jgoIsvDqegVJK7bJdGQX3MBF51xhz8taOi8jzXRzjbumNN8hQJMQNn9zAaytf4/TRp3P99OtxWQP39R0RoWXpUupef4PaN94guHw5AL7Ro0k6+GCSDjmEwORJGNfA/TNSSvW8eE3DYowJAEUisrinP3tn9Mb7a1eaX9fItYvWMq++iaOzUrh5ZAGD/d54h6WUUn3etu6v7u2cczDwLnDCVo4J0KsS0N7I4/Jw84E3k5uQy4PfPEhFUwW3HHgLfrc/3qHFhTEG/6hR+EeNIvvKK2hZsYL6996n/oMPqLz/firvuQdXWhqJBx1I4n77kbjvvnhyc+MdtlJKdTljzInAnwEvMNQYswdwo4gMvD4bcdIYsfnrqvXctbacDI+be8cXc7xOq6KUUt1Op2HpIY99+xi3fXkbe+TswT8P+yepvtR4h9SrRGprafj4Y+o/+ID6Dz8iUl0NgHfYMBL33ZfEffchYfp0XCnaF0cp1bXi9ArubOAw4H0RmRItmy8iE3syjs7o7ffXXfHZpnquXriG1c1BzhyUwW+GDybNs71n8koppXbWTreAGmN+sr0LisjfuiKwgeIH435AVkIWv/zol5z12ln847B/MCx1WLzD6jVcKSmkHHccKccdh9g2LYsX0/DpZzR8/jmbnn+e6scfB8vCN2Y0CVOmkrDnVAJ77qktpEqpviokIjUdWtv6xxPhXqw5YnPryjLuWlvBkICXZ/cYzgHpyfEOSymlBpTtPe7Tf5G72DHFx5ATyOGa96/hB6/+gNsOvo0D8g+Id1i9jrEs/GPH4h87lswLL0CCQZrmzqXh8y9onDN7c0IKePLzCUydSmDSJAITJ+AbOxbL54vzN1BKqR36xhhzJuAyxowErgQ+jXNM/do39U38+NvVLGpo5pzBmfx2+GCdVkUppeJAX8GNg3X167jy3StZumkpP9nzJ5wz7hztc7ITJBSiedFimubMpnHOVzTOmU2kYqNz0O3GN2okgQkT8U+cgH/sOHwjR2hSqpTapji9gpsA/Ao4Klr0BvAHEWnpyTg6oy/dX7cmIsK/15Rz28r1pHtc/G1MEUdkancOpZTqbrs8DUtf0ddukI2hRn718a94e83bnDT8JH6z72/wunTUvV0hIoQ3bKBp/nya5y+gecF8mhZ8g11b61RwufAWF+MfPRrf6NH4x4zGN2IE7kGDMDrEvlIDXpwS0FNF5JkdlfUGfe3+Gmt1UwtXLFzDzJoGjs9O5dZRhWR6ta+nUkr1BE1AeyFbbO6aexd3zr2TydmTuf3Q28kKZMU7rH5BbJvQmjU0L1pMy5LFznrxYkKlpW11TCCAb+hQvMOH4xs+HO/wYfiKi/EUFmL5B+ZIxUoNRHFKQOeIyNQdlfUGffH+CvBqxSauWbQGEbh5VAH/l5uubxsppVQP2pVpWFQ3s4zFZXtcxvC04dzw8Q2c+vKp3HbQbeyVt1e8Q+vzjGXhLS7GW1wMxxzdVh6pq6NlyRJali0nuGI5LctX0DhrFrUvv9zufHdeHt4hQ/AWFeEdUoSnoABPfj6ewYNxZWToLzFKqV1ijDkWOA7IN8b8I+ZQChCOT1T9S4tt8/tl63igdCN7JCdw9/ghDAloNwyllOotdBTcXuDo4qMpTinm2g+u5aI3L+KKKVdwwYQLsIy+HtrVXMnJJOy5Jwl77tmu3G5ooGXFSoKrVxNcs5rQ6jUE16yh7t13iVRWtqtr/H48gwc7y6BBuHNz8eTl4s51Fk9uLlZKiiapSqmtWQfMAk4EZseU1wHXxCWifmRVUwsXf7OKeXVNXFyQzQ3DB+HVrhZKKdWrdGYU3NHAXsBL0f0TgJndGdRANDpjNP85/j/8/tPfM2PODGZvmM1NB9xEuj893qENCFZiIoGJEwhMnLDFsUh9PaHS0uiyzlmvW0eopITmhQu3SFABjM+HOysLd1YWrujanZWFKzMDd0YGrvQMXOlpznZaGsatLyMoNRCIyFxgrjHmCREJxTue/uSl8k1cu2gNljE8NGEox2TrfNtKKdUb7bAPqDHmQ+A7IlIX3U8GXhWRg3ogvk7rq31UOhIRnl78NLd+eSsZ/gz+cvBf2CNnj3iHpbbDDgYJl1cQLt9AeMMGQus3EK6oILyxgsjGjYQ3VhLeuJFIVdU2r2GlpuJKScGVmhpdUqJlqbiSk7CSkrGSk3AlJzvbSYm4EhOxoovxeHrwGyvVv8SpD+hI4GZgHNDW6VxEet0E0b39/hqyhd8vL+W+ko1MTUng7vHFFPp1UD+llIq33ekDmgsEY/aD0TLVDYwxnDbmNCZmT+Ta96/l/NfP54qpV3DuuHNxWTpfWW9keb14C/LxFuRvt56EQoSrq4lUbyJSXU2kusrZr6p29mtridTWYG+qIVRaSqSmhkhtLUQiO4zBeDxOMpqQgEkIYAUSsAIBTMDvbPv9zrbPj/H7nH2fH8vvw3h9GK8X4/NivF4sX3Tf68V4PFsubje4PRiPG+N2Y1z697IriW1DJIKIOOuIDbKVMjt2HQHb3mJNJLL5ejHnSCS8uV7Ha4UjiO2Uix2B2P1IpK1Ou3XrNdutI9HPjbS/bru1DeEwEokpiz0vum5XFg4j0dgDkyYx5KEH4/0j21UPAr8F/g4cCpwP6LuiO2ljMMzF36zi0031/LAgi18PH6yv3CqlVC/XmQT0EWCmMea/0f3vAg93W0QKgHGZ4/jPCf/hd5/+jr/P/jsflnzInw74E/lJ209yVO9lPB48OTl4cnI6fY6IIE1NROrqsetqidTVYdfXO0tDA3ZjY/t1QyN2U1N0acTeWEmoqQS7qQlpbsZuaUGam53kpMu+mIkmpU4yalwuaF273c5UNy7XFmssgzEWWFb7bWPAgME42zFlzscZYnacZdt/gO3XSNufKxItj1mEbZSLOH9mIojYYEeP2fbm/bbj0XI70lbeVqc1iYxNMm27LUns0p9LT2j9+UbX7X72W6wtjMvdtm47z+XCeNxYlgvcLufYVs4z7mhZTD1PYUG8/wR2R0BE3jHGGBFZDfzOGDMb+E28A+sr5tU1cv78lWwMhfnn2CJOzcuId0hKKaU6YYcJqIj8yRjzP+DAaNH5IvJV94alAFK8Kfz14L/y0vKXuHnmzfzfS//H9dOv56ThJ+kANwOEMQaTkICVkAC5nU9ct0dEIBRqS0YlGMRuCSLBFiQYRFpanP1wCAmFnLrBIBKK7ofDSCiMhMNOnXA42oplQyTstHS1toKFwx1a6mLWW0ngJJrEtUv+ImHnuBM8EpNUCtvoQiBszlFjk9WO6w7JrjFW+/LWZNfliu7HJsnGSaLaEmgD0fONy3K2XZZTJ7bcikm+W69rRRMtywWW1eF81+brtJ4bW98VTfysba1dbZ9rXNbmxK5jueVykrwt9mOu445JKrWVaXe1GGMsYKkx5nKgFEiKc0x9xnPrq7h28VoyPG5enDKSPVIS4h2SUkqpTursyCcJQK2IPGiMyTbGDBWRld0ZmHIYYzhpxElMy5vGrz7+Fb/+5Ne8v/Z9frPvb8jw69NetfOMMeD14vJ6ITl5xycopbrDVTj31iuBPwCHAefGNaI+IGwLf1yxjrvWVrBPaiL3Tigm26t94JVSqi/Z4SNsY8xvgZ8Dv4gWeYDHujMotaX8pHzuP+p+rt3zWj4s+ZCTXzyZ99a8F++wlFJK7QIR+VJE6kWkRETOF5GTReTzeMfVm9WFI5w9fwV3ra3ggvwsntljhCafSinVB3WmBfR7wBRgDoCIrIuOhKt6mMtycd6E89gvfz9+8dEvuPK9KzlqyFFcP/16shOy4x2eUkqpHTDGvAzbenccROTEHgynzyhtDnL2vBUsbmzmL6ML+cHgzHiHpJRSahd1JgENiogYYwTAGJPYzTGpHRiVPoqnvvMUD37zIHfPvZvP1n3GT6b9hJNHnoxltF+WUkr1Yn+JdwB9zfy6Rs6et5KGSIQnJg3n4Ax9Bq6UUn1ZZxLQp40xdwNpxpgfAhcA93Xm4saYY4AZgAu4T0Ru6XDchzPK7p5AJXCaiKwyxpwF/DSm6iRgqoh83ZnPHQg8Lg8XT7qYo4YcxY2f38jvP/s9Ly9/md/u91uGpfa6aeSUUkoBIvJBvGPoS97aWMOPvl1NutvFS1NHMjYpEO+QlOoxti3YYRs7ItgRIRLZvG1HbGxbEFs2l9mCtK7tzWuxnWu1jgAvEi1v3Rba9oF2x2gb9y96XNg8AGDMuxxtAwTuhC0G1IwdPDBmkPu2em1lZvMg+Ma0r9c6jmBruTFt+8SUd6zrDAjoDFtojAGrfV0TPd56DcvqcD0rpq7VoSw6UOFWy6wO5wyQQUZNZ/7CGGOOBI7C+avxhoi81YlzXMAS4EigBPgSOENEvo2pcxkwSUQuMcacDnxPRE7rcJ2JwAsiMnx7n9fbJ8ruTiLCC8te4C+z/kJTuIkLJ17IBRMuIODWG7VSSu3ItibK7ubPHAncDIwD/K3lItLrniDG6/76QEkFNywtZUJygEcnDiPXp/09VXzZthBqiRBqDhNsjhBqiRBuiRAKRreDEcJBe/N2yCYcsokEI4SCNpHW/bCzHQk7SzhkY4db952kMxJxkkQ1wLQlse0TU2tbCavVoc4WCa6JDt4fPWbFJtDRY23nbT6+7/eGk5zh33G8O/o627i/7rAF1Bhzq4j8HHhrK2XbMx1YJiIrouc8BZwEfBtT5yTgd9HtZ4E7onOixf4Xdwbw1I7iHMiMMXxv5Pc4sOBAbvvyNu6aexcvLHuBn+z5E44pPmbAPE1RSqk+5EHgt8DfgUOB8+nEwIADgYhw4/J13Lm2gqMyU7hz/BASXa54h6X6gUjEpqUhTHN9iObGEC2NYVoaQ7Q0RNdNYYJNYYJNkc3bzc461OwklDvD5bZwey1cHgu3x8LtdeH2RPe9Fr5ENy635SweC5fL4HJbWG4Llzu67TJYLmftitluK7cMpnXfak04NicbVofkojWRIZqwQPsWuq21ErbVgQ5zckfrt37hnfl1s2MjakxLa+u+OAXtpvJuna+7rYW2tVzat9o6h5zW39brir35nNb91m3bjjkv5lpiR9t77fatxbYtW1y33bYdc370mnaHMrE7ntO+NTr2uC0CtjjTkLeVtz/Xtls/J+Z8u/2+HRHEttt9j46fb9tCOBjZiR/mzuvMK7hH4oyCG+vYrZR1lA+sjdkvAfbeVh0RCRtjaoBMYGNMndNwEtUtGGMuBi4GKCoq2kE4/V9WIIvbDrqN00afxq0zb+VnH/6MJxc9yc+n/5zxmePjHZ5SSqnNAiLyTvSh62rgd8aY2cBvdnSiMSYNpyvMBJzf0S4Qkc9ijh8CvAi0Tpf2vIjcGD12DXBR9Lz5OHN7N3fVl9pdYVu4dvFa/rO+ivPzs/jjyHxc+hBVbYOI0NIYpqGmhabaII11QZpqQzTWBmmqc/ab60PO0uAknNvj9bvwBtx4A258ATcJKV7ScgJ4Am68fjdevwuPL7r4XXh8bmfb68Lts5y114Xb6ySbrQmeUqq9bSagxphLgcuAYcaYeTGHkoFPujuwaAx7A40ismBrx0XkHuAecF4R6omY+oI9c/fkye88yYvLX2TGnBmc8coZfHfEd7ly6pVkBbLiHZ5SSiloMcZYwFJjzOVAKZDUyXNnAK+LyCnGGC/OfKIdfSQix8cWGGPyceYdHSciTcaYp4HTgYd29Ut0paaIzSXfruKNjbX8tDiPnxTn6hs8A5jYQmNtkLrqZuqrWqiraqa+upmGTUEaa1poqGmhYVOQSHjLVknLMgSSPQRSvASSPKRkBfAnefAneghE175EN74ED74EN/4ED96AC8ulLyEo1RO21wL6BPA/nD4q18eU14lIVSeuXQoUxuwXRMu2VqfEGOMGUnEGI2p1OvBkJz5LdeCyXJw88mSOHHIk98y7h8cWPsbrq17n7HFnc+74c0nxpsQ7RKWUGsiuwkkcrwT+gPMa7rk7OskYkwocBJwHICJBILgTn+sGAsaYUPTz1+1U1N2kNhzh3Pkr+HxTAzeNzOeCAp1arL8TEZobQtRWNFO7sYnayiZqK5qo2dhMXWUT9dUt2JH2bQtun4ukNB+JqV7yhqWSmOojMc1HQqqXhGQvgRQvCSlefAG3M2CMUqpX6tQgRADGmBzaD5SwZgf13TiDEB2Ok2h+CZwpIt/E1PkxMDFmEKKTReT70WMWzuu5B7b2I92egTwIUWesrl3NHV/dweurXifFm8IFEy7gzLFn6kBFSqkBLx6DEO0qY8weOG/+fAtMBmYDV4lIQ0ydQ4DncLq+rAOua733GmOuAv4ENAFvishZ2/ic2C4ue65evbp7vhBQEQxx5twVLGxo4p9jh/C93PRu+yzV88KhCJs2NLFpQ+PmpdxZd3wlNpDiJTXLT3JmgOQMP8kZPpLS/SRFt70Bt7aKK9WHbOv+usME1BhzAvA3YDBQDgwBForIDjsVGmOOA27HmYblARH5kzHmRmCWiLxkjPEDjwJTgCrg9JhBiw4BbhGRfTrzBTUB7ZxFVYv451f/5MOSD8kKZHHxpIs5ZeQpeFw6uqBSamCK0yi4bwGnisim6H468JSIHL2D86YBnwP7i8gXxpgZQK2I/DqmTgpgi0h99D48Q0RGRj/jOZyxFTYBzwDPishj2/vM7ry/rmlq4fS5KyhrCXLfhKEcnqlv5/RVkYjNpg2NVK1r2LyUNVBT3kjsr5pJ6T7SchNIy0kgNSdAanaAlCxn8fh0sCml+pPdSUDnAocBb4vIFGPMocAPROTC7gl112gCunO+Kv+KGXNmMHvDbAYlDuK88edx8siT8bt3f8hlpZTqS+KUgH4lIlN2VLaV8/KAz0WkOLp/IHC9iHxnO+esAqbhvOZ7TOv92xhzDrCPiFy2vc/srvvrysYW/u/rZTREbB6bNIy9UhO7/DNU9wi1RKgsradiTR0b19ZRsbaeqnUNbf0xjYHUnAQyBic6y6DEtqRTk0ylBo5dnoYFCIlIpTHGMsZYIvKeMeb2rg8x/uqaQ/z8uXlcd9RohmV3diyIvmlKzhQePPpBPl33KXfNvYubZ97M3fPu5gdjf8BpY07TPqJKKdW9bGNMUWt3FmPMENpN6751IrLeGLPWGDNaRBbjdHOJnd6sNUndICJijJmOM71LJbAG2McYk4DzCu7hQFye3C5rbOaUr5YTFJvn9hjOhOStjaOkegM7YlNV1sCGlbVsWFnL+pW1VK9vaPvb6kt0k12YzMRDC8gqSCIz30k23R5NNJVSW9eZBHSTMSYJ+BB43BhTDjTs4Jw+aWN9kC9WVHHmvV/w9I/2pSizf98QjTHsn78/+w3ej9kbZnPfgvv4x1f/4IEFD3Da6NP4wbgf6Ki5SinVPX4JfGyM+QBn9rwDifa57IQrcO7HXmAFcL4x5hIAEbkLOAW41BgTxkk0T4/Or/2FMeZZYA4QBr4iOpJ8T1rc0MypXy8jIvDcHiMYm6RjEfQmLU1h1i+vYd3STaxfUUP56lrCQadl05/oIXdoCiOmZpNdlExWYTJJ6T7tl6mU2imdeQU3EWjGuUGehTNS7eMiUrndE3tYV70itLCsljPu/Zwkn5v//Ghf8tMG1o1xYeVC7l9wP2+uehOP5eGYocdw1tizGJc5Lt6hKaVUt+jpV3Cjg+ydArwLtI5z8LmIbNz2WfHTla/gLqxv4pSvl2MZeHaPEYxO1G4f8dZUH2Td0k1tS2VJPSLOVCZZRcnkDU0hN7qkZAU02VRKddou9wHtK7ryBjm/pIYz7/2czCQv//nRvuSmDLwb5KqaVTy28DFeWv4STeEmpuRM4cwxZ3L4kMPxWDpgkVKq/4hTH9BZfWXk3a66v35T38SpXy/DayyenTKcEQkD797aG4RDEcqW11CysIo131axcW09AG6PRe6wVAaPTGPwiFRyh6Xi8eprtEqpXbfTCagxpg7nDf/WR12tFQ0gItKrOgl29SAJs1dXc/b9XzA4LcBTF+9DVpKvy67dl9QGa3lx2Ys8sfAJSupLyAnkcOroU/neiO+Rm5gb7/CUUmq3xSkBvQXYCPyHmG4tnZxnu0d1xf11Xl0jp329nIDL4rk9RjA0YWDeU+Nl04ZGVs3fyJpvq1i3dBORkI3lMuQNS6VwbDr5ozPIGZKMy23FO1SlVD+iLaC74PMVlZz34EyKMxN56uJ9SEvwdun1+xJbbD4u/ZjHFz7Op+s+xTIW+w3ej5NHnswhBYfoNC5KqT4rTgnoyq0Ui4gM68k4OmN3768iwolzlrGuJcjzU0YwJKDJZ3ezIzZly2tYNW8jq+ZXsmlDIwDpeQkUjsugcGwGg0em4fV3ZigQpZTaNbvSAuoHLgFGAPNw5vEMb7VyL9Bdw8R/tLSCCx+exejcZB67aG9SA5poraldwwvLXuDF5S9S3lhOui+d44cfz3dHfJdR6aPiHZ5SSu2UeCSgfUlX3F83tIQIilDoH7gPcrtbOBRh7bdVLJtTzur5lbQ0hrFchvzR6RRPzKJ4YiYpWQNrXAulVHztSgL6HyAEfAQcC6wWkau6Ncrd0J3zgL67aAM/enQ2Y/JSeOSC6aQn6g0UIGJH+HTdp/x32X95b+17hO0wI9NHcmzxsRwz9BgKkwvjHaJSSu1QnFpAE4CfAEUicrExZiQwWkRe6ck4OkPn2e69YpPOlXM3EmqO4EtwM3RSFsWTsigcl6GtnEqpuNmVBHS+iEyMbruBmSIytXvD3HXdfYN8d9EGLnlsDsOyEnn0wr3JTtZXiGJVNVfxv5X/4/WVr/N1xdcATMyayDHFx3B08dHaX1Qp1WvFKQH9DzAbOEdEJkQT0k9FZI+ejKMzNAHtXWxbKF1czeLP17NibkVb0jlsj2xG7JlD/ph0XC7ty6mUir9dSUDnxCacHfd7m564QX6ybCMXPTyLQWl+nrhoH/JSdQS/rVlXv443Vr3B/1b+j4VVCwGYlDWJQ4sO5dDCQxmWOkyHcVdK9RrxHAXXGPOViEyJls0Vkck9GUdnaALaO1Svb2DRZ+tZMnM99dUteANuhk1xks4CTTqVUr3QriSgETaPzGeAANDIABkFd1u+XFXF+Q9+SUail8cv2pvCjIRu/8y+bGXNSt5a/RbvrXmPBZULAChKLuLQwkM5tOhQJmdPxm3p60FKqfiJUwL6KXA48ImITDXGDAeeFJHpPRlHZ2gCGj8tTWGWfLGeRZ+VUb66DmMZisZlMHqfPIZOysKt06QopXoxHQW3C81du4lzHphJgtfF4xftzbDspB753L5uQ8MGPij5gHfXvsvMspmE7BBJniSm501n//z92XfwvtpvVCnV4+KUgB4F/AoYB7wJ7A+cLyLv9WQcnaEJaM+rWFPHgg9KWPLlBsJBm8z8JMbsm8fIvXJJTNUuQEqpvkET0C727bpafnD/F1jG8NhF0xmT16sahHu9+mA9n5V9xqfrPuXT0k9Z17AOgMLkQvYbvB/T8qYxLXcaWYGsOEeqlOrv4jUKrjEmE9gH582iz0VkY0/H0BmagPaMUDDC0i838M2HpZSvrsPtsRg5PZcJB+WTM0R/x1BK9T2agHaDZeV1nHXfFzQGI9xz9jT2HZ7Zo5/fX4gIa+rW8EnpJ3y27jNmrp9JY9iZs6w4pZg9c/dkz9w9mZY7jUFJg+IcrVKqv4lTC+g7InL4jsp6A01Au1d9dQvz31/LNx+to6UxTPqgRCYcNJjRe+fhS9Cp35RSfZcmoN2kdFMT5z4wkzWVjfz1+5M5YfLgHo+hvwnbYRZVLWLW+lnM3jCb2eWzqQvWAZATyGFi9kQmZk1kUvYkxmeOJ8Gj/XCVUruuJxPQ6BzbCcB7wCE4rZ8AKcDrIjKmJ+LYGZqAdo+KtXV8/fYaln1ZjogwbEo2kw4tYNCINB2oTynVL2zr/qqjv+ym/LQAz16yLxc/MpsrnvyKDbXNXHTgsHiH1ae5LTcTsiYwIWsC5004D1tsllYvZfaG2czbOI/5FfN5Z807AFjGYnjacMZljGNs5ljGZIxhdPpokrzaL1cp1Sv9CLgaGIwzDUtrplEL3BGnmFQPERFWL6jk67fXUrq4GrfPxYRD8pl8WCEpWYF4h6eUUj1CW0C7SHMowk+e/prX5q/ngv2HcsN3xmJZ+gSzu1Q3VzN/43xnqZjPwqqFVDVXtR0vTC5kTMYYRqaPZETaCIanDqcwpRCPpa8zKaXai9MruFeIyD978jN3Vbzvr/2B2MKKuRXMem0VG9fWk5jmY9JhBYw/YLC+ZquU6re0BbSb+T0u7jhjKn9I+ZYHPlnJhtpm/vr9yfg9OkR6d0j3p3NQwUEcVHAQ4DxVrmiqYFHVorZlYeVC3l79NoLzkMVtuSlOKWZE2giKU4sZkjKE4pRiilKKSPHqAA9KqZ4jIv80xuwHFBNzLxaRR+IWlOpyti0sn1POrNdWUbWugdScAIedM5ZRe+fqvJ1KqQFLE9AuZFmG354wnvy0AH98dSFlNU3cdfae5CT74x1av2eMISchh5yEnLakFKAp3MTKmpUs37ScZZuWsWLTChZsXMCbq9/EFrutXoY/gyEpQyhIKiA/OZ/8JGcpSCogJyEHl6UPEpRSXccY8ygwHPgaiESLBdAEtB+wbWHplxuY/b9VVK9vJD0vgSMvGMeIPXOwNPFUSg1wmoB2g4sOHMbgtADXPj2Xk+74hHvOnsbEgtR4hzUgBdwBxmWOY1zmuHblwUiQkroSVtWuYk3tGlbVrmJ17Wq+3PAlr6x4pa3VFJyW09yEXHITcslLzCMvMa9tOzchl8xAJpmBTH29Vym1M6YB46S/9INRQLSP5/xKPnthOVXrGsjMT+ToH05g+JRsjHbLUUopQBPQbnPcxEEMyUzg4kdmc8pdn3LbKZM4aY/8eIelorwuL8PShjEsbcsBo0KREGUNZZTUl1BaX0ppXSllDWVsaNzA3Iq5vLn6TcJ2uN05BkO6P52sQBbZgWwyA5lk+DPI8GeQ7k9vt53qTSXRk6ijHCo1sC0A8oCyeAeiukbZsk189sJyypbVkJoT4KiLxjNiao4mnkop1YEmoN1o/OBUXrx8fy57bA5XPfU1i9bXcd1Ro3HpzahX87g8FKUUUZRStNXjtthUNVexoWED5Y3lVDRVsLFpo7NudNYralZQ2VRJ0A5u9Rpu4ybFl0KaL41UXyqp3lSSvclbLEmeJJI8SSR6E0l0J5LkTSLBk0CiO1FfC1YDkogQkQgRiSAi+N19totDFvCtMWYm0NJaKCInxi8ktSsqS+v5/MUVrJq3kYQULwefOZqx+w/SPp5KKbUNmoB2s6wkH49dtDe/e/kb7nx/OYvX13H76XuQ4tfXNfsqy1hkBbLICmQxnvHbrCciNIYbqWqucpamKja1bKKmpYaaYM3m7ZYayhrKWLppKbXBWuqD9e1eAd4Wr+UlwZNAwB1ot/jdfvwuv7OObvtcPnxuHz6XD6/lxevyOmUuHx7Lg8flwevy4rE8eC0vHpcHj+XBbblxW+52227jrF3GpUnwThIRbLGxsZ212G0JVet+7HbsfmvCFbtv2+2Pdzw/Ym/9WNgOb/Ocjsda922xCUu47brbu2br8dbtrZ0be3xnzontuz0lZwqPHNtnu0z+Lt4BqN3TVB/ki5dW8u1HpXh8LvY+aRiTDyvE49N/F5VSans0Ae0BXrfFTd+byNhBKfz+pW846Y5PuOPMKYwfrP1C+zNjDImeRBI9iRQmF3b6PFtsGkIN1AXrqAvW0RBqaLfUh+ppDDXSFG6iMeys27ZDTVQ3V9MSaaEp3ERzuJmWSAvN4WbCEt7xh+/sd8Tgsly4jRvLWLiMC8ty1i7jwjLW1hcsjDHOgsEyFobN+yY6NWLrvvP/pt3ndhSbtLdty+ZtEaHt/6Ld7lq3O5bbYrc71pqAtR6LPd663TGhbC1rTRxb6/U1rT+z1p/p1n7Gbsvdvo7Vvm7r3w+vy4vL7dpmPZdxbXGt1ut3rO+yXOQl5sX7j2eXicgH8Y5B7Ro7YrPgw3XMfHkFweYIEw4pYPp3huJP0gfLSinVGd2agBpjjgFmAC7gPhG5pcNxH86If3sClcBpIrIqemwScDeQAtjAXiLS3J3xdrez9xnC6NxkrnhyDt/796f89oRxnDm9SPsCqnYsY7W9gtuVInaEoB0kGAnSEmmhJdJCMBIkZIcIRoJt2637YTtMyA4RtsOEJUwo4my3tkSF7FBby1RrecdWt9YyEXFa/ezNrX+xSVnHZA6iiaPQLjFsK4/Z3lZi2vrfVWsC27q9RaJr2pdbxmr7ObSWW5a11UQ5NqluOx69hsu4nG2stvKtJeWt523tWGxZa5JmsbncZbm2qNtubW1Z7jbuduXtjsUkf7HfQXUdY0wdbPVJhAFERHROqF6sZFEVHz29lKp1DRSMSeeA748kc3BSvMNSSqk+pdsSUGOMC/gXcCRQAnxpjHlJRL6NqXYhUC0iI4wxpwO3AqcZY9zAY8DZIjLXGJMJhLor1p40fWgGr115INc8PZdf/XcBX6yo4qaTJ5Lk08Zo1b1clouA5bymq5SKDxHp2idLqkfUVTXzyTNLWf5VBcmZfo790USG7pGlD2iUUmoXdGfWMx1YJiIrAIwxTwEnAbEJ6Els7gfzLHCHcf41PwqYJyJzAUSkshvj7HGZST4eOm8v7vxgOX99czHzS2v415lTGTdYH3wrpZRSvYVtCws+KOHzF1YgtrD3iUPZ44gi3F7t56mUUruqO4doywfWxuyXRMu2WkdEwkANkAmMAsQY84YxZo4x5mdb+wBjzMXGmFnGmFkVFRVd/gW6k2UZfnzoCJ784T40tIT53r8/4dHPV7d71VAppZRS8bGxpJ7nbpvNR/9ZyqARqZzx272ZdtxQTT6VUmo39dYxwt3AAcBZ0fX3jDGHd6wkIveIyDQRmZadnd3TMXaJvYdl8tpVB7L3sEx+/cICzn3wS9bX9OmurkoppVSfFQ5G+Oy/y3nmpi+pq2ziyAvHcfzlk0nJ0u4LSinVFbozAS0FYof+LIiWbbVOtN9nKs5gRCXAhyKyUUQagdeAqd0Ya1xlJfl4+Py9+MNJ45m5spKjb/+Ql+aui3dYSiml1IBSuqSaJ/8wkzlvrGb0Pnmc+bt9GLVXnvb1VEqpLtSdCeiXwEhjzFBjjBc4HXipQ52XgHOj26cA74rzDuobwERjTEI0MT2Y9n1H+x1jDGfvW8z/rjqIYdmJXPnkV1z+xByqG4LxDk0ppZTq18KhCB8/u5QX/v4VACddM4XDzhmLP1GnVlFKqa7WbYMQiUjYGHM5TjLpAh4QkW+MMTcCs0TkJeB+4FFjzDKgCidJRUSqjTF/w0liBXhNRF7trlh7k6FZiTzzo325+8MV3P72Er5YWcUtJ0/k8LG58Q5NKaWU6nfKV9fy9oPfUr2+kQkH57PfySPw+LSfp1JKdRfTXwa9mTZtmsyaNSveYXSpb9bV8JP/zGXxhjq+M3EQvz1hHDkp/niHpZRS/YoxZraITIt3HL1Vf7y/AkQiNrP/t5pZr60iIcXLYeeMoWhcZrzDUkqpfmNb91edfLIXGz84lZevOIB7PlzOP95dxodLKvjZsWM4a3oRlqX9UZRSSqldUb2+gbcf/Jby1XWMmp7LgaeN0tdtlVKqh2gC2st53RaXHzaS4ycN5lcvzOfXLyzg+Tkl3HzyRMbk6byhSiml1M5Y/HkZ7z+5BJfbcPQPJzBiz5x4h6SUUgNKb52GRXVQnJXIYxfuzd++P5nVlY0c/4+Pufm1hdQ1h+IdmlJKqR5kjEkzxjxrjFlkjFlojNm3w/FDjDE1xpivo8tvOntufxZsDvPOQ9/y9kMLySlK5vQbpmvyqZRScaAtoH2IMYaTpxZw6Ogcbv7fQu7+cAXPzSnhuqNGc+q0Qlz6Wq5SSg0EM4DXReSU6CjzCVup85GIHL+L5/Y7G0vqeOPeb9hU3si07xSz13HFWC59Bq+UUvGg//r2QemJXm47ZTIvXb4/xZmJXP/8fI7/58d8trwy3qEppZTqRsaYVOAgnFHkEZGgiGzq7nP7KhFhwQclPHvLbILNYU66egp7nzBMk0+llIoj/Re4D5tUkMYzl+zLHWdOobYpxBn3fs6PHp3Fqo0N8Q5NKaVU9xgKVAAPGmO+MsbcZ4xJ3Eq9fY0xc40x/zPGjN/JczHGXGyMmWWMmVVRUdE936SbhVoivPXAt3zw5BLyR6Vx2q+mUzA6Pd5hKaXUgKcJaB9njOH4SYN559qDue6oUXy0dCNH/O0DfvH8fMpqmuIdnlJKqa7lBqYCd4rIFKABuL5DnTnAEBGZDPwTeGEnzgVARO4RkWkiMi07O7vrv0U3q6lo5LnbZrN01gb2PmkYx18+mYQUb7zDUkophSag/Ybf4+Lyw0by/nWHcObeRTw7ey0H//l9fv/yN1TUtcQ7PKWUUl2jBCgRkS+i+8/iJJVtRKRWROqj268BHmNMVmfO7Q9Wf1PJMzfPor66meMvn8y0Y4sxOkaCUkr1GpqA9jM5KX5uPGkC7113CN/bI59HPlvNQbe9x62vL2JTYzDe4SmllNoNIrIeWGuMGR0tOhz4NraOMSbPGGOi29Nx7vWVnTm3LxMRZv1vFa/cMZekdD+n/mIvhozPjHdYSimlOtBRcPupgvQEbj1lEj86eBgz3lnKXR8s55FPV3HWPkO4YP+h5KX64x2iUkqpXXMF8Hh0FNsVwPnGmEsAROQu4BTgUmNMGGgCThcR2da5PR59Nwg2h3nn4YWs+KqCkXvlcugPxuDxueIdllJKqa0wm+9Jfdu0adNk1qxZ8Q6j11q8vo5/v7+Ml+euw2UZTp5SwMUHD2N4dlK8Q1NKqbgyxswWkWnxjqO36u3317qqZl7911yqyhrZ7+ThTD68kGgDsFJKqTja1v1VW0AHiNF5ycw4fQrXHTWaez9awX++XMvTs9dy9Lg8fnTwMKYU6ciASiml+pYNq2p59d/ziAQjHH/5JIrG6Su3SinV22kCOsAUZiRw40kTuPLwkTz86Soe/nQVr3+znskFqZy9bzHHTxqE36OvLSmllOrdln9VztsPfEsgxct3r55CxuCtziijlFKql9FBiAaorCQf1x41mk9/cTg3njSe+pYw1z0zl31vfodb/reIkurGeIeolFJKbUFEmPPGal6/ewGZBUmc8vNpmnwqpVQfoi2gA1ySz805+xZz9j5D+HR5JY98top7PlzOPR8u57AxOZw6rZDDxuTgcemzCqWUUvEVidh88MRiFn5SxohpORx+zljcXn1rRyml+hJNQBUAxhj2H5HF/iOyKN3UxBNfrObpWSW8vbCczEQv352Sz6nTChiTlxLvUJVSSg1AweYwr9+zgLXfVjHtuGKmHz9U5/dUSqk+SBNQtYX8tAA/PXoM1xwxig+WVPDMrBIe+WwV93+8kon5qfzf1HyOmzSInGSdykUppVT3a6oL8sodc6lYW8+hZ49h3P6D4x2SUkqpXaQJqNomt8vi8LG5HD42l6qGIC9+Xcozs0r43cvfcuMr37L30EyOnzyIY8bnkZnki3e4Siml+qHayiZe/sdc6qqaOfaSiQydlBXvkJRSSu0GnQdU7bQlG+p4Ze46XplXxoqNDbgsw77DMvnOpEEcPjZHW0aVUn2KzgO6ffG8v1aW1vPyP74mHLI57rJJDB6RFpc4lFJK7TydB1R1mVG5yfzkqNFcc+QoFpbV8ep8Jxn9xfPzAZhcmMYRY3I4YlwuY/KSdUJwpZRSO23dsk289u95uD0W37t2Kpn5SfEOSSmlVBfQBFTtMmMM4wanMG5wCtcdNZqFZXW8s3ADby8q569vLeGvby0hPy3A4WNzOHBkNvsMyyDZ74l32EoppXq5VfM28vq9C0jO8HPClZNJyQzEOySllFJdRBNQ1SVik9ErDh9JeW0z7y4q5+2F5Tw9ay2PfLYal2WYUpjG/iOyOHBkFpML03R6F6WUUu0sn1POm/d9Q1ZhEsdfPplAsjfeISmllOpCmoCqbpGT4uf06UWcPr2IlnCE2aur+WTZRj5eupF/vLuUGe8sJcnnZuqQdPYaks5eQzPYozANv0fnc1NKqYFqycz1vP3QQnKLUzj+isn4AvprilJK9Tf6L7vqdj63i/2GZ7Hf8Cx+ejRsagzy2fJKPlm+kS9XVvPXt5YA4HVZTCxIZVpxOlMK09mjMI28VB3QSCmlBoJvP1nHe48tIn9kGsddNgmvX39FUUqp/qhb/3U3xhwDzABcwH0ickuH4z7gEWBPoBI4TURWGWOKgYXA4mjVz0Xkku6MVfWctAQvx04cxLETBwFOQjprVTVfrqriy1VVPPDxSkKRFQDkpviYXJDG5MI0JhekMX5wCumJ+jqWUkr1Jws+LOWDJxZTOC6DYy+ZiMerb8MopVR/1W0JqDHGBfwLOBIoAb40xrwkIt/GVLsQqBaREcaY04FbgdOix5aLyB7dFZ/qPdISvBwxLpcjxuUC0ByK8G1ZLXPXbmLu2k3MK6nhzW83tNUflOpn7KAUxg5KZtygVMYOSmZIZiIuS0fbVUqpvmbuO2v5+JmlFE/K4ugfjsetXTGUUqpf684W0OnAMhFZAWCMeQo4CYhNQE8Cfhfdfha4w+icHQOe3+NialE6U4vS28pqGkPMK93EwrJavl1Xy8KyOj5YUkHEduax9bothmUlMjI3mRHZSYzMTWJEThJDMhPwufWXGaWU6o3mvLmaz55fzvAp2Rx54Xhcbh2YTiml+rvuTEDzgbUx+yXA3tuqIyJhY0wNkBk9NtQY8xVQC9wgIh91Y6yql0tN8HDgyGwOHJndVtYcirCsvJ5vy2pZVl7P0g11fL22mpfnrmurYwwMTg1QnJVAcWais2QlUpgRoCA9gSSf9jFSSql4+PrtNXz2/HJGTsvhiPPHYemo6EopNSD01t++y4AiEak0xuwJvGCMGS8itbGVjDEXAxcDFBUVxSFMFU9+j4sJ+alMyE9tV94YDLOiooFl5fWs3NjAqsoGVlU28ur8MjY1htrVTUvwUJAeoCAtgYL0AIPSAgxK9ZOX6mdQqp/sJB9u/aVIKaW61Pz3S/jk2WUMn5qtyadSSg0w3ZmAlgKFMfsF0bKt1SkxxriBVKBSRARoARCR2caY5cAoYFbsySJyD3APwLRp06Q7voTqexK87q0mpuAMeLRyYwMl1U2UbmqipLqRkuomllXU8/6ScppDdrv6loHsZB+5KU4ymp0csyT5yEzykZHoISPRR1rAg6X9UJVSaru++aiUD59awtDJWRx54XhNPpVSaoDpzgT0S2CkMWYoTqJ5OnBmhzovAecCnwGnAO+KiBhjsoEqEYkYY4YBI4EV3RirGiDSErxMKfIyJaZ/aSsRoaYpRFlNM+trmqPrJspqmimva6Gsppl5pTVU1rdgb+Vxh2Wc62ckeslI8JKa4CE14CEt4CEtwUNqgpcUv5uUgIcUv5tkv4fk6DrR60K7Pyul+ruFn5bx/uOLGTIhk6MvmoBLk0+llBpwui0BjfbpvBx4A2calgdE5BtjzI3ALBF5CbgfeNQYswyowklSAQ4CbjTGhAAbuEREqrorVqUAjDGkJXhJS/AydlDKNutFbKGqIUh5XTNVDcF2S2VDkKr6IJuagqytamRBU4iaphCNwch2P9sykOh1k+hzk+BzkeRzR/ddBLxuEjwuAl4XCdHF74ldLPzuzds+twuv28LnttqtvW4Lj2VpK20fJiJEbCEigm3jrEWw7fblYdtuOx6xnToRe/N22N7ynEj0OmF7y3Na60W2dywi7a8Rs922FiEc2fJa4cjmuCIdl46fFVM+YXAq/zprarx/LKqTFn+xnncfXUjh2HSO+dEEXB5NPpVSaiDq1j6gIvIa8FqHst/EbDcDp27lvOeA57ozNqV2lcsyba/hdlZLOEJNY4ja5hC1zWHqmsPUNYeoaw5T2xSiviVMfUuYhpYwDS2Rtu3STSGagmEagxGaghEaQ5G2kX93ldsyeFwWHpfB67ZwWxYuy+BxGdwuq+2422VwWwaXZdrquCyDZQwuy/lzMMbgMia6DS7jHLcsJ6G3DBii62gLr2Wcuq1psIk5Ztr+Zztky00RQcTZd9bOftuxmHJbiB5zEq/WurbEbjv17OhF7dZET5zrtR6L2LH1o+WtCVpbXSFix5Y757QmUiKtSRYx2zF1WhNM2fydeju3ZbCs6N8fY3C5Nv89af075N5WmbW53Ove/PfOHVPHMs7+sOykeH9V1UnLZpfzzkPfkj8qjWMvnaRTrSil1ADWWwchUqpf8bld5KS4yEnx79Z1RIRgxKY5aNMcjtAcitAcsmkJO+vmUIRg2KYlbBOMxGyHbYIRm1BYCEYihCLSVhaO2IQjQsgWIrZNKCJOWUxrU3Mo0m6/rQUsJjmy7fbJWeu6NQG0bWfdmtBFNzcnimw7wRLa56Wxbyub6JHWpNYY05bItu3HbFvRg05S7JzfetyKJjmWcRLl1mu0Jkgm5piJrp1jm6/tjiZNrfuu6Hkdk3bLbP48l3ESNpdF9PM3J/pWTEJmdUjYYuu7okmfK5qcxV6vNalrTQq3fk1wWVa0Hu2Svo5J49auE/sZSsUSERZ/Xkbe8FSOu3QSHq8mn0opNZBpAqpUH2KMwed24XO7SMUT73CUUmqHjDEcffEE7Ijg9euvHUopNdDpnUAppZRS3crtcaHPzJRSSgHoCABKKaWUUkoppXrE/7d3r6GWlXUcx78/xhkcLLIckWgytYZEy44XwqkQnUgsQyNFiwKJoAsRFll0gTLFF5V0xYQyG6ObYpkm5oWcyhelOTk16iSWjqSok5WVIZrNvxf7Ocxp8DJn2metOWt9P3DYaz177bWe39nP4X+evdde2wmoJEmSJKkTTkAlSZIkSZ1wAipJkiRJ6oQTUEmSJElSJ5yASpIkSZI64QRUkiRJktQJJ6CSJEmSpE44AZUkSZIkdcIJqCRJkiSpE6mqvvswFUn+DNwzpd2tAB6a0r4Wg7HlhfFlHlteGF/mseWF6WV+UVXtPYX9DNIU66tjdPjGlhfGl3lseWF8maeZ90nr62AmoNOU5OaqOqLvfnRlbHlhfJnHlhfGl3lseWGcmRezMT5fY8s8trwwvsxjywvjy9xFXk/BlSRJkiR1wgmoJEmSJKkTTkCf3Nf67kDHxpYXxpd5bHlhfJnHlhfGmXkxG+PzNbbMY8sL48s8trwwvswLntfPgEqSJEmSOuE7oJIkSZKkTjgBlSRJkiR1wgnoHEmOS3JHkj8k+Wjf/VkISS5MsiXJrXPanpfkuiR3ttvn9tnHaUrywiTrktye5LYkp7f2IWfePclNSX7bMn+6te+f5MY2vi9Osqzvvk5TkiVJbklyZVsfet7NSTYm2ZDk5tY25HG9Z5JLk/w+yaYkq4ecd2iGXl/HVlthfPXV2mptHdqYntVHfXUC2iRZApwHvB44CHhrkoP67dWCWAsct13bR4GfVtUq4KdtfSieAD5UVQcBRwLva8/rkDM/BqypqlcAM8BxSY4EPgN8oapeAvwNeGd/XVwQpwOb5qwPPS/AMVU1M+f7uoY8rr8EXF1VBwKvYPJcDznvYIykvq5lXLUVxldfra0TQ88L46qt0EN9dQK6zSuBP1TVXVX1OPB94MSe+zR1VfUL4K/bNZ8IXNSWLwLe1GWfFlJV3V9Vv2nL/2TyR/UChp25quqRtrq0/RSwBri0tQ8qc5KVwPHABW09DDjv0xjkuE7yHOAo4BsAVfV4VT3MQPMO0ODr69hqK4yvvlpbra1teVCZ+6qvTkC3eQHwpznr97a2Mdinqu5vyw8A+/TZmYWSZD/gUOBGBp65nTKzAdgCXAf8EXi4qp5omwxtfH8R+Aiwta3vxbDzwuQfn2uTrE/yrtY21HG9P/Bn4JvtVLALkuzBcPMOzVjr62jG51jqq7XV2srAxjQ91VcnoPofNflensF9N0+SZwE/AD5QVf+Ye98QM1fVf6pqBljJ5N2HA/vt0cJJ8kZgS1Wt77svHXtNVR3G5LTG9yU5au6dAxvXuwGHAedX1aHAv9judKCB5dXADHl8jqm+WltHYUy1FXqqr05At7kPeOGc9ZWtbQweTPJ8gHa7pef+TFWSpUyK43eq6oetedCZZ7XTKNYBq4E9k+zW7hrS+H41cEKSzUxO7VvD5PMMQ80LQFXd1263AJcx+WdoqOP6XuDeqrqxrV/KpGAONe/QjLW+Dn58jrW+WlsHmRcYXW2FnuqrE9Btfg2salf3Wga8Bbii5z515QrgtLZ8GnB5j32ZqvZ5hW8Am6rq83PuGnLmvZPs2ZaXA69j8tmcdcDJbbPBZK6qj1XVyqraj8nf7fVV9TYGmhcgyR5Jnj27DBwL3MpAx3VVPQD8KclLW9NrgdsZaN4BGmt9HfT4HFt9tbZaW9tmg8rcV33N5F1VASR5A5Pz3ZcAF1bVOf32aPqSfA84GlgBPAh8CvgRcAmwL3APcEpVbX8xhUUpyWuAG4CNbPsMw8eZfE5lqJkPYfKB8SVMXmS6pKrOSnIAk1cxnwfcAry9qh7rr6fTl+Ro4IyqeuOQ87Zsl7XV3YDvVtU5SfZiuON6hsmFMJYBdwHvoI1vBph3aIZeX8dWW2F89dXaam1lYGN6Vh/11QmoJEmSJKkTnoIrSZIkSeqEE1BJkiRJUiecgEqSJEmSOuEEVJIkSZLUCSegkiRJkqROOAGVJEmSJHXCCag0RUn2SrKh/TyQ5L62/EiSry7A8dYmuTvJe+b5uKtmv1B7J445077Tb2ceu7z9Ph5PsmJn9iFJGh/r6zM+1vqqRWO3vjsgDUlV/QWYAUhyJvBIVZ27wIf9cFVdOp8HVNVOFbhmBjgCuGq+D6yqR4GZJJv/j+NLkkbG+vqMx7W+atHwHVCpA0mOTnJlWz4zyUVJbkhyT5I3J/lsko1Jrk6ytG13eJKfJ1mf5Jokz9+B46xNcn6SXyW5qx33wiSbkqyds93mJCuS7Nfu+3qS25Jcm2R52+ZnSY5oyyvaY5YBZwGntldaT02yRzvGTUluSXJie8zBrW1Dkt8lWTX1X6wkadSsr9ZXLT5OQKV+vBhYA5wAfBtYV1UvBx4Fjm9F8ivAyVV1OHAhcM4O7vu5wGrgg8AVwBeAg4GXJ5l5ku1XAedV1cHAw8BJT7Xjqnoc+CRwcVXNVNXFwCeA66vqlcAxwOeS7AG8B/hSVc0weUX33h3svyRJO8v6Ku3iPAVX6sdPqurfSTYCS4CrW/tGYD/gpcDLgOuS0La5fwf3/eOqqrbvB6tqI0CS29q+N2y3/d1VNdu2vm0zH8cCJyQ5o63vDuwL/BL4RJKVwA+r6s557leSpPmyvkq7OCegUj8eA6iqrUn+XVXV2rcy+bsMcFtVrd7Zfbd9PTanfXbfT7U9wH+A5W35CbadJbH70xwvwElVdcd27ZuS3AgcD1yV5N1Vdf0O9F+SpJ1lfZV2cZ6CK+2a7gD2TrIaIMnSJAd33IfNwOFt+eQ57f8Enj1n/Rrg/WkvJSc5tN0eANxVVV8GLgcOWegOS5L0DKyvUs+cgEq7oPZZkJOBzyT5LZPTel7VcTfOBd6b5BZg7iXd1wEHzV4kATgbWAr8rp2GdHbb7hTg1iQbmJzu9K3Oei5J0pOwvkr9y7YzEyQtNu3Ke1fO9zLxfcvkMvFHVNVDffdFkqTtWV+lheM7oNLi9nfg7Mzzi7L7kvZF2Uxe0d3ac3ckSXoq1ldpgfgOqCRJkiSpE74DKkmSJEnqhBNQSZIkSVInnIBKkiRJkjrhBFSSJEmS1In/AkC1A3VXzKRGAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -399,7 +373,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.11.5" }, "toc": { "base_numbering": 1, diff --git a/docs/source/examples/notebooks/models/pouch-cell-model.ipynb b/docs/source/examples/notebooks/models/pouch-cell-model.ipynb index 8e84374fbe..a9431211af 100644 --- a/docs/source/examples/notebooks/models/pouch-cell-model.ipynb +++ b/docs/source/examples/notebooks/models/pouch-cell-model.ipynb @@ -49,7 +49,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "zsh:1: no matches found: pybamm[plot,cite]\n", + "\u001b[33mWARNING: pybamm 23.5 does not provide the extra 'cite'\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: pybamm 23.5 does not provide the extra 'plot'\u001b[0m\u001b[33m\n", + "\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } @@ -82,7 +86,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/robertwtimms/Documents/PyBaMM/pybamm/models/full_battery_models/base_battery_model.py:835: OptionWarning: The 'lumped' thermal option with 'dimensionality' 0 now uses the parameters 'Cell cooling surface area [m2]', 'Cell volume [m3]' and 'Total heat transfer coefficient [W.m-2.K-1]' to compute the cell cooling term, regardless of the value of the the 'cell geometry' option. Please update your parameters accordingly.\n", + "/Users/robertwtimms/Documents/PyBaMM/pybamm/models/full_battery_models/base_battery_model.py:910: OptionWarning: The 'lumped' thermal option with 'dimensionality' 0 now uses the parameters 'Cell cooling surface area [m2]', 'Cell volume [m3]' and 'Total heat transfer coefficient [W.m-2.K-1]' to compute the cell cooling term, regardless of the value of the the 'cell geometry' option. Please update your parameters accordingly.\n", " options = BatteryModelOptions(extra_options)\n" ] } @@ -619,7 +623,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABHoAAAKSCAYAAACtCLygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwURdrHf9UzmZwkgXAkgQSi3IiCAREQFI0cIorigaILyiuuAoJ44InHLqJ4IV7oqqCryOoqqKyiiHKoERFE7ku5FAJqOHJOZqbr/aOnu6v6mCSQg4Tny2eY6bqe56mu7kw983QV45xzEARBEARBEARBEARBEHUepbYVIAiCIAiCIAiCIAiCIKoGcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1hBPa0fPXX3+hadOm2LVrV4XK33PPPRg/fnz1KkUQBEEQBFFPEb97LV26FIwxHD582LX8okWL0KVLF6iqWnNKEgRBEAQRkRPa0TN16lRceumlaNWqVYXK33nnnXjzzTfx66+/Vq9iBEEQBEEQ9ZDKfvcaOHAgoqKi8M4771SvYgRBEARBVBhvbSvgRnFxMV5//XV8/vnnFa7TuHFjDBgwAC+//DKefPLJatSOIAiCIAiifnEs370AYNSoUZg5cyauv/76atLMmVAohEAgUKMyCYIgCOJY8fl8UJSaibU5YR09n376KaKjo3H22WcD0P6YjxkzBl999RXy8vKQmZmJW2+9FRMmTJDqDRkyBPfffz85egiiEsyZMwetWrXCeeedV9uqVCsni50EQRDHgvW7l863336Le++9F9u2bUOXLl3w2muv4bTTTjPyhwwZgnHjxuGXX37BqaeeWu16cs6Rl5cX8ZEygiAIgjjRUBQFWVlZ8Pl81S7rhHX0rFixAtnZ2caxqqpo0aIF3n//faSkpOC7777DmDFjkJaWhquuusood9ZZZ+G3337Drl27Khx2TBAnK3PnzoXH4wGgfXF+/vnn0bFjR1xwwQW1rFnVcrLYSRAEcTxYv3vp3HXXXXjuueeQmpqK++67D0OGDMG2bdsQFRUFAMjMzESzZs2wYsWKGnH06E6epk2bIi4uDoyxapdJEARBEMeDqqrYt28f9u/fj8zMzGr/23XCOnp2796N9PR04zgqKgqPPPKIcZyVlYXc3Fy89957kqNHr7N7925y9BAnPdnZ2cjMzMT8+fMd86+++mq88MILmD17NmJjY3HrrbfWS+fH8dg5atQovPnmmwCATp06YcOGDcekw4wZM3D77bcbx3/88QcaN258TG0RBEFUB9bvXjoPPfQQLrzwQgDAm2++iRYtWmD+/Pm271+7d++udh1DoZDh5ElJSal2eQRBEARRVTRp0gT79u1DMBg0fiypLk7YxZhLSkoQExMjpb344ovIzs5GkyZNkJCQgFdffRV79uyRysTGxgLQnjMniJMZzjm2bNmCjh07Riyne5MZY0bUy4nKDTfcgJiYGIRCIdcygwYNQlxcHH777Tcp/XjsbNy4Mf7973/j8ccfBwBccskliIuLQ0FBgWudESNGwOfz4a+//gKgLVj673//G5dddlmlZBMEQdQUTt+9AKBnz57G50aNGqFdu3bYvHmzVCY2NrZGvnvpa/LExcVVuyyCIAiCqEr0R7YizWWqihPW0dO4cWMcOnTIOJ43bx7uvPNOjB49Gl988QXWrl2LG264AWVlZVK9/Px8AJq3jCBOZnbt2oXi4uKIjp7//Oc/aNq0KSZOnIipU6fizz//xJIlS2pQy8rRoUMH+P1+7Ny50zF/xYoVWLRoEW677Ta0aNHCSD9eO+Pj43Hdddfh4osvBqA5cUpKSlwjpYqLi/HRRx9h4MCBxi/O7du3x3XXXYfTTz+9wnIJgiBqEut3r8qQn59fo9+96HEtgiAIoq5Rk3+7TlhHT9euXbFp0ybj+Ntvv0WvXr1w6623omvXrmjdujV++eUXW70NGzYgKioKnTp1qkl1CeKEQ79+Ijl6rr32WgwfPhyAduO57bbbTuhHt3RbtmzZ4ph/7733olGjRrjnnnuk9Kq285JLLkGDBg0wd+5cx/yPPvoIRUVFGDFixDHLIAiCqGms3710vv/+e+PzoUOHsG3bNnTo0MFIKy0txS+//IKuXbvWiJ4EQRAEQUTmhHX0DBgwABs3bjR+WWrTpg1+/PFHfP7559i2bRsefPBBrFq1ylZvxYoV6NOnj/EIF0GcbMyfPx/Z2dnGI0J9+vTBiBEjcOTIEdc6o0aNqhM7UemOHusjAwDwv//9z9gZJjk52bF+VdkZGxuLyy+/HEuWLMHBgwdt+XPnzkWDBg1wySWXHLcsgiCImsL63Uvn0UcfxZIlS7BhwwaMGjUKjRs3xtChQ43877//HtHR0dIjXic6oVAIS5cuxbvvvoulS5fWSBg9oC0kPX78eJxyyimIjo5GRkYGhgwZIkWZfvfdd7jooovQsGFDxMTEoHPnznjmmWdsOjLGwBiTHHEA4Pf7kZKSAsYYli5daqQvW7YM559/Pho1aoS4uDi0adMGI0eOlKLjQ6EQnn32WXTu3BkxMTFo2LAhBg0ahG+//VaSMWfOHNe/tUT9Yvny5RgyZAjS09PBGMOCBQtqRcaoUaOMMR8VFYVmzZrhwgsvxBtvvAFVVatcJ+LEoKLnvVWrVkY5/SVG9+v51vvlxIkTbXODo0eP4v7770f79u0RExOD1NRU5OTk4MMPPwTn3Ci3Y8cO3HDDDWjRogWio6ORlZWFa665Bj/++GP1dEYlOWEdPZ07d8aZZ56J9957DwBw88034/LLL8fVV1+NHj164K+//sKtt95qqzdv3jzcdNNNNa0uQZwQPPnkk7j88svRrl07tG/fHi1btsR1112HuXPn4pZbbqlt9Y6bVq1aITY21hbRwznHAw88gIyMDIwbN65GdBkxYgSCwaBxj9LJz8/H559/jssuu4wczgRB1Cms3710Hn/8cUyYMAHZ2dnIy8vDJ598Im0N++6772LEiBF1Zt2cDz/8EK1bt0a/fv1w7bXXol+/fmjdujU+/PDDapW7a9cuZGdn46uvvsKTTz6J9evXY9GiRejXrx/Gjh0LQPux5txzz0WLFi3w9ddfY8uWLZgwYQL++c9/Yvjw4dIkAwAyMjIwe/ZsKW3+/PlISEiQ0jZt2oSBAweiW7duWL58OdavX4/nn38ePp/PcCBxzjF8+HA8+uijmDBhAjZv3oylS5ciIyMD5513XrVM8IkTn6KiIpxxxhl48cUXK133vPPOw5w5c6pMxsCBA7F//37s2rULn332Gfr164cJEybg4osvRjAYrLR+RN2gouf90Ucfxf79+43XTz/9JLUTExODyZMnR5R1+PBh9OrVC2+99RbuvfderFmzBsuXL8fVV1+Nu+++2/jh/Mcff0R2dja2bduGV155BZs2bcL8+fPRvn173HHHHVXfCccCP4FZuHAh79ChAw+FQhUq/+mnn/IOHTrwQCBQzZoRxInHDz/8wBlj/M477+Scc962bVt+zTXXcM45v/DCC7nX6+VFRUW1qWKV0LVrV96zZ08p7d133+UA+OzZs6tc3siRI3nLli1t6cFgkKelpdl0mTVrFgfAP//8c8f2HnroIQ6A//HHH1WuK0EQxPFS2e9ef/zxB2/UqBH/9ddfq1kzjZKSEr5p0yZeUlJyTPU/+OADzhjjQ4YM4bm5ubygoIDn5ubyIUOGcMYY/+CDD6pYY5NBgwbx5s2b88LCQlveoUOHeGFhIU9JSeGXX365Lf/jjz/mAPi8efOMNAD8gQce4ImJiby4uNhIv/DCC/mDDz7IAfCvv/6ac875s88+y1u1ahVRv3nz5nEA/OOPP7blXX755TwlJcXQffbs2TwpKakiZhP1CAB8/vz5FS5/7rnnVvq7mZuMkSNH8ksvvdSWvmTJEg6A/+tf/6qUHKJuUNHz3rJlS/7ss8+6ttOyZUt+2223cZ/Px//3v/8Z6RMmTODnnnuucXzLLbfw+Ph4/vvvv9vaKCgo4IFAgKuqyjt16sSzs7Md/1YeOnTIVY/j/RtWGU7YiB4AGDx4MMaMGYPff/+9QuWLioowe/ZseL0n7K7xBFFtPPHEE2jSpAkeffRRlJSUYMeOHTjjjDMAAL1790YwGHR8zKimUFUVpaWlFXpxyy+WIh07dsTWrVuN42AwiClTpqBz587429/+VhOmAAA8Hg+GDx+O3Nxc7Nq1y0ifO3cumjVrdkKvdUQQBOFGZb977dq1Cy+99BKysrKqWbPjJxQK4Y477sDFF1+MBQsW4Oyzz0ZCQgLOPvtsLFiwABdffDHuvPPOanmMKz8/H4sWLcLYsWMRHx9vy09OTsYXX3yBv/76C3feeactf8iQIWjbti3effddKT07OxutWrXCBx98AADYs2cPli9fjuuvv14ql5qaiv3792P58uWuOs6dOxdt27bFkCFDbHl33HEH/vrrLyxevLhC9hLlwzlHUVFRjb8ifceqi5x//vk444wzqj0ir77iNC7KyspQVFQEv9/vWFZ8ZCoQCKCoqAilpaUVKltVHMt5z8rKwt///nfce++9jo/7qaqKefPmYcSIEUhPT7flJyQkwOv1Yu3atdi4cSPuuOMOKIrdnXKiPNZ6Qjt6AO25uYyMjAqVveKKK9CjR49q1oggTjyCwSAWLVqEQYMGITY2Fhs2bICqqsYOT0VFRQCAhg0b1pqOy5cvR2xsbIVeoiPHSocOHZCfn284rWbPno3t27dj2rRpjjfb6kRfbFlflPm3337DihUrMHz48BN+q3qCIAg3KvPdq1u3brj66qurWaOqYcWKFdi1axfuu+8+298LRVFw7733YufOnVixYkWVy96xYwc452jfvr1rmW3btgGAtNC1SPv27Y0yIjfeeCPeeOMNANraORdddJFtB7Qrr7wS11xzDc4991ykpaXhsssuwwsvvICjR49K8t1k6+lO8oljo7i4GAkJCTX+Ki4urm3Tq5z27dtLP7oRFUcfF3/++aeR9uSTTyIhIcG2HELTpk2RkJCAPXv2GGkvvvgiEhISMHr0aKlsq1atkJCQIK2rWZHH+CqD9bxPnjxZGuszZ8601XnggQewc+dOvPPOO7a8P//8E4cOHYp4nwaA7du3G/JPZCj0hSDqATt27EBRURE6d+4MAFi3bh0AGBE9a9euRcuWLZGUlFRrOrZv3962joAbaWlprnnigsxJSUn4xz/+gb59+2Lw4MFVomdlyM7ORvv27fHuu+/ivvvuw7vvvgvOOe22RRAEcQKyf/9+AMBpp53mmK+n6+WqkspEUVQ24uK6667DPffcg19//RVz5sxxnNx4PB7Mnj0b//znP/HVV19h5cqVeOyxx/DEE0/ghx9+MP7u1rdoD6Jmeeyxx/DYY48ZxyUlJfj+++8lh8GmTZuQmZlZpXI55zW6bTVxYmA973fddRdGjRplHDdu3NhWp0mTJrjzzjsxZcoU248UFb3/1ZX7JDl6CKIeoO+QooeD//zzz2jcuDHS09Px559/YtmyZfj73/9emyoiNTVVuvkeK+IW62vWrMHevXvx/vvvH3e7x8qIESPw4IMPYt26dZg7dy7atGmD7t2715o+BEEQhDO6M2PDhg04++yzbfkbNmyQylUlbdq0AWPMtpmASNu2bQFoP2T06tXLlr9582bjb6BISkoKLr74YowePRqlpaUYNGgQCgoKHGU0b94c119/Pa6//nr84x//QNu2bTFr1iw88sgjaNu2reOulrpsUUfi+ImLi0NhYWGtyK0u/v73v+Oqq64yjkeMGIFhw4bh8ssvN9KcHok5XjZv3lwnHh89EdHHoDgu7rrrLkycONG2HIoeTS9uNjJ27FjcdNNNtkh2PdJGLFsV8wAR63lv3LgxWrduXW69SZMm4aWXXsJLL70kpTdp0gTJyckR79OAeR/csmULunbtegya1wwn/KNbBEGUT/PmzQEAubm5ALSIHj2a5/bbb4eiKJg4cWJtqVeltG7dGj6fD6tWrcK0adNw+eWX1+ojm3r0zpQpU7B27VqK5iEIgjhB6dOnD1q1aoXHHnvMtj6DqqqYNm0asrKy0KdPnyqX3ahRIwwYMAAvvvii8Ti1yOHDh9G/f380atQITz/9tC3/448/xvbt23HNNdc4tn/jjTdi6dKl+Nvf/lbhR4cbNmyItLQ0Q5/hw4dj+/bt+OSTT2xln376aaSkpODCCy+sUNtE+TDGEB8fX+Ov6ox8adSoEVq3bm28YmNj0bRpUymtqtdS/eqrr7B+/XoMGzasSts9WXAaFz6fD/Hx8YiOjnYsKz76GhUVhfj4eMTExFSobFVxPOc9ISEBDz74IKZOnSo5xRVFwfDhw/HOO+9g3759tnqFhYUIBoPo0qULOnbsiKefftpxrZ/Dhw9XWqfqgBw9BFEPyMzMxHnnnYd///vfuPvuu/Hzzz/D7/djyJAhePfdd/Haa68hKysLqqritttuQ+PGjZGcnIzu3btLz+Q6sXPnTgwePBgpKSlIS0uTQsIZY3j++eeRmZmJ1NRUPPnkk9VtKjweD9q2bYs5c+bg0KFDUohwbZCVlYVevXrho48+AgBy9BAEQZygeDwePP3001i4cCGGDh2K3NxcFBQUIDc3F0OHDsXChQvx1FNPVdsaay+++CJCoRDOOussfPDBB9i+fTs2b96MmTNnomfPnoiPj8crr7yCjz76CGPGjMG6deuwa9cuvP766xg1ahSuuOIKKVpCZODAgfjjjz/w6KOPOua/8soruOWWW/DFF1/gl19+wcaNGzF58mRs3LjRWHx5+PDhuOyyyzBy5Ei8/vrr2LVrF9atW4ebb74ZH3/8MV577TVpIelQKIS1a9dKL7eIIKLuUlhYaJxfQPteuHbtWmmdlpqS4ff7kZeXh99//x1r1qzBY489hksvvRQXX3xxjW7IQdQs1XHex4wZg6SkJGOdTZ2pU6ciIyMDPXr0wFtvvYVNmzZh+/bteOONN9C1a1cUFhaCMYbZs2dj27Zt6NOnDz799FP8+uuvWLduHaZOnYpLL720Ksw+fqp9Xy+CIGqE/fv384svvpjHxMRwANzn8/HevXvzJUuWGGU+++wznp2dzY8cOcKDwSBfvXo1LygocG0zEAjwDh068IceeoiXlJTwI0eO8B9//NHIB8D79+/Pjxw5wjdv3sxTU1P5l19+Wa12cs75VVddxQHwMWPGVLsst+3VRV588UUOgJ911lnltkfbqxMEQRw7VbE17QcffMBbtWrFARivrKysat1aXWffvn187NixvGXLltzn8/HmzZvzSy65xNgGnXPOly9fzgcMGMATExO5z+fjnTp14k899RQPBoNSW4iw1fWhQ4ek7dXXrFnDr7vuOp6VlcWjo6N5SkoK79u3r20r9UAgwJ988kneqVMn7vP5eGJiIh8wYAD/5ptvpHKzZ8+W+k9/nXrqqcfdR8SJxddff+14rkeOHFlu3Ypur14RGSNHjjTSvV4vb9KkCc/JyeFvvPGG4xbXRP2goue9IturW/Pnzp3LAUjbq3PO+eHDh/k999zD27Rpw30+H2/WrBnPycnh8+fP56qqGuW2bt3K//a3v/H09HTu8/l4y5Yt+TXXXMPXrFnjqkdNbq/OOK8jqwkRBFEhFi5ciCFDhuCnn35Cly5dpLwlS5bg1ltvxb///W9079693PDdb7/9FsOHD8fu3bsdd7RijOHrr7/GeeedB0Bbyf7gwYN49dVXq8qcWmfUqFH46quvsGbNGni93mPeMrG0tBSFhYWYPn06nnzySfzxxx+Oi8QRBEEQ7pSWlmLnzp3IysqyPSpQGUKhEFasWIH9+/cjLS0Nffr0od0SCYIgiGqlqv6GVQRajJkg6hlbtmwBYwzt2rWz5V1wwQX4+9//jjFjxiAvLw/XXXcdpk2b5vrM7G+//YaWLVtG3LZc3II3IyMDP//88/EbcYKxd+9eNGnSBJ06dTIW66wss2bNwu23317FmhEEQRDHgsfjMX6kIAiCIIj6Bjl6CKKesWXLFmRmZkqr3IvcfvvtuP3227F3715cdNFFOO2001xXwc/IyMDu3bsjblu5d+9enHrqqcbn6titpDa5++67cd111wHQFm87VoYNGyZt6VubW90TBEEQBEEQBFF/IUcPQdQztmzZgvbt2zvm/fjjj+Cco2vXrmjQoAGioqKkUHXd4TNnzhwAwFlnnYUGDRrgH//4B+6++26UlZVh+/btyM7ONuo88cQTOPPMM7F//3688cYbeOutt6rNttqgY8eOjtvZVpaMjAwp+okgCIIgCIIgCKI6oF23CKKe8c0332DRokWOeUeOHMGNN96I5ORktGvXDr1798a1115r5P/222/o3bu3cez1erFw4UJ89913SEtLQ7t27Ywt3HX0qKC+ffvitttuQ05OTvUYRhAEQRAEQRAEQZQLLcZMEAQAIBgM4vTTT8fPP//sumaPFcYY9u7dixYtWlSzdgRBEARRswtZEgRBEERVQosxEwRR43i9XmzatKm21SAIgiCIcqHfKQmCIIi6Rk3+7aJHtwiCIAiCIIg6gR5xWlxcXMuaEARBEETlKCsrAwBpjdTqgiJ6CII4ZugXVYIgCKIm8Xg8SE5OxsGDBwEAcXFxrrtCEgRBEMSJgqqq+OOPPxAXFwevt/rdMOToIQiCIAiCIOoMqampAGA4ewiCIAiiLqAoCjIzM2vkBwpajJkgCIIgCIKoc4RCIQQCgdpWgyAIgiAqhM/ng6LUzOo55OghCIIgCIIgCIIgCIKoJ9BizARBEARBEARBEARBEPUEcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD21xPLlyzFkyBCkp6eDMYYFCxZUSbtLly7FmWeeiejoaLRu3Rpz5sxxLfv444+DMYaJEydWiezymDZtGrp3744GDRqgadOmGDp0KLZu3Volbb///vto3749YmJi0LlzZ3z66aeuZf/+97+DMYYZM2ZUiexIvPzyyzj99NORmJiIxMRE9OzZE5999tlxt3ui2mulKsfYiWzzww8/DMaY9Grfvv1xt3si2/z777/juuuuQ0pKCmJjY9G5c2f8+OOPx93uiXoPa9Wqle0cM8YwduzY42r3RD7HBEEQBEEQRN2EHD21RFFREc444wy8+OKLVdbmzp07MXjwYPTr1w9r167FxIkT8X//93/4/PPPbWVXrVqFV155BaeffnqVyS+PZcuWYezYsfj++++xePFiBAIB9O/fH0VFRcfV7nfffYdrrrkGo0ePxk8//YShQ4di6NCh2LBhg63s/Pnz8f333yM9Pf24ZFaUFi1a4PHHH8fq1avx448/4vzzz8ell16KjRs3HnObJ7K9IlU5xuqCzZ06dcL+/fuN1zfffHNc7Z3INh86dAi9e/dGVFQUPvvsM2zatAlPP/00GjZseFztnsj3sFWrVknnd/HixQCAK6+88pjbPJHPMUEQBEEQBFGH4UStA4DPnz9fSistLeV33HEHT09P53Fxcfyss87iX3/9dcR27r77bt6pUycp7eqrr+YDBgyQ0goKCnibNm344sWL+bnnnssnTJhQBVZUnoMHD3IAfNmyZUbaoUOH+OjRo3njxo15gwYNeL9+/fjatWsjtnPVVVfxwYMHS2k9evTgN998s5T222+/8ebNm/MNGzbwli1b8meffbbKbKkMDRs25K+99hrnvP7aG2mM1UebH3roIX7GGWe45tc3mydPnszPOeeciGXq+z1swoQJ/NRTT+WqqnLO6985JgiCIAiCIOouFNFzgjJu3Djk5uZi3rx5WLduHa688koMHDgQ27dvd62Tm5uLnJwcKW3AgAHIzc2V0saOHYvBgwfbytY0R44cAQA0atTISLvyyitx8OBBfPbZZ1i9ejXOPPNMXHDBBcjPz3dtpyJ2q6qK66+/HnfddRc6depUxZZUjFAohHnz5qGoqAg9e/YEUH/tjTTG6qvN27dvR3p6Ok455RSMGDECe/bsMfLqm80ff/wxunXrhiuvvBJNmzZF165d8a9//UsqU5/vYWVlZXj77bdx4403gjEGoP6dY4IgCIIgCKLu4q1tBQg7e/bswezZs7Fnzx4jTP/OO+/EokWLMHv2bDz22GOO9fLy8tCsWTMprVmzZjh69ChKSkoQGxuLefPmYc2aNVi1alW12xEJVVUxceJE9O7dG6eddhoA4JtvvsEPP/yAgwcPIjo6GgDw1FNPYcGCBfjvf/+LMWPGOLblZndeXp5x/MQTT8Dr9eK2226rJovcWb9+PXr27InS0lIkJCRg/vz56NixY721N9IYq6829+jRA3PmzEG7du2wf/9+PPLII+jTpw82bNiAn3/+ud7Z/Ouvv+Lll1/GpEmTcN9992HVqlW47bbb4PP5MHLkyHp/D1uwYAEOHz6MUaNGAai/45ogCIIgCIKom5Cj5wRk/fr1CIVCaNu2rZTu9/uRkpICAEhISDDSr7vuOsyaNavcdvfu3YsJEyZg8eLFiImJqVqlK8nYsWOxYcMGaR2Tn3/+GYWFhYaNOiUlJfjll1+wZ88edOzY0Ui/7777cN9995Ura/Xq1XjuueewZs0a49f3mqRdu3ZYu3Ytjhw5gv/+978YOXIkli1bVi/tLW+M1UebAWDQoEHG59NPPx09evRAy5Yt8d5776G0tLTe2ayqKrp162Y4bLp27YoNGzZg1qxZGDlyZL2/h73++usYNGiQ4cSqr+OaIAiCIAiCqJuQo+cEpLCwEB6PB6tXr4bH45Hy9MnR2rVrjbTExEQAQGpqKg4cOCCVP3DgABITExEbG4vVq1fj4MGDOPPMM438UCiE5cuX44UXXoDf77fJqw7GjRuHhQsXYvny5WjRooWRXlhYiLS0NCxdutRWJzk5GcnJyZLd+iNfbnanpqYCAFasWIGDBw8iMzPTyA+FQrjjjjswY8YM7Nq1q+qMc8Dn86F169YAgOzsbKxatQrPPfccTjnllHpnb3ljbOrUqfXOZieSk5PRtm1b7NixA8nJyfXO5rS0NMlxAQAdOnTABx98AKB+38N2796NL7/8Eh9++KGRVl/vXQRBEARBEETdhBw9JyBdu3ZFKBTCwYMH0adPH8cyuuNApGfPnrateRcvXmysB3PBBRdg/fr1Uv4NN9yA9u3bY/LkydU+QeKcY/z48Zg/fz6WLl2KrKwsKf/MM89EXl4evF4vWrVq5diGm91LliyRtlgW7b7++usd18G4/vrrccMNNxyfUceAqqrw+/310t7yxtj+/fvrnc1OFBYW4pdffsH111+PDh061Dube/fuja1bt0pp27ZtQ8uWLQHU33sYAMyePRtNmzbF4MGDjbT6eC0TBEEQBEEQdZjaXg36ZKWgoID/9NNP/KeffuIA+DPPPMN/+uknvnv3bs455yNGjOCtWrXiH3zwAf/111/5ypUr+WOPPcYXLlzo2uavv/7K4+Li+F133cU3b97MX3zxRe7xePiiRYtc69TkjjW33HILT0pK4kuXLuX79+83XsXFxZxzzlVV5eeccw4/44wz+Oeff8537tzJv/32W37ffffxVatWubb77bffcq/Xy5966im+efNm/tBDD/GoqCi+fv161zo1tXPNPffcw5ctW8Z37tzJ161bx++55x7OGONffPFFvbTXCXGM1Veb77jjDr506VLDnpycHN64cWN+8ODBemnzDz/8wL1eL586dSrfvn07f+edd3hcXBx/++23jTL18R4WCoV4ZmYmnzx5spReH88xQRAEQRAEUXchR08t8fXXX3MAttfIkSM555yXlZXxKVOm8FatWvGoqCielpbGL7vsMr5u3bpy2+3SpQv3+Xz8lFNO4bNnz45YviYnSU72ApB0PHr0KB8/fjxPT0/nUVFRPCMjg48YMYLv2bMnYtvvvfceb9u2Lff5fLxTp078f//7X8TyNTVZuvHGG3nLli25z+fjTZo04RdccAH/4osvjPz6Zq8T1jFWH22++uqreVpaGvf5fLx58+b86quv5jt27DDy66PNn3zyCT/ttNN4dHQ0b9++PX/11Vel/Pp4D/v88885AL5161ZbXn08xwRBEARBEETdhHHOea2EEhEEQRAEQRDEMRIKhRAIBGpbDYIgCIKoED6fD4qi1IgsWqOHIAiCIAiCqDNwzpGXl4fDhw/XtioEQRAEUWEURUFWVhZ8Pl+1y6KIHoIgCIIgCKLOsH//fhw+fBhNmzZFXFwcGGO1rRJBEARBRERVVezbtw9RUVHIzMys9r9dFNFDEARBEARB1AlCoZDh5ElJSaltdQiCIAiiwjRp0gT79u1DMBhEVFRUtcqqmQfECIIgCIIgCOI40dfkiYuLq2VNCIIgCKJy6I9shUKhapdFjh6CIAiCIAiiTkGPaxEEQRB1jZr820WOHoIgCIIgCIIgCIIgiHoCOXrqOH6/Hw8//DD8fn9tq1JjnGw2n2z2AmTzyQLZTBDEycK0adPQvXt3NGjQAE2bNsXQoUOxdetWqUxpaSnGjh2LlJQUJCQkYNiwYThw4IBUZs+ePRg8eDDi4uLQtGlT3HXXXQgGgzVpClGP+f3333HdddchJSUFsbGx6Ny5M3788Ucjn3OOKVOmIC0tDbGxscjJycH27dulNvLz8zFixAgkJiYiOTkZo0ePRmFhYU2bQtQzli9fjiFDhiA9PR2MMSxYsMBWpqrG57p169CnTx/ExMQgIyMD06dPr07Tqg1y9NRx/H4/HnnkkZNq0nCy2Xyy2QuQzScLZDNBECcLy5Ytw9ixY/H9999j8eLFCAQC6N+/P4qKiowyt99+Oz755BO8//77WLZsGfbt24fLL7/cyA+FQhg8eDDKysrw3Xff4c0338ScOXMwZcqU2jCJqGccOnQIvXv3RlRUFD777DNs2rQJTz/9NBo2bGiUmT59OmbOnIlZs2Zh5cqViI+Px4ABA1BaWmqUGTFiBDZu3IjFixdj4cKFWL58OcaMGVMbJhH1iKKiIpxxxhl48cUXXctUxfg8evQo+vfvj5YtW2L16tV48skn8fDDD+PVV1+tVvuqBU7UaY4cOcIB8CNHjtS2KjXGyWbzyWYv52TzyQLZTBBEZSkpKeGbNm3iJSUlta3KcXHw4EEOgC9btoxzzvnhw4d5VFQUf//9940ymzdv5gB4bm4u55zzTz/9lCuKwvPy8owyL7/8Mk9MTOR+v99Rjt/v52PHjuWpqak8OjqaZ2Zm8scee6waLSPqKpMnT+bnnHOOa76qqjw1NZU/+eSTRtrhw4d5dHQ0f/fddznnnG/atIkD4KtWrTLKfPbZZ5wxxn///XfXdh966CGekZHBfT4fT0tL4+PHj68iq4j6CAA+f/58Ka2qxudLL73EGzZsKN1TJ0+ezNu1a+eqT35+Pr/22mt548aNeUxMDG/dujV/4403HMvW5N8w2l6dIAiCIAiCqLNwzlFcXFzjcuPi4o55Yc0jR44AABo1agQAWL16NQKBAHJycowy7du3R2ZmJnJzc3H22WcjNzcXnTt3RrNmzYwyAwYMwC233IKNGzeia9euNjkzZ87Exx9/jPfeew+ZmZnYu3cv9u7de0w6E8cG5xzBkrJake2N9VV4jH788ccYMGAArrzySixbtgzNmzfHrbfeiptuugkAsHPnTuTl5UljNCkpCT169EBubi6GDx+O3NxcJCcno1u3bkaZnJwcKIqClStX4rLLLrPJ/eCDD/Dss89i3rx56NSpE/Ly8vDzzz8fp+VEReGcA6Gav38CADzHfg+1UlXjMzc3F3379jV2xwK0++wTTzyBQ4cOSRFuOg8++CA2bdqEzz77DI0bN8aOHTtQUlJSJXYdD+ToOU5KS0tRVlY7N29ACy8T308GTjabTzZ7AbL5ZIFsPvHw+XyIiYmpbTUIolIUFxcjISG5xuUWFh5GfHx8peupqoqJEyeid+/eOO200wAAeXl58Pl8SE5Olso2a9YMeXl5RhnRyaPn63lO7NmzB23atME555wDxhhatmxZaX2J4yNYUoZXuk6oFdk3//QcouKiK1T2119/xcsvv4xJkybhvvvuw6pVq3DbbbfB5/Nh5MiRxhhzGoPiGG3atKmU7/V60ahRo4hjNDU1FTk5OYiKikJmZibOOuusyppKHCuhYqjvNS2/XDWgXHUQ8Fb+HupEVY3PvLw8ZGVl2drQ85wcPXv27EHXrl0NB1KrVq2O36AqgBw9x0FpaSmSYhuiDKXlF65mMjIyaluFGudks/lksxcgm08WyOYTh9TUVOzcuZOcPQRRjYwdOxYbNmzAN998U+2yRo0ahQsvvBDt2rXDwIEDcfHFF6N///7VLpeoe6iqim7duuGxxx4DAHTt2hUbNmzArFmzMHLkyGqTe+WVV2LGjBk45ZRTMHDgQFx00UUYMmQIvF6aphJ1g1tuuQXDhg3DmjVr0L9/fwwdOhS9evWqbbXI0XM8lJWVoQylOAcXwcs0bzlTGMAU8zMA6CFpCjM+M0Ux88TP4XcWbgPWNhzLW2RIeYo9DcyxPDfSYGnDLC+VEeWLeYI+jmlC+5yZn21tKfZ2reU5TJN0W7hgpq08E2VEyFPc2zBgsiz39i39YMlzLu/QLlzSmKUfymvDRaZjmsUmHdc0S1uR9AHjDmkO7YvlYUEqz+1tCXXtesjlmVsbsJYztWAR2mDGu5Msbqoolgu/K7Y2uGueAm6qK+TZyonlrWlCeUXQzS1PYRwKrGmqUNeUped5mD1Nv/14oOuqGm2a5YU04TMAeJhqyPIYddVwm+JnQaa1jfCxh6mGbkZbUI3boSlbFerIOnrE9oW2PJb+8Ah6Mase4IJuXEiD3H+6XgzwhM+WmcagGGnyu5anWNIUKGA4WqCiZfYulJWVkaOHqFPExcWhsPBwrcitLOPGjTMWAG3RooWRnpqairKyMhw+fFiK6jlw4ABSU1ONMj/88IPUnr4rl17GyplnnomdO3fis88+w5dffomrrroKOTk5+O9//1tp3Yljwxvrw80/PVdrsitKWloaOnbsKKV16NABH3zwAQBzjB04cABpaWlGmQMHDqBLly5GmYMHD0ptBINB5Ofnu47RjIwMbN26FV9++SUWL16MW2+9FU8++SSWLVuGqKioCutPHCOeOC2yppZkVxVVNT5TU1Ntux2Wd58dNGgQdu/ejU8//RSLFy/GBRdcgLFjx+Kpp56qEtuOFXL0VAFeRMHLtBsRY8x09IjOFi3BdPRIaRbHjVJZRw+T6sp5Do4el/LH7uhxz6t2R484Ia8hR0+5DhknR0xVOXrcykMuX22OHqc0HJtNx+ToscisVUcPq7ijx17OydHj7swp19FjXM5V5+gRHTmVdfQ45Tk7emSHhnIMjh6bc4aJDhO7o8fWRjmOHo9RjoXrMeOzqaN+zASnCxfSrA4hCDrq7Tul2R09nko6esw8JuQ5OXpoE06i7sIYO6ZHqGoSzjnGjx+P+fPnY+nSpbZHA7KzsxEVFYUlS5Zg2LBhAICtW7diz5496NmzJwCgZ8+emDp1Kg4ePGg8frB48WIkJibaJugiiYmJuPrqq3H11VfjiiuuwMCBA5Gfn2+sD0RUL4yxCj8+VZv07t0bW7duldK2bdtmPO6XlZWF1NRULFmyxJg4Hz16FCtXrsQtt9wCQBujhw8fxurVq5GdnQ0A+Oqrr6CqKnr06OEqOzY2FkOGDMGQIUMwduxYtG/fHuvXr8eZZ55ZDZYSIoyxKnt8qjapqvHZs2dP3H///QgEAoajcfHixWjXrp3jY1s6TZo0wciRIzFy5Ej06dMHd911Fzl6CIIgCIIgCKI+M3bsWMydOxcfffQRGjRoYKwHkZSUhNjYWCQlJWH06NGYNGkSGjVqhMTERIwfPx49e/bE2WefDQDo378/OnbsiOuvvx7Tp09HXl4eHnjgAYwdOxbR0c6OhGeeeQZpaWno2rUrFEXB+++/j9TUVNtaQARx++23o1evXnjsscdw1VVX4YcffsCrr75qbCvNGMPEiRPxz3/+E23atEFWVhYefPBBpKenY+jQoQC0CKCBAwfipptuwqxZsxAIBDBu3DgMHz4c6enpjnLnzJmDUCiEHj16IC4uDm+//TZiY2NpPSlCorCwEDt27DCOd+7cibVr16JRo0bIzMyssvF57bXX4pFHHsHo0aMxefJkbNiwAc899xyeffZZV92mTJmC7OxsdOrUCX6/HwsXLkSHDh2qtT8qAjl6CIIgCIIgCKIaefnllwEA5513npQ+e/ZsjBo1CgDw7LPPQlEUDBs2DH6/HwMGDMBLL71klPV4PFi4cCFuueUW9OzZE/Hx8Rg5ciQeffRRV7kNGjTA9OnTsX37dng8HnTv3h2ffvopFIWi+AiZ7t27Y/78+bj33nvx6KOPIisrCzNmzMCIESOMMnfffTeKioowZswYHD58GOeccw4WLVokPe77zjvvYNy4cbjggguM8Txz5kxXucnJyXj88ccxadIkhEIhdO7cGZ988glSUlKq1V6ibvHjjz+iX79+xvGkSZMAACNHjsScOXMAVM34TEpKwhdffIGxY8ciOzsbjRs3xpQpUzBmzBhX3Xw+H+69917s2rULsbGx6NOnD+bNm1fFPVB5GOfctuwFUTGOHj2KpKQknIdL4VUirdEjPIZVkTV66NEtenTLqd1I5SGXp0e3ZD3o0S16dMvQ45gf3arYGj2eiGv0qFL78mNaFVujpzof3TpaEELDtr/iyJEjSExMBEGciJSWlmLnzp3IysqitaQIgiCIOkVN/g0jdz5BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1BHL0EARBEARBEARBEARB1BPI0UMQBEEQBEEQBEEQBFFPIEcPQRAEQRAEQRAEQRBEPYEcPQRBEARBEARBEARBEPUEcvQQBEEQBEEQRA3x+OOPgzGGiRMnSumlpaUYO3YsUlJSkJCQgGHDhuHAgQNSmT179mDw4MGIi4tD06ZNcddddyEYDNag9kR9JRQK4cEHH0RWVhZiY2Nx6qmn4h//+Ac450YZzjmmTJmCtLQ0xMbGIicnB9u3b5fayc/Px4gRI5CYmIjk5GSMHj0ahYWFNW0OQZz0kKOHIAiCIAiCIGqAVatW4ZVXXsHpp59uy7v99tvxySef4P3338eyZcuwb98+XH755UZ+KBTC4MGDUVZWhu+++w5vvvkm5syZgylTptSkCUQ95YknnsDLL7+MF154AZs3b8YTTzyB6dOn4/nnnzfKTJ8+HTNnzsSsWbOwcuVKxMfHY8CAASgtLTXKjBgxAhs3bsTixYuxcOFCLF++HGPGjKkNkwjipIYcPQRBEARBEARRzRQWFmLEiBH417/+hYYNG0p5R44cweuvv45nnnkG559/PrKzszF79mx89913+P777wEAX3zxBTZt2oS3334bXbp0waBBg/CPf/wDL774IsrKyhxllpWVYdy4cUhLS0NMTAxatmyJadOmVbutRN3ju+++w6WXXorBgwejVatWuOKKK9C/f3/88MMPALRonhkzZuCBBx7ApZdeitNPPx1vvfUW9u3bhwULFgAANm/ejEWLFuG1115Djx49cM455+D555/HvHnzsG/fPke5nHM8/PDDyMzMRHR0NNLT03HbbbfVlNkEUW8hRw9BEARBEARRZ+Gco6TIX+Mv8ZGWijB27FgMHjwYOTk5trzVq1cjEAhIee3bt0dmZiZyc3MBALm5uejcuTOaNWtmlBkwYACOHj2KjRs3OsqcOXMmPv74Y7z33nvYunUr3nnnHbRq1apSehPHB+ccamlJrbwqM0Z79eqFJUuWYNu2bQCAn3/+Gd988w0GDRoEANi5cyfy8vKkMZqUlIQePXpIYzQ5ORndunUzyuTk5EBRFKxcudJR7gcffIBnn30Wr7zyCrZv344FCxagc+fOle5ngiBkvLWtAEEQBEEQBEEcK6XFZbi46cQal7vw4AzExkdXqOy8efOwZs0arFq1yjE/Ly8PPp8PycnJUnqzZs2Ql5dnlBGdPHq+nufEnj170KZNG5xzzjlgjKFly5YV0peoOri/FLuutTv3aoJWc78Ei4mtUNl77rkHR48eRfv27eHxeBAKhTB16lSMGDECgDnGnMagOEabNm0q5Xu9XjRq1CjiGE1NTUVOTg6ioqKQmZmJs846q1J2EgRhhxw9VUAQAYBrwVGMM+iBUtpnAAi/c2Z8Zlwx88TPAKAyMGZJY+K7YkkTPtvKK/Y0MPMzN/O4kQZLG2Z5qYwoX8xTYS8v6Giay2B2kUNbCmxtWMsbv1MwAIouE+7lzVMQOU9xb8OAybLc27f0gyXPubxDu3BJY5Z+KK8NF5mOaRabdFzTLG1F0geMO6Q5tC+WhwWpPLe3JdS16yGXZ25twFrO1IJFaIMZ706yuKmiWC78zm1tcNc8Dm6oqwp5iqWcfqyA29OE8oqgm1uewjgUWNNUoa4pS8/zMHta+JKFB7quqtGmWV5IEz4DgIephiyPUVcNtyl+FmRa2wgfe5hq6Ga0BdUIezVlq0IdWUeP2L7QlsfSHx5BL2bVA1zQjQtpkPtP14sBnvDZMtMYFCNNftfyYEnT2j1aoIIgiKpn7969mDBhAhYvXoyYmJgalT1q1ChceOGFaNeuHQYOHIiLL74Y/fv3r1EdiLrBe++9h3feeQdz585Fp06dsHbtWkycOBHp6ekYOXJktcm98sorMWPGDJxyyikYOHAgLrroIgwZMgReL01TCeJ4oCvoOPD5fEhNTcU3eZ+aM+1QrapEEARBEMdMamoqfD5fbatBEJUiJs6HhQdn1IrcirB69WocPHgQZ555ppEWCoWwfPlyvPDCC/D7/UhNTUVZWRkOHz4sRfUcOHAAqampALTrU18vRczX85w488wzsXPnTnz22Wf48ssvcdVVVyEnJwf//e9/K2MqcRyw6Bi0mvtlrcmuKHfddRfuueceDB8+HADQuXNn7N69G9OmTcPIkSONMXbgwAGkpaUZ9Q4cOIAuXboA0MbhwYMHpXaDwSDy8/Ndx2hGRga2bt2KL7/8EosXL8att96KJ598EsuWLUNUVFRlzCUIQoAcPcdBTEwMdu7c6boAHkEQBEHUJXw+X41HHBDE8cIYq/AjVLXBBRdcgPXr10tpN9xwA9q3b4/JkyfD4/EgOzsbUVFRWLJkCYYNGwYA2Lp1K/bs2YOePXsCAHr27ImpU6fi4MGDxuMxixcvRmJiIjp27OgqPzExEVdffTWuvvpqXHHFFRg4cCDy8/PRqFGjarKYEGGMVfjxqdqkuLgYiiIv3+rxeKCqWrRnVlYWUlNTsWTJEsOxc/ToUaxcuRK33HILAG2MHj58GKtXr0Z2djYA4KuvvoKqqujRo4er7NjYWAwZMgRDhgzB2LFj0b59e6xfv15yjhIEUTnI0XOcxMTE0JdigiAIgiAIwpEGDRrgtNNOk9Li4+ORkpJipCclJWH06NGYNGkSGjVqhMTERIwfPx49e/bE2WefDQDo378/OnbsiOuvvx7Tp09HXl4eHnjgAYwdOxbR0c6OrmeeeQZpaWno2rUrFEXB+++/j9TUVNtaQAQxZMgQTJ06FZmZmejUqRN++uknPPPMM7jxxhsBaA6riRMn4p///CfatGmDrKwsPPjgg0hPT8fQoUMBAB06dMDAgQNx0003YdasWQgEAhg3bhyGDx+O9PR0R7lz5sxBKBRCjx49EBcXh7fffhuxsbG0nhRBHCfk6CEIgiAIgiCIWubZZ5+FoigYNmwY/H4/BgwYgJdeesnI93g8WLhwIW655Rb07NkT8fHxGDlyJB599FHXNhs0aIDp06dj+/bt8Hg86N69Oz799FNb5AZBPP/883jwwQdx66234uDBg0hPT8fNN9+MKVOmGGXuvvtuFBUVYcyYMTh8+DDOOeccLFq0SPrR+5133sG4ceNwwQUXGON55syZrnKTk5Px+OOPY9KkSQiFQujcuTM++eQTpKSkVKu9BFHfYbyye0MSBEEQBEEQRC1QWlqKnTt3IisriyKqCYIgiDpFTf4NI3c+QRAEQRAEQRAEQRBEPYEcPQRBEARBEARBEARBEPUEcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQRJ2CNo0lCIIg6ho1+beLHD0EQRAEQRBEnSAqKgoAUFxcXMuaEARBEETlKCsrAwB4PJ5ql+WtdgkEQRAEQRAEUQV4PB4kJyfj4MGDAIC4uDgwxmpZK4IgCIKIjKqq+OOPPxAXFwevt/rdMOToIQiCIAiCIOoMqampAGA4ewiCIAiiLqAoCjIzM2vkBwrG6SFngiAIgiAIoo4RCoUQCARqWw2CIAiCqBA+nw+KUjOr55CjhyAIgiAIgiAIgiAIop5AizETBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1BHL0EARBEARBEARBEARB1BNOSEfP8uXLMWTIEKSnp4MxhgULFhh5gUAAkydPRufOnREfH4/09HT87W9/w759+6Q28vPzMWLECCQmJiI5ORmjR49GYWGhVGbdunXo06cPYmJikJGRgenTp9eEeQRBEARBEARBEARBENXCCenoKSoqwhlnnIEXX3zRlldcXIw1a9bgwQcfxJo1a/Dhhx9i69atuOSSS6RyI0aMwMaNG7F48WIsXLgQy5cvx5gxY4z8o0ePon///mjZsiVWr16NJ598Eg8//DBeffXVarePIAiCIAiCIAiCIAiiOmCcc17bSkSCMYb58+dj6NChrmVWrVqFs846C7t370ZmZiY2b96Mjh07YtWqVejWrRsAYNGiRbjooovw22+/IT09HS+//DLuv/9+5OXlwefzAQDuueceLFiwAFu2bKkJ0wiCIAiCIAiCIAiCIKqUEzKip7IcOXIEjDEkJycDAHJzc5GcnGw4eQAgJycHiqJg5cqVRpm+ffsaTh4AGDBgALZu3YpDhw7VqP4EQRAEQRAEQRAEQRBVgbe2FTheSktLMXnyZFxzzTVITEwEAOTl5aFp06ZSOa/Xi0aNGiEvL88ok5WVJZVp1qyZkdewYUObLL/fD7/fbxyrqor8/HykpKSAMValdhEEQRBEdcM5R0FBAdLT06Eo9eK3H6Keo6oq9u3bhwYNGtB3L4IgCKJOUZPfu+q0oycQCOCqq64C5xwvv/xytcubNm0aHnnkkWqXQxAEQRA1yd69e9GiRYvaVoMgymXfvn3IyMiobTUIgiAI4pipie9dddbRozt5du/eja+++sqI5gGA1NRUHDx4UCofDAaRn5+P1NRUo8yBAwekMvqxXsbKvffei0mTJhnHR44cQWZmJvbu3SvJJwiCIIi6wNGjR5GRkYEGDRrUtioEUSH0sUrfvQiCIIi6Rk1+76qTjh7dybN9+3Z8/fXXSElJkfJ79uyJw4cPY/Xq1cjOzgYAfPXVV1BVFT169DDK3H///QgEAoiKigIALF68GO3atXN8bAsAoqOjER0dbUtPTEykLxsEQRBEnYUegSHqCvpYpe9eBEEQRF2lJr53nZAP5BcWFmLt2rVYu3YtAGDnzp1Yu3Yt9uzZg0AggCuuuAI//vgj3nnnHYRCIeTl5SEvLw9lZWUAgA4dOmDgwIG46aab8MMPP+Dbb7/FuHHjMHz4cKSnpwMArr32Wvh8PowePRobN27Ef/7zHzz33HNSxA5BEARBEARRPykpLMDS+0fjm4kDsfT+0SgpLKhtlQiCIAiiSjght1dfunQp+vXrZ0sfOXIkHn74Ydsiyjpff/01zjvvPABAfn4+xo0bh08++QSKomDYsGGYOXMmEhISjPLr1q3D2LFjsWrVKjRu3Bjjx4/H5MmTK6zn0aNHkZSUhCNHjtCvSgRBEESdg/6OEXWNqhqzyyddgu7tV8CXUGaklRX6sGpLH/R95uOqUNWgpLAAK6dNhLfodwTjm6PHvTMQm0CPSxIEQZxs1OT3rhPS0VNXoC/IBEEQRF2G/o4RdY2qGLPLJ12CXtlLkL+3ETaXXYY2w27C9g/+hQ6++WiUkY/vVl9QZc6emnQoEQRBECc2Nfm9q06u0XOisXvLPxEfHwXOtS3TwAGVq+FjCMdaAg+/jGfzmPacHgPAFAYwQGFMS1OgpTMFigJA5QghCMZ8UAFwVQXAoKoqODR5WhqHyllYpgqucugePcY4oDBo/2DKYQBDWA60Y0VRwHkIQTAw5oXKObiq28jBodmkckBVOcAAzlVwNfwOLU8xbFEAcDAFUBTdfgUK0/qDMQWMcYRCAYQUHxi8Whth+6CG+xLQZIBD5VofcFUN68IBxsAZC/ejdg6YwrT+DdusKAwcHB5FAQMQ5CGEEAsW7kdV1ezjnCGkqmCcQwWggoOr4fOKEMAZQioHYx6Aca3PAK1/w3ZzCOeUwej/QDAEVYkDY1p/qqqmPwOg6n3IOTgYOFehqoBmNRBSGRgUMEXLZwoD4xxQwicTHJ5wPzAwMA8DwFCmcjAWG+5DDs5VhLjWt1pfayNF1ceyqgJM6/eAqmh2wOxLMLNPGWNAuN85AKYoYApQGgAUJUbrV64CYTtCuj3ha0IfXzwsX0vzaCJYePSwsGyuXRdcv26gjVcwDjAPSgMcXiVaGDuqJjYUPofhi1PvZxYe0yo4oBoXHsC0C0Ix7BQvEC1d5YCieOAPcEQpPnBVG/tc5eF2tfsBVABM62PjfgBADYXvB9y8H4ABgKJdpYrQvwAUpmjXPecIBYFo5g2fT9XsT6NvEb7vqOHrFoZcpobHpnQeFUO+bisL5zNFgRoKwRtQ4PF6jPMWPrHaPSl8rGqDVZOl93F4zClMAWeadZJMaHlgDEw7sYDCEAwEEc098ChKePzoYwaAGgpfH2EdwvcDcBUq51A0pUxbGAO4fj9iYdu0fubQrl9whlAwhFjmCeusX4faOOLhe542bsL3nPD9Amr4vIvnKnxPYtCHlfFJG2KcQVEUBEr9iGFarxh/QxCWrYbv5Vy/L4Wv1bB9ajBg3l8QvgY5g7RzJ9d00C4fBQqAZpnyGncEUd8pKSxA9/YrkL+3EZLHb0Df2HgwxYv0TjNRVvI48p9rh+7tvkFJYcFxR91IDqU82aHUK3sJlk+6pEqdPVwNAX98C16SBxabCjTpDaZ4qqx9giAIou5Ajp4qoODPuVCLtdm84WwxXuHJgSVP5SpKS7WJpjmp0tpj4IbTRZ8ZKOF3Bo6Y2LADSW9Pb5+bx7qDiYcnepwDQZWjtEzVpjZMa0Cfq+vymf5ZTGOANxqGA4TDSQ6MiZeuj8qBQJCjNMCN1aD0uTMc5ADmwlRM4fBEM8lGs0+ZYb/ucIKQ7w8A/iAzJlYQ5BkydVnhY6YA8DDA67XJRFie6XCx9D/nKCrzIqgyzeHCdMeOMW+XOlafiEEBEOWFqnjAuaaVGu5PcLE/mSBPn2wyHC31QOWmQQza5NnsX2aTzxQgFBUNlXnMcyfZKp9D8/xqxhwpUTRdjUYZxEOu97lwchkDyqJiwaGE7TDHpGSr5iWUrxeVo7BY0fKMNctEI+W+1a4QzfaANwacK+H2uClPOMGqIEvvBFXlKCkWZsfm4ISQCG6Ty6B6YrT+EfrSNEYXInzW7wchgJdoDgvJJvHcSf0KQD/fiDbbNE6kaaORyeU0HlDBSkPh+wEAbuljyWZZF6/qC6dwmy0A128vklzOARYIgZWpQteaFwnnppPCcHgJukWFvNpHONvFhLEkdDKYPwSUhaTbgHGRCjYyvUrYM+tRGaJCHtORZTl3XLhQWPheq/c7K/FD82KG2+bGJ3D9LHNzPGlOLQaPn0MJcbN96Pc26YYTVkO6+SJYVBAeSCycznSDDMnMMCHsSAMPOwcJ4uRh5bSJ6NOpDJvzLkP8Uzega5vPoYYYggEvQgEPYpMBXwM/jrzeBn8GGkJlMVA98WC+RChxyYhu2BTxjdMR0ygNLK4RWGxDsKgEIKoB4I0HvA0ATwxKiwpNh9KErTg3Ng4AqsWhBAB870cIrb4HrHiPdgyAx2XCk/04WMalx90+QRAEUbcgR08V0K61D4kNKreudTi24JgI8pDxmUcoZyUcq1BuHaf8AI+ssVubqkM9t7JiekgF/BHKWNuQ6nIGFR5beqQ6ABBQgVJEhfOYQ1nm2l6Z6oUKxdE2a5+Ln/0hL0p5tCVP/7U/Ul2G0lCUoadTGbMtSOVKQz741SihvDkFdpInHieEfNAn4pLfxEE/0YaioA8B1bzdGHNxUSaHzR4VgC/kg4joqzHOCbfrXRyIQTCkOOinOxDlcyza5Al5AS6fb8k+Yd4tJvlLo8FVS7tOWBrWnD0eu0525eUsFWClHoBb7j8R6oidq4SYkcas+WCWY7OepwSVlskAMBVQQoJTxSbT5TioIqrEni+145QGgIVUeAIubYvlrMdlQUSVhGxlmSRPcP4IdRVPKOywsRjleMFwU7ZSBk9J+PEOyYtukQUgHNKIsJcJ3Bsb9hTDfBccQTY9wo6qIHO60xJE/cVb9DsAoM2wm/D7a38HACgeDp8nAMSYN4ukJgVIgsPizEXh127t0Ol7FVcBT0iBJ0FFPC9Cwb9aIxiKQlkoDgFvCrzJLVHETkVKg1VY/cwodL97FhCdYkaMVhK+9yOEll+Lgt+TUbStDQJHYhCVVIr4tn+gQdG18PSdS84egiCIkwxy9NQS+m+tVdGOE85tM/NX53LLusiKUNgpSwEQKqeMW16k6XKk/jN+9RdaqMi8V6sru3R0x4PeJhOcPaYOzFUfLrThrCuDIpwVsx1Tf7G22J7Cwo/nIVJf6blmKYWrUJhqccrIn8z+Eif7ChSmQuWKGQmll+OiJF2eXaYx12W6Q0frU1NDa7+H8xw7V7Zaj3kx5sSca48pOvaJVl53rIR9RlKkhdWpI0qyOgtMZxO3RP64iLcWcXA6lduGeOAm0jowRdmWPN0Ga7SJk1yOCGZGkmnTXTiOdHFa29CDVkR5zPB5SDrYpk3i8HSSBZjnUg/LEy4jW9dwbgswY+LN0jp4bXbKdyApekpy8FiuTik0Mqwgd3HHixeqJNapIwiifhOMbw4A2P7Bv1CaMRrvvrsEPlaCGFaC6KgytGj2B9r3/gW/rW2OksJY+KKDiPJpL29UEJ6okPFSvCqYNwQlSgXzqlC82jXIFMCjaJ9jGvgR00B0qO4B8BOQoR1lt14E9cNWUEMMZaU+lJbEoCQQjwBrBJbQHA1adkLSqWdAaXgKWGwaENMETBF+OFFDOPr5GCiHE/HzF51wpNuF6Hbn5fhxzodI+mIxsgeuh7roZiSOvpge4yIIgjiJoMWYjwN9MaU/t2bVWkSPG85zpvKlug2GYCUiesQJsmqRWZHBxqFF9AQcyrtNS8S0oBDRI+ZFmtcBWkRPGbzgwtRQrCs6bKx1/aoHKjzO/QBAjAYSHSz+kAcB+Gx53FLHWg8ASkNaFJGbTlxwW4ltlgajEIBX94UYZd31NPOLglGAQ1m9vP6omWw3Q3HQhyA8RqCBOUaY5Exysr84aEb0SPlcPi/S+eEMxQEfQlxxbVeasYtlOFAW9CJStJSTM4iDwe/3godlRsTqVOBAKOiBq8fGZeBzlYH5FdiiawC4XrB6OyEzoscpMgZ6jlVuCPD4UWmZDAALAR4nz285FycLqvD64XgyGHc51usGVHiC7m07tQEASlkQXj8XLxLJFtkJI39WSsWIHm7TW4qeCtdlAHhpGTylQS3ReI5TLyvIEqN9wnm8uBiwypQeY+OCPFNuMOTH0rL/0mLMRJ3heBeyLCksAOZmoiA/AckTtsIXfqQKAMpKinH4uXZo0LAIGLHb9kgV5xyFRwpxcM8B/Lk3D4d/O4jC/QdRkn8EgcNHoBYVwBsohI8XoXWTnTgzZxM2Lm+NwsJ4xPgCiI8vRXyCH7HxpYhJKkFMSjHUMgWKr+LfCTkHykqj4C+JQYk/DvBGoVmT37BvfRpSrr4XMekdweIzgLh0BPxlWH9DP3QZsg6B3gsQ0/LCSveXE2qgDGWr/w1+eBdYciv4sq+HEuUrvyJBEMRJDi3GfBJQVRE9ViK3acajuDskKtAut+e5tcEqUMZJlrW8+NkpYMAqkwGuDqZIc0rts+rQpjyxN+1iUr5VD60197grzRZVakvOd44ggi1NliyncUljhBfJdp5j6+PDGi0T1kYPcBAmtpy79Y2gDVc1B4hNT3MCym12hfuW6Wv6mHJER43sfgtHOImLBNvQH5XR9JG/XsvRFLYACD3Tmh7uFGkdICdc85ixXo1N5YgD1qGCfcA412Ww22l1Qri0y93KuVycUkCPHoDiNABdZNr6Vex/vT3hGDDTmGCnm44cchvg4buAtM6RoI9RUb4iDTsNmZbJm1TfLGvGWnL5pQ8uyX6X822ENHEXWy0dIziJCOJkIjahAZZv6aMtkvxcO2z2D0Xry0Zjx/zX0SF6gbnrlsO6OYwxNEhugAbJDXDq6a0jyikpLEDZ3EyktspH8oRcyaFUfPQoCl/sCMUXxPurb0Pozz8QFzyAZN8RJMUVITGhGAnxfsQmlCI63g9vbACemAA8MUEwBkTHBhAdG0Ci8GhZeuf9wKbbwDdpl3coqKD4aBxST48FAPz27j04ZWQ0WMP2QHQTc0OQSlKyZCqUXc8iKjb8PG0+ENg4GWqr2xF7wf3H1CZBEARR9ZCjp5aorq/WkR1IdidP+XXMMkYrzDnPyRlknQNWBN1JY3d7OOvpNLfUHwlyUCniUySGQyNcytEJ4FDP6ZE4ey2Ls8D4pO/SZbXRHlFi7RV3Z43pBBGjdbQ3bccmcaIuR69Ye94e5SPNm3W/h0sXaAspmzspGbZy85EtY91Ya3SO4OAR1u0N1+M2vblw3sydjUTdhHPIrHmS0rJtsI8zs0VmOj9EH5DbYBXzxML6gtT27pcHhpDPFGY+XmSVWd7FIrQpfd+X5OgXMpP0sM0PnAei2f1cEB3pQnS5OJ2cNcztKSUnP0hFbrjh9pmhBzMHG2CseyO5I/U+stzvTEeWw83S6vySyun9rJ9XVfZcOS60bbWDCc4bF6+WkcVtKhLEyUDfZz42tj0/J+ENYMMbSG0DlBVEV9nW6uU6lDIP4bvVF+Bvrz7i2gbnHPt/+R1bvvsZB37eipK9exBTmockzyEkxRUiKaEEzdLzkdLmDxQfSIDiVeGNCcATG4DHq6JBo0I0aFQIAMjK3AL+9SBwAMEyDwqPxqPQn4JQwqlofEY/JLTuBZbcDsyX5KpPyZKpiMp7DIcONsKPy3vgt9+boEXzP9Ct7zo0jHkMJUtAzh6CIIgTBHp06zg4nke3uEPUSEVxe3SrvPbCm/Iax5V5eKysnF+m3WRzqCjnqQnHPP3RrfLq6PlSXc4QgubMcMq3tqnnawtAex3KWFfusabbF2O2y7Q7Szi0R4S0x8WsTh3rY1EWBwiAUjVKWy8njBg5xG31zHZLgh4EYD6CJZW1Oej0xZK1siXCAtAAM9d8dZAp2l4U8CHAHR6nM+adou7mZxUMJUF5gWxzlzBnp5cecVMY8EHlCqzn2njsStJdeASOA2XhxZgleZIwh/OpAv5AFBwfaSpnEHLOoAb1evKuck7ljSQV2qNb8FTsQhHfVUAJMimfRVoriJsvpVRzUFZEpugvYiFhMWaxzfJkhlREWdcMdrqgIPtmwAElqEIRb0KqpZ6op5geCMBX6jDAAWHgcqOuZKc/BCUk3DNV7n4uRdmlfnhKA/oAt8sU30WnDefgxSWAqprp1ke/4KQDRzBQiqWBD+jRLaLOUJVh7yWFBVg5bSK8Rb8jGN8cPe6dUSU7YInoDiVfQpmRVlYQjVVbz6kSh9J/xz+EIafPxB9lLfFbixnYu3ozCrZtRVLpLjSLP4gzem1DdLwf/kNx8CX44YkLRFxKrqwkCoUFCSgMNAGS26JptwsR26oHeGwmyv6dhaK/4vHc6/3R/m/not91Ofj67S+x5a1lmDD6C8SnFCF6VB49xkUQBOFCTT66RY6e4+BEXKMnsiPFedetigyAgMXR4zQXA2B7CkCFCqu2FZEXFBw9bvXcnCqao8d5wcFItgdVoAxRkuNBfvzLKcJGOw6oHoQsa/RY64nHhoMo5IGf+xzzxM9OOviFNXqsTiVhA2uLDgwlQW/Y0WM6TJwdWXrfmvoXhbyGI8M851YHE4PVQVQU9CHEzZ3Q9HmsrpOTnRyaI6NEdVijh5vlRLsNWzhQFPDJzi/rLlqq3VcAaPPjslCU4eiR5tOGfXbbVQB+vxfS8r9uF4olj6sRdt1yasuQD23XLV2m0wVura+/h0xHD3MqZ6tn9oenFJWWycIyvcEI5dx0DaqIKrPkhwe56GCxtRF29HhCcO178bMippcFEeXnZhl50IbrhRdetfSB4g9BCQqJTg4bvZ6YXxqAx19mpumP5nEjQbgpiY4bDl5Yog0k25pC3Cwr6a+lB4N+cvQQdYqa/JJcVVSnQ6mkqBh5d5yNjD6/AGkD4el8N5DcETi8CaH104H9i7B3xako/dvb2PTFtyjYsB4NQ7vRrMFfaJxSgKSGRYhNKkZUgh/eWKcbtMzRgwnIL8uEN7UzUs8aCF/mOQh6UvDhpUNxxd+WoyTjGST0ublKbCMIgqhv0Bo9JwFuj4EcK5Vp61hku82jrD8SO8mqbLt6uqvMCqDvReXmDHJqSysjrpUhP/qk95v4SBiH+ZCU/qu+PWDA+oiRsD4OF48gSGfC/4DpPND10h7xMB+Fsm+NLsvmpn3caqW+FpC1tixTkyI8pmSLOrJaoZ0BfQWiSD5l0069n8I9y8yzyCGfD3OdIP1Y7gEO67pAHLZFlAWZpo2WJ6zCT9OY0Uvc8ckZ7hQpIh67ORoA41ko8VdWwY/gXk8FHJWpCIKhRlcaWQ6PgwnvnNsfkSpPlP6uPwVmtOnUL07v1nLhQaOfI92ZJN1zGKTNqSI5e/QnmaRE65i1F7KMHvHAUtdhvR+935mRrwq2OlzR3GqEcGjcoIwL1O70cYSe3SKI6iY2oQHOm/p69bQdH4fvj/ZDTG4IiZ2/RkzeIiOvtCAaBetb4fuj/XBNr9PRodfptvqhUAibvl2HjQuXwb9jAxpjL5olHULjlAI0aFiE2MQSeBv44fFpP9slNi1EIjYB2ASs+Q/UNUCwJAp9z9ccV/u/eR2ndhkAltDymNcBEuFqCPjjW/CSPLDYVKBJb9o9jCAIogKQo6eWqEonD1Bx5015zo5I7VvrsPB/0g/HFWhf1NXtK4BtwubSrrujSK6tt8ctaWIbWhl93Ri7Q8Bp1y1n54bofpAdFPKcU1vcmBnOBybUcZKv1eRygiCdSbJ1B5HNjcE0K8U1cuQeMZuXnS+AsY6MLlWIQLHKFN1D4PpCzpby3GITLP3M5TQupMlL7DBpDR+uajba1unRy7j4RnQXmHW+L9uH8MLJljFmPnkl1bMdOwrmsI5ZaRA5HQOaL44x5xtAJAeK/lmwzVbZmqh7aTjsa+aUI1MckzYHUaQbgjig7ReU4eyUrwVZB+m+ZL04dVPF9oxGrP3qfEKt17pZQh93QqreuNO5BNMGkW6rKnivXBcWF4UzuYxkt+gVE20nJw9B1Aeumfsc3r12Ajp9shYpzQ/BExNEqNSLv35viI2JXXDN3Odc63o8HnTu2xWd+3a15QXKAljzxffY8cU3yPjrE/Qe/DN2/ZQBn8KRkFyEmOQSRCWWwhcbQNMW+QCAU1puBP+kE8r8XhzOT0Yhy0JK9iVI6nIxWGJrMFbxCHi+9yOEVt8DVrxHOwbA4zLhyX4cLOPSynUSQRDESQY5emqJijpmKkJl2inP2VERGbayESpHcuQ4/F4tNek8Ea+QWGjxKY7TV9e6mkyzhPXRKdEBZJ8vMkebRHlyFI32SeV6zAuTpMu7fCmCTNMdxJm5lotbdI24o5cunYd33QKsTg3R8SPLNDRiTHLQ6OsAy3NQff0pZkgxo2vknndyNBmWhJ1DokXMLAauMqkvRT30fcWkKB/ro1uCTFkf0eFmFjHm20DYMWOZ+Lus/VIhmB5TJehjHVBObekRPRWVZ3Wq2G4AYWeE05Z1ohjRD1SOTCbI1H1FpjPFQY6TTKcLiwtFdIcPLG2LNrrJFP0uoi/E5lyxO0pssrg5imWjIQ8g0XkkneOQy/l0MMKoo8vRPVaCPABGlJD1BAIAVAfPG0EQdZFr5j6HkqJi/O+eJ1H2ex58aakY/J+7cHp8XPmVXYjyRaHHxX3Q4+I+eP3uRHQv3IyGzQNIHr8V/pIAvnt/MfYuXIxmgc3o2+8n+BLKECiMhi+pFFHRQTRJ+xNN8Cfw+yrw3x9EMKDgcH4SjgZbIrFzfzQ+axhYcnswxT4d4Xs/Qmj5tSj4PRlF29ogcCQGUUmliG/7BxoUXQtP37nk7CEIgogArdFzHNTWGj2B41ijJ2RzNkQqL8pUbWliObdRpBquhsrJVB3W6BHz3RwqgH0xZqf6TulBFfALixRbyzsvdqyhr9HjrqvimKev0SM6OwSXhq3vxMiWspDXaJcbL1FHc5Yrtlkc9CLAo2zppmPGap/pICkJhdeg4YLTA8yin11mYdCHoMNizABzWOxY0EMF/GqUKYM76eYQAcT1NXrkRYqNdi2OAmksccsaPTa5LHws2qm9G2v0uDplHNLDdqohr20+LinuksxKPHBdANrpXf+sVnKNHh0V8JSySstkYZmVWqNHJ+C+GDML62TLC+cba/RY2xV0tPo6GAcQCCKqVChk6wfTS2Tdml3xB831ftycO1YbOIAScY0es33pxghrO9rFyItLw4s+c0ueIEhMC3/W1uj5b51a74Q4uamLa/TUB0pL/Mgd1R99LvkRZcWt4DnzAXjbnI/g9q8QWvNP+OJ2YcXH3eC57D7s/HQxGhVtRMuUA2iWdhgJjQvgSy6B4rH/MQsFFRw91ABH/M0R26YfUvtcDSR1RMGbraAcVrB6UWcc6XYhuo26HD/O+RBJPy5G9sD1UJM4Ekf/To9xEQRRp6A1ek4Cjjei51jqcrhH2Di1KeroNFeU6rk0zLjoRrDPsyLNaZ1cYeXbzaBaJv9iPbsTwyQIhBeONnvKXtbZ2ROCYmtPzHfeY40hJEWGAGbUD4O4qK/TEy2ig0VPtT5UYl3zR3NyyD0vr6jj7LA02hWdH0yUqM8bxb3dzHV/OFdhXcTZlG1GD4WbkJ5e4WItUbxlLmufV6uavtzpXIqxWDJ6RI+kp8UTYl1bCWCyI6cSzhqtuiWSx6meq/OIu+dbVBROtfmS6rHIkUThdJWHz1o5MplFpusjX+XJdGpfMNsaNSS1WV4b3HJvNMaVoJBDlA2zCYTQEBPqSKE+MB6xkhwxershSS+b0uIjWEY9y0VhS9PbU2WZ0iLPBEEQkYmJjcaa6EHwfQKcef46eLf+H7BVm0ioajRWftINa6IH4Y7hA9B3+ACjHuccP3+1Cuve/QSJ+WuR2Wg/0lIPoUGTAkQnl8ATpaJhkyNoiCNAySbwL14EV4GEOODwn8loNepUZFzQC0rTFrj08btQVjoe62/ohy5D1sG/9yvEtLyw9jqFIAjiBIYcPbXE8X61rozDRqwTIaggYhvM8i6Ws87RrPlueWJ7TvNRNxvLm7tFcqKJ80xrOS3Pbqmoi+bEkB0HAKCAh6OInO0QV8oRI4MUxqQtrXUnhNPTJtZ5MLf0ku5W4YLTSdOBSS2K68s4uTvc+lWrywHOBN+Cnis7pVjY2Wb0AVOgP15m9TcY9vBwChNs5cLc1U1HxsIORW23MX0uzKDJ1Ktp41/oCQZ57VuhdevuV/pTN6bOzGjPKKMHkTkNXg55bWtbJ9sdCTacLojyZJbn7HByJlhPjvWEqfoYKl+maJbRh5GcQ042MkDauo/Zs402HHwXut/FdrFLioU/q25lmE1HbqyJEx6ZkmfawVDjPHDhRmRxyDAFQEjQSXAScaZdDKpQXoregeWdCyfAYrx4btVIf00IgiBM7njrHjz9N+Db6a3RteNvaJBYjIKjcfhpUwt4erXBHW/dY6vDGEOXC85ClwvOktK3rtqEVXM+RMy+1WiZ/DvSUg8hqUkBohsVGws/J2ceRjLeAr5+C8EgQ/6fDXFUOQ3+Nq0BrMPa2a/h7IfJ0UMQBOEEOXpqiUjOiIpwLHX1OVh5sq3zt/KcNeXpUlmHTaR2nRxCTsdONnLLZ+d5r2a9NVpDd8BAShVtsEuUZXDBKWCmamv02NwMgMO26WJt63nkUilukcQl/bktikj/3x6VZB8vzDY3tfaXGO1i7pClQuVOj6+ZUUlMzjA+cocM0/GieR64oIPZJ+auW5K1Dmv1mDaGLWJ2Z4/ugDJat3gUuO6tchu4rheKPvHmwmehnqmWPcxN99yWd7E45TneDByuVrfHoiooUzx9uo8x4rIwFb3ZcAdtLd0X8SbjtA6R00VlccJJbl6xfHh4Mw7Yt08LZ+h5HDC2aZNsUmV5Vo+ZbTet8Elk3MzT9RLvAvrCSEZUj95GxIFJEARh44637kFpiR9vPzwHf+08iJQOTXHbf0YhJja6Uu20694R7bp3lNJ2b9mJ7177EK3z5+HMnE34Y3sTxMX7EZNSBE90CI1T89EYy3FKU618x8ZfYfvT5yMt5ybEd7wYLKpqtqwnCIKoD5Cjp5Y43q/WkX6DdWvb+sN4Zes6/Xiv51V0PlUZLBtju+pltcnNiWOt5+Qo0uM9ZJvkB8HCQQ3GZ+2dw+2xJx3FKGk6QBQGYdctvS1mlNP1EHVxssnJySWulyO6fxhjULi5Do5ZgtnasK7M5BQgIPd3eLersDwj2IRp8TVidTMQRZsAG9NO0aFiNC73kYwoEzD7zlzMWepHxk2/Svjd7IfwItwOziCrTrI95mLVNkSnio4l+kPyD0VyoFidQHpEj92H6IzYjlN4n9NiW8xyoMuriEzBLsY0P4PNyeN0cTrh0rW2NiwXhqNTyTzhZtvWGwfTKzOpDgdgeh/DI044gVw/dnIGiU4avV1xjXJFMR1BTGhQb8SILBLa5xY5Ul9YB7m1E5nzmCUIgohATGw0/u+Jm6u83Zbts9DyqTvw3/FHcXrRDoSaNUTpRZ/i81feg2fL12jTZDfSM/9EYsYhKB6O+EbFOAUrgY0rEVoPHPkrEfn+1mhy7igkdR0G5kuusOySwgKsnDYR3qLfEYxvjh73zkBsAjmOCIKou5Cjp5YoL6omEsdTz81Zo+M2d3OTWZH6btMI69y1PJm2OYxQvyLynORb2zMjepxaY7Y6Zl153ytn3TR3kOg8UbkHYiSKcx9ID1456mbW1f+XJctzP6eIHga5hbAjymgrLDFcjDOxrl2mHtUjRvRwi0NHdpMJFlkcOyycqM995XNmzm5Vw2FmrkWkrUfk3meQ2pO9KNb1h6Q5eliOavU0qKJ2clYk3HZId0Qs5OisKUeug9PI6d5gKyB8dnXWON0QHHweFbpGrRe1xWPsFhUkrQtUnrBIdlh33RJssJVnlrNn3c480o1L9PKpwgmVdBOcOvr1YdgmyLKOR4XJY1KSF65A+zEQBHGCMfjxydh3x3xk9NkG7BiHKybeDSTfCBzehLKfp4EdWIy8VRn4oygeLTL+RIPUo/DGlyG5yVEkYw3wyxqEdtyGgvwE/FmchYY9rkXK2deCxTR2lLd80iXo3n4F+nQqM9LK5n6I5Vv6oO8zH9eU2QRBEFVK5baKqiGWL1+OIUOGID09HYwxLFiwQMrnnGPKlClIS0tDbGwscnJysH37dqlMfn4+RowYgcTERCQnJ2P06NEoLCyUyqxbtw59+vRBTEwMMjIyMH369Oo2zbThOOoyl1dlZLs5FdwcGW6yIkX66Pnc5eUm02Ee6qiD875aVg3c+9q5H5nFTllrJrxM15DoZtEXgtYjZOTWNL2Z+WKQJIvynXqXO/aivQWxJSb1FoPCnCw2W7I6OLj4zzJHRHixYxZ+wVj8mEFfI0eyijEw4yU6cbilSQ7OdOnMWFSZW/RmegXo7bGwZEVb/0iQo5nNjRcDB2PaS5Osai/OIZko9IXYVQyAh2nrLClMkypF2DChYDkXrDnXd/NeuHx2ugjKuznox9ySZBMt9AATX4D1qbaK3pBsfpdIN0KxLQ7NVqF/9civ8l4VlmG7uRiDBvrYBRPvABbHrySYR2ifWWxnglxFkGVVVK8rCOIqzMe93O7MTK6vhF9MOCYIgjiBiI2Pw/dH++GP3Fbwb/8a6uLzob6fCnXx+Qj8shx/5LbC8gMD0OXV1Ui+Zwe+9r+M/35wCdYu6Yi/tjdFoCAajAGJKYU4JWM9Gu67F+qHLXHkxSbY8Xg28j57DGrxfgCak6dX9hIU5Cfgmx2jceCM7/HNjtEoyE9Ar+wlWD7pklruDYIgiGPjhIzoKSoqwhlnnIEbb7wRl19+uS1/+vTpmDlzJt58801kZWXhwQcfxIABA7Bp0ybExMQAAEaMGIH9+/dj8eLFCAQCuOGGGzBmzBjMnTsXgLa1Wf/+/ZGTk4NZs2Zh/fr1uPHGG5GcnIwxY8ZUu4361/Vj5XgdRU7tWL/uOzlfypPvVK4y0wi9vJvzJ9IP5CbMduSkr7Ut7bd002Fjd7IwqbwsTf/ftheTUIcZravhY32dFzk/Es4zfr1d0ya55xnM6BqVc7jJdHbymXYzZs4pI8lk+rHxiJgWOeAsU94tzLo4NQOXHQtcGB/WyIkwKjhUKaLHei7FtiwjlElvRlkm5IsbXekOMIADqrDNa6STacljYuNOA9ZtALtdKE51rAPeyVlj8+A417duJ16uTBeR5d4IRV2FiB5nx1Q4r7I3RyeddWeNGG0j+G4cnWLSILaMS+t50huy3vBCXBhcLu/SANXHi9NCSmIdLr1JXjCnKDSCIIha5pq5z+Hdayeg0ydrkdL8EDwxQYRKvfjr94bYmNgF18x9DgDgjYrCwHHDgXHDAQChUAgr3v4f9s//L05J2IqWGX8gKe0IfEmlSGhYjISGW4BDU8EXTEXBkVj0PMOPor/ikDR6Mc5t0h4AkN5pJspKHkf+c+3Qvd03KCksoMe4CIKoczDOT+y4bcYY5s+fj6FDhwIAOOdIT0/HHXfcgTvvvBMAcOTIETRr1gxz5szB8OHDsXnzZnTs2BGrVq1Ct27dAACLFi3CRRddhN9++w3p6el4+eWXcf/99yMvLw8+nw8AcM8992DBggXYsmVLhXQ7evQokpKS8OfWLCQ2qFxwlHqMK9dwcARtX+or5vhRETKkVtRxoxMQZEZymliPOecIurQZSQdVBQIR6rg7gRiCHAjBY8svT4eACpTB5yoH4fad5m5B1YugESBndcDI9cV0f9CDMvhsNrg5lUSZpaEocEGm1XkifuZCWmnAizJEWdpkrraJehQHfaZ9FoeMqDM32tLSigJeBC0y7fNga3vafyWhaNs8FVJ9Ib6Km8clgSiEuEeqZ60v5elOKRUoC0XZHUBG+zpMaoNzoLTMC3BP+ReURSFVBdSQB2bfll9H/8hKFEAY75HKa8LMdyUoOAPddHaor5QyMO5wz4sgkwFACPCGHMqXJzOgIspvb9OpDhOPOaAEVHicFvKyYHNelQXhK1XlNGsZLoxywSmklAWhhCwnCmZ5eeALI80fgKckYJaVHh1TTZniBaRHoJWUmE4bo5pQRtyhy6jPEeQBLPW/jyNHjiAxMdHeMQRxgqF/96Ixe3JQUlSM/93zJMr258GXlorBj9+F2Pi4CtfnnGPlgq/x63/eRSvfRrTMPIiGaYfhSy6xLVFWWhCNA/ktEHvm35B6/s1Y/th9OKfNG1ixcTjOm/p6FVtGEMTJSE3+DTshI3oisXPnTuTl5SEnJ8dIS0pKQo8ePZCbm4vhw4cjNzcXycnJhpMHAHJycqAoClauXInLLrsMubm56Nu3r+HkAYABAwbgiSeewKFDh9CwYUObbL/fD7/fnG0cPXoUgOZ8se6cVD7cdU5UHmqla4hSnQVGiuZxqWLLc5ubusUIWH/Ml34Qd2nTyT1mLcMsEt3acnYWcVh3vDLL2Z0vVp25Qw3rkX6sPSjEw+dTdHI495rVGSLrzi1p+rG50qse1WOOV+Zgo2yb6Kyx2cPEh9ZkmfoCywjLVGFG11jlmTbJjhPJNiaWF9/lyAnjUTDOpIgeUY4k22kbdT2Yy+k6YYZZMCOUBH3cPKlWLPnakzqCfpEiXUSVQ2GFreUregGH6+nBIVrZcmLwuOAUqaRMp7WAI+qn5zn0h6OW3CE9kjluOqsQwtfkPCmih0Fy8MhCuUP/MEtZbnaKyoGQsOuWzTEjtCFGAxkZukzxIhKcQkD43HK5P9VjXS6fIAii+omNj8MVzz90zPUZYzj7svNx9mXnG2lrl/yADW+8id4tFiPzjN9Rmh+L6OQSxDTwo2WDX4C/HkJw3sPokJAMAEgIbjteMwiCIGqcE3KNnkjk5eUBAJo1ayalN2vWzMjLy8tD06ZNpXyv14tGjRpJZZzaEGVYmTZtGpKSkoxXRkbGcVjivrBvdWFO0M2XroP1ZYVZXtY8OKTraW4yKiLbKte6BIrTy8npVtF+1trQXDDmu74ihxp+yWv0aC4E62NXeoSM+W5dv0cBgwf6SjbW/tPblXtGli0vMizK0FeqkdsVV+2R1yISY3HsZ8OUabVaXJ9HW6NHsZxIrWUPtPWI5DVxTJug9294HRgl/NL3z+LcXKeHcQaoukxAXCcI4XIMCK/RA6NNxlSAqWBMk8PAoYSPrXbb4hz1Obcx97auvxSWL27zVZlXuHcr7DA2h4DpdXG6UMTT4HQRCz4B0x8g9AWXTqb2URF8QZWU6egTsTpDnLqAa0NL6i8mvPRjxZJeGSePqLMCgKvhtWzCieF3zi1r9IjeK72oo5MnbJw4/pnQzwzmrluwyJVusoIzR0+U2hd1EduxltcPI3USQRBE/aPLBWfhundexG5vHwDANzsvwX+W3IzlC7ORtzENgYJoKB6OlLRDAICuZ6xBwazG2DatBw798DZ4qCxS8wRBECcEdS6ipza59957MWnSJOP46NGjx+HskWMzKuPwEX+MrQymI8QU6vQV363tSOmR8o51GuEy1y63nLzVtp7mXt7MFx0z9rJO0TSmXm77bkWWzxm3bYrj5Hpx08Gcr3Phs5kmz/rCbgSFSUt6iM4im35W7Zk51wTMtXNku/WJpHAWFAY15DYSwv1udToY71yai3JACLZgQim9tfB5YAxclW2SHg9z8AIYa+iGm7X4q0yNwxNzab6thGVX5OJ0KMMYs83fXS8s6WQzezmnAewkW2iH2WQyuw4M2mNYThdjBWQaaxuL5Zjls5OODGBi4AmXi4uDhlnKuOni2L/CMQOTo10c27ddvNpHbnH96p1rkxdWQtQlUkSP3hgDjEe5rJ3FhTaMQWxVXpdNEARx8tLj3hkom/shujZZjOR/boUvVnskbMXcT5H34Wu46Pxl8CX4wRQgLrEEpyZuAHbcjMDmW3Bgf1OUpQ9E1rD7ocSn17IlBEEQduqcoyc1NRUAcODAAaSlpRnpBw4cQJcuXYwyBw8elOoFg0Hk5+cb9VNTU3HgwAGpjH6sl7ESHR2N6OjoKrFDm9wei7vm2Jw8kkxLAxVtjwGOk1inuZmOAu3pEjcq4yAKzzErRIT5W4Sytn10hPmXOXGzPgKkBQCwCHaazharE4VxBkUaCbpE3XXkju7s4IJOdpvkEAsGACo3ZJqOHP2hLtlJpsA2jRQcU0I/cHeZ0GUy1ZiDWiOgFMFppGsDwIieEJ1AopGG3Y7OBT16yFJJ6A3d2WOcSwZoUUGOVYQ0QX8u9gEvP0LCaXBzJj1mVu5Fae0Idx9aZGeR1U+hN2VzIOiHZn+5mlmeJ/pYnFLWPrM64sJpzH57s28qZV5i7nrp51Jh9nTbueO2vmDijc9607TZKSoteMKMftQHv+VOawgNGw4G+6LMkQRzOHcEQRDEyUFsQgMs39IHvbKXIP+5dtjsH4rWl42Guv0znNttFaKTSrHi+3Oxr7gjsoLfofUp+5DU4hC8sUGkZ+YBmAP+0Rwc+rMBDpR0RMaw+xB36vlgzP2BiZLCAqycNhHeot8RjG+OHvfOoIWeCYKoFuqcoycrKwupqalYsmSJ4dg5evQoVq5ciVtuuQUA0LNnTxw+fBirV69GdnY2AOCrr76Cqqro0aOHUeb+++9HIBBAVJS2SOzixYvRrl07x/V5IuH0I3X58OOKzDFbqQxOv+pWrD1dV+uExuoEkNJ4eKmLSulotiX9yG3RIxLWOaHTsSzLqqH5B1qW726JaWfknbPk4AUGNexYkPOZmR+hJd0xUNGxZ9igMIihOFaZen+JfY5wGe4wXphQyPHRHLDwzFd7rEtf50Z26DjUMdo3nSf28x9ed0ia+OuRWYopzNK20Rf6nNqit+jgcgt8MHTRHQxMezxNBSKfDKsRxmSeyWVgLQN7vv64mFN+eV5RQSQTjyVVmH0gqDAiniotE5Z7iKNM2GQakUAWmUwsq9/eKuBXEds26lgGveJ0ZQnjRTKIC4lc87cwSXlzgBlipQGm/z3gZnm9L/VHt4xIH+biPLKcUOeLUXYqiRcvQRDESUjfZz7G8kmXoHv7FTgn4Q1gwxtIbQOUFUTju9UXoN/zHxtlQ6EQPp/5NkJfvIeOLX5Faqs/EZNSjMTGBUjESuCHS1G6LAp5B5rD23E4mg8aDyU62aivy+nTyXz0q2zuh1i+pQ/6PvMxCIIgqpITctetwsJC7NixAwDQtWtXPPPMM+jXrx8aNWqEzMxMPPHEE3j88cel7dXXrVsnba8+aNAgHDhwALNmzTK2V+/WrZuxvfqRI0fQrl079O/fH5MnT8aGDRtw44034tlnn63w9ur6qtl/bG0VYdct5+5VUYF4HpcCgYgxMpGa48ZCzg5rjEYkIC4B7VDB7XdhDm7+sO1Qx42gCmm3Lrcf/eVjbcIS5AwqFDg86RFR56AKYzcquzzTnSfPZbW0gOpFyMHJIzuI7PXLgh74rbtRCRMvDnsUkO6IKlWjjJ2iVMtkTdZbbrckvOuWmxPLKlNL02QWh3ejMh+bEuafEWQWBaIQ4B4pTbbLSX8FnAPFapQ2T+ayDFEHcPs5Lgz4oHK3hbUBqIrDuNXaLQt5NTvdHnETbObCh9KyKMBpNyp7I1Ia5yy86xZcd8p2OuYqwPyWXbfsA8a5HRVQQky+EERHntXDJZRRSgAmLvFWjkzjCggBivXRL7eLW0wLWnbdsjp8HG5Aut9FCapQgi46Wn04YnogAF8pj9CH3AhvM+zT7fWHtF239JNZzg3MuOJKyuApDULe2l3QwRpqxs00XlyiPWomXShCG8Zb+LOq1Q2GSrE08AHtYETUGWjXLaI6OJZIm22rNmH1jGfRNu4nZJ2ShwbpR6BECbvUqgz5B5Lxl6c7CvMOo2vnH5C/txE2l12GNsNuwvYP/oUOvvlolJGP71ZfQM4egjgJqMm/YSeko2fp0qXo16+fLX3kyJGYM2cOOOd46KGH8Oqrr+Lw4cM455xz8NJLL6Ft27ZG2fz8fIwbNw6ffPIJFEXBsGHDMHPmTCQkJBhl1q1bh7Fjx2LVqlVo3Lgxxo8fj8mTJ1dYT/1EHdza8hi2V4/Q7eWckaDg6KnMyePhTd0d67j8+GvKtGsccd5kzCV4xB/53WSGhO3VxTLl77rFEOQMIcs6407zLGua6ehRXMozW12dgOoRZLrtZmV3gPhDCsq4dUt3ezmnvNKQF1zQ1Vmug6MnGGU6tLiTHKeFpbW8olCU4QCwOogcH+kKR9cUB30IwmPOTfV8bpcntquqDCWq1REGZ92NY61Pist8hgPMdEYJ55A7O4k4B8qCXlgf0ZN0E+fNup0c8Pu94LqjJ9IFZTlRnANq0OtexcGRoaUzwK+YziVeTnmxTCjs6IElysR2oQsOHw5ABTx+wIh8q6BMhrCjJ2SJIXGUaakbUuH1O6Q7XNDWiB4WUOEJymmuzigu6FYWRJRfOEHckm8MYLszSCkNO3rsA8UmT8or9cPjDwgOHOGCEQeL6MwJ5/HiYvMilBb+4pa6kPKCoVIsLSNHD1F3IEcPcSJSWlyKhf98AUm7PkX7VnvROPMv+BL9Uhk1qGDnnjZI7nsLmvS+HswTg7KSYhx+rh0aNCwCRuymx7gIop5z0jt66grH4+hx3F+ngmeiKiJ6dHEVPftlVheLZf7iPr/jkrZOjhYnxIieitQRJ/AhzhC0PH7lNI+0thsqN6LH6uwxPwdUrxRVI++ybUb0iHI5tIieMltEj1nWKkuUWaJGGU4FbtNNbkdy9AS8CFjstOomyzJ1KQ75ID5uJS5obJUj1i0O+BAwtk2yy7Gfn/CuRhwoCQn9w4XyovPGYT5dGPBJ/SPlW9bhMXfQghHRYzi0xLm2WN/SJlcBf5nmKLTh6qjR7WJQg4Kj0OnCcqgvRfSUdy1b21QBJSg7cZhbFI9oAweU0nBETwVkipEyNkdPBZw8+sUZ5XcpZ3k3z2RYVz2iR0e11BP1FNP1iB5HeVx6N2TqOvhDUELCPVO1O4McZZf64SkVHD0Wp4xRQdJByzMiesAFeRZBNh04ggGK6CHqFuToIeoCqxYux+63X0aHlE1o1WEfYhoVS/mhgIJ9vzeHt8v/4dcff0Xv1m9ixcbhOG/q67WkMUEQNUFN/g2rc2v01Bds38ErgdNSFhWTad822mmpjfJkApAWzpV0sTRmbZtZPrvJFndq1stFmCdDs04rHUkmF9LEdpmltL6+htyWlmp/ssZcZIRLJUWZzPF/hZmTax6uZ7bvtN6PUNYybxOlc0sNc/FjBsYYpLV4xIWFy3msSlvMW+itcPiE7vAR+1F0/HDGjEd9hLmprX2rnfI+3tqbMaFmWl1zmREWnsvquijG1te6nWLzTHQaSfZaPjPTLuu5lBbMVoxE58Yi5XEutQ2L2dIgFeoxBZC2dBcvlEgXtuWCMvvQ4jGT5Ivn3WJTBJn6fcG8SgTcLk6nY/H0WW8IVluEdJvTzHYzM9OYpKDtxAM8PLrEhZGZRY7eBBdPOHM8l7a1gfR1pQCYq61z84IHIjuNjPYtJ0hc6Ft3+NBvPARBENVG94v7ovvFfQEAK8ZfiF49v8PKxafhlJYH0TAjH97YIDJa7QUOP4Qmmdrj143xE7gaBFNoekYQxPFTuTAUosowJ1aVhwuvyspkzHluVRmZ4rzJmIe4KORkol5Uhb1dPV11+Oxmk/nZ6myw6+4kH1I+D//THzoztdT/SRED0Fwa3Cabh9dhsrYqtsQR4uYxwiWYYD0zdJCtYdDmkeZ0joU1sTouzJa11lVwzrWFnPV3qIJbRjXkOsfqMG0MMUGmfRsiQyoTrRbkahNms4w1nsiId2NcskzawN4YgFpVrurtqwDXzp8uU7cTgt0cVtv1vnTGGONCm+JLVbm9ktvFZi3KmDGupPElD0HbRcPD66w4XiiODVryBHWMuT8PZ3LLS5Ctd2dFZeqLKVt9XeVenE55+hBiQhKD5SzCcKhIPg8nudZ2Dd+K9ebGw75EDs7Mq9a1Wxm39IWlrfAY5MYjWtq4NS9/QxGzdf3cWG/kkhKis5A722ooy+HeEEEQBFEVhBIzAQCBrB5oOuUXrFBfw6JP+mL/xjQES7zw+rTY9w6dtsI/OwXb/3kG/sj9N3jEnRQJgiAiQ46eWkL87n4sHEs1cVJ0LPLsDg5hAufSppuDxtqm9aVY3p3mqk7SxAAD25zG5QXpMwv/U4xXJOm6DGtgA6BfXKYDSGvP/AcweBiEY1Gm9uLGZ9PVors7xLVILPEggraKIUuzSosYYGFvjSlL721RNoRW9celuDn3hRwh5iQT0GWw8Fhh8ktw4+gtWB+j0vNV3XbdByQ1wcAU7aXv8KU5pRgYU7QXFMFup1EluuDCtstzfNNWxkwZ+j99H2/HC0USY4dzacxycWA5DVTpQmHlXyjc8m61TX8x2BOlArr9qJRMUTwTDdVtgvC5/ItUqqP7K/Rsaz9KgStubQmfdR8K0w/KOaHGOLGYZZQzEi0OGpud4bFrXJLMPMdGJzoMHslwwWDRSWTIlW4a0Lb9IwiCIKqTHvfOQFmhDx188xH0lyLnpisx+N3P0GLqDiwtfRGFB+MRCigI+T2Iig3ilFN2oNHOv6PktRRs/Wc35P/0EWilDYIgKgs5emqJ4/16fSy3+/KnLJHlufy4bv5QXUmZTj80WyN5nH7YL0/PSHa5RRGZLzGiR5zyO2sg2uLmCjJtU23thrgpC0a+HlEjR/NY3SB6FIOWJ0s3z5MpU/ukgnPVjOgRZFojiETXiyFfn/uGUxTh2OwdvT2hL7kqROCYLzOaRpweh6N3LI4HI51pL2PchdvlnIOrHEY0D/RoG9Nm027386n3pm6v/hLt5FLfhdvTI3pcL5QICBE9Uue7XSjSBcPt8lzlWD7bLpSwodZoHuMVFuNkYwSZom+D22RWwE63G5D+0c3xI8py09PSrhEkZo3mgfUY9nECcwwZDUr9zIXmhGvBiN4JmWliWScPl6EzN29AoveTKdqzoRDkQKgDANC3QCPqIy+++CJatWqFmJgY9OjRAz/88EPE8u+//z7at2+PmJgYdO7cGZ9++qmUzznHlClTkJaWhtjYWOTk5GD79u1Smfz8fIwYMQKJiYlITk7G6NGjUVhYaGvnqaeeQtu2bREdHY3mzZtj6tSpVWM0QZyAxCY0wKotfdAoIx+Hn2uHZY+Mx+/r1mLZI+PRteBexDcpwvdrz8OS/BlY+ulZ+HN7E6hlCqLjy9D6lM1I2nwtil9NwZZ/9sSRLV+S04cgiApBD4HWEtItmlkTqlemMTGqhExxriQeo5y2Is0FIzmY9B+13VQsT3W3fKc25R/YnV1E1jpWe1jYPWOFCZ/MdXLMuh7GEOSK0K/mWjpi+7IbJDyvEwroi2yLj5Bx6JErZtsAwJgizYyZ0APWdWoFF4+9Ty3ryugy9Ra5YTXAxLVHbO1Y22fG3FaPWtb7xRqdYcq0nDUelq07LcJijHHMpaIW+c4Lpctj3zyfRllFKOB4ocChE0WF5EWmDSJ5EvXIDzd5Tu+iLm6GOsnS00Lh6KxKyNTHq3XcSvUiyRSdXhaZDJCebuSWD0ys43LxM+5wzKyGMYut3DhfUnQdBxjngldL6AQwuzBJNw9gLF/P7TpbQ+iMfhNlhD8Yg0mXKd7Fw2PGci8g6g//+c9/MGnSJMyaNQs9evTAjBkzMGDAAGzduhVNmza1lf/uu+9wzTXXYNq0abj44osxd+5cDB06FGvWrMFpp50GAJg+fTpmzpyJN998E1lZWXjwwQcxYMAAbNq0CTExMQCAESNGYP/+/Vi8eDECgQBuuOEGjBkzBnPnzjVkTZgwAV988QWeeuopdO7cGfn5+cjPz6+ZjiGIWqLvMx9j+aRL0L39CpyT8Aaw4Q2ktgHKCqK1rdWf1bdWvxGhUAj/e2wWkrbPQ8d2u5GccQgxDfxo02AdsOZSFH4di735HdHy2icQn9XTUd6xbBdPEET9gnbdOg7q2q5bWjSHu6hI4vVdtypbj3N5e3WnuaZTe+L26uXJktPM7dXd9HLZdEfYXl1rRyxjOjSYVEd/t+66Jefbd7TS2ykNKgjA51hHm/hb2zSPS0NeqNLuYmaek8NGzy8JRCEo7LolO1h0uVa7NYpDURB3uRL7yTmgRcsvCvgQ4l5JJ7F9x23Pw3aIu25J9TmgclNfQ2Z4jlsciILKPeFEB8cZt59LQGszEPLa1h7iRr7F4aTbYN11y1omgqNH33XL2t+mUs51y911y0kHoU0lyKQ0KTLM7ULh5ey6ZfFFSMcqtK3Oj+HijCqz5LnIsckMqPCEHNq0yGTWvLIAfOL26tZ2I3gLldIQFNsW50IZcVcsLsgu9cPjD4X7WRgwQlnj3RKhw4tLtAGhVzMcPTx8cXJBf24M5KBaRrtu1UN69OiB7t2744UXXgAAqKqKjIwMjB8/Hvfcc4+t/NVXX42ioiIsXLjQSDv77LPRpUsXzJo1C5xzpKen44477sCdd94JADhy5AiaNWuGOXPmYPjw4di8eTM6duyIVatWoVu3bgCARYsW4aKLLsJvv/2G9PR0bN68Gaeffjo2bNiAdu3aHZNttOsWUZeprAMmGAjgk4efRdN9C9Ch7R40aHEYise8/xfmx+O3o6fj1BueQUza6QBgOJR8CWVGubJCH1Zt6YO+z3xsk0EQRM1Rk3/D6NGtWsJxnlMTP6yGAxzEJzEizD8l1Risq7iYaW6q6227PYYlPdUgpFmX/3AqZ9VbdjC447T+j4Lwj95cCb/kjmJcAQtvya1yJr14OJ07pusvBeAegHugci9U7oHKPWDwgFteKjzgxvo8+vo0SvjFEAq/nJw4MD4zcOlMeaCvx8OEdUfMf+Z6M27nkOtHQoL5OJQZu6OvBcTgCb+H18jR18cR1uhhxrFgR7jb9eVDzDVdzPOh7RRmrvtjrD8EYT0ecQ0dFt7hTJSr2O3TbbQvMG0W0FcAUqQrQl8fSCjvNoCdLhZjVyRmV8jpYpEGrks+IMuK4Hgyq4S9WFpYivZSnD5XTKawVrZppptzSOgC+8UplLXIZJY+tTwd6Ixbe9xaRh+EgrDwi0Mxrn0A8g0OHLbFiIxDLtjFLC/Foh8T3hzGF3jYuWNxRBkOIW72q7UDGAOUSHdvoq5SVlaG1atXIycnx0hTFAU5OTnIzc11rJObmyuVB4ABAwYY5Xfu3Im8vDypTFJSEnr06GGUyc3NRXJysuHkAYCcnBwoioKVK1cCAD755BOccsopWLhwIbKystCqVSv83//9X8SIHr/fj6NHj0ovgqirxCY0wHlTX8c5MxbhvKmvlxtl442KwmVT70bv2d8h/vZf8PHau7BqyWko+C0ZXGVIaFSE9q1yEfV1T+Q/l4qdj7RBr+wlKMhPwDc7RuPAGd/jmx2jUZCfgF7ZS7B80iU1ZClBELUNOXpqCenX44p6W6oKYd5WkTlouIq0bo51Z6xIqlfWYWNNd+siq65MqOc4l7a8nNbrgbDminVh3kjOKbdtus2+EVszezDkKs1p9RqrbOsixvpLd5nYt2tiMHf5kf+pjufBOueWJp7G/JQJA0rY3QuquS4Rt+yAZXw2J/+GbcL4BGCu6SJkMCb2uCnTXB9IlwtjCRQ17JhCeHMjcTML2T4Gx+eLTD8TONN7zDyXXJ9wOw1aq6fT2rD4LJTTABMdEeUN4orcU0SnilUX60uVDIfNQ1yOTEMMB4Qn6dxxskvME162hZ1h8ZuI9awyxHrmZSeXge4s4cZnxjkYD6+jxQQXa9jnZyw6zi39aDjCwsdWjxTnMCNyRMUgyZfTmSmUw3LqxE4QxphVnusgIeoqf/75J0KhEJo1ayalN2vWDHl5eY518vLyIpbX38srY30szOv1olGjRkaZX3/9Fbt378b777+Pt956C3PmzMHq1atxxRVXuNozbdo0JCUlGa+MjIzyuoAg6iXRMdEY9vRDOPv1lYi6eSs+XHkbflraAYX7E8FVIKlJATLb7NP8+NFBpMT9jqYZSTh3ykwkT9iK/L2N0L3dNygpLKhtUwiCqAHI0VNLcOO/Gparzw8ivJzQJ/zWaB67I8CO21y0PJxkOb3c5oOIcGzV23w5/ZPdLqJDxr7tt1Nr2idFal+zTBFKQpJone+bskV3jh3rjlJyL/JwRI+smRnRI/YPYLgwzH/WibEwBzain6AYkTxmRA+TXmY0D6TZOgeHyrQX19OF9rkY1SPpK8bviLtuQYjmCc91FQ6mmIs6i+fWcI5x2dEmja+wg0Hcc0uP8RG2bJIvCuupkNC3e7f3Laxp1natG6ZFulCsjiOnC9G6+LBurO1VQZmimLBvw+ZDc7o43frQ8rL5nXT/hX7MHNp3kmONjAKEc6kPHO2d69E8UMwrX3dO6cE1Tv0oGcyN9qTBqSiCY0a0n5k6GQrq14cqyBNEGR0iyHWKIHJbO4sgqgFVVeH3+/HWW2+hT58+OO+88/D666/j66+/xtatWx3r3HvvvThy5Ijx2rt3bw1rTRAnHvFJCbjq+cfQ7dUfwW7Yig9XjMHe9ekAtFt/w2ZH0SF9EfBxB+x7oiX2zH8MW/yXwNfAj5XTJtau8gRB1Ajk6KkljO/ukSZj1SXY+l3fZW4q4jZtsU5hnOpXZM5ZnkynNN2B5CSvIjjZZI/nMV0AsktGkyS6etxaFd1DqvRJFZxgYinZpSP2EXPpRS58kltQ7cdctsxqrbh+lOycYlKAgD7RBuNGlIs1qsewl4f1cIzmsVjHAcYZWDjdnGdbd+nS9dTsUjmHqu+ype/6FZZjbGpkcRRxLkZFiZ4LbutlJnc0AG6X6RbR4zbn19vWbawIYhsVjHxxzIsoz82jor2cImkcZVoui0h+F1c79XYstlr9TqJPxjguz86I58kYoNpL3ymOC1c9D49a603U6uWy3jT1ItaIHlVw2kj1wpUMncLnQnLWMKFzwx2jCCfA8IiJF4Tw2BdRb2jcuDE8Hg8OHDggpR84cACpqamOdVJTUyOW19/LK3Pw4EEpPxgMIj8/3yiTlpYGr9eLtm3bGmU6dOgAANizZ4+jbtHR0UhMTJReBEGYJDZKxFWvPIvfSk4FAHy0aBg2f9caJX/GgylAs4w/kYVncVaLtwEACYEttakuQRA1BDl6agluPYgwCawW+Zb5RXkqVMZJwy35kea6bvNFvW4kPdxXl+ARjpzbMtuUVnYR7HPqGdPxwIzZqP2l/8/A4BE+66vK2Eu59yt3OVPM+N8ej6SE8/TIE8Wmn+i6ktfp0WWKET3czNCcMeGJv8JhOgOgr9Nj6UlLNI+4fbphVdhppEf06A4ZSE6ZcKt6Bejr8IhrBMlyjOgh/fEvCFu1h51FZkiGy/zcclIUxoyXFtFjOf2APc3h5JrrybiMVutFZyjg3F4kWcaxfThbDty9Kq5bpJcj0+Z3iXS/E9visEUQVfgpsorKsEUnGYMG4ti1xvGJvhWbUMdzL3aG2DbCET16mkMHGp5W3RmkP4cYPjeOhjG5vsLkKCKK6Kl3+Hw+ZGdnY8mSJUaaqqpYsmQJevZ03qGnZ8+eUnkAWLx4sVE+KysLqampUpmjR49i5cqVRpmePXvi8OHDWL16tVHmq6++gqqq6NGjBwCgd+/eCAaD+OWXX4wy27ZtAwC0bNnyeMwmiJOeYHxzAEDjNsk47YWfUTB4DRYsugx7fm6BYKkXUbFBAEDXLmvxx9PNsXnWLVADxbWpMkEQ1QjtunUcHPeuW8fY88e66xaHilAlZIpF9V233PLd0lTLrlvlldePVRUoc0i3vtvbYAhxhqDFhxlJV/29LASUCTtgAeK6O8xSRz4us+y6ZdXJqq8+SfSHPJZdt8R2re3J7ZTqO2DBuT+sbej6lQS8CCLKYgszPtvbMmWUBO0y7fK0fJWbOhcFvAhxq0ynz4C4QxY37BTzRQeMOWnmgLGIsgqguEzfdctp9zJI9aR+4kBZ0AvrOZfqq2Y74uZK/tIoaFtku1S0KRA+5EAo6JHsiVTemOdzmLtuWcu5tSG8KwHTRailOUz6rfVUwFMKOO4uFkEmA8xdt5zKRJIZUhFVYmYzMc9Sh1n0MXbdcpMp+GQkZ00gAJ9ftekiybYPJK1fy0JQQpa6NkeaqHO4fkkZPP7wfoPGc7bWdyeZKnhRiXMdbi2rXyxaiFQwRLtu1Uf+85//YOTIkXjllVdw1llnYcaMGXjvvfewZcsWNGvWDH/729/QvHlzTJs2DYC2vfq5556Lxx9/HIMHD8a8efPw2GOPSdurP/HEE3j88cel7dXXrVsnba8+aNAgHDhwALNmzTK2V+/WrZuxvbqqqujevTsSEhIwY8YMqKqKsWPHIjExEV988UWFbKNdtwjCmZLCAmBuJgryE5A8YSt8sXFG3pJZb+OsstsRk1wC5uGGjz/o92D3niw0uuQxNO46uJY0J4iTh5r8G+at1tYJV8JzYEtCzckUf3SuCNbpH4ez+tZgAQZ3MeXNZSPJd2qXO3yK1K7eht62HjBgczxIn/SJMbekcogBclb9mOA0YEKKB0BQaNds0+lXdm5pV27Neg6YYAsXdNAjeuyBHUyoJ8uxzWuB8KNVIqYsLmhhSGPMZpW2ARGX6zChb3k43XISWbiY3lfcksugRdtwi5VSH0mDmIcf4zILOfofpIEdPod6VIk+BCpzLVvm5a6CnQa8NeJFT3ORYTvhjhdQBOWFgcUZMx0qlZBp2wSqvL4S6wt9G1FVi8xy41XE8mJ/OkXW6GPO6HN9BOo3VssJFesyMV9sUyjrsUTYcC4cW502usNGqG+0y6Q3U1fh5OsLOCvl9hBRB7n66qvxxx9/YMqUKcjLy0OXLl2waNEiYzHlPXv2QFHMv1m9evXC3Llz8cADD+C+++5DmzZtsGDBAsPJAwB33303ioqKMGbMGBw+fBjnnHMOFi1aZDh5AOCdd97BuHHjcMEFF0BRFAwbNgwzZ8408hVFwSeffILx48ejb9++iI+Px6BBg/D000/XQK8QRP0mNqEBlm/pg17ZS5D/XDts9g9F68tGY8f819E5egFiM4rxzQ/98GdJBk5PWI7MDvsQFV+GU9vsADZfhUPLG+C34LnoOHYWPDENa9scgiCOE4roOQ6OJ6JHjTSbLIfjiehRgQpHEonFnCJ6rOWcmq1sRI+eJkb0iGWc2rJO8p0iepxkWefWwRBQCh/sThcYabITw8wvUz1QXaKI3KJJVDAhokds35QHy7HY1/5wRE9ku+yRSCUBLwKIsrTJHO2yOlJK9CgirtvgJFfrB3NOy1AQjuhxipIxdbRE54RfpaEoSYahmzHjNusgrK/KgSIhosepL7Q27JNcPaLHet4kO7ksU59vGxE95V1jlnzOATXolZMjnVg9KQSwUg/AlPIHuPUzd4joAWCL6rG2GxIieiohU4/oUYIOzpfy2qloRA+32gKwoBo5ikj0yZgXJxAKwVccjFwOML1XQrriD0FR7dFAthMstqlyoMQPjz8olFUNuyyD3OJU4uDFJebaO1K+IFgVPoefFwyG/BTRQ9QpKKKHICKzfNIl6N5+BXwJZmx8WUE0Vm09B32f+dhIW/3x1zj036no0n4rkjMPgSna3wc1qGDv7haI7jUZ6eeP1DbRIAiiSqCInpOJGozqMeYLlh+MK4JTRI+Yx4V3a71IIioiXpRdXsBEeMpTaTliVI+4xK8Y46IfaxEoslPEOl22z+uY7ZP+wE1QKMml2B97v0b6U2t1EGlH1mNztyh7+069ZMYF6c4M0SbrDkqyc4QZOnnAwuupmJNPbvSa3rfh/5kZWGE8/sXFVhGOBBJkho9VoZQW0aOV4JKccCscYCwcTVTunt+6zk52WiKETCEVRttVuyJn2dTFKKqfhIpE1oioDsVEp4D0UWiAab4gx4WOrTcGS57j/aY8h1a4T7limsqtss2L09HB5IjbcAe0izPItWgX/cap62F11rBwPJ10MXGH9qVBG5bH5fb1NXq4nsfMwWW079BB4nZ4UkSSKF7Ik84TfYEnCIKoT/R95mOUFBZgxbSJ8Bb9jmB8c/S4dwb6JjSQymVf0g+4pB8CZWX4+O6H0Ta4EKee9ht8iX60PHUPcGAsCl++EzsPdUeHcf9CVFILR3klhQVYaZEVa5FFEETNQxE9x0GVRPToVOIsHHdETzkynZLLi+hxU/9YInoAIKQC/grKkdO0iJ4QlHLLWvMDIaAU0a7tRoqeCagehCoV0aOl+UMK/Igx0u3OGqf1fRCu6wXXo2ci2KXroKeXBqPg5z5LeTOiR6yvWvQpDnm1GbfNRottgiOHAygKRiGgWmWaNqpClJBoI4cc0SPJ0p1A4UTRAcUBFPqjoXK5fyQHnct6NCqAspDXMd967Yh3Tw6gtCQajuvcuDZkthMKOvjdyzmxXAVYiQe2dfUj1dOPVUAJmRFRzFaeWY7Nep5iVFqmEdETcoqKcdFRJyhH9Oj5ks5OaQBYSIUn4NK+IMemU1kQvpKQrY5RTnSKWW5OSlkIStDhzud4wXCzzdIyeErCv8Bad98SZQEIeweNMrxEj+jR65p59rpmuaDqx9Ky/1J0BFFnoIgegqg+tn2/DjteuBdnttmIlKy/oHi1v2U8xLBvbzME2t2MUy6/E4xp3wEco4cKfVi1pY8UPUQQhAZF9JwEiD/81qRU7vBLc0VUMH6Idihs/ZFaRAEiuqXcZOs/XlvlRHIaRWo3ko3Sj9tSTIjVsWNdI0d2yDjFDlgdN9a5rRZbo7tT9F189FLW2CG5LcZgibARnTZOOuqFGBSI27frUTuaNPF8WiOomKWHAMhPiEgyBV05g8JUYw5q7VsmeBrMGCKY259bZRjHLs4IAAoTN4o35Zi9K8owVWZcjiBy9pwxSRfjWnbbz9vahi2ST4/KcLfHdqKtnVFRxNMjOqqsjgwpE5IDywg0ORbcLs5INlu7VY+ugZzGxLRwGVcXfKSbhG6/wmzp+uky07gtKMbWN1aPoFWwpLR0IZgVuHhlAsYOXHp4FWMwVgl3xMlg7pBOEARBnKy0Pft0tD37fwiFQvj0H8+ged48tOu0BzEpxWjeKg/wP4KSfz2OX/efhsJCH3pl5yJ/byNszrsMbYbdhO0f/AsdfPPRK3sJlk+6hJw9BFGL1Mnt1UOhEB588EFkZWUhNjYWp556Kv7xj39ADE7inGPKlClIS0tDbGwscnJysH37dqmd/Px8jBgxAomJiUhOTsbo0aNRWFhYIzbYvtdXYtZ0DFUMqQyQdgyuaHvG3JDJL7GyU5pqab+yL1NzZ+ePs5X2Ntza1fLM7b/1Lcitey1zh3cutWx1CYly5dKmVCWsqyyP2bSVZRvHXJQBoX2n2CNTrvUEMqEVJ9ni/xzm/NJpTOi2c2svMEV7QdF+BTK2WHcYNJLNMMasvjM005tj0LZGZ9CCjBjCW24z8LAsa9vm+VOMl66LaJUi2uiinlFFF6MwbV3byl+YmrMAwoN2kQasmA/mvJiuPiTL83C63QOcjBeGuuPTPhWRGS4nbc/udJFa9GAu/cAAfcd38wk2DnEneEe/ilWeYarQsGJTBrau0MamJRG6v8VpsDDzH9ffFSPd6FxRcWNLdIRvE4JOoiOMW2SK+dayhj3HOmAJgiCI+ozH48GQh+/CmbNW48igNVi46CLs35QGtUxBdIIfHdqsRrcuuQiWenGw0RXo+8DTSO/UGedOmYnkCVuRv7cRurf7RtsJjCCIWqFOOnqeeOIJvPzyy3jhhRewefNmPPHEE5g+fTqef/55o8z06dMxc+ZMzJo1CytXrkR8fDwGDBiA0tJSo8yIESOwceNGLF68GAsXLsTy5csxZsyYGrFB+mpdyR9Vj/13WN0NIDdQkfbEMuE1PI0nC/SXUxpzqh9+qS7pYp6seeQf4cWy1jmntX3ZLj3yQ39XoT1cZ9bQHi5ShWPdmSK6e7iUb8qwb++tyVLDepryRF2sPcSMNN1Op52zTJmy5YLFnIOHX5DkmTLlNPvqMbZW9XMPaZopyFTBjZdFB+40EoSHxlhYB86hGvX0dWeZNs7CTWgTfA7GVa1frQNSPJ9WPay9yOTq5mdmH/cAoHJtTaHKXpgcxuReujbdLgZpYHN5f3cxP9L83ZJvPMkjtcHsdbhZvkIynbqVGafULCOWdbDVdnq4kM1kVfVjacxanUfW9i1qg4cfr7V2jFCeM9jHDg83r/ttw9e2+RiWcJUz8x0s/K43Ij22xc1HssTFlq2dYdgm6CPZbXVIMbN9olpYsWIFAODbb7+tZU0IgiCOnfTWGbj0rffR4p87sKzwefzw1ekoPRQLxoCo2CA6JLwK/+wm2PjQ2Sjer23rvtk/FL4GfqycNrG21SeIk5Y6+ejWd999h0svvRSDBw8GALRq1QrvvvsufvjhBwDal+8ZM2bggQcewKWXXgoAeOutt9CsWTMsWLAAw4cPx+bNm7Fo0SKsWrUK3bp1AwA8//zzuOiii/DUU08hPT29Wm2QvlpbJx7lUMnizqWFRhi35TrINCvokypreenX8/DkQXePVFAr49ic6jvO71zb0etZ15Zxk2n9xZ8JThnZWWRzXQgtAFZnjtwmN/43UYRABj2yx9525CAJ+4NdslZ6KUvoBBMWY+ZyDSdb9RRDD64fm1rrj5GZMi21mQIWttlmD3fqW10/cxbvFEVi6BBu2IzYAcxQG1GgOI7D7bpM9A27LH1gRR8tXJHLV+jiFB02kmfCJsC8IKyTd/HxIv2UlHehWPQTd/A2Zeg6MSFNS5bOhSjT6aZgkcWt9cU2rDrqTiHRewvzs3UxcMCexo3/HHDQj4n/GXK5oSOT+toYeEZlruvFAdvDj4INhrnhPjYeKxQ9U/qCzHpB43lNsUMtnS/pJHaa5UZvuS0QVc9nn30Gr9eL//3vf+jdu3dtq0MQBHHc5IwbBWAUVozvj149v8Xe9elIb3MQUbEBtG+3HvzLbOzalY7Gbf4PAOAt+r1W9SWIk5k6GdHTq1cvLFmyBNu2bQMA/Pzzz/jmm28waNAgAMDOnTuRl5eHnJwco05SUhJ69OiB3NxcAEBubi6Sk5MNJw8A5OTkQFEUrFy5stptcPxuXUGvDQcc51QVlWr8oMth/yXfBTHmQlOC2yIi9EgN7Vdr+9zNqjtH5KieSPNGKzxCGXGaU758eynmmma2bi8T2R4ONfzSP1ujedx0EA21O0h0beRjLv8Tomr0tmX95eglvQWjZSFkR4rusvS3lMI5uKpKY4TpY8jFVm0eLc6atXoqFwIb9OYMdbUDxoVICi7bpqczroYrWkNmIA8iLtupRxRJ8jkHV7l7cER5k+nw5Fy8NkV1Ja+n9CrnImYOLwedjKYA+zm1XkAQutR6Y3CQFUGss95c/iydQmtR5tAllr62db37RWnYpvWFw+A2qojXk9107UN47Eo3W3PQcC5f88a1L54AcWgaulp7VOgMsdMgXhiWDjn2XwuICvLII48gGAzi/PPPRygUwqOPPlrbKhEEQVQZocQMAMDu2EFYEz8X3315JooPJoB5ODJO/R3t8QiA/2fv2wO1Ksq9f7PevTcgV0EBUfBKooigiIjXPiWp6GLaOXqOpRlpX2GJaCWaeiwV9aippVF+mdXJNCs9ZmkRBt4QETSv4K0UL4CK3Pd+b2u+P9aamWeembXed29gv8CeH679rjVr5rnMmrV85/c+6xmg9w6rIeOOLSITEBCwadgmI3ouuOACrF27FiNGjEChUEC1WsUVV1yBU089FQCwfPlyAMCgQYOsdoMGDdLnli9fjoEDB1rnm5qa0L9/f12Ho1gsolg0a0GtXbu2wz5I/af9yCIyaut0J6K1fvzP0hkTkoHLsHIl1ZDj+UEdAia3j6WzDjt9mur9wTqZ/9grSknrLK+vKAkVs2PoHx6AIEF9NRE1yd/I0w8k8oSVaUogzesi4R8TdpmJpkmia0y72JoZG5KIlyXl0ppJizTcgo4r6qdUJULovtV9Ik09bjtNxqwmt2qOG7F6amItgSSRspZnInqEkuUYmb2SmuovmjLF0DGmro52i2BfdE8whVdR2hlWP/iiLTwykkUvhF3PFwrnA79mmTeKNB2RHgpuX45O3R3Sc9rnH78ZPH1hvfrlE0ns0txI3s2Zltu5tIVrn6TxfmkhDaBRpI9jn7D9EqSeuTGhB5FA0slxTNqkAmNfR8J0sLpW+lMXGgNSXwK2HC699FLceuut+P73v49+/frhK1/5SqNNCggICNhsGD/jBpTu+AP2a7kH/T5zFVpOnoz331qJeRd9DYcOX4j+e34AIYADDngOG3+6M159bzxGTv8Vmnru1GjTAwK6DLbJiJ7f/va3+PWvf4077rgDixcvxi9+8Qtce+21+MUvfrFF9c6cORN9+/bV29ChQzssK39ilQ/fj9H16hSeuUtHdGoZPJKHTR58LlI5NJ6i1pbxO3bmRJ0eZ2WBcfXY0TW+aB57hmhH99D6/tpIJScRPTGEpdNnHY+4kUoaiZgwvgpHX5z6Fau8QyxPjkitoFfElFFPElJDJ19Or4g7XyQ20t5kY0V4/WNUk7DTJwtIK+BBh6HoQJ3EP6Q5eqxoMxLhQ8t4tJQv+oTrpFE9SlbMJ+B5Nxc/J8xLg3qc0xsk4yZJkv5Ku5wSI5ZArtM2RyKVp5Pc8M3YLbltVKZHp3reOWZk3STcX1ZXSvijebhsqtMhbVzZPHKLXfiUUHTj75QM7TbvB3VBpe2Eui/0xVRLpscwuZe0gvQ6pMSpC/VAoBeWyKD3i7aRDpiAzY1KpYLzzz8f1Wr4NTsgIGD7Qo9evbFwyVHoP3QVVt+4L+Zd9g0UV72D3nsNAZqS/9Gs+ld/VIsFdO9TxAF7P4z47r2w5NIx+HDJEw22PiCga2CbJHq+9a1v4YILLsApp5yCUaNG4Ytf/CLOPfdczJw5EwAwePBgAMCKFSusditWrNDnBg8ejJUrV1rnK5UKVq1apetwzJgxA2vWrNHbsmXLOuwD/e7eEXSk2abo9M0XE+JIzfr96zzxMmd+286Nm+/TmfxAbk/CfLbb62qpja/AZTa+6pUqsykC2o7rpBoSCxLywv0HTWuYjXohifPcT9eaJJomQpInR68ypaNsVE9E1uauLAZo2kemfSxtfQkij68izQUr7M3pW9j7EqSf7TxIiYh0Jh8JiHTTq3shSlf2Slb6UscmRxEfFf4X6KwJvLqSwvZPQOlG9pYHFgUnabfTjS8Ip1ZhqqUr6+Y0fJpeodtetirdIrVv+t65gbJ0SmvXfpNO+Qmyn3fjex4C2mSoe5/xGtR3nyxSbg9Pe4y6Rvpd5s8D64JSpl2YIuh7I0r6tQBTNwLsHszwxXFYkjrCNVkRSgFbDF/72tcAAF/96lcbbElAQEDA5sfR19+Hxxcdh9791+PI4bdh8PNH4Mjht6H3jhvw+KLjsPOFy/B4+WY88/AIlNZ2Q6GliuH7voLeTx2Ht67cE6/e+0PnB+KAgIDNh22S6Nm4cSOiyDa9UCggTsPc99xzTwwePBhz5szR59euXYsFCxZgwoQJAIAJEyZg9erVWLRoka7z0EMPIY5jjB8/3qu3W7du6NOnj7V1FLXmfbXQkceiT2c9c1ClL+PHdc9sKlunO7Vu3wbU9l39Ru2b19TWa+fMoFN+wSSol20EK5Okvt1fXG6MKrOGnjMRL4YOUV4IWIotG2wfk78mnsdEuSQRBWrFLxPJQ1NZCyYTEGR+KfRy53YtE4Kio5dkTCJwzGZHTCm5abkiHtg1ECLZIJH6kchVeXJ0NI/21az2Zfy2ddr9KOzrSifkyitporL0NVMRPXmDl3en1pFxF1LmwhfdE6s+zdCVBy9xosiJdIvJPlnKysqZU0sn4zZyiaH2PAQk2c0ifqiuvOtA/HIieqhyxlI54wRmDGnBFlckiQ9Sj1uddEpWyfOUXFdFGPk6Tl1/gYQo0gNWvbpIbee+S3gzWgdsVnz44YeNNiEgICBgi+Do6+8D/vNNPPLCKZj/5FF45IVTgFPfSMoBfPSsL2LsrEV4d+zDmPvXCVj3Th+ICNhlj5XYc+MFWH3TYDxz/RmIq6UGexIQsP1hm8zR8+lPfxpXXHEFhg0bhpEjR+Lpp5/G9ddfjy9/+csAkl9ip02bhssvvxzDhw/HnnvuiYsvvhhDhgzBCSecAADYb7/98PGPfxxnnnkmZs2ahXK5jLPPPhunnHLKFl9xC2DzIsELtqxOPW9oh046V6LHACCFyGTkfaU2bZCtr1ZgQpb5eTK5/dSvRKe96pbR5YtY4mXCuZTCU5fqLECgQvhWvRoW2PUiMugcjfpldBtvFCLA+CUEmRkL6y9PtSLJWS1bL7tmKC1jh63XxM6QFbA4yCxd6dNjNDZyFE+k6wmqk5AIaSclr5kRX4l635xXkhLnWpP5uSGD2PXQS2rDXAImI3PQSnPlHMMcMoac9+Xo4e0zdfrOkUGlPiXbl8LwB9wurpNcL92kPTcuHdwZOnk+HOf+4PZzfdJD1kiw8ZoaoduQ68W4EimRJBkXgFkRS30I6Fw6VL6uVgCgXvORrs2+ztNkqLphJOuEVAhfWk2mZBDPXh2w2TF8+HBcfvnl+OpXv5pGAwYEBARsP+jRqzc+esXPcuvsNe4A7HX737Bh9Tr86fypOGTXRzFwn5Xos/N6jMJvUfz5PXhl2Wh85JxfoXv/YV4ZcbmE0qJfQa7+F0S/PdAy9ouImlu2hEsBAdsFhNwGY+bWrVuHiy++GPfccw9WrlyJIUOG4D/+4z9wySWXoKUlueGllLj00kvx05/+FKtXr8aRRx6JW265BR/5yEe0nFWrVuHss8/GH//4R0RRhJNOOgk33XQTevXqVZcda9euRd++fbFy6e7o07t9wVEqpoAU1I0yOva+f6xXefLrzDOhRCgEjvz5q0Ql1yY/KjFQzpKZpw9AVQrE6azbV4/rVHUqVaCEJqsdJVm4PPoaUSkuIE6XSedyEwLF/nKvzrVVC6igWct25QurPrWhWG2CJDppW58+ZW9ruSnVyfvSLEvuI3oAYEO1CUBkJq2kHk0pYtondTaUW1CVTY6dhthhZE86+YwBtFWb/f0qVSJpu+9UgMPGcjNiWUgLXQLNJZgSxFKgXG2ykzeTOnEqxB5bAjIGiqVm6EBJn9EZN1AMAVmOrH6w4Fk8CUjm9aIUAcpPn0O8HbElKhNSjl1T782Z+h61peRd3o0IwkEoHTEQVTKCSOyBY5dXYjSX2DkqN09nOUah6pGpoMlEdr5URktRDWrptBOeMrUfFWNEVdKBnFmMiVxJbG4rolCqELuoDmk+6blUjtzYaidvlqROzAggHbYEVOIi5pZ/jzVr1mxSlGpANmbOnImZM2dir732wg9/+EMcddRRjTZpm4b67hXGbEDAto37L70C+6z9DfY8YBmaeiT/74srEd54fSh6Tr4Wu4z7pK7bOucKRP/6AZp6tOqySmsPxHucix7HXdTptgcEdBSd+f+wbZLo2VqwKURP7J211dd2U4geZ3GcunV6ohyIiKxzVSm91tZS6yN6+Pwua64YS4EKCp6z+XrLVaAI+5cBm+gxLzVxn8sW0eMSCJKsOEUn8+VqZOnkxAtvQ8+XGNGjYGykdpj2bZUmlGUzs1Hoeu5825BLrdUmSGkm+DZJJJxjVWdDpQVVWci4doIsJMT8lEBbpdk65xJ1hnjS41sqoididQmJRwgba64ugVLF/YXImqtrIsomZtqKTQDTaTmdMQBlDFQrTXb9Wkjn6qJNJXXx6PPJ04wVEFWEIRpy9FioAlFRQHA/a+gWadsmH/ObdTMrlGM0F/3nte18CfoUUTlGwUeUMRsFlQEA5Qpa2pgwTurE5O4kVaNiBRFNfGyJccu1D20lFNrSJ1/MDNQkj7TlqFfAWtsM0UOJJF1XMvuTg0qliLnl34VJ8xbGu+++iwsvvBC/+tWv8G//9m+49tprseuuuzbarG0SgegJCNi+sPAPD6DywPdw4JhX0H1HQ+S8t2wAVg3+MvbctQnNK2biwzf746mHD8Rbb++M3XZ9D4cc/Sx2HLYK5cEXBrInYJtBZ/4/bJvM0bM9QH+xl3AmJltcr4TJswp7y4LM2GqtmpX3GhV9kYBvvnJuS56tNs2R74+9eJC96pZ3dR24/WWTHElt2lbJTWoajdXUAp8mn+/8WmX3C89/E+sytcqP/S92dFF95q0kYZ2wEiKngyqRZvLkxLBz5NAVv2h6J+1bOjYjNVdlJ1SOHr0qmDQ6Vb+aHD2J/FiqNCipTjbx5y+ceUNO0rfApDAa6OiRWTl6AHOT+CCTjtRjNuuG5INVwn/zwXPsA309y3p3iWx85a04jaDKuuGJTufZIpPxUvNNIZ9f9FyOTgCwEiorQ3g/ZPWXdVOnhXz1LSkhZJxsQtpdp99QVI6SjfexR65+V5ESNOpYbTRkSaby1DLq+pp6OoHn6/HdCAFbDLvssgt+/vOfY8GCBXjrrbew77774vLLL0exyBnMgICAgK6FcSd+AhNunY/1H38as//6f7D6zR0hJbDz0A+wb/N/o/ndq9D64Q64+Zf/B6sOPxmT//dKrDr8ZNx02/FYvaw/8Pp1iMshx09AAEcgehoEqf90sl4yP8iZK3nhI4UUCeBfwao2IaNk1KOPz0vz2rmpk13ChOtJboZkxSj3n+klnnDZjmWxLbbX8KKrPSW9ViA6werYfhrdZt/vvZ1KmK6klSxS7l0xSvtt9w+lTaxVtsigMbljk8ktXeFL76crfakNeh8JeUP8i4XZEgVKl0giadLN5BwC8SDxNRKpP+n8ViWNTjYJEXHCyFzPRKdNk+nxk+6odb3UCmnQK3o5Q8A3LNglS4kvNYrybkguJ+vGy9LHbwqqTx04S4qnG8ynMG5n6tRDQolXXISPdMnz0XezUj1EB3kjSevPRJ4eQDE2ZuDADKIkki6yr1lKwEnnIrKLqVky3+BUkVl8LAnzqQ1VYzVVynO/6A6hBdSPCCZhc0BnYezYsXjkkUfws5/9DD/72c+w33774Z577mm0WQEBAQENx6C9h+Ljt9+P3ue+hj8/cQbeen4I4oqAKEjs0H8jZnzrfzG69CP0ij7EqRefhkte+DHmzD0ALT2L2PjEzxttfkDAVodA9DQI6kfWmpONLaHYmvSSOUSOCVnEUL0kUT1mbapOOm910yR75nFMVvLbNo/oMRSAIW+ULN+y37aFdA0vlSVJ7ct01S13pS+b0qH2+5cFp33BJcTuseT2uR4reREYJaRm6YZvSYgaAUiyHLeKsDEEUWqHL5pHkzapdxIQUkCkERFm+Wl3BEjtfYxYSsR6ha101a9Uj17USFqGQxLdNnPBF7T3jVGJmK7qpWb5HblZUgIqF8oYd9DWr4+TJpl6yMOBXmxF5vlk17o5ZTsfb1QW99sMNTsykT/Paj2YqK3OPlOoo3nIXS/TUes8RMnIyeoTAVikGl11C55xBFJfXRNN2AimI+0YvSyeBE2ijnR1Ok0SBXQ6Tj75ZCxZsgRTpkzB6aefjo997GONNikgICBgq0BLt274zA9/hN2vfAWLFx0EAChvaEZT9wr22+8F9Hh4PF6+ZCTWvLoY4rAkj8+S2X9ppMkBAVsltslVt7YHSGenc5W3Vy2foElPGT1HP/Nk5tVpr04jTzrn6tGhojRcmohSH4LIlFpn0sLlTQXbK4DmdRHWK1HUPzqvVYhzvDHUBO+jhDyJIXQdGqNk6iv9IlenTlAs7Xa2DckZtdKXBJLoHSl8C2DpFdt0Th9B+lvNaz1XXqjzyhIh9NxZ01MsWsGKg5ImmMFEYUBPiH1cBR+0EZEv1cSbN6rjRqGvsGXCvmDQQ66eG8V3U2ZlJXcPGEGUXEfBq2XpVOd8z516b056e0nro+aDJpfs4cQX7RPFGrF+l55+Et78N9LVoQr0kuiCXC8JRIS0EdxRENJGJsZycoc7xgeWIqRouxDR06kolUpYsmQJnn/+eb316NEDDz30UKNNCwgICNjq8H5xFwDAq/JsfDDnERx84EvYYecN2HvEvyAXTcRR3QcAAFasDFPagACODt0V9913X7vbfOxjH0OPHj06om67hJmQdq7OzLmHB7KO/Zr62gE+/6hXv2uPiQ7hc17fj+pqbmfy9JiZnbRq8pbUVpsBkKwuf9Eq8VMihkpQzMgOps1HwlCbpPM3q58kkldOJLMd+iw9ptSRIrQkksmikefqEyA5YwGTn8er02hJ5re2X4ISP2mhHid64pvaopMkq2gbQ8O5/UWa0uvLyCgfv0KNiamwmPV61sWgEHY/ZzKgdAhm5bCpVyeVZ90onruWy5OMPKnn5szhPHLtpJ1PSBiHZKIi2/tc9dksYZMknLfxPUgseYzZ8l0n2u+K+KlSnVmfaWMRETlZrF3GeIy1k53/P6IuiMsuu0yTOq+99hoqlQr69u2LAw44AAceeCA++clP4sADD2y0mQEBAQFbHZb3OQal9bMxZONvsP9Pl2LNytX424Wn47BRi9Fr8FoMHPY+pAT2H7QYbz3+J+x2+ORGmxwQsNWgQ6tuRVH73vgSQuCVV17BXnvt1V5VWzU266pb7bgKm23VrXbozFte3a8r/cxYdYvL4nKrZNWt2sSOPY+qSiBGAYBwghby5CTLqzdbJIQ7fbKnqup8OW5Cla30lUfKKDklveqWIOdcPb6+SpYdV+POv5S8vVpXst9WbkIJZtUttUoXlcHnpWp/Y8XYyiNfuC5KoGwgS7pbbax5NO+j5E9rpZvTTh0oHXRuro5by82opsuOe6e90i6TKi9PDJSq9jjQTaxOYfZKoK3UBL3Ued4AZ47GEogryZjNrcuOJWBW3aqX8NE3ChBVU4rJR0Rk6Y/bseqWQpyOhCpQqOYTNd725XR5dd6nnj4W7HykllfPkw9ikzpXqqClLbbbOPola5scR6Uyoiqrq/c5AURGWrGMQmvZ1LPIIkk2mHMqIo6uuqX1kTrWK2GGPKrIEuYWw6pbWxIHHHAARo0ahQMPPFB/Dhs2rNFmbbMIq24FBHQdtLUWMf9Lx+OozzyF0sY9UDj4u2gafizW/+N+yMUXoddO60x0dgy888/BiI+4Cnsc+2+NNTwgIAOd+f+wDse5LV++HAMHDqyrbu/evTuqZvtHJ/6Yql6qoYuz5ME3T63X3Hrk0x/zabQE15VH9Pjt4REp/vo8QMJ8Sk9LNwLFlZvVO3ZEj6obQ6Q5eoxO33ybEiYys4zLh6d+Eo1j8gRlk0l29ArpT8VDSABCWkQYzewj9ASV6JRGp20jjeixiY6Et7F7RM9xhWmlJ/nkjRUa0UP1uGSRPV7o62X8Wlj+E491II/FpHKjMyCgc71IpdjXhperwRJnGFvrRhEZ+3x8e8gVIT3n6tApsnTWIn3qjejxPdtqPYx8NseAXsmKnbN002gcCxH0q1W0vu8C00FbJTlzLDKH7JsQML8T3gggafch9Y1HoQVsdjz//PONNiEgICBgm0T3Ht2wuNsn0PJH4OBjn0XT0q8AS4FeAErdu2HBHw/Bu6074NjDn0Xfoaux697LId/9Et664tsoHvRf2PuTpzfahYCAhqFDRM/pp5/ertewvvCFL4RfXbJQ72RnM0DPF4Q5rldnPcQN1ZMnOmN+5uiy3ijJscudp7kaas27lY6IyDC6DVHjs8XIcl8N8p2jugoAKqRVkkPHtZATYj74LBTOMfR6WGo8mD70kUWafknq07kjhPOajE2CmaieAoSbe8fpXUO0KFIyTgeslWYktcNMl01USkxqRcKs5UX1aFpJH5hXvmxf3AJzXe36kUDy9kw9gzZDrtULtW4SEB3809cmf+DSrvAogs1+ifQaZfmZpVPavInPDu+x4vIiQzBJqruGj5mrfOWRXxGAikwvLKwbxcnRk+aG0oPSImV4XW4zJXJg5+hRStWF0TZIWwYUaUOYKAm4+aKoE9Tn9gzWgICAgICAzsV5v7wA150GPHbNPjho/7fQu89GrFu7A55+cTcUDh+O8+68AMW2Ih745hQctuc87Lj7Kuyy50pg9dfxzsxLsHbfCzDixK812o2AgE5Hh17dCkiwrb26JdNXt+ohePjpYiaFki8j79UtLo/uV2OAv6lRq41uK0X66lbtOSQtr1SBNrRk1FWkgT8KphwXUGXJmLNIAUqiFKsFFGFeTTKvUdl6aVt1XCSvF+X1Ca/TVmlGUXI/BYyPXJ+xZ2O1Gc4rSx6/1PLkCusqzajE2X2rE1SnJ2hgTFu12aqtdRKyiM9dJQTWF7shTl8v8l0LH7mDlCwqVZqc62bZTQkHamtrN3jX9M67cVLyoFptqm/AUp0xINoKCQuS1S5Ld5y+uiUNl2BAfOCDIgYKbWifzlSHiIGomkO+ZB1XYjS3uvJ8NgpaBkBUYhQqsOEhe5w+KFXQ0lp12lj1PDl8ACAqVhFVPS+Ocr381a+2EgqtJSZbDW5O8EiSaweQG1vT1bRIW3jaUiJKSlTiIuaWwqtbAdsOwqtbAQFdE22tRfzPf92OD/65EgP2HIgv/NeX0L1HN6tOuVTCg9O+hvFDZqP/nh/o3zLeW9Yfq4aeg/3/8/wGWB4QYLBNvLql0NraCikldthhBwDAG2+8gXvuuQf7778/jj/++E02cHsF/eG3M7VKzy/N9ZhQz2++XE4SPQJkparwlflktBdZbbL0WD9u1+gN+yUs/h5KFjHgRtWoc4ZeUcd2jJKdGhmeGr594dS3jRI6csn21rRW5b43RLj/dNJu6zcEUyQFIiGtOSZto/tdJGSMXmBJkTmeOa7yTsnUUUdplUiYBePdWCvTM5KSUsIEWXiakDLh1pGqMzoYIUHDVOq5UWhncJW0M7LMIRfaugd8DyYVapXKk8gJBOE62XEuyZN1TsKs9JVR1bl2qX9RPQ8E2kafk3ZEj69ZGmHD+0I4oW4ZzxVnsPHniLSuk03iII3+YRUsW1QED39qCGS/ZxgQEBAQELD1oXuPbvjK1V/NrdPc0oJP3/IzVKtVPDD9GzhkwJ+x017vYeehq7AzLsXK//4Blu/0VRx4xiWdZHVAQOPQvjAUDz772c/il7/8JQBg9erVGD9+PK677jp89rOfxY9//ONNNnB7hTUZ8XMEmehAE61VIJ2gEQH1yKNT96z6vjL+m7avPS+zaYJ88Drk923nvI+W8etMSgQ5K9mnu++jTLKPjDxoPVSjz0puA0137FIrUvcF3/QSy4K2Ufuu7/QvhOTNk4k/MZVfg6ROZPpLJMue0w1MH/VZjVkhknm3EICI1DhOJrYySnmItLIUEdTa49SXZIsgyQaPDZGw/fNtwikT2aRCLUhjqVcnhy4X2UxGrfk7IWAsVdkHyYeEn+QRGTpZXcn98t2Y7Fhdfy6TDAFNIOkymWGSx0ZBz6XnI+43u/bmsqtCU11KTwM1vmV6r8skobVQg5d2rtVnZOBHwrze5VwDYW4CRcqpCB9I6Ne7aOZtfY0DAgICAgK2HxQKBXzqxluw80Wv4S/PfBXLlw6CjIEBu67GyG5X44PrhuCZWRfA92JL6/p1mHvRFDw67eOYe9EUtK5f1wAPAgI2HZtM9CxevBhHHXUUAOB3v/sdBg0ahDfeeAO//OUvcdNNN22ygdsrrK/WbmhFLqxJewe06h/sya/5teTZPyhLvanVXLLK6Lwti3jw6a/Xv6x5pT/TjSuf607okWShdUqVCGc9a1UvaZlQCrS+scU/kTILmUutT6VJ5vKVTFVmPKV9S8ul0+tUNblWlj6jk9NEUksWfql0HunzW6Y+ymSzbJBZfavmoakN0iyZniRbTifUEhCpiGSCLyFknPar70rHEIgh2Nh1+knYzXQVNYkm5TLt1w7ltZXQE3fr3qzn5lAdweVJ5M/f2Xnlg6Tn6StozA7ne1GeTt6ttF/BPjN8dS4PfXYJf/eYMcvs8hBMzmWT6eu1vGOUPWqXjx3J+DE1ls3gMf+E+dTMlBLCV8hShE0Mt/Np9JDWKR0fLaZMGankB3Q6Xn75ZVQq/J3CgICAgIDNiUKhgMnXXo9dL3sdf3nxHLz94i6QVYF+u6zBqD4/xOobd8Him87RhM/D0z8D3DEMR428ExMOfQRHjbwTuGNYUh4QsI1hk4mejRs36lW1/vrXv+LEE09EFEU47LDD8MYbb2yygdsrrK/Web/ce9DO6n6t9MfmOmRFaZ0I6S/YbNORGenG527cbkHleXzK8pFPSWrVywgQ8NqQnFclEVQkSEKx2JZKpjnxk56nOn3ZXgTUC0pC6zM6/TZwb6TVv7Tcto71akYkDTx+2rSZISI4jWZHeChiiFwFEUGICFH6aY0fb9+muXVMmA6LAkoDWXQ4R7Il1SMT0aN12P0KRJBq7PpGESUuTLd5B1AiJjGIR8vVDbpyU9Yghe982hH85qlLJxGp/LB0sNFFdDh+WgOEgdkjWb/m3vTCuOncyKmJQrqnaHVNnoEWuD5ZRSId9bR/qT26nrqPzHmLrPNeTGH/kwKQUfIJpVzppsewH1baH9b5tZY284ztgM7Hfvvth9dff73RZgQEBAR0GUy+8koMu/xV/O31b2PZ80MQVwX6DFyH0Tv9P6z94WC8cMGBOHzsHKxb1QuPvjoFK0Y/gUdfnYJ1q3rh8LFzAtkTsM1hk4meffbZB/feey+WLVuGv/zlLzovz8qVK0OSvBw43639M3YvfD98t0er/m7v+cE6Cyo2wiRzlnrzRfPYGl27JZPHfcry0ZnjZNRTJVkyqX7bBreWyCijZIehKAzlk2dn8lt+nJaZSJ78aB7+S77wzP3MzM20kPY/GZtrldEjdgSToW74pJtecjPd9HgvY8g4tsdIhg10rSwhZLKp82k0D29qi4kh0ggiV4cp1xE93r4lH44OaZmciJGQsbRV1QNVLw1zofemNUBpOhVLh3TssQZ8rk67SIvhtzG/gZAxdHLgpR6y2jJ9yiafjnryXgv1J4sIY35q/8E7gthj3U/0GUD0RZKQZfag1c9Mcs/rcSjJuI3h9IffS19npLJ8Y9vD/wR0LsI6GAEBAQGNwccvvQR7XPkK5r3zX/jXP3ZDXInQa6f1GHHga4grEf5VPQZHffcHGDJyFI655Cb0O2cpVi3rj3H7Phpe4wrYprDJRM8ll1yC888/H3vssQfGjx+PCRMmAEiiew466KBNNnB7hZqjtWtSmML3Y3h9OqUziatXBg0siADrV+esaJ5EZ7bdVJ7/d29783VVtv02qZW1ubrNP0Pd5EtRNARgR91wu+gZoSN4ABW5Y0eWREw+p3SEvoj2VM5+bcxsRocQEcuPEzG9ae4az0hTr00phUKYRLSS6QXpFxXRY0WDEf/s/oy0F1KKNFlyWi+N5uHRNSYlT3rAInqMn7Sc95LrBwA61FO9wtat+jKyy2veWNaNImHRefwGybhJhPKB1ldoh37tluo+q49TwoL45ARJ1aNKsvs3q5/qKKdmcViXlerkDyNPQ6sfVAdbncGfE7DGv7VAlr4xycUS9n5yP/KLnZ6PIrsflNNZ7Lyqp1lXdWPwJwLsTqk1TgICAgICArZDTPzO+dj76qV4dPU1WPnqzgCAQnOMsXveg42zBmHh909BXK2gpccOeKl4Alp6F7Fg5rTGGh0Q0A5s8qpbn//853HkkUfi3XffxejRo3X5cccdh8997nObKn67RToH6RA62o7PnToSeEBlqV8ks4gdVS9PVl7QQeY8poZtPpk8KbQv6EH9rk6Ps6+TOUMpAlqaFVxBI0hiNCHJJcN7Suoy1+9Ei1pIx6yglU2yKR3JZDTWfkpdStf+ojojq0+s11SkyMxJw0cGjXywvXD9s3pWUBotnT9LRQL5nDV9KxEDMmJXFDryQaYzcjuttX0ljE7bO5lO4KmfMQ+eaM+NKtzV0aRndW4uU8apFZzE4GyVr73wFMcpwcHbcL0ZJItPnyDnvJxC9qDNPKdf/8oielR9Yeu3bkiPbHtMSVaQyPBFYigOxi5glaR0dCpSSGjlMbFN6nrmUzFtVAA3Rhi7JZfBDBCANywqICAgICCgi+D/fPNreHTa/2Ig3sNrTw/FHiPfQY9+rTi43x+x/se74OXiv2OfE74CvHAbmja83WhzAwLqxiYTPQAwePBgDB482Co79NBDN4fo7Rb6O3sHWJsswqNenR2JGPfSEOmk354DS6de3nHWFMM3T9J6weY+3nqUQvCTCX6dyV93HskXXqf0TrbFLplhVpWSQBq74ralpI1N8BDZ0swJpW4lHB9lGnsglX+CHFvLhHMbXCor6VmRzjFlOqc0BInRTfsw7Vmh9lNJWjEnqOw61jHMPFZFsyTjmuQRUgma0zw82jo1L868gSTrT1PPXo5eaL8tUsiXP0UbzYQ6NwanxmCUUnDbVRSTT2etMuKoMBfO31jbn/atQG2fWLGqTl/zs2XD9o+7xc9JUkxJIKY883nH9UrWlSpyS7f3GenXa90Rup+FMZb4p+1XUWcqQipWRiFhGhN23e8HkBA29LzTry7RZBFKAQEBAQEBXRSVnrsCAN7tfTxWNR+J3k9ejuFj/oWe/TfiINyODQ/fDQww9QICtgV06NWtZ599FnHs+7nZjxdeeGGzry7x9ttv4wtf+AIGDBiAHj16YNSoUXjqqaf0eSklLrnkEuyyyy7o0aMHJk6ciFdeecWSsWrVKpx66qno06cP+vXrhylTpmD9+vWb1c4sCGenfjgT0XbqdBZfaYdO30Zz9WTppMc2bdC+DajPd+8P6nXptXNm2Ctv2VZIXQ6rNa0vmT4jN0m8UrXKqM5Y61O+OHl6cq4jJ4BinQco1itXJa8L0RXGVG6emMm0p7DC2hPOq1tIZVm+6le+pN5oTiPv1ZFqru1eA7VykySJZWScbJBqBbOY5I9K/HYT/NhQE3Rr/AhYA0pFJzm5ldTKSLUGrW8Akxw9DpQcmq+HlmXl6OEyfM4Ksq926BLdMftM5UjuWw2dlhrWn46f9T4EJNk1piWiU17ESuJsD2O/LGuI0HHCHZeWKArnGlr+SqKXPDf1VtXjWdeVqRDplW6uv5CEbUzrRcTReh6cAQEBAQEBXRDjZ9yA0voW7NdyDw4+8VMYecOzeDK+Gf/8x1DIqkDPARsAAMN3+BtefeCOBlsbEFAfOkT0HHTQQfjggw/qrj9hwgS8+eabHVHlxYcffogjjjgCzc3NeOCBB/Diiy/iuuuuw4477qjrXHPNNbjpppswa9YsLFiwAD179sSkSZPQ1tam65x66ql44YUXMHv2bNx///14+OGHcdZZZ202O/NgfefuANmzKTrpvKHe7/58XmbNXQSPdnF1ZpWJDmx5soHs7vTZ76Y/oXtuvh4uxX5diufZEblyAYFCaoWtTeXJsekdhxqRtl+UcOI6qYbImgzSHlC5eSJnKktJIzPnlSnZQvVTOYkvEc074ttIv0p6dQSVnfZFSkCoV3dMzpwkR46I0nw56p9IcxIhQkTyEklHJywfnXuDFKi+jXhuJV+OHj5wM28U6Z62mAvY+XrsZfA6dqN4HwASoMt9R+RTJxeGu7BTlk7CV+jiLELK5wPPTeSpS4kdSzzlaVBbBi1LhpVHsR6zxFXmC02RY7VVD159w5J7IFJyC8QQZm/WE1t1gGWMNJ2gZbm2u8uZBWxPuPnmm7HHHnuge/fuGD9+PJ588snc+nfffTdGjBiB7t27Y9SoUfjzn/9snd/cP6C9+uqr6N27N/r167dJfgYEBARsKnr06o2FS45C/6GrsPrGfTHvsm9gz0NG4e0dPoY1y/vo7xSD93wfe3xwJl67dF+88/QjjTY7ICAXQnZg6YcoinDWWWdhhx12qKv+LbfcghdffBF77bVXuw304YILLsBjjz2GRx7x32BSSgwZMgTnnXcezj//fADAmjVrMGjQINx+++045ZRT8NJLL2H//ffHwoULccghhwAAHnzwQXzyk5/EW2+9hSFDhtS0Y+3atejbty9WLt0dfXq3jzNTcRukoG6U0ziQ9iKJ6yCqJD+fjZKZ5nvk5s1fJfJiubLiwioxUM6SmacPQFUKxOkM0VcvK19PpQqU0GS1s3+3z37FqBQXECNi5009HquhzrVVCyijhemC1sVfW6LcbGu1mfhiy4+ZD9SPjeUmVNDs2OLTmZy3derJOusPnTvH0SuwsdyMqmxy/FTnHT9TWXGqE06bZCeW9nXRE3wAG8vNiGU6cSa2mfa8b40f5WqTfiWN14kZeQHlQwwUS83Q18g/GFzIpM/jcuT0vTHK31bGgChFgPLT5xBvR2yJykafUEQE1emxFRKI2hL6MPdGtOSm+zFQqPh9sS4Ot78So7nk2q/lkmPBz1Viv059QUk7eq5URkuRKGMPHsHz35D9qBgjqpIOpP+bVZFfqpyQVGgtolCqELuoDml/WquBSciNrWmiKDjy9epb9s0DSKASFzG3/HusWbMmrJTZiYiiCEuWLMFHPvKRLSL/rrvuwmmnnYZZs2Zh/PjxuOGGG3D33Xdj6dKlGDhwoFP/8ccfx9FHH42ZM2fiU5/6FO644w5cffXVWLx4MQ444AAAwNVXX42ZM2fiF7/4Bfbcc09cfPHFeO655/Diiy+ie/fuAIBPfOITePfdd/GTn/wE5XIZZ5xxBsaNG4c77rB/AS+Xyzj88MOx88474/HHH8fq1avr9k199wpjNiAgYHPj4emfwbgRj6ClV0mXldZ1w8KlR2KdGIbxO/8vdhy2CgAQVwReXrIPdvv679B3t30aZXLANobO/H9Yh4iej370o3ZS1jpwxx13YJdddmmvKi/2339/TJo0CW+99RbmzZuHXXfdFV//+tdx5plnAgBef/117L333nj66acxZswY3e6YY47BmDFjcOONN+K2227Deeedhw8//FCfr1Qq6N69O+6+++66EklvCtETe2dt9bXtKNETp0SPpapunTKzah7xUpXSsbYelT6ih8+nsuaKsRSooOA5m6+7XAWKKeni1jfEgx3hkrbVRI+fHFBkCSdSytUIRbRkEkhmfi+scxJAsVqAWR2Lz5M5AWJkbqw0oSJtoofrtH2mOpuAdCUsu73RyfVJABsrLajKQgbfIcjcl/kigbZKs3XOJeoiTZbQ+W1C9NjLUFl9RAgbq/8lUKo2gyeptefVdt8otBWbAMmeBS7z5UDGQLXSZNevBZnYJNoigI533sk5BEdUETbRkKHHQhWIigKC+1lDt0jbNvmY36ybWaEco7noP69t50vQp4gqMQpVjw5mo6AyAKBcQUsbE8YfQjG5e0jVQrEKQV9vdgaeXa7bF0sotKVPvpgZqMgduu69Jnwk5MY2Q/TErE4GOQQAlUoRc8u/C5PmTsaMGTNw/vnnY8CAAVtE/vjx4zFu3Dj86Ec/AgDEcYyhQ4fiG9/4Bi644AKn/sknn4wNGzbg/vvv12WHHXYYxowZg1mzZm32H9C+853v4J133sFxxx2HadOmBaInICBgq0Hr+nVYMHMamja8jUrPXTF+xg3o0as3AKBcKmHOOV/E4fvORc+BSbRitVjACy8fiJEX/REtvXZspOkB2wA68/9hHUrGPHfu3M1sRvvw+uuv48c//jGmT5+OCy+8EAsXLsQ3v/lNtLS04PTTT8fy5csBAIMGDbLaDRo0SJ9bvny586tWU1MT+vfvr+twFItFFItmtrF27doO+yBgvn93JgTgJkMlaC+Zk0fyKH15ZXnts8prZYeSUFN6N6JH9btvDhynf90oGtXSlApwosNegcmUG63qDM3dU02P7PmjBH1lxFAfvDcFqa9KsuywJ3h8dTGu05wRTkmiiGpRdkol3tKYzC9jSOmLeCIRJUyJQEp0iYwWitzRrz1xn9JrKe0+UcmkKehrP75RK9NizZHQybbai0XHbhQp0jd60jHL1RNixkFGpE/NGxMgrxBRPUx5Rvhb5qpbnNhh54RI3c2zrd6HQkYd4RuwNUgecnMyQoYSK+acXulMsLapb8kl5a9JqTZqnMSur2qpNT6+6DF/iCk9kpyjibO0QcQXQhB1+v+EAgAAM2fO3GKyS6USFi1ahBkzZuiyKIowceJEzJ8/39tm/vz5mD59ulU2adIk3HvvvQCAf/7zn1i+fDkmTpyoz/ft2xfjx4/H/Pnzccopp2D+/Pno16+fJnkAYOLEiYiiCAsWLNA/oD300EO4++678cwzz+APf/hDTX8253evgICAgFro0as3PnrFz7znmlta8PEf34V1q1Zj3ndOxmEHPYVu/dpw4KinUfrNXnjyzaMw9pLfodDc4m0fENCZ6FCOnkYjjmMcfPDBuPLKK3HQQQfhrLPOwplnnolZs2ZtUb0zZ85E37599TZ06NAOy2oEyQOw7/meLQ+CbarMzXNjtlrzOSWjHn3CU57Vji81rvT5iB+1JTcDz5ej/pleon+VJnutK7PZWXvoUdJrBVIurFp2QmAJYaU3NqSFr0doNE+anyb9FIisHDbI0WkiYIhOxULQhL1SJKt3pblzVJ4fQT9JfhyhcuqINJGzygeT6omFhBTJJ9SEWiY6JdGpCDmRTqojmPxGkSDXUZgUKMkmISIJIcz1o9dS+cnvC33PSmjPBLmWIitXDh+4HOkEXI+irJvSJzfrxvPpB5NnMXGkkCYHpvl6YD6FcTtTp1TDRIkXGQRR3k3J7ffpITq06TD6c5GlBzBkCc0lle7LNA+Vdc3SRNk66XjWhdTnUnnW4CQ5eizbiC1In6yKuJFKKYPuEFpg+wERAe2Mzg3Y+vH++++jWq3m/tjFsXz58po/jqmyvDq1fkD74IMP8KUvfQm333573b9kbs7vXgEBAQGbA73798Oxt/4Fq49biCcfHoPyxma09Cxh7H5zsPGnQ/DkVWd6F6kJCOhMbJNEzy677IL999/fKttvv/10wme11PuKFSusOitWrNDnBg8ejJUrV1rnK5UKVq1a5SwVrzBjxgysWbNGb8uWLeuwD0L9yZvUbAnw7/lqq6E+ixgi85tM4iiPkMlDnk4faUPnrd55m2ef+8FXUqJra5kUx3aCZjsHj20hXcMLRLbqtSqp5a7zZYgcM6e3B4tgOl0CKtETg61EZVnm1wlLC+vRlIxJPmNIkRAnyaZW8iLLREmz2pfZ1MQ8na2rnqXkEYSZ21LSQbAF6IVeUyz1Me1rmbzFEus5sTCbNNcw+TRJpBP5nluTkDZS2NdSrS7mvUGyBq1iKhTpZTrdRfagrf9GoTKy9CliQW2M1NMsTt6Nn+rUq18pngjw+8bBZQm/DmtIULNB9NajA3D7iq/SplaLk3GyIYaQ0vgUUU6IMVH6U51T/UAHp0Sy6lZqiLZPkjIJE/XDyRp6fyqbSLn2k+rLIIkCArYQzjzzTPznf/4njj766LrbbM7vXgEBAQGbE0P23QsTZj2Gfw3/M55/4iOoFgvYYcdWjB12Bz78wRAs/slljTYxoAtjmyR6jjjiCCxdutQqe/nll7H77rsDAPbcc08MHjwYc+bM0efXrl2LBQsWYMKECQCSlcBWr16NRYsW6ToPPfQQ4jjG+PHjvXq7deuGPn36WFtHIelOHnuxJeCbv9RQ7+Oi9FyCbbxePS5lzWuzdPqIKbNvyAul3+cbl2PiT3g0TyLFjuqRVpl67YZvPE4nskoj69jVSb0xC5bbxA7XF2mNhoAi0TxkrSjbRv6iiSR9x3vQEDHJZ6T3DWljjwohhLXqlYrmocun654VZhNQy7JnEA5Q54z3EekHHjCBKI3miSgxpa5hury8Wk0M7qYHjiYXzLUUeqbPBqdv0OrOTkkqtcw2VcxBul+390XUZOnkMnw3CCcXeFSPYk7UJc7yjXAb6vKBiHZ84uCyJLwPGCrfMp24UrcOtjK5JxQMOppH0IieVHkMwskwNsoMGOY7lQ0gIqSNtoUYaa2cpYiaGBY5RH3WHSCNTI9PAdsXdtppJxQKhdwfuzgGDx5c88cxVZZXp9YPaA899BCuvfZaNDU1oampCVOmTMGaNWvQ1NSE2267zWvb5vzuFRAQELAlMOKYwzH6pqfxdPf/h9efGYa4KtB38FqM7n0N3r1yd7x0r//51rp+HeZeNAWPTvs45l40Ba3r13Wy5QHbM7ZJoufcc8/FE088gSuvvBKvvvoq7rjjDvz0pz/F1KlTAQBCCEybNg2XX3457rvvPjz33HM47bTTMGTIEJxwwgkAkgigj3/84zjzzDPx5JNP4rHHHsPZZ5+NU045pa4VtzYVgu7ksRebWaeaN3hXus4xwTsXzNg2xT6li+tsX+CCTVzkdauaQyodKjaDR7lkzaSl9ekSQYYw8UXRxBZ5Y5915/Ui9cyduXOZvFdiq07s2GF0+vrHIoUE9ISfR/RIGm0j7CuWTIB90TzQfah7NiWRhHR1Wq94KZt1WRKtFMu0F7Iih8irX1InlibEVDrx5WNGH0vT84BMI5XSiB6VVbqdN0pyD7p0m+di2CRNvTdG3o0pDOdgb4oEoKyKsLgLjVp6pXHB8SkPhKOgEUROJE+NzZHp0+E8eCQhUMwmINNIHpJ+3Nd3vn6hOZXoowTpuKlSncQOUDvSRiqaJ/JE9PCLrn1TpJTtU0BjEccxfvnLX+Kss87CV7/6VfzqV79CtdqxRRcAoKWlBWPHjrV+7IrjGHPmzNE/dnFMmDDBqg8As2fP1vU31w9o8+fPxzPPPKO3733ve+jduzeeeeaZuhbBCAgICNiaMf4//h3Dr3kJj6y4DO8sGQwpgYF7vI/h67+Bf176ESx7wjxDH57+GeCOYThq5J2YcOgjOGrkncAdw5LygIDNgA4lY240xo0bh3vuuQczZszA9773Pey555644YYbcOqpp+o63/72t7FhwwacddZZWL16NY488kg8+OCDeglQAPj1r3+Ns88+G8cddxyiKMJJJ52Em266qVN8cL5ad8J3bWfe1Q6dfApRa35WK2EyV0/3BfusBUqxGGmJlXku8vmWmur7V86ya/tTHhveVID7xL2h+XDoX3vPnaNLtudrRY9oH5jYkyydvv6ykhxLU1fnlnVsNiV0H8LthSR/rImPUoK1RkXQMCjux2pneQlEgi9rb5NZwhrIUi8PbxM5rr3KALUceUGQ+XhEGtZzo1g8Qo0G/CZR+mrdnL52rFzwek5D0CEFKYT9WlSWTmEf1xXN49PJ+paOj9w2viruzemXQckTIlPfAuQhqke2ZI66tz0ha+DWLShyjShTyZsBmLw85LxuT+WaewnUNuumTeVG9T5pA7YUpkyZglKphFNOOQVCCNx1112YM2cObr/99g7LnD59Ok4//XQccsghOPTQQ3HDDTdgw4YNOOOMMwAAp512GnbddVedFPqcc87BMcccg+uuuw6TJ0/GnXfeiaeeego//elPAcD6AW348OF6efWsH9BmzZqFcrns/IC23377WXY+9dRTiKJIL+EeEBAQsD3g2PPPA3Ae/nLheTi492/Rf/dVGLbv24hf/ixevG8vrGodhMMPeRyrlvXHS8s/h+EnnYlXfn8r9mu5B4ePnYOHp38GR19/X6PdCNjG0aHl1QMSbJbl1TvQ+x1dXl1HkNSpk1YrOsRGffAtr56lQx1LJKsEl3LqZLVPdArE6Qw4ry1FDKBaBdqglh3nxIc59q3KVUqXV/frEh6bk+w5xWoBJb2ku/DqA9FJdbdVm8Ay1bC6Rg6Vv7HchJLXT9dn7m+rWl4dNmSW7Wnd9eVmVGWTRwfvT2Hmr+nWVm0GRZwKsPwjc1yZ6txQakYsC6kf7jUz7eyJbiyBUqUJvvFj/LJ1qtWsi23N0Eudt4PUkDEQV5oc27IbQL8qJIrp8urtvVHU8urgRA+b+NMBluotFAGky9rXpVOm3EkMRJU6o2zofjVGc6sp8hJT0uix9FZiFPiS7h47LZnpA6GlteIQY45uStykn1Gpiqgau6SaO/iITAlsLKJQrBi59GagA47+/4Mvr07JJl4/Ju2QkEaVahFzy78PS1U3EPvvvz9efPHFmmXtxY9+9CP893//N5YvX44xY8bgpptu0pE1H/3oR7HHHntYZNLdd9+N7373u/jXv/6F4cOH45prrsEnP/lJfV5KiUsvvRQ//elP9Q9ot9xyCz7ykY/oOqtWrcLZZ5+NP/7xj9YPaL169fLaePvtt4fl1QMCArZrVCoV/G3a6Ziw9xz0GpS8miUl0LamO6qfewZ9dzEJ5kutG7H6xn3Re8cNwKlv6GXdA7YfdOb/w9pN9DzyyCM46qij8Nhjj+GII47YUnZtE9gsRA9FnVeio0RPnBI9lro6dZbaQfTQOU2cQfTUImCqMVDO0FdzTiiBGGqCX58+AKhUgRKaWZtaxESyleMmVNUEH/DodX81lxAoViOU0GKRM5yg8RFGEkBrtYURLD4bk09z3QVay00oMz/r1llpsf23lPt1SghsLDehQgIIzStbrj56HEugtdLNvX6kQMuRts7WcjOqeUu6W3NlY0tC9DQ7BBAnkzhkDLSVmgBZcM7VIm3iGIgrBce2TBlkLi/aUqLHVz9PbwWIqiSmK68+9TcGoiIgpOeZlyVDpvKrQBN/INRzc5ZjNJVgoohqEEqWreUYhaqnPtPDCSKUKmgpsiXQnbbpiNKES1IUlSqIKtYgtRXS9jHR3VZGoa1sETFJNbbPbZExZGtrSuRIT/+k7S2WNCV64hLmln4XJs0NxMknn4wLLrgABx10EADgmWeewdVXX43f/OY3DbZs60QgegICArZFbFy7HvO/9e84/OD5aOmd/Jxd3tCMZ18/HAdfdg+aWroBAOZd9g0cOfw2PPLCKZnLvAdsu+jM/4e1O0fPAw88gPnz5+NPf/rTlrCna6LWhGwzgbyIoCdeAv4ty8R6tnbbsgk6/QsauV749Pn8TeTR1bQMOZCk643YeQFDhhhL7CTN9jm+RHpM9PgIF9sWuvoXMq01epJMNqZOnJbyfuOki19n8h/xUyUzFiBJlFX2HNVaRZKZnDg2iUKWq07Px+kmkbwjZSVOFhKIkk+p3uGCZCt/qdw5AqB6JdURIZYRpCRZeGXWHWAPGJrEWW+RBGTUvpsl3Uhcja3Lp59WlelB1o0BZOv1vJlkfBSwc/QQSEIKUX21dMIvruZxWsbSPtk5emRy3srdowiULPl5Dx0FlcsG5tO6+2WyWRmgfcK1IWyTgvU1mD4Y2Zaw5F5M6sS2Ot968yp3lLKD2hOCehuOJUuWYNy4cRgxYgRGjBiBsWPH4sUXX8S4ceNw6KGHNtq8gICAgIDNgB369MJxP/kznnr+YAAJydPcs4yxo+Zh4093w8IbLgAA7PO5KQCApg1vN8zWgO0D7crRc9lll6FSqeDYY4/FN7/5TXzve9/DJZdcsqVs266hv6N3slZfAFc9ZmRMfXPl+OZ0Pl28jB7Xo5cjq42sY9+N3+GyVZ4XTiT5CQJ/XXNOwLCtZp4odU1qj4QgxBF0mc9KEqdhSZTpWaoz+bR1qvW8HJ3S1in1H1cnlV9ASgRpGaauIqJUU0ntU/psEwxxoFqmE346105y9Egzv7UsIr1LX0VLeCV3BPCJNq+jyRNb2yYh78ZQxyLd8ZEZlNDxQdVhooXkJapueh1SLstarIkO6lpdkOdX1gNCppxIXlV+7VL/MlPQ+HRZBJqElVTZ1yx9kHNCyYmz8z7spXUN/CSRrw5xUihyUtr1dXPaabxzYlddQENw330hD0NAQEBAV0G1zx4AnsCjSz+DAcXnMfLgV9Gz/0YcjB9i2ffvwj/XH4LBo4FKz10bbWrANo52RfRceumlGD58OL7//e9j+PDhgeTZBKRzY3urEx1oorUKj8565NWjyycni/zhwQm+YIV6dXLYZIm/rue3dVKu/pqzkn3aGrIInuwjWx6ldmBpt0u4N3xxdaNB6l7g8UOAEMJaobxdOgX0Cm3acwFAR/MYnTQAAyIy1jpLrIsMnSIlmuCuEBdRvUgCabRPAjJZS117Za9WppbGTjZlD+8Jy3frtEQSZQS7IyLR8by2Hq6mvptSdDyZLiFkrDHkO5CkIuE/OqSW++W7MWGXOcFF1G5pPq0yxZFkEUtEj6Dn0vORUkztMkPYrFTIly0E0lf7WAM1tmQ6vmSkN6tTmCxLYZQOfhH5B4y1slzqPItIst7R09c4oJG4+eab0bdvX+y+++7Yfffd0adPH/z4xz/WxwEBAQEB2w/Gz7gBpfUtOHCnv2PkNY/i6eYf462XdoGUwJC9V+LwUX9GpVjAgV+/tNGmBmzjaPerW5VKBeeff/4mLf0ZwL5a01l4HZBodxNXKxNQS54+Z62LbTbJNlVG5yuyjg2ezzxkBTmIGhKydSuKwn39KLuVoiRofVVu/nILVCSLf1H1Wr1kS7VbitQiU9O6DvzatVen9Oikk0umM5lsp30qkw3WWOEvr7F+FKZuzJdml0K/pqPmsOp1Gko12cvdxxCI9Ss32g7ikSDRR+5GJ9KkVSx1rtt2QSKdyDOBvpvC7Xg4Sun5rDm8tM9Jplb7mSHXS55k6WR1hYDrD5Xh8VVm9Ie+HLwJKXNeF/P0iXPZZJpHzZsPJ/2QYGMn+bDIMiTjm5It+p8wn3aCJEkMIoNdvx7HOkk43pvzlt+c2SJkUEBDMXv2bPTr108f77jjjvjrX//aOIMCAgICArYYevTqjYVLjkL/oauw+sZ90fbaE2j6t99hwWMHo1osQERAU7cqut8/BvMvO937NkZAQD1oN9Hzta99DQDw1a9+dbMb05Vg3bLWL+i10Y6q2VqZzlrydAAFicagIRa8jM/duEq1RRnl9frp6zpDEbgvVOXZAN0iWWhdtU7oGNtSyTRTnTbJwo9MqUCUzrd51IlqxVu6OumZPH2EwrCvF2jsiokwMvK4TqnlWdaKrP8JpVE5IoIQEaL0E3S8IGJ9R/ZTUoWOOzt9jLRMTKqnEQ9ptI4b95Sck2rsekefGu/slGfTUUmR8OegqQdSwhNiZZtsGUYMjEQ2kZH33YA+DpQfqrnqW98zA3D9VPucqOH2qDp5NzyTa10HJpNG7uhTrEwTVx6/sx4ySV+QgUZstLtf3UfmvEUQKhl0sFh3fBLhA6meN2D6iA3pkHb7k3iaOwAZm+fr74CGII5jrFu3Th+vXbsW5XK5gRYFBAQEBGxJHH39fXh80XHo3X89jhx+GwY/fwQOO3IxqqUI/3p2N1Q2NqNb7yIOHf47vPffQ/HC70NS5oD2o105egI2HwTYfKgdZG3Hed1Eq54WyPplmdWMSOM67FHzCN/8L69tVv162hsaxLesefZ+opPOgmx50ilTGXsMJWQ05yzNbekpwKzBZs/QFQVB21C5kUgTwYL2l9Ce0ytkiCiJSFYhHI5XkBrQPimdai8CkqTHgImo0RJsPVZfyZi8zmL3BQcdpUJI2xdJRjARYP/YEZtPGbn3GhJSxc3FkzHjZUEdqr11mkQatesG1SyoAIRMJv3UHy7Lka0iPjx18m4uwHLXIkOsYBDhlScpuVKHv4If0H7K81ES2zx69Btl0i4TRI4mrlQZHxDcDt2d6oJ67NENkgKHLxFIk3MDTlQQXLHqDkvkxaZdpp1ZTz5J/PPY7yMBO/4/lIDNhHPOOQdHHnkkTj75ZADAXXfdhXPPPbfBVgUEBAQEbEkcff19aF2/Do/MnIamDW+j0nNXjJ9xA/bu1Rsv/m0uCn/5OvY+8E0M2O1D9G/9Jl668AcY/NV7sePu+zTa9IBtBO1eXp3j8MMPx4MPPtgll7jc5OXVO9jzFbZgef1kTZz5akktGWVWI/bU0fMGMqRioK7F4Ln+Srq8ei2djm4AsRTWUuc+Hb59tby6mg3FVj3htFOkioRAOY4Qo5CjQ7D95LhUFSiimz5Hl0HPKlNETLFaSFcB43BJJknqtVWaUSIcbyy5bX4/AWBDpQkqvIT2jT0nVTKEtnVjpQUVsuy47lvp2mstNR8LtMbNHpvoPJjUJ0t+byi1IKb9Llm/SE8ZkjehytUmZwl1M8YM+WHpl0BbsQmgy47nTaYpsSCBaqUG7+4jOySAtgKskJ+Ync/SG6fLq0tGUniJF2G1KxTh15lDLgmZ1PMur55lp745YzSXmDz+QLAIKlKvEqNQ8ejwEFtWYFqpguYiKYil3VeUgWKyorYqoioxMOPB4CwX31ZCoY04qkmftJK1zLpth9y4kawSRs+TjvScq1TbMLf0+7BUdYPx/PPP4+9//zsA4Nhjj8XIkSMbbNHWi7C8ekBAQFfBQ1f+Fw6M/h92HPYhAKDS2oRnXj0SY793D5qaWxpsXUBH0Jn/D9vkiJ4nnngCbW1tjqFr167FFVdcgauvvnpTVWyXcKMM6kdH2/FfnbPmV/XoTCI6pHPOVy9PVs68MFNW1nwt77jGHI/U4xRHlo009sVIMMEKNmFi6zGaYjQhySXjvI+hy1y/09//hXlFJZHlJyaS/URHQoYYCkvqUhqPRHVGVp9Yr6lIUYM4lORYgnPKtG/5fqz2BKWLUj951IulKiZFSUSP5JWs9mZ1Mau/pd3vNpEl0//sPottZrB9N6oQzr2Zy6aqwzi9crScd2ZWex7Rk+rkKbh9N5CO6Kl1w1NiRLinHZvcGzLznLXYlM8ETvyoHU5KERlWJBUlVYgM6Rl4DknkPGwZwaJ8SD+FrsOIHcdOItQJSVMRPcJeFl635fWlR0ZAo3DAAQfggAMOaLQZAQEBAQFbEY698L9QKV+EueeciAkHPo5ufdpwyKi5WHfzULzaMhWHfD0sjBSQjXbn6FH4/Oc/j6uuugpCCKxcudI5v2HDBlx77bWbZNz2DP6dvT1wXhNop872EDxcJ9Xty9Xj1dkOubU2oLbv6jUI6ifvs2wdJmcLz93i5npR5a5U21aafUdpiNJ/Ms0GRP+lOWQgyEZzBKWyyRxOUTW8n6hO/Umum7ASfwiYRCBqVSreW5IQH9LKzWP3r9uHfKxk5uUhlpskwaYv9EJIIiWeBJL8OOmm8vMIsqKWEJHx1VrCifYYTZRr5vpqIk56Hiq3j/VP5crJGrQOk0OPDWWkT/kSWPGySHWERydHDgOq89oIeuDbTN/XpZP5RPuUDFwDX5/5+lCwJuQaWeJ9ZBGXQeTSVd2s8Zp7MW0/jQphTqg2fMk6JV4pR5Rc0wIxJkqFCC3MhuW4NCxcRGz3PZ878j+CgICAgICAgE5FU3Mzjrvlj1h11KN4fsG+iMsReg9cj4P6XY1/XTocbz31SKNNDNhK0WGiZ9iwYbj//vshpcTo0aMxcOBAfOxjH8P555+P//mf/8Ett9yCXXbZZXPaul1BODv1o6Pfz635RDvV87mZmUhJPbnwvQXok8/nu+3ZADjzNp+tvvmnL1jA3exVsOyVt2wraEYaXqbqm+m7+atW9pKIUbU00YXJzUpUlO6xvMi4jm6fyXQNsVQ6XSHNWWFMLe0Dyy+qSVh7hniRpL5a8Ur7Q1ZjUxtfqczxQFIOw74GauUmqZkgCRknG2Ss+9esBBcj5qvFeUaPmqDrsUMGknXlpURs9arUr/ZkDlrfANaKBfHP7Qrr8jjHHr0cXp0gDwVSSJfojtlxKsdLoOTotNRkkUPtfQhIskuuj0X8pGY7Ngp47beGCDzjxVn+y89TWd1h+SuJD/S5qfRU0+tKy1Ih6pND1YmQMFScuQK13YcO/E8ooC488kjy5fuxxx5rV7t3330XxWJxS5gUEBAQELCNYreR+2H0jYuxsHwdlr8yEAAwdN93MPD5T2LRt49EaePaBlsYsLWhw69uXX/99QCAlpYWPPbYY3jnnXfw9NNP45lnnsE999yDOI5xzTXXbDZDtzc4E4Gs7+BbQKeeN7RDJ58r6eN0lp+V6qmWiqwpRj2BCfnTFuHUod3M57dS6/StPOWdggNOmcjuJ8eypKwAgQroyldGrs9Pyw7p+qU8EaQ+kMS3qDqRiFCFSkZMbRIZfUv7UpqZs5RWG0VVKP22JSqSwTdR9VFKaf3YbmO9ASOoTkJgpjN/AbOymCKNlHzfK2e0D6XnhPEJ4By5VEW1Bm0WWF86AwieYz25z1BaU6epY/ySLnNhTpq+5c8sPvDZpxIhAfsVJ4osVtjcnN5+4YuD8WsX+W9G65gT74KTKuoVJ81qktEiYUXXaXkChIEihA2XZaEAiCr0A9rq54yO0wSSAMhrmVqvEqLZUadxwBbCAw88gKamJvzpT3/CEUccUXe7L37xi3jttddw0kknhcjogICAgAALh3/lLABn4a/nno4Jez2AHQZswJgxT6P19r2waPW/YcKFP260iQFbCTY5R8+GDRvQ3JwkS/3sZz+7yQZ1FXQSt5Or0/eDehZkxn49OvNsyZKVd64WNCGRoZ3LpXNSe60q3l8u2WNr4Bl+VKmdy4XuVYkWe09Jt8kjW59LZiWl0tEpYVYNozl6bJuVdN9KVS4Z5OSV0RNLO64pKU3y5fA+4ro5GZDMk0ktQfpBCqLT9J+KxkgietTk1tdXvt5MbLY4ATaMEp2xK6ueHD2ZJAdjVPjQ5bKtcj55r8MOnw5emJHsGDAcRM2bVNj19FtQvsGVlURako2XgXAmSgeT643oYXKse0t1py9siRxyPcYYpVgZxBRYtx+7drJq2jnkORkblKnUg5QwTITfMbIk06uO89LcB3QUl112GSqVCo499lh885vfxPe+9z1cckl9uRT+9re/AQCWLFmyJU0MCAgICNiGcfwPfoE1K9/Hwss+i4PGPo8e/VpxaL9f4t0r/4Q1o6/BiMmn6Lqt69dhAVvdq0ev3g20PqAzsMmrbnVlbPKqWxx1XolyXetY+XTGnmXS69XpJzGUiKxzVSkda+tR6Vt1i7bN0imRJOuteFbdqqW7XAWKsDPYcyJCvdTE9ZdjtQIWp37Up1mpitYpVyNLpy2XRtgI53yp2gS6mpaCsZFGypj91koTyrLZe859Qc22o7WS6KSTbGMrTZts27yBrbrFSRL11hO4nzJZJYyei1lbtQqWRSxJYGO5GTFdAYv7Rua+1lxbAqWKWX2Nlmu/yD7tqyJfdYs6m3OjyBioVgoAkV0T6VxdtKmkLkynfRFde2IgqgjDD+TosVAFoqKA4H7Suh7dIm3bVKlDBz8ux2jmb7JwYoc+3Ej7qBKjUM3RQfgY+6auoKWNFXKyKSajjlSNilVEMVt1yxp4drn2oa2EQlvZ1FM3ga4rSXtyXkrIjUUgTp+2sa8O153sVypFzC3/LqxgtAVw6623Ys2aNejXrx++8pWvZNabPXs2JkyYgF69euGWW27BM888g/POOw/77rtvJ1q77SCsuhUQEBBg49n7/4Rej03HsJFvQURAXBVY+vw+2P3c+/H0NV/HuBGPoKWXWdWztL4FC5cchaOvv6+BVndNdOb/wzqcoydg00B/Pc5lSjY31MRCbbC3Gs2cTWV0yTqf9TYG1eeTmaUTyA5uoLZm+ePTGZMNLO8Kz9SjWrs+0AiaZKOra9FjQTRWUwtcTVSb+Wvr5cuS81bcy9Qeaeyj+YKUdt5fAuStJJ0JOdmshMjCyEvy11TNvjR5elSuHpM/x9alxqZ65UayE0JtxB/TdyrnEPEpnRtbuYnYILLHi3AGj0yLZWqHkU5GT705ejgkdHSUfuXHd1PGbLMva/aWBUE+BdhBuvEcPXFS7iRU9uj0uZH1lpkdGpbjQx1+Wjm/lWjeDzLj07IjFezJ0yNknGxC2l0Xkagl3gN6N93hOaOkRDIwU92KoNEf6uHNbVfyYrujBdHLO9jSlzdIAjYFlUoF559/PqrV/B9nzj//fPTq1QtPPPEEfv3rX2PixIn48pe/3ElWBgQEBARs6zjwU5Ox18ylmPvq2Vj7bh9EBYn9Rr+Clj+PxOFj52Ddqp549NUpWDH6CTz66hSsW9ULh4+dg4enf6bRpgdsQQSip0Gg3+Ebpb89c0LAnbhREsC3QBB9cyDLBiWX68nSx8vzZPvmdj57qB/wrIGV/KMEjvmrKB47U4290T0Bu9cKRCeINmWN7adk2v29K4heuopWQgxFOm8NX+lLkMeB0klpE0WaWJ0pQRIi2yuKCRT0vln9iqz4pfclIYkkYiEhRfJpdCVEgySkA83NozxQK2tFglxHOvFXWyQhInP96LVMnPKniVYFal0vc60iQnh5Nvdi0guWEF9qFGXdlD6ZWTdeFlnESROqTx1Q4oGuuAXzKYzbmTr1ZaOqfEPWd2Nm2e/TQ3TQN5K0/lpkV9YDxV7ezVQSAlKoVenINUsJOKkM8V1Iek6vqmUNTGOYdwyRA0HIGimNvVa/StO3OjkS05fJvgVsKr72ta8BAL761a/WVf/ee+/F//2//xf//u//jo0bN25J0wICAgICtkNM/K+r0fPrr+ORR49EeUMLmrpXIATQ1FxFn6F7YMjIUTjmkpvQ75ylWLWsP8bt+yha169rtNkBWwiB6GkQ9I+seZOyLaXYN/Gtod43baFBBVmBBbVMyUMWGZUl3zcn5vronJvrSHzwRfQYOscmY+h6WD6JtH2igUeeVJ1adM/QD5QqUtbTDDn2/J22tENAhFqJKuMfJbMAm9CwUkZ7x64iBUxETZx+Il31SlqbmpgLQhIJCGk2CTW3lc5mvTQlTCyRTCOIFDEVp5vWFQvIdAPMdZXpkvLJDSId96yBIwAp3Cgi7wpY/Obgo1ImN6Feqj6PEFIXW8mpJ6KH3xhKRhYBJWA/HBS5BvqJ/BtfuSLN0IAkz708CI8sXxkfEtRsEL31PNQAt6+8ETdpNE8cQyCGkNL4FBFOiDNR+hOMWLEGpyFtQMeRJGVpHUg9bjRZQ3gcvUXk4mo/ffoCGokhQ4bgi1/8In7zm9/gU5/6FIrFYs0ooICAgICAAB9aevTAR2/5Cx5/6TgAgKwK9N1lLUY1X4xXLtoPq/75Clp67ICXiiegpXcRC2ZOa6zBAVsMgehpECTdaQ87spmUO/OXGuq9Py5Dz28yf9yvF1nz2iydPh2U9qCvIeXNea05EZDGtfBol0SKHdUjrTKhZ6P2ZqgZ9x+SWBdN28A6Q30mrykRfW4aZZeIsq9QGtFDfLTr015JYBZft/vUdEVCyNBjSNOLkepRIRCxqB4zKTfkkoSJ5pEpmSO1XLbpCaxISQQVl0SuorADJtQ7YSIir4CpKBUkk3d1Q+TemppcMFdM6Jk+60bfoBW2IPoKW+aNyCfyQPZN59MnmQyfPk4u0Kge5bRqX0c0ER0WIKIdnzh8tnseMnroCWY61VuvDrYyuRttk2wSkYnoESZHlB460upIu++UbN3ndHACiMi7X9oWYiStC0XU+Mgh2r+qQMl0fQpoLH73u9/hc5/7HP72t79hxx13xKpVq8JqWwEBAQEBm4SWeD0AYN4b38T7/xwAEQF7jXwTO/ztUDx2yRewz+emAACaNrzdSDMDtiC2C6LnqquughAC06ZN02VtbW2YOnUqBgwYgF69euGkk07CihUrrHZvvvkmJk+ejB122AEDBw7Et771LVQqvkyhmx+C7uSxF5tZp5o3eF9nyTHBN+nd0hxVe3Ta+k28DXJ84npM7IsvW44tRf010SB0Ju1Gx9BIHpobx2TIoHWz8hBxAsd/ldwonZjY5Hpn96P9QphNBQnrDZZkoi3JBtAQi8RD9cqXZLl5CJegtaRiSUQPtE6bcLCIJ12WRCvFUuUF8kcO0Ve/pHodjNKV6c3Ae5gfa61SphFEOXl6atwsKtdR7q3PiQ+g/ogeCXe4ELmS7JtNkQCUVREWd8E6I1sn4Yccn7LA5ZAIIieSh5ut9n0PJV6W2WeKtaGDlcbwScPdOA9Q4ZevVkmzBpPSA6BKdZJ2oHakHaeieSLf61dpfdb/mnGLbZ8COg/PPvssbr75Ztx666144YUXAAA9e/bEiSeeiOHDhwMAdtllFxx//PGNNDMgICAgYBtHpeeuAICmeD12uuCfmDv/4yitb0FzzxIOG3EPuv/1k1a9gO0P2zzRs3DhQvzkJz/BgQceaJWfe+65+OMf/4i7774b8+bNwzvvvIMTTzxRn69Wq5g8eTJKpRIef/xx/OIXv8Dtt99e9/KnmwrJD3ImgZtTp/6+Lz1bjgmcWsjip+g8tJYbtc63R6c9kBV1InJ9UsdURvKjvh0TY2rbEtzcLsYiOzMPLIlKR6T3XZ18yq88kpkeCUcSf+WKltt1lQbh6DVaFWFD1atoHkLMpESAlB4LrNw8dG7MSDVCHgHSIWgs6im1g7/eJkAjiJRqmyEQoFE9huLjET2+MQOhxkyiJxKpj05USI0tFZrcg9LR5yjnBAqPqsnSSex2nUmL84gOxq5IKsenk59TKn3kUBb4A4X4SoaafxM54vNsj+gnOUFIL5vqoTqoUpkvnxugzheILiubtDD1LNInBmKVo8fnFPWD6I6UbJG+3hXQGbjxxhsxZswYXHTRRbjgggswatQojB49Gs8880yjTQsICAgI2M4wfsYNKK1vwX4t96BaKuK4H/4eyw/6G177xzDIGOg3ZA2kBHq0/ROVcqm2wIBtDts00bN+/XqceuqpuPXWW7Hjjjvq8jVr1uBnP/sZrr/+ehx77LEYO3Ysfv7zn+Pxxx/HE088AQD461//ihdffBH/8z//gzFjxuATn/gEvv/97+Pmm29GqdSJg70Tf0zVX/elPffIm4NSM/UP0nVsPhk+e3zHknzW0mmvmGVLquUTn0eagAEezQNLgp2XR03+qMUuGePm4VFZbEBKqb9Gs/R4Yy+JDlCLs3LvUL32GcDQLT5ugJAoFplgXrFKthgQcTovlsl+qiGGiepxyUVKqgmLQJIQNjmjdCmZqR36FTqq08oHZBI5q30T0RNBSpONSDnpG796zi1V3xNdkO2LsJFGqND9nKGYDwF14am+jubr4bKd13rIpok9YkOWDo9OkaUzD+qBQvzLjObxnPOCnvDZriJvQAerGq0yzc0jrVcP9YMVgP2uGtlidY4YQK9nlbz/JWNLrxXNA8DKz2P5o+qT9qpDFNNm2UQHRcDmxm233YbFixejWCziiiuuwFVXXYUPP/wQH3zwAV5//XV84hOfwFFHHYXHH3+80aYGBAQEBGxH6NGrNxYuOQr9h67C6hv3xbzLvoGWbgW8u8NErFvRW6/jcMjYBVj7w93xjzt+0miTAzYztmmiZ+rUqZg8eTImTpxolS9atAjlctkqHzFiBIYNG4b58+cDAObPn49Ro0Zh0KBBus6kSZOwdu1aHU7NUSwWsXbtWmvbZNQ72dkM0PMYOmdD9pZlZr0EUd70getg817nM2vzBTT4NGfpU5uSZeSpSZ2hd/QkD+5v+pxaoq90caImiXVBui6V3cqV4q4KZcrsQcPJJ6XLH0lkonfs/jakEJ2xm6XMaf/ZkTzJfkQ61kiOYEfW6MTDpK+1Hr6EOiVnHH0wr3jp17BSncK8aiZEnJBAIrZkm2ge129nFNE5vwAkIUEikdpFB2K9N4w02nPhIYhq6kLGeeagpDs81I9WIM+OTL05Op3AE2aH9zgtkzSiB3CjeoRn84iq60GnInoo2ZUV0SO440CSsMejmOY7AqBXzlK6rRw97JN3kJbPHNXXRjAf6EmYshDRs0Vx7bXXYvz48ejVqxc++OADLFy4EDfeeCPmzZuHHXfcEVdddRWuuuoqnH/++Y02NSAgICBgO8PR19+Hxxcdh9791+PI4bdh8PNH4Mjht6F7rxIee/JoPLtgBOJKhL6D12Jk9Tw8+62xaF27utFmB2wmNDXagI7izjvvxOLFi7Fw4ULn3PLly9HS0oJ+/fpZ5YMGDcLy5ct1HUryqPPqnA8zZ87EZZddthmsZ+ikH1Str/O+CZd92nu8uUzlc02RoTNjzufdt6ULp4Tr88mMyVlbtk3p8HacGlD+CN1GOm3UPo/O8RE4dn16ZM4Jx4rkSFr+mEgi1x7/iKD6hZDpa1mpbOHrA8UEmJZJRA/3k1ourBMxrSekO83VBIlhShTPok7G0uiklJWW47x/lM67vb0A3T1CC2TUTISEjag1aLNFuwW+CbwzgDyMRu2bxCKaXEOIRZLVY1xFXToVl5EODcF11joWSALEiDz+PNM6uA28c+2bM9sHwI524fIBOBEyWkcEK85QAFaUD5XpPIyk+2nZpQaiNPZZN4gwbRWLqD6VHUKm5okQ0bOF8eKLL6KtrQ3PPfccjjrqKERRhDvvvBMXXXQR2trasPvuu2OvvfbCokWL8Kc//QkjR47EHnvs0WizAwICAgK2Exx9/X1oXb8Oj8ychqYNb6PSc1eMn3EDjunVGwDw2M0/wIgN16Lfbqsx8qAlaP2ffTB/45cx4fxrGmx5wKZimyR6li1bhnPOOQezZ89G9+7dO03vjBkzMH36dH28du1aDB06tEOyBMh38U6D8Cqtxwyh4vtqwDM/q6krb67Vkd+as9rUMQ/1Ujy2bPqCE9fqavaRKHS+rmIEzLFLCpnz5hWnLAs5EaUkUkSkzO4Tn1Sh9QNIX3myPaGTdrtvTG8WINJXrmDmnmmdhIoyE1YJoUMNdbJmrkNXF/pY9YuqGgmzNpmPYtJ0FfVJQC/rbsEz0fbmm8ldz7sWWLtaJIQeQJ7rRjsjyxw2kPQ9QDuYN5AAUi7LeRzUo9Nnbi1SKpVpiLyMqoIRdak9mQErGS6ac+SZ5+kno4Mssa6K+XOWHut+9wxaywhWh9qlLxYn+TgDRuynnUOJrhDQs8XRvXt3jBs3DkcccQRGjx6Nu+66C3EcY8mSJXjmmWfw8MMP46GHHsJpp52GDz/8EL169do8EcMBAQEBAQFIXuP66BU/8547Yuq5KLV9DY+fNxmHjn0KPfq1Ylzfm/Hqd/8Xfb74Bwzcd2QnWxuwubBNvrq1aNEirFy5EgcffDCamprQ1NSEefPm4aabbkJTUxMGDRqEUqmE1atXW+1WrFiBwYMHAwAGDx7srMKljlUdjm7duqFPnz7W1lFIwHADfo4gEx1oYrR6dNYjT9S5BC+Xw+dSPpd9x/XCV1eSv1l1s3QmZeqvqSXZp9Hgp17yyDMzr7Nf1uJranEbTHv72PZLSaeZeWBtfIUg+5rwf3af8PpOZwrPvBUARGTsdpZY5xZQb1LNAtabLEK/xiM9q66L9HUaX2rtpFySTdvj6Xmrk4XRCUj7jZpUXYffgpGwXmezdNJjfh7ouFIyybeuqT6gF5VUrI/zzVab55fvQaSuecZDQufjMVyhlacnn7Rj4sjgjSwlZqPjMdmnB0oMuylIXwqpEolHerMa+24wpSNKB38Uuf2krhN9b02trgXySZd51xc8oDNw3XXX4ZprrsFXvvIVLF68GMOHD8enP/1p9OrVC0OGDMEHH3yAN998E7/97W8bbWpAQEBAQBdCS/fuOOrmOXh54K/w7suDIASw5/5voc8jR+Cxi05utHkBHcQ2SfQcd9xxeO655/DMM8/o7ZBDDsGpp56q95ubmzFnzhzdZunSpXjzzTcxYcIEAMCECRPw3HPPYeXKlbrO7Nmz0adPH+y///5b3Afrq7V3ZpwNa9LeTq2+CU09Juhz3uW6aNJbs4y2+qVbEBm1NktXHcgMcqijnV93kuZXr8CUbsKT6ZauuZNM1eg5CkrSUBtUPXtRd55AmeqjOrN9FI4FtvPs2gFEj5uq2fw1E2c+XmjOWG//y9RHmWywxoovizBg+pGPL2q+i4R+bAAA0iFJREFUsNKeJPtJslx/quvER5Fu1tilfUuij9yNTKQlsTjehLdgBLlLsm4Ke/CYT66U1s27Ecg5vuqe94FAypzAwDydrK7gZdxHfo6MLd9Dgr+5JlmZw2V4yCLnssnkTrAeXumnNkXCjGHdMYwsQzq+Cdmi/wn1GcN5F06SHTXYdbZ41SGuH04nWn4z4kqzsh0dtAHtxZgxY7Bo0SK88cYbOOyww9C9e3f069cPP/zhD3H11VcDAHbbbTd8/OMfb7ClAQEBAQFdEaM+9Rns9l+vY+6Tn0ZpXTc071DGYSPvx7tX7o5X5vyp0eYFtBPb5KtbvXv3xgEHHGCV9ezZEwMGDNDlU6ZMwfTp09G/f3/06dMH3/jGNzBhwgQcdthhAIDjjz8e+++/P774xS/immuuwfLly/Hd734XU6dORbdu3ba4D9ZXa5F1wg8+92iPVt2G6fT+8u3RSScL0nPenvzbKX3b+7txPX76uo5SLVyG8jPLFhXVIUldTqtI1oLr5PqURipTxYwkZb7F4bN01tOLxnvfq1zJf+aVJyPX88qStpl6YvRoTSqSwcx307+pb0KlgDZ9qvuC5cqhvkqVaDnDbf+LWVHaOonWceexJJIqDcTwzXXpXDgPIvVBpnl07X6tA+lkO7FBZF9ifsOpd5kiQzoZg8CXovPoJOK8NwoTSOr468Pvt+/h4iODfDezgHkbTrC6Ev631jy8l5dYInY4wVSC0OKasCH20IqANYCkkkevJ+snm5sxd6vUMpU+Ss6Qm8vrj8wZgAJ6QPBxsinhWQHtxt57743Zs2djxYoVeOKJJ1AqlTBhwgTstttujTYtICAgICAAAHDcDXfireeew/pfnoJ9Rv8LA/d4HwOWnYInzx+Lg2f+FU3NLY02MaAObJNETz34wQ9+gCiKcNJJJ6FYLGLSpEm45ZZb9PlCoYD7778fX/va1zBhwgT07NkTp59+Or73ve91in3O3KcdE8OO//5q8q2ouUC9siT75BObrPpqfpY1B8zSn1W/nvaKsiCZX5y62fuUhjDyLFLDaUfpIdXar9t8Kj0FqNTI3N6khBNElDyxJ51+Qsr8VYmLTfSK8U/VEh45po7Q/AKghoAv4bHtQ/IRa9KG9wkHJZbU6lhS6yOEmppIk3MJVH/GgIzg3GuQ6cpdfJy5E17p9K85sPwlkUbtJnkAQK0QJrkvTJ7voeFJGFyfTlLk0alHu+fCWqtn1aFT8APaTzX81byFR49+o0xmlwn9BxZJxHXQJeMTdZ6LYT0zzXmLM1E6IiWIEDSqJRMrlD5IJBFu8Edq6c+sJ5+0/ctkMGvUCdjiGDRoED772c822oyAgICAgAAvdhs1CvjvF/DQZd/CITv+Aj132oCxBy/E2h8Ow+v9L8TYL32z0SYG1ICQMnzL6yjWrl2Lvn37YuXS3dGnd/vegovbw7IwVFDV++0RESPOfLWklpyyPb3JJW3okIoBYm02uLxKDJR9smu0lwCqUiBGIVeHb79SBYpohh2lo5BdBgCluAkxohwdgu0nx6WqQBEmgswOwhDeMiW3WE105ukyZca2tkozSoTj1QmPQT/9OjdUmgDmZxJ54+srEzmzsdKCijTXRL1Upcgan/0SgIwFWuNmj00gOgU5NvfhhlILYtrvPMmy9JQhmV+XK01OP5prb8gPrr+t2IRkHXDQCjVumKRttVKDd/fdeBJAWwGa/ON18vTGQFQVhNTJaJNeI9quUIRfZ84NKmTStok/EPIeKPrmjNFc9Mjz2O1E55RjFKrI7hdKCNG+KFXQXCQVY2mfpwwU8z9qqyKqkjs3o38EL28rodBWIu1i0g/pQOHEUXpObtxocvJY/pGOtNom9SrVNswt/R5r1qzZpLxzAQGdBfXdK4zZgICAgM7B+vdXYcn3JmH02CWImmPIqsBLz+2Dvb49Gz132lnXa12/DgvY6l490tW9AhJ05v/DtskcPdsDNiVYXpKtvTrpRmW1V6cAkpVlPHl5uM48WTrtRI0tT149tmfp4OX0yM6Jw8sBYVlnzgGSlXK/k/wxyT8BSfLiZOvzzBSFfT2NZVwfoPLVSEidI0ddO1h6kytichKxPkmTzqpXW6R0X43y9WWi1x4rQrq+Klt0Dwpjm+5baeeYhQRJ8xPrTbIcPHq0Wb5zX0l0Btm3onV0e7WbyIpjPsFG/RCetNsx2zzdlQR/SPfmpM44gt16WmQMONmtpbD1g/SF3XVefXpXZNy/vJ/yHgBED0mTZFdlvgp+QfNvTqi0UdYzTQ1yAZNbR/9zXXf7wXfxzH1hLmZMbkPfeCJCnc5UHZ6eM46Qccv6UzAdAQEBAQEBAQEMvXbqj0NuWohFpavw4bIdIQoS+495Bbh7BB678hwAwMPTPwPcMQxHjbwTEw59BEeNvBO4Y1hSHtAQBKKnQdDf2TuArHlbvTqz5k716tR6yepJalUY35ytPXJrbYDrN9ehXoPgc9+8+a/Z+ApNZnNW0iF0D5dq22r/Tf5F6T+pS8xqXxFMeme1sZV5iOPKT3tNMFqbraNFV71KdSUtI7YZisWaJat5KaS1UpStl/qS7pNxkoyVWv2s5qbsCqXzWKH+CEBEgIgEhFqVCElOIONrZPrVWsKJ9hghpYSZG2vOiXoq3PXJEt0el8D2ybUzxzY1BuhLYG+8LDJ94OjkyCFU9CpVAuSAb0a28NmTo9biUzjnwdvyPss6psXEPEs84Wi0Ab4HCfFLrepmjVeq2Fk2LC2mPIrzsE3bqGvFirRyREmfFqgx1EbPE9VynDgc2febk4unI/8jCAgICAgICOiyOOzMqeg3/Z947PHDUWlrQve+bThsj/+H96/ZFYePnYN1q3rh0VenYMXoJ/Doq1OwblUvHD52TiB7GoTtNkfP1g71vdzs1I+OfjdXqqjKetVnEjjSjl7x6cyyI6uNKs87l2WXKvPNqX3teBnNXeP8+K2PhVXT0DqS2WOy9kinTvK3iiarHT2nvHB9Eea0tHf9ftl2xZJGImSNBJMsms+OhUCaoyUrBxL1R61epSIXqAbXVssOqUgd2wrdB5KWQif/VvolYkj9GpWR6cJlGrRtpKvVa48yJbucRNA8uqXWQLVUJp7RRd0NYZAjR6/CVEN+1s0pyGkyeKzF5T03o5WjJ0s+KbO4iizCy70Z6zqmz1HtEh3WvoEmYN6JJOX2EOUskVNBi3L2fWSSai/JPkhfSsC8qiWtOrYGbhM5JaLUbnpC2vVyPQgICAgICAgIyEZTczOO/tFsvPjXv6DXY1/Hrvsux467rUZcFVi6aiyOvvpGCCEwZORNKLVehVU37otx+z6K1vXrwmtcnYwQ0dMgNOKHVDU3ksI+rgeZAQpZvxYTnfXKrXerJZvSI3xux/W6QRN0z460kY4F9ktVYPVdu4VTp8DaqWgfE2XDXyAjfhGSh1pE/YOWGCFS+yKNdNE9EFl6aTQP1aDpFsPyeSbzQstDKlNH9Qi4EQYsssay3mJD0/PqVaK0WBCZKqJHRSoJ2NE8ApGOZLKjhLQ3jCiyT9hjPzI6lK9ZET3OZB8upPviHu0Ka8CaS5Qd0VPP3J0ospoKwInmici+qkORpTPVQSkH4ThZw1efT6RMm8vc0nyJj/TxyFBlJpCGjk913n3WsdXV2WJl6XjVdYgy770QkYvA7M3K9K2vi4D1jqE1iDz+OwoCAgICAgICAurD/sdPwrDLXsMzT+wPAIgKEoePmY0VV+2Ol/78ewBAS48d8FLxBLT0LmLBzGkNtLZrIhA9DYLIPNiyOq0JDS/LgczY9PmMnN5Zsr2Tsjq3emzNq5kvn+7RLBzumljKD0oV0PpcIphsQKLq1UeTstg6rE9B/aU20R5QsmOTCUjl7YBEkhbcbP500Pa+RWzROao+a+TFVLaaBZNNssmrprbI3JX2l0hPJKtxwZKpc+VIafTKxF+aH4jrtHWnfsG+V+iWtOb9Jk1OldwbxVGb6uDxUZ5O9+XsoRE97dbpq6KcFECcbjxfDwiZUUunJk20m/6HgvDIquUT4TNooJZLWrE2FJwTAR2ehDRRldm7YFq8c5MK0gfSNor6E0uzSQmganQ6kVqKlWI3vu4AaTtNSVR9nzAn43qfqgHbIm6++Wbsscce6N69O8aPH48nn3wyt/7dd9+NESNGoHv37hg1ahT+/Oc/W+ellLjkkkuwyy67oEePHpg4cSJeeeUVq86qVatw6qmnok+fPujXrx+mTJmC9evX6/Nz587FZz/7Weyyyy7o2bMnxowZg1//+tebz+mAgICAgE5FazQAAPDqM8MgY2Dn3T/A3u99CfPP+xjiOMY+n5sCAGja8HYjzeySCERPg+B8te4EsodNWewfmmsg44dwPW/x/jrtydnD7eCyam2qTZ7NgvzNOk83GjhAQwj4P75ylm/+6cvvQ6VR2YBAQVtgR/OYqBiqg+lknWATMa6X2hNh22GiU1T0jT1OLBvUXDKdOMp08pjMfamuCAIFnYlIiMjJ0WPleNI60ggmxTNIcs0Y4eAbd0nEEvFLmEgepQ9EJ/XN9LN0rqsqSObsptdoPiWoiB56QazJfw6ktMaXM7joQCUqRYGc990seTcKOef0horioZE81nGGXq6T8hU2R+LaknXTm5vTNpjwGdby6tLeNHfpuwbcdlJPOKwUG7+Qlm/2Ju2m9JzlXzpuVD6dJDmP0aWNgdZJE0PrG5IOFE3q+AYR7bRUb83BGbAt4q677sL06dNx6aWXYvHixRg9ejQmTZqElStXeus//vjj+I//+A9MmTIFTz/9NE444QSccMIJeP7553Wda665BjfddBNmzZqFBQsWoGfPnpg0aRLa2tp0nVNPPRUvvPACZs+ejfvvvx8PP/wwzjrrLEvPgQceiN///vd49tlnccYZZ+C0007D/fffv+U6IyAgICBgi6HSc1cAwPJeH8Ojy6Zhw3u9UGiOcejYx/He1XvglV9dadUL6DyE5dU3AZuyvLpMJwkdQbmuBctd5C2vrpB1uqSnwD65OfKkRKWGPi5TAohjoOSpn9WGnqPLq9cimmidchUow15W29Tjy5jb62Aly6v72hnygtsAAG3VAipohvVKlv6MWH27Dl1e3dUJjx+Jza3lplQnb6eSPnM7jJyN1ebk9SnSxugzk3oqMwawsdyCqmzy9jtdrj2ZNBv5MYDWajMoJNmREIil3S9AQhBtLDcjlgUtz9It/dcjaStQrjZZdXhfxZ5BL2OBYqkZQOQf1DmDVkIgLvNX5rhSn05AFFX2Xk+brBsg/YzKhBbVZB0B16l4oDYgkhnPPEogMf0iBgplfzOXVSTH1XR5dc8AEr5jIktUYhT4Q4j3j3TloFRGSzE1hulNdEivLAFAtFUR0YctfdhLmEga1Z+qvFhEoVg1NxOoDml/Svuc3NgKezl2Wkeac7S9lKjEJcwth+XVtzeMHz8e48aNw49+9CMAQBzHGDp0KL7xjW/gggsucOqffPLJ2LBhg0W4HHbYYRgzZgxmzZoFKSWGDBmC8847D+effz4AYM2aNRg0aBBuv/12nHLKKXjppZew//77Y+HChTjkkEMAAA8++CA++clP4q233sKQIUO8tk6ePBmDBg3CbbfdVpdvYXn1gICAgK0HrevXAXcMw7pVvdDvnKUobSzi1cuPwwFjX4aIJGRVoFIqQJ78VsjRg7C8epeAnlP5fhHfkkj1WMERyJ+Heppb5vpSaagtT6bnd2b9Az4vz7Ijy0aegDhPJw2SsCJfrH80YMGN5rGn526uHhqzI4nGAtEJS19EdAqtgW/+PjF6bQ+TfRWpwPMCCfI4oMEZrq+mQJKoHrUakcoJlMQrqYgeYW32im1JcIEmo9JxGadl+jUuJ6In9VBAe6AibCJBI5hIEIbO5wPNx7g+uiSs6g9lS4GMFB2BRSN6fAM0bzCTHD2ZF9kT0eO98YBsO3xMm6WHKacRPSqqB9JdtIzrFq40APkRPbQ/fA8E3zmuW8KO6MlQ59jqe2AJUok6LASkSO5j3zWTeRdRESxkLOpoHr1iHLHPZ686SMeNXkKdg5A5tkyiL4qInwHbC0qlEhYtWoSJEyfqsiiKMHHiRMyfP9/bZv78+VZ9AJg0aZKu/89//hPLly+36vTt2xfjx4/XdebPn49+/fppkgcAJk6ciCiKsGDBgkx716xZg/79+7ff0YCAgICAhqNHr95YuOQo9B+6Cqtv3BeLfnQJdj7jNsxfMA7VcgRRkGjuUcH71x+IZU/nv0IcsHkRiJ4Gwfpq3R6mZXPpp/M31OaafBNimiYkzqiTa0OG/NhTlmUHt1F9qil4HqjtxgedyYb8s+3y9ZX0eGO3TyRIprVKaiJDr4+cArL7j7YU7AoJlbfG+Rdb7ZROTuJBTZ7NnJcYZgaVk6NHxslqX9ZmT8o9YvS8VqYnJDlJY6psPxJ9KmrOSoGSdodMu8TtS+UYvKBckxopqn917iOH3YBbxoUKYfEKmYPXm6PHIz9LJ2XwcvWRC2s5rco8OjJ0qmsKcj1t/z1+clnCUyaNXHpzWm/z+VzL6h/ngSK9m5AxRBxDIIaQ0vgUwSYUaf/pT3WOGBJT+TEsckbVsfL2pBdd3YhpcnXvgyKiugQhh5TeDJIoYJvG+++/j2q1ikGDBlnlgwYNwvLly71tli9fnltffdaqM3DgQOt8U1MT+vfvn6n3t7/9LRYuXIgzzjgj059isYi1a9daW0BAQEDA1oOjr78Pjy86Dr37r8eRw2/D4OePwOETnkS1rYD3/jkAUgJD9lmJnRcdj4cvOr3R5nYZBKKnQZDOTucqr2N+ZiHvh3seZFCLNMqSz/fzdPp02NMne8lyn29cjsqM48b0JFJoTA1N0GzWxXKto3E9rtSIpB+xa9G0JHTdLarXnb/bMtwrlEQhmOgXWp/HUSVIKQzyj3eqSHPnmGNI04uR6lWR5s6xNjUxpvRUQubEitSBNCttOUmBUzsl94SsJCZMwIReTSqSEFGa0DndzLVUE+2cCKr0gEZpqZGTuQJW3o0haJJorozAN8TyInr4RuUKsu8liAj5YEKqoN/FytLtsUUNC7Vv+VbvA0fC+5DRQ08w04neTB4jry8BOINH5x2LIEWUfqaRZSnZZFLjEAaO9p2SrfucDk6QCBsyjqiRVuZzpZSQNZnklTT73tW+AgI6H3//+99xxhln4NZbb8XIkSMz682cORN9+/bV29ChQzvRyoCAgICAenD09fcB//kmHnnhFMx/8ig88sIpwKnLMPiiN/Hwi19EcW03NO9QxhEjf4fXv7sv3nvt5UabvN0jED0NgqA7tSaCm1Gnmjd4cyfnmJBHDNUiibJQq357dHL9gu1ndSuVo0gNQ2xQubYU9ZdSPVQaj44xEiltEpO1tWgNuuaWDVHHVXLjgmJik+ud3XcugWTRU5owQTrRlmQD7KiepC8Tska94uWL5lFaUrEpeSRUOY3iEXYfJ3NlciwlYklX3JK2Hvbql5Tpku2Urkyz+/Ie5sdKa6xW9kLsrrxVZ6ibev0s99b3kTZZ8n2bQzCZT0nL9OZcbM2oCO5HLZ2EH7Lcz3OYyyE3Rl5EovUs891E9dgtQVkbOljtu15xN/wBqv7XymWqVdKswaT0AKhSnaSdMlq/j6aIn4iQQ/xpSByV7DO2fQrYvrDTTjuhUChgxYoVVvmKFSswePBgb5vBgwfn1lefterwZM+VSgWrVq1y9M6bNw+f/vSn8YMf/ACnnXZarj8zZszAmjVr9LZs2bLc+gEBAQEBjUGPXr3x0St+hiNveBAfveJnOifPsVfMwodHzMW/XtgNALD7/m+h598Ow6NXnNNIc7d7BKKnQZD8oMZEcHPp1N/3pWfLMYFTC1n8lPOD9SagPTrt+aKZYdbqVtqexIHoSbeR65NgJPOIHmHt22SJigSJIEgQgYqBMZEiXFPymeWRrZtG7bixO7wul8G9JP/IPNRE8xBiRpEo0mOBlZuHzo0ZqUbII8CO6JGS2Z7aYV6dI/77IofYq18mqsfELtHkLr4rrroquVaJHrXSlxsVUmNLhSYqrZgpFz4ChUfVZOkkdmvErDiP6GDsCstlXeuGNC5IcqrWQ4ITW8RXX36xrM0rN8tuK/cROUFILx7Hp3X4iJks+dwgdb5AdNHrqQ74hZJxkhnc6lhqNz2GkavySemVtwK2J7S0tGDs2LGYM2eOLovjGHPmzMGECRO8bSZMmGDVB4DZs2fr+nvuuScGDx5s1Vm7di0WLFig60yYMAGrV6/GokWLdJ2HHnoIcRxj/Pjxumzu3LmYPHkyrr76amtFrix069YNffr0sbaAgICAgG0Lu446EHtfsRTzFn8W5Q0t6Na7iMP2+H9YcsFIrFnxTqPN2y7R1GgDujw68cdUPWeSnrlGBvgPwXw/T1c9dThVYZFRGTpr25JI8sVH+Ags+mN7rGsJVp9SPllys3rGftGKzgdpRA+siSOdzQP+HqU22vJ91ugf81MtUtumzic6BasvSB0h0rl/OuGkizJJYrNQx1JlCUpIA64zaUd1JrN3ayyQsAyB9BopLiaNZBDpsRBSr5alcgIl1W1Om07O6fUUgHkrzHM51bxZxtRnsww86xD/vkeokKpvRaZuawhQffXeHL7B79vnY02SYhJR0xGdKpUM5S5qPlBUg5hZ52vXjmeb10arXxWZYp8TtJ56oFLDkoFoKjkPNeY4vd5V+hpWxqdqYC3/Hptypz6gbxDf64G1lmIM2CYxffp0nH766TjkkENw6KGH4oYbbsCGDRt0LpzTTjsNu+66K2bOnAkAOOecc3DMMcfguuuuw+TJk3HnnXfiqaeewk9/+lMAgBAC06ZNw+WXX47hw4djzz33xMUXX4whQ4bghBNOAADst99++PjHP44zzzwTs2bNQrlcxtlnn41TTjlFr7j197//HZ/61Kdwzjnn4KSTTtK5e1paWkJC5oCAgIAugGOvvQOvPvYous0+DUM+sgLDD/wXWn93IB4vT8Xh0y5rtHnbFQLR02j4Jm9bCGbiTNTVqdOaw9Shp5bojDmapUt4yvLsMp+29DxdVI5ZectM4A2ZIslRlizhlPnOGR5BoACQ5ed577re5M2NOQElyF+JxDcJE9Gj+tf+tHXyOvaKzpxK85NjKrYnFnYNRcgI0ruCz9QlwJdHd8nKNJ5KUp4libJRY14QCk9pMt1t7LEJIAY1V9auCV0psggwENl1ILb7NhN55A+9UFltnH61DwV1niuhnS+SSyJoWZ06HZK5nptTtY1sXsWpn3FzOsV5DyhVmUb0cB8cBWlkGWeMvPLpDaSqkgP1Gpa+6RShQ2X6ZJACPRZ8F0YYfYq1DRE92yVOPvlkvPfee7jkkkuwfPlyjBkzBg8++KBOpvzmm28iigwBfvjhh+OOO+7Ad7/7XVx44YUYPnw47r33XhxwwAG6zre//W1s2LABZ511FlavXo0jjzwSDz74ILp3767r/PrXv8bZZ5+N4447DlEU4aSTTsJNN92kz//iF7/Axo0bMXPmTE0yAcAxxxyDuXPnbsEeCQgICAjYWrDPEUcCR7yOeed8GoeNfhg9dmzFofG1+Mf5f8RHLp2LHr1D5ObmgJCy5vQiIANr165F3759sXLp7ujTu31vwcV8ltUOlFFtXwOtJjYta+jkp4teCqW2jFjKXGuduUqKagyUMvRltdFtpUCskw9nt+XllSrQhma4hAW0LE6mqDqluJDqdM9ltQEEWqsFlNGidcZpuV3fJpBU+2K1CckSz64vvD0t21huRtnxU4D2F/2k+lurzZqg4fZYBI8Ulv/ryk2oSn/fSl1mCAW68lpbtdnxTc1rtW3S1h9LYEOpGbFsYu2I7c77R6luCZQqTc51s+xWc23iSCyBYlszIAuu0LwbJyVAqpUCMqNpfGUSkDEg2pLF3jPbZemOgahqIqjsesQOfoGrQKGIhHmpV2eqQ8RAVIWbO6fWcSVGc6srz6pPeA4qQ1RiFCqw4SF7nD4oVdDSWnXaWPUyEmhHpSqiCg3v8utU7bXMjW0oFCtMdhbBI0k0joTc2JY8OGlbSg5xm9O2lWob5pZ/jzVr1oRXYgK2CajvXmHMBgQEBGz7eO7+ezHw2W9ipz0+AACsf68XXu55IcZ95ZwGW7Zl0Jn/Dws5ehoE/cW+U2k24eiUGZvTUprktHkb0+bAp4frpPv16PTbkDNJ99ihzim6I2uLkC6r7JzzW0Nzx6iNZsYpkJqKhuAZQESqE9oGTt1Qv7gN9ipb9j5v6+8Vao+dyyn1x5Ojx/YZKECkCxjZCZXp1RCIk1w5QiJSG6ROmCxpnp442ac6hT6fei5MImeaiyfZJCIRIxIxhMdnp3etKulVIvmCtP56V93yDtwaJI/vRhGANyOxvWxb9ubjKSRgJ+qVdsUoPeqATrWIV6afvgdQWia5LL5F6UaPhf855OhVsB4iEk5Can7nC3InkmrO/clzHUECiM2+Oh95ki5RBzRpk96Ilm2pbDoeQOzXcohcuhJYQEBAQEBAQEAnY9SnTsCAb72G+fMPQ7VUQK+d12NMy0V4avrhqJSKjTZvm0YgehoEZ6LUDviJjTq1euYQ9cgTdS7BW8smny7fcb3IruvO4gTb9/vtn6FK9mlrEOD68vg7TqHkzcSFx0JNsHj98pEo9uJMnIygyZqpXpcKEk4PqQLpmmm3jmxf7SXW+WTaUD8SNJky2fR82IxpZYORZxZAt61WVFmyRLZOEG31AvPeEpFaxwdtlJBLHYJESoB5dHo7lBz7Xr2ph0BWRBFXpf0k10WSiin/0RGdgo4Vqo/rhl1GcxODV5fk07PvBG7Vd3OmrzgyuwTpGlXkWaJcclaKjG/9T0bJZp23m9kdINIkymqlrdRg6x06cr0oKQRps9nWwO3gmA0ICAgICAgI2Axoam7GkT+cg+eab8Tqt/siapI46JB/YO0P98Szv/tlo83bZrFNEj0zZ87EuHHj0Lt3bwwcOBAnnHACli5datVpa2vD1KlTMWDAAPTq1QsnnXSSsyzom2++icmTJ2OHHXbAwIED8a1vfQuVCo/x3zKwvlrXMylj1fOib/K0qrmB84NzDXnm137p3STbzFLExldfvIjPl/b45Pvxv56pC9Vp57ONyWZqCXasaAiFRKf/nE3SUBtUPSrb1i+9Mq0Zm8c3e0UgyWvya6f1mMgh9Y9HJqj0Ic5YIfNJn6/JayIxIGNIGVtjBlJCSNtP1Z+K9lF1Y9/S7M5AUn5lrT2uorJie/xSCk6Q9NmOCDKRlqQv4uRVxQ6B52Hx3RT24DGfPJmuf+h5dJImTK2jX9jHmXlyfDpZXcHLuI/8nPToo6eFp4mwTfcSS3l9I9PXa+nDK/20h5pK+G3qan3KUakSLNtjTQp672XdPGSw68cC7RD2tLOisBishz91pINjNiAgICAgICBgM2LsqWeg99mvYdGC0YgrEfrusgb7bZiK+eceh0q5rOu1rl+HuRdNwaPTPo65F01B6/p1DbR668U2SfTMmzcPU6dOxRNPPIHZs2ejXC7j+OOPx4YNG3Sdc889F3/84x9x9913Y968eXjnnXdw4okn6vPVahWTJ09GqVTC448/jl/84he4/fbbcckll3SKD9ZXa+cX3Hx0/DfYdPLKAxzqkEd/vVYbDbHwlfnmivVu9frpa+fTSetn2ZKUqwXQ1WLn5qUtWpvSEUanfR7OEbUl0ZOQMCbyJOsVMIBH/yitvj6RzALWYyK5jtITksL91OQg8dM3XHlQg7TsS6IQhIjIJxkvzDfaWyoyQo2viCyXrl4FowYlHIyAFOni9cIXNZX4qaJ5IHi/Q8/brUm73mydOtokEnaUT71IJ9tS3Zx5N4XucFVXdQQ7J2DfCF6dpAnxQ/tsMTu2HY6feTqZ7VnPIP/ASot8dQErckc3YWWauLIMsHU63StURA+9wMQetalxzMVr9ljYxgt1T9mRPVCRPUq5itKhz1SVLZ4ba/mTNQAFrGsJ2EusBwQEBAQEBARsBWjp0QOH3vg4Fq6/DOtX9kbUHOPQcU/gg2v3wtLZf8bD0z8D3DEMR428ExMOfQRHjbwTuGNYUh5gYbtIxvzee+9h4MCBmDdvHo4++misWbMGO++8M+644w58/vOfBwAsWbIE++23H+bPn4/DDjsMDzzwAD71qU/hnXfe0atQzJo1C9/5znfw3nvvoaWlpabeTUnGrH7HJQV1o+PJmKVOAq0mP/WqLVnt7FY+GfRH+iqy55xZ+isxUM44lzVnU8exFIhR8OqU7JPuV6tAUS9EJzz1fMmdk4lVOS6gmvKm0jpn73P9pWoBJTRnygfcOB6kBFExNomRqa9+O42stnJTmow5y1b72NghsLHabHzR0R3cN8HapQmgdZJiAX5t3ITVKekj0wTQVB8hYxxbiIwN5RbEkl8TgjhidhhZpWpTmheI2kTqSSYzDaQolprhJCl2FDPEiR9xJUkqkxstw85JCYi2CEm2J4+eGkRPVBH+m1MTJcLtPAlEbUiItFo6FV+RHooqULDeI/TXd44rMZr5a9qUqPL4oLiSqBIjqrA2Phv5uXIZLW1sAFjtpB54Fv8kAVGsIqqmDXQy5Wz9+o5tK6HQlj75qp6LrRrQB3i6Lze2AnGajFlFeUmaEFq6fkuJSiUkYw7YthCSMQcEBAR0DWxcvRovX3YcDjh4KURBIi5HEE0xVi3rj5dKn8Pwk87EK7+/Ffu13IP+Q1fh8UXH4ejr72u02bkIyZjbiTVr1gAA+vfvDwBYtGgRyuUyJk6cqOuMGDECw4YNw/z58wEA8+fPx6hRozTJAwCTJk3C2rVr8cILL2xxm535V9Yv9x60oyrTyWdC5sfiWlA/JCerDpOGGdE8Rqfx1Rek4MaP5Acz8H7L6ge6HHpW0IA/qMBYxdMw09p2mSFH3Kgbo9f+jCB0FhA7goj3ji2XrLIlvS99ePxWUUppBIEgkSxOolkaNkB1MjKHTrLZBaB6dUkayZNsdJxkj4JkHirMldQ2k6Zp6IbJ2ZMeiNQPx8/IbDqawTOK1OSfD2uy6Ry3QkBEyZY5cLNAOzTrRvFdEqIbXG/dOkkZ9dPqFgkn2bN1nunMGIhUpfPWkXDr8xtGAI4eQTZLJStTnEgm6cV16X7gF5+baPJMaV2EgzHKvYNG54Uyzxx2kQuRm+CaCnb80cwr8c0R4PZFPWMmICAgICAgIKCTsUO/fhjzg0V4/J1paF21A6LmGEIApVITdp90CoaMHIVjLrkJ/c5ZilXL+mPcvo+G17gItnmiJ45jTJs2DUcccQQOOOAAAMDy5cvR0tKCfv36WXUHDRqE5cuX6zqU5FHn1TkfisUi1q5da20dhf7O7ttqoB1VM3UK9UOzRF0pGviP8MkcMGnM8/LQIDE+h+CuZmVRyeqS+uexwjrOztbCy8weX/0KnnPUOmt1qgx/zRYjTuOrkjgrnqvD1uWbnUs2+aQvbFHdiVcm904sY5P2Q9I6UtsCyyL3Sqi5r5SCyHD7krblOZxoXh73aiumxRzTlb9iNW7VsNMXMj2QceIz1amuOB2nUuUlckH5BnsBKtVe6U/zB9GOsC+VH9bAZvSYGpx8Y10lVUfwm5M74SOBOLcloVcz05s6Zg8A2p3ODcpJIdhUg6XW9yDzDAkJOHpYqiSzefRbNtW4OfUQ0gfq4kOTVtL657quL6Ig+2wVM52rhypWzsYAvONJmE/G39hMFYgjanwweZDp/wgQEBAQEBAQELDV4ujvXI6Fb04CkHyd2WWflRj83Ccxb8YXAAAtPXbAS8UT0NK7iAUzpzXQ0q0L2zzRM3XqVDz//PO48847t7iumTNnom/fvnobOnRoh2Wp7+odQXt+vPfpVFON9sjwzhc90Ty+ORuXkyc3b8uS4dNhp9bNDxywNztXjpsa2N0kk6oWWze22n9VHqBIZwFR0TzJr/pSb2Yhd/XTfqxXjBIJuQABs+C7uramXazbRPpTiijNY2NWnorJeSNP2RChmm4AoJY6j9O1q1W/2am31b6JSnJzOGVfBfuVLLvcjjoRJIhHRdWoCCmyopbK2ZOZl4fRU8LMjTXnRK+zMLmL9D9fRE8Ww+HcKFIXM5ftrnSDrUAuQv5NnUOo6Jw2NExGSCCix0a2NxgrR63FrXBOz/dQyPqkupTtcMyjfJxNZEu4csm+Hp5RcmWdUC4JT+NUNOXbpDT1NTGjNtsfYdmTRvEUiDGWygxWRg9h4nBEFPhCN30kW0BAQEBAQEDAVojm0vsAgHn/OAnFtd3RvEMZR466B69cOAJrVryDfT43BQDQtOHtRpq5VWGbJnrOPvts3H///fj73/+O3XbbTZcPHjwYpVIJq1evtuqvWLECgwcP1nX4KlzqWNXhmDFjBtasWaO3ZcuWddj2nHlRTfB5Unt1dkR3xo/fTjRPls6ssky5no228e3TMt+cl7fzb/y3ekqf2JZIXU5LbIulVRNEQxJxUoUgupKwDUPT2DoTv0jcjjD0Cu9X218jX4JF1qR2IEOnak+TO6tlwNl8m/Wt8tLELVnjRGZFS9m9lcyLTT2rP/TENimSsUyjIGLtl/HVRPiYVbn8dxGlgOhk3JAVaQQPHy2xhOOOxXA4qohSATWWLN1cFo/qiVPhWTdLHih/QTiJpF+FZzOyHbKmhk5rjGYRUrV8zfBRm+u6ZfMb3EbPtbGGKOhzzbMpcoj5qe5N15hUmdabjkMemiaR5tjxXUzPE1VVUw5bjJzSKV1ReTIDAgICAgICArYiVHruCgBo6tUPa495FP96Ppn773XAMkS/HY3Xfj7DqhewjRI9UkqcffbZuOeee/DQQw9hzz33tM6PHTsWzc3NmDNnji5bunQp3nzzTUyYMAEAMGHCBDz33HNYuXKlrjN79mz06dMH+++/v1dvt27d0KdPH2vrsA9qp4PfsTeJrBH2cb366NzMmtBkRPMoHfXKrXerBz66wjch868xpfbc6B4uxSQ+ttvYklQrXidKfri3rDFhG4ZeMXl5KD2S8C2UZrJh64z0xnPW6HKm08ikfkpACs1BkPmup+ci/Q9p9A9PesOjeqQlSSkhUVWKdCCidIROJNKVr5RfdjSPgMkP5MulZKbWjAKy5/VpKyWTXO+siB4+bLw3ilnMXuuWcGXwqJ5I+Z+jL1Mn8U3a5EhuZI+uQ2Tl6ZTWrkmc7Buweb769CnXyfVRZJX+5AyQR5cgck13CrjEiSoz9tOoL8stkf6xSDKijCeASsetuQi8PzOe2NQvPXCkbUjmuPDoCQgICAgICAjYyjB+xg0orW9JEi/vsTv2vnIpHnnq46gWC9hhwEYcPvZhVNoKGD/jhkabutWgqXaVrQ9Tp07FHXfcgf/93/9F7969dU6dvn37okePHujbty+mTJmC6dOno3///ujTpw++8Y1vYMKECTjssMMAAMcffzz2339/fPGLX8Q111yD5cuX47vf/S6mTp2Kbt26bXEf9ETZOagP7ayu1WhVAm7C0jr1+eepfglZ0whlR5beekiovPMip07+D/vSKudEEV8ditMEfn2EJLF0yjSiJ4Y7CLL0CKtQklkstYXqNJYlOpIEx5LU9esEjM9Uv0l0LfQ8UcDO9wMgjeRJdSJGshpV1lUT5K/UE9Dkg1goDP8hY/sqWxN89U9HSwjYklx/jTRhjx9SzQzz2O03nq/Gt5/pvkh71r6+xrGMtjH80Rq1blgqX/UpddZnL31eKGIl7wZW4snQ1ryJj+RhC0Q5n9wWQq7Q55l1VR0SxGOnNGMKINfY994XkyH4Dn2o67w+rBH1xbl2VVundY7cbNZKXpJVoTcJzM0JT5ss8iggICAgICAgYCtCj1698fCSo3D42DlYdeO+eKl4AoZ/6WI89vMqDj/wITR1q6KpexXvXDcahc/fiyEjD2y0yQ3HNrm8ushYJurnP/85vvSlLwEA2tracN555+E3v/kNisUiJk2ahFtuucV6LeuNN97A1772NcydOxc9e/bE6aefjquuugpNTfXxX5uyvHrs+3Jd55Xo6PLqyWs0TFXdOjlVYZBnTSylc74elVnLq6u2/vS5yflqury6T1fevLRSBYpoyagv2DzUjmAqx02I01mlOzcmOWfYuXK1gCJayHzWHtuxI88cl6oFxGRZHtu+iOwDdPq7odKEimy2fKM6YmYr1VmsNCX1Pcu6WyuCMV82VFpQlYUMvoMmdLblyjhZRj4p9KWlZn2bnowlsLHckowDSgjQz9gcW3ZLoFRthhXtIO3+UOwCt6dYbAIQZZM8GWSDlEC10uS2yYMiKFrJ8uq0fY4+AECcLq+O+kkb1a7QJpC5jHwGOSRk0rapAhe1btRy9vLqIrXJaZt+RpUYhSo756knuK3lCprbOKNEEMduW6WzWEVEl+CyHljS1a32W8soFEvpOdJefciY2EGIKCkhN7aZLOWSKJAg9dy2lUoRc8u/C0tVB2wzCMurBwQEBHRdPDz9Mxg34hG09CrpstK6Zqxa2Q+D9noPQgDFtd2weN3/xZHfurKBlvrRmf8P2yaJnq0Fm0L0JNEGHdO7SURPDZ1Zp0s5RE8W6QIAUkr45nW12lZjoJRxLu836FpEj0+nqlOuAmU0WQQFJTHsY2HN1Uqa6HHl8tWw6Lm2agHllFxySRKX5KGETWuV6zT7sdbLbQHays0oo9lrJ9cJZntrtUmTPKaNkWOWQ7d1biy3oCqbMubzkd1G2n60Vps9bZDOYYXWafEpEthYbkYsC+DRPFyHJRNALAXKjp923dgzcGUsUCw1wyF6tFFuG+pHXC74qxBixtUJiGIG0cMN95yLypzoYSS672aRgGgDIh/Rw3Q6S5/HQMHH4BLZjt0SQDUlejxEjfAdEzmiEqPAH0Ie8o3LQamMlmJagelNdEirjH5GbVVE9GHL66pzKZmjbS4WUShWCTlDCRppf0r7nNzYaoggSdpoPbHbXkpU4hLmln8fJs0B2wwC0RMQEBDQtdG6fh0WzJyGpg1vo9JzV4yfcQN69OqNv3/3LEzY/bdo7lmGrAo8s3gUxlzzMJqam2sL7SR05v/DtslXt7YH+OZU5sSWg3r1xVLTDp1OigeYRE/tIYFU3bwMEfQcl533tpt6Wcgn3VeqjqP0b55NSd+50TnCkmwmz6qUvvZFyZkCBCqktekXSnbwF8S47Ty6RrC/wrIFQkB4SAz75S8WWeN0hO0jJYhUimhHp4dAs95OUjcFHaPSkAV+Ak75o97+oSuepTrp62XqvArKiX3+uSSs9jPVE1n9k/ZFBPuic0OzXiGir9ZowzzgvIq6+Xw3ZZ4dYGV5DwP+tp0AUM2OquQ6edNMcjvvgZDqzDxPZRAuhDb3yrQMS/fpA0uQTrRvzlSHej1LmrxD3BivjZLoF/a1EhGSDlbN0x2R6hPS2Kg7VLrXUhM6pIDK1A+ljMisgICAgICAgICtFD169cZHr/iZU/5/Lv8pXv77yej7xJew0+6rcNC4Z/HBdXth7YTbsc8xxzXA0sYifMNrEKzJR+ZsegshnTzzVZPteBGnSeYWI3uBnCxwXVweL/PV89moPm1aIdunmG2etZQcnb6+kh5v7PamjGqsejRxnVkLkdMZtb0CmHuFYrUKVbryVC2dlDKim9STRAmpN0AKCZFuSqekPSslYrLal9kMx6H1kLEJQC/6pHTC0gOo1cRipldFzSkdcTrJljHUwlwawtoTmTcCtSXWvZbqk2pVL6sj6ZDIGLgCVnbjvJvRHqz+G4/ry7pZKC9JiQe+0ZW3YlXm0ZGhU11TyMTNuvL/clnCUybhJnZOu5KvZO4F7TvA7SdrNSyzL2ScbHqlOij2j+RqZv1HO9kiyaT9upUeQ8yodIU8JzmSJIrVOb2JdIl1ag/RpVaok1l0fEBAQEBAQEDAtoWP/J/jMOD817FowWjEVYEBw1Zht1dOwryLz2y0aZ2OQPQ0CNLZ6Vy9dczPLGSRQek0w7tATj3zOSqH7/tk+QkPV4aagptj1zcuJ/FBeP5RCZSwMWtg0XgWutE1uOySRFtEykwNN6rIzOm5HYresXXa9BBdWSvSPtpt/JFMkuvUu2lUUPqp9qW0e1P3qhCIhFoFi27QpI1ekl0kmxRUp3A2TeVJob1Ua32ZVbfsiT8EICKZbIycSnpMTbTdhd+l3SnWtVN97F0ByzfYKERKeunJO1dI9PoGbb03CiNEnIcBQAgHsmnWTdryfbo9tqjLB2HEOX5x+Gz36LOWhVebPUz98n196fShb/AISERmUyu4ER4m4Wgy2CjBbACVDyCKiC5iC4x+014pjQkxxPylg1Z6fBJMZkBAQEBAQEDANo6m5mYceuPjeOLdc9C2pjuadyjjiBF34PnzR6N13dpGm9dpCERPg8C/v+dOBDejTpHueL/v56jPI4ZqkURZyKpfDxnFdXL9zlzaU8Z1kDgQ8k/JtXtH/aVUD5VIyRFKYygNKvIkdmqYmtx+RSy4dtD2cRrZwj0zNsVk395zoWggM9FMa1kRPbHeh464MeESavUrmc6CVSSPCZRQWlJNEoY8SskaLdfq19RmYeuJZRq95OiyiSKd34eTU0KkuvzcCR07sY5USiOJVFZpu+tr3ij0/ssErVBLvm/z3RTpp6RleiMEh+432NwF7Yw8nYTnqPs5weUwX7MiEq1nWRbJ49Ph+KEHKOiAte56xd04D1Dhkad8UPcQMUKVValOalt6XidoVvdjZJNDui7pcOqz+oxtnwICAgICAgICtjcc9e0rsObouXhr6WAIAex38Ktou3VfPPu7XzfatE5BIHoaBMkPakwEN5dO/X1ferYc9VmT3jyOqqNu+HTU0mnPYc2spla30vb+iB4qk0uwiQcqTVj7sCQqwibS8nkN+7Uz2we+J5z2kSWFkkLmvN0Gjk7bS2KBDs0wkTx8I+83WToUcWAieQxRZV0jAUMcQSY+EnLGkitBdCGRnfoYcV3W+4rpRN2K6klJOLJ0tY/PUBAACmmkUqRyENGoE5D9vEFr3X85dw01RrXlUS5ZOn0g70gKKt9HdLC+c16/qlMn5X5qPuuoLOn66o3m8WxeuVl2R/STnCCkl6Z5WBJwLzGTJZ8bpM4XiC4VaSOI0fxCyThd/YsPDjYgtKxUV6R0CvJ6V0BAQEBAQEDA9oUhI0dh98tew/wFRyAuR+gzeC1GrPsaHj7/xEabtsURiJ5GoxN/TKVzhFrzTz5Xq2dCxSdWtaYPvrmi0tUenTF4N1JiI3/uSeeRJvWJm5eHSjARPDx7TnaP8HgdlVPGPmsm+9n9yAkUu1UMO8uQOkfrxaS+0ZNHMdAJb1qXRPBItvmiemIAvmgeZR2haiwSSfcrJxqUnwKwE7WYTEt2TiBhRfRIK6IngpSG5stL7qLmxnavpbog2xdhQ+blVm6XrBvHN5Dr1QfySeVxud7XegjZoV/XI3LawbQIWpRHQlEodij1NS+/mBoONfgmVz63V0fe0MFq7iUhFUEIc29Z3Irwy44BhyWjh1Xy/pfKnWPZQRoIARPRwwWRNtQxzuhLoOZSjAEBAQEBAQEB2ziOvPGvWFy8Ahve74lCtyqOOPgveO2ifbH6rWWNNm2LIRA9jUbds5FNh54jpFu980NuZnvIoTxbfHNFJb89OnkQBdecMee0ypUck2uI0jmmtmCbTaQYqygRJJkHKqpHZc3xx9/wvnB1Jv9sS01kji1VEkk8W1AW4eYjiZL/1ACyyRNfVI+yJUoFq8gaIahF5urQKBtN4EhXl9EHQwiR17AEVESP0hsnxFO6CSuiJ9aklLT8dAeMzmErSD/AE9FjX/L8jfIIeci6MflnFsvBy4kcqeVLd6O6TVf75dYotxacYjbkQgIpF+ema1LmCfJJzvlkWT5RWA8VPXgAX0SPGrk0kbaW7RtAMAyVZQ85Vq9hWRE96pg5oEmpVJeQ9nnaFgLueEgLQkRPQEBAQEBAQBfA+LO+ifjzz+C1Z3cHAOwx8i0U7j0YT/z42gZbtmUQiJ6tAZ30gyqfYNVD1pDqdW+5ekmZj9DgOmsFLPAVv2xpnGLx20DLE3kqLa9NQQACMSKHXFFUBbVMWJ/2OZoXx+QF8vchoT8cnSJlCVwSCERP7NTh8T48IipXpyDEDHntSbCcPXaUjdQBEiqyRr32AhjChObMiUnUjYkQkmaiHCWfasUvbg+gInqgCSAVuZNs6TUmZZQEyxq0dj4r28cORfRILdoei3kDlsJiOMjmu6h8gBF5ghuRl6iXchVZOrP8zCKJ8qAuCVttzInqoWXknLcffeXcbrWSlS+iRxGFMtlcYocJpxfWtwqXImPi2NFn2EXVjx7mjD7yrI3KASGPYHSHiJ6AgICAgICALoJ+Q4bgI1e9iEcWT0alrQk79N+IsT0vw/xzj0Ucb18rkQaip0EQQDYzsiW1Mp05c0/esq6Nt1E6KLIJDXe/Xr2uDfaRT5/PZzuax35JC5CIECPSVBDd/NbQuBVK0KijAvQLQzl9SOOC7FW+fJbaeox0E3ckOqwzmc/a/ilyxkT0ROS1K2H8FIC9BLuRn0hVUTcSkdogCVGTTJJlLJJlvtUrRCTCJ6mbaDYRPXbkjiARPZGgdB4hbTIGrZkze/pbL5PuHQo1N0oLap0eG6z91D9HJ88Fk3WjSFe0RRDoHD3kXETqZunM8pGSRD4/fQ8g1ee+HD1qQ3JeeiJ++Pj26vX5I2M1aJMCFdFDX/0TIo3osdsKJ2qHOKLHPyFEVT/rxMpgepkwndCZXVDnfTZqP3WSyAqrbgUEBAQEBAR0MXz02t9iyY63Ys07fRE1xTh03AK8c/neePvZpxtt2mZDU6MN6KrQP8xaBfVBtK+6rYR/x/fXympdt968ej63BduvZUdtXWoW7JeZNbWJyRl7/ik8ZVS63Tu2X8J7TlEclDuWzDIeEwTnrAu7vrFEWSGEsH7Ez9Pp6pVWXwrAitBI5rN230sAiCLEVX+va30O6ZCWC2ZheiD1TeR6muxH6atcvE/SMp4rReaMQVZVpGwStRtRqts3IPNuCM2lSPta+Aatz0Ah7EFE29S6YYXSzcroDh3aAgk/4ZOdp5PwEpp8qffmVzyFfaOY6jKnDPb4tGT7HqTkWEAkETY+nfpYOueBZGx5+1SyQiWD2qJflyOEDpWjOlDl8KED1745zDkqR3jqBwQEBAQEBAR0MYz+3L+jdf0n8PwlR2PkwS9jl31Wojj/ODzyp6/gqBnXAABa16/DgpnT0LThbVR67orxM25Aj169G2x5fQhET4Ogv9d3gLHpGMmTaFVRGR2RmUygsmvyuRn9zNKRV1bPFMSmFPLbZZEXtt2xdWT22CQclMTx22Dn5/HrTQIhzGtUeT5TfTw0w0dK+fwAACml1lkfjE4hhEOeJAcsGoWRbDKOIYTQ805DxpAAChIYocgxrYuQQJSAkGSfQyKGEL6gRSWF+aIJCGG/0eLIFk6ZifSRHYyQUJN3vy9eQkJvnKmxxWZeaErQcT7BlzCYcR6ZbnKdbGBnRvTk+Z1xc1CuT2SUOc2y+pnZLCGTiB56c0pGHKUdpwNrlB0RkqXSSR2vHl9Bep9oxkr3AWOLdD1N4RLyx+Mzt4UTSwEBAQEBAQEBXQw9evXG6OufxtxLvo7xQ3+Dbr2LmLDDLVh07lyslzvj0P0fx1EjS7p+6Y4/4OElR+Ho6+9roNX1Iby61SBYP6jac/aaaEdVR6ueBDGdtWTq6nrJagG+Og8v43MprjZvq9dP3s7odAkYn2xXJ02VnJxJX/KxarupmoVzHs6RTX+INN+PqmXHACgKKKtnANq7dkve89Lql2RSKvTs1KZk8nVagQFUr5NkVuq/EgJCRAnpoj/JeIH7GpT2RCVXTuur17HsJdOhX+tJXtcRiR5EMDNwukWQ6abHLtdNSQJHhHTKhAAQmeTP7UJK1ui+zbsprM5PFaulsvn5LNII7jk795DykVRSxIMw9evW6bXd45vPV3KtfbeAlYsH/rJMXoVeP2anEMkTwBhA7KFN1Tgm9kogJcXo4LA361/6vpmwlCiCh3SAzhTPOlSSncwBKGBdS+WkGkcBAQEBAQEBAV0YH/3eLXhnv//Fe/8cAFGQGDPuBRwxbi42rO6BR1+dghWjn8Cjr07BulW9cPjYOXh4+mcabXJNhIieBoF87U7Qjh9VNzWiR8tg3/vr0Zm0k95zvjI17ag3UIGWt8cuijydPHjAPW9+vqc+JGdsSsS0F7Dz5ij9pr6rT6VDFnrP9kBRJLYc01pNGG1bkVFfEKuktDUaYqy2zmROmOpUc1HNHrrQfSdjkoBZlVIL/JNTlUsn5UJs/6TZV/NiIzlNRC39ET2JG8k5EwNhT9gh/QEQZjZPyilZ05EbVOUTYjqZYnac7sReIz0PGa6TNGMEnmlHK9n1hafc0SlNsVPHdxN69k3/es4RwkefYmUWiWNuA0uW5DJk+izgSZatQ3OxGP9ESClyQTMuU0IeqTuSdYw98H2tbUGQGded3GOCyQsRPQEBAQEBAQEB2PvIo1EZ/xoWnf9RHHzoMxAC6NV/I+Tr6zBk5CgMGXkTSq1XYdWN+2Lcvo+idf26rfo1rhDR0yA4X62zfrn3oB1VvVqtOZz6wbkGVDxL8oMy+ZU5K8KHaOSkD92ijHK+2R4YZPWDmjb5AgGy9Cfn7VKThtgX0WOyzyqKRHqt9kwE9eLqic4o3bhe13Ka8VYtr877xFdCZIrIjsxqh061pLviFnRAgPM+ji1DRfREqW47TMM3CqJ0jmvIIaHHG2mqQjd0RI+AFBGkSMMfnHCQSG8mka5nFCn/SHNvcJBI7gcRCRNZ056bk062s24UHcnhnheiA3o9BItz69L+VeQBke/0BZetBScbVemNXIKnTNjF3De6upav3DIpj4BjN6ca00JddHVtHRPVPWTrMuSn+iQDSFitk39SQGeSpsZEUXrtlR3KuVSwl8zJco7UUUYqOfWO1YCAgICAgICA7RxNzc3Y2GsEhABK61vQvEMZR478LV789ihUymW09NgBLxVPQEvvIhbMnNZoc3MRiJ4GQX3H9m410I6q3sZqImQtrFMDfAnzZA4o0yiGZAM5BqmXZbtE/atRZ8nLcNGqmafHLTd77rLl7jlqnb2Eud9fs8WI01gSmS6wThc89+mkEgVkQnowaoacJf7b3koZ29fNo1Nk6YRI9tO5p1mYye5vs4R76ptUUT1mnAjp71t6Ffk63gIwq02n1aVEkppEsQgyBmSMJKKH+pj2gZRWPeFkMlbXk4wiok+RMkZ/oiNWS2DXC2tgG23WsyFmG+sqqTqC35zcCR8JxAkKdR3pFqtPWDoktY/foJwUIqocM3wPMs9QkICjx1pxi24e/ZZNNW5OPTT0gbrY0KSVpP/MKbakuyR2UDmpBHUPUsXK2RhmSXXaL5o1Ew5BZT0F1I0i1XiH+aQCaX8EBAQEBAQEBASgacPbAIDXd7sdby3ZBUIAPVqKaGpuBgDs87kpVr2tFYHoaRDUd/WOoL1BA1ynmmq0R4Z3vuiJ5vHN2bicPLl5G2+Tp4PSJr422Xoi/Us7pW4AHq1jNkkk0sXWjb+C1DDLnkc6hocudq7yx/h0wtYhTUQP99NuYfIOAcLKkSOEOUd18sge45fUs2spYed1sWygcUoi1RexsZLXp4JcXLuvaWoRFVGRpP/RO9ARU9rPNDdQZl4eMgGHNAQC6VzjY2KAEKZ3BdKonqyBW+tmk0q34RScC0oje2gZPHrrASE3TE4bdZBuET02sp1grDrU6H1O5PgeClmf1D9lOxzzDK9BOBrrwQcmK93XwzNdQc2JCNPXhnZGKp7xbRYLZckyIpwoKqRRPAWQpd099nLoIUzInIg65GnsI9kCAgICAgICAro4Kj13BQC8/9Qc7P69V/HIoknodcYD+vyr9/zMqre1IhA9DUK9czEf+DypvTo7opv/8K3LWDRPls565eZtvE2ezIw5oVXHH+VjomskO+NLcgxNSfA6lGiSpAaNdInTOBoezRMTasXVqWiQZJVlX6JnY53ak2lISBKBEJtoAmnO1aMzIYoMteXrW6UR2sfUczZW/NFSds9B++heg0SMmV3LWEKkUTpKt/Ez1pFMOvKMyLKJKkMBUQLA6k8pEUsrriONroG7+TqJd5hQvcvm5VwWH7RxKizrZrEvCtNpNisyRgLeqB4i2yFrasAao76bk9qY5SvfCBcoyfWxOC+HSPHoIcf0UWZF9KgKgu/zsUOOHfKNdViqQ0ecmVCi1HdPB1uHtAO4w5zUybtQm/J/o4CAgICAgICA7QvjZ9yA0voW7NdyD0qtG/HR6/6AnffeGwBQat2I/brdi9K6bhg/44bGGloDgegBcPPNN2OPPfZA9+7dMX78eDz55JNbXKf+2t3B79ibRNYIu6xefXz6kMwrzC/GPlm+Mt/EqD1bPfKzIl1oHV+AhLD2zD9DqZhZI6UqqBZVn+f/4XKBKI2jodaY6BpDr0TaV0unlJZ03zze1mlHuShdqjxLJ7hOKTQHAWlP4jUZpPUmkUtqyXIrwkC4ET2SSdLEArkGakl0O9jC5MkRkYBaNU1H8yg/nZw9lKZTmx0Npuf1Vt+q/qwjoocPPu+NYkdnqb51ZPBBq1Zh6siNwjgLSo44UT00skfXsTokW6e0+RRhOZkhJ+sGBWujXCfXR5FV+lN62rGbk5JBpjv5WCEVKOkFe1+qPZHWtx72gt0wgm0RUSdMPUUE+dhCWp8SU9xv7zXiBQEBAQEBAQEBXRs9evXGwiVHof/QVVh9476Yd9k38Pazz2DeZd/A6hv3Rf+hq7Bw6ZFbdSJmIBA9uOuuuzB9+nRceumlWLx4MUaPHo1JkyZh5cqVW1SvyDyoD/USNLXU+L77+/Vl/+N5eWrppOV5P9hnbSBt/bbm+5Uv357u02gbnvnG0A92mWTWunuqTowqAOkkYvHn6HFeqhI0GsidyymdJn4o3VO5ckAiX3J0gusUKiWzUajmvjHpOSNZRdcAdsiEL89RSucoTkF3LukDkWy2qWnkTpzkyol5biAS3WOieWzYRBVRzXw0V9D0qoQ0OVVqDVwfhIBDlSojVHtfrh4V+dFefUp++im5s040D9nAOIcaN6ciTrRK381J/aQbj+qh8gmfQfkKi++qRbIpGaTckESUXCEVpbQ4GD1OLZ8io8sidrh/qTyda6lq69R+e5ga3f9pPUhY7KcgRkpaD8ZhyZMsBQQEBAQEBAQEHH39fXh80XHo3X89jhx+GwY/fwSOHH4beu+4AY8vOg5HX39fo02siS6/vPr111+PM888E2eccQYAYNasWfjTn/6E2267DRdccMEW0+t8tRa+ws0gl51TE1xZhz7fvM3XhL42weGu/CzZsR/6F3WPTQJ0SWx/2/acU12RnIsy6vKUvULbU0uDIH/p3E8CKECgkq4wxdsndfj039iRJDM2kz9jnwTS/D+mFZErIggpiC2C2cV9E5ZsARNVY+pJCMYbR0xnVu8L2HNQQJg3hWJiF48+8LAG6iiWiWQh3Am3utZ6rgt+HT00kFS9avrHGQP2gmjufh4Bk0Zn6duS1hPsk9iEQnrC17V5Ny0r51fT0skJixhJZBQv9+ki11Vxc/6HCLKGh6uDHYvUJscE5UqtBw1vKBR5IzwnaP3YJGJ2SCjpPtN9/UUZIwkkF7RKGqQn1FiXsd1U6yFsEw9jkrRBWqAyqUdRQuYFBAQEBAQEBARYOPr6+9C6fh0emTkNTRveRqXnrhg/4wYcvZVH8ih0aaKnVCph0aJFmDFjhi6LoggTJ07E/Pnzt6huOtHsCDrSVCJ/0sNP0XlKLtGTo5NOhT3Tpg7JreV7e8+r41j/FV67PDEXZP6uzrlElr0Ol32uChNdYv81P/8LIgewqSjahpI5SaQJ9YPYxSJapEen8k3p0DoVQSTMVTT2xea8JRdpfpwIbt8b6ZTk0IQNIWf44KXEAeVQpN7ihBySdBSqNjY5ZNskrLHJqidWS04HCXsFKt8gy71RGGnECYis9jqXi0efzw5LZ41Cn860LJbJ21xeeAkkWEEmXrX8InrkWcfSfAhywbSKvAcMHyzsXDJGyEkPcaJ5Ri6XP+gssgbJYKJROJaNVWYXcVIJp9FsoCy7tO5L60ELEJJItZe2joCAgICAgICAAAs9evXGR6/4WaPN6BC6NNHz/vvvo1qtYtCgQVb5oEGDsGTJEqd+sVhEsVjUx2vWrAEArFufF1/iR5z15bqO79zl3HiWbDHmhZbalXlR2deOwWdVLM3v01xDnrw4BspsFlUv6RRLgQoA30w2T2elChRZLU7PZM3lKzFQzViCSNEmiqiJSZ1yHKNERoNvPkrrU/KmWAVoRIuZlgrnk8ouVqqoEubCXDcqx943OqVFntj+URn2+VK1kiYv9kGk143bkPwpVygR5c7NJXlNRteRQLUMxNIefTGzi86zdbkEKpUWx0pr3i3dawkAcTGGNwlWHnGR6owrhcT+eufdMmkn2tQyTdnyvfpjABVhcRBZeixUgagkUJWeN3+5Hk76VIH05szXwY8rMaKSv462PePmjCqxuww816P6gD7EKmVUKi7Bo0ESJgvma1SpIopZA63LQxrpa1KGjMvpvofRgiQ2pgMgJWykLANx1dimzuvGnsEugIqspGYFwidg24Aaq2vXrm2wJQEBAQEBAe2D+n9XZ3zv6tJET3sxc+ZMXHbZZU753mOXNcCagICAgICAzYN169ahb9++jTYjIKAm1q1bBwAYOnRogy0JCAgICAjoGDrje1eXJnp22mknFAoFrFixwipfsWIFBg8e7NSfMWMGpk+fro/jOMaqVaswYMCAdBWjbR9r167F0KFDsWzZMvTp06fR5jQcoT8MQl/YCP1hEPrCxrbUH1JKrFu3DkOGDGm0KQEBdWHIkCFYtmwZevfu7Xz32pbuvc2F4HPX8Bnomn4Hn7uGz0DX8bszv3d1aaKnpaUFY8eOxZw5c3DCCScASMibOXPm4Oyzz3bqd+vWDd26dbPK+vXr1wmWdj769OmzXd9k7UXoD4PQFzZCfxiEvrCxrfRHiOQJ2JYQRRF222233Drbyr23ORF87jroin4Hn7sOuoLfnfW9q0sTPQAwffp0nH766TjkkENw6KGH4oYbbsCGDRv0KlwBAQEBAQEBAQEBAQEBAQEB2wq6PNFz8skn47333sMll1yC5cuXY8yYMXjwwQedBM0BAQEBAQEBAQEBAQEBAQEBWzu6PNEDAGeffbb3Va2uiG7duuHSSy91XlHrqgj9YRD6wkboD4PQFzZCfwQENAZd8d4LPncddEW/g89dB13V7y0JIcOaqgEBAQEBAQEBAQEBAQEBAQHbBaJGGxAQEBAQEBAQEBAQEBAQEBAQsHkQiJ6AgICAgICAgICAgICAgICA7QSB6AkICAgICAgICAgICAgICAjYThCInoCAgICAgICAgICAgICAgIDtBIHo6aKYOXMmxo0bh969e2PgwIE44YQTsHTpUqtOW1sbpk6digEDBqBXr1446aSTsGLFigZZ3Hm46qqrIITAtGnTdFlX6ou3334bX/jCFzBgwAD06NEDo0aNwlNPPaXPSylxySWXYJdddkGPHj0wceJEvPLKKw20eMuhWq3i4osvxp577okePXpg7733xve//33QHPbbc388/PDD+PSnP40hQ4ZACIF7773XOl+P76tWrcKpp56KPn36oF+/fpgyZQrWr1/fiV5sHuT1Rblcxne+8x2MGjUKPXv2xJAhQ3DaaafhnXfesWRsL30RELA14uabb8Yee+yB7t27Y/z48XjyyScbbdJmQ/jO1rW+m3W172Fd5btWV/xOFb47NRaB6OmimDdvHqZOnYonnngCs2fPRrlcxvHHH48NGzboOueeey7++Mc/4u6778a8efPwzjvv4MQTT2yg1VseCxcuxE9+8hMceOCBVnlX6YsPP/wQRxxxBJqbm/HAAw/gxRdfxHXXXYcdd9xR17nmmmtw0003YdasWViwYAF69uyJSZMmoa2trYGWbxlcffXV+PGPf4wf/ehHeOmll3D11VfjmmuuwQ9/+ENdZ3vujw0bNmD06NG4+eabvefr8f3UU0/FCy+8gNmzZ+P+++/Hww8/jLPOOquzXNhsyOuLjRs3YvHixbj44ouxePFi/OEPf8DSpUvxmc98xqq3vfRFQMDWhrvuugvTp0/HpZdeisWLF2P06NGYNGkSVq5c2WjTNgu6+ne2rvTdrCt+D+sq37W64neq8N2pwZABAVLKlStXSgBy3rx5UkopV69eLZubm+Xdd9+t67z00ksSgJw/f36jzNyiWLdunRw+fLicPXu2POaYY+Q555wjpexaffGd73xHHnnkkZnn4ziWgwcPlv/93/+ty1avXi27desmf/Ob33SGiZ2KyZMnyy9/+ctW2YknnihPPfVUKWXX6g8A8p577tHH9fj+4osvSgBy4cKFus4DDzwghRDy7bff7jTbNzd4X/jw5JNPSgDyjTfekFJuv30RELA14NBDD5VTp07Vx9VqVQ4ZMkTOnDmzgVZtOXSl72xd7btZV/we1hW/a3XF71Thu1PnI0T0BAAA1qxZAwDo378/AGDRokUol8uYOHGirjNixAgMGzYM8+fPb4iNWxpTp07F5MmTLZ+BrtUX9913Hw455BD827/9GwYOHIiDDjoIt956qz7/z3/+E8uXL7f6om/fvhg/fvx21xcAcPjhh2POnDl4+eWXAQD/+Mc/8Oijj+ITn/gEgK7XHxT1+D5//nz069cPhxxyiK4zceJERFGEBQsWdLrNnYk1a9ZACIF+/foB6Np9ERCwJVEqlbBo0SLrWRRFESZOnLjdPoe70ne2rvbdrCt+DwvftcJ3KoXw3WnzoqnRBgQ0HnEcY9q0aTjiiCNwwAEHAACWL1+OlpYWfaMpDBo0CMuXL2+AlVsWd955JxYvXoyFCxc657pSX7z++uv48Y9/jOnTp+PCCy/EwoUL8c1vfhMtLS04/fTTtb+DBg2y2m2PfQEAF1xwAdauXYsRI0agUCigWq3iiiuuwKmnngoAXa4/KOrxffny5Rg4cKB1vqmpCf3799+u+6etrQ3f+c538B//8R/o06cPgK7bFwEBWxrvv/8+qtWq91m0ZMmSBlm15dCVvrN1xe9mXfF7WPiuFb5TAeG705ZAIHoCMHXqVDz//PN49NFHG21KQ7Bs2TKcc845mD17Nrp3795ocxqKOI5xyCGH4MorrwQAHHTQQXj++ecxa9as/9/efYdFcb1vA7+X3osgTaq9gIhiQWOLxt6N3dhNVKwYY69RscQUY4vmq8ZEY+wmRqNGRdTYBcGGDUURxEKRDrvz/uHL/FxB2i677O79ua693D07Z+aZcWEenj1zBkOHDlVzdKq3a9cubN++HTt27ECdOnUQHh6OyZMnw8XFRSePBxUtJycHffv2hSAIWL9+vbrDISItoys5m67mZrqYhzHXIuZOZYOXbum48ePH49ChQzh16hRcXV3FdicnJ2RnZyMpKUlu+efPn8PJyUnFUZatq1evIiEhAfXr14eBgQEMDAxw+vRprF69GgYGBnB0dNSZY+Hs7IzatWvLtdWqVQsxMTEAIO7v+3e10MZjAQDTpk3DjBkz0L9/f/j4+OCzzz7DlClTEBwcDED3jse7irPvTk5O+SZDzc3NxevXr7Xy+OQlKo8fP8bx48fFb6QA3TsWRKpib28PfX19nfg9rEs5m67mZrqYhzHX0u2cirlT2WGhR0cJgoDx48dj//79OHnyJLy8vOTeb9CgAQwNDXHixAmxLSoqCjExMQgICFB1uGWqTZs2iIyMRHh4uPjw9/fHoEGDxOe6ciyaNWuW75atd+/ehYeHBwDAy8sLTk5OcsciJSUFFy9e1LpjAby9I4CenvyvSX19fchkMgC6dzzeVZx9DwgIQFJSEq5evSouc/LkSchkMjRu3FjlMZelvETl3r17+Pfff2FnZyf3vi4dCyJVMjIyQoMGDeR+F8lkMpw4cUJrfg/rYs6mq7mZLuZhzLV0N6di7lTG1DsXNKnL2LFjBWtrayEkJESIi4sTH+np6eIyY8aMEdzd3YWTJ08KV65cEQICAoSAgAA1Rq06797ZQRB051hcunRJMDAwEJYsWSLcu3dP2L59u2BmZib89ttv4jLLli0TbGxshIMHDwoRERFC9+7dBS8vLyEjI0ONkZeNoUOHCpUqVRIOHTokREdHC/v27RPs7e2Fr776SlxGm4/HmzdvhLCwMCEsLEwAIHz77bdCWFiYeDeE4ux7hw4dBD8/P+HixYvC2bNnhWrVqgkDBgxQ1y6VWmHHIjs7W+jWrZvg6uoqhIeHy/1OzcrKEtehLceCqLzZuXOnYGxsLGzdulW4deuW8Pnnnws2NjZCfHy8ukNTCuZsb+lCbqaLeZiu5Fq6mFMxd1IvFnp0FIACH1u2bBGXycjIEMaNGyfY2toKZmZmQs+ePYW4uDj1Ba1C7ycTunQs/vrrL8Hb21swNjYWatasKWzcuFHufZlMJsydO1dwdHQUjI2NhTZt2ghRUVFqirZspaSkCJMmTRLc3d0FExMToXLlysLs2bPlTkDafDxOnTpV4O+JoUOHCoJQvH1/9eqVMGDAAMHCwkKwsrIShg8fLrx580YNe6OYwo5FdHT0B3+nnjp1SlyHthwLovLoxx9/FNzd3QUjIyOhUaNGwoULF9QdktIwZ3tLV3IzXcvDdCXX0sWcirmTekkEQRCUP06IiIiIiIiIiIhUjXP0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqISKkEQQAALFiwQO41ERERESkfcy8iep9E4G8CIlKidevWwcDAAPfu3YO+vj46duyIli1bqjssIiIiIq3E3IuI3scRPUSkVOPGjUNycjJWr16Nrl27FivRaNWqFSQSCSQSCcLDw8s+yPcMGzZM3P6BAwdUvn0iIiKi0mLuRUTvY6GHiJRqw4YNsLa2xsSJE/HXX3/hzJkzxeo3evRoxMXFwdvbu4wjzO+HH35AXFycyrdLREREpCjmXkT0PgN1B0BE2uWLL76ARCLBggULsGDBgmJfJ25mZgYnJ6cyjq5g1tbWsLa2Vsu2iYiIiBTB3IuI3scRPURUIkuXLhWH2r77+P777wEAEokEwP9NCJj3uqRatWqFCRMmYPLkybC1tYWjoyM2bdqEtLQ0DB8+HJaWlqhatSqOHDmilH5ERERE5RFzLyIqKRZ6iKhEJkyYgLi4OPExevRoeHh44NNPP1X6tn755RfY29vj0qVLmDBhAsaOHYs+ffqgadOmuHbtGtq1a4fPPvsM6enpSulHREREVN4w9yKikuJdt4io1ObOnYtff/0VISEh8PT0LPV6WrVqhXr16onfTOW1SaVS8TpzqVQKa2tr9OrVC9u2bQMAxMfHw9nZGefPn0eTJk0U6ge8/QZs//796NGjR6n3hYiIiKisMPciouLgiB4iKpV58+YpJdEoTN26dcXn+vr6sLOzg4+Pj9jm6OgIAEhISFBKPyIiIqLyirkXERUXCz1EVGLz58/Htm3byjTRAABDQ0O51xKJRK4t7xp0mUymlH5ERERE5RFzLyIqCRZ6iKhE5s+fj19++aXMEw0iIiIiYu5FRCXH26sTUbEtXrwY69evx59//gkTExPEx8cDAGxtbWFsbKzm6IiIiIi0C3MvIioNFnqIqFgEQcDKlSuRkpKCgIAAufcuXbqEhg0bqikyIiIiIu3D3IuISouFHiIqFolEguTkZJVtLyQkJF/bo0eP8rW9f+PA0vYjIiIiKk+YexFRaXGOHiIqF9atWwcLCwtERkaqfNtjxoyBhYWFyrdLREREpC7MvYi0l0RgaZWI1Cw2NhYZGRkAAHd3dxgZGal0+wkJCUhJSQEAODs7w9zcXKXbJyIiIlIl5l5E2o2FHiIiIiIiIiIiLcFLt4iIiIiIiIiItAQLPUREREREREREWoKFHiIiIiIiIiIiLcFCDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi3BQg8RERERERERkZZgoYeIiIiIiIiISEuw0ENEREREREREpCVY6CEiIiIiIiIi0hIs9BARERERERERaQkWeoiIiIiIiIiItAQLPUREREREREREWoKFHiIiIiIiIiIiLcFCDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi1Rrgs9r169goODAx49elTksjNmzMCECRPKPigiIiIiLVVU7hUSEgKJRIKkpCQAwD///IN69epBJpOpLkgiIiIqVLku9CxZsgTdu3eHp6dnkct++eWX+OWXX/Dw4cOyD4yIiIhIC5Uk9wKADh06wNDQENu3by/bwIiIiKjYDNQdwIekp6fjf//7H44ePVqs5e3t7dG+fXusX78eK1euLOPoiKg8kEqlyMnJUXcYRBrJ0NAQ+vr66g6DypGS5l55hg0bhtWrV+Ozzz4ro8iIqDxg3kWkGCMjI+jpqWasTbkt9Bw+fBjGxsZo0qSJ2Hbz5k1Mnz4doaGhEAQB9erVw9atW1GlShUAQNeuXTF79mwWeoi0nCAIiI+PFy8dIKLSsbGxgZOTEyQSibpDoXKgoNzr8OHDmDx5Mp48eYImTZpg6NCh+fp17doV48ePx4MHD8ScjIi0B/MuIuXQ09ODl5cXjIyMynxb5bbQc+bMGTRo0EB8HRsbixYtWqBVq1Y4efIkrKyscO7cOeTm5orLNGrUCE+fPsWjR4+KPeSYiDRPXrLh4OAAMzMz/pFKVEKCICA9PR0JCQkAAGdnZzVHROXB+7nXkydP0KtXLwQGBuLzzz/HlStXMHXq1Hz93N3d4ejoiDNnzrDQQ6SFmHcRKU4mk+HZs2eIi4uDu7t7mf8cldtCz+PHj+Hi4iK+Xrt2LaytrbFz504YGhoCAKpXry7XJ2/5x48fs9BDpKWkUqmYbNjZ2ak7HCKNZWpqCgBISEiAg4MDL+OifLnX+vXrUaVKFaxatQoAUKNGDURGRmL58uX5+rq4uODx48cqi5WIVIN5F5HyVKxYEc+ePUNubq5Y0ygr5XYy5oyMDJiYmIivw8PD0bx580IPSF7Smp6eXubxEZF65F0bbmZmpuZIiDRf3s8R51wgIH/udfv2bTRu3FhumYCAgAL7mpqaMv8i0kLMu4iUJ++SLalUWubbKreFHnt7eyQmJoqv84o4hXn9+jWAt5UyItJuHDZMpDj+HNG73s+9SuL169fMv4i0GM8XRIpT5c9RuS30+Pn54datW+LrunXr4syZM4V+63jjxg0YGhqiTp06qgiRiIiISGu8n3vVqlULly5dklvmwoUL+fplZmbiwYMH8PPzK/MYiYiIqGjlttDTvn173Lx5U/xmafz48UhJSUH//v1x5coV3Lt3D7/++iuioqLEPmfOnEHz5s2LNfqHiEjVQkND0bVrV7i4uEAikeDAgQNq2cawYcMgkUggkUhgaGgIR0dHfPLJJ9i8eTNkMpnSY9ImxT12np6e4nJ5D1dX13zvv/9H8+TJk9GqVSu5tpSUFMyePRs1a9aEiYkJnJyc0LZtW+zbtw+CIIjL3b9/H8OHD4erqyuMjY3h5eWFAQMG4MqVK2VzMEjrvJ97jRkzBvfu3cO0adMQFRWFHTt2YOvWrfn6XbhwAcbGxh+8rIuISF2Ye2k25l2lV24LPT4+Pqhfvz527doFALCzs8PJkyeRmpqKli1bokGDBti0aZPcnD07d+7E6NGj1RUyEVGh0tLS4Ovri7Vr15a4b6tWrQr8A6u02+jQoQPi4uLw6NEjHDlyBK1bt8akSZPQpUsXubsZUn7FPXaLFi1CXFyc+AgLC5Nbj4mJCaZPn17otpKSktC0aVNs27YNM2fOxLVr1xAaGop+/frhq6++QnJyMgDgypUraNCgAe7evYuffvoJt27dwv79+1GzZs0C75JEVJD3cy93d3fs3bsXBw4cgK+vLzZs2IClS5fm6/f7779j0KBBnMODiMod5l6aj3lXKQnl2KFDh4RatWoJUqm0yGUPHz4s1KpVS8jJyVFBZESkLhkZGcKtW7eEjIwMdYeiEADC/v37i718y5YthS1btihlG0OHDhW6d++er/3EiRMCAGHTpk0l2o4uKe6x8/DwEL777rsPrsfDw0OYOHGiYGRkJPz9999i+6RJk4SWLVuKr8eOHSuYm5sLsbGx+dbx5s0bIScnR5DJZEKdOnWEBg0aFHi+TExM/GAc2vLzRMpTktxLEAThxYsXQoUKFYSHDx+WcWREpA7adJ5g7qV5mHeVXrm9vToAdO7cGffu3UNsbCzc3NwKXTYtLQ1btmyBgUG53iUiUjJBENR2pxczMzOtmpzw448/hq+vL/bt24dRo0apJYa0tDQA8sc2OzsbOTk5MDAwgLGxcb5lTU1Noaf3doBqTk4OsrOzoa+vL3f3oIKWVabSHDsvLy+MGTMGM2fORIcOHfLFJZPJsHPnTgwaNEjultd5LCwsAABhYWG4efMmduzYUeC+2djYlHyHSGeVJPcCgEePHmHdunXw8vJSQXREVB4w91Iededeqsy7cnJylHZLceZdRSu3l27lmTx5crESjU8//TTfLUCJSPulp6fDwsJCLQ9tvJVwzZo18ejRI7VtP+/Yvnz5UmxbuXIlLCwsMH78eLllHRwcYGFhgZiYGLFt7dq1sLCwwMiRI+WW9fT0hIWFBW7fvl1msb9/7KZPny73eVm9enW+PnPmzEF0dDS2b9+e772XL18iMTERNWvWLHS79+7dE7dPpAzFzb0AwN/fH/369SvjiIioPGHupVzqzL1UmXcV5zK4kmDeVbhyX+ghItJFS5culTtZnTlzBmPGjJFre/dEqyyCIGjVN2Wq9P6xmzZtGsLDw8XHkCFD8vWpWLEivvzyS8ybNw/Z2dn51lfc7RIREZFimHtpFuZdheN1TkSk0czMzJCamqq2bZeVMWPGoG/fvuLrQYMGoXfv3ujVq5fYVtCwUkXdvn1brZdg5P1fvntsp02bhsmTJ+e7NDchIQEA5O60GBgYiNGjR0NfX19u2bxvfMryrozvHzt7e3tUrVq1yH5BQUFYt24d1q1bJ9desWJF2NjY4M6dO4X2r169OgDgzp07vL01ERGVOeZeyqXO3EuVedewYcOUGTrzriKw0ENEGk0ikcDc3FzdYShdhQoVUKFCBfG1qakpHBwcinUCK62TJ08iMjISU6ZMKbNtFKWg/0sjIyMYGRkVa1lDQ8MCr/8u68+IIsfOwsICc+fOxYIFC9CtWzexXU9PD/3798evv/6K+fPn50suU1NTYWJignr16qF27dpYtWoV+vXrl+968aSkpHJzvTgREWk+5l7Ko+7cS5V5l7Lm5wGYdxUHL90iIlKR1NRUcTgpAERHRyM8PFypw4CLu42srCzEx8cjNjYW165dw9KlS9G9e3d06dKlwKGu9H/K4th9/vnnsLa2xo4dO+TalyxZAjc3NzRu3Bjbtm3DrVu3cO/ePWzevBl+fn5ITU2FRCLBli1bcPfuXTRv3hyHDx/Gw4cPERERgSVLlqB79+7K2G0iIiKNw9xL8zHvKh2O6CEiUpErV66gdevW4uugoCAAwNChQ5U2QV1xt/HPP//A2dkZBgYGsLW1ha+vL1avXo2hQ4eWyV2ptElZHDtDQ0N8/fXXGDhwoFx7hQoVcOHCBSxbtgyLFy/G48ePYWtrCx8fH6xcuRLW1tYAgEaNGuHKlStYsmQJRo8ejZcvX8LZ2RlNmzbF999/r+guExERaSTmXpqPeVfpSARNmU2IiAhAZmYmoqOj4eXlJXcbRyIqOf48ERFRYXieIFIeVf48sXRIRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4i0ki8YSCR4vhzRERExcHzBZHiVPlzxEIPEWkUQ0NDAEB6erqaIyHSfHk/R3k/V0RERO9i3kWkPNnZ2QAAfX39Mt+WQZlvgYhIifT19WFjY4OEhAQAgJmZGSQSiZqjItIsgiAgPT0dCQkJsLGxUUnCQUREmod5F5FyyGQyvHjxAmZmZjAwKPsyDAs9RKRxnJycAEBMOoiodGxsbMSfJyIiooIw7yJSDj09Pbi7u6ukWCoReMElEWkoqVSKnJwcdYdBpJEMDQ05koeIiIqNeReRYoyMjKCnp5rZc1joISIiIiIiIiLSEpyMWUlCQ0PRtWtXuLi4QCKR4MCBA2W+zdjYWAwePBh2dnYwNTWFj48Prly5UubbJSIiIlI35l5EREQFY6FHSdLS0uDr64u1a9eqZHuJiYlo1qwZDA0NceTIEdy6dQurVq2Cra2tSrZPREREpE7MvYiIiArGS7fKgEQiwf79+9GjRw+xLSsrC7Nnz8bvv/+OpKQkeHt7Y/ny5WjVqlWptjFjxgycO3cOZ86cUU7QRERERBqKuRcREdH/4YgeFRk/fjzOnz+PnTt3IiIiAn369EGHDh1w7969Uq3vzz//hL+/P/r06QMHBwf4+flh06ZNSo6aiIiISDMx9yIiIl3FET1l4P1vlWJiYlC5cmXExMTAxcVFXK5t27Zo1KgRli5dWuJtmJiYAACCgoLQp08fXL58GZMmTcKGDRswdOhQpewHERERkSZg7kVERPR/DNQdgC6IjIyEVCpF9erV5dqzsrJgZ2cHALhz5w5q1apV6HqmT5+OZcuWAQBkMhn8/f3FRMXPzw83btxgskFEREQ6j7kXERHpMhZ6VCA1NRX6+vq4evUq9PX15d6zsLAAAFSuXBm3b98udD15iQkAODs7o3bt2nLv16pVC3v37lVS1ERERESaibkXERHpMhZ6VMDPzw9SqRQJCQlo3rx5gcsYGRmhZs2axV5ns2bNEBUVJdd29+5deHh4KBQrERERkaZj7kVERLqMhR4lSU1Nxf3798XX0dHRCA8PR4UKFVC9enUMGjQIQ4YMwapVq+Dn54cXL17gxIkTqFu3Ljp37lzi7U2ZMgVNmzbF0qVL0bdvX1y6dAkbN27Exo0blblbREREROUScy8iIqKCcTJmJQkJCUHr1q3ztQ8dOhRbt25FTk4OFi9ejG3btiE2Nhb29vZo0qQJFi5cCB8fn1Jt89ChQ5g5cybu3bsHLy8vBAUFYfTo0YruChEREVG5x9yLiIioYCz0EBERERERERFpCT11B0BERERERERERMrBQg8RERERERERkZbgZMwKkMlkePbsGSwtLSGRSNQdDhERUYkIgoA3b97AxcUFenr87ofKP+ZeRESkqVSZd7HQo4Bnz57Bzc1N3WEQEREp5MmTJ3B1dVV3GERFYu5FRESaThV5l9YUeoKDg7Fv3z7cuXMHpqamaNq0KZYvX44aNWp8sM/WrVsxfPhwuTZjY2NkZmYWa5uWlpYA3v5HWVlZlT54IiIiNUhJSYGbm5t4PiMq75h7ERGRplJl3qU1hZ7Tp08jMDAQDRs2RG5uLmbNmoV27drh1q1bMDc3/2A/KysrREVFia9LMgw4b1krKysmG0REpLF4CQxpCuZeRESk6VSRd2lNoeeff/6Re71161Y4ODjg6tWraNGixQf7SSQSODk5lXV4RERERERERERlTmtnXkxOTgYAVKhQodDlUlNT4eHhATc3N3Tv3h03b9784LJZWVlISUmRexARERERERERlRdaWeiRyWSYPHkymjVrBm9v7w8uV6NGDWzevBkHDx7Eb7/9BplMhqZNm+Lp06cFLh8cHAxra2vxwckAiYiIiIiIiKg8kQiCIKg7CGUbO3Ysjhw5grNnz5ZoNuucnBzUqlULAwYMwNdff53v/aysLGRlZYmv8yZTSk5OVtp14ps3b4aDgwM+/vhjmJmZKWWdREREBUlJSYG1tbVSz2NEZUnZn9nY2FicPn0a/fv3L/Nb3RIRkW5TZd6lNXP05Bk/fjwOHTqE0NDQEt+yzNDQEH5+frh//36B7xsbG8PY2FgZYRYoOzsbo0aNgiAIeP78uVjo2b59O/bu3YuePXvis88+E5fP+4BwEk0iIiKikhs8eDBCQkIQExODGTNmqDscIiIipdCary4EQcD48eOxf/9+nDx5El5eXiVeh1QqRWRkJJydncsgwqKlpqaiR48eaNy4MSpWrCi2X7hwAfv378etW7fEtuzsbNja2sLGxgavXr0S269cuYK9e/fiwYMHKo2diIiISJNkZ2cjJCQEADBr1ixo4SB3IiLSUVpT6AkMDMRvv/2GHTt2wNLSEvHx8YiPj0dGRoa4zJAhQzBz5kzx9aJFi3Ds2DE8fPgQ165dw+DBg/H48WOMGjVKHbuAChUqYN++fbhw4YLcKJ0hQ4ZgzZo16Natm9gWGxsLQRCQnZ0tN+H0tm3b8Omnn+Lnn38W23JyctC5c2eMGzdO7ngQERER6apLly6JzwVBwK+//qrGaIiIiJRHay7dWr9+PQCgVatWcu1btmzBsGHDAAAxMTFy118nJiZi9OjRiI+Ph62tLRo0aID//vsPtWvXVlXYxdKwYUM0bNhQrs3LywupqamIj4+XKwq5u7ujSZMmcpNQP3nyBIcPH4aJiQnWrl0rti9fvhynTp1CYGAgunbtWvY7QkRERFROnDp1Su71mDFjYG9vj06dOqkpIiIiIuXQysmYVUVTJrF8/fo19u3bh5SUFAQFBYntLVu2RGhoKDZu3IjRo0cDAF69eoU1a9agZcuW+YpmRESkXTTlPEaUR5mf2aSkJISGhsLa2horVqzA4cOHAQBffPEFZs+ezburEhGRUqky72KhRwGaniBHRkYiJCQE3bt3h7u7OwDgwIED6NmzJ2rXro2bN2+Ky964cQMeHh6wtLRUV7hERKRkmn4eI91TVp/ZrKwsTJs2DT/++CMAQE9PD61bt0bv3r3RokUL1KpVi3flIiIihfCuW6QSPj4+8PHxkWtzcHDAgAEDULVqVbn2Ll264OnTpzhz5gwCAgIAvL2enXf8IiIiIk1nbGyM1atXo3fv3li4cCFOnTqFEydO4MSJEwAACwsLVK9eHdWqVYOnpyccHBxQsWJFODg4oEKFCjA3N4eZmZn4r6mpKQtDVC5kZ2fj5s2buHbtGq5du4br16/j5cuXePPmDYyNjeHo6Ahvb2/Uq1cPzZs3h7e3Nz+7RFqAI3oUoCvfhCYlJcHPzw9Pnz5FYmIiLCwsAACrV6/G5s2bMW7cOHz++edqjpKIiEpKV85jpD1U9Zl9+PAhdu3ahWPHjuHSpUtIS0sr8TqMjY2hp6cHiUSS71+JRAKZTAZBEMR/330ukUhQsWJFODs7w9nZGS4uLqhUqZL4cHFxgZWVFUxMTMSHgYEBv4DTccnJybh+/br4CAsLQ2RkJHJycoq9DltbW3z00Udo0aIFWrRoAT8/PxgaGha4rCAIyMjIQEZGBmQyGYC3n3tLS0t+FokKwEu3NISuJcjPnz+Ho6Oj+LpXr17Yv38/li1bhunTpwMAMjMzERQUhObNm6Nv377Q19dXV7hERFQEXTuPkeZTx2c2NzcX9+7dw71793D37l08ffoUL168QEJCAhISEvD69WtkZGQgPT1drXc31dPTE4s+xsbGMDY2hkwmQ+3atVGzZk1kZmYiLi5OXFZPTw/6+vowMDCAoaEhDAwM8j3PK0ABEJ+/+6dDXvHqQwWtov7NKwbkPTcwMICNjQ0yMzORlJSEnJycfDG8G0tRzxV9v7iPd5c3MDCAlZWV+LC2toaDgwMcHR3h6OgIBwcHGBsbl/j/NzMzU7yrcN7jyZMnePTokfh49uxZgX1tbGxQv3591K9fH35+fnB1dYWFhQWys7Px+PFjRERE4PLly/jvv//yFTWNjY1hZ2cHKysryGQy5OTkICsrC6mpqUhNTRULPO/S19dHhQoVUKFCBVhYWMDMzEx85I16MzMzEwuU7z/e/QzmPYyMjOT65eTkIDMzE1lZWcjMzERKSgqSk5PFf/OeC4IAQ0NDGBkZwdjYWPw/eff/J++5jY0NXFxcYG1tzUIVlQkWejSErifIcXFxOHPmDOrXry9e6hUaGoqWLVvC0dERcXFx4i/JM2fOwNLSEt7e3jAw4BWDRETlga6fx0jzlPfPrEwmkyv6vDtK5/1/Cyp65D3Pzc1FQkIC4uLiEBcXh2fPniE2NhaxsbF49uwZnj17hrS0NGRnZ6t7l6kUbGxs5Io/jo6OsLe3h1QqFT8/iYmJckWdpKSkYq3b3d0dvr6+8PX1Rb169VC/fn14enoWq3CRk5ODsLAwhIaG4syZMzhz5gwSExMV3FvNY2lpCTc3N3h4eKBq1aqoUqWK+PDy8oKJiYm6QyQNxUKPhijvyYY63LlzBxs3boSpqSmWLFkittevXx9hYWHYtWsX+vTpAwB48+YNsrKyYG9vr65wiYh0Gs9jVFrBwcHYt28f7ty5A1NTUzRt2hTLly9HjRo1Pthn06ZN2LZtG27cuAEAaNCgAZYuXYpGjRoVe7v8zMqTyWTiiIb3H1lZWRAEARcuXEBCQgIMDAxQqVIl6OvrQyaTQSqVQiqVIjc3F7m5ucjJycn3b14BqqDHuyNaZDLZBwtahf0LyI+iyc7ORlJSEkxMTGBjYyOOfHl/9E9BbSV5v6TLFueRt3xOTg7evHmDlJQUpKSkIDExEc+fP0dCQgKeP3+O3NzcUv9/Gxsbw8nJCU5OTuIlfV5eXvD09ISnpyeqVKkCW1vbUq//fTKZDDExMUhMTERKSoo4AszIyAiWlpawsLCApaWl3JxUGRkZSExMxKtXr/D69Wukp6fLPdLS0sTnmZmZkEql4meusEdmZqZYBMvMzIShoaE4es3ExASWlpawtrYWR+jk/auvr4/s7GxkZ2eLI3/eHf3z7vPXr18XWVCTSCSoVKmSXPGnatWqcHJykhuxZG5uDnNzc5iYmHB0EIlY6NEQTDaKRyaToXPnzjh37hxu3boFV1dXAMAvv/yCYcOGoV+/fti5c6e4PCd5JiJSDZ7HqLQ6dOiA/v37o2HDhsjNzcWsWbNw48YN3Lp1C+bm5gX2GTRoEJo1a4amTZvCxMQEy5cvx/79+3Hz5k1UqlSpWNvlZ5Y0mSAIYuEn75FXAHr58iUMDQ1hamoKMzMzWFtbiwWdvOIOLykqe2lpaXj69CliYmLw6NEj3L9/Hw8ePBAfb968KdH6DAwM8hWgPvSwtbUVHxUqVICtrS2srKw4ObYW4V23SKvo6enhyJEjkEqlcnP2PHjwAADg5uYmtslkMnGY5O+//w4nJyeVx0tERESF++eff+Reb926FQ4ODrh69SpatGhRYJ/t27fLvf7555+xd+9enDhxAkOGDCmzWInKC4lEIs5dU6tWLXWHQwUwNzdHjRo1ChydKAgCXr58KVf4ySsEvXr1ShyxlJaWhqysLABv5/h69eoVXr16Vap49PT0xCJQ3iiqvNFCRT3PG+1kYmIiFhBNTU1hamoqthkaGrJ4qKVY6CGVeX9i5kWLFmHKlCly15dHRUXh6dOnePXqFezs7MT2tWvX4sKFCxg2bBjatGmjspiJiIioaMnJyQCAChUqFLtPeno6cnJyCu2TlZUl/sEEvP02lIhIHfLuhlexYkU0adKk0GWlUinS0tLkJocu6pGYmCj3yLubWd7rstqnvAJRcYpHVlZWcHFxEecwcnV15YijcoqFHlKr968jrl69Om7cuIGHDx/K3crx4MGDOH78OJo2bSoWel69eoVVq1YhICAAXbt2VWncRERE9JZMJsPkyZPRrFkzeHt7F7vf9OnT4eLigrZt235wmeDgYCxcuFAZYRIRqYy+vr54N6+8aStKKisrS67wk3ens7S0NPHfwp7nzd+VkZEhPvLmOMojCIK43tIwMTFBtWrVULduXXEScF9fX7k7NZN6cI4eBfA6cdU5deoUQkJCMHjwYFSrVg0A8Pfff6NLly6oUaMG7ty5Iy4bGxsLZ2dnVpeJiIrA8xgpw9ixY3HkyBGcPXu22H/QLFu2DCtWrEBISAjq1q37weUKGtHj5ubGzywRUSkJgoDs7Gy54k9xCkepqalITk7G06dPxXmMcnJyCtyGo6OjWPTJKwLVrFlT7ot8XcQ5eoje07p1a7Ru3VquzdHRESNHjsw3gePHH3+MlJQU/PXXX/D391dlmERERDpl/PjxOHToEEJDQ4td5Pnmm2+wbNky/Pvvv4UWeYC3dxnKu/MSEREpTiKRiL9bbWxsSr2e3NxcxMTE4ObNm4iIiMD169dx/fp13Lt3D8+fP8exY8dw7NgxcXkjIyPUrl0btWrVgqenJ7y8vMSHu7t7uSwCxcbGYvbs2Rg7diwaN26s7nBKhCN6FMBvQsuf58+fo1q1asjMzMTLly/F/5cTJ07g0aNH6NKlC4cSEhH9fzyPUWkJgoAJEyZg//79CAkJEUfbFmXFihVYsmQJjh49WuQcFwXhZ5aIqHxLS0vDjRs3cP36dbEAFBERUegca3p6enB1dc1XAMp7uLi4qPRqjaysLHHkaXp6Opo1a4YzZ84oPHG1Vo/oCQoKKnGfOXPmlGhyP9Jdjo6OePnyJSIiIuR+eNasWYMDBw5g4cKFmDdvHoC3SSoAzjRPRERarSxyr8DAQOzYsQMHDx6EpaUl4uPjAQDW1tYwNTUFAAwZMgSVKlVCcHAwAGD58uWYN28eduzYAU9PT7GPhYUFLCwsShwjERGVP+bm5mjcuLHcCBhBEPDo0SNcv34d9+/fR3R0tPh49OgRMjMzERMTg5iYGISGhuZbp7W1NZo1a4aPPvoI7du3h5+fX5n9DSeTyTBixAjs2LEDANCsWTN8++23Gvc3o8pH9Ojp6SEgIABGRkbFWv7s2bOIiopC5cqVyziykuO3Sprjm2++wR9//IFNmzahXr16AIALFy5g0KBBGDRoEBYtWqTeAImI1IDnMd1QFrnXhxLeLVu2YNiwYQCAVq1awdPTE1u3bgUAeHp64vHjx/n6zJ8/HwsWLChWbPzMEhFpF0EQEB8fLxZ93i0CRUdHIyYmBlKpVK5P5cqV8emnn2L06NGoWrWq0mKJiYnByJEj8e+//0JfXx+//PILBg4cqLQijyrPYWop9MTHx8PBwaFYy1taWuL69ess9JDSzZ49G0uXLkW/fv2wc+dOsf3ff/9Fw4YNYW1trcboiIjKHs9juoG5FxERaaqcnBxERETg3LlzOHXqFI4ePYqMjAwAb7906N69OxYuXFjknG9FefHiBZo2bYr79+/D2NgYGzduxJAhQ5SxCyKtvnRry5YtJfoD+qeffuKcKhpEJpMhNTUVSUlJSEpKwps3b2BsbCwOyzY3N4eFhUW5mGxr1qxZ8Pf3h5OTk9j26tUrdOjQAXp6enj69Gmxk2IiUp+8u0e8e3eIvFuFZmVlwcrKCjY2NuLD1NRU44bfEimCuRcREWkqQ0NDNGjQAA0aNMDEiRORlpaGw4cPY/Pmzfjnn39w4MAB/Pnnnxg7diwWL15cqgmm09LS0KVLF9y/fx+enp44evQoqlevrvydUSG1TMYslUqhr6+v6s0qnTZ+qyQIglyh5t1HYmJige3vPpKTkyGTyYrcjqGhYb7iT96/H3penDZDQ0OF/oALCwvDoEGDYGhoiOvXr4vty5Ytw5s3bzB8+HClDg/UZIIgICsrC2/evEFKSgrevHkj97ygf3Nzc1USm4GBAaysrGBpaQlLS0vxeUFtlpaWMDEx4R/+KpD3mcm7TWdBhZnSPi/JZ8vIyEiu8FOch62trfjcxMSkDI+SamnjeYwKxtyLiIi0za1btzBv3jzs3bsXAODh4YFdu3ahUaNGxV6HVCpFr1698Oeff6JChQr477//UKNGjTKJV6sv3QIAJycnDBs2DCNGjNDoSpmqkw2ZTIasrCxkZmYW65GRkfHB99LS0j5YrClOoaYoRkZGsLW1hYWFBbKyssQ/ysr6D319fX2Ym5vD3NwcZmZmpX4uk8ng6OgIc3NzmJqaonHjxoiLi8Pff/+NTp06lek+KINMJkN2djZycnKQk5MjPi+oLe//p6giTUH/5uTkqHtXlcLAwKDYRaF3n1tYWMDIyAiGhobiv+8/f/+1Ku8YUBo5OTliESY9PV2uKPP+6+K2vftaGb9fCpM3gjCvCGxkZIQ3b96IhWplbD/vdqTvP8zMzGBiYqK0h6KF6+LgH826g7kXERFpq1OnTmHUqFF4+PAhDA0NsWbNGnz++efF6jt+/HisXbsWJiYmOHHiBJo2bVpmcWp9oefrr7/GL7/8gujoaDRt2hQjR45E3759YWZmpupQFKLM/6ikpCT06NGj0CJNdna2kiIvmqGhodw32MX9pruob7w/dHnF+23Fee/dZVR1bPT09GBiYgJ9fX3k5uYiNzcX5ubmMDExgZ6eHvT19aGvr6+U5xKJpMgizYfayvqP6feZm5vnK5AUVDAp7kSgisrOzv7gSKN3n6empqoknnfp6+sXqyD0/nuCIEAqlUIqlUImkxX4XBnvqeqzY2RkVOhIvuKM8ivouYHBh69ILmzEYnFHLqrylCmRSAosAFlYWODSpUtK2Qb/aNYdzL2IiEibJScnY9SoUdizZw+At+e92bNnF/ql2caNG/HFF19AIpFg9+7d6N27d5nGqPWFnjwhISHYsmUL9u7dC319ffTt2xejRo2SuxVbeabM/6jk5OQSXU8okUhgamoqJv7vPi/Ow9TUtNBCjqbNYZGTkyM3aqCkz4taTtNHrkgkkg8WEvL+4C6qUPOhfy0sLDT2coC8OaWKUxT6UKHo/YLb+6811YdGx32orajX77aZmZmVi3m6Sur9OcjeLwoVNoqyuI+srKwi4zA3N1dakZJ/NGsGW1vbYp+TX79+Xej7zL2IiEhbCYKABQsWiHdUnjhxIr777rsCR9RfuHABLVq0QE5ODpYuXYqZM2eWeXw6U+jJk5qaip07d2Lr1q3477//UKtWLYwcORJBQUHqDq1QyvyPkkql2LdvX7ELNQYGBhpViNF0eZezpKenIysrC1KpFFFRUfj999/x+eefw8bGBlKpFNeuXcOuXbvQq1cv1KlT54MjKIrzXBCEDxZmStJmZGSksYUYTScIAnJzcwssAJX0uZ6entzIr8JGhSny2sTEBGZmZjAyMuLvGDXIu+yysGJQbm4u2rZtq5Tt8Y9mzfDLL7+Iz1+9eoXFixejffv2CAgIAACcP38eR48exdy5czFlypRirZO5FxERaavVq1dj0qRJAID+/ftj69atMDY2Ft9/9uwZ/P39ERcXh969e2P37t0qyXvLdaGnJAnAt99+W+KA/v77bwwZMgRJSUmQSqUl7q9KTDbofQMHDsTvv/+O0aNHY+PGjeoOh4ioUDyPaZ7evXujdevWGD9+vFz7mjVr8O+//+LAgQMlXidzLyIi0jY7duzAsGHDkJOTgzZt2mDPnj2wtLTEwYMHMWXKFMTExMDb2xvnz5+HhYWFSmIq17dXDwsLk3t97do15ObmijNT3717F/r6+mjQoEGx15meno5du3Zhy5YtOHv2LKpUqYJp06aVNDQitfvyyy9hYWGBsWPHim1Pnz7FvHnzMGbMmBLNAE9ERPS+o0ePYvny5fnaO3TogBkzZhR7Pcy9iIhImw0cOBD29vbo1asXTpw4gcqVK8PU1BTPnj0DAHh5eeHAgQMqK/KoWokLPadOnRKff/vtt7C0tMQvv/wCW1tbAEBiYiKGDx+O5s2bF7mu//77D5s3b8bu3buRm5uLTz/9FF9//TVatGhR0rCIyoX69evnG8nz888/Y8uWLXj48CFCQkLUExgREWkFOzs7HDx4EFOnTpVrP3jwIOzs7Irsz9yLiIh0Rbt27XD69GkMHDgQd+/eRWJiImxtbTF27FjMnj1b425IUBIlLvS8a9WqVTh27JhY5AHeThi4ePFitGvXLl8SkmfFihXYsmUL7t69C39/f6xcuRIDBgyApaWlIuEQlUudO3fGw4cP0b17d7EtKysLM2bMwLBhw+Dr66vG6IiISJMsXLgQo0aNQkhIiDiB8sWLF/HPP/9g06ZNH+zH3IuIiHRRgwYNcOPGDYSGhkImk6F58+YfvEO0NlFoMmZLS0v89ddfaNWqlVz7qVOn0K1bN7x586bAfhUrVsTgwYMxcuRIeHt7l3bzasfrxKm0duzYgUGDBsHNzQ3R0dGcLJmI1ILnMc108eJFrF69Grdv3wYA1KpVCxMnTiz0zlnMvYiIiNSrXM/R866ePXti+PDhWLVqlTj3yMWLFzFt2jT06tXrg/2ePXumkbfWJVKW6tWro2/fvvDz8xOLPIIgYOXKlejWrRtq1qyp5giJiKi8aty4MbZv316iPsy9iIiIdEf+G8qXwIYNG9CxY0cMHDgQHh4e8PDwwMCBA9GhQwesW7euwD6rV68u0R0dNmzY8MGRQUSayt/fH3/88YfcxJlXrlzB9OnTUa9ePaSkpKgxOiIiKs8ePHiAOXPmYODAgUhISAAAHDlyBDdv3ixweeZeREREukWhQo+ZmRnWrVuHV69eISwsDGFhYXj9+jXWrVsHc3PzAvtMmTKlRMnDV199hRcvXigSJpFGMDQ0RLdu3dC/f3+5oXyXL19Gbm6uGiMjIqLy4vTp0/Dx8cHFixexd+9epKamAgCuX7+O+fPnF9iHuRcREZFuUejSrTxxcXGIi4tDixYtYGpqCkEQIJFIClxWEAS0adMGBgbF23RGRoYyQiQq9+rVq4eDBw9CJpOJbc+ePUPz5s3h5uaGc+fOwcHBQY0REhGRus2YMQOLFy9GUFCQ3ETKH3/8MdasWVNgH+ZeREREukWhQs+rV6/Qt29fnDp1ChKJBPfu3UPlypUxcuRI2NraYtWqVfn6fOjbpg/p3r07KlSooEiYRBpFT+//Btrdvn0bFhYWcHR0RMWKFdUYFRERlQeRkZHYsWNHvnYHBwe8fPmywD7MvYiIiHSLQoWeKVOmwNDQEDExMahVq5bY3q9fPwQFBSml0EOky9q0aYNHjx4hISFBHCWXnZ2NDh06YNCgQRgyZAgn1yQi0iE2NjaIi4uDl5eXXHtYWBgqVapUYB/mXkRERLpFoULPsWPHcPToUbi6usq1V6tWDY8fP1YoMCJ6y8LCAhYWFuLr7du349SpU7h9+zYGDhzIQg8RkQ7p378/pk+fjt27d0MikUAmk+HcuXP48ssvMWTIEHWHR0REROWAQpMxp6WlwczMLF/769evYWxsrMiqSyw4OBgNGzaEpaUlHBwc0KNHD0RFRRXZb/fu3ahZsyZMTEzg4+ODw4cPqyBaotLr27cvVq1ahSVLlsDU1FRs/+uvv5Cdna3GyIiIqKwtXboUNWvWhJubG1JTU1G7dm20aNECTZs2xZw5c9QdHhEREZUDChV6mjdvjm3btomv875ZWrFiBVq3bq1wcCVx+vRpBAYG4sKFCzh+/DhycnLQrl07pKWlfbDPf//9hwEDBmDkyJEICwtDjx490KNHD9y4cUOFkROVjLm5OYKCgjBixAix7fz58+jWrRtq166NzMxMNUZHRERlycjICJs2bcKDBw9w6NAh/Pbbb7hz5w5+/fVX6Ovrqzs8IiIiKgckgiAIpe1848YNtGnTBvXr18fJkyfRrVs33Lx5E69fv8a5c+dQpUoVZcZaIi9evICDgwNOnz6NFi1aFLhMv379kJaWhkOHDoltTZo0Qb169bBhw4Yit5GSkgJra2skJyfL3Q6bSNX+/PNPjBkzBh07dsT//vc/sb2wO+AREfE8RpqGn1kiItJUqjyHKTRHj7e3N+7evYs1a9bA0tISqamp6NWrFwIDA+Hs7Fxo35ycHNSsWROHDh2Sm8hZWZKTkwGg0LtGnD9/HkFBQXJt7du3x4EDB5QeD1FZ6tatGz755BOkp6eLbc+fP0eLFi0wceJEjBkzht/0EhFpgffzljwSiQQmJiaoWrXqB++aVda5FxEREZUPChV6AMDa2hqzZ88ucT9DQ8Myu8REJpNh8uTJaNasGby9vT+4XHx8PBwdHeXaHB0dER8fX+DyWVlZyMrKEl+npKQoJ2AiJTA1NZWbs2fdunW4e/cutm3bhnHjxqkxMiIiUpawsDBcu3YNUqkUNWrUAADcvXsX+vr6qFmzJtatW4epU6fi7NmzqF27tlzfssy9iIiIqPxQqNATERFRYHvet0ru7u6FTsocGBiI5cuX4+eff4aBgcI1J7n13rhxA2fPnlXaOoG3Ez4vXLhQqeskKiuzZs2Co6MjatasKV6+lZubiy1btmDw4MFyRSEiItIMeaN1tmzZIg77Tk5OxqhRo/DRRx9h9OjRGDhwIKZMmYKjR4/m619WuRcRERGVHwrN0aOnpyf+AZm3mnfnAzE0NES/fv3w008/wcTEJF//nj174sSJE7CwsICPjw/Mzc3l3t+3b1+JYxo/fjwOHjyI0NBQeHl5Fbqsu7s7goKCMHnyZLFt/vz5OHDgAK5fv55v+YJG9Li5ufE6cdIYW7duxfDhw+Hr64uwsDDO30Ok4zjfieapVKkSjh8/nm+0zs2bN9GuXTvExsbi2rVraNeuHV6+fJmvf1nkXqrEzywREWkqjZmjZ//+/Zg+fTqmTZuGRo0aAQAuXbqEVatWYf78+cjNzcWMGTMwZ84cfPPNN/n629jYoHfv3oqEIBIEARMmTMD+/fsREhJSZJEHAAICAnDixAm5Qs/x48cREBBQ4PLGxsYqv208kTKZm5vD3d0dgwYNkivySKVSzuFDRKQBkpOTkZCQkK/Q8+LFC/GSchsbG2RnZxfYX5m5FxEREZVPChV6lixZgh9++AHt27cX23x8fODq6oq5c+fi0qVLMDc3x9SpUwss9GzZskWRzcsJDAzEjh07cPDgQVhaWorz7FhbW4uXqAwZMgSVKlVCcHAwAGDSpElo2bIlVq1ahc6dO2Pnzp24cuUKNm7cqLS4iMqTPn36oHv37pDJZGJbWFgYevfujeXLl6NPnz5qjI6IiIrSvXt3jBgxAqtWrULDhg0BAJcvX8aXX36JHj16AHj7pVv16tUL7K/M3IuIiIjKJ4UKPZGRkfDw8MjX7uHhgcjISABAvXr1EBcXV+h6Xrx4gaioKABAjRo1ULFixRLHsn79egBAq1at5Nq3bNmCYcOGAQBiYmKgp6cnvte0aVPs2LEDc+bMwaxZs1CtWjUcOHCg0AmciTSdkZGR3Ovly5cjOjoa+/fvZ6GHiKic++mnnzBlyhT0798fubm5AAADAwMMHToU3333HQCgZs2a+PnnnwtdjzJyLyIiIiqfFJqjx8/PD76+vti4caP4x2NOTg5Gjx6N69evIywsDOfOncPgwYMRHR2dr39aWhomTJiAbdu2iSMM9PX1MWTIEPz4448wMzMrbWgqwevESRukp6fjm2++wfDhw+Hm5gbg7Wc7PT0dTk5Oao6OiMoSz2OaKzU1FQ8fPgQAVK5cGRYWFsXqx9yLiIhIPVR5DtMrepEPW7t2LQ4dOgRXV1e0bdsWbdu2haurKw4dOiSOsHn48OEHb+0cFBSE06dP46+//kJSUhKSkpJw8OBBnD59GlOnTlUkNCIqJjMzM8ybN08s8gDA4sWLUb16dWzdulV9gRER0QdZWFigbt26qFu3brGLPABzLyIiIl2g0IgeAHjz5g22b9+Ou3fvAng7/HfgwIGwtLQssq+9vT327NmT73KrU6dOoW/fvnjx4oUioZU5fqtE2kgqlaJVq1Y4e/YsDh06hM6dO6s7JCIqIzyPaaYrV65g165diImJyTfpclF3zWLuRUREpB4ac9ctALC0tMSYMWNK1Tc9PR2Ojo752h0cHJCenq5oaERUCvr6+jh9+jSOHTsmN9F6aGgobG1t4ePjo8boiIh0286dOzFkyBC0b98ex44dQ7t27XD37l08f/4cPXv2LLI/cy8iIiLtp/CIHgC4detWgd8qdevWrdB+bdq0gZ2dHbZt2wYTExMAQEZGBoYOHYrXr1/j33//VTS0MsVvlUhXZGZmonbt2nj8+DH2799f5M82EWkGnsc0T926dfHFF18gMDAQlpaWuH79Ory8vPDFF1/A2dkZCxcuLLQ/cy8iIiL10JgRPQ8fPkTPnj0RGRkJiUSCvJqRRCIB8PYSkMJ8//336NChA1xdXeHr6wsAuH79OkxMTHD06FFFQiMiJUpNTUWDBg2QnZ2Njz/+WN3hEBHprAcPHoiX1BoZGSEtLQ0SiQRTpkzBxx9/XGShh7kXERGR9lNoMuZJkybBy8sLCQkJMDMzw82bNxEaGgp/f3+EhIQU2d/Hxwf37t1DcHAw6tWrh3r16mHZsmW4d+8e6tSpo0hoRKRE9vb22L17NyIiIuQm/Zw2bRoOHz6sxsiIiHSLra0t3rx5AwCoVKkSbty4AQBISkoq1qVXzL2IiIi0n0Ijes6fP4+TJ0/C3t4eenp60NPTw0cffYTg4GBMnDgRYWFhH+ybk5ODmjVr4tChQxg9erQiYRCRilSoUEF8HhISgm+++Qbffvst7t+/Dy8vLzVGRkSkG1q0aIHjx4/Dx8cHffr0waRJk3Dy5EkcP34cbdq0KbQvcy8iIiLdoFChRyqVinfXsre3x7Nnz1CjRg14eHggKiqq0L6GhobIzMxUZPNEpEZ+fn748ssvkZubK1fkkUql0NfXV2NkRETaa82aNWL+NHv2bBgaGuK///5D7969MWfOnEL7MvciIiLSDQpduuXt7Y3r168DABo3bowVK1bg3LlzWLRoESpXrlxk/8DAQCxfvhy5ubmKhEFEamBtbY2VK1fiu+++E9ueP3+OatWqYd26dUXO0UVERCWTm5uLQ4cOicV0PT09zJgxA3/++SdWrVoFW1vbItfB3IuIiEj7KTSiZ86cOUhLSwMALFq0CF26dEHz5s1hZ2eHP/74o8j+ly9fxokTJ3Ds2DH4+PjA3Nxc7v19+/YpEh4RqdiaNWsQHR2NLVu2YMyYMeoOh4hIqxgYGGDMmDG4fft2qdfB3IuIiEj7KVToad++vfi8atWquHPnDl6/fg1bW1vxzluFsbGxQe/evRUJgYjKkfnz58PZ2Rl+fn7Q03s7YFAqlSImJoZz+BARKUGjRo0QHh4ODw+PUvVn7kVERKT9Sl3oycnJgampKcLDw+Ht7S22vztZa2Fyc3PRunVrtGvXDk5OTqUNg4jKEQMDA4wbN06ubevWrRg7dizmzp2LuXPnqikyIiLtMG7cOAQFBeHJkydo0KBBvhE5devW/WBf5l5ERES6odSFHkNDQ7i7u5d6Hg5lDD8movIvNDQUOTk5+f4YISKikuvfvz8AYOLEiWKbRCKBIAiQSCSF5mXMvYiIiHSDQpMxz549G7NmzcLr169L1b9Ro0aF3oKdiDTf1q1bcfToUYwfP15si4iIwJ9//glBENQYGRGR5omOjs73ePjwofhvUZSVewUHB6Nhw4awtLSEg4MDevToUeQdVwFg9+7dqFmzJkxMTODj44PDhw8rHAsRERHJU2iOnjVr1uD+/ftwcXGBh4dHvm/sr127Vmj/cePGYerUqXj69GmJhx8TkWaQSCRo166d+FoQBEyePBmnTp3C4sWLMXv2bDVGR0SkWUo7N08eZeVep0+fRmBgIBo2bIjc3FzMmjUL7dq1w61btz44gvO///7DgAEDEBwcjC5dumDHjh3o0aMHrl27JjcNABERESlGIijwlfrChQsLfX/+/PmFvp83WatcQMUcflwepKSkwNraGsnJybCyslJ3OEQaIScnB/Pnz8f69esVmlCUiBTH85hm+vXXX7FhwwZER0fj/Pnz8PDwwPfffw8vLy9079690L5llXu9ePECDg4OOH36NFq0aFHgMv369UNaWhoOHToktjVp0gT16tXDhg0birUdfmaJiEhTqfIcptCInqIKOUWJjo5WqD8RaR5DQ0MsXboUs2bNgoWFhdg+b948ZGVlYebMmbCxsVFfgERE5dj69esxb948TJ48GUuWLBELMzY2Nvj++++LLPSUVe6VnJwMoPCbcpw/fx5BQUFybe3bt8eBAwfKJCYiIiJdpVChBwCSkpKwZ88ePHjwANOmTUOFChVw7do1ODo6olKlSoX25Tf5RLrr3SJPXFwcVqxYgaysLLRo0QKdO3dWY2REROXXjz/+iE2bNqFHjx5YtmyZ2O7v748vv/yyyP5lkXvJZDJMnjwZzZo1K/QSrPj4eDg6Osq1OTo6Ij4+/oN9srKykJWVJb5OSUlRPGAiIiItp9BkzBEREahevTqWL1+Ob775BklJSQCAffv2YebMmcVax6+//opmzZrBxcUFjx8/BgB8//33OHjwoCKhEZEGcXJywt69e/HFF1+gU6dOYvuzZ884YTMR0Tuio6Ph5+eXr93Y2BhpaWnFWoeyc6/AwEDcuHEDO3fuLFX/wgQHB8Pa2lp8uLm5KX0bRERE2kahQk9QUBCGDRuGe/fuwcTERGzv1KkTQkNDi+y/fv16BAUFoVOnTkhKSso3/JiIdINEIkHnzp2xYcMGSCQSAG+/xW3evDmaN2+OR48eqTdAIqJywsvLC+Hh4fna//nnH9SqVavI/srOvcaPH49Dhw7h1KlTcHV1LXRZJycnPH/+XK7t+fPncHJy+mCfmTNnIjk5WXw8efKkxDESERHpGoUKPZcvX8YXX3yRr71SpUqFDsPNkzf8ePbs2dDX1xfb/f39ERkZqUhoRKThrl69iri4ODx8+BAVK1ZUdzhEROVCUFAQAgMD8ccff0AQBFy6dAlLlizBzJkz8dVXXxXZX1m5lyAIGD9+PPbv34+TJ0/Cy8uryD4BAQE4ceKEXNvx48cREBDwwT7GxsawsrKSexAREVHhFJqjx9jYuMBrpe/evVusP8yUMfyYiLRT06ZNcffuXTx8+FDuVr2bN29Gz549YWtrq8boiIjUY9SoUTA1NcWcOXOQnp6OgQMHwsXFBT/88AP69+9fZH9l5V6BgYHYsWMHDh48CEtLS/ELPmtra5iamgIAhgwZgkqVKiE4OBgAMGnSJLRs2RKrVq1C586dsXPnTly5cgUbN24s9naJiIioaAqN6OnWrRsWLVqEnJwcAG8vv4iJicH06dPRu3fvIvsrOvyYiLSbq6ur3G16Q0NDMXLkSNSoUQNv3rxRY2REROozaNAg3Lt3D6mpqYiPj8fTp08xcuTIYvVVVu61fv16JCcno1WrVnB2dhYff/zxh7hMTEwM4uLixNdNmzbFjh07sHHjRvj6+mLPnj04cOBAoRM4ExERUckpNKJn1apV+PTTT+Hg4ICMjAy0bNkS8fHxCAgIwJIlS4rsnzf8ODMzUxx+/PvvvyM4OBg///yzIqERkRbS19eHt7c3mjVrBktLS3WHQ0SkcosXL8agQYPg5eUFMzMzmJmZlai/snKv4kyUHxISkq+tT58+6NOnT0lCJiIiohKSCEq4pc3Zs2cRERGB1NRU1K9fH23bti123+3bt2PBggV48OABAMDFxQULFy4s9jdT6pSSkgJra2skJyfzmnEiFZFKpcjIyBBvz/78+XN89tlnWLBgAZo2barm6Ig0C89jmsfX1xc3btxA48aNMXjwYPTt2xf29vYlWgdzLyIiItVT5TlMoULPkydPlHaby/T0dKSmpsLBwUEp61MFJhtE6jdhwgSsWbMGDRs2xMWLF8W7dhFR0Xge00w3b97E9u3bsXPnTjx9+hSffPIJBg0ahB49epRohA9zLyIiItVR5TlMoTl6PD090bJlS2zatAmJiYkKBWJmZqZRiQYRlQ8zZ87EqFGj8M0334hFnpycnHy38CUi0hZ16tTB0qVL8fDhQ5w6dQqenp6YPHlyobcpLwhzLyIiIu2kUKHnypUraNSoERYtWgRnZ2f06NEDe/bsQVZWlrLiIyIqlIuLCzZt2iQ3afMvv/yCypUrY8WKFWqMjIio7Jmbm8PU1BRGRkbizTGIiIhItylU6PHz88PKlSsRExODI0eOoGLFivj888/h6OiIESNGKCtGIqISOXr0KNLT02FkZKTuUIiIlC46OhpLlixBnTp14O/vj7CwMCxcuFC8xTkRERHpNqVMxvyua9euYeTIkYiIiIBUKlXmqssdXidOVD4JgoDDhw/j448/hqmpKYC3IxBPnDiB8ePHw9zcXM0REpUPPI9pniZNmuDy5cuoW7cuBg0ahAEDBqBSpUrqDktl+JklIiJNpcpzmEK3V8/z9OlT7NixAzt27MCNGzcQEBCAtWvXlmgdmZmZMDExUUY4RKTjJBIJOnfuLNc2e/ZsHDt2DE+fPsWPP/6opsiIiBTTpk0bbN68GbVr11Z4Xcy9iIiItJNCl2799NNPaNmyJTw9PbFt2zb069cPDx48wJkzZzBmzJgi+8tkMnz99deoVKkSLCws8PDhQwDA3Llz8b///U+R0IiIRIIgYPDgwahZsyaCgoLE9tTUVM5pQUQaZcmSJQoVeZh7ERERaT+FCj2LFy9G48aNcfXqVdy4cQMzZ86Eh4dHifpv3boVK1askJtLw9vbGz///LMioRERiSQSCT777DPcunULXl5eYvvChQtRs2ZNHD58WI3RERGVzNOnT7Fu3TrMmDEDQUFBco+iMPciIiLSfgpduhUTEyPezrg0tm3bho0bN6JNmzZyI4B8fX1x584dRUIjIsrn3d9XOTk52Lt3L6KjoxX6PUZEpEonTpxAt27dULlyZdy5cwfe3t549OgRBEFA/fr1i+zP3IuIiEj7KVToyfvjKD09HTExMcjOzpZ7v27duoX2j42NRdWqVfO1y2QyXk5BRGXK0NAQkZGR2LNnDzp06CC2//3338jNzUW3bt1YACKicmfmzJn48ssvsXDhQlhaWmLv3r1wcHDAoEGD5H6XfQhzLyIiIu2n0KVbL168QOfOnWFpaYk6derAz89P7lGU2rVr48yZM/na9+zZU6z+7woNDUXXrl3h4uICiUSCAwcOFLp8SEgIJBJJvgdvTUqkO8zNzTF06FCxoJOTk4OJEyeiR48e2Lx5s5qjIyLK7/bt2xgyZAgAwMDAABkZGbCwsMCiRYuwfPnyIvsrM/ciIiKi8kmhET2TJ09GcnIyLl68iFatWmH//v14/vw5Fi9ejFWrVhXZf968eRg6dChiY2Mhk8mwb98+REVFYdu2bTh06FCJYklLS4Ovry9GjBiBXr16FbtfVFSU3K3NHBwcSrRdItIeOTk56NevH/744w/0799fbM/IyBBv005EpE7m5ubiCGpnZ2c8ePAAderUAQC8fPmyyP7KzL2IiIiofFKo0HPy5EkcPHgQ/v7+0NPTg4eHBz755BNYWVkhODg43+2N39e9e3f89ddfWLRoEczNzTFv3jzUr18ff/31Fz755JMSxdKxY0d07NixxPvg4OAAGxubEvcjIu1jZmaGpUuXYtGiRTAw+L9fj3369EF2djZ++OEH1KpVS40REpGua9KkCc6ePYtatWqhU6dOmDp1KiIjI7Fv3z40adKkyP7KzL2IiIiofFKo0JOWliaOgLG1tcWLFy9QvXp1+Pj44Nq1a8VaR/PmzXH8+HFFwlBIvXr1kJWVBW9vbyxYsADNmjX74LJZWVnIysoSX6ekpKgiRCJSsXeLPI8fP8axY8cgk8mgr6+vxqiIiIBvv/0WqampAN7eOTA1NRV//PEHqlWrhm+//bZY61B37kVERERlS6E5emrUqIGoqCgAb+/W8NNPPyE2NhYbNmyAs7Nzkf0rV66MV69e5WtPSkpC5cqVFQmtSM7OztiwYQP27t2LvXv3ws3NDa1atSq0QBUcHAxra2vx4ebmVqYxEpH6eXh4ICoqCps2bUL16tXF9j/++AO3bt1SY2REpIsqV64s3uzC3NwcGzZsQEREBPbu3QsPD49i9VdX7kVERESqIREEQSht599++w25ubkYNmwYrl69ig4dOuD169cwMjLC1q1b0a9fv0L76+npIT4+Pt+8OM+fP4e7u7vc6JmSkEgk2L9/P3r06FGifi1btoS7uzt+/fXXAt8vaESPm5sbkpOT5eb5ISLtlpCQgMqVKyMjIwMXLlxAw4YN1R0SUamkpKTA2tqa5zENNW7cOCxatAj29vbF7lNWuZeq8DNLRESaSpXnMIUu3Ro8eLD4vEGDBnj8+DHu3LkDd3f3QpOOP//8U3x+9OhRWFtbi6+lUilOnDgBT09PRUIrlUaNGuHs2bMffN/Y2BjGxsYqjIiIyqPMzEy0a9cOz549g7+/v9guCAJvyU5EKvPbb7/hyy+/LFahp7zmXkRERKR8ChV63nXu3Dn4+/ujfv36RS6bN9JGIpFg6NChcu8ZGhrC09OzWHftUrbw8PBiXXJGRLrN3d0d+/btQ0ZGhljYyc3NRatWrdCzZ08EBgbCxMREzVESkbYryaDs8pp7ERERkfIprdDTsWNHhIeHF+v6bplMBgDw8vLC5cuXSzTk+ENSU1Nx//598XV0dDTCw8NRoUIFuLu7Y+bMmYiNjcW2bdsAAN9//z28vLxQp04dZGZm4ueff8bJkydx7NgxhWMhIt3w7i3Xd+/ejXPnzuH27dsYNWoUCz1EVK6URe5FRERE5ZPSCj2lmeonOjpaWZvHlStX0Lp1a/F1UFAQAGDo0KHYunUr4uLiEBMTI76fnZ2NqVOnIjY2FmZmZqhbty7+/fdfuXUQERVX3759kZmZCYlEIndJxPXr11G3bl1e0kVESvfmzZsS91Fm7kVERETlk0KTMb/L0tIS169fL9EdGxYtWlTo+/PmzVM0rDLFCQGJqDBXr16Fv78/2rZti8OHD8PQ0FDdIRHJ4XlMMz148ABbtmzBw4cP8f3338PBwQFHjhyBu7s76tSpU2hf5l5ERETqoTGTMb/rp59+gqOjY4n67N+/X+51Tk4OoqOjYWBggCpVqpT7ZIOIqDBhYWEwMjKCk5MTizxEpBSnT59Gx44d0axZM4SGhmLx4sVwcHDA9evX8b///Q979uwptD9zLyIiIu2nlELP/fv3YWdnBz09PQDFv/NMWFhYvraUlBQMGzYMPXv2VEZoRERqM2rUKHzyyScwMPi/X7WJiYlYsmQJvvrqq3y3NyYiKsqMGTOwePFiBAUFwdLSUmz/+OOPsWbNmiL7M/ciIiLSfnqKdH716hXatm2L6tWro1OnToiLiwMAjBw5ElOnTi3VOq2srLBw4ULMnTtXkdCIiMoFDw8PVKpUSXwdHByMVatWiXfAISIqicjIyAILMg4ODnj58mWp1snci4iISLsoVOiZMmUKDAwMEBMTAzMzM7G9X79++Oeff0q93uTkZCQnJysSGhFRudSxY0c0aNAAs2fPFttkMhlycnLUGBURaQobGxvxi7V3hYWFyRWVS4q5FxERkfZQ6NKtY8eO4ejRo3B1dZVrr1atGh4/flxk/9WrV8u9FgQBcXFx+PXXX9GxY0dFQiMiKpdat26NS5cuyV3eumvXLsyfPx/ffPMNunbtqsboiKi869+/P6ZPn47du3dDIpFAJpPh3Llz+PLLLzFkyJAi+zP3IiIi0n4KFXrS0tLkRvLkef36NYyNjYvs/91338m91tPTQ8WKFTF06FDMnDlTkdCIiMqtvPnM8vzwww+4e/curl+/zkIPERVq6dKlCAwMhJubG6RSKWrXrg2pVIqBAwdizpw5RfZn7kVERKT9FLq9eqdOndCgQQN8/fXXsLS0REREBDw8PNC/f3/IZLIi7/yg6XiLTyJShpSUFKxZswaTJk2Cubk5gLe3T87MzCzyVslEiuB5THM9efIEkZGRSE1NhZ+fH6pVq6bukFSCn1kiItJUqjyHKVTouXHjBtq0aYP69evj5MmT6NatG27evInXr1/j3LlzqFKlijJjLXeYbBBRWenevTsOHTqENWvWYOzYseoOh7QUz2OkafiZJSIiTaXKc5hCl255e3vj7t27WLNmDSwtLZGamopevXohMDAQzs7OBfbp1atXsde/b98+RcIjItJI2dnZMDQ0hEQiQevWrdUdDhGVI71790ajRo0wffp0ufYVK1bg8uXL2L17d74+zL2IiIh0i0KFHgCwtraWu3tMcZYnIqIPMzIywp49e/Do0SN4enqK7d9//z0AYOzYscWaB42ItE9oaCgWLFiQr71jx45YtWpVgX2YexEREekWhQs9mZmZiIiIQEJCAmQymdx73bp1y7f8li1bFN0kEZFOeLfI8/z5c8yZMwdpaWnw8PBAz5491RcYEalNamoqjIyM8rUbGhoiJSWlwD7MvYiIiHSLQoWef/75B0OGDMHLly/zvSeRSCCVSou1nhcvXiAqKgoAUKNGDVSsWFGRsIiItI6dnR2+++47/P333+jRo4fYnpyczG/riXSIj48P/vjjD8ybN0+ufefOnahdu3ax18Pci4iISHspVOiZMGEC+vTpg3nz5sHR0bHE/dPS0jBhwgRs27ZNHA2kr6+PIUOG4Mcffyzw1u1ERLrIwMAAo0ePxujRo8U2qVSKZs2awdPTE+vXr4ebm5saIyQiVZg7dy569eqFBw8e4OOPPwYAnDhxAr///nuB8/O8j7kXERGR9tNTpPPz588RFBRUqiIPAAQFBeH06dP466+/kJSUhKSkJBw8eBCnT5/G1KlTFQmNiEjrXbp0CVFRUfjvv/9gYWGh7nCISAW6du2KAwcO4P79+xg3bhymTp2Kp0+f4t9//5Ub7fchzL2IiIi0n0K3Vx8xYgSaNWuGkSNHlqq/vb099uzZg1atWsm1nzp1Cn379sWLFy9KG5pK8BafRKRud+/exd27d9GlSxexbdeuXWjfvj0v6aIi8Tyme5h7ERERqYfG3F59zZo16NOnD86cOQMfHx8YGhrKvT9x4sRC+6enpxc4GsjBwQHp6emKhEZEpBOqV6+O6tWri6/DwsLQr18/ODg44M6dO7C1tVVjdERU3jD3IiIi0n4KFXp+//13HDt2DCYmJggJCYFEIhHfk0gkRRZ6AgICMH/+fGzbtg0mJiYAgIyMDCxcuBABAQGKhEZEpJPS0tJQo0YN+Pv7s8hDpIWkUim+++477Nq1CzExMcjOzpZ7//Xr14X2Z+5FRESk/RQq9MyePRsLFy7EjBkzoKdX8ul+fvjhB7Rv3x6urq7w9fUFAFy/fh0mJiY4evSoIqEREemkjz76CDdu3EBqaqrYlpiYiAEDBmDWrFlo0aKFGqMjIkUtXLgQP//8M6ZOnYo5c+Zg9uzZePToEQ4cOJDvTlwFYe5FRESk/RSao6dChQq4fPkyqlSpUuoA0tPTsX37dty5cwcAUKtWLQwaNAimpqalXqeq8DpxItIEs2bNQnBwMOrUqYOIiIhSFeZJO/E8pnmqVKmC1atXo3PnzrC0tER4eLjYduHCBezYsaPIdTD3IiIiUj2NmaNn6NCh+OOPPzBr1qxSr8PMzEzudsFERKRcEydORFJSErp06SIWeQRBQEJCQqnvmkhE6hEfHw8fHx8AgIWFBZKTkwEAXbp0wdy5c4u1DuZeRERE2k2hr3WlUilWrFiBli1bYsKECQgKCpJ7FOWXX37B33//Lb7+6quvYGNjg6ZNm+Lx48eKhEZERP+fk5MT1q1bh06dOoltu3fvRuXKlbFs2TI1RkZEJeXq6oq4uDgAb0f3HDt2DABw+fJlGBsbF9mfuRcREZH2U6jQExkZCT8/P+jp6eHGjRsICwsTH+Hh4UX2X7p0qThM+Pz581izZg1WrFgBe3t7TJkyRZHQiIioEH/++SfS09PzTeRKROVbz549ceLECQDAhAkTMHfuXFSrVg1DhgzBiBEjiuyvzNwrNDQUXbt2hYuLCyQSCQ4cOFBkn+3bt8PX1xdmZmZwdnbGiBEj8OrVqxJtl4iIiAqn0Bw9ijIzM8OdO3fg7u6O6dOnIy4uDtu2bcPNmzfRqlUrvHjxQl2hFQuvEyciTSUIAg4ePIi2bdvCwsICABAVFYWIiAj07t2b8/joCJ7HNN/58+dx/vx5VKtWDV27di1yeWXmXkeOHMG5c+fQoEED9OrVC/v370ePHj0+uPy5c+fQokULfPfdd+jatStiY2MxZswYVK9eHfv27SvWNvmZJSIiTaUxc/QoysLCAq9evYK7uzuOHTsmXu5lYmKCjIwMdYZGRKTVJBJJvj/IZsyYgQMHDmDatGlYsWKFegIjohIJCAgo0W3RlZl7dezYER07diz28ufPn4enpycmTpwIAPDy8sIXX3yB5cuXl2i7REREVLgSF3p69eqFrVu3wsrKCr169Sp02aK+nfnkk08watQo+Pn54e7du+L8ETdv3oSnp2dJQyMiolKSyWTw9fXFqVOnMHz4cLl2ju4hKl+ioqLw448/4vbt2wDe3jVrwoQJqFGjRpF91Zl7BQQEYNasWTh8+DA6duyIhIQE7NmzR27+sPdlZWUhKytLfJ2SklKmMRIREWmDEmfv1tbWkEgk4vPCHkVZu3YtAgIC8OLFC+zduxd2dnYAgKtXr2LAgAElDY2IiEpJT08PCxYsQGxsLGrVqiW2L168GN26dcPNmzfVGB0R5dm7dy+8vb1x9epV+Pr6wtfXF9euXYO3tzf27t1bZH915l7NmjXD9u3b0a9fPxgZGcHJyQnW1tZYu3btB/sEBwfL5ZZubm5lGiMREZE2KNUcPYsWLcKXX34JMzOzsohJY/A6cSLSZhkZGahUqRISExOxa9cu9OnTR90hkZLxPKZ5qlSpgkGDBmHRokVy7fPnz8dvv/2GBw8eqCUuiURS5Bw9t27dQtu2bTFlyhS0b98ecXFxmDZtGho2bIj//e9/BfYpaESPm5sbP7NERKRxVJl3larQo6+vj7i4ODg4OCgcQGJiIv73v//JDT8eMWIEKlSooPC6yxoTZCLSdlFRUdi8eTOCg4PFS7jCwsLg5OQEZ2dnNUdHiuJ5TPOYmZkhIiICVatWlWu/d+8efH19kZ6eXuQ6yiL3Kk6h57PPPkNmZiZ2794ttp09exbNmzfHs2fPivU7hZ9ZIiLSVKo8h5Vq4gVl3agrNDQUnp6eWL16NRITE5GYmIgff/wRXl5eCA0NVco2iIio9GrUqIHly5eLRR6pVIrPPvsMVapUwT///KPm6Ih0T6tWrXDmzJl87XkFk6KoM/dKT0/PN+eXvr4+AOXllkRERKTAXbfy5ulRRGBgIPr164f169eLJ3qpVIpx48YhMDAQkZGRCm+DiIiU5+XLl7C2toaxsTEaN26s7nCIdE63bt0wffp0XL16FU2aNAEAXLhwAbt378bChQvx559/yi37PmXmXqmpqbh//774Ojo6GuHh4ahQoQLc3d0xc+ZMxMbGYtu2bQCArl27YvTo0Vi/fr146dbkyZPRqFEjuLi4lOp4EBERUX6lunRLT09PblLmD3n9+nWh75uamiI8PDzfXSKioqJQr169cn+LdQ4fJiJdJAgCHj16BC8vL7Ft0qRJqFq1Kj7//HMYGxurMToqCZ7HNE9x74InkUgglUrztSsz9woJCUHr1q3ztQ8dOhRbt27FsGHD8OjRI4SEhIjv/fjjj9iwYQOio6NhY2ODjz/+GMuXL0elSpWKtU1+ZomISFOp8hxW6hE9CxcuLNadtQpTv3593L59O1+ycfv2bfj6+iq0biIiKhsSiUSuyBMZGYnVq1cDAFq0aMHf30RlSCaTKdRfmblXq1atCr3kauvWrfnaJkyYgAkTJpRoO0RERFQypS709O/fv1STMUdERIjPJ06ciEmTJuH+/ftyw4/Xrl2LZcuWlTY0IiJSoZo1a2LDhg35/lC8f/8+qlSpopRLfYl03fnz5/Hq1St06dJFbNu2bRvmz5+PtLQ09OjRAz/++GOBI+qYexEREekWld91S09PDxKJpMhJ9z405Lg84fBhIqKCJSUloXLlyqhatSoOHDjA+TfKKZ7HNEfHjh3RqlUrTJ8+HcDbkXT169fHsGHDUKtWLaxcuRJffPEFFixYkK8vcy8iIiL1K/eXbilyZ4To6OhS9yUiIs1w5coVZGdnIy0tDY6OjuoOh0jjhYeH4+uvvxZf79y5E40bN8amTZsAAG5ubpg/f36BhR7mXkRERLqlVIUeRa4P9/DwKHXfwoSGhmLlypW4evUq4uLisH//fvTo0aPQPiEhIQgKCsLNmzfh5uaGOXPmYNiwYWUSHxGRLmnbti0ePHiAuLg4udsnf/XVVxg2bBjq1Kmj5giJNEtiYqJc0fT06dPo2LGj+Lphw4Z48uRJgX3LKvciIiKi8qnUc/Qo061btxATE4Ps7Gy59oJuC/ohaWlp8PX1xYgRI9CrV68il4+Ojkbnzp0xZswYbN++HSdOnMCoUaPg7OyM9u3bl3gfiIhInqOjo9wfpnv37sU333yDTZs2ITY2Fubm5mqMjkizODo6Ijo6Gm5ubsjOzsa1a9ewcOFC8f03b97A0NCw2OtTRu5FRERE5ZNaCz0PHz5Ez549ERkZKXfteN7EnSW5Trxjx45y32wVZcOGDfDy8sKqVasAALVq1cLZs2fx3XffsdBDRFQGfHx80Lt3b/j4+MgVecLDw+Hr68tJm4kK0alTJ8yYMQPLly/HgQMHYGZmhubNm4vvR0REoEqVKkWuR5m5FxEREZVPeurc+KRJk+Dl5YWEhASYmZnh5s2bCA0Nhb+/P0JCQsp02+fPn0fbtm3l2tq3b4/z589/sE9WVhZSUlLkHkREVDw1atTAnj17MG/ePLHt9u3b8PPzg7+/PzIzM9UYHVH59vXXX8PAwAAtW7bEpk2bsGnTJhgZGYnvb968Ge3atStyPerMvYiIiEg11Dqi5/z58zh58iTs7e2hp6cHPT09fPTRRwgODsbEiRMRFhZWZtuOj4/PN0Goo6MjUlJSkJGRAVNT03x9goOD5YZJExFRyb07cic8PBxmZmbw8PCAiYmJ2C6VSsW5fYgIsLe3R2hoKJKTk2FhYZHv52P37t2wsLAocj3qzL2IiIhINdQ6okcqlcLS0hLA2wTm2bNnAN5OGhgVFaXO0Ao0c+ZMJCcni48PTXpIRETFM2DAAMTExODbb78V25KTk+Hl5YWvvvoKGRkZaoyOqPyxtrYusAhaoUIFuRE+H6JpuRcRERGVnFpH9Hh7e+P69evw8vJC48aNsWLFChgZGWHjxo2oXLlymW7byckJz58/l2t7/vw5rKysChzNAwDGxsYwNjYu07iIiHSNnZ0d7OzsxNc7d+7EkydP8Pfff2PZsmVqjIxI+6gz9yIiIiLVUGuhZ86cOUhLSwMALFq0CF26dEHz5s1hZ2eHP/74o0y3HRAQgMOHD8u1HT9+HAEBAWW6XSIiKtzo0aNRqVIl6OvrQ0/v7cBTmUyGL774An379kXbtm05cTNRKakz9yIiIiLVkAh5t1soJ16/fg1bW9sSJ/Gpqam4f/8+AMDPzw/ffvstWrdujQoVKsDd3R0zZ85EbGwstm3bBuDt7dW9vb0RGBiIESNG4OTJk5g4cSL+/vvvYt91KyUlBdbW1khOToaVlVXJdpSIiIrt0KFD6Nq1K6ysrPD06VPx0hNSDM9jBJQ+91IHfmaJiEhTqfIcptYRPQWpUKFCqfpduXIFrVu3Fl8HBQUBAIYOHYqtW7ciLi4OMTEx4vteXl74+++/MWXKFPzwww9wdXXFzz//zFurExGVQ3Xr1sWkSZNga2srV+TZu3cv2rZtC2trazVGR6TZSpt7ERERUflU7kb0aBJ+q0REpD5RUVGoWbMmrK2t8fDhQ/6xWgo8j5Gm4WeWiIg0lU6P6CEiIiqOV69eoU6dOqhSpYpckSchIQEODg5qjIyIiIiISH1Y6CEiIo3UtGlTREZGIjk5WWxLSUlB9erV4e/vj99//x0VK1ZUY4RERERERKqnp+4AiIiISksikcDGxkZ8ffbsWaSmpuLp06dyt2y/evUqEhMT1RAhEREREZFqcUQPERFpjU6dOuHhw4eIjY0Vb80uCAK6dOmC+Ph4XLp0CQ0bNgTw9pbtecsQEREREWkLZrhERKRV3N3dERAQIL5+9eoVrK2tYWxsDB8fH7F95cqVqFKlCtasWaOOMImIiIiIygQLPUREpNXs7e1x584dxMfHw8TERGw/e/YsHj58iNzcXLEtNTUVffv2xerVqyGVStURLhERERGRQnjpFhER6YR35/IBgO3bt+O///5D7dq1xbbz589j9+7duHjxIiZOnCi2Hz16FBYWFvD394exsbGqQiYiIiIiKjEWeoiISCdZWVmhQ4cOcm1VqlTB4sWLYWRkJNc+depU3Lx5E/v27UPPnj0BvB39IwgCLC0tVRYzEREREVFReOkWERHR/1e5cmXMnj0b06ZNE9tyc3NRs2ZNODg44KOPPhLbf//9d9ja2mLMmDFy64iLi4NMJlNZzERERERE7+KIHiIiokIYGBhgz549EAQBEolEbL958yakUikqVqwotuXk5MDV1RWGhoaIiYmBg4MDACA8PBxPnz5F3bp14e7urvJ9ICIiIiLdwRE9RERExfBukQcAvv/+e8TExGDcuHFi27Nnz6Cnpwc9PT25AtDmzZvRtWtXrF27VmzLzc3F8OHD8fXXXyMzM7Psd4CIiIiIdAILPURERKXk5uYGZ2dn8bWHhwcyMjJw9+5ducKQs7Mz6tWrhzp16ohtMTEx2Lp1K5YsWSI3J9CcOXPg5+eHbdu2iW1SqRQPHjyQu0MYEREREVFBeOkWERGREhkYGMDV1VWubebMmZg5c6Zcm5mZGRYvXoy0tDTo6f3f9y4REREIDw9Henq62PbkyRNUrVoV5ubmSElJkVueiIiIiOhdLPQQERGpgZOTE2bPnp2v/bvvvsPnn38OHx8fsS0uLg7GxsZwdXVlkYeIiIiICsVCDxERUTlSpUoVVKlSRa4tICAA6enpSExMVFNURERERKQp+LUgERGRBtDT04OdnZ26wyAiIiKico6FHiIiIiIiIiIiLcFCDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJXjXLQUIggAASElJUXMkREREJZd3/so7nxGVd8y9iIhIU6ky72KhRwFv3rwBALi5uak5EiIiotJ78+YNrK2t1R0GUZGYexERkaZTRd4lEfg1XqnJZDI8e/YMlpaWkEgkcu+lpKTAzc0NT548gZWVlZoiVC1d3GdAN/eb+6wb+wzo5n7r0j4LgoA3b97AxcUFenq8mpvKv8Jyr9LQpZ/34uDxyI/HJD8eE3k8HvnxmMjLOx4xMTGQSCQqybs4okcBenp6cHV1LXQZKysrnftw6+I+A7q539xn3aGL+60r+8yRPKRJipN7lYau/LwXF49Hfjwm+fGYyOPxyI/HRJ61tbXKjge/viMiIiIiIiIi0hIs9BARERERERERaQkWesqIsbEx5s+fD2NjY3WHojK6uM+Abu4391l36OJ+6+I+E+kq/rzL4/HIj8ckPx4TeTwe+fGYyFPH8eBkzEREREREREREWoIjeoiIiIiIiIiItAQLPUREREREREREWoKFHiIiIiIiIiIiLcFCDxERERERERGRlmChpwysXbsWnp6eMDExQePGjXHp0iV1h6Q0wcHBaNiwISwtLeHg4IAePXogKipKbpnMzEwEBgbCzs4OFhYW6N27N54/f66miJVv2bJlkEgkmDx5stimrfscGxuLwYMHw87ODqampvDx8cGVK1fE9wVBwLx58+Ds7AxTU1O0bdsW9+7dU2PEipFKpZg7dy68vLxgamqKKlWq4Ouvv8a7c9Zrwz6Hhoaia9eucHFxgUQiwYEDB+TeL84+vn79GoMGDYKVlRVsbGwwcuRIpKamqnAvSqawfc7JycH06dPh4+MDc3NzuLi4YMiQIXj27JncOjRtn4mocNqcr71LWblbTEwMOnfuDDMzMzg4OGDatGnIzc1V5a6UidLmddp2PJSR82nTeVJZOaEmHxNV5YsRERFo3rw5TExM4ObmhhUrVpT1rpWKqnJJpR0PgZRq586dgpGRkbB582bh5s2bwujRowUbGxvh+fPn6g5NKdq3by9s2bJFuHHjhhAeHi506tRJcHd3F1JTU8VlxowZI7i5uQknTpwQrly5IjRp0kRo2rSpGqNWnkuXLgmenp5C3bp1hUmTJont2rjPr1+/Fjw8PIRhw4YJFy9eFB4+fCgcPXpUuH//vrjMsmXLBGtra+HAgQPC9evXhW7dugleXl5CRkaGGiMvvSVLlgh2dnbCoUOHhOjoaGH37t2ChYWF8MMPP4jLaMM+Hz58WJg9e7awb98+AYCwf/9+ufeLs48dOnQQfH19hQsXLghnzpwRqlatKgwYMEDFe1J8he1zUlKS0LZtW+GPP/4Q7ty5I5w/f15o1KiR0KBBA7l1aNo+E9GHaXu+9i5l5G65ubmCt7e30LZtWyEsLEw4fPiwYG9vL8ycOVMdu6Q0pc3rtO14KCvn06bzpLJyQk0+JqrIF5OTkwVHR0dh0KBBwo0bN4Tff/9dMDU1FX766SdV7WaxqSKXVObxYKFHyRo1aiQEBgaKr6VSqeDi4iIEBwerMaqyk5CQIAAQTp8+LQjC2w+5oaGhsHv3bnGZ27dvCwCE8+fPqytMpXjz5o1QrVo14fjx40LLli3FhEBb93n69OnCRx999MH3ZTKZ4OTkJKxcuVJsS0pKEoyNjYXff/9dFSEqXefOnYURI0bItfXq1UsYNGiQIAjauc/vn6iKs4+3bt0SAAiXL18Wlzly5IggkUiE2NhYlcVeWgUlK++7dOmSAEB4/PixIAiav89EJE/X8rV3lSZ3O3z4sKCnpyfEx8eLy6xfv16wsrISsrKyVLsDSqJIXqdtx0MZOZ+2nSeVkRNq0zEpq3xx3bp1gq2trdzPzfTp04UaNWqU8R4ppqxySWUeD166pUTZ2dm4evUq2rZtK7bp6emhbdu2OH/+vBojKzvJyckAgAoVKgAArl69ipycHLljULNmTbi7u2v8MQgMDETnzp3l9g3Q3n3+888/4e/vjz59+sDBwQF+fn7YtGmT+H50dDTi4+Pl9tva2hqNGzfW2P1u2rQpTpw4gbt37wIArl+/jrNnz6Jjx44AtHOf31ecfTx//jxsbGzg7+8vLtO2bVvo6enh4sWLKo+5LCQnJ0MikcDGxgaAbuwzka7QxXztXaXJ3c6fPw8fHx84OjqKy7Rv3x4pKSm4efOmCqNXHkXyOm07HsrI+bTtPKmMnFDbjsm7lLX/58+fR4sWLWBkZCQu0759e0RFRSExMVFFe1M2SpNLKvN4GCi+C5Tn5cuXkEqlcr/0AcDR0RF37txRU1RlRyaTYfLkyWjWrBm8vb0BAPHx8TAyMhI/0HkcHR0RHx+vhiiVY+fOnbh27RouX76c7z1t3eeHDx9i/fr1CAoKwqxZs3D58mVMnDgRRkZGGDp0qLhvBX3eNXW/Z8yYgZSUFNSsWRP6+vqQSqVYsmQJBg0aBABauc/vK84+xsfHw8HBQe59AwMDVKhQQSuOQ2ZmJqZPn44BAwbAysoKgPbvM5Eu0bV87V2lzd3i4+MLPF5572kaRfM6bTseysj5tO08qYycUNuOybuUtf/x8fHw8vLKt46892xtbcsk/rJW2lxSmceDhR4qtcDAQNy4cQNnz55Vdyhl6smTJ5g0aRKOHz8OExMTdYejMjKZDP7+/li6dCkAwM/PDzdu3MCGDRswdOhQNUdXNnbt2oXt27djx44dqFOnDsLDwzF58mS4uLho7T6TvJycHPTt2xeCIGD9+vXqDoeISKl0JXcrjK7mdYXRxZyvKMwJqbTKSy7JS7eUyN7eHvr6+vlm5X/+/DmcnJzUFFXZGD9+PA4dOoRTp07B1dVVbHdyckJ2djaSkpLkltfkY3D16lUkJCSgfv36MDAwgIGBAU6fPo3Vq1fDwMAAjo6OWrfPAODs7IzatWvLtdWqVQsxMTEAIO6bNn3ep02bhhkzZqB///7w8fHBZ599hilTpiA4OBiAdu7z+4qzj05OTkhISJB7Pzc3F69fv9bo45B3Yn78+DGOHz8ufgMDaO8+E+kiXcrX3qVI7ubk5FTg8cp7T5MoI6/TpuMBKCfn07bzpDJyQm07Ju9S1v5r28+SormkMo8HCz1KZGRkhAYNGuDEiRNim0wmw4kTJxAQEKDGyJRHEASMHz8e+/fvx8mTJ/MNLWvQoAEMDQ3ljkFUVBRiYmI09hi0adMGkZGRCA8PFx/+/v4YNGiQ+Fzb9hkAmjVrlu/2q3fv3oWHhwcAwMvLC05OTnL7nZKSgosXL2rsfqenp0NPT/7Xor6+PmQyGQDt3Of3FWcfAwICkJSUhKtXr4rLnDx5EjKZDI0bN1Z5zMqQd2K+d+8e/v33X9jZ2cm9r437TKSrdCFfe5cycreAgABERkbK/ZGS90fM+wWC8k4ZeZ02HQ9AOTmftp0nlZETatsxeZey9j8gIAChoaHIyckRlzl+/Dhq1KihcZdtKSOXVOrxKPH0zVSonTt3CsbGxsLWrVuFW7duCZ9//rlgY2MjNyu/Jhs7dqxgbW0thISECHFxceIjPT1dXGbMmDGCu7u7cPLkSeHKlStCQECAEBAQoMaole/duzMIgnbu86VLlwQDAwNhyZIlwr1794Tt27cLZmZmwm+//SYus2zZMsHGxkY4ePCgEBERIXTv3l3jbjX+rqFDhwqVKlUSb6W5b98+wd7eXvjqq6/EZbRhn9+8eSOEhYUJYWFhAgDh22+/FcLCwsS7AhRnHzt06CD4+fkJFy9eFM6ePStUq1atXN8utLB9zs7OFrp16ya4uroK4eHhcr/b3r3rgabtMxF9mLbna+9SRu6Wdzvxdu3aCeHh4cI///wjVKxYUWNvJ/6+kuZ12nY8lJXzadN5Ulk5oSYfE1Xki0lJSYKjo6Pw2WefCTdu3BB27twpmJmZlcvbq6sil1Tm8WChpwz8+OOPgru7u2BkZCQ0atRIuHDhgrpDUhoABT62bNkiLpORkSGMGzdOsLW1FczMzISePXsKcXFx6gu6DLyfEGjrPv/111+Ct7e3YGxsLNSsWVPYuHGj3PsymUyYO3eu4OjoKBgbGwtt2rQRoqKi1BSt4lJSUoRJkyYJ7u7ugomJiVC5cmVh9uzZcr+gtWGfT506VeDP8dChQwVBKN4+vnr1ShgwYIBgYWEhWFlZCcOHDxfevHmjhr0pnsL2OTo6+oO/206dOiWuQ9P2mYgKp8352ruUlbs9evRI6Nixo2BqairY29sLU6dOFXJyclS8N2WjNHmdth0PZeR82nSeVFZOqMnHRFX54vXr14WPPvpIMDY2FipVqiQsW7ZMVbtYIqrKJZV1PCSCIAglGwNERERERERERETlEefoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQkVIJggAAWLBggdxrIiIiIlIP5mdEukUi8KeciJRo3bp1MDAwwL1796Cvr4+OHTuiZcuW6g6LiIiISGcxPyPSLRzRQ0RKNW7cOCQnJ2P16tXo2rVrsZKIVq1aQSKRQCKRIDw8vOyDfM+wYcPE7R84cEDl2yciIiIqSyXNz0qTmzGfIio/WOghIqXasGEDrK2tMXHiRPz11184c+ZMsfqNHj0acXFx8Pb2LuMI8/vhhx8QFxen8u0SERERKdOUKVPQq1evfO2lyc9KmpsxnyIqPwzUHQARaZcvvvgCEokECxYswIIFC4p9DbiZmRmcnJzKOLqCWVtbw9raWi3bJiIiIlKWS5cuoXPnzvnaS5OflTQ3Yz5FVH5wRA8RlcjSpUvFYbnvPr7//nsAgEQiAfB/k/3lvS6pVq1aYcKECZg8eTJsbW3h6OiITZs2IS0tDcOHD4elpSWqVq2KI0eOKKUfERERkabKzs6GoaEh/vvvP8yePRsSiQRNmjQR31dWfrZnzx74+PjA1NQUdnZ2aNu2LdLS0hSOn4iUi4UeIiqRCRMmIC4uTnyMHj0aHh4e+PTTT5W+rV9++QX29va4dOkSJkyYgLFjx6JPnz5o2rQprl27hnbt2uGzzz5Denq6UvoRERERaSIDAwOcO3cOABAeHo64uDj8888/St1GXFwcBgwYgBEjRuD27dsICQlBr169eAcvonKIhR4iKhFLS0s4OTnByckJa9euxbFjxxASEgJXV1elb8vX1xdz5sxBtWrVMHPmTJiYmMDe3h6jR49GtWrVMG/ePLx69QoRERFK6UdERESkifT09PDs2TPY2dnB19cXTk5OsLGxUeo24uLikJubi169esHT0xM+Pj4YN24cLCwslLodIlIcCz1EVCrz5s3Dr7/+ipCQEHh6epbJNurWrSs+19fXh52dHXx8fMQ2R0dHAEBCQoJS+hERERFpqrCwMPj6+pbZ+n19fdGmTRv4+PigT58+2LRpExITE8tse0RUeiz0EFGJzZ8/H9u2bSvTIg8AGBoayr2WSCRybXnXl8tkMqX0IyIiItJU4eHhZVro0dfXx/Hjx3HkyBHUrl0bP/74I2rUqIHo6Ogy2yYRlQ4LPURUIvPnz8cvv/xS5kUeIiIiIiq+yMhI1KtXr0y3IZFI0KxZMyxcuBBhYWEwMjLC/v37y3SbRFRyvL06ERXb4sWLsX79evz5558wMTFBfHw8AMDW1hbGxsZqjo6IiIhId8lkMkRFReHZs2cwNzdX+q3OL168iBMnTqBdu3ZwcHDAxYsX8eLFC9SqVUup2yEixXFEDxEViyAIWLlyJV68eIGAgAA4OzuLD05qTERERKReixcvxtatW1GpUiUsXrxY6eu3srJCaGgoOnXqhOrVq2POnDlYtWoVOnbsqPRtEZFiOKKHiIpFIpEgOTlZZdsLCQnJ1/bo0aN8be/f0rO0/YiIiIg02eDBgzF48OAyW3+tWrWUfst2IiobHNFDROXCunXrYGFhgcjISJVve8yYMbw1KBEREdE7SpqbMZ8iKj8kAr/WJiI1i42NRUZGBgDA3d0dRkZGKt1+QkICUlJSAADOzs4wNzdX6faJiIiIypPS5GbMp4jKDxZ6iIiIiIiIiIi0BC/dIiIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLTE/wNipJZgUjPSGgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHoAAAKSCAYAAACtCLygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwURdrHf9UzmZwkgXAkgQSi3IiCAREQFI0cIorigaILyiuuAoJ44InHLqJ4IV7oqqCryOoqqKyiiHKoERFE7ku5FAJqOHJOZqbr/aOnu6v6mCSQg4Tny2eY6bqe56mu7kw983QV45xzEARBEARBEARBEARBEHUepbYVIAiCIAiCIAiCIAiCIKoGcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1hBPa0fPXX3+hadOm2LVrV4XK33PPPRg/fnz1KkUQBEEQBFFPEb97LV26FIwxHD582LX8okWL0KVLF6iqWnNKEgRBEAQRkRPa0TN16lRceumlaNWqVYXK33nnnXjzzTfx66+/Vq9iBEEQBEEQ9ZDKfvcaOHAgoqKi8M4771SvYgRBEARBVBhvbSvgRnFxMV5//XV8/vnnFa7TuHFjDBgwAC+//DKefPLJatSOIAiCIAiifnEs370AYNSoUZg5cyauv/76atLMmVAohEAgUKMyCYIgCOJY8fl8UJSaibU5YR09n376KaKjo3H22WcD0P6YjxkzBl999RXy8vKQmZmJW2+9FRMmTJDqDRkyBPfffz85egiiEsyZMwetWrXCeeedV9uqVCsni50EQRDHgvW7l863336Le++9F9u2bUOXLl3w2muv4bTTTjPyhwwZgnHjxuGXX37BqaeeWu16cs6Rl5cX8ZEygiAIgjjRUBQFWVlZ8Pl81S7rhHX0rFixAtnZ2caxqqpo0aIF3n//faSkpOC7777DmDFjkJaWhquuusood9ZZZ+G3337Drl27Khx2TBAnK3PnzoXH4wGgfXF+/vnn0bFjR1xwwQW1rFnVcrLYSRAEcTxYv3vp3HXXXXjuueeQmpqK++67D0OGDMG2bdsQFRUFAMjMzESzZs2wYsWKGnH06E6epk2bIi4uDoyxapdJEARBEMeDqqrYt28f9u/fj8zMzGr/23XCOnp2796N9PR04zgqKgqPPPKIcZyVlYXc3Fy89957kqNHr7N7925y9BAnPdnZ2cjMzMT8+fMd86+++mq88MILmD17NmJjY3HrrbfWS+fH8dg5atQovPnmmwCATp06YcOGDcekw4wZM3D77bcbx3/88QcaN258TG0RBEFUB9bvXjoPPfQQLrzwQgDAm2++iRYtWmD+/Pm271+7d++udh1DoZDh5ElJSal2eQRBEARRVTRp0gT79u1DMBg0fiypLk7YxZhLSkoQExMjpb344ovIzs5GkyZNkJCQgFdffRV79uyRysTGxgLQnjMniJMZzjm2bNmCjh07Riyne5MZY0bUy4nKDTfcgJiYGIRCIdcygwYNQlxcHH777Tcp/XjsbNy4Mf7973/j8ccfBwBccskliIuLQ0FBgWudESNGwOfz4a+//gKgLVj673//G5dddlmlZBMEQdQUTt+9AKBnz57G50aNGqFdu3bYvHmzVCY2NrZGvnvpa/LExcVVuyyCIAiCqEr0R7YizWWqihPW0dO4cWMcOnTIOJ43bx7uvPNOjB49Gl988QXWrl2LG264AWVlZVK9/Px8AJq3jCBOZnbt2oXi4uKIjp7//Oc/aNq0KSZOnIipU6fizz//xJIlS2pQy8rRoUMH+P1+7Ny50zF/xYoVWLRoEW677Ta0aNHCSD9eO+Pj43Hdddfh4osvBqA5cUpKSlwjpYqLi/HRRx9h4MCBxi/O7du3x3XXXYfTTz+9wnIJgiBqEut3r8qQn59fo9+96HEtgiAIoq5Rk3+7TlhHT9euXbFp0ybj+Ntvv0WvXr1w6623omvXrmjdujV++eUXW70NGzYgKioKnTp1qkl1CeKEQ79+Ijl6rr32WgwfPhyAduO57bbbTuhHt3RbtmzZ4ph/7733olGjRrjnnnuk9Kq285JLLkGDBg0wd+5cx/yPPvoIRUVFGDFixDHLIAiCqGms3710vv/+e+PzoUOHsG3bNnTo0MFIKy0txS+//IKuXbvWiJ4EQRAEQUTmhHX0DBgwABs3bjR+WWrTpg1+/PFHfP7559i2bRsefPBBrFq1ylZvxYoV6NOnj/EIF0GcbMyfPx/Z2dnGI0J9+vTBiBEjcOTIEdc6o0aNqhM7UemOHusjAwDwv//9z9gZJjk52bF+VdkZGxuLyy+/HEuWLMHBgwdt+XPnzkWDBg1wySWXHLcsgiCImsL63Uvn0UcfxZIlS7BhwwaMGjUKjRs3xtChQ43877//HtHR0dIjXic6oVAIS5cuxbvvvoulS5fWSBg9oC0kPX78eJxyyimIjo5GRkYGhgwZIkWZfvfdd7jooovQsGFDxMTEoHPnznjmmWdsOjLGwBiTHHEA4Pf7kZKSAsYYli5daqQvW7YM559/Pho1aoS4uDi0adMGI0eOlKLjQ6EQnn32WXTu3BkxMTFo2LAhBg0ahG+//VaSMWfOHNe/tUT9Yvny5RgyZAjS09PBGMOCBQtqRcaoUaOMMR8VFYVmzZrhwgsvxBtvvAFVVatcJ+LEoKLnvVWrVkY5/SVG9+v51vvlxIkTbXODo0eP4v7770f79u0RExOD1NRU5OTk4MMPPwTn3Ci3Y8cO3HDDDWjRogWio6ORlZWFa665Bj/++GP1dEYlOWEdPZ07d8aZZ56J9957DwBw88034/LLL8fVV1+NHj164K+//sKtt95qqzdv3jzcdNNNNa0uQZwQPPnkk7j88svRrl07tG/fHi1btsR1112HuXPn4pZbbqlt9Y6bVq1aITY21hbRwznHAw88gIyMDIwbN65GdBkxYgSCwaBxj9LJz8/H559/jssuu4wczgRB1Cms3710Hn/8cUyYMAHZ2dnIy8vDJ598Im0N++6772LEiBF1Zt2cDz/8EK1bt0a/fv1w7bXXol+/fmjdujU+/PDDapW7a9cuZGdn46uvvsKTTz6J9evXY9GiRejXrx/Gjh0LQPux5txzz0WLFi3w9ddfY8uWLZgwYQL++c9/Yvjw4dIkAwAyMjIwe/ZsKW3+/PlISEiQ0jZt2oSBAweiW7duWL58OdavX4/nn38ePp/PcCBxzjF8+HA8+uijmDBhAjZv3oylS5ciIyMD5513XrVM8IkTn6KiIpxxxhl48cUXK133vPPOw5w5c6pMxsCBA7F//37s2rULn332Gfr164cJEybg4osvRjAYrLR+RN2gouf90Ucfxf79+43XTz/9JLUTExODyZMnR5R1+PBh9OrVC2+99RbuvfderFmzBsuXL8fVV1+Nu+++2/jh/Mcff0R2dja2bduGV155BZs2bcL8+fPRvn173HHHHVXfCccCP4FZuHAh79ChAw+FQhUq/+mnn/IOHTrwQCBQzZoRxInHDz/8wBlj/M477+Scc962bVt+zTXXcM45v/DCC7nX6+VFRUW1qWKV0LVrV96zZ08p7d133+UA+OzZs6tc3siRI3nLli1t6cFgkKelpdl0mTVrFgfAP//8c8f2HnroIQ6A//HHH1WuK0EQxPFS2e9ef/zxB2/UqBH/9ddfq1kzjZKSEr5p0yZeUlJyTPU/+OADzhjjQ4YM4bm5ubygoIDn5ubyIUOGcMYY/+CDD6pYY5NBgwbx5s2b88LCQlveoUOHeGFhIU9JSeGXX365Lf/jjz/mAPi8efOMNAD8gQce4ImJiby4uNhIv/DCC/mDDz7IAfCvv/6ac875s88+y1u1ahVRv3nz5nEA/OOPP7blXX755TwlJcXQffbs2TwpKakiZhP1CAB8/vz5FS5/7rnnVvq7mZuMkSNH8ksvvdSWvmTJEg6A/+tf/6qUHKJuUNHz3rJlS/7ss8+6ttOyZUt+2223cZ/Px//3v/8Z6RMmTODnnnuucXzLLbfw+Ph4/vvvv9vaKCgo4IFAgKuqyjt16sSzs7Md/1YeOnTIVY/j/RtWGU7YiB4AGDx4MMaMGYPff/+9QuWLioowe/ZseL0n7K7xBFFtPPHEE2jSpAkeffRRlJSUYMeOHTjjjDMAAL1790YwGHR8zKimUFUVpaWlFXpxyy+WIh07dsTWrVuN42AwiClTpqBz587429/+VhOmAAA8Hg+GDx+O3Nxc7Nq1y0ifO3cumjVrdkKvdUQQBOFGZb977dq1Cy+99BKysrKqWbPjJxQK4Y477sDFF1+MBQsW4Oyzz0ZCQgLOPvtsLFiwABdffDHuvPPOanmMKz8/H4sWLcLYsWMRHx9vy09OTsYXX3yBv/76C3feeactf8iQIWjbti3effddKT07OxutWrXCBx98AADYs2cPli9fjuuvv14ql5qaiv3792P58uWuOs6dOxdt27bFkCFDbHl33HEH/vrrLyxevLhC9hLlwzlHUVFRjb8ifceqi5x//vk444wzqj0ir77iNC7KyspQVFQEv9/vWFZ8ZCoQCKCoqAilpaUVKltVHMt5z8rKwt///nfce++9jo/7qaqKefPmYcSIEUhPT7flJyQkwOv1Yu3atdi4cSPuuOMOKIrdnXKiPNZ6Qjt6AO25uYyMjAqVveKKK9CjR49q1oggTjyCwSAWLVqEQYMGITY2Fhs2bICqqsYOT0VFRQCAhg0b1pqOy5cvR2xsbIVeoiPHSocOHZCfn284rWbPno3t27dj2rRpjjfb6kRfbFlflPm3337DihUrMHz48BN+q3qCIAg3KvPdq1u3brj66qurWaOqYcWKFdi1axfuu+8+298LRVFw7733YufOnVixYkWVy96xYwc452jfvr1rmW3btgGAtNC1SPv27Y0yIjfeeCPeeOMNANraORdddJFtB7Qrr7wS11xzDc4991ykpaXhsssuwwsvvICjR49K8t1k6+lO8oljo7i4GAkJCTX+Ki4urm3Tq5z27dtLP7oRFUcfF3/++aeR9uSTTyIhIcG2HELTpk2RkJCAPXv2GGkvvvgiEhISMHr0aKlsq1atkJCQIK2rWZHH+CqD9bxPnjxZGuszZ8601XnggQewc+dOvPPOO7a8P//8E4cOHYp4nwaA7du3G/JPZCj0hSDqATt27EBRURE6d+4MAFi3bh0AGBE9a9euRcuWLZGUlFRrOrZv3962joAbaWlprnnigsxJSUn4xz/+gb59+2Lw4MFVomdlyM7ORvv27fHuu+/ivvvuw7vvvgvOOe22RRAEcQKyf/9+AMBpp53mmK+n6+WqkspEUVQ24uK6667DPffcg19//RVz5sxxnNx4PB7Mnj0b//znP/HVV19h5cqVeOyxx/DEE0/ghx9+MP7u1rdoD6Jmeeyxx/DYY48ZxyUlJfj+++8lh8GmTZuQmZlZpXI55zW6bTVxYmA973fddRdGjRplHDdu3NhWp0mTJrjzzjsxZcoU248UFb3/1ZX7JDl6CKIeoO+QooeD//zzz2jcuDHS09Px559/YtmyZfj73/9emyoiNTVVuvkeK+IW62vWrMHevXvx/vvvH3e7x8qIESPw4IMPYt26dZg7dy7atGmD7t2715o+BEEQhDO6M2PDhg04++yzbfkbNmyQylUlbdq0AWPMtpmASNu2bQFoP2T06tXLlr9582bjb6BISkoKLr74YowePRqlpaUYNGgQCgoKHGU0b94c119/Pa6//nr84x//QNu2bTFr1iw88sgjaNu2reOulrpsUUfi+ImLi0NhYWGtyK0u/v73v+Oqq64yjkeMGIFhw4bh8ssvN9KcHok5XjZv3lwnHh89EdHHoDgu7rrrLkycONG2HIoeTS9uNjJ27FjcdNNNtkh2PdJGLFsV8wAR63lv3LgxWrduXW69SZMm4aWXXsJLL70kpTdp0gTJyckR79OAeR/csmULunbtegya1wwn/KNbBEGUT/PmzQEAubm5ALSIHj2a5/bbb4eiKJg4cWJtqVeltG7dGj6fD6tWrcK0adNw+eWX1+ojm3r0zpQpU7B27VqK5iEIgjhB6dOnD1q1aoXHHnvMtj6DqqqYNm0asrKy0KdPnyqX3ahRIwwYMAAvvvii8Ti1yOHDh9G/f380atQITz/9tC3/448/xvbt23HNNdc4tn/jjTdi6dKl+Nvf/lbhR4cbNmyItLQ0Q5/hw4dj+/bt+OSTT2xln376aaSkpODCCy+sUNtE+TDGEB8fX+Ov6ox8adSoEVq3bm28YmNj0bRpUymtqtdS/eqrr7B+/XoMGzasSts9WXAaFz6fD/Hx8YiOjnYsKz76GhUVhfj4eMTExFSobFVxPOc9ISEBDz74IKZOnSo5xRVFwfDhw/HOO+9g3759tnqFhYUIBoPo0qULOnbsiKefftpxrZ/Dhw9XWqfqgBw9BFEPyMzMxHnnnYd///vfuPvuu/Hzzz/D7/djyJAhePfdd/Haa68hKysLqqritttuQ+PGjZGcnIzu3btLz+Q6sXPnTgwePBgpKSlIS0uTQsIZY3j++eeRmZmJ1NRUPPnkk9VtKjweD9q2bYs5c+bg0KFDUohwbZCVlYVevXrho48+AgBy9BAEQZygeDwePP3001i4cCGGDh2K3NxcFBQUIDc3F0OHDsXChQvx1FNPVdsaay+++CJCoRDOOussfPDBB9i+fTs2b96MmTNnomfPnoiPj8crr7yCjz76CGPGjMG6deuwa9cuvP766xg1ahSuuOIKKVpCZODAgfjjjz/w6KOPOua/8soruOWWW/DFF1/gl19+wcaNGzF58mRs3LjRWHx5+PDhuOyyyzBy5Ei8/vrr2LVrF9atW4ebb74ZH3/8MV577TVpIelQKIS1a9dKL7eIIKLuUlhYaJxfQPteuHbtWmmdlpqS4ff7kZeXh99//x1r1qzBY489hksvvRQXX3xxjW7IQdQs1XHex4wZg6SkJGOdTZ2pU6ciIyMDPXr0wFtvvYVNmzZh+/bteOONN9C1a1cUFhaCMYbZs2dj27Zt6NOnDz799FP8+uuvWLduHaZOnYpLL720Ksw+fqp9Xy+CIGqE/fv384svvpjHxMRwANzn8/HevXvzJUuWGGU+++wznp2dzY8cOcKDwSBfvXo1LygocG0zEAjwDh068IceeoiXlJTwI0eO8B9//NHIB8D79+/Pjxw5wjdv3sxTU1P5l19+Wa12cs75VVddxQHwMWPGVLsst+3VRV588UUOgJ911lnltkfbqxMEQRw7VbE17QcffMBbtWrFARivrKysat1aXWffvn187NixvGXLltzn8/HmzZvzSy65xNgGnXPOly9fzgcMGMATExO5z+fjnTp14k899RQPBoNSW4iw1fWhQ4ek7dXXrFnDr7vuOp6VlcWjo6N5SkoK79u3r20r9UAgwJ988kneqVMn7vP5eGJiIh8wYAD/5ptvpHKzZ8+W+k9/nXrqqcfdR8SJxddff+14rkeOHFlu3Ypur14RGSNHjjTSvV4vb9KkCc/JyeFvvPGG4xbXRP2goue9IturW/Pnzp3LAUjbq3PO+eHDh/k999zD27Rpw30+H2/WrBnPycnh8+fP56qqGuW2bt3K//a3v/H09HTu8/l4y5Yt+TXXXMPXrFnjqkdNbq/OOK8jqwkRBFEhFi5ciCFDhuCnn35Cly5dpLwlS5bg1ltvxb///W9079693PDdb7/9FsOHD8fu3bsdd7RijOHrr7/GeeedB0Bbyf7gwYN49dVXq8qcWmfUqFH46quvsGbNGni93mPeMrG0tBSFhYWYPn06nnzySfzxxx+Oi8QRBEEQ7pSWlmLnzp3IysqyPSpQGUKhEFasWIH9+/cjLS0Nffr0od0SCYIgiGqlqv6GVQRajJkg6hlbtmwBYwzt2rWz5V1wwQX4+9//jjFjxiAvLw/XXXcdpk2b5vrM7G+//YaWLVtG3LZc3II3IyMDP//88/EbcYKxd+9eNGnSBJ06dTIW66wss2bNwu23317FmhEEQRDHgsfjMX6kIAiCIIj6Bjl6CKKesWXLFmRmZkqr3IvcfvvtuP3227F3715cdNFFOO2001xXwc/IyMDu3bsjblu5d+9enHrqqcbn6titpDa5++67cd111wHQFm87VoYNGyZt6VubW90TBEEQBEEQBFF/IUcPQdQztmzZgvbt2zvm/fjjj+Cco2vXrmjQoAGioqKkUHXd4TNnzhwAwFlnnYUGDRrgH//4B+6++26UlZVh+/btyM7ONuo88cQTOPPMM7F//3688cYbeOutt6rNttqgY8eOjtvZVpaMjAwp+okgCIIgCIIgCKI6oF23CKKe8c0332DRokWOeUeOHMGNN96I5ORktGvXDr1798a1115r5P/222/o3bu3cez1erFw4UJ89913SEtLQ7t27Ywt3HX0qKC+ffvitttuQ05OTvUYRhAEQRAEQRAEQZQLLcZMEAQAIBgM4vTTT8fPP//sumaPFcYY9u7dixYtWlSzdgRBEARRswtZEgRBEERVQosxEwRR43i9XmzatKm21SAIgiCIcqHfKQmCIIi6Rk3+7aJHtwiCIAiCIIg6gR5xWlxcXMuaEARBEETlKCsrAwBpjdTqgiJ6CII4ZugXVYIgCKIm8Xg8SE5OxsGDBwEAcXFxrrtCEgRBEMSJgqqq+OOPPxAXFwevt/rdMOToIQiCIAiCIOoMqampAGA4ewiCIAiiLqAoCjIzM2vkBwpajJkgCIIgCIKoc4RCIQQCgdpWgyAIgiAqhM/ng6LUzOo55OghCIIgCIIgCIIgCIKoJ9BizARBEARBEARBEARBEPUEcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD21xPLlyzFkyBCkp6eDMYYFCxZUSbtLly7FmWeeiejoaLRu3Rpz5sxxLfv444+DMYaJEydWiezymDZtGrp3744GDRqgadOmGDp0KLZu3Volbb///vto3749YmJi0LlzZ3z66aeuZf/+97+DMYYZM2ZUiexIvPzyyzj99NORmJiIxMRE9OzZE5999tlxt3ui2mulKsfYiWzzww8/DMaY9Grfvv1xt3si2/z777/juuuuQ0pKCmJjY9G5c2f8+OOPx93uiXoPa9Wqle0cM8YwduzY42r3RD7HBEEQBEEQRN2EHD21RFFREc444wy8+OKLVdbmzp07MXjwYPTr1w9r167FxIkT8X//93/4/PPPbWVXrVqFV155BaeffnqVyS+PZcuWYezYsfj++++xePFiBAIB9O/fH0VFRcfV7nfffYdrrrkGo0ePxk8//YShQ4di6NCh2LBhg63s/Pnz8f333yM9Pf24ZFaUFi1a4PHHH8fq1avx448/4vzzz8ell16KjRs3HnObJ7K9IlU5xuqCzZ06dcL+/fuN1zfffHNc7Z3INh86dAi9e/dGVFQUPvvsM2zatAlPP/00GjZseFztnsj3sFWrVknnd/HixQCAK6+88pjbPJHPMUEQBEEQBFGH4UStA4DPnz9fSistLeV33HEHT09P53Fxcfyss87iX3/9dcR27r77bt6pUycp7eqrr+YDBgyQ0goKCnibNm344sWL+bnnnssnTJhQBVZUnoMHD3IAfNmyZUbaoUOH+OjRo3njxo15gwYNeL9+/fjatWsjtnPVVVfxwYMHS2k9evTgN998s5T222+/8ebNm/MNGzbwli1b8meffbbKbKkMDRs25K+99hrnvP7aG2mM1UebH3roIX7GGWe45tc3mydPnszPOeeciGXq+z1swoQJ/NRTT+WqqnLO6985JgiCIAiCIOouFNFzgjJu3Djk5uZi3rx5WLduHa688koMHDgQ27dvd62Tm5uLnJwcKW3AgAHIzc2V0saOHYvBgwfbytY0R44cAQA0atTISLvyyitx8OBBfPbZZ1i9ejXOPPNMXHDBBcjPz3dtpyJ2q6qK66+/HnfddRc6depUxZZUjFAohHnz5qGoqAg9e/YEUH/tjTTG6qvN27dvR3p6Ok455RSMGDECe/bsMfLqm80ff/wxunXrhiuvvBJNmzZF165d8a9//UsqU5/vYWVlZXj77bdx4403gjEGoP6dY4IgCIIgCKLu4q1tBQg7e/bswezZs7Fnzx4jTP/OO+/EokWLMHv2bDz22GOO9fLy8tCsWTMprVmzZjh69ChKSkoQGxuLefPmYc2aNVi1alW12xEJVVUxceJE9O7dG6eddhoA4JtvvsEPP/yAgwcPIjo6GgDw1FNPYcGCBfjvf/+LMWPGOLblZndeXp5x/MQTT8Dr9eK2226rJovcWb9+PXr27InS0lIkJCRg/vz56NixY721N9IYq6829+jRA3PmzEG7du2wf/9+PPLII+jTpw82bNiAn3/+ud7Z/Ouvv+Lll1/GpEmTcN9992HVqlW47bbb4PP5MHLkyHp/D1uwYAEOHz6MUaNGAai/45ogCIIgCIKom5Cj5wRk/fr1CIVCaNu2rZTu9/uRkpICAEhISDDSr7vuOsyaNavcdvfu3YsJEyZg8eLFiImJqVqlK8nYsWOxYcMGaR2Tn3/+GYWFhYaNOiUlJfjll1+wZ88edOzY0Ui/7777cN9995Ura/Xq1XjuueewZs0a49f3mqRdu3ZYu3Ytjhw5gv/+978YOXIkli1bVi/tLW+M1UebAWDQoEHG59NPPx09evRAy5Yt8d5776G0tLTe2ayqKrp162Y4bLp27YoNGzZg1qxZGDlyZL2/h73++usYNGiQ4cSqr+OaIAiCIAiCqJuQo+cEpLCwEB6PB6tXr4bH45Hy9MnR2rVrjbTExEQAQGpqKg4cOCCVP3DgABITExEbG4vVq1fj4MGDOPPMM438UCiE5cuX44UXXoDf77fJqw7GjRuHhQsXYvny5WjRooWRXlhYiLS0NCxdutRWJzk5GcnJyZLd+iNfbnanpqYCAFasWIGDBw8iMzPTyA+FQrjjjjswY8YM7Nq1q+qMc8Dn86F169YAgOzsbKxatQrPPfccTjnllHpnb3ljbOrUqfXOZieSk5PRtm1b7NixA8nJyfXO5rS0NMlxAQAdOnTABx98AKB+38N2796NL7/8Eh9++KGRVl/vXQRBEARBEETdhBw9JyBdu3ZFKBTCwYMH0adPH8cyuuNApGfPnrateRcvXmysB3PBBRdg/fr1Uv4NN9yA9u3bY/LkydU+QeKcY/z48Zg/fz6WLl2KrKwsKf/MM89EXl4evF4vWrVq5diGm91LliyRtlgW7b7++usd18G4/vrrccMNNxyfUceAqqrw+/310t7yxtj+/fvrnc1OFBYW4pdffsH111+PDh061Dube/fuja1bt0pp27ZtQ8uWLQHU33sYAMyePRtNmzbF4MGDjbT6eC0TBEEQBEEQdZjaXg36ZKWgoID/9NNP/KeffuIA+DPPPMN/+uknvnv3bs455yNGjOCtWrXiH3zwAf/111/5ypUr+WOPPcYXLlzo2uavv/7K4+Li+F133cU3b97MX3zxRe7xePiiRYtc69TkjjW33HILT0pK4kuXLuX79+83XsXFxZxzzlVV5eeccw4/44wz+Oeff8537tzJv/32W37ffffxVatWubb77bffcq/Xy5966im+efNm/tBDD/GoqCi+fv161zo1tXPNPffcw5ctW8Z37tzJ161bx++55x7OGONffPFFvbTXCXGM1Veb77jjDr506VLDnpycHN64cWN+8ODBemnzDz/8wL1eL586dSrfvn07f+edd3hcXBx/++23jTL18R4WCoV4ZmYmnzx5spReH88xQRAEQRAEUXchR08t8fXXX3MAttfIkSM555yXlZXxKVOm8FatWvGoqCielpbGL7vsMr5u3bpy2+3SpQv3+Xz8lFNO4bNnz45YviYnSU72ApB0PHr0KB8/fjxPT0/nUVFRPCMjg48YMYLv2bMnYtvvvfceb9u2Lff5fLxTp078f//7X8TyNTVZuvHGG3nLli25z+fjTZo04RdccAH/4osvjPz6Zq8T1jFWH22++uqreVpaGvf5fLx58+b86quv5jt27DDy66PNn3zyCT/ttNN4dHQ0b9++PX/11Vel/Pp4D/v88885AL5161ZbXn08xwRBEARBEETdhHHOea2EEhEEQRAEQRDEMRIKhRAIBGpbDYIgCIKoED6fD4qi1IgsWqOHIAiCIAiCqDNwzpGXl4fDhw/XtioEQRAEUWEURUFWVhZ8Pl+1y6KIHoIgCIIgCKLOsH//fhw+fBhNmzZFXFwcGGO1rRJBEARBRERVVezbtw9RUVHIzMys9r9dFNFDEARBEARB1AlCoZDh5ElJSaltdQiCIAiiwjRp0gT79u1DMBhEVFRUtcqqmQfECIIgCIIgCOI40dfkiYuLq2VNCIIgCKJy6I9shUKhapdFjh6CIAiCIAiiTkGPaxEEQRB1jZr820WOHoIgCIIgCIIgCIIgiHoCOXrqOH6/Hw8//DD8fn9tq1JjnGw2n2z2AmTzyQLZTBDEycK0adPQvXt3NGjQAE2bNsXQoUOxdetWqUxpaSnGjh2LlJQUJCQkYNiwYThw4IBUZs+ePRg8eDDi4uLQtGlT3HXXXQgGgzVpClGP+f3333HdddchJSUFsbGx6Ny5M3788Ucjn3OOKVOmIC0tDbGxscjJycH27dulNvLz8zFixAgkJiYiOTkZo0ePRmFhYU2bQtQzli9fjiFDhiA9PR2MMSxYsMBWpqrG57p169CnTx/ExMQgIyMD06dPr07Tqg1y9NRx/H4/HnnkkZNq0nCy2Xyy2QuQzScLZDNBECcLy5Ytw9ixY/H9999j8eLFCAQC6N+/P4qKiowyt99+Oz755BO8//77WLZsGfbt24fLL7/cyA+FQhg8eDDKysrw3Xff4c0338ScOXMwZcqU2jCJqGccOnQIvXv3RlRUFD777DNs2rQJTz/9NBo2bGiUmT59OmbOnIlZs2Zh5cqViI+Px4ABA1BaWmqUGTFiBDZu3IjFixdj4cKFWL58OcaMGVMbJhH1iKKiIpxxxhl48cUXXctUxfg8evQo+vfvj5YtW2L16tV48skn8fDDD+PVV1+tVvuqBU7UaY4cOcIB8CNHjtS2KjXGyWbzyWYv52TzyQLZTBBEZSkpKeGbNm3iJSUlta3KcXHw4EEOgC9btoxzzvnhw4d5VFQUf//9940ymzdv5gB4bm4u55zzTz/9lCuKwvPy8owyL7/8Mk9MTOR+v99Rjt/v52PHjuWpqak8OjqaZ2Zm8scee6waLSPqKpMnT+bnnHOOa76qqjw1NZU/+eSTRtrhw4d5dHQ0f/fddznnnG/atIkD4KtWrTLKfPbZZ5wxxn///XfXdh966CGekZHBfT4fT0tL4+PHj68iq4j6CAA+f/58Ka2qxudLL73EGzZsKN1TJ0+ezNu1a+eqT35+Pr/22mt548aNeUxMDG/dujV/4403HMvW5N8w2l6dIAiCIAiCqLNwzlFcXFzjcuPi4o55Yc0jR44AABo1agQAWL16NQKBAHJycowy7du3R2ZmJnJzc3H22WcjNzcXnTt3RrNmzYwyAwYMwC233IKNGzeia9euNjkzZ87Exx9/jPfeew+ZmZnYu3cv9u7de0w6E8cG5xzBkrJake2N9VV4jH788ccYMGAArrzySixbtgzNmzfHrbfeiptuugkAsHPnTuTl5UljNCkpCT169EBubi6GDx+O3NxcJCcno1u3bkaZnJwcKIqClStX4rLLLrPJ/eCDD/Dss89i3rx56NSpE/Ly8vDzzz8fp+VEReGcA6Gav38CADzHfg+1UlXjMzc3F3379jV2xwK0++wTTzyBQ4cOSRFuOg8++CA2bdqEzz77DI0bN8aOHTtQUlJSJXYdD+ToOU5KS0tRVlY7N29ACy8T308GTjabTzZ7AbL5ZIFsPvHw+XyIiYmpbTUIolIUFxcjISG5xuUWFh5GfHx8peupqoqJEyeid+/eOO200wAAeXl58Pl8SE5Olso2a9YMeXl5RhnRyaPn63lO7NmzB23atME555wDxhhatmxZaX2J4yNYUoZXuk6oFdk3//QcouKiK1T2119/xcsvv4xJkybhvvvuw6pVq3DbbbfB5/Nh5MiRxhhzGoPiGG3atKmU7/V60ahRo4hjNDU1FTk5OYiKikJmZibOOuusyppKHCuhYqjvNS2/XDWgXHUQ8Fb+HupEVY3PvLw8ZGVl2drQ85wcPXv27EHXrl0NB1KrVq2O36AqgBw9x0FpaSmSYhuiDKXlF65mMjIyaluFGudks/lksxcgm08WyOYTh9TUVOzcuZOcPQRRjYwdOxYbNmzAN998U+2yRo0ahQsvvBDt2rXDwIEDcfHFF6N///7VLpeoe6iqim7duuGxxx4DAHTt2hUbNmzArFmzMHLkyGqTe+WVV2LGjBk45ZRTMHDgQFx00UUYMmQIvF6aphJ1g1tuuQXDhg3DmjVr0L9/fwwdOhS9evWqbbXI0XM8lJWVoQylOAcXwcs0bzlTGMAU8zMA6CFpCjM+M0Ux88TP4XcWbgPWNhzLW2RIeYo9DcyxPDfSYGnDLC+VEeWLeYI+jmlC+5yZn21tKfZ2reU5TJN0W7hgpq08E2VEyFPc2zBgsiz39i39YMlzLu/QLlzSmKUfymvDRaZjmsUmHdc0S1uR9AHjDmkO7YvlYUEqz+1tCXXtesjlmVsbsJYztWAR2mDGu5Msbqoolgu/K7Y2uGueAm6qK+TZyonlrWlCeUXQzS1PYRwKrGmqUNeUped5mD1Nv/14oOuqGm2a5YU04TMAeJhqyPIYddVwm+JnQaa1jfCxh6mGbkZbUI3boSlbFerIOnrE9oW2PJb+8Ah6Mase4IJuXEiD3H+6XgzwhM+WmcagGGnyu5anWNIUKGA4WqCiZfYulJWVkaOHqFPExcWhsPBwrcitLOPGjTMWAG3RooWRnpqairKyMhw+fFiK6jlw4ABSU1ONMj/88IPUnr4rl17GyplnnomdO3fis88+w5dffomrrroKOTk5+O9//1tp3Yljwxvrw80/PVdrsitKWloaOnbsKKV16NABH3zwAQBzjB04cABpaWlGmQMHDqBLly5GmYMHD0ptBINB5Ofnu47RjIwMbN26FV9++SUWL16MW2+9FU8++SSWLVuGqKioCutPHCOeOC2yppZkVxVVNT5TU1Ntux2Wd58dNGgQdu/ejU8//RSLFy/GBRdcgLFjx+Kpp56qEtuOFXL0VAFeRMHLtBsRY8x09IjOFi3BdPRIaRbHjVJZRw+T6sp5Do4el/LH7uhxz6t2R484Ia8hR0+5DhknR0xVOXrcykMuX22OHqc0HJtNx+ToscisVUcPq7ijx17OydHj7swp19FjXM5V5+gRHTmVdfQ45Tk7emSHhnIMjh6bc4aJDhO7o8fWRjmOHo9RjoXrMeOzqaN+zASnCxfSrA4hCDrq7Tul2R09nko6esw8JuQ5OXpoE06i7sIYO6ZHqGoSzjnGjx+P+fPnY+nSpbZHA7KzsxEVFYUlS5Zg2LBhAICtW7diz5496NmzJwCgZ8+emDp1Kg4ePGg8frB48WIkJibaJugiiYmJuPrqq3H11VfjiiuuwMCBA5Gfn2+sD0RUL4yxCj8+VZv07t0bW7duldK2bdtmPO6XlZWF1NRULFmyxJg4Hz16FCtXrsQtt9wCQBujhw8fxurVq5GdnQ0A+Oqrr6CqKnr06OEqOzY2FkOGDMGQIUMwduxYtG/fHuvXr8eZZ55ZDZYSIoyxKnt8qjapqvHZs2dP3H///QgEAoajcfHixWjXrp3jY1s6TZo0wciRIzFy5Ej06dMHd911Fzl6CIIgCIIgCKI+M3bsWMydOxcfffQRGjRoYKwHkZSUhNjYWCQlJWH06NGYNGkSGjVqhMTERIwfPx49e/bE2WefDQDo378/OnbsiOuvvx7Tp09HXl4eHnjgAYwdOxbR0c6OhGeeeQZpaWno2rUrFEXB+++/j9TUVNtaQARx++23o1evXnjsscdw1VVX4YcffsCrr75qbCvNGMPEiRPxz3/+E23atEFWVhYefPBBpKenY+jQoQC0CKCBAwfipptuwqxZsxAIBDBu3DgMHz4c6enpjnLnzJmDUCiEHj16IC4uDm+//TZiY2NpPSlCorCwEDt27DCOd+7cibVr16JRo0bIzMyssvF57bXX4pFHHsHo0aMxefJkbNiwAc899xyeffZZV92mTJmC7OxsdOrUCX6/HwsXLkSHDh2qtT8qAjl6CIIgCIIgCKIaefnllwEA5513npQ+e/ZsjBo1CgDw7LPPQlEUDBs2DH6/HwMGDMBLL71klPV4PFi4cCFuueUW9OzZE/Hx8Rg5ciQeffRRV7kNGjTA9OnTsX37dng8HnTv3h2ffvopFIWi+AiZ7t27Y/78+bj33nvx6KOPIisrCzNmzMCIESOMMnfffTeKioowZswYHD58GOeccw4WLVokPe77zjvvYNy4cbjggguM8Txz5kxXucnJyXj88ccxadIkhEIhdO7cGZ988glSUlKq1V6ibvHjjz+iX79+xvGkSZMAACNHjsScOXMAVM34TEpKwhdffIGxY8ciOzsbjRs3xpQpUzBmzBhX3Xw+H+69917s2rULsbGx6NOnD+bNm1fFPVB5GOfctuwFUTGOHj2KpKQknIdL4VUirdEjPIZVkTV66NEtenTLqd1I5SGXp0e3ZD3o0S16dMvQ45gf3arYGj2eiGv0qFL78mNaFVujpzof3TpaEELDtr/iyJEjSExMBEGciJSWlmLnzp3IysqitaQIgiCIOkVN/g0jdz5BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1BHL0EARBEARBEARBEARB1BPI0UMQBEEQBEEQBEEQBFFPIEcPQRAEQRAEQRAEQRBEPYEcPQRBEARBEARBEARBEPUEcvQQBEEQBEEQRA3x+OOPgzGGiRMnSumlpaUYO3YsUlJSkJCQgGHDhuHAgQNSmT179mDw4MGIi4tD06ZNcddddyEYDNag9kR9JRQK4cEHH0RWVhZiY2Nx6qmn4h//+Ac450YZzjmmTJmCtLQ0xMbGIicnB9u3b5fayc/Px4gRI5CYmIjk5GSMHj0ahYWFNW0OQZz0kKOHIAiCIAiCIGqAVatW4ZVXXsHpp59uy7v99tvxySef4P3338eyZcuwb98+XH755UZ+KBTC4MGDUVZWhu+++w5vvvkm5syZgylTptSkCUQ95YknnsDLL7+MF154AZs3b8YTTzyB6dOn4/nnnzfKTJ8+HTNnzsSsWbOwcuVKxMfHY8CAASgtLTXKjBgxAhs3bsTixYuxcOFCLF++HGPGjKkNkwjipIYcPQRBEARBEARRzRQWFmLEiBH417/+hYYNG0p5R44cweuvv45nnnkG559/PrKzszF79mx89913+P777wEAX3zxBTZt2oS3334bXbp0waBBg/CPf/wDL774IsrKyhxllpWVYdy4cUhLS0NMTAxatmyJadOmVbutRN3ju+++w6WXXorBgwejVatWuOKKK9C/f3/88MMPALRonhkzZuCBBx7ApZdeitNPPx1vvfUW9u3bhwULFgAANm/ejEWLFuG1115Djx49cM455+D555/HvHnzsG/fPke5nHM8/PDDyMzMRHR0NNLT03HbbbfVlNkEUW8hRw9BEARBEARRZ+Gco6TIX+Mv8ZGWijB27FgMHjwYOTk5trzVq1cjEAhIee3bt0dmZiZyc3MBALm5uejcuTOaNWtmlBkwYACOHj2KjRs3OsqcOXMmPv74Y7z33nvYunUr3nnnHbRq1apSehPHB+ccamlJrbwqM0Z79eqFJUuWYNu2bQCAn3/+Gd988w0GDRoEANi5cyfy8vKkMZqUlIQePXpIYzQ5ORndunUzyuTk5EBRFKxcudJR7gcffIBnn30Wr7zyCrZv344FCxagc+fOle5ngiBkvLWtAEEQBEEQBEEcK6XFZbi46cQal7vw4AzExkdXqOy8efOwZs0arFq1yjE/Ly8PPp8PycnJUnqzZs2Ql5dnlBGdPHq+nufEnj170KZNG5xzzjlgjKFly5YV0peoOri/FLuutTv3aoJWc78Ei4mtUNl77rkHR48eRfv27eHxeBAKhTB16lSMGDECgDnGnMagOEabNm0q5Xu9XjRq1CjiGE1NTUVOTg6ioqKQmZmJs846q1J2EgRhhxw9VUAQAYBrwVGMM+iBUtpnAAi/c2Z8Zlwx88TPAKAyMGZJY+K7YkkTPtvKK/Y0MPMzN/O4kQZLG2Z5qYwoX8xTYS8v6Giay2B2kUNbCmxtWMsbv1MwAIouE+7lzVMQOU9xb8OAybLc27f0gyXPubxDu3BJY5Z+KK8NF5mOaRabdFzTLG1F0geMO6Q5tC+WhwWpPLe3JdS16yGXZ25twFrO1IJFaIMZ706yuKmiWC78zm1tcNc8Dm6oqwp5iqWcfqyA29OE8oqgm1uewjgUWNNUoa4pS8/zMHta+JKFB7quqtGmWV5IEz4DgIephiyPUVcNtyl+FmRa2wgfe5hq6Ga0BdUIezVlq0IdWUeP2L7QlsfSHx5BL2bVA1zQjQtpkPtP14sBnvDZMtMYFCNNftfyYEnT2j1aoIIgiKpn7969mDBhAhYvXoyYmJgalT1q1ChceOGFaNeuHQYOHIiLL74Y/fv3r1EdiLrBe++9h3feeQdz585Fp06dsHbtWkycOBHp6ekYOXJktcm98sorMWPGDJxyyikYOHAgLrroIgwZMgReL01TCeJ4oCvoOPD5fEhNTcU3eZ+aM+1QrapEEARBEMdMamoqfD5fbatBEJUiJs6HhQdn1IrcirB69WocPHgQZ555ppEWCoWwfPlyvPDCC/D7/UhNTUVZWRkOHz4sRfUcOHAAqampALTrU18vRczX85w488wzsXPnTnz22Wf48ssvcdVVVyEnJwf//e9/K2MqcRyw6Bi0mvtlrcmuKHfddRfuueceDB8+HADQuXNn7N69G9OmTcPIkSONMXbgwAGkpaUZ9Q4cOIAuXboA0MbhwYMHpXaDwSDy8/Ndx2hGRga2bt2KL7/8EosXL8att96KJ598EsuWLUNUVFRlzCUIQoAcPcdBTEwMdu7c6boAHkEQBEHUJXw+X41HHBDE8cIYq/AjVLXBBRdcgPXr10tpN9xwA9q3b4/JkyfD4/EgOzsbUVFRWLJkCYYNGwYA2Lp1K/bs2YOePXsCAHr27ImpU6fi4MGDxuMxixcvRmJiIjp27OgqPzExEVdffTWuvvpqXHHFFRg4cCDy8/PRqFGjarKYEGGMVfjxqdqkuLgYiiIv3+rxeKCqWrRnVlYWUlNTsWTJEsOxc/ToUaxcuRK33HILAG2MHj58GKtXr0Z2djYA4KuvvoKqqujRo4er7NjYWAwZMgRDhgzB2LFj0b59e6xfv15yjhIEUTnI0XOcxMTE0JdigiAIgiAIwpEGDRrgtNNOk9Li4+ORkpJipCclJWH06NGYNGkSGjVqhMTERIwfPx49e/bE2WefDQDo378/OnbsiOuvvx7Tp09HXl4eHnjgAYwdOxbR0c6OrmeeeQZpaWno2rUrFEXB+++/j9TUVNtaQAQxZMgQTJ06FZmZmejUqRN++uknPPPMM7jxxhsBaA6riRMn4p///CfatGmDrKwsPPjgg0hPT8fQoUMBAB06dMDAgQNx0003YdasWQgEAhg3bhyGDx+O9PR0R7lz5sxBKBRCjx49EBcXh7fffhuxsbG0nhRBHCfk6CEIgiAIgiCIWubZZ5+FoigYNmwY/H4/BgwYgJdeesnI93g8WLhwIW655Rb07NkT8fHxGDlyJB599FHXNhs0aIDp06dj+/bt8Hg86N69Oz799FNb5AZBPP/883jwwQdx66234uDBg0hPT8fNN9+MKVOmGGXuvvtuFBUVYcyYMTh8+DDOOeccLFq0SPrR+5133sG4ceNwwQUXGON55syZrnKTk5Px+OOPY9KkSQiFQujcuTM++eQTpKSkVKu9BFHfYbyye0MSBEEQBEEQRC1QWlqKnTt3IisriyKqCYIgiDpFTf4NI3c+QRAEQRAEQRAEQRBEPYEcPQRBEARBEARBEARBEPUEcvQQBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQRJ2CNo0lCIIg6ho1+beLHD0EQRAEQRBEnSAqKgoAUFxcXMuaEARBEETlKCsrAwB4PJ5ql+WtdgkEQRAEQRAEUQV4PB4kJyfj4MGDAIC4uDgwxmpZK4IgCIKIjKqq+OOPPxAXFwevt/rdMOToIQiCIAiCIOoMqampAGA4ewiCIAiiLqAoCjIzM2vkBwrG6SFngiAIgiAIoo4RCoUQCARqWw2CIAiCqBA+nw+KUjOr55CjhyAIgiAIgiAIgiAIop5AizETBEEQBEEQBEEQBEHUE8jRQxAEQRAEQRAEQRAEUU8gRw9BEARBEARBEARBEEQ9gRw9BEEQBEEQBEEQBEEQ9QRy9BAEQRAEQRAEQRAEQdQTyNFDEARBEARBEARBEARRTyBHD0EQBEEQBEEQBEEQRD2BHD0EQRAEQRAEQRAEQRD1BHL0EARBEARBEARBEARB1BNOSEfP8uXLMWTIEKSnp4MxhgULFhh5gUAAkydPRufOnREfH4/09HT87W9/w759+6Q28vPzMWLECCQmJiI5ORmjR49GYWGhVGbdunXo06cPYmJikJGRgenTp9eEeQRBEARBEARBEARBENXCCenoKSoqwhlnnIEXX3zRlldcXIw1a9bgwQcfxJo1a/Dhhx9i69atuOSSS6RyI0aMwMaNG7F48WIsXLgQy5cvx5gxY4z8o0ePon///mjZsiVWr16NJ598Eg8//DBeffXVarePIAiCIAiCIAiCIAiiOmCcc17bSkSCMYb58+dj6NChrmVWrVqFs846C7t370ZmZiY2b96Mjh07YtWqVejWrRsAYNGiRbjooovw22+/IT09HS+//DLuv/9+5OXlwefzAQDuueceLFiwAFu2bKkJ0wiCIAiCIAiCIAiCIKqUEzKip7IcOXIEjDEkJycDAHJzc5GcnGw4eQAgJycHiqJg5cqVRpm+ffsaTh4AGDBgALZu3YpDhw7VqP4EQRAEQRAEQRAEQRBVgbe2FTheSktLMXnyZFxzzTVITEwEAOTl5aFp06ZSOa/Xi0aNGiEvL88ok5WVJZVp1qyZkdewYUObLL/fD7/fbxyrqor8/HykpKSAMValdhEEQRBEdcM5R0FBAdLT06Eo9eK3H6Keo6oq9u3bhwYNGtB3L4IgCKJOUZPfu+q0oycQCOCqq64C5xwvv/xytcubNm0aHnnkkWqXQxAEQRA1yd69e9GiRYvaVoMgymXfvn3IyMiobTUIgiAI4pipie9dddbRozt5du/eja+++sqI5gGA1NRUHDx4UCofDAaRn5+P1NRUo8yBAwekMvqxXsbKvffei0mTJhnHR44cQWZmJvbu3SvJJwiCIIi6wNGjR5GRkYEGDRrUtioEUSH0sUrfvQiCIIi6Rk1+76qTjh7dybN9+3Z8/fXXSElJkfJ79uyJw4cPY/Xq1cjOzgYAfPXVV1BVFT169DDK3H///QgEAoiKigIALF68GO3atXN8bAsAoqOjER0dbUtPTEykLxsEQRBEnYUegSHqCvpYpe9eBEEQRF2lJr53nZAP5BcWFmLt2rVYu3YtAGDnzp1Yu3Yt9uzZg0AggCuuuAI//vgj3nnnHYRCIeTl5SEvLw9lZWUAgA4dOmDgwIG46aab8MMPP+Dbb7/FuHHjMHz4cKSnpwMArr32Wvh8PowePRobN27Ef/7zHzz33HNSxA5BEARBEARRPykpLMDS+0fjm4kDsfT+0SgpLKhtlQiCIAiiSjght1dfunQp+vXrZ0sfOXIkHn74Ydsiyjpff/01zjvvPABAfn4+xo0bh08++QSKomDYsGGYOXMmEhISjPLr1q3D2LFjsWrVKjRu3Bjjx4/H5MmTK6zn0aNHkZSUhCNHjtCvSgRBEESdg/6OEXWNqhqzyyddgu7tV8CXUGaklRX6sGpLH/R95uOqUNWgpLAAK6dNhLfodwTjm6PHvTMQm0CPSxIEQZxs1OT3rhPS0VNXoC/IBEEQRF2G/o4RdY2qGLPLJ12CXtlLkL+3ETaXXYY2w27C9g/+hQ6++WiUkY/vVl9QZc6emnQoEQRBECc2Nfm9q06u0XOisXvLPxEfHwXOtS3TwAGVq+FjCMdaAg+/jGfzmPacHgPAFAYwQGFMS1OgpTMFigJA5QghCMZ8UAFwVQXAoKoqODR5WhqHyllYpgqucugePcY4oDBo/2DKYQBDWA60Y0VRwHkIQTAw5oXKObiq28jBodmkckBVOcAAzlVwNfwOLU8xbFEAcDAFUBTdfgUK0/qDMQWMcYRCAYQUHxi8Whth+6CG+xLQZIBD5VofcFUN68IBxsAZC/ejdg6YwrT+DdusKAwcHB5FAQMQ5CGEEAsW7kdV1ezjnCGkqmCcQwWggoOr4fOKEMAZQioHYx6Aca3PAK1/w3ZzCOeUwej/QDAEVYkDY1p/qqqmPwOg6n3IOTgYOFehqoBmNRBSGRgUMEXLZwoD4xxQwicTHJ5wPzAwMA8DwFCmcjAWG+5DDs5VhLjWt1pfayNF1ceyqgJM6/eAqmh2wOxLMLNPGWNAuN85AKYoYApQGgAUJUbrV64CYTtCuj3ha0IfXzwsX0vzaCJYePSwsGyuXRdcv26gjVcwDjAPSgMcXiVaGDuqJjYUPofhi1PvZxYe0yo4oBoXHsC0C0Ix7BQvEC1d5YCieOAPcEQpPnBVG/tc5eF2tfsBVABM62PjfgBADYXvB9y8H4ABgKJdpYrQvwAUpmjXPecIBYFo5g2fT9XsT6NvEb7vqOHrFoZcpobHpnQeFUO+bisL5zNFgRoKwRtQ4PF6jPMWPrHaPSl8rGqDVZOl93F4zClMAWeadZJMaHlgDEw7sYDCEAwEEc098ChKePzoYwaAGgpfH2EdwvcDcBUq51A0pUxbGAO4fj9iYdu0fubQrl9whlAwhFjmCeusX4faOOLhe542bsL3nPD9Amr4vIvnKnxPYtCHlfFJG2KcQVEUBEr9iGFarxh/QxCWrYbv5Vy/L4Wv1bB9ajBg3l8QvgY5g7RzJ9d00C4fBQqAZpnyGncEUd8pKSxA9/YrkL+3EZLHb0Df2HgwxYv0TjNRVvI48p9rh+7tvkFJYcFxR91IDqU82aHUK3sJlk+6pEqdPVwNAX98C16SBxabCjTpDaZ4qqx9giAIou5Ajp4qoODPuVCLtdm84WwxXuHJgSVP5SpKS7WJpjmp0tpj4IbTRZ8ZKOF3Bo6Y2LADSW9Pb5+bx7qDiYcnepwDQZWjtEzVpjZMa0Cfq+vymf5ZTGOANxqGA4TDSQ6MiZeuj8qBQJCjNMCN1aD0uTMc5ADmwlRM4fBEM8lGs0+ZYb/ucIKQ7w8A/iAzJlYQ5BkydVnhY6YA8DDA67XJRFie6XCx9D/nKCrzIqgyzeHCdMeOMW+XOlafiEEBEOWFqnjAuaaVGu5PcLE/mSBPn2wyHC31QOWmQQza5NnsX2aTzxQgFBUNlXnMcyfZKp9D8/xqxhwpUTRdjUYZxEOu97lwchkDyqJiwaGE7TDHpGSr5iWUrxeVo7BY0fKMNctEI+W+1a4QzfaANwacK+H2uClPOMGqIEvvBFXlKCkWZsfm4ISQCG6Ty6B6YrT+EfrSNEYXInzW7wchgJdoDgvJJvHcSf0KQD/fiDbbNE6kaaORyeU0HlDBSkPh+wEAbuljyWZZF6/qC6dwmy0A128vklzOARYIgZWpQteaFwnnppPCcHgJukWFvNpHONvFhLEkdDKYPwSUhaTbgHGRCjYyvUrYM+tRGaJCHtORZTl3XLhQWPheq/c7K/FD82KG2+bGJ3D9LHNzPGlOLQaPn0MJcbN96Pc26YYTVkO6+SJYVBAeSCycznSDDMnMMCHsSAMPOwcJ4uRh5bSJ6NOpDJvzLkP8Uzega5vPoYYYggEvQgEPYpMBXwM/jrzeBn8GGkJlMVA98WC+RChxyYhu2BTxjdMR0ygNLK4RWGxDsKgEIKoB4I0HvA0ATwxKiwpNh9KErTg3Ng4AqsWhBAB870cIrb4HrHiPdgyAx2XCk/04WMalx90+QRAEUbcgR08V0K61D4kNKreudTi24JgI8pDxmUcoZyUcq1BuHaf8AI+ssVubqkM9t7JiekgF/BHKWNuQ6nIGFR5beqQ6ABBQgVJEhfOYQ1nm2l6Z6oUKxdE2a5+Ln/0hL0p5tCVP/7U/Ul2G0lCUoadTGbMtSOVKQz741SihvDkFdpInHieEfNAn4pLfxEE/0YaioA8B1bzdGHNxUSaHzR4VgC/kg4joqzHOCbfrXRyIQTCkOOinOxDlcyza5Al5AS6fb8k+Yd4tJvlLo8FVS7tOWBrWnD0eu0525eUsFWClHoBb7j8R6oidq4SYkcas+WCWY7OepwSVlskAMBVQQoJTxSbT5TioIqrEni+145QGgIVUeAIubYvlrMdlQUSVhGxlmSRPcP4IdRVPKOywsRjleMFwU7ZSBk9J+PEOyYtukQUgHNKIsJcJ3Bsb9hTDfBccQTY9wo6qIHO60xJE/cVb9DsAoM2wm/D7a38HACgeDp8nAMSYN4ukJgVIgsPizEXh127t0Ol7FVcBT0iBJ0FFPC9Cwb9aIxiKQlkoDgFvCrzJLVHETkVKg1VY/cwodL97FhCdYkaMVhK+9yOEll+Lgt+TUbStDQJHYhCVVIr4tn+gQdG18PSdS84egiCIkwxy9NQS+m+tVdGOE85tM/NX53LLusiKUNgpSwEQKqeMW16k6XKk/jN+9RdaqMi8V6sru3R0x4PeJhOcPaYOzFUfLrThrCuDIpwVsx1Tf7G22J7Cwo/nIVJf6blmKYWrUJhqccrIn8z+Eif7ChSmQuWKGQmll+OiJF2eXaYx12W6Q0frU1NDa7+H8xw7V7Zaj3kx5sSca48pOvaJVl53rIR9RlKkhdWpI0qyOgtMZxO3RP64iLcWcXA6lduGeOAm0jowRdmWPN0Ga7SJk1yOCGZGkmnTXTiOdHFa29CDVkR5zPB5SDrYpk3i8HSSBZjnUg/LEy4jW9dwbgswY+LN0jp4bXbKdyApekpy8FiuTik0Mqwgd3HHixeqJNapIwiifhOMbw4A2P7Bv1CaMRrvvrsEPlaCGFaC6KgytGj2B9r3/gW/rW2OksJY+KKDiPJpL29UEJ6okPFSvCqYNwQlSgXzqlC82jXIFMCjaJ9jGvgR00B0qO4B8BOQoR1lt14E9cNWUEMMZaU+lJbEoCQQjwBrBJbQHA1adkLSqWdAaXgKWGwaENMETBF+OFFDOPr5GCiHE/HzF51wpNuF6Hbn5fhxzodI+mIxsgeuh7roZiSOvpge4yIIgjiJoMWYjwN9MaU/t2bVWkSPG85zpvKlug2GYCUiesQJsmqRWZHBxqFF9AQcyrtNS8S0oBDRI+ZFmtcBWkRPGbzgwtRQrCs6bKx1/aoHKjzO/QBAjAYSHSz+kAcB+Gx53FLHWg8ASkNaFJGbTlxwW4ltlgajEIBX94UYZd31NPOLglGAQ1m9vP6omWw3Q3HQhyA8RqCBOUaY5Exysr84aEb0SPlcPi/S+eEMxQEfQlxxbVeasYtlOFAW9CJStJSTM4iDwe/3godlRsTqVOBAKOiBq8fGZeBzlYH5FdiiawC4XrB6OyEzoscpMgZ6jlVuCPD4UWmZDAALAR4nz285FycLqvD64XgyGHc51usGVHiC7m07tQEASlkQXj8XLxLJFtkJI39WSsWIHm7TW4qeCtdlAHhpGTylQS3ReI5TLyvIEqN9wnm8uBiwypQeY+OCPFNuMOTH0rL/0mLMRJ3heBeyLCksAOZmoiA/AckTtsIXfqQKAMpKinH4uXZo0LAIGLHb9kgV5xyFRwpxcM8B/Lk3D4d/O4jC/QdRkn8EgcNHoBYVwBsohI8XoXWTnTgzZxM2Lm+NwsJ4xPgCiI8vRXyCH7HxpYhJKkFMSjHUMgWKr+LfCTkHykqj4C+JQYk/DvBGoVmT37BvfRpSrr4XMekdweIzgLh0BPxlWH9DP3QZsg6B3gsQ0/LCSveXE2qgDGWr/w1+eBdYciv4sq+HEuUrvyJBEMRJDi3GfBJQVRE9ViK3acajuDskKtAut+e5tcEqUMZJlrW8+NkpYMAqkwGuDqZIc0rts+rQpjyxN+1iUr5VD60197grzRZVakvOd44ggi1NliyncUljhBfJdp5j6+PDGi0T1kYPcBAmtpy79Y2gDVc1B4hNT3MCym12hfuW6Wv6mHJER43sfgtHOImLBNvQH5XR9JG/XsvRFLYACD3Tmh7uFGkdICdc85ixXo1N5YgD1qGCfcA412Ww22l1Qri0y93KuVycUkCPHoDiNABdZNr6Vex/vT3hGDDTmGCnm44cchvg4buAtM6RoI9RUb4iDTsNmZbJm1TfLGvGWnL5pQ8uyX6X822ENHEXWy0dIziJCOJkIjahAZZv6aMtkvxcO2z2D0Xry0Zjx/zX0SF6gbnrlsO6OYwxNEhugAbJDXDq6a0jyikpLEDZ3EyktspH8oRcyaFUfPQoCl/sCMUXxPurb0Pozz8QFzyAZN8RJMUVITGhGAnxfsQmlCI63g9vbACemAA8MUEwBkTHBhAdG0Ci8GhZeuf9wKbbwDdpl3coqKD4aBxST48FAPz27j04ZWQ0WMP2QHQTc0OQSlKyZCqUXc8iKjb8PG0+ENg4GWqr2xF7wf3H1CZBEARR9ZCjp5aorq/WkR1IdidP+XXMMkYrzDnPyRlknQNWBN1JY3d7OOvpNLfUHwlyUCniUySGQyNcytEJ4FDP6ZE4ey2Ls8D4pO/SZbXRHlFi7RV3Z43pBBGjdbQ3bccmcaIuR69Ye94e5SPNm3W/h0sXaAspmzspGbZy85EtY91Ya3SO4OAR1u0N1+M2vblw3sydjUTdhHPIrHmS0rJtsI8zs0VmOj9EH5DbYBXzxML6gtT27pcHhpDPFGY+XmSVWd7FIrQpfd+X5OgXMpP0sM0PnAei2f1cEB3pQnS5OJ2cNcztKSUnP0hFbrjh9pmhBzMHG2CseyO5I/U+stzvTEeWw83S6vySyun9rJ9XVfZcOS60bbWDCc4bF6+WkcVtKhLEyUDfZz42tj0/J+ENYMMbSG0DlBVEV9nW6uU6lDIP4bvVF+Bvrz7i2gbnHPt/+R1bvvsZB37eipK9exBTmockzyEkxRUiKaEEzdLzkdLmDxQfSIDiVeGNCcATG4DHq6JBo0I0aFQIAMjK3AL+9SBwAMEyDwqPxqPQn4JQwqlofEY/JLTuBZbcDsyX5KpPyZKpiMp7DIcONsKPy3vgt9+boEXzP9Ct7zo0jHkMJUtAzh6CIIgTBHp06zg4nke3uEPUSEVxe3SrvPbCm/Iax5V5eKysnF+m3WRzqCjnqQnHPP3RrfLq6PlSXc4QgubMcMq3tqnnawtAex3KWFfusabbF2O2y7Q7Szi0R4S0x8WsTh3rY1EWBwiAUjVKWy8njBg5xG31zHZLgh4EYD6CJZW1Oej0xZK1siXCAtAAM9d8dZAp2l4U8CHAHR6nM+adou7mZxUMJUF5gWxzlzBnp5cecVMY8EHlCqzn2njsStJdeASOA2XhxZgleZIwh/OpAv5AFBwfaSpnEHLOoAb1evKuck7ljSQV2qNb8FTsQhHfVUAJMimfRVoriJsvpVRzUFZEpugvYiFhMWaxzfJkhlREWdcMdrqgIPtmwAElqEIRb0KqpZ6op5geCMBX6jDAAWHgcqOuZKc/BCUk3DNV7n4uRdmlfnhKA/oAt8sU30WnDefgxSWAqprp1ke/4KQDRzBQiqWBD+jRLaLOUJVh7yWFBVg5bSK8Rb8jGN8cPe6dUSU7YInoDiVfQpmRVlYQjVVbz6kSh9J/xz+EIafPxB9lLfFbixnYu3ozCrZtRVLpLjSLP4gzem1DdLwf/kNx8CX44YkLRFxKrqwkCoUFCSgMNAGS26JptwsR26oHeGwmyv6dhaK/4vHc6/3R/m/not91Ofj67S+x5a1lmDD6C8SnFCF6VB49xkUQBOFCTT66RY6e4+BEXKMnsiPFedetigyAgMXR4zQXA2B7CkCFCqu2FZEXFBw9bvXcnCqao8d5wcFItgdVoAxRkuNBfvzLKcJGOw6oHoQsa/RY64nHhoMo5IGf+xzzxM9OOviFNXqsTiVhA2uLDgwlQW/Y0WM6TJwdWXrfmvoXhbyGI8M851YHE4PVQVQU9CHEzZ3Q9HmsrpOTnRyaI6NEdVijh5vlRLsNWzhQFPDJzi/rLlqq3VcAaPPjslCU4eiR5tOGfXbbVQB+vxfS8r9uF4olj6sRdt1yasuQD23XLV2m0wVura+/h0xHD3MqZ6tn9oenFJWWycIyvcEI5dx0DaqIKrPkhwe56GCxtRF29HhCcO178bMippcFEeXnZhl50IbrhRdetfSB4g9BCQqJTg4bvZ6YXxqAx19mpumP5nEjQbgpiY4bDl5Yog0k25pC3Cwr6a+lB4N+cvQQdYqa/JJcVVSnQ6mkqBh5d5yNjD6/AGkD4el8N5DcETi8CaH104H9i7B3xako/dvb2PTFtyjYsB4NQ7vRrMFfaJxSgKSGRYhNKkZUgh/eWKcbtMzRgwnIL8uEN7UzUs8aCF/mOQh6UvDhpUNxxd+WoyTjGST0ublKbCMIgqhv0Bo9JwFuj4EcK5Vp61hku82jrD8SO8mqbLt6uqvMCqDvReXmDHJqSysjrpUhP/qk95v4SBiH+ZCU/qu+PWDA+oiRsD4OF48gSGfC/4DpPND10h7xMB+Fsm+NLsvmpn3caqW+FpC1tixTkyI8pmSLOrJaoZ0BfQWiSD5l0069n8I9y8yzyCGfD3OdIP1Y7gEO67pAHLZFlAWZpo2WJ6zCT9OY0Uvc8ckZ7hQpIh67ORoA41ko8VdWwY/gXk8FHJWpCIKhRlcaWQ6PgwnvnNsfkSpPlP6uPwVmtOnUL07v1nLhQaOfI92ZJN1zGKTNqSI5e/QnmaRE65i1F7KMHvHAUtdhvR+935mRrwq2OlzR3GqEcGjcoIwL1O70cYSe3SKI6iY2oQHOm/p69bQdH4fvj/ZDTG4IiZ2/RkzeIiOvtCAaBetb4fuj/XBNr9PRodfptvqhUAibvl2HjQuXwb9jAxpjL5olHULjlAI0aFiE2MQSeBv44fFpP9slNi1EIjYB2ASs+Q/UNUCwJAp9z9ccV/u/eR2ndhkAltDymNcBEuFqCPjjW/CSPLDYVKBJb9o9jCAIogKQo6eWqEonD1Bx5015zo5I7VvrsPB/0g/HFWhf1NXtK4BtwubSrrujSK6tt8ctaWIbWhl93Ri7Q8Bp1y1n54bofpAdFPKcU1vcmBnOBybUcZKv1eRygiCdSbJ1B5HNjcE0K8U1cuQeMZuXnS+AsY6MLlWIQLHKFN1D4PpCzpby3GITLP3M5TQupMlL7DBpDR+uajba1unRy7j4RnQXmHW+L9uH8MLJljFmPnkl1bMdOwrmsI5ZaRA5HQOaL44x5xtAJAeK/lmwzVbZmqh7aTjsa+aUI1MckzYHUaQbgjig7ReU4eyUrwVZB+m+ZL04dVPF9oxGrP3qfEKt17pZQh93QqreuNO5BNMGkW6rKnivXBcWF4UzuYxkt+gVE20nJw9B1Aeumfsc3r12Ajp9shYpzQ/BExNEqNSLv35viI2JXXDN3Odc63o8HnTu2xWd+3a15QXKAljzxffY8cU3yPjrE/Qe/DN2/ZQBn8KRkFyEmOQSRCWWwhcbQNMW+QCAU1puBP+kE8r8XhzOT0Yhy0JK9iVI6nIxWGJrMFbxCHi+9yOEVt8DVrxHOwbA4zLhyX4cLOPSynUSQRDESQY5emqJijpmKkJl2inP2VERGbayESpHcuQ4/F4tNek8Ea+QWGjxKY7TV9e6mkyzhPXRKdEBZJ8vMkebRHlyFI32SeV6zAuTpMu7fCmCTNMdxJm5lotbdI24o5cunYd33QKsTg3R8SPLNDRiTHLQ6OsAy3NQff0pZkgxo2vknndyNBmWhJ1DokXMLAauMqkvRT30fcWkKB/ro1uCTFkf0eFmFjHm20DYMWOZ+Lus/VIhmB5TJehjHVBObekRPRWVZ3Wq2G4AYWeE05Z1ohjRD1SOTCbI1H1FpjPFQY6TTKcLiwtFdIcPLG2LNrrJFP0uoi/E5lyxO0pssrg5imWjIQ8g0XkkneOQy/l0MMKoo8vRPVaCPABGlJD1BAIAVAfPG0EQdZFr5j6HkqJi/O+eJ1H2ex58aakY/J+7cHp8XPmVXYjyRaHHxX3Q4+I+eP3uRHQv3IyGzQNIHr8V/pIAvnt/MfYuXIxmgc3o2+8n+BLKECiMhi+pFFHRQTRJ+xNN8Cfw+yrw3x9EMKDgcH4SjgZbIrFzfzQ+axhYcnswxT4d4Xs/Qmj5tSj4PRlF29ogcCQGUUmliG/7BxoUXQtP37nk7CEIgogArdFzHNTWGj2B41ijJ2RzNkQqL8pUbWliObdRpBquhsrJVB3W6BHz3RwqgH0xZqf6TulBFfALixRbyzsvdqyhr9HjrqvimKev0SM6OwSXhq3vxMiWspDXaJcbL1FHc5Yrtlkc9CLAo2zppmPGap/pICkJhdeg4YLTA8yin11mYdCHoMNizABzWOxY0EMF/GqUKYM76eYQAcT1NXrkRYqNdi2OAmksccsaPTa5LHws2qm9G2v0uDplHNLDdqohr20+LinuksxKPHBdANrpXf+sVnKNHh0V8JSySstkYZmVWqNHJ+C+GDML62TLC+cba/RY2xV0tPo6GAcQCCKqVChk6wfTS2Tdml3xB831ftycO1YbOIAScY0es33pxghrO9rFyItLw4s+c0ueIEhMC3/W1uj5b51a74Q4uamLa/TUB0pL/Mgd1R99LvkRZcWt4DnzAXjbnI/g9q8QWvNP+OJ2YcXH3eC57D7s/HQxGhVtRMuUA2iWdhgJjQvgSy6B4rH/MQsFFRw91ABH/M0R26YfUvtcDSR1RMGbraAcVrB6UWcc6XYhuo26HD/O+RBJPy5G9sD1UJM4Ekf/To9xEQRRp6A1ek4Cjjei51jqcrhH2Di1KeroNFeU6rk0zLjoRrDPsyLNaZ1cYeXbzaBaJv9iPbsTwyQIhBeONnvKXtbZ2ROCYmtPzHfeY40hJEWGAGbUD4O4qK/TEy2ig0VPtT5UYl3zR3NyyD0vr6jj7LA02hWdH0yUqM8bxb3dzHV/OFdhXcTZlG1GD4WbkJ5e4WItUbxlLmufV6uavtzpXIqxWDJ6RI+kp8UTYl1bCWCyI6cSzhqtuiWSx6meq/OIu+dbVBROtfmS6rHIkUThdJWHz1o5MplFpusjX+XJdGpfMNsaNSS1WV4b3HJvNMaVoJBDlA2zCYTQEBPqSKE+MB6xkhwxershSS+b0uIjWEY9y0VhS9PbU2WZ0iLPBEEQkYmJjcaa6EHwfQKcef46eLf+H7BVm0ioajRWftINa6IH4Y7hA9B3+ACjHuccP3+1Cuve/QSJ+WuR2Wg/0lIPoUGTAkQnl8ATpaJhkyNoiCNAySbwL14EV4GEOODwn8loNepUZFzQC0rTFrj08btQVjoe62/ohy5D1sG/9yvEtLyw9jqFIAjiBIYcPbXE8X61rozDRqwTIaggYhvM8i6Ws87RrPlueWJ7TvNRNxvLm7tFcqKJ80xrOS3Pbqmoi+bEkB0HAKCAh6OInO0QV8oRI4MUxqQtrXUnhNPTJtZ5MLf0ku5W4YLTSdOBSS2K68s4uTvc+lWrywHOBN+Cnis7pVjY2Wb0AVOgP15m9TcY9vBwChNs5cLc1U1HxsIORW23MX0uzKDJ1Ktp41/oCQZ57VuhdevuV/pTN6bOzGjPKKMHkTkNXg55bWtbJ9sdCTacLojyZJbn7HByJlhPjvWEqfoYKl+maJbRh5GcQ042MkDauo/Zs402HHwXut/FdrFLioU/q25lmE1HbqyJEx6ZkmfawVDjPHDhRmRxyDAFQEjQSXAScaZdDKpQXoregeWdCyfAYrx4btVIf00IgiBM7njrHjz9N+Db6a3RteNvaJBYjIKjcfhpUwt4erXBHW/dY6vDGEOXC85ClwvOktK3rtqEVXM+RMy+1WiZ/DvSUg8hqUkBohsVGws/J2ceRjLeAr5+C8EgQ/6fDXFUOQ3+Nq0BrMPa2a/h7IfJ0UMQBOEEOXpqiUjOiIpwLHX1OVh5sq3zt/KcNeXpUlmHTaR2nRxCTsdONnLLZ+d5r2a9NVpDd8BAShVtsEuUZXDBKWCmamv02NwMgMO26WJt63nkUilukcQl/bktikj/3x6VZB8vzDY3tfaXGO1i7pClQuVOj6+ZUUlMzjA+cocM0/GieR64oIPZJ+auW5K1Dmv1mDaGLWJ2Z4/ugDJat3gUuO6tchu4rheKPvHmwmehnqmWPcxN99yWd7E45TneDByuVrfHoiooUzx9uo8x4rIwFb3ZcAdtLd0X8SbjtA6R00VlccJJbl6xfHh4Mw7Yt08LZ+h5HDC2aZNsUmV5Vo+ZbTet8Elk3MzT9RLvAvrCSEZUj95GxIFJEARh44637kFpiR9vPzwHf+08iJQOTXHbf0YhJja6Uu20694R7bp3lNJ2b9mJ7177EK3z5+HMnE34Y3sTxMX7EZNSBE90CI1T89EYy3FKU618x8ZfYfvT5yMt5ybEd7wYLKpqtqwnCIKoD5Cjp5Y43q/WkX6DdWvb+sN4Zes6/Xiv51V0PlUZLBtju+pltcnNiWOt5+Qo0uM9ZJvkB8HCQQ3GZ+2dw+2xJx3FKGk6QBQGYdctvS1mlNP1EHVxssnJySWulyO6fxhjULi5Do5ZgtnasK7M5BQgIPd3eLersDwj2IRp8TVidTMQRZsAG9NO0aFiNC73kYwoEzD7zlzMWepHxk2/Svjd7IfwItwOziCrTrI95mLVNkSnio4l+kPyD0VyoFidQHpEj92H6IzYjlN4n9NiW8xyoMuriEzBLsY0P4PNyeN0cTrh0rW2NiwXhqNTyTzhZtvWGwfTKzOpDgdgeh/DI044gVw/dnIGiU4avV1xjXJFMR1BTGhQb8SILBLa5xY5Ul9YB7m1E5nzmCUIgohATGw0/u+Jm6u83Zbts9DyqTvw3/FHcXrRDoSaNUTpRZ/i81feg2fL12jTZDfSM/9EYsYhKB6O+EbFOAUrgY0rEVoPHPkrEfn+1mhy7igkdR0G5kuusOySwgKsnDYR3qLfEYxvjh73zkBsAjmOCIKou5Cjp5YoL6omEsdTz81Zo+M2d3OTWZH6btMI69y1PJm2OYxQvyLynORb2zMjepxaY7Y6Zl153ytn3TR3kOg8UbkHYiSKcx9ID1456mbW1f+XJctzP6eIHga5hbAjymgrLDFcjDOxrl2mHtUjRvRwi0NHdpMJFlkcOyycqM995XNmzm5Vw2FmrkWkrUfk3meQ2pO9KNb1h6Q5eliOavU0qKJ2clYk3HZId0Qs5OisKUeug9PI6d5gKyB8dnXWON0QHHweFbpGrRe1xWPsFhUkrQtUnrBIdlh33RJssJVnlrNn3c480o1L9PKpwgmVdBOcOvr1YdgmyLKOR4XJY1KSF65A+zEQBHGCMfjxydh3x3xk9NkG7BiHKybeDSTfCBzehLKfp4EdWIy8VRn4oygeLTL+RIPUo/DGlyG5yVEkYw3wyxqEdtyGgvwE/FmchYY9rkXK2deCxTR2lLd80iXo3n4F+nQqM9LK5n6I5Vv6oO8zH9eU2QRBEFVK5baKqiGWL1+OIUOGID09HYwxLFiwQMrnnGPKlClIS0tDbGwscnJysH37dqlMfn4+RowYgcTERCQnJ2P06NEoLCyUyqxbtw59+vRBTEwMMjIyMH369Oo2zbThOOoyl1dlZLs5FdwcGW6yIkX66Pnc5eUm02Ee6qiD875aVg3c+9q5H5nFTllrJrxM15DoZtEXgtYjZOTWNL2Z+WKQJIvynXqXO/aivQWxJSb1FoPCnCw2W7I6OLj4zzJHRHixYxZ+wVj8mEFfI0eyijEw4yU6cbilSQ7OdOnMWFSZW/RmegXo7bGwZEVb/0iQo5nNjRcDB2PaS5Osai/OIZko9IXYVQyAh2nrLClMkypF2DChYDkXrDnXd/NeuHx2ugjKuznox9ySZBMt9AATX4D1qbaK3pBsfpdIN0KxLQ7NVqF/9civ8l4VlmG7uRiDBvrYBRPvABbHrySYR2ifWWxnglxFkGVVVK8rCOIqzMe93O7MTK6vhF9MOCYIgjiBiI2Pw/dH++GP3Fbwb/8a6uLzob6fCnXx+Qj8shx/5LbC8gMD0OXV1Ui+Zwe+9r+M/35wCdYu6Yi/tjdFoCAajAGJKYU4JWM9Gu67F+qHLXHkxSbY8Xg28j57DGrxfgCak6dX9hIU5Cfgmx2jceCM7/HNjtEoyE9Ar+wlWD7pklruDYIgiGPjhIzoKSoqwhlnnIEbb7wRl19+uS1/+vTpmDlzJt58801kZWXhwQcfxIABA7Bp0ybExMQAAEaMGIH9+/dj8eLFCAQCuOGGGzBmzBjMnTsXgLa1Wf/+/ZGTk4NZs2Zh/fr1uPHGG5GcnIwxY8ZUu4361/Vj5XgdRU7tWL/uOzlfypPvVK4y0wi9vJvzJ9IP5CbMduSkr7Ut7bd002Fjd7IwqbwsTf/ftheTUIcZravhY32dFzk/Es4zfr1d0ya55xnM6BqVc7jJdHbymXYzZs4pI8lk+rHxiJgWOeAsU94tzLo4NQOXHQtcGB/WyIkwKjhUKaLHei7FtiwjlElvRlkm5IsbXekOMIADqrDNa6STacljYuNOA9ZtALtdKE51rAPeyVlj8+A417duJ16uTBeR5d4IRV2FiB5nx1Q4r7I3RyeddWeNGG0j+G4cnWLSILaMS+t50huy3vBCXBhcLu/SANXHi9NCSmIdLr1JXjCnKDSCIIha5pq5z+Hdayeg0ydrkdL8EDwxQYRKvfjr94bYmNgF18x9DgDgjYrCwHHDgXHDAQChUAgr3v4f9s//L05J2IqWGX8gKe0IfEmlSGhYjISGW4BDU8EXTEXBkVj0PMOPor/ikDR6Mc5t0h4AkN5pJspKHkf+c+3Qvd03KCksoMe4CIKoczDOT+y4bcYY5s+fj6FDhwIAOOdIT0/HHXfcgTvvvBMAcOTIETRr1gxz5szB8OHDsXnzZnTs2BGrVq1Ct27dAACLFi3CRRddhN9++w3p6el4+eWXcf/99yMvLw8+nw8AcM8992DBggXYsmVLhXQ7evQokpKS8OfWLCQ2qFxwlHqMK9dwcARtX+or5vhRETKkVtRxoxMQZEZymliPOecIurQZSQdVBQIR6rg7gRiCHAjBY8svT4eACpTB5yoH4fad5m5B1YugESBndcDI9cV0f9CDMvhsNrg5lUSZpaEocEGm1XkifuZCWmnAizJEWdpkrraJehQHfaZ9FoeMqDM32tLSigJeBC0y7fNga3vafyWhaNs8FVJ9Ib6Km8clgSiEuEeqZ60v5elOKRUoC0XZHUBG+zpMaoNzoLTMC3BP+ReURSFVBdSQB2bfll9H/8hKFEAY75HKa8LMdyUoOAPddHaor5QyMO5wz4sgkwFACPCGHMqXJzOgIspvb9OpDhOPOaAEVHicFvKyYHNelQXhK1XlNGsZLoxywSmklAWhhCwnCmZ5eeALI80fgKckYJaVHh1TTZniBaRHoJWUmE4bo5pQRtyhy6jPEeQBLPW/jyNHjiAxMdHeMQRxgqF/96Ixe3JQUlSM/93zJMr258GXlorBj9+F2Pi4CtfnnGPlgq/x63/eRSvfRrTMPIiGaYfhSy6xLVFWWhCNA/ktEHvm35B6/s1Y/th9OKfNG1ixcTjOm/p6FVtGEMTJSE3+DTshI3oisXPnTuTl5SEnJ8dIS0pKQo8ePZCbm4vhw4cjNzcXycnJhpMHAHJycqAoClauXInLLrsMubm56Nu3r+HkAYABAwbgiSeewKFDh9CwYUObbL/fD7/fnG0cPXoUgOZ8se6cVD7cdU5UHmqla4hSnQVGiuZxqWLLc5ubusUIWH/Ml34Qd2nTyT1mLcMsEt3acnYWcVh3vDLL2Z0vVp25Qw3rkX6sPSjEw+dTdHI495rVGSLrzi1p+rG50qse1WOOV+Zgo2yb6Kyx2cPEh9ZkmfoCywjLVGFG11jlmTbJjhPJNiaWF9/lyAnjUTDOpIgeUY4k22kbdT2Yy+k6YYZZMCOUBH3cPKlWLPnakzqCfpEiXUSVQ2GFreUregGH6+nBIVrZcmLwuOAUqaRMp7WAI+qn5zn0h6OW3CE9kjluOqsQwtfkPCmih0Fy8MhCuUP/MEtZbnaKyoGQsOuWzTEjtCFGAxkZukzxIhKcQkD43HK5P9VjXS6fIAii+omNj8MVzz90zPUZYzj7svNx9mXnG2lrl/yADW+8id4tFiPzjN9Rmh+L6OQSxDTwo2WDX4C/HkJw3sPokJAMAEgIbjteMwiCIGqcE3KNnkjk5eUBAJo1ayalN2vWzMjLy8tD06ZNpXyv14tGjRpJZZzaEGVYmTZtGpKSkoxXRkbGcVjivrBvdWFO0M2XroP1ZYVZXtY8OKTraW4yKiLbKte6BIrTy8npVtF+1trQXDDmu74ihxp+yWv0aC4E62NXeoSM+W5dv0cBgwf6SjbW/tPblXtGli0vMizK0FeqkdsVV+2R1yISY3HsZ8OUabVaXJ9HW6NHsZxIrWUPtPWI5DVxTJug9294HRgl/NL3z+LcXKeHcQaoukxAXCcI4XIMCK/RA6NNxlSAqWBMk8PAoYSPrXbb4hz1Obcx97auvxSWL27zVZlXuHcr7DA2h4DpdXG6UMTT4HQRCz4B0x8g9AWXTqb2URF8QZWU6egTsTpDnLqAa0NL6i8mvPRjxZJeGSePqLMCgKvhtWzCieF3zi1r9IjeK72oo5MnbJw4/pnQzwzmrluwyJVusoIzR0+U2hd1EduxltcPI3USQRBE/aPLBWfhundexG5vHwDANzsvwX+W3IzlC7ORtzENgYJoKB6OlLRDAICuZ6xBwazG2DatBw798DZ4qCxS8wRBECcEdS6ipza59957MWnSJOP46NGjx+HskWMzKuPwEX+MrQymI8QU6vQV363tSOmR8o51GuEy1y63nLzVtp7mXt7MFx0z9rJO0TSmXm77bkWWzxm3bYrj5Hpx08Gcr3Phs5kmz/rCbgSFSUt6iM4im35W7Zk51wTMtXNku/WJpHAWFAY15DYSwv1udToY71yai3JACLZgQim9tfB5YAxclW2SHg9z8AIYa+iGm7X4q0yNwxNzab6thGVX5OJ0KMMYs83fXS8s6WQzezmnAewkW2iH2WQyuw4M2mNYThdjBWQaaxuL5Zjls5OODGBi4AmXi4uDhlnKuOni2L/CMQOTo10c27ddvNpHbnH96p1rkxdWQtQlUkSP3hgDjEe5rJ3FhTaMQWxVXpdNEARx8tLj3hkom/shujZZjOR/boUvVnskbMXcT5H34Wu46Pxl8CX4wRQgLrEEpyZuAHbcjMDmW3Bgf1OUpQ9E1rD7ocSn17IlBEEQduqcoyc1NRUAcODAAaSlpRnpBw4cQJcuXYwyBw8elOoFg0Hk5+cb9VNTU3HgwAGpjH6sl7ESHR2N6OjoKrFDm9wei7vm2Jw8kkxLAxVtjwGOk1inuZmOAu3pEjcq4yAKzzErRIT5W4Sytn10hPmXOXGzPgKkBQCwCHaazharE4VxBkUaCbpE3XXkju7s4IJOdpvkEAsGACo3ZJqOHP2hLtlJpsA2jRQcU0I/cHeZ0GUy1ZiDWiOgFMFppGsDwIieEJ1AopGG3Y7OBT16yFJJ6A3d2WOcSwZoUUGOVYQ0QX8u9gEvP0LCaXBzJj1mVu5Fae0Idx9aZGeR1U+hN2VzIOiHZn+5mlmeJ/pYnFLWPrM64sJpzH57s28qZV5i7nrp51Jh9nTbueO2vmDijc9607TZKSoteMKMftQHv+VOawgNGw4G+6LMkQRzOHcEQRDEyUFsQgMs39IHvbKXIP+5dtjsH4rWl42Guv0znNttFaKTSrHi+3Oxr7gjsoLfofUp+5DU4hC8sUGkZ+YBmAP+0Rwc+rMBDpR0RMaw+xB36vlgzP2BiZLCAqycNhHeot8RjG+OHvfOoIWeCYKoFuqcoycrKwupqalYsmSJ4dg5evQoVq5ciVtuuQUA0LNnTxw+fBirV69GdnY2AOCrr76Cqqro0aOHUeb+++9HIBBAVJS2SOzixYvRrl07x/V5IuH0I3X58OOKzDFbqQxOv+pWrD1dV+uExuoEkNJ4eKmLSulotiX9yG3RIxLWOaHTsSzLqqH5B1qW726JaWfknbPk4AUGNexYkPOZmR+hJd0xUNGxZ9igMIihOFaZen+JfY5wGe4wXphQyPHRHLDwzFd7rEtf50Z26DjUMdo3nSf28x9ed0ia+OuRWYopzNK20Rf6nNqit+jgcgt8MHTRHQxMezxNBSKfDKsRxmSeyWVgLQN7vv64mFN+eV5RQSQTjyVVmH0gqDAiniotE5Z7iKNM2GQakUAWmUwsq9/eKuBXEds26lgGveJ0ZQnjRTKIC4lc87cwSXlzgBlipQGm/z3gZnm9L/VHt4xIH+biPLKcUOeLUXYqiRcvQRDESUjfZz7G8kmXoHv7FTgn4Q1gwxtIbQOUFUTju9UXoN/zHxtlQ6EQPp/5NkJfvIeOLX5Faqs/EZNSjMTGBUjESuCHS1G6LAp5B5rD23E4mg8aDyU62aivy+nTyXz0q2zuh1i+pQ/6PvMxCIIgqpITctetwsJC7NixAwDQtWtXPPPMM+jXrx8aNWqEzMxMPPHEE3j88cel7dXXrVsnba8+aNAgHDhwALNmzTK2V+/WrZuxvfqRI0fQrl079O/fH5MnT8aGDRtw44034tlnn63w9ur6qtl/bG0VYdct5+5VUYF4HpcCgYgxMpGa48ZCzg5rjEYkIC4B7VDB7XdhDm7+sO1Qx42gCmm3Lrcf/eVjbcIS5AwqFDg86RFR56AKYzcquzzTnSfPZbW0gOpFyMHJIzuI7PXLgh74rbtRCRMvDnsUkO6IKlWjjJ2iVMtkTdZbbrckvOuWmxPLKlNL02QWh3ejMh+bEuafEWQWBaIQ4B4pTbbLSX8FnAPFapQ2T+ayDFEHcPs5Lgz4oHK3hbUBqIrDuNXaLQt5NTvdHnETbObCh9KyKMBpNyp7I1Ia5yy86xZcd8p2OuYqwPyWXbfsA8a5HRVQQky+EERHntXDJZRRSgAmLvFWjkzjCggBivXRL7eLW0wLWnbdsjp8HG5Aut9FCapQgi46Wn04YnogAF8pj9CH3AhvM+zT7fWHtF239JNZzg3MuOJKyuApDULe2l3QwRpqxs00XlyiPWomXShCG8Zb+LOq1Q2GSrE08AHtYETUGWjXLaI6OJZIm22rNmH1jGfRNu4nZJ2ShwbpR6BECbvUqgz5B5Lxl6c7CvMOo2vnH5C/txE2l12GNsNuwvYP/oUOvvlolJGP71ZfQM4egjgJqMm/YSeko2fp0qXo16+fLX3kyJGYM2cOOOd46KGH8Oqrr+Lw4cM455xz8NJLL6Ft27ZG2fz8fIwbNw6ffPIJFEXBsGHDMHPmTCQkJBhl1q1bh7Fjx2LVqlVo3Lgxxo8fj8mTJ1dYT/1EHdza8hi2V4/Q7eWckaDg6KnMyePhTd0d67j8+GvKtGsccd5kzCV4xB/53WSGhO3VxTLl77rFEOQMIcs6407zLGua6ehRXMozW12dgOoRZLrtZmV3gPhDCsq4dUt3ezmnvNKQF1zQ1Vmug6MnGGU6tLiTHKeFpbW8olCU4QCwOogcH+kKR9cUB30IwmPOTfV8bpcntquqDCWq1REGZ92NY61Pist8hgPMdEYJ55A7O4k4B8qCXlgf0ZN0E+fNup0c8Pu94LqjJ9IFZTlRnANq0OtexcGRoaUzwK+YziVeTnmxTCjs6IElysR2oQsOHw5ABTx+wIh8q6BMhrCjJ2SJIXGUaakbUuH1O6Q7XNDWiB4WUOEJymmuzigu6FYWRJRfOEHckm8MYLszSCkNO3rsA8UmT8or9cPjDwgOHOGCEQeL6MwJ5/HiYvMilBb+4pa6kPKCoVIsLSNHD1F3IEcPcSJSWlyKhf98AUm7PkX7VnvROPMv+BL9Uhk1qGDnnjZI7nsLmvS+HswTg7KSYhx+rh0aNCwCRuymx7gIop5z0jt66grH4+hx3F+ngmeiKiJ6dHEVPftlVheLZf7iPr/jkrZOjhYnxIieitQRJ/AhzhC0PH7lNI+0thsqN6LH6uwxPwdUrxRVI++ybUb0iHI5tIieMltEj1nWKkuUWaJGGU4FbtNNbkdy9AS8CFjstOomyzJ1KQ75ID5uJS5obJUj1i0O+BAwtk2yy7Gfn/CuRhwoCQn9w4XyovPGYT5dGPBJ/SPlW9bhMXfQghHRYzi0xLm2WN/SJlcBf5nmKLTh6qjR7WJQg4Kj0OnCcqgvRfSUdy1b21QBJSg7cZhbFI9oAweU0nBETwVkipEyNkdPBZw8+sUZ5XcpZ3k3z2RYVz2iR0e11BP1FNP1iB5HeVx6N2TqOvhDUELCPVO1O4McZZf64SkVHD0Wp4xRQdJByzMiesAFeRZBNh04ggGK6CHqFuToIeoCqxYux+63X0aHlE1o1WEfYhoVS/mhgIJ9vzeHt8v/4dcff0Xv1m9ixcbhOG/q67WkMUEQNUFN/g2rc2v01Bds38ErgdNSFhWTad822mmpjfJkApAWzpV0sTRmbZtZPrvJFndq1stFmCdDs04rHUkmF9LEdpmltL6+htyWlmp/ssZcZIRLJUWZzPF/hZmTax6uZ7bvtN6PUNYybxOlc0sNc/FjBsYYpLV4xIWFy3msSlvMW+itcPiE7vAR+1F0/HDGjEd9hLmprX2rnfI+3tqbMaFmWl1zmREWnsvquijG1te6nWLzTHQaSfZaPjPTLuu5lBbMVoxE58Yi5XEutQ2L2dIgFeoxBZC2dBcvlEgXtuWCMvvQ4jGT5Ivn3WJTBJn6fcG8SgTcLk6nY/H0WW8IVluEdJvTzHYzM9OYpKDtxAM8PLrEhZGZRY7eBBdPOHM8l7a1gfR1pQCYq61z84IHIjuNjPYtJ0hc6Ft3+NBvPARBENVG94v7ovvFfQEAK8ZfiF49v8PKxafhlJYH0TAjH97YIDJa7QUOP4Qmmdrj143xE7gaBFNoekYQxPFTuTAUosowJ1aVhwuvyspkzHluVRmZ4rzJmIe4KORkol5Uhb1dPV11+Oxmk/nZ6myw6+4kH1I+D//THzoztdT/SRED0Fwa3Cabh9dhsrYqtsQR4uYxwiWYYD0zdJCtYdDmkeZ0joU1sTouzJa11lVwzrWFnPV3qIJbRjXkOsfqMG0MMUGmfRsiQyoTrRbkahNms4w1nsiId2NcskzawN4YgFpVrurtqwDXzp8uU7cTgt0cVtv1vnTGGONCm+JLVbm9ktvFZi3KmDGupPElD0HbRcPD66w4XiiODVryBHWMuT8PZ3LLS5Ctd2dFZeqLKVt9XeVenE55+hBiQhKD5SzCcKhIPg8nudZ2Dd+K9ebGw75EDs7Mq9a1Wxm39IWlrfAY5MYjWtq4NS9/QxGzdf3cWG/kkhKis5A722ooy+HeEEEQBFEVhBIzAQCBrB5oOuUXrFBfw6JP+mL/xjQES7zw+rTY9w6dtsI/OwXb/3kG/sj9N3jEnRQJgiAiQ46eWkL87n4sHEs1cVJ0LPLsDg5hAufSppuDxtqm9aVY3p3mqk7SxAAD25zG5QXpMwv/U4xXJOm6DGtgA6BfXKYDSGvP/AcweBiEY1Gm9uLGZ9PVors7xLVILPEggraKIUuzSosYYGFvjSlL721RNoRW9celuDn3hRwh5iQT0GWw8Fhh8ktw4+gtWB+j0vNV3XbdByQ1wcAU7aXv8KU5pRgYU7QXFMFup1EluuDCtstzfNNWxkwZ+j99H2/HC0USY4dzacxycWA5DVTpQmHlXyjc8m61TX8x2BOlArr9qJRMUTwTDdVtgvC5/ItUqqP7K/Rsaz9KgStubQmfdR8K0w/KOaHGOLGYZZQzEi0OGpud4bFrXJLMPMdGJzoMHslwwWDRSWTIlW4a0Lb9IwiCIKqTHvfOQFmhDx188xH0lyLnpisx+N3P0GLqDiwtfRGFB+MRCigI+T2Iig3ilFN2oNHOv6PktRRs/Wc35P/0EWilDYIgKgs5emqJ4/16fSy3+/KnLJHlufy4bv5QXUmZTj80WyN5nH7YL0/PSHa5RRGZLzGiR5zyO2sg2uLmCjJtU23thrgpC0a+HlEjR/NY3SB6FIOWJ0s3z5MpU/ukgnPVjOgRZFojiETXiyFfn/uGUxTh2OwdvT2hL7kqROCYLzOaRpweh6N3LI4HI51pL2PchdvlnIOrHEY0D/RoG9Nm027386n3pm6v/hLt5FLfhdvTI3pcL5QICBE9Uue7XSjSBcPt8lzlWD7bLpSwodZoHuMVFuNkYwSZom+D22RWwE63G5D+0c3xI8py09PSrhEkZo3mgfUY9nECcwwZDUr9zIXmhGvBiN4JmWliWScPl6EzN29AoveTKdqzoRDkQKgDANC3QCPqIy+++CJatWqFmJgY9OjRAz/88EPE8u+//z7at2+PmJgYdO7cGZ9++qmUzznHlClTkJaWhtjYWOTk5GD79u1Smfz8fIwYMQKJiYlITk7G6NGjUVhYaGvnqaeeQtu2bREdHY3mzZtj6tSpVWM0QZyAxCY0wKotfdAoIx+Hn2uHZY+Mx+/r1mLZI+PRteBexDcpwvdrz8OS/BlY+ulZ+HN7E6hlCqLjy9D6lM1I2nwtil9NwZZ/9sSRLV+S04cgiApBD4HWEtItmlkTqlemMTGqhExxriQeo5y2Is0FIzmY9B+13VQsT3W3fKc25R/YnV1E1jpWe1jYPWOFCZ/MdXLMuh7GEOSK0K/mWjpi+7IbJDyvEwroi2yLj5Bx6JErZtsAwJgizYyZ0APWdWoFF4+9Ty3ryugy9Ra5YTXAxLVHbO1Y22fG3FaPWtb7xRqdYcq0nDUelq07LcJijHHMpaIW+c4Lpctj3zyfRllFKOB4ocChE0WF5EWmDSJ5EvXIDzd5Tu+iLm6GOsnS00Lh6KxKyNTHq3XcSvUiyRSdXhaZDJCebuSWD0ys43LxM+5wzKyGMYut3DhfUnQdBxjngldL6AQwuzBJNw9gLF/P7TpbQ+iMfhNlhD8Yg0mXKd7Fw2PGci8g6g//+c9/MGnSJMyaNQs9evTAjBkzMGDAAGzduhVNmza1lf/uu+9wzTXXYNq0abj44osxd+5cDB06FGvWrMFpp50GAJg+fTpmzpyJN998E1lZWXjwwQcxYMAAbNq0CTExMQCAESNGYP/+/Vi8eDECgQBuuOEGjBkzBnPnzjVkTZgwAV988QWeeuopdO7cGfn5+cjPz6+ZjiGIWqLvMx9j+aRL0L39CpyT8Aaw4Q2ktgHKCqK1rdWf1bdWvxGhUAj/e2wWkrbPQ8d2u5GccQgxDfxo02AdsOZSFH4di735HdHy2icQn9XTUd6xbBdPEET9gnbdOg7q2q5bWjSHu6hI4vVdtypbj3N5e3WnuaZTe+L26uXJktPM7dXd9HLZdEfYXl1rRyxjOjSYVEd/t+66Jefbd7TS2ykNKgjA51hHm/hb2zSPS0NeqNLuYmaek8NGzy8JRCEo7LolO1h0uVa7NYpDURB3uRL7yTmgRcsvCvgQ4l5JJ7F9x23Pw3aIu25J9TmgclNfQ2Z4jlsciILKPeFEB8cZt59LQGszEPLa1h7iRr7F4aTbYN11y1omgqNH33XL2t+mUs51y911y0kHoU0lyKQ0KTLM7ULh5ey6ZfFFSMcqtK3Oj+HijCqz5LnIsckMqPCEHNq0yGTWvLIAfOL26tZ2I3gLldIQFNsW50IZcVcsLsgu9cPjD4X7WRgwQlnj3RKhw4tLtAGhVzMcPTx8cXJBf24M5KBaRrtu1UN69OiB7t2744UXXgAAqKqKjIwMjB8/Hvfcc4+t/NVXX42ioiIsXLjQSDv77LPRpUsXzJo1C5xzpKen44477sCdd94JADhy5AiaNWuGOXPmYPjw4di8eTM6duyIVatWoVu3bgCARYsW4aKLLsJvv/2G9PR0bN68Gaeffjo2bNiAdu3aHZNttOsWUZeprAMmGAjgk4efRdN9C9Ch7R40aHEYise8/xfmx+O3o6fj1BueQUza6QBgOJR8CWVGubJCH1Zt6YO+z3xsk0EQRM1Rk3/D6NGtWsJxnlMTP6yGAxzEJzEizD8l1Risq7iYaW6q6227PYYlPdUgpFmX/3AqZ9VbdjC447T+j4Lwj95cCb/kjmJcAQtvya1yJr14OJ07pusvBeAegHugci9U7oHKPWDwgFteKjzgxvo8+vo0SvjFEAq/nJw4MD4zcOlMeaCvx8OEdUfMf+Z6M27nkOtHQoL5OJQZu6OvBcTgCb+H18jR18cR1uhhxrFgR7jb9eVDzDVdzPOh7RRmrvtjrD8EYT0ecQ0dFt7hTJSr2O3TbbQvMG0W0FcAUqQrQl8fSCjvNoCdLhZjVyRmV8jpYpEGrks+IMuK4Hgyq4S9WFpYivZSnD5XTKawVrZppptzSOgC+8UplLXIZJY+tTwd6Ixbe9xaRh+EgrDwi0Mxrn0A8g0OHLbFiIxDLtjFLC/Foh8T3hzGF3jYuWNxRBkOIW72q7UDGAOUSHdvoq5SVlaG1atXIycnx0hTFAU5OTnIzc11rJObmyuVB4ABAwYY5Xfu3Im8vDypTFJSEnr06GGUyc3NRXJysuHkAYCcnBwoioKVK1cCAD755BOccsopWLhwIbKystCqVSv83//9X8SIHr/fj6NHj0ovgqirxCY0wHlTX8c5MxbhvKmvlxtl442KwmVT70bv2d8h/vZf8PHau7BqyWko+C0ZXGVIaFSE9q1yEfV1T+Q/l4qdj7RBr+wlKMhPwDc7RuPAGd/jmx2jUZCfgF7ZS7B80iU1ZClBELUNOXpqCenX44p6W6oKYd5WkTlouIq0bo51Z6xIqlfWYWNNd+siq65MqOc4l7a8nNbrgbDminVh3kjOKbdtus2+EVszezDkKs1p9RqrbOsixvpLd5nYt2tiMHf5kf+pjufBOueWJp7G/JQJA0rY3QuquS4Rt+yAZXw2J/+GbcL4BGCu6SJkMCb2uCnTXB9IlwtjCRQ17JhCeHMjcTML2T4Gx+eLTD8TONN7zDyXXJ9wOw1aq6fT2rD4LJTTABMdEeUN4orcU0SnilUX60uVDIfNQ1yOTEMMB4Qn6dxxskvME162hZ1h8ZuI9awyxHrmZSeXge4s4cZnxjkYD6+jxQQXa9jnZyw6zi39aDjCwsdWjxTnMCNyRMUgyZfTmSmUw3LqxE4QxphVnusgIeoqf/75J0KhEJo1ayalN2vWDHl5eY518vLyIpbX38srY30szOv1olGjRkaZX3/9Fbt378b777+Pt956C3PmzMHq1atxxRVXuNozbdo0JCUlGa+MjIzyuoAg6iXRMdEY9vRDOPv1lYi6eSs+XHkbflraAYX7E8FVIKlJATLb7NP8+NFBpMT9jqYZSTh3ykwkT9iK/L2N0L3dNygpLKhtUwiCqAHI0VNLcOO/Gparzw8ivJzQJ/zWaB67I8CO21y0PJxkOb3c5oOIcGzV23w5/ZPdLqJDxr7tt1Nr2idFal+zTBFKQpJone+bskV3jh3rjlJyL/JwRI+smRnRI/YPYLgwzH/WibEwBzain6AYkTxmRA+TXmY0D6TZOgeHyrQX19OF9rkY1SPpK8bviLtuQYjmCc91FQ6mmIs6i+fWcI5x2dEmja+wg0Hcc0uP8RG2bJIvCuupkNC3e7f3Laxp1natG6ZFulCsjiOnC9G6+LBurO1VQZmimLBvw+ZDc7o43frQ8rL5nXT/hX7MHNp3kmONjAKEc6kPHO2d69E8UMwrX3dO6cE1Tv0oGcyN9qTBqSiCY0a0n5k6GQrq14cqyBNEGR0iyHWKIHJbO4sgqgFVVeH3+/HWW2+hT58+OO+88/D666/j66+/xtatWx3r3HvvvThy5Ijx2rt3bw1rTRAnHvFJCbjq+cfQ7dUfwW7Yig9XjMHe9ekAtFt/w2ZH0SF9EfBxB+x7oiX2zH8MW/yXwNfAj5XTJtau8gRB1Ajk6KkljO/ukSZj1SXY+l3fZW4q4jZtsU5hnOpXZM5ZnkynNN2B5CSvIjjZZI/nMV0AsktGkyS6etxaFd1DqvRJFZxgYinZpSP2EXPpRS58kltQ7cdctsxqrbh+lOycYlKAgD7RBuNGlIs1qsewl4f1cIzmsVjHAcYZWDjdnGdbd+nS9dTsUjmHqu+ype/6FZZjbGpkcRRxLkZFiZ4LbutlJnc0AG6X6RbR4zbn19vWbawIYhsVjHxxzIsoz82jor2cImkcZVoui0h+F1c79XYstlr9TqJPxjguz86I58kYoNpL3ymOC1c9D49a603U6uWy3jT1ItaIHlVw2kj1wpUMncLnQnLWMKFzwx2jCCfA8IiJF4Tw2BdRb2jcuDE8Hg8OHDggpR84cACpqamOdVJTUyOW19/LK3Pw4EEpPxgMIj8/3yiTlpYGr9eLtm3bGmU6dOgAANizZ4+jbtHR0UhMTJReBEGYJDZKxFWvPIvfSk4FAHy0aBg2f9caJX/GgylAs4w/kYVncVaLtwEACYEttakuQRA1BDl6agluPYgwCawW+Zb5RXkqVMZJwy35kea6bvNFvW4kPdxXl+ARjpzbMtuUVnYR7HPqGdPxwIzZqP2l/8/A4BE+66vK2Eu59yt3OVPM+N8ej6SE8/TIE8Wmn+i6ktfp0WWKET3czNCcMeGJv8JhOgOgr9Nj6UlLNI+4fbphVdhppEf06A4ZSE6ZcKt6Bejr8IhrBMlyjOgh/fEvCFu1h51FZkiGy/zcclIUxoyXFtFjOf2APc3h5JrrybiMVutFZyjg3F4kWcaxfThbDty9Kq5bpJcj0+Z3iXS/E9visEUQVfgpsorKsEUnGYMG4ti1xvGJvhWbUMdzL3aG2DbCET16mkMHGp5W3RmkP4cYPjeOhjG5vsLkKCKK6Kl3+Hw+ZGdnY8mSJUaaqqpYsmQJevZ03qGnZ8+eUnkAWLx4sVE+KysLqampUpmjR49i5cqVRpmePXvi8OHDWL16tVHmq6++gqqq6NGjBwCgd+/eCAaD+OWXX4wy27ZtAwC0bNnyeMwmiJOeYHxzAEDjNsk47YWfUTB4DRYsugx7fm6BYKkXUbFBAEDXLmvxx9PNsXnWLVADxbWpMkEQ1QjtunUcHPeuW8fY88e66xaHilAlZIpF9V233PLd0lTLrlvlldePVRUoc0i3vtvbYAhxhqDFhxlJV/29LASUCTtgAeK6O8xSRz4us+y6ZdXJqq8+SfSHPJZdt8R2re3J7ZTqO2DBuT+sbej6lQS8CCLKYgszPtvbMmWUBO0y7fK0fJWbOhcFvAhxq0ynz4C4QxY37BTzRQeMOWnmgLGIsgqguEzfdctp9zJI9aR+4kBZ0AvrOZfqq2Y74uZK/tIoaFtku1S0KRA+5EAo6JHsiVTemOdzmLtuWcu5tSG8KwHTRailOUz6rfVUwFMKOO4uFkEmA8xdt5zKRJIZUhFVYmYzMc9Sh1n0MXbdcpMp+GQkZ00gAJ9ftekiybYPJK1fy0JQQpa6NkeaqHO4fkkZPP7wfoPGc7bWdyeZKnhRiXMdbi2rXyxaiFQwRLtu1Uf+85//YOTIkXjllVdw1llnYcaMGXjvvfewZcsWNGvWDH/729/QvHlzTJs2DYC2vfq5556Lxx9/HIMHD8a8efPw2GOPSdurP/HEE3j88cel7dXXrVsnba8+aNAgHDhwALNmzTK2V+/WrZuxvbqqqujevTsSEhIwY8YMqKqKsWPHIjExEV988UWFbKNdtwjCmZLCAmBuJgryE5A8YSt8sXFG3pJZb+OsstsRk1wC5uGGjz/o92D3niw0uuQxNO46uJY0J4iTh5r8G+at1tYJV8JzYEtCzckUf3SuCNbpH4ez+tZgAQZ3MeXNZSPJd2qXO3yK1K7eht62HjBgczxIn/SJMbekcogBclb9mOA0YEKKB0BQaNds0+lXdm5pV27Neg6YYAsXdNAjeuyBHUyoJ8uxzWuB8KNVIqYsLmhhSGPMZpW2ARGX6zChb3k43XISWbiY3lfcksugRdtwi5VSH0mDmIcf4zILOfofpIEdPod6VIk+BCpzLVvm5a6CnQa8NeJFT3ORYTvhjhdQBOWFgcUZMx0qlZBp2wSqvL4S6wt9G1FVi8xy41XE8mJ/OkXW6GPO6HN9BOo3VssJFesyMV9sUyjrsUTYcC4cW502usNGqG+0y6Q3U1fh5OsLOCvl9hBRB7n66qvxxx9/YMqUKcjLy0OXLl2waNEiYzHlPXv2QFHMv1m9evXC3Llz8cADD+C+++5DmzZtsGDBAsPJAwB33303ioqKMGbMGBw+fBjnnHMOFi1aZDh5AOCdd97BuHHjcMEFF0BRFAwbNgwzZ8408hVFwSeffILx48ejb9++iI+Px6BBg/D000/XQK8QRP0mNqEBlm/pg17ZS5D/XDts9g9F68tGY8f819E5egFiM4rxzQ/98GdJBk5PWI7MDvsQFV+GU9vsADZfhUPLG+C34LnoOHYWPDENa9scgiCOE4roOQ6OJ6JHjTSbLIfjiehRgQpHEonFnCJ6rOWcmq1sRI+eJkb0iGWc2rJO8p0iepxkWefWwRBQCh/sThcYabITw8wvUz1QXaKI3KJJVDAhokds35QHy7HY1/5wRE9ku+yRSCUBLwKIsrTJHO2yOlJK9CgirtvgJFfrB3NOy1AQjuhxipIxdbRE54RfpaEoSYahmzHjNusgrK/KgSIhosepL7Q27JNcPaLHet4kO7ksU59vGxE95V1jlnzOATXolZMjnVg9KQSwUg/AlPIHuPUzd4joAWCL6rG2GxIieiohU4/oUYIOzpfy2qloRA+32gKwoBo5ikj0yZgXJxAKwVccjFwOML1XQrriD0FR7dFAthMstqlyoMQPjz8olFUNuyyD3OJU4uDFJebaO1K+IFgVPoefFwyG/BTRQ9QpKKKHICKzfNIl6N5+BXwJZmx8WUE0Vm09B32f+dhIW/3x1zj036no0n4rkjMPgSna3wc1qGDv7haI7jUZ6eeP1DbRIAiiSqCInpOJGozqMeYLlh+MK4JTRI+Yx4V3a71IIioiXpRdXsBEeMpTaTliVI+4xK8Y46IfaxEoslPEOl22z+uY7ZP+wE1QKMml2B97v0b6U2t1EGlH1mNztyh7+069ZMYF6c4M0SbrDkqyc4QZOnnAwuupmJNPbvSa3rfh/5kZWGE8/sXFVhGOBBJkho9VoZQW0aOV4JKccCscYCwcTVTunt+6zk52WiKETCEVRttVuyJn2dTFKKqfhIpE1oioDsVEp4D0UWiAab4gx4WOrTcGS57j/aY8h1a4T7limsqtss2L09HB5IjbcAe0izPItWgX/cap62F11rBwPJ10MXGH9qVBG5bH5fb1NXq4nsfMwWW079BB4nZ4UkSSKF7Ik84TfYEnCIKoT/R95mOUFBZgxbSJ8Bb9jmB8c/S4dwb6JjSQymVf0g+4pB8CZWX4+O6H0Ta4EKee9ht8iX60PHUPcGAsCl++EzsPdUeHcf9CVFILR3klhQVYaZEVa5FFEETNQxE9x0GVRPToVOIsHHdETzkynZLLi+hxU/9YInoAIKQC/grKkdO0iJ4QlHLLWvMDIaAU0a7tRoqeCagehCoV0aOl+UMK/Igx0u3OGqf1fRCu6wXXo2ci2KXroKeXBqPg5z5LeTOiR6yvWvQpDnm1GbfNRottgiOHAygKRiGgWmWaNqpClJBoI4cc0SPJ0p1A4UTRAcUBFPqjoXK5fyQHnct6NCqAspDXMd967Yh3Tw6gtCQajuvcuDZkthMKOvjdyzmxXAVYiQe2dfUj1dOPVUAJmRFRzFaeWY7Nep5iVFqmEdETcoqKcdFRJyhH9Oj5ks5OaQBYSIUn4NK+IMemU1kQvpKQrY5RTnSKWW5OSlkIStDhzud4wXCzzdIyeErCv8Bad98SZQEIeweNMrxEj+jR65p59rpmuaDqx9Ky/1J0BFFnoIgegqg+tn2/DjteuBdnttmIlKy/oHi1v2U8xLBvbzME2t2MUy6/E4xp3wEco4cKfVi1pY8UPUQQhAZF9JwEiD/81qRU7vBLc0VUMH6Idihs/ZFaRAEiuqXcZOs/XlvlRHIaRWo3ko3Sj9tSTIjVsWNdI0d2yDjFDlgdN9a5rRZbo7tT9F189FLW2CG5LcZgibARnTZOOuqFGBSI27frUTuaNPF8WiOomKWHAMhPiEgyBV05g8JUYw5q7VsmeBrMGCKY259bZRjHLs4IAAoTN4o35Zi9K8owVWZcjiBy9pwxSRfjWnbbz9vahi2ST4/KcLfHdqKtnVFRxNMjOqqsjgwpE5IDywg0ORbcLs5INlu7VY+ugZzGxLRwGVcXfKSbhG6/wmzp+uky07gtKMbWN1aPoFWwpLR0IZgVuHhlAsYOXHp4FWMwVgl3xMlg7pBOEARBnKy0Pft0tD37fwiFQvj0H8+ged48tOu0BzEpxWjeKg/wP4KSfz2OX/efhsJCH3pl5yJ/byNszrsMbYbdhO0f/AsdfPPRK3sJlk+6hJw9BFGL1Mnt1UOhEB588EFkZWUhNjYWp556Kv7xj39ADE7inGPKlClIS0tDbGwscnJysH37dqmd/Px8jBgxAomJiUhOTsbo0aNRWFhYIzbYvtdXYtZ0DFUMqQyQdgyuaHvG3JDJL7GyU5pqab+yL1NzZ+ePs5X2Ntza1fLM7b/1Lcitey1zh3cutWx1CYly5dKmVCWsqyyP2bSVZRvHXJQBoX2n2CNTrvUEMqEVJ9ni/xzm/NJpTOi2c2svMEV7QdF+BTK2WHcYNJLNMMasvjM005tj0LZGZ9CCjBjCW24z8LAsa9vm+VOMl66LaJUi2uiinlFFF6MwbV3byl+YmrMAwoN2kQasmA/mvJiuPiTL83C63QOcjBeGuuPTPhWRGS4nbc/udJFa9GAu/cAAfcd38wk2DnEneEe/ilWeYarQsGJTBrau0MamJRG6v8VpsDDzH9ffFSPd6FxRcWNLdIRvE4JOoiOMW2SK+dayhj3HOmAJgiCI+ozH48GQh+/CmbNW48igNVi46CLs35QGtUxBdIIfHdqsRrcuuQiWenGw0RXo+8DTSO/UGedOmYnkCVuRv7cRurf7RtsJjCCIWqFOOnqeeOIJvPzyy3jhhRewefNmPPHEE5g+fTqef/55o8z06dMxc+ZMzJo1CytXrkR8fDwGDBiA0tJSo8yIESOwceNGLF68GAsXLsTy5csxZsyYGrFB+mpdyR9Vj/13WN0NIDdQkfbEMuE1PI0nC/SXUxpzqh9+qS7pYp6seeQf4cWy1jmntX3ZLj3yQ39XoT1cZ9bQHi5ShWPdmSK6e7iUb8qwb++tyVLDepryRF2sPcSMNN1Op52zTJmy5YLFnIOHX5DkmTLlNPvqMbZW9XMPaZopyFTBjZdFB+40EoSHxlhYB86hGvX0dWeZNs7CTWgTfA7GVa1frQNSPJ9WPay9yOTq5mdmH/cAoHJtTaHKXpgcxuReujbdLgZpYHN5f3cxP9L83ZJvPMkjtcHsdbhZvkIynbqVGafULCOWdbDVdnq4kM1kVfVjacxanUfW9i1qg4cfr7V2jFCeM9jHDg83r/ttw9e2+RiWcJUz8x0s/K43Ij22xc1HssTFlq2dYdgm6CPZbXVIMbN9olpYsWIFAODbb7+tZU0IgiCOnfTWGbj0rffR4p87sKzwefzw1ekoPRQLxoCo2CA6JLwK/+wm2PjQ2Sjer23rvtk/FL4GfqycNrG21SeIk5Y6+ejWd999h0svvRSDBw8GALRq1QrvvvsufvjhBwDal+8ZM2bggQcewKWXXgoAeOutt9CsWTMsWLAAw4cPx+bNm7Fo0SKsWrUK3bp1AwA8//zzuOiii/DUU08hPT29Wm2QvlpbJx7lUMnizqWFRhi35TrINCvokypreenX8/DkQXePVFAr49ic6jvO71zb0etZ15Zxk2n9xZ8JThnZWWRzXQgtAFZnjtwmN/43UYRABj2yx9525CAJ+4NdslZ6KUvoBBMWY+ZyDSdb9RRDD64fm1rrj5GZMi21mQIWttlmD3fqW10/cxbvFEVi6BBu2IzYAcxQG1GgOI7D7bpM9A27LH1gRR8tXJHLV+jiFB02kmfCJsC8IKyTd/HxIv2UlHehWPQTd/A2Zeg6MSFNS5bOhSjT6aZgkcWt9cU2rDrqTiHRewvzs3UxcMCexo3/HHDQj4n/GXK5oSOT+toYeEZlruvFAdvDj4INhrnhPjYeKxQ9U/qCzHpB43lNsUMtnS/pJHaa5UZvuS0QVc9nn30Gr9eL//3vf+jdu3dtq0MQBHHc5IwbBWAUVozvj149v8Xe9elIb3MQUbEBtG+3HvzLbOzalY7Gbf4PAOAt+r1W9SWIk5k6GdHTq1cvLFmyBNu2bQMA/Pzzz/jmm28waNAgAMDOnTuRl5eHnJwco05SUhJ69OiB3NxcAEBubi6Sk5MNJw8A5OTkQFEUrFy5stptcPxuXUGvDQcc51QVlWr8oMth/yXfBTHmQlOC2yIi9EgN7Vdr+9zNqjtH5KieSPNGKzxCGXGaU758eynmmma2bi8T2R4ONfzSP1ujedx0EA21O0h0beRjLv8Tomr0tmX95eglvQWjZSFkR4rusvS3lMI5uKpKY4TpY8jFVm0eLc6atXoqFwIb9OYMdbUDxoVICi7bpqczroYrWkNmIA8iLtupRxRJ8jkHV7l7cER5k+nw5Fy8NkV1Ja+n9CrnImYOLwedjKYA+zm1XkAQutR6Y3CQFUGss95c/iydQmtR5tAllr62db37RWnYpvWFw+A2qojXk9107UN47Eo3W3PQcC5f88a1L54AcWgaulp7VOgMsdMgXhiWDjn2XwuICvLII48gGAzi/PPPRygUwqOPPlrbKhEEQVQZocQMAMDu2EFYEz8X3315JooPJoB5ODJO/R3t8QiA/2fv2wO1Ksq9f7PevTcgV0EBUfBKooigiIjXPiWp6GLaOXqOpRlpX2GJaCWaeiwV9aippVF+mdXJNCs9ZmkRBt4QETSv4K0UL4CK3Pd+b2u+P9aamWeembXed29gv8CeH679rjVr5rnMmrV85/c+6xmg9w6rIeOOLSITEBCwadgmI3ouuOACrF27FiNGjEChUEC1WsUVV1yBU089FQCwfPlyAMCgQYOsdoMGDdLnli9fjoEDB1rnm5qa0L9/f12Ho1gsolg0a0GtXbu2wz5I/af9yCIyaut0J6K1fvzP0hkTkoHLsHIl1ZDj+UEdAia3j6WzDjt9mur9wTqZ/9grSknrLK+vKAkVs2PoHx6AIEF9NRE1yd/I0w8k8oSVaUogzesi4R8TdpmJpkmia0y72JoZG5KIlyXl0ppJizTcgo4r6qdUJULovtV9Ik09bjtNxqwmt2qOG7F6amItgSSRspZnInqEkuUYmb2SmuovmjLF0DGmro52i2BfdE8whVdR2hlWP/iiLTwykkUvhF3PFwrnA79mmTeKNB2RHgpuX45O3R3Sc9rnH78ZPH1hvfrlE0ns0txI3s2Zltu5tIVrn6TxfmkhDaBRpI9jn7D9EqSeuTGhB5FA0slxTNqkAmNfR8J0sLpW+lMXGgNSXwK2HC699FLceuut+P73v49+/frhK1/5SqNNCggICNhsGD/jBpTu+AP2a7kH/T5zFVpOnoz331qJeRd9DYcOX4j+e34AIYADDngOG3+6M159bzxGTv8Vmnru1GjTAwK6DLbJiJ7f/va3+PWvf4077rgDixcvxi9+8Qtce+21+MUvfrFF9c6cORN9+/bV29ChQzssK39ilQ/fj9H16hSeuUtHdGoZPJKHTR58LlI5NJ6i1pbxO3bmRJ0eZ2WBcfXY0TW+aB57hmhH99D6/tpIJScRPTGEpdNnHY+4kUoaiZgwvgpHX5z6Fau8QyxPjkitoFfElFFPElJDJ19Or4g7XyQ20t5kY0V4/WNUk7DTJwtIK+BBh6HoQJ3EP6Q5eqxoMxLhQ8t4tJQv+oTrpFE9SlbMJ+B5Nxc/J8xLg3qc0xsk4yZJkv5Ku5wSI5ZArtM2RyKVp5Pc8M3YLbltVKZHp3reOWZk3STcX1ZXSvijebhsqtMhbVzZPHKLXfiUUHTj75QM7TbvB3VBpe2Eui/0xVRLpscwuZe0gvQ6pMSpC/VAoBeWyKD3i7aRDpiAzY1KpYLzzz8f1Wr4NTsgIGD7Qo9evbFwyVHoP3QVVt+4L+Zd9g0UV72D3nsNAZqS/9Gs+ld/VIsFdO9TxAF7P4z47r2w5NIx+HDJEw22PiCga2CbJHq+9a1v4YILLsApp5yCUaNG4Ytf/CLOPfdczJw5EwAwePBgAMCKFSusditWrNDnBg8ejJUrV1rnK5UKVq1apetwzJgxA2vWrNHbsmXLOuwD/e7eEXSk2abo9M0XE+JIzfr96zzxMmd+286Nm+/TmfxAbk/CfLbb62qpja/AZTa+6pUqsykC2o7rpBoSCxLywv0HTWuYjXohifPcT9eaJJomQpInR68ypaNsVE9E1uauLAZo2kemfSxtfQkij68izQUr7M3pW9j7EqSf7TxIiYh0Jh8JiHTTq3shSlf2Slb6UscmRxEfFf4X6KwJvLqSwvZPQOlG9pYHFgUnabfTjS8Ip1ZhqqUr6+Y0fJpeodtetirdIrVv+t65gbJ0SmvXfpNO+Qmyn3fjex4C2mSoe5/xGtR3nyxSbg9Pe4y6Rvpd5s8D64JSpl2YIuh7I0r6tQBTNwLsHszwxXFYkjrCNVkRSgFbDF/72tcAAF/96lcbbElAQEDA5sfR19+Hxxcdh9791+PI4bdh8PNH4Mjht6H3jhvw+KLjsPOFy/B4+WY88/AIlNZ2Q6GliuH7voLeTx2Ht67cE6/e+0PnB+KAgIDNh22S6Nm4cSOiyDa9UCggTsPc99xzTwwePBhz5szR59euXYsFCxZgwoQJAIAJEyZg9erVWLRoka7z0EMPIY5jjB8/3qu3W7du6NOnj7V1FLXmfbXQkceiT2c9c1ClL+PHdc9sKlunO7Vu3wbU9l39Ru2b19TWa+fMoFN+wSSol20EK5Okvt1fXG6MKrOGnjMRL4YOUV4IWIotG2wfk78mnsdEuSQRBWrFLxPJQ1NZCyYTEGR+KfRy53YtE4Kio5dkTCJwzGZHTCm5abkiHtg1ECLZIJH6kchVeXJ0NI/21az2Zfy2ddr9KOzrSifkyitporL0NVMRPXmDl3en1pFxF1LmwhfdE6s+zdCVBy9xosiJdIvJPlnKysqZU0sn4zZyiaH2PAQk2c0ifqiuvOtA/HIieqhyxlI54wRmDGnBFlckiQ9Sj1uddEpWyfOUXFdFGPk6Tl1/gYQo0gNWvbpIbee+S3gzWgdsVnz44YeNNiEgICBgi+Do6+8D/vNNPPLCKZj/5FF45IVTgFPfSMoBfPSsL2LsrEV4d+zDmPvXCVj3Th+ICNhlj5XYc+MFWH3TYDxz/RmIq6UGexIQsP1hm8zR8+lPfxpXXHEFhg0bhpEjR+Lpp5/G9ddfjy9/+csAkl9ip02bhssvvxzDhw/HnnvuiYsvvhhDhgzBCSecAADYb7/98PGPfxxnnnkmZs2ahXK5jLPPPhunnHLKFl9xC2DzIsELtqxOPW9oh046V6LHACCFyGTkfaU2bZCtr1ZgQpb5eTK5/dSvRKe96pbR5YtY4mXCuZTCU5fqLECgQvhWvRoW2PUiMugcjfpldBtvFCLA+CUEmRkL6y9PtSLJWS1bL7tmKC1jh63XxM6QFbA4yCxd6dNjNDZyFE+k6wmqk5AIaSclr5kRX4l635xXkhLnWpP5uSGD2PXQS2rDXAImI3PQSnPlHMMcMoac9+Xo4e0zdfrOkUGlPiXbl8LwB9wurpNcL92kPTcuHdwZOnk+HOf+4PZzfdJD1kiw8ZoaoduQ68W4EimRJBkXgFkRS30I6Fw6VL6uVgCgXvORrs2+ztNkqLphJOuEVAhfWk2mZBDPXh2w2TF8+HBcfvnl+OpXv5pGAwYEBARsP+jRqzc+esXPcuvsNe4A7HX737Bh9Tr86fypOGTXRzFwn5Xos/N6jMJvUfz5PXhl2Wh85JxfoXv/YV4ZcbmE0qJfQa7+F0S/PdAy9ouImlu2hEsBAdsFhNwGY+bWrVuHiy++GPfccw9WrlyJIUOG4D/+4z9wySWXoKUlueGllLj00kvx05/+FKtXr8aRRx6JW265BR/5yEe0nFWrVuHss8/GH//4R0RRhJNOOgk33XQTevXqVZcda9euRd++fbFy6e7o07t9wVEqpoAU1I0yOva+f6xXefLrzDOhRCgEjvz5q0Ql1yY/KjFQzpKZpw9AVQrE6azbV4/rVHUqVaCEJqsdJVm4PPoaUSkuIE6XSedyEwLF/nKvzrVVC6igWct25QurPrWhWG2CJDppW58+ZW9ruSnVyfvSLEvuI3oAYEO1CUBkJq2kHk0pYtondTaUW1CVTY6dhthhZE86+YwBtFWb/f0qVSJpu+9UgMPGcjNiWUgLXQLNJZgSxFKgXG2ykzeTOnEqxB5bAjIGiqVm6EBJn9EZN1AMAVmOrH6w4Fk8CUjm9aIUAcpPn0O8HbElKhNSjl1T782Z+h61peRd3o0IwkEoHTEQVTKCSOyBY5dXYjSX2DkqN09nOUah6pGpoMlEdr5URktRDWrptBOeMrUfFWNEVdKBnFmMiVxJbG4rolCqELuoDmk+6blUjtzYaidvlqROzAggHbYEVOIi5pZ/jzVr1mxSlGpANmbOnImZM2dir732wg9/+EMcddRRjTZpm4b67hXGbEDAto37L70C+6z9DfY8YBmaeiT/74srEd54fSh6Tr4Wu4z7pK7bOucKRP/6AZp6tOqySmsPxHucix7HXdTptgcEdBSd+f+wbZLo2VqwKURP7J211dd2U4geZ3GcunV6ohyIiKxzVSm91tZS6yN6+Pwua64YS4EKCp6z+XrLVaAI+5cBm+gxLzVxn8sW0eMSCJKsOEUn8+VqZOnkxAtvQ8+XGNGjYGykdpj2bZUmlGUzs1Hoeu5825BLrdUmSGkm+DZJJJxjVWdDpQVVWci4doIsJMT8lEBbpdk65xJ1hnjS41sqoididQmJRwgba64ugVLF/YXImqtrIsomZtqKTQDTaTmdMQBlDFQrTXb9Wkjn6qJNJXXx6PPJ04wVEFWEIRpy9FioAlFRQHA/a+gWadsmH/ObdTMrlGM0F/3nte18CfoUUTlGwUeUMRsFlQEA5Qpa2pgwTurE5O4kVaNiBRFNfGyJccu1D20lFNrSJ1/MDNQkj7TlqFfAWtsM0UOJJF1XMvuTg0qliLnl34VJ8xbGu+++iwsvvBC/+tWv8G//9m+49tprseuuuzbarG0SgegJCNi+sPAPD6DywPdw4JhX0H1HQ+S8t2wAVg3+MvbctQnNK2biwzf746mHD8Rbb++M3XZ9D4cc/Sx2HLYK5cEXBrInYJtBZ/4/bJvM0bM9QH+xl3AmJltcr4TJswp7y4LM2GqtmpX3GhV9kYBvvnJuS56tNs2R74+9eJC96pZ3dR24/WWTHElt2lbJTWoajdXUAp8mn+/8WmX3C89/E+sytcqP/S92dFF95q0kYZ2wEiKngyqRZvLkxLBz5NAVv2h6J+1bOjYjNVdlJ1SOHr0qmDQ6Vb+aHD2J/FiqNCipTjbx5y+ceUNO0rfApDAa6OiRWTl6AHOT+CCTjtRjNuuG5INVwn/zwXPsA309y3p3iWx85a04jaDKuuGJTufZIpPxUvNNIZ9f9FyOTgCwEiorQ3g/ZPWXdVOnhXz1LSkhZJxsQtpdp99QVI6SjfexR65+V5ESNOpYbTRkSaby1DLq+pp6OoHn6/HdCAFbDLvssgt+/vOfY8GCBXjrrbew77774vLLL0exyBnMgICAgK6FcSd+AhNunY/1H38as//6f7D6zR0hJbDz0A+wb/N/o/ndq9D64Q64+Zf/B6sOPxmT//dKrDr8ZNx02/FYvaw/8Pp1iMshx09AAEcgehoEqf90sl4yP8iZK3nhI4UUCeBfwao2IaNk1KOPz0vz2rmpk13ChOtJboZkxSj3n+klnnDZjmWxLbbX8KKrPSW9ViA6werYfhrdZt/vvZ1KmK6klSxS7l0xSvtt9w+lTaxVtsigMbljk8ktXeFL76crfakNeh8JeUP8i4XZEgVKl0giadLN5BwC8SDxNRKpP+n8ViWNTjYJEXHCyFzPRKdNk+nxk+6odb3UCmnQK3o5Q8A3LNglS4kvNYrybkguJ+vGy9LHbwqqTx04S4qnG8ynMG5n6tRDQolXXISPdMnz0XezUj1EB3kjSevPRJ4eQDE2ZuDADKIkki6yr1lKwEnnIrKLqVky3+BUkVl8LAnzqQ1VYzVVynO/6A6hBdSPCCZhc0BnYezYsXjkkUfws5/9DD/72c+w33774Z577mm0WQEBAQENx6C9h+Ljt9+P3ue+hj8/cQbeen4I4oqAKEjs0H8jZnzrfzG69CP0ij7EqRefhkte+DHmzD0ALT2L2PjEzxttfkDAVodA9DQI6kfWmpONLaHYmvSSOUSOCVnEUL0kUT1mbapOOm910yR75nFMVvLbNo/oMRSAIW+ULN+y37aFdA0vlSVJ7ct01S13pS+b0qH2+5cFp33BJcTuseT2uR4reREYJaRm6YZvSYgaAUiyHLeKsDEEUWqHL5pHkzapdxIQUkCkERFm+Wl3BEjtfYxYSsR6ha101a9Uj17USFqGQxLdNnPBF7T3jVGJmK7qpWb5HblZUgIqF8oYd9DWr4+TJpl6yMOBXmxF5vlk17o5ZTsfb1QW99sMNTsykT/Paj2YqK3OPlOoo3nIXS/TUes8RMnIyeoTAVikGl11C55xBFJfXRNN2AimI+0YvSyeBE2ijnR1Ok0SBXQ6Tj75ZCxZsgRTpkzB6aefjo997GONNikgICBgq0BLt274zA9/hN2vfAWLFx0EAChvaEZT9wr22+8F9Hh4PF6+ZCTWvLoY4rAkj8+S2X9ppMkBAVsltslVt7YHSGenc5W3Vy2foElPGT1HP/Nk5tVpr04jTzrn6tGhojRcmohSH4LIlFpn0sLlTQXbK4DmdRHWK1HUPzqvVYhzvDHUBO+jhDyJIXQdGqNk6iv9IlenTlAs7Xa2DckZtdKXBJLoHSl8C2DpFdt0Th9B+lvNaz1XXqjzyhIh9NxZ01MsWsGKg5ImmMFEYUBPiH1cBR+0EZEv1cSbN6rjRqGvsGXCvmDQQ66eG8V3U2ZlJXcPGEGUXEfBq2XpVOd8z516b056e0nro+aDJpfs4cQX7RPFGrF+l55+Et78N9LVoQr0kuiCXC8JRIS0EdxRENJGJsZycoc7xgeWIqRouxDR06kolUpYsmQJnn/+eb316NEDDz30UKNNCwgICNjq8H5xFwDAq/JsfDDnERx84EvYYecN2HvEvyAXTcRR3QcAAFasDFPagACODt0V9913X7vbfOxjH0OPHj06om67hJmQdq7OzLmHB7KO/Zr62gE+/6hXv2uPiQ7hc17fj+pqbmfy9JiZnbRq8pbUVpsBkKwuf9Eq8VMihkpQzMgOps1HwlCbpPM3q58kkldOJLMd+iw9ptSRIrQkksmikefqEyA5YwGTn8er02hJ5re2X4ISP2mhHid64pvaopMkq2gbQ8O5/UWa0uvLyCgfv0KNiamwmPV61sWgEHY/ZzKgdAhm5bCpVyeVZ90onruWy5OMPKnn5szhPHLtpJ1PSBiHZKIi2/tc9dksYZMknLfxPUgseYzZ8l0n2u+K+KlSnVmfaWMRETlZrF3GeIy1k53/P6IuiMsuu0yTOq+99hoqlQr69u2LAw44AAceeCA++clP4sADD2y0mQEBAQFbHZb3OQal9bMxZONvsP9Pl2LNytX424Wn47BRi9Fr8FoMHPY+pAT2H7QYbz3+J+x2+ORGmxwQsNWgQ6tuRVH73vgSQuCVV17BXnvt1V5VWzU266pb7bgKm23VrXbozFte3a8r/cxYdYvL4nKrZNWt2sSOPY+qSiBGAYBwghby5CTLqzdbJIQ7fbKnqup8OW5Cla30lUfKKDklveqWIOdcPb6+SpYdV+POv5S8vVpXst9WbkIJZtUttUoXlcHnpWp/Y8XYyiNfuC5KoGwgS7pbbax5NO+j5E9rpZvTTh0oHXRuro5by82opsuOe6e90i6TKi9PDJSq9jjQTaxOYfZKoK3UBL3Ued4AZ47GEogryZjNrcuOJWBW3aqX8NE3ChBVU4rJR0Rk6Y/bseqWQpyOhCpQqOYTNd725XR5dd6nnj4W7HykllfPkw9ikzpXqqClLbbbOPola5scR6Uyoiqrq/c5AURGWrGMQmvZ1LPIIkk2mHMqIo6uuqX1kTrWK2GGPKrIEuYWw6pbWxIHHHAARo0ahQMPPFB/Dhs2rNFmbbMIq24FBHQdtLUWMf9Lx+OozzyF0sY9UDj4u2gafizW/+N+yMUXoddO60x0dgy888/BiI+4Cnsc+2+NNTwgIAOd+f+wDse5LV++HAMHDqyrbu/evTuqZvtHJ/6Yql6qoYuz5ME3T63X3Hrk0x/zabQE15VH9Pjt4REp/vo8QMJ8Sk9LNwLFlZvVO3ZEj6obQ6Q5eoxO33ybEiYys4zLh6d+Eo1j8gRlk0l29ArpT8VDSABCWkQYzewj9ASV6JRGp20jjeixiY6Et7F7RM9xhWmlJ/nkjRUa0UP1uGSRPV7o62X8Wlj+E491II/FpHKjMyCgc71IpdjXhperwRJnGFvrRhEZ+3x8e8gVIT3n6tApsnTWIn3qjejxPdtqPYx8NseAXsmKnbN002gcCxH0q1W0vu8C00FbJTlzLDKH7JsQML8T3gggafch9Y1HoQVsdjz//PONNiEgICBgm0T3Ht2wuNsn0PJH4OBjn0XT0q8AS4FeAErdu2HBHw/Bu6074NjDn0Xfoaux697LId/9Et664tsoHvRf2PuTpzfahYCAhqFDRM/pp5/ertewvvCFL4RfXbJQ72RnM0DPF4Q5rldnPcQN1ZMnOmN+5uiy3ijJscudp7kaas27lY6IyDC6DVHjs8XIcl8N8p2jugoAKqRVkkPHtZATYj74LBTOMfR6WGo8mD70kUWafknq07kjhPOajE2CmaieAoSbe8fpXUO0KFIyTgeslWYktcNMl01USkxqRcKs5UX1aFpJH5hXvmxf3AJzXe36kUDy9kw9gzZDrtULtW4SEB3809cmf+DSrvAogs1+ifQaZfmZpVPavInPDu+x4vIiQzBJqruGj5mrfOWRXxGAikwvLKwbxcnRk+aG0oPSImV4XW4zJXJg5+hRStWF0TZIWwYUaUOYKAm4+aKoE9Tn9gzWgICAgICAzsV5v7wA150GPHbNPjho/7fQu89GrFu7A55+cTcUDh+O8+68AMW2Ih745hQctuc87Lj7Kuyy50pg9dfxzsxLsHbfCzDixK812o2AgE5Hh17dCkiwrb26JdNXt+ohePjpYiaFki8j79UtLo/uV2OAv6lRq41uK0X66lbtOSQtr1SBNrRk1FWkgT8KphwXUGXJmLNIAUqiFKsFFGFeTTKvUdl6aVt1XCSvF+X1Ca/TVmlGUXI/BYyPXJ+xZ2O1Gc4rSx6/1PLkCusqzajE2X2rE1SnJ2hgTFu12aqtdRKyiM9dJQTWF7shTl8v8l0LH7mDlCwqVZqc62bZTQkHamtrN3jX9M67cVLyoFptqm/AUp0xINoKCQuS1S5Ld5y+uiUNl2BAfOCDIgYKbWifzlSHiIGomkO+ZB1XYjS3uvJ8NgpaBkBUYhQqsOEhe5w+KFXQ0lp12lj1PDl8ACAqVhFVPS+Ocr381a+2EgqtJSZbDW5O8EiSaweQG1vT1bRIW3jaUiJKSlTiIuaWwqtbAdsOwqtbAQFdE22tRfzPf92OD/65EgP2HIgv/NeX0L1HN6tOuVTCg9O+hvFDZqP/nh/o3zLeW9Yfq4aeg/3/8/wGWB4QYLBNvLql0NraCikldthhBwDAG2+8gXvuuQf7778/jj/++E02cHsF/eG3M7VKzy/N9ZhQz2++XE4SPQJkparwlflktBdZbbL0WD9u1+gN+yUs/h5KFjHgRtWoc4ZeUcd2jJKdGhmeGr594dS3jRI6csn21rRW5b43RLj/dNJu6zcEUyQFIiGtOSZto/tdJGSMXmBJkTmeOa7yTsnUUUdplUiYBePdWCvTM5KSUsIEWXiakDLh1pGqMzoYIUHDVOq5UWhncJW0M7LMIRfaugd8DyYVapXKk8gJBOE62XEuyZN1TsKs9JVR1bl2qX9RPQ8E2kafk3ZEj69ZGmHD+0I4oW4ZzxVnsPHniLSuk03iII3+YRUsW1QED39qCGS/ZxgQEBAQELD1oXuPbvjK1V/NrdPc0oJP3/IzVKtVPDD9GzhkwJ+x017vYeehq7AzLsXK//4Blu/0VRx4xiWdZHVAQOPQvjAUDz772c/il7/8JQBg9erVGD9+PK677jp89rOfxY9//ONNNnB7hTUZ8XMEmehAE61VIJ2gEQH1yKNT96z6vjL+m7avPS+zaYJ88Drk923nvI+W8etMSgQ5K9mnu++jTLKPjDxoPVSjz0puA0137FIrUvcF3/QSy4K2Ufuu7/QvhOTNk4k/MZVfg6ROZPpLJMue0w1MH/VZjVkhknm3EICI1DhOJrYySnmItLIUEdTa49SXZIsgyQaPDZGw/fNtwikT2aRCLUhjqVcnhy4X2UxGrfk7IWAsVdkHyYeEn+QRGTpZXcn98t2Y7Fhdfy6TDAFNIOkymWGSx0ZBz6XnI+43u/bmsqtCU11KTwM1vmV6r8skobVQg5d2rtVnZOBHwrze5VwDYW4CRcqpCB9I6Ne7aOZtfY0DAgICAgK2HxQKBXzqxluw80Wv4S/PfBXLlw6CjIEBu67GyG5X44PrhuCZWRfA92JL6/p1mHvRFDw67eOYe9EUtK5f1wAPAgI2HZtM9CxevBhHHXUUAOB3v/sdBg0ahDfeeAO//OUvcdNNN22ygdsrrK/WbmhFLqxJewe06h/sya/5teTZPyhLvanVXLLK6Lwti3jw6a/Xv6x5pT/TjSuf607okWShdUqVCGc9a1UvaZlQCrS+scU/kTILmUutT6VJ5vKVTFVmPKV9S8ul0+tUNblWlj6jk9NEUksWfql0HunzW6Y+ymSzbJBZfavmoakN0iyZniRbTifUEhCpiGSCLyFknPar70rHEIgh2Nh1+knYzXQVNYkm5TLt1w7ltZXQE3fr3qzn5lAdweVJ5M/f2Xnlg6Tn6StozA7ne1GeTt6ttF/BPjN8dS4PfXYJf/eYMcvs8hBMzmWT6eu1vGOUPWqXjx3J+DE1ls3gMf+E+dTMlBLCV8hShE0Mt/Np9JDWKR0fLaZMGankB3Q6Xn75ZVQq/J3CgICAgIDNiUKhgMnXXo9dL3sdf3nxHLz94i6QVYF+u6zBqD4/xOobd8Him87RhM/D0z8D3DEMR428ExMOfQRHjbwTuGNYUh4QsI1hk4mejRs36lW1/vrXv+LEE09EFEU47LDD8MYbb2yygdsrrK/Web/ce9DO6n6t9MfmOmRFaZ0I6S/YbNORGenG527cbkHleXzK8pFPSWrVywgQ8NqQnFclEVQkSEKx2JZKpjnxk56nOn3ZXgTUC0pC6zM6/TZwb6TVv7Tcto71akYkDTx+2rSZISI4jWZHeChiiFwFEUGICFH6aY0fb9+muXVMmA6LAkoDWXQ4R7Il1SMT0aN12P0KRJBq7PpGESUuTLd5B1AiJjGIR8vVDbpyU9Yghe982hH85qlLJxGp/LB0sNFFdDh+WgOEgdkjWb/m3vTCuOncyKmJQrqnaHVNnoEWuD5ZRSId9bR/qT26nrqPzHmLrPNeTGH/kwKQUfIJpVzppsewH1baH9b5tZY284ztgM7Hfvvth9dff73RZgQEBAR0GUy+8koMu/xV/O31b2PZ80MQVwX6DFyH0Tv9P6z94WC8cMGBOHzsHKxb1QuPvjoFK0Y/gUdfnYJ1q3rh8LFzAtkTsM1hk4meffbZB/feey+WLVuGv/zlLzovz8qVK0OSvBw43639M3YvfD98t0er/m7v+cE6Cyo2wiRzlnrzRfPYGl27JZPHfcry0ZnjZNRTJVkyqX7bBreWyCijZIehKAzlk2dn8lt+nJaZSJ78aB7+S77wzP3MzM20kPY/GZtrldEjdgSToW74pJtecjPd9HgvY8g4tsdIhg10rSwhZLKp82k0D29qi4kh0ggiV4cp1xE93r4lH44OaZmciJGQsbRV1QNVLw1zofemNUBpOhVLh3TssQZ8rk67SIvhtzG/gZAxdHLgpR6y2jJ9yiafjnryXgv1J4sIY35q/8E7gthj3U/0GUD0RZKQZfag1c9Mcs/rcSjJuI3h9IffS19npLJ8Y9vD/wR0LsI6GAEBAQGNwccvvQR7XPkK5r3zX/jXP3ZDXInQa6f1GHHga4grEf5VPQZHffcHGDJyFI655Cb0O2cpVi3rj3H7Phpe4wrYprDJRM8ll1yC888/H3vssQfGjx+PCRMmAEiiew466KBNNnB7hZqjtWtSmML3Y3h9OqUziatXBg0siADrV+esaJ5EZ7bdVJ7/d29783VVtv02qZW1ubrNP0Pd5EtRNARgR91wu+gZoSN4ABW5Y0eWREw+p3SEvoj2VM5+bcxsRocQEcuPEzG9ae4az0hTr00phUKYRLSS6QXpFxXRY0WDEf/s/oy0F1KKNFlyWi+N5uHRNSYlT3rAInqMn7Sc95LrBwA61FO9wtat+jKyy2veWNaNImHRefwGybhJhPKB1ldoh37tluo+q49TwoL45ARJ1aNKsvs3q5/qKKdmcViXlerkDyNPQ6sfVAdbncGfE7DGv7VAlr4xycUS9n5yP/KLnZ6PIrsflNNZ7Lyqp1lXdWPwJwLsTqk1TgICAgICArZDTPzO+dj76qV4dPU1WPnqzgCAQnOMsXveg42zBmHh909BXK2gpccOeKl4Alp6F7Fg5rTGGh0Q0A5s8qpbn//853HkkUfi3XffxejRo3X5cccdh8997nObKn67RToH6RA62o7PnToSeEBlqV8ks4gdVS9PVl7QQeY8poZtPpk8KbQv6EH9rk6Ps6+TOUMpAlqaFVxBI0hiNCHJJcN7Suoy1+9Ei1pIx6yglU2yKR3JZDTWfkpdStf+ojojq0+s11SkyMxJw0cGjXywvXD9s3pWUBotnT9LRQL5nDV9KxEDMmJXFDryQaYzcjuttX0ljE7bO5lO4KmfMQ+eaM+NKtzV0aRndW4uU8apFZzE4GyVr73wFMcpwcHbcL0ZJItPnyDnvJxC9qDNPKdf/8oielR9Yeu3bkiPbHtMSVaQyPBFYigOxi5glaR0dCpSSGjlMbFN6nrmUzFtVAA3Rhi7JZfBDBCANywqICAgICCgi+D/fPNreHTa/2Ig3sNrTw/FHiPfQY9+rTi43x+x/se74OXiv2OfE74CvHAbmja83WhzAwLqxiYTPQAwePBgDB482Co79NBDN4fo7Rb6O3sHWJsswqNenR2JGPfSEOmk354DS6de3nHWFMM3T9J6weY+3nqUQvCTCX6dyV93HskXXqf0TrbFLplhVpWSQBq74ralpI1N8BDZ0swJpW4lHB9lGnsglX+CHFvLhHMbXCor6VmRzjFlOqc0BInRTfsw7Vmh9lNJWjEnqOw61jHMPFZFsyTjmuQRUgma0zw82jo1L868gSTrT1PPXo5eaL8tUsiXP0UbzYQ6NwanxmCUUnDbVRSTT2etMuKoMBfO31jbn/atQG2fWLGqTl/zs2XD9o+7xc9JUkxJIKY883nH9UrWlSpyS7f3GenXa90Rup+FMZb4p+1XUWcqQipWRiFhGhN23e8HkBA29LzTry7RZBFKAQEBAQEBXRSVnrsCAN7tfTxWNR+J3k9ejuFj/oWe/TfiINyODQ/fDQww9QICtgV06NWtZ599FnHs+7nZjxdeeGGzry7x9ttv4wtf+AIGDBiAHj16YNSoUXjqqaf0eSklLrnkEuyyyy7o0aMHJk6ciFdeecWSsWrVKpx66qno06cP+vXrhylTpmD9+vWb1c4sCGenfjgT0XbqdBZfaYdO30Zz9WTppMc2bdC+DajPd+8P6nXptXNm2Ctv2VZIXQ6rNa0vmT4jN0m8UrXKqM5Y61O+OHl6cq4jJ4BinQco1itXJa8L0RXGVG6emMm0p7DC2hPOq1tIZVm+6le+pN5oTiPv1ZFqru1eA7VykySJZWScbJBqBbOY5I9K/HYT/NhQE3Rr/AhYA0pFJzm5ldTKSLUGrW8Akxw9DpQcmq+HlmXl6OEyfM4Ksq926BLdMftM5UjuWw2dlhrWn46f9T4EJNk1piWiU17ESuJsD2O/LGuI0HHCHZeWKArnGlr+SqKXPDf1VtXjWdeVqRDplW6uv5CEbUzrRcTReh6cAQEBAQEBXRDjZ9yA0voW7NdyDw4+8VMYecOzeDK+Gf/8x1DIqkDPARsAAMN3+BtefeCOBlsbEFAfOkT0HHTQQfjggw/qrj9hwgS8+eabHVHlxYcffogjjjgCzc3NeOCBB/Diiy/iuuuuw4477qjrXHPNNbjpppswa9YsLFiwAD179sSkSZPQ1tam65x66ql44YUXMHv2bNx///14+OGHcdZZZ202O/NgfefuANmzKTrpvKHe7/58XmbNXQSPdnF1ZpWJDmx5soHs7vTZ76Y/oXtuvh4uxX5diufZEblyAYFCaoWtTeXJsekdhxqRtl+UcOI6qYbImgzSHlC5eSJnKktJIzPnlSnZQvVTOYkvEc074ttIv0p6dQSVnfZFSkCoV3dMzpwkR46I0nw56p9IcxIhQkTyEklHJywfnXuDFKi+jXhuJV+OHj5wM28U6Z62mAvY+XrsZfA6dqN4HwASoMt9R+RTJxeGu7BTlk7CV+jiLELK5wPPTeSpS4kdSzzlaVBbBi1LhpVHsR6zxFXmC02RY7VVD159w5J7IFJyC8QQZm/WE1t1gGWMNJ2gZbm2u8uZBWxPuPnmm7HHHnuge/fuGD9+PJ588snc+nfffTdGjBiB7t27Y9SoUfjzn/9snd/cP6C9+uqr6N27N/r167dJfgYEBARsKnr06o2FS45C/6GrsPrGfTHvsm9gz0NG4e0dPoY1y/vo7xSD93wfe3xwJl67dF+88/QjjTY7ICAXQnZg6YcoinDWWWdhhx12qKv+LbfcghdffBF77bVXuw304YILLsBjjz2GRx7x32BSSgwZMgTnnXcezj//fADAmjVrMGjQINx+++045ZRT8NJLL2H//ffHwoULccghhwAAHnzwQXzyk5/EW2+9hSFDhtS0Y+3atejbty9WLt0dfXq3jzNTcRukoG6U0ziQ9iKJ6yCqJD+fjZKZ5nvk5s1fJfJiubLiwioxUM6SmacPQFUKxOkM0VcvK19PpQqU0GS1s3+3z37FqBQXECNi5009HquhzrVVCyijhemC1sVfW6LcbGu1mfhiy4+ZD9SPjeUmVNDs2OLTmZy3derJOusPnTvH0SuwsdyMqmxy/FTnHT9TWXGqE06bZCeW9nXRE3wAG8vNiGU6cSa2mfa8b40f5WqTfiWN14kZeQHlQwwUS83Q18g/GFzIpM/jcuT0vTHK31bGgChFgPLT5xBvR2yJykafUEQE1emxFRKI2hL6MPdGtOSm+zFQqPh9sS4Ot78So7nk2q/lkmPBz1Viv059QUk7eq5URkuRKGMPHsHz35D9qBgjqpIOpP+bVZFfqpyQVGgtolCqELuoDml/WquBSciNrWmiKDjy9epb9s0DSKASFzG3/HusWbMmrJTZiYiiCEuWLMFHPvKRLSL/rrvuwmmnnYZZs2Zh/PjxuOGGG3D33Xdj6dKlGDhwoFP/8ccfx9FHH42ZM2fiU5/6FO644w5cffXVWLx4MQ444AAAwNVXX42ZM2fiF7/4Bfbcc09cfPHFeO655/Diiy+ie/fuAIBPfOITePfdd/GTn/wE5XIZZ5xxBsaNG4c77rB/AS+Xyzj88MOx88474/HHH8fq1avr9k199wpjNiAgYHPj4emfwbgRj6ClV0mXldZ1w8KlR2KdGIbxO/8vdhy2CgAQVwReXrIPdvv679B3t30aZXLANobO/H9Yh4iej370o3ZS1jpwxx13YJdddmmvKi/2339/TJo0CW+99RbmzZuHXXfdFV//+tdx5plnAgBef/117L333nj66acxZswY3e6YY47BmDFjcOONN+K2227Deeedhw8//FCfr1Qq6N69O+6+++66EklvCtETe2dt9bXtKNETp0SPpapunTKzah7xUpXSsbYelT6ih8+nsuaKsRSooOA5m6+7XAWKKeni1jfEgx3hkrbVRI+fHFBkCSdSytUIRbRkEkhmfi+scxJAsVqAWR2Lz5M5AWJkbqw0oSJtoofrtH2mOpuAdCUsu73RyfVJABsrLajKQgbfIcjcl/kigbZKs3XOJeoiTZbQ+W1C9NjLUFl9RAgbq/8lUKo2gyeptefVdt8otBWbAMmeBS7z5UDGQLXSZNevBZnYJNoigI533sk5BEdUETbRkKHHQhWIigKC+1lDt0jbNvmY36ybWaEco7noP69t50vQp4gqMQpVjw5mo6AyAKBcQUsbE8YfQjG5e0jVQrEKQV9vdgaeXa7bF0sotKVPvpgZqMgduu69Jnwk5MY2Q/TErE4GOQQAlUoRc8u/C5PmTsaMGTNw/vnnY8CAAVtE/vjx4zFu3Dj86Ec/AgDEcYyhQ4fiG9/4Bi644AKn/sknn4wNGzbg/vvv12WHHXYYxowZg1mzZm32H9C+853v4J133sFxxx2HadOmBaInICBgq0Hr+nVYMHMamja8jUrPXTF+xg3o0as3AKBcKmHOOV/E4fvORc+BSbRitVjACy8fiJEX/REtvXZspOkB2wA68/9hHUrGPHfu3M1sRvvw+uuv48c//jGmT5+OCy+8EAsXLsQ3v/lNtLS04PTTT8fy5csBAIMGDbLaDRo0SJ9bvny586tWU1MT+vfvr+twFItFFItmtrF27doO+yBgvn93JgTgJkMlaC+Zk0fyKH15ZXnts8prZYeSUFN6N6JH9btvDhynf90oGtXSlApwosNegcmUG63qDM3dU02P7PmjBH1lxFAfvDcFqa9KsuywJ3h8dTGu05wRTkmiiGpRdkol3tKYzC9jSOmLeCIRJUyJQEp0iYwWitzRrz1xn9JrKe0+UcmkKehrP75RK9NizZHQybbai0XHbhQp0jd60jHL1RNixkFGpE/NGxMgrxBRPUx5Rvhb5qpbnNhh54RI3c2zrd6HQkYd4RuwNUgecnMyQoYSK+acXulMsLapb8kl5a9JqTZqnMSur2qpNT6+6DF/iCk9kpyjibO0QcQXQhB1+v+EAgAAM2fO3GKyS6USFi1ahBkzZuiyKIowceJEzJ8/39tm/vz5mD59ulU2adIk3HvvvQCAf/7zn1i+fDkmTpyoz/ft2xfjx4/H/Pnzccopp2D+/Pno16+fJnkAYOLEiYiiCAsWLNA/oD300EO4++678cwzz+APf/hDTX8253evgICAgFro0as3PnrFz7znmlta8PEf34V1q1Zj3ndOxmEHPYVu/dpw4KinUfrNXnjyzaMw9pLfodDc4m0fENCZ6FCOnkYjjmMcfPDBuPLKK3HQQQfhrLPOwplnnolZs2ZtUb0zZ85E37599TZ06NAOy2oEyQOw7/meLQ+CbarMzXNjtlrzOSWjHn3CU57Vji81rvT5iB+1JTcDz5ej/pleon+VJnutK7PZWXvoUdJrBVIurFp2QmAJYaU3NqSFr0doNE+anyb9FIisHDbI0WkiYIhOxULQhL1SJKt3pblzVJ4fQT9JfhyhcuqINJGzygeT6omFhBTJJ9SEWiY6JdGpCDmRTqojmPxGkSDXUZgUKMkmISIJIcz1o9dS+cnvC33PSmjPBLmWIitXDh+4HOkEXI+irJvSJzfrxvPpB5NnMXGkkCYHpvl6YD6FcTtTp1TDRIkXGQRR3k3J7ffpITq06TD6c5GlBzBkCc0lle7LNA+Vdc3SRNk66XjWhdTnUnnW4CQ5eizbiC1In6yKuJFKKYPuEFpg+wERAe2Mzg3Y+vH++++jWq3m/tjFsXz58po/jqmyvDq1fkD74IMP8KUvfQm333573b9kbs7vXgEBAQGbA73798Oxt/4Fq49biCcfHoPyxma09Cxh7H5zsPGnQ/DkVWd6F6kJCOhMbJNEzy677IL999/fKttvv/10wme11PuKFSusOitWrNDnBg8ejJUrV1rnK5UKVq1a5SwVrzBjxgysWbNGb8uWLeuwD0L9yZvUbAnw7/lqq6E+ixgi85tM4iiPkMlDnk4faUPnrd55m2ef+8FXUqJra5kUx3aCZjsHj20hXcMLRLbqtSqp5a7zZYgcM6e3B4tgOl0CKtETg61EZVnm1wlLC+vRlIxJPmNIkRAnyaZW8iLLREmz2pfZ1MQ8na2rnqXkEYSZ21LSQbAF6IVeUyz1Me1rmbzFEus5sTCbNNcw+TRJpBP5nluTkDZS2NdSrS7mvUGyBq1iKhTpZTrdRfagrf9GoTKy9CliQW2M1NMsTt6Nn+rUq18pngjw+8bBZQm/DmtIULNB9NajA3D7iq/SplaLk3GyIYaQ0vgUUU6IMVH6U51T/UAHp0Sy6lZqiLZPkjIJE/XDyRp6fyqbSLn2k+rLIIkCArYQzjzzTPznf/4njj766LrbbM7vXgEBAQGbE0P23QsTZj2Gfw3/M55/4iOoFgvYYcdWjB12Bz78wRAs/slljTYxoAtjmyR6jjjiCCxdutQqe/nll7H77rsDAPbcc08MHjwYc+bM0efXrl2LBQsWYMKECQCSlcBWr16NRYsW6ToPPfQQ4jjG+PHjvXq7deuGPn36WFtHIelOHnuxJeCbv9RQ7+Oi9FyCbbxePS5lzWuzdPqIKbNvyAul3+cbl2PiT3g0TyLFjuqRVpl67YZvPE4nskoj69jVSb0xC5bbxA7XF2mNhoAi0TxkrSjbRv6iiSR9x3vQEDHJZ6T3DWljjwohhLXqlYrmocun654VZhNQy7JnEA5Q54z3EekHHjCBKI3miSgxpa5hury8Wk0M7qYHjiYXzLUUeqbPBqdv0OrOTkkqtcw2VcxBul+390XUZOnkMnw3CCcXeFSPYk7UJc7yjXAb6vKBiHZ84uCyJLwPGCrfMp24UrcOtjK5JxQMOppH0IieVHkMwskwNsoMGOY7lQ0gIqSNtoUYaa2cpYiaGBY5RH3WHSCNTI9PAdsXdtppJxQKhdwfuzgGDx5c88cxVZZXp9YPaA899BCuvfZaNDU1oampCVOmTMGaNWvQ1NSE2267zWvb5vzuFRAQELAlMOKYwzH6pqfxdPf/h9efGYa4KtB38FqM7n0N3r1yd7x0r//51rp+HeZeNAWPTvs45l40Ba3r13Wy5QHbM7ZJoufcc8/FE088gSuvvBKvvvoq7rjjDvz0pz/F1KlTAQBCCEybNg2XX3457rvvPjz33HM47bTTMGTIEJxwwgkAkgigj3/84zjzzDPx5JNP4rHHHsPZZ5+NU045pa4VtzYVgu7ksRebWaeaN3hXus4xwTsXzNg2xT6li+tsX+CCTVzkdauaQyodKjaDR7lkzaSl9ekSQYYw8UXRxBZ5Y5915/Ui9cyduXOZvFdiq07s2GF0+vrHIoUE9ISfR/RIGm0j7CuWTIB90TzQfah7NiWRhHR1Wq94KZt1WRKtFMu0F7Iih8irX1InlibEVDrx5WNGH0vT84BMI5XSiB6VVbqdN0pyD7p0m+di2CRNvTdG3o0pDOdgb4oEoKyKsLgLjVp6pXHB8SkPhKOgEUROJE+NzZHp0+E8eCQhUMwmINNIHpJ+3Nd3vn6hOZXoowTpuKlSncQOUDvSRiqaJ/JE9PCLrn1TpJTtU0BjEccxfvnLX+Kss87CV7/6VfzqV79CtdqxRRcAoKWlBWPHjrV+7IrjGHPmzNE/dnFMmDDBqg8As2fP1vU31w9o8+fPxzPPPKO3733ve+jduzeeeeaZuhbBCAgICNiaMf4//h3Dr3kJj6y4DO8sGQwpgYF7vI/h67+Bf176ESx7wjxDH57+GeCOYThq5J2YcOgjOGrkncAdw5LygIDNgA4lY240xo0bh3vuuQczZszA9773Pey555644YYbcOqpp+o63/72t7FhwwacddZZWL16NY488kg8+OCDeglQAPj1r3+Ns88+G8cddxyiKMJJJ52Em266qVN8cL5ad8J3bWfe1Q6dfApRa35WK2EyV0/3BfusBUqxGGmJlXku8vmWmur7V86ya/tTHhveVID7xL2h+XDoX3vPnaNLtudrRY9oH5jYkyydvv6ykhxLU1fnlnVsNiV0H8LthSR/rImPUoK1RkXQMCjux2pneQlEgi9rb5NZwhrIUi8PbxM5rr3KALUceUGQ+XhEGtZzo1g8Qo0G/CZR+mrdnL52rFzwek5D0CEFKYT9WlSWTmEf1xXN49PJ+paOj9w2viruzemXQckTIlPfAuQhqke2ZI66tz0ha+DWLShyjShTyZsBmLw85LxuT+WaewnUNuumTeVG9T5pA7YUpkyZglKphFNOOQVCCNx1112YM2cObr/99g7LnD59Ok4//XQccsghOPTQQ3HDDTdgw4YNOOOMMwAAp512GnbddVedFPqcc87BMcccg+uuuw6TJ0/GnXfeiaeeego//elPAcD6AW348OF6efWsH9BmzZqFcrns/IC23377WXY+9dRTiKJIL+EeEBAQsD3g2PPPA3Ae/nLheTi492/Rf/dVGLbv24hf/ixevG8vrGodhMMPeRyrlvXHS8s/h+EnnYlXfn8r9mu5B4ePnYOHp38GR19/X6PdCNjG0aHl1QMSbJbl1TvQ+x1dXl1HkNSpk1YrOsRGffAtr56lQx1LJKsEl3LqZLVPdArE6Qw4ry1FDKBaBdqglh3nxIc59q3KVUqXV/frEh6bk+w5xWoBJb2ku/DqA9FJdbdVm8Ay1bC6Rg6Vv7HchJLXT9dn7m+rWl4dNmSW7Wnd9eVmVGWTRwfvT2Hmr+nWVm0GRZwKsPwjc1yZ6txQakYsC6kf7jUz7eyJbiyBUqUJvvFj/LJ1qtWsi23N0Eudt4PUkDEQV5oc27IbQL8qJIrp8urtvVHU8urgRA+b+NMBluotFAGky9rXpVOm3EkMRJU6o2zofjVGc6sp8hJT0uix9FZiFPiS7h47LZnpA6GlteIQY45uStykn1Gpiqgau6SaO/iITAlsLKJQrBi59GagA47+/4Mvr07JJl4/Ju2QkEaVahFzy78PS1U3EPvvvz9efPHFmmXtxY9+9CP893//N5YvX44xY8bgpptu0pE1H/3oR7HHHntYZNLdd9+N7373u/jXv/6F4cOH45prrsEnP/lJfV5KiUsvvRQ//elP9Q9ot9xyCz7ykY/oOqtWrcLZZ5+NP/7xj9YPaL169fLaePvtt4fl1QMCArZrVCoV/G3a6Ziw9xz0GpS8miUl0LamO6qfewZ9dzEJ5kutG7H6xn3Re8cNwKlv6GXdA7YfdOb/w9pN9DzyyCM46qij8Nhjj+GII47YUnZtE9gsRA9FnVeio0RPnBI9lro6dZbaQfTQOU2cQfTUImCqMVDO0FdzTiiBGGqCX58+AKhUgRKaWZtaxESyleMmVNUEH/DodX81lxAoViOU0GKRM5yg8RFGEkBrtYURLD4bk09z3QVay00oMz/r1llpsf23lPt1SghsLDehQgIIzStbrj56HEugtdLNvX6kQMuRts7WcjOqeUu6W3NlY0tC9DQ7BBAnkzhkDLSVmgBZcM7VIm3iGIgrBce2TBlkLi/aUqLHVz9PbwWIqiSmK68+9TcGoiIgpOeZlyVDpvKrQBN/INRzc5ZjNJVgoohqEEqWreUYhaqnPtPDCSKUKmgpsiXQnbbpiNKES1IUlSqIKtYgtRXS9jHR3VZGoa1sETFJNbbPbZExZGtrSuRIT/+k7S2WNCV64hLmln4XJs0NxMknn4wLLrgABx10EADgmWeewdVXX43f/OY3DbZs60QgegICArZFbFy7HvO/9e84/OD5aOmd/Jxd3tCMZ18/HAdfdg+aWroBAOZd9g0cOfw2PPLCKZnLvAdsu+jM/4e1O0fPAw88gPnz5+NPf/rTlrCna6LWhGwzgbyIoCdeAv4ty8R6tnbbsgk6/QsauV749Pn8TeTR1bQMOZCk643YeQFDhhhL7CTN9jm+RHpM9PgIF9sWuvoXMq01epJMNqZOnJbyfuOki19n8h/xUyUzFiBJlFX2HNVaRZKZnDg2iUKWq07Px+kmkbwjZSVOFhKIkk+p3uGCZCt/qdw5AqB6JdURIZYRpCRZeGXWHWAPGJrEWW+RBGTUvpsl3Uhcja3Lp59WlelB1o0BZOv1vJlkfBSwc/QQSEIKUX21dMIvruZxWsbSPtk5emRy3srdowiULPl5Dx0FlcsG5tO6+2WyWRmgfcK1IWyTgvU1mD4Y2Zaw5F5M6sS2Ot968yp3lLKD2hOCehuOJUuWYNy4cRgxYgRGjBiBsWPH4sUXX8S4ceNw6KGHNtq8gICAgIDNgB369MJxP/kznnr+YAAJydPcs4yxo+Zh4093w8IbLgAA7PO5KQCApg1vN8zWgO0D7crRc9lll6FSqeDYY4/FN7/5TXzve9/DJZdcsqVs266hv6N3slZfAFc9ZmRMfXPl+OZ0Pl28jB7Xo5cjq42sY9+N3+GyVZ4XTiT5CQJ/XXNOwLCtZp4odU1qj4QgxBF0mc9KEqdhSZTpWaoz+bR1qvW8HJ3S1in1H1cnlV9ASgRpGaauIqJUU0ntU/psEwxxoFqmE346105y9Egzv7UsIr1LX0VLeCV3BPCJNq+jyRNb2yYh78ZQxyLd8ZEZlNDxQdVhooXkJapueh1SLstarIkO6lpdkOdX1gNCppxIXlV+7VL/MlPQ+HRZBJqElVTZ1yx9kHNCyYmz8z7spXUN/CSRrw5xUihyUtr1dXPaabxzYlddQENw330hD0NAQEBAV0G1zx4AnsCjSz+DAcXnMfLgV9Gz/0YcjB9i2ffvwj/XH4LBo4FKz10bbWrANo52RfRceumlGD58OL7//e9j+PDhgeTZBKRzY3urEx1oorUKj8565NWjyycni/zhwQm+YIV6dXLYZIm/rue3dVKu/pqzkn3aGrIInuwjWx6ldmBpt0u4N3xxdaNB6l7g8UOAEMJaobxdOgX0Cm3acwFAR/MYnTQAAyIy1jpLrIsMnSIlmuCuEBdRvUgCabRPAjJZS117Za9WppbGTjZlD+8Jy3frtEQSZQS7IyLR8by2Hq6mvptSdDyZLiFkrDHkO5CkIuE/OqSW++W7MWGXOcFF1G5pPq0yxZFkEUtEj6Dn0vORUkztMkPYrFTIly0E0lf7WAM1tmQ6vmSkN6tTmCxLYZQOfhH5B4y1slzqPItIst7R09c4oJG4+eab0bdvX+y+++7Yfffd0adPH/z4xz/WxwEBAQEB2w/Gz7gBpfUtOHCnv2PkNY/i6eYf462XdoGUwJC9V+LwUX9GpVjAgV+/tNGmBmzjaPerW5VKBeeff/4mLf0ZwL5a01l4HZBodxNXKxNQS54+Z62LbTbJNlVG5yuyjg2ezzxkBTmIGhKydSuKwn39KLuVoiRofVVu/nILVCSLf1H1Wr1kS7VbitQiU9O6DvzatVen9Oikk0umM5lsp30qkw3WWOEvr7F+FKZuzJdml0K/pqPmsOp1Gko12cvdxxCI9Ss32g7ikSDRR+5GJ9KkVSx1rtt2QSKdyDOBvpvC7Xg4Sun5rDm8tM9Jplb7mSHXS55k6WR1hYDrD5Xh8VVm9Ie+HLwJKXNeF/P0iXPZZJpHzZsPJ/2QYGMn+bDIMiTjm5It+p8wn3aCJEkMIoNdvx7HOkk43pvzlt+c2SJkUEBDMXv2bPTr108f77jjjvjrX//aOIMCAgICArYYevTqjYVLjkL/oauw+sZ90fbaE2j6t99hwWMHo1osQERAU7cqut8/BvMvO937NkZAQD1oN9Hzta99DQDw1a9+dbMb05Vg3bLWL+i10Y6q2VqZzlrydAAFicagIRa8jM/duEq1RRnl9frp6zpDEbgvVOXZAN0iWWhdtU7oGNtSyTRTnTbJwo9MqUCUzrd51IlqxVu6OumZPH2EwrCvF2jsiokwMvK4TqnlWdaKrP8JpVE5IoIQEaL0E3S8IGJ9R/ZTUoWOOzt9jLRMTKqnEQ9ptI4b95Sck2rsekefGu/slGfTUUmR8OegqQdSwhNiZZtsGUYMjEQ2kZH33YA+DpQfqrnqW98zA3D9VPucqOH2qDp5NzyTa10HJpNG7uhTrEwTVx6/sx4ySV+QgUZstLtf3UfmvEUQKhl0sFh3fBLhA6meN2D6iA3pkHb7k3iaOwAZm+fr74CGII5jrFu3Th+vXbsW5XK5gRYFBAQEBGxJHH39fXh80XHo3X89jhx+GwY/fwQOO3IxqqUI/3p2N1Q2NqNb7yIOHf47vPffQ/HC70NS5oD2o105egI2HwTYfKgdZG3Hed1Eq54WyPplmdWMSOM67FHzCN/8L69tVv162hsaxLesefZ+opPOgmx50ilTGXsMJWQ05yzNbekpwKzBZs/QFQVB21C5kUgTwYL2l9Ce0ytkiCiJSFYhHI5XkBrQPimdai8CkqTHgImo0RJsPVZfyZi8zmL3BQcdpUJI2xdJRjARYP/YEZtPGbn3GhJSxc3FkzHjZUEdqr11mkQatesG1SyoAIRMJv3UHy7Lka0iPjx18m4uwHLXIkOsYBDhlScpuVKHv4If0H7K81ES2zx69Btl0i4TRI4mrlQZHxDcDt2d6oJ67NENkgKHLxFIk3MDTlQQXLHqDkvkxaZdpp1ZTz5J/PPY7yMBO/4/lIDNhHPOOQdHHnkkTj75ZADAXXfdhXPPPbfBVgUEBAQEbEkcff19aF2/Do/MnIamDW+j0nNXjJ9xA/bu1Rsv/m0uCn/5OvY+8E0M2O1D9G/9Jl668AcY/NV7sePu+zTa9IBtBO1eXp3j8MMPx4MPPtgll7jc5OXVO9jzFbZgef1kTZz5akktGWVWI/bU0fMGMqRioK7F4Ln+Srq8ei2djm4AsRTWUuc+Hb59tby6mg3FVj3htFOkioRAOY4Qo5CjQ7D95LhUFSiimz5Hl0HPKlNETLFaSFcB43BJJknqtVWaUSIcbyy5bX4/AWBDpQkqvIT2jT0nVTKEtnVjpQUVsuy47lvp2mstNR8LtMbNHpvoPJjUJ0t+byi1IKb9Llm/SE8ZkjehytUmZwl1M8YM+WHpl0BbsQmgy47nTaYpsSCBaqUG7+4jOySAtgKskJ+Ync/SG6fLq0tGUniJF2G1KxTh15lDLgmZ1PMur55lp745YzSXmDz+QLAIKlKvEqNQ8ejwEFtWYFqpguYiKYil3VeUgWKyorYqoioxMOPB4CwX31ZCoY04qkmftJK1zLpth9y4kawSRs+TjvScq1TbMLf0+7BUdYPx/PPP4+9//zsA4Nhjj8XIkSMbbNHWi7C8ekBAQFfBQ1f+Fw6M/h92HPYhAKDS2oRnXj0SY793D5qaWxpsXUBH0Jn/D9vkiJ4nnngCbW1tjqFr167FFVdcgauvvnpTVWyXcKMM6kdH2/FfnbPmV/XoTCI6pHPOVy9PVs68MFNW1nwt77jGHI/U4xRHlo009sVIMMEKNmFi6zGaYjQhySXjvI+hy1y/09//hXlFJZHlJyaS/URHQoYYCkvqUhqPRHVGVp9Yr6lIUYM4lORYgnPKtG/5fqz2BKWLUj951IulKiZFSUSP5JWs9mZ1Mau/pd3vNpEl0//sPottZrB9N6oQzr2Zy6aqwzi9crScd2ZWex7Rk+rkKbh9N5CO6Kl1w1NiRLinHZvcGzLznLXYlM8ETvyoHU5KERlWJBUlVYgM6Rl4DknkPGwZwaJ8SD+FrsOIHcdOItQJSVMRPcJeFl635fWlR0ZAo3DAAQfggAMOaLQZAQEBAQFbEY698L9QKV+EueeciAkHPo5ufdpwyKi5WHfzULzaMhWHfD0sjBSQjXbn6FH4/Oc/j6uuugpCCKxcudI5v2HDBlx77bWbZNz2DP6dvT1wXhNop872EDxcJ9Xty9Xj1dkOubU2oLbv6jUI6ifvs2wdJmcLz93i5npR5a5U21aafUdpiNJ/Ms0GRP+lOWQgyEZzBKWyyRxOUTW8n6hO/Umum7ASfwiYRCBqVSreW5IQH9LKzWP3r9uHfKxk5uUhlpskwaYv9EJIIiWeBJL8OOmm8vMIsqKWEJHx1VrCifYYTZRr5vpqIk56Hiq3j/VP5crJGrQOk0OPDWWkT/kSWPGySHWERydHDgOq89oIeuDbTN/XpZP5RPuUDFwDX5/5+lCwJuQaWeJ9ZBGXQeTSVd2s8Zp7MW0/jQphTqg2fMk6JV4pR5Rc0wIxJkqFCC3MhuW4NCxcRGz3PZ878j+CgICAgICAgE5FU3Mzjrvlj1h11KN4fsG+iMsReg9cj4P6XY1/XTocbz31SKNNDNhK0WGiZ9iwYbj//vshpcTo0aMxcOBAfOxjH8P555+P//mf/8Ett9yCXXbZZXPaul1BODv1o6Pfz635RDvV87mZmUhJPbnwvQXok8/nu+3ZADjzNp+tvvmnL1jA3exVsOyVt2wraEYaXqbqm+m7+atW9pKIUbU00YXJzUpUlO6xvMi4jm6fyXQNsVQ6XSHNWWFMLe0Dyy+qSVh7hniRpL5a8Ur7Q1ZjUxtfqczxQFIOw74GauUmqZkgCRknG2Ss+9esBBcj5qvFeUaPmqDrsUMGknXlpURs9arUr/ZkDlrfANaKBfHP7Qrr8jjHHr0cXp0gDwVSSJfojtlxKsdLoOTotNRkkUPtfQhIskuuj0X8pGY7Ngp47beGCDzjxVn+y89TWd1h+SuJD/S5qfRU0+tKy1Ih6pND1YmQMFScuQK13YcO/E8ooC488kjy5fuxxx5rV7t3330XxWJxS5gUEBAQELCNYreR+2H0jYuxsHwdlr8yEAAwdN93MPD5T2LRt49EaePaBlsYsLWhw69uXX/99QCAlpYWPPbYY3jnnXfw9NNP45lnnsE999yDOI5xzTXXbDZDtzc4E4Gs7+BbQKeeN7RDJ58r6eN0lp+V6qmWiqwpRj2BCfnTFuHUod3M57dS6/StPOWdggNOmcjuJ8eypKwAgQroyldGrs9Pyw7p+qU8EaQ+kMS3qDqRiFCFSkZMbRIZfUv7UpqZs5RWG0VVKP22JSqSwTdR9VFKaf3YbmO9ASOoTkJgpjN/AbOymCKNlHzfK2e0D6XnhPEJ4By5VEW1Bm0WWF86AwieYz25z1BaU6epY/ySLnNhTpq+5c8sPvDZpxIhAfsVJ4osVtjcnN5+4YuD8WsX+W9G65gT74KTKuoVJ81qktEiYUXXaXkChIEihA2XZaEAiCr0A9rq54yO0wSSAMhrmVqvEqLZUadxwBbCAw88gKamJvzpT3/CEUccUXe7L37xi3jttddw0kknhcjogICAgAALh3/lLABn4a/nno4Jez2AHQZswJgxT6P19r2waPW/YcKFP260iQFbCTY5R8+GDRvQ3JwkS/3sZz+7yQZ1FXQSt5Or0/eDehZkxn49OvNsyZKVd64WNCGRoZ3LpXNSe60q3l8u2WNr4Bl+VKmdy4XuVYkWe09Jt8kjW59LZiWl0tEpYVYNozl6bJuVdN9KVS4Z5OSV0RNLO64pKU3y5fA+4ro5GZDMk0ktQfpBCqLT9J+KxkgietTk1tdXvt5MbLY4ATaMEp2xK6ueHD2ZJAdjVPjQ5bKtcj55r8MOnw5emJHsGDAcRM2bVNj19FtQvsGVlURako2XgXAmSgeT643oYXKse0t1py9siRxyPcYYpVgZxBRYtx+7drJq2jnkORkblKnUg5QwTITfMbIk06uO89LcB3QUl112GSqVCo499lh885vfxPe+9z1cckl9uRT+9re/AQCWLFmyJU0MCAgICNiGcfwPfoE1K9/Hwss+i4PGPo8e/VpxaL9f4t0r/4Q1o6/BiMmn6Lqt69dhAVvdq0ev3g20PqAzsMmrbnVlbPKqWxx1XolyXetY+XTGnmXS69XpJzGUiKxzVSkda+tR6Vt1i7bN0imRJOuteFbdqqW7XAWKsDPYcyJCvdTE9ZdjtQIWp37Up1mpitYpVyNLpy2XRtgI53yp2gS6mpaCsZFGypj91koTyrLZe859Qc22o7WS6KSTbGMrTZts27yBrbrFSRL11hO4nzJZJYyei1lbtQqWRSxJYGO5GTFdAYv7Rua+1lxbAqWKWX2Nlmu/yD7tqyJfdYs6m3OjyBioVgoAkV0T6VxdtKmkLkynfRFde2IgqgjDD+TosVAFoqKA4H7Suh7dIm3bVKlDBz8ux2jmb7JwYoc+3Ej7qBKjUM3RQfgY+6auoKWNFXKyKSajjlSNilVEMVt1yxp4drn2oa2EQlvZ1FM3ga4rSXtyXkrIjUUgTp+2sa8O153sVypFzC3/LqxgtAVw6623Ys2aNejXrx++8pWvZNabPXs2JkyYgF69euGWW27BM888g/POOw/77rtvJ1q77SCsuhUQEBBg49n7/4Rej03HsJFvQURAXBVY+vw+2P3c+/H0NV/HuBGPoKWXWdWztL4FC5cchaOvv6+BVndNdOb/wzqcoydg00B/Pc5lSjY31MRCbbC3Gs2cTWV0yTqf9TYG1eeTmaUTyA5uoLZm+ePTGZMNLO8Kz9SjWrs+0AiaZKOra9FjQTRWUwtcTVSb+Wvr5cuS81bcy9Qeaeyj+YKUdt5fAuStJJ0JOdmshMjCyEvy11TNvjR5elSuHpM/x9alxqZ65UayE0JtxB/TdyrnEPEpnRtbuYnYILLHi3AGj0yLZWqHkU5GT705ejgkdHSUfuXHd1PGbLMva/aWBUE+BdhBuvEcPXFS7iRU9uj0uZH1lpkdGpbjQx1+Wjm/lWjeDzLj07IjFezJ0yNknGxC2l0Xkagl3gN6N93hOaOkRDIwU92KoNEf6uHNbVfyYrujBdHLO9jSlzdIAjYFlUoF559/PqrV/B9nzj//fPTq1QtPPPEEfv3rX2PixIn48pe/3ElWBgQEBARs6zjwU5Ox18ylmPvq2Vj7bh9EBYn9Rr+Clj+PxOFj52Ddqp549NUpWDH6CTz66hSsW9ULh4+dg4enf6bRpgdsQQSip0Gg3+Ebpb89c0LAnbhREsC3QBB9cyDLBiWX68nSx8vzZPvmdj57qB/wrIGV/KMEjvmrKB47U4290T0Bu9cKRCeINmWN7adk2v29K4heuopWQgxFOm8NX+lLkMeB0klpE0WaWJ0pQRIi2yuKCRT0vln9iqz4pfclIYkkYiEhRfJpdCVEgySkA83NozxQK2tFglxHOvFXWyQhInP96LVMnPKniVYFal0vc60iQnh5Nvdi0guWEF9qFGXdlD6ZWTdeFlnESROqTx1Q4oGuuAXzKYzbmTr1ZaOqfEPWd2Nm2e/TQ3TQN5K0/lpkV9YDxV7ezVQSAlKoVenINUsJOKkM8V1Iek6vqmUNTGOYdwyRA0HIGimNvVa/StO3OjkS05fJvgVsKr72ta8BAL761a/WVf/ee+/F//2//xf//u//jo0bN25J0wICAgICtkNM/K+r0fPrr+ORR49EeUMLmrpXIATQ1FxFn6F7YMjIUTjmkpvQ75ylWLWsP8bt+yha169rtNkBWwiB6GkQ9I+seZOyLaXYN/Gtod43baFBBVmBBbVMyUMWGZUl3zcn5vronJvrSHzwRfQYOscmY+h6WD6JtH2igUeeVJ1adM/QD5QqUtbTDDn2/J22tENAhFqJKuMfJbMAm9CwUkZ7x64iBUxETZx+Il31SlqbmpgLQhIJCGk2CTW3lc5mvTQlTCyRTCOIFDEVp5vWFQvIdAPMdZXpkvLJDSId96yBIwAp3Cgi7wpY/Obgo1ImN6Feqj6PEFIXW8mpJ6KH3xhKRhYBJWA/HBS5BvqJ/BtfuSLN0IAkz708CI8sXxkfEtRsEL31PNQAt6+8ETdpNE8cQyCGkNL4FBFOiDNR+hOMWLEGpyFtQMeRJGVpHUg9bjRZQ3gcvUXk4mo/ffoCGokhQ4bgi1/8In7zm9/gU5/6FIrFYs0ooICAgICAAB9aevTAR2/5Cx5/6TgAgKwK9N1lLUY1X4xXLtoPq/75Clp67ICXiiegpXcRC2ZOa6zBAVsMgehpECTdaQ87spmUO/OXGuq9Py5Dz28yf9yvF1nz2iydPh2U9qCvIeXNea05EZDGtfBol0SKHdUjrTKhZ6P2ZqgZ9x+SWBdN28A6Q30mrykRfW4aZZeIsq9QGtFDfLTr015JYBZft/vUdEVCyNBjSNOLkepRIRCxqB4zKTfkkoSJ5pEpmSO1XLbpCaxISQQVl0SuorADJtQ7YSIir4CpKBUkk3d1Q+TemppcMFdM6Jk+60bfoBW2IPoKW+aNyCfyQPZN59MnmQyfPk4u0Kge5bRqX0c0ER0WIKIdnzh8tnseMnroCWY61VuvDrYyuRttk2wSkYnoESZHlB460upIu++UbN3ndHACiMi7X9oWYiStC0XU+Mgh2r+qQMl0fQpoLH73u9/hc5/7HP72t79hxx13xKpVq8JqWwEBAQEBm4SWeD0AYN4b38T7/xwAEQF7jXwTO/ztUDx2yRewz+emAACaNrzdSDMDtiC2C6LnqquughAC06ZN02VtbW2YOnUqBgwYgF69euGkk07CihUrrHZvvvkmJk+ejB122AEDBw7Et771LVQqvkyhmx+C7uSxF5tZp5o3eF9nyTHBN+nd0hxVe3Ta+k28DXJ84npM7IsvW44tRf010SB0Ju1Gx9BIHpobx2TIoHWz8hBxAsd/ldwonZjY5Hpn96P9QphNBQnrDZZkoi3JBtAQi8RD9cqXZLl5CJegtaRiSUQPtE6bcLCIJ12WRCvFUuUF8kcO0Ve/pHodjNKV6c3Ae5gfa61SphFEOXl6atwsKtdR7q3PiQ+g/ogeCXe4ELmS7JtNkQCUVREWd8E6I1sn4Yccn7LA5ZAIIieSh5ut9n0PJV6W2WeKtaGDlcbwScPdOA9Q4ZevVkmzBpPSA6BKdZJ2oHakHaeieSLf61dpfdb/mnGLbZ8COg/PPvssbr75Ztx666144YUXAAA9e/bEiSeeiOHDhwMAdtllFxx//PGNNDMgICAgYBtHpeeuAICmeD12uuCfmDv/4yitb0FzzxIOG3EPuv/1k1a9gO0P2zzRs3DhQvzkJz/BgQceaJWfe+65+OMf/4i7774b8+bNwzvvvIMTTzxRn69Wq5g8eTJKpRIef/xx/OIXv8Dtt99e9/KnmwrJD3ImgZtTp/6+Lz1bjgmcWsjip+g8tJYbtc63R6c9kBV1InJ9UsdURvKjvh0TY2rbEtzcLsYiOzMPLIlKR6T3XZ18yq88kpkeCUcSf+WKltt1lQbh6DVaFWFD1atoHkLMpESAlB4LrNw8dG7MSDVCHgHSIWgs6im1g7/eJkAjiJRqmyEQoFE9huLjET2+MQOhxkyiJxKpj05USI0tFZrcg9LR5yjnBAqPqsnSSex2nUmL84gOxq5IKsenk59TKn3kUBb4A4X4SoaafxM54vNsj+gnOUFIL5vqoTqoUpkvnxugzheILiubtDD1LNInBmKVo8fnFPWD6I6UbJG+3hXQGbjxxhsxZswYXHTRRbjgggswatQojB49Gs8880yjTQsICAgI2M4wfsYNKK1vwX4t96BaKuK4H/4eyw/6G177xzDIGOg3ZA2kBHq0/ROVcqm2wIBtDts00bN+/XqceuqpuPXWW7Hjjjvq8jVr1uBnP/sZrr/+ehx77LEYO3Ysfv7zn+Pxxx/HE088AQD461//ihdffBH/8z//gzFjxuATn/gEvv/97+Pmm29GqdSJg70Tf0zVX/elPffIm4NSM/UP0nVsPhk+e3zHknzW0mmvmGVLquUTn0eagAEezQNLgp2XR03+qMUuGePm4VFZbEBKqb9Gs/R4Yy+JDlCLs3LvUL32GcDQLT5ugJAoFplgXrFKthgQcTovlsl+qiGGiepxyUVKqgmLQJIQNjmjdCmZqR36FTqq08oHZBI5q30T0RNBSpONSDnpG796zi1V3xNdkO2LsJFGqND9nKGYDwF14am+jubr4bKd13rIpok9YkOWDo9OkaUzD+qBQvzLjObxnPOCnvDZriJvQAerGq0yzc0jrVcP9YMVgP2uGtlidY4YQK9nlbz/JWNLrxXNA8DKz2P5o+qT9qpDFNNm2UQHRcDmxm233YbFixejWCziiiuuwFVXXYUPP/wQH3zwAV5//XV84hOfwFFHHYXHH3+80aYGBAQEBGxH6NGrNxYuOQr9h67C6hv3xbzLvoGWbgW8u8NErFvRW6/jcMjYBVj7w93xjzt+0miTAzYztmmiZ+rUqZg8eTImTpxolS9atAjlctkqHzFiBIYNG4b58+cDAObPn49Ro0Zh0KBBus6kSZOwdu1aHU7NUSwWsXbtWmvbZNQ72dkM0PMYOmdD9pZlZr0EUd70getg817nM2vzBTT4NGfpU5uSZeSpSZ2hd/QkD+5v+pxaoq90caImiXVBui6V3cqV4q4KZcrsQcPJJ6XLH0lkonfs/jakEJ2xm6XMaf/ZkTzJfkQ61kiOYEfW6MTDpK+1Hr6EOiVnHH0wr3jp17BSncK8aiZEnJBAIrZkm2ge129nFNE5vwAkIUEikdpFB2K9N4w02nPhIYhq6kLGeeagpDs81I9WIM+OTL05Op3AE2aH9zgtkzSiB3CjeoRn84iq60GnInoo2ZUV0SO440CSsMejmOY7AqBXzlK6rRw97JN3kJbPHNXXRjAf6EmYshDRs0Vx7bXXYvz48ejVqxc++OADLFy4EDfeeCPmzZuHHXfcEVdddRWuuuoqnH/++Y02NSAgICBgO8PR19+Hxxcdh9791+PI4bdh8PNH4Mjht6F7rxIee/JoPLtgBOJKhL6D12Jk9Tw8+62xaF27utFmB2wmNDXagI7izjvvxOLFi7Fw4ULn3PLly9HS0oJ+/fpZ5YMGDcLy5ct1HUryqPPqnA8zZ87EZZddthmsZ+ikH1Str/O+CZd92nu8uUzlc02RoTNjzufdt6ULp4Tr88mMyVlbtk3p8HacGlD+CN1GOm3UPo/O8RE4dn16ZM4Jx4rkSFr+mEgi1x7/iKD6hZDpa1mpbOHrA8UEmJZJRA/3k1ourBMxrSekO83VBIlhShTPok7G0uiklJWW47x/lM67vb0A3T1CC2TUTISEjag1aLNFuwW+CbwzgDyMRu2bxCKaXEOIRZLVY1xFXToVl5EODcF11joWSALEiDz+PNM6uA28c+2bM9sHwI524fIBOBEyWkcEK85QAFaUD5XpPIyk+2nZpQaiNPZZN4gwbRWLqD6VHUKm5okQ0bOF8eKLL6KtrQ3PPfccjjrqKERRhDvvvBMXXXQR2trasPvuu2OvvfbCokWL8Kc//QkjR47EHnvs0WizAwICAgK2Exx9/X1oXb8Oj8ychqYNb6PSc1eMn3EDjunVGwDw2M0/wIgN16Lfbqsx8qAlaP2ffTB/45cx4fxrGmx5wKZimyR6li1bhnPOOQezZ89G9+7dO03vjBkzMH36dH28du1aDB06tEOyBMh38U6D8Cqtxwyh4vtqwDM/q6krb67Vkd+as9rUMQ/1Ujy2bPqCE9fqavaRKHS+rmIEzLFLCpnz5hWnLAs5EaUkUkSkzO4Tn1Sh9QNIX3myPaGTdrtvTG8WINJXrmDmnmmdhIoyE1YJoUMNdbJmrkNXF/pY9YuqGgmzNpmPYtJ0FfVJQC/rbsEz0fbmm8ldz7sWWLtaJIQeQJ7rRjsjyxw2kPQ9QDuYN5AAUi7LeRzUo9Nnbi1SKpVpiLyMqoIRdak9mQErGS6ac+SZ5+kno4Mssa6K+XOWHut+9wxaywhWh9qlLxYn+TgDRuynnUOJrhDQs8XRvXt3jBs3DkcccQRGjx6Nu+66C3EcY8mSJXjmmWfw8MMP46GHHsJpp52GDz/8EL169do8EcMBAQEBAQFIXuP66BU/8547Yuq5KLV9DY+fNxmHjn0KPfq1Ylzfm/Hqd/8Xfb74Bwzcd2QnWxuwubBNvrq1aNEirFy5EgcffDCamprQ1NSEefPm4aabbkJTUxMGDRqEUqmE1atXW+1WrFiBwYMHAwAGDx7srMKljlUdjm7duqFPnz7W1lFIwHADfo4gEx1oYrR6dNYjT9S5BC+Xw+dSPpd9x/XCV1eSv1l1s3QmZeqvqSXZp9Hgp17yyDMzr7Nf1uJranEbTHv72PZLSaeZeWBtfIUg+5rwf3af8PpOZwrPvBUARGTsdpZY5xZQb1LNAtabLEK/xiM9q66L9HUaX2rtpFySTdvj6Xmrk4XRCUj7jZpUXYffgpGwXmezdNJjfh7ouFIyybeuqT6gF5VUrI/zzVab55fvQaSuecZDQufjMVyhlacnn7Rj4sjgjSwlZqPjMdmnB0oMuylIXwqpEolHerMa+24wpSNKB38Uuf2krhN9b02trgXySZd51xc8oDNw3XXX4ZprrsFXvvIVLF68GMOHD8enP/1p9OrVC0OGDMEHH3yAN998E7/97W8bbWpAQEBAQBdCS/fuOOrmOXh54K/w7suDIASw5/5voc8jR+Cxi05utHkBHcQ2SfQcd9xxeO655/DMM8/o7ZBDDsGpp56q95ubmzFnzhzdZunSpXjzzTcxYcIEAMCECRPw3HPPYeXKlbrO7Nmz0adPH+y///5b3Afrq7V3ZpwNa9LeTq2+CU09Juhz3uW6aNJbs4y2+qVbEBm1NktXHcgMcqijnV93kuZXr8CUbsKT6ZauuZNM1eg5CkrSUBtUPXtRd55AmeqjOrN9FI4FtvPs2gFEj5uq2fw1E2c+XmjOWG//y9RHmWywxoovizBg+pGPL2q+i4R+bAAA0iBJREFUsNKeJPtJslx/quvER5Fu1tilfUuij9yNTKQlsTjehLdgBLlLsm4Ke/CYT66U1s27Ecg5vuqe94FAypzAwDydrK7gZdxHfo6MLd9Dgr+5JlmZw2V4yCLnssnkTrAeXumnNkXCjGHdMYwsQzq+Cdmi/wn1GcN5F06SHTXYdbZ41SGuH04nWn4z4kqzsh0dtAHtxZgxY7Bo0SK88cYbOOyww9C9e3f069cPP/zhD3H11VcDAHbbbTd8/OMfb7ClAQEBAQFdEaM+9Rns9l+vY+6Tn0ZpXTc071DGYSPvx7tX7o5X5vyp0eYFtBPb5KtbvXv3xgEHHGCV9ezZEwMGDNDlU6ZMwfTp09G/f3/06dMH3/jGNzBhwgQcdthhAIDjjz8e+++/P774xS/immuuwfLly/Hd734XU6dORbdu3ba4D9ZXa5F1wg8+92iPVt2G6fT+8u3RSScL0nPenvzbKX3b+7txPX76uo5SLVyG8jPLFhXVIUldTqtI1oLr5PqURipTxYwkZb7F4bN01tOLxnvfq1zJf+aVJyPX88qStpl6YvRoTSqSwcx307+pb0KlgDZ9qvuC5cqhvkqVaDnDbf+LWVHaOonWceexJJIqDcTwzXXpXDgPIvVBpnl07X6tA+lkO7FBZF9ifsOpd5kiQzoZg8CXovPoJOK8NwoTSOr468Pvt+/h4iODfDezgHkbTrC6Ev631jy8l5dYInY4wVSC0OKasCH20IqANYCkkkevJ+snm5sxd6vUMpU+Ss6Qm8vrj8wZgAJ6QPBxsinhWQHtxt57743Zs2djxYoVeOKJJ1AqlTBhwgTstttujTYtICAgICAAAHDcDXfireeew/pfnoJ9Rv8LA/d4HwOWnYInzx+Lg2f+FU3NLY02MaAObJNETz34wQ9+gCiKcNJJJ6FYLGLSpEm45ZZb9PlCoYD7778fX/va1zBhwgT07NkTp59+Or73ve91in3O3KcdE8OO//5q8q2ouUC9siT75BObrPpqfpY1B8zSn1W/nvaKsiCZX5y62fuUhjDyLFLDaUfpIdXar9t8Kj0FqNTI3N6khBNElDyxJ51+Qsr8VYmLTfSK8U/VEh45po7Q/AKghoAv4bHtQ/IRa9KG9wkHJZbU6lhS6yOEmppIk3MJVH/GgIzg3GuQ6cpdfJy5E17p9K85sPwlkUbtJnkAQK0QJrkvTJ7voeFJGFyfTlLk0alHu+fCWqtn1aFT8APaTzX81byFR49+o0xmlwn9BxZJxHXQJeMTdZ6LYT0zzXmLM1E6IiWIEDSqJRMrlD5IJBFu8Edq6c+sJ5+0/ctkMGvUCdjiGDRoED772c822oyAgICAgAAvdhs1CvjvF/DQZd/CITv+Aj132oCxBy/E2h8Ow+v9L8TYL32z0SYG1ICQMnzL6yjWrl2Lvn37YuXS3dGnd/vegovbw7IwVFDV++0RESPOfLWklpyyPb3JJW3okIoBYm02uLxKDJR9smu0lwCqUiBGIVeHb79SBYpohh2lo5BdBgCluAkxohwdgu0nx6WqQBEmgswOwhDeMiW3WE105ukyZca2tkozSoTj1QmPQT/9OjdUmgDmZxJ54+srEzmzsdKCijTXRL1Upcgan/0SgIwFWuNmj00gOgU5NvfhhlILYtrvPMmy9JQhmV+XK01OP5prb8gPrr+t2IRkHXDQCjVumKRttVKDd/fdeBJAWwGa/ON18vTGQFQVhNTJaJNeI9quUIRfZ84NKmTStok/EPIeKPrmjNFc9Mjz2O1E55RjFKrI7hdKCNG+KFXQXCQVY2mfpwwU8z9qqyKqkjs3o38EL28rodBWIu1i0g/pQOHEUXpObtxocvJY/pGOtNom9SrVNswt/R5r1qzZpLxzAQGdBfXdK4zZgICAgM7B+vdXYcn3JmH02CWImmPIqsBLz+2Dvb49Gz132lnXa12/DgvY6l490tW9AhJ05v/DtskcPdsDNiVYXpKtvTrpRmW1V6cAkpVlPHl5uM48WTrtRI0tT149tmfp4OX0yM6Jw8sBYVlnzgGSlXK/k/wxyT8BSfLiZOvzzBSFfT2NZVwfoPLVSEidI0ddO1h6kytichKxPkmTzqpXW6R0X43y9WWi1x4rQrq+Klt0Dwpjm+5baeeYhQRJ8xPrTbIcPHq0Wb5zX0l0Btm3onV0e7WbyIpjPsFG/RCetNsx2zzdlQR/SPfmpM44gt16WmQMONmtpbD1g/SF3XVefXpXZNy/vJ/yHgBED0mTZFdlvgp+QfNvTqi0UdYzTQ1yAZNbR/9zXXf7wXfxzH1hLmZMbkPfeCJCnc5UHZ6eM46Qccv6UzAdAQEBAQEBAQEMvXbqj0NuWohFpavw4bIdIQoS+495Bbh7BB678hwAwMPTPwPcMQxHjbwTEw59BEeNvBO4Y1hSHtAQBKKnQdDf2TuArHlbvTqz5k716tR6yepJalUY35ytPXJrbYDrN9ehXoPgc9+8+a/Z+ApNZnNW0iF0D5dq22r/Tf5F6T+pS8xqXxFMeme1sZV5iOPKT3tNMFqbraNFV71KdSUtI7YZisWaJat5KaS1UpStl/qS7pNxkoyVWv2s5qbsCqXzWKH+CEBEgIgEhFqVCElOIONrZPrVWsKJ9hghpYSZG2vOiXoq3PXJEt0el8D2ybUzxzY1BuhLYG+8LDJ94OjkyCFU9CpVAuSAb0a28NmTo9biUzjnwdvyPss6psXEPEs84Wi0Ab4HCfFLrepmjVeq2Fk2LC2mPIrzsE3bqGvFirRyREmfFqgx1EbPE9VynDgc2febk4unI/8jCAgICAgICOiyOOzMqeg3/Z947PHDUWlrQve+bThsj/+H96/ZFYePnYN1q3rh0VenYMXoJ/Doq1OwblUvHD52TiB7GoTtNkfP1g71vdzs1I+OfjdXqqjKetVnEjjSjl7x6cyyI6uNKs87l2WXKvPNqX3teBnNXeP8+K2PhVXT0DqS2WOy9kinTvK3iiarHT2nvHB9Eea0tHf9ftl2xZJGImSNBJMsms+OhUCaoyUrBxL1R61epSIXqAbXVssOqUgd2wrdB5KWQif/VvolYkj9GpWR6cJlGrRtpKvVa48yJbucRNA8uqXWQLVUJp7RRd0NYZAjR6/CVEN+1s0pyGkyeKzF5T03o5WjJ0s+KbO4iizCy70Z6zqmz1HtEh3WvoEmYN6JJOX2EOUskVNBi3L2fWSSai/JPkhfSsC8qiWtOrYGbhM5JaLUbnpC2vVyPQgICAgICAgIyEZTczOO/tFsvPjXv6DXY1/Hrvsux467rUZcFVi6aiyOvvpGCCEwZORNKLVehVU37otx+z6K1vXrwmtcnYwQ0dMgNOKHVDU3ksI+rgeZAQpZvxYTnfXKrXerJZvSI3xux/W6QRN0z460kY4F9ktVYPVdu4VTp8DaqWgfE2XDXyAjfhGSh1pE/YOWGCFS+yKNdNE9EFl6aTQP1aDpFsPyeSbzQstDKlNH9Qi4EQYsssay3mJD0/PqVaK0WBCZKqJHRSoJ2NE8ApGOZLKjhLQ3jCiyT9hjPzI6lK9ZET3OZB8upPviHu0Ka8CaS5Qd0VPP3J0ospoKwInmici+qkORpTPVQSkH4ThZw1efT6RMm8vc0nyJj/TxyFBlJpCGjk913n3WsdXV2WJl6XjVdYgy770QkYvA7M3K9K2vi4D1jqE1iDz+OwoCAgICAgICAurD/sdPwrDLXsMzT+wPAIgKEoePmY0VV+2Ol/78ewBAS48d8FLxBLT0LmLBzGkNtLZrIhA9DYLIPNiyOq0JDS/LgczY9PmMnN5Zsr2Tsjq3emzNq5kvn+7RLBzumljKD0oV0PpcIphsQKLq1UeTstg6rE9B/aU20R5QsmOTCUjl7YBEkhbcbP500Pa+RWzROao+a+TFVLaaBZNNssmrprbI3JX2l0hPJKtxwZKpc+VIafTKxF+aH4jrtHWnfsG+V+iWtOb9Jk1OldwbxVGb6uDxUZ5O9+XsoRE97dbpq6KcFECcbjxfDwiZUUunJk20m/6HgvDIquUT4TNooJZLWrE2FJwTAR2ehDRRldm7YFq8c5MK0gfSNor6E0uzSQmganQ6kVqKlWI3vu4AaTtNSVR9nzAn43qfqgHbIm6++Wbsscce6N69O8aPH48nn3wyt/7dd9+NESNGoHv37hg1ahT+/Oc/W+ellLjkkkuwyy67oEePHpg4cSJeeeUVq86qVatw6qmnok+fPujXrx+mTJmC9evX6/Nz587FZz/7Weyyyy7o2bMnxowZg1//+tebz+mAgICAgE5FazQAAPDqM8MgY2Dn3T/A3u99CfPP+xjiOMY+n5sCAGja8HYjzeySCERPg+B8te4EsodNWewfmmsg44dwPW/x/jrtydnD7eCyam2qTZ7NgvzNOk83GjhAQwj4P75ylm/+6cvvQ6VR2YBAQVtgR/OYqBiqg+lknWATMa6X2hNh22GiU1T0jT1OLBvUXDKdOMp08pjMfamuCAIFnYlIiMjJ0WPleNI60ggmxTNIcs0Y4eAbd0nEEvFLmEgepQ9EJ/XN9LN0rqsqSObsptdoPiWoiB56QazJfw6ktMaXM7joQCUqRYGc990seTcKOef0horioZE81nGGXq6T8hU2R+LaknXTm5vTNpjwGdby6tLeNHfpuwbcdlJPOKwUG7+Qlm/2Ju2m9JzlXzpuVD6dJDmP0aWNgdZJE0PrG5IOFE3q+AYR7bRUb83BGbAt4q677sL06dNx6aWXYvHixRg9ejQmTZqElStXeus//vjj+I//+A9MmTIFTz/9NE444QSccMIJeP7553Wda665BjfddBNmzZqFBQsWoGfPnpg0aRLa2tp0nVNPPRUvvPACZs+ejfvvvx8PP/wwzjrrLEvPgQceiN///vd49tlnccYZZ+C0007D/fffv+U6IyAgICBgi6HSc1cAwPJeH8Ojy6Zhw3u9UGiOcejYx/He1XvglV9dadUL6DyE5dU3AZuyvLpMJwkdQbmuBctd5C2vrpB1uqSnwD65OfKkRKWGPi5TAohjoOSpn9WGnqPLq9cimmidchUow15W29Tjy5jb62Aly6v72hnygtsAAG3VAipohvVKlv6MWH27Dl1e3dUJjx+Jza3lplQnb6eSPnM7jJyN1ebk9SnSxugzk3oqMwawsdyCqmzy9jtdrj2ZNBv5MYDWajMoJNmREIil3S9AQhBtLDcjlgUtz9It/dcjaStQrjZZdXhfxZ5BL2OBYqkZQOQf1DmDVkIgLvNX5rhSn05AFFX2Xk+brBsg/YzKhBbVZB0B16l4oDYgkhnPPEogMf0iBgplfzOXVSTH1XR5dc8AEr5jIktUYhT4Q4j3j3TloFRGSzE1hulNdEivLAFAtFUR0YctfdhLmEga1Z+qvFhEoVg1NxOoDml/Svuc3NgKezl2Wkeac7S9lKjEJcwth+XVtzeMHz8e48aNw49+9CMAQBzHGDp0KL7xjW/gggsucOqffPLJ2LBhg0W4HHbYYRgzZgxmzZoFKSWGDBmC8847D+effz4AYM2aNRg0aBBuv/12nHLKKXjppZew//77Y+HChTjkkEMAAA8++CA++clP4q233sKQIUO8tk6ePBmDBg3CbbfdVpdvYXn1gICAgK0HrevXAXcMw7pVvdDvnKUobSzi1cuPwwFjX4aIJGRVoFIqQJ78VsjRg7C8epeAnlP5fhHfkkj1WMERyJ+Heppb5vpSaagtT6bnd2b9Az4vz7Ijy0aegDhPJw2SsCJfrH80YMGN5rGn526uHhqzI4nGAtEJS19EdAqtgW/+PjF6bQ+TfRWpwPMCCfI4oMEZrq+mQJKoHrUakcoJlMQrqYgeYW32im1JcIEmo9JxGadl+jUuJ6In9VBAe6AibCJBI5hIEIbO5wPNx7g+uiSs6g9lS4GMFB2BRSN6fAM0bzCTHD2ZF9kT0eO98YBsO3xMm6WHKacRPSqqB9JdtIzrFq40APkRPbQ/fA8E3zmuW8KO6MlQ59jqe2AJUok6LASkSO5j3zWTeRdRESxkLOpoHr1iHLHPZ686SMeNXkKdg5A5tkyiL4qInwHbC0qlEhYtWoSJEyfqsiiKMHHiRMyfP9/bZv78+VZ9AJg0aZKu/89//hPLly+36vTt2xfjx4/XdebPn49+/fppkgcAJk6ciCiKsGDBgkx716xZg/79+7ff0YCAgICAhqNHr95YuOQo9B+6Cqtv3BeLfnQJdj7jNsxfMA7VcgRRkGjuUcH71x+IZU/nv0IcsHkRiJ4Gwfpq3R6mZXPpp/M31OaafBNimiYkzqiTa0OG/NhTlmUHt1F9qil4HqjtxgedyYb8s+3y9ZX0eGO3TyRIprVKaiJDr4+cArL7j7YU7AoJlbfG+Rdb7ZROTuJBTZ7NnJcYZgaVk6NHxslqX9ZmT8o9YvS8VqYnJDlJY6psPxJ9KmrOSoGSdodMu8TtS+UYvKBckxopqn917iOH3YBbxoUKYfEKmYPXm6PHIz9LJ2XwcvWRC2s5rco8OjJ0qmsKcj1t/z1+clnCUyaNXHpzWm/z+VzL6h/ngSK9m5AxRBxDIIaQ0vgUwSYUaf/pT3WOGBJT+TEsckbVsfL2pBdd3YhpcnXvgyKiugQhh5TeDJIoYJvG+++/j2q1ikGDBlnlgwYNwvLly71tli9fnltffdaqM3DgQOt8U1MT+vfvn6n3t7/9LRYuXIgzzjgj059isYi1a9daW0BAQEDA1oOjr78Pjy86Dr37r8eRw2/D4OePwOETnkS1rYD3/jkAUgJD9lmJnRcdj4cvOr3R5nYZBKKnQZDOTucqr2N+ZiHvh3seZFCLNMqSz/fzdPp02NMne8lyn29cjsqM48b0JFJoTA1N0GzWxXKto3E9rtSIpB+xa9G0JHTdLarXnb/bMtwrlEQhmOgXWp/HUSVIKQzyj3eqSHPnmGNI04uR6lWR5s6xNjUxpvRUQubEitSBNCttOUmBUzsl94SsJCZMwIReTSqSEFGa0DndzLVUE+2cCKr0gEZpqZGTuQJW3o0haJJorozAN8TyInr4RuUKsu8liAj5YEKqoN/FytLtsUUNC7Vv+VbvA0fC+5DRQ08w04neTB4jry8BOINH5x2LIEWUfqaRZSnZZFLjEAaO9p2SrfucDk6QCBsyjqiRVuZzpZSQNZnklTT73tW+AgI6H3//+99xxhln4NZbb8XIkSMz682cORN9+/bV29ChQzvRyoCAgICAenD09fcB//kmHnnhFMx/8ig88sIpwKnLMPiiN/Hwi19EcW03NO9QxhEjf4fXv7sv3nvt5UabvN0jED0NgqA7tSaCm1Gnmjd4cyfnmJBHDNUiibJQq357dHL9gu1ndSuVo0gNQ2xQubYU9ZdSPVQaj44xEiltEpO1tWgNuuaWDVHHVXLjgmJik+ud3XcugWTRU5owQTrRlmQD7KiepC8Tska94uWL5lFaUrEpeSRUOY3iEXYfJ3NlciwlYklX3JK2Hvbql5Tpku2Urkyz+/Ie5sdKa6xW9kLsrrxVZ6ibev0s99b3kTZZ8n2bQzCZT0nL9OZcbM2oCO5HLZ2EH7Lcz3OYyyE3Rl5EovUs891E9dgtQVkbOljtu15xN/wBqv7XymWqVdKswaT0AKhSnaSdMlq/j6aIn4iQQ/xpSByV7DO2fQrYvrDTTjuhUChgxYoVVvmKFSswePBgb5vBgwfn1lefterwZM+VSgWrVq1y9M6bNw+f/vSn8YMf/ACnnXZarj8zZszAmjVr9LZs2bLc+gEBAQEBjUGPXr3x0St+hiNveBAfveJnOifPsVfMwodHzMW/XtgNALD7/m+h598Ow6NXnNNIc7d7BKKnQZD8oMZEcHPp1N/3pWfLMYFTC1n8lPOD9SagPTrt+aKZYdbqVtqexIHoSbeR65NgJPOIHmHt22SJigSJIEgQgYqBMZEiXFPymeWRrZtG7bixO7wul8G9JP/IPNRE8xBiRpEo0mOBlZuHzo0ZqUbII8CO6JGS2Z7aYV6dI/77IofYq18mqsfELtHkLr4rrroquVaJHrXSlxsVUmNLhSYqrZgpFz4ChUfVZOkkdmvErDiP6GDsCstlXeuGNC5IcqrWQ4ITW8RXX36xrM0rN8tuK/cROUFILx7Hp3X4iJks+dwgdb5AdNHrqQ74hZJxkhnc6lhqNz2GkavySemVtwK2J7S0tGDs2LGYM2eOLovjGHPmzMGECRO8bSZMmGDVB4DZs2fr+nvuuScGDx5s1Vm7di0WLFig60yYMAGrV6/GokWLdJ2HHnoIcRxj/Pjxumzu3LmYPHkyrr76amtFrix069YNffr0sbaAgICAgG0Lu446EHtfsRTzFn8W5Q0t6Na7iMP2+H9YcsFIrFnxTqPN2y7R1GgDujw68cdUPWeSnrlGBvgPwXw/T1c9dThVYZFRGTpr25JI8sVH+Ags+mN7rGsJVp9SPllys3rGftGKzgdpRA+siSOdzQP+HqU22vJ91ugf81MtUtumzic6BasvSB0h0rl/OuGkizJJYrNQx1JlCUpIA64zaUd1JrN3ayyQsAyB9BopLiaNZBDpsRBSr5alcgIl1W1Om07O6fUUgHkrzHM51bxZxtRnsww86xD/vkeokKpvRaZuawhQffXeHL7B79vnY02SYhJR0xGdKpUM5S5qPlBUg5hZ52vXjmeb10arXxWZYp8TtJ56oFLDkoFoKjkPNeY4vd5V+hpWxqdqYC3/Hptypz6gbxDf64G1lmIM2CYxffp0nH766TjkkENw6KGH4oYbbsCGDRt0LpzTTjsNu+66K2bOnAkAOOecc3DMMcfguuuuw+TJk3HnnXfiqaeewk9/+lMAgBAC06ZNw+WXX47hw4djzz33xMUXX4whQ4bghBNOAADst99++PjHP44zzzwTs2bNQrlcxtlnn41TTjlFr7j197//HZ/61Kdwzjnn4KSTTtK5e1paWkJC5oCAgIAugGOvvQOvPvYous0+DUM+sgLDD/wXWn93IB4vT8Xh0y5rtHnbFQLR02j4Jm9bCGbiTNTVqdOaw9Shp5bojDmapUt4yvLsMp+29DxdVI5ZectM4A2ZIslRlizhlPnOGR5BoACQ5ed577re5M2NOQElyF+JxDcJE9Gj+tf+tHXyOvaKzpxK85NjKrYnFnYNRcgI0ruCz9QlwJdHd8nKNJ5KUp4libJRY14QCk9pMt1t7LEJIAY1V9auCV0psggwENl1ILb7NhN55A+9UFltnH61DwV1niuhnS+SSyJoWZ06HZK5nptTtY1sXsWpn3FzOsV5DyhVmUb0cB8cBWlkGWeMvPLpDaSqkgP1Gpa+6RShQ2X6ZJACPRZ8F0YYfYq1DRE92yVOPvlkvPfee7jkkkuwfPlyjBkzBg8++KBOpvzmm28iigwBfvjhh+OOO+7Ad7/7XVx44YUYPnw47r33XhxwwAG6zre//W1s2LABZ511FlavXo0jjzwSDz74ILp3767r/PrXv8bZZ5+N4447DlEU4aSTTsJNN92kz//iF7/Axo0bMXPmTE0yAcAxxxyDuXPnbsEeCQgICAjYWrDPEUcCR7yOeed8GoeNfhg9dmzFofG1+Mf5f8RHLp2LHr1D5ObmgJCy5vQiIANr165F3759sXLp7ujTu31vwcV8ltUOlFFtXwOtJjYta+jkp4teCqW2jFjKXGuduUqKagyUMvRltdFtpUCskw9nt+XllSrQhma4hAW0LE6mqDqluJDqdM9ltQEEWqsFlNGidcZpuV3fJpBU+2K1CckSz64vvD0t21huRtnxU4D2F/2k+lurzZqg4fZYBI8Ulv/ryk2oSn/fSl1mCAW68lpbtdnxTc1rtW3S1h9LYEOpGbFsYu2I7c77R6luCZQqTc51s+xWc23iSCyBYlszIAuu0LwbJyVAqpUCMqNpfGUSkDEg2pLF3jPbZemOgahqIqjsesQOfoGrQKGIhHmpV2eqQ8RAVIWbO6fWcSVGc6srz6pPeA4qQ1RiFCqw4SF7nD4oVdDSWnXaWPUyEmhHpSqiCg3v8utU7bXMjW0oFCtMdhbBI0k0joTc2JY8OGlbSg5xm9O2lWob5pZ/jzVr1oRXYgK2CajvXmHMBgQEBGz7eO7+ezHw2W9ipz0+AACsf68XXu55IcZ95ZwGW7Zl0Jn/Dws5ehoE/cW+U2k24eiUGZvTUprktHkb0+bAp4frpPv16PTbkDNJ99ihzim6I2uLkC6r7JzzW0Nzx6iNZsYpkJqKhuAZQESqE9oGTt1Qv7gN9ipb9j5v6+8Vao+dyyn1x5Ojx/YZKECkCxjZCZXp1RCIk1w5QiJSG6ROmCxpnp442ac6hT6fei5MImeaiyfZJCIRIxIxhMdnp3etKulVIvmCtP56V93yDtwaJI/vRhGANyOxvWxb9ubjKSRgJ+qVdsUoPeqATrWIV6afvgdQWia5LL5F6UaPhf855OhVsB4iEk5Can7nC3InkmrO/clzHUECiM2+Oh95ki5RBzRpk96Ilm2pbDoeQOzXcohcuhJYQEBAQEBAQEAnY9SnTsCAb72G+fMPQ7VUQK+d12NMy0V4avrhqJSKjTZvm0YgehoEZ6LUDviJjTq1euYQ9cgTdS7BW8smny7fcb3IruvO4gTb9/vtn6FK9mlrEOD68vg7TqHkzcSFx0JNsHj98pEo9uJMnIygyZqpXpcKEk4PqQLpmmm3jmxf7SXW+WTaUD8SNJky2fR82IxpZYORZxZAt61WVFmyRLZOEG31AvPeEpFaxwdtlJBLHYJESoB5dHo7lBz7Xr2ph0BWRBFXpf0k10WSiin/0RGdgo4Vqo/rhl1GcxODV5fk07PvBG7Vd3OmrzgyuwTpGlXkWaJcclaKjG/9T0bJZp23m9kdINIkymqlrdRg6x06cr0oKQRps9nWwO3gmA0ICAgICAgI2Axoam7GkT+cg+eab8Tqt/siapI46JB/YO0P98Szv/tlo83bZrFNEj0zZ87EuHHj0Lt3bwwcOBAnnHACli5datVpa2vD1KlTMWDAAPTq1QsnnXSSsyzom2++icmTJ2OHHXbAwIED8a1vfQuVCo/x3zKwvlrXMylj1fOib/K0qrmB84NzDXnm137p3STbzFLExldfvIjPl/b45Pvxv56pC9Vp57ONyWZqCXasaAiFRKf/nE3SUBtUPSrb1i+9Mq0Zm8c3e0UgyWvya6f1mMgh9Y9HJqj0Ic5YIfNJn6/JayIxIGNIGVtjBlJCSNtP1Z+K9lF1Y9/S7M5AUn5lrT2uorJie/xSCk6Q9NmOCDKRlqQv4uRVxQ6B52Hx3RT24DGfPJmuf+h5dJImTK2jX9jHmXlyfDpZXcHLuI/8nPToo6eFp4mwTfcSS3l9I9PXa+nDK/20h5pK+G3qan3KUakSLNtjTQp672XdPGSw68cC7RD2tLOisBishz91pINjNiAgICAgICBgM2LsqWeg99mvYdGC0YgrEfrusgb7bZiK+eceh0q5rOu1rl+HuRdNwaPTPo65F01B6/p1DbR668U2SfTMmzcPU6dOxRNPPIHZs2ejXC7j+OOPx4YNG3Sdc889F3/84x9x9913Y968eXjnnXdw4okn6vPVahWTJ09GqVTC448/jl/84he4/fbbcckll3SKD9ZXa+cX3Hx0/DfYdPLKAxzqkEd/vVYbDbHwlfnmivVu9frpa+fTSetn2ZKUqwXQ1WLn5qUtWpvSEUanfR7OEbUl0ZOQMCbyJOsVMIBH/yitvj6RzALWYyK5jtITksL91OQg8dM3XHlQg7TsS6IQhIjIJxkvzDfaWyoyQo2viCyXrl4FowYlHIyAFOni9cIXNZX4qaJ5IHi/Q8/brUm73mydOtokEnaUT71IJ9tS3Zx5N4XucFVXdQQ7J2DfCF6dpAnxQ/tsMTu2HY6feTqZ7VnPIP/ASot8dQErckc3YWWauLIMsHU63StURA+9wMQetalxzMVr9ljYxgt1T9mRPVCRPUq5itKhz1SVLZ4ba/mTNQAFrGsJ2EusBwQEBAQEBARsBWjp0QOH3vg4Fq6/DOtX9kbUHOPQcU/gg2v3wtLZf8bD0z8D3DEMR428ExMOfQRHjbwTuGNYUh5gYbtIxvzee+9h4MCBmDdvHo4++misWbMGO++8M+644w58/vOfBwAsWbIE++23H+bPn4/DDjsMDzzwAD71qU/hnXfe0atQzJo1C9/5znfw3nvvoaWlpabeTUnGrH7HJQV1o+PJmKVOAq0mP/WqLVnt7FY+GfRH+iqy55xZ+isxUM44lzVnU8exFIhR8OqU7JPuV6tAUS9EJzz1fMmdk4lVOS6gmvKm0jpn73P9pWoBJTRnygfcOB6kBFExNomRqa9+O42stnJTmow5y1b72NghsLHabHzR0R3cN8HapQmgdZJiAX5t3ITVKekj0wTQVB8hYxxbiIwN5RbEkl8TgjhidhhZpWpTmheI2kTqSSYzDaQolprhJCl2FDPEiR9xJUkqkxstw85JCYi2CEm2J4+eGkRPVBH+m1MTJcLtPAlEbUiItFo6FV+RHooqULDeI/TXd44rMZr5a9qUqPL4oLiSqBIjqrA2Phv5uXIZLW1sAFjtpB54Fv8kAVGsIqqmDXQy5Wz9+o5tK6HQlj75qp6LrRrQB3i6Lze2AnGajFlFeUmaEFq6fkuJSiUkYw7YthCSMQcEBAR0DWxcvRovX3YcDjh4KURBIi5HEE0xVi3rj5dKn8Pwk87EK7+/Ffu13IP+Q1fh8UXH4ejr72u02bkIyZjbiTVr1gAA+vfvDwBYtGgRyuUyJk6cqOuMGDECw4YNw/z58wEA8+fPx6hRozTJAwCTJk3C2rVr8cILL2xxm535V9Yv9x60oyrTyWdC5sfiWlA/JCerDpOGGdE8Rqfx1Rek4MaP5Acz8H7L6ge6HHpW0IA/qMBYxdMw09p2mSFH3Kgbo9f+jCB0FhA7goj3ji2XrLIlvS99ePxWUUppBIEgkSxOolkaNkB1MjKHTrLZBaB6dUkayZNsdJxkj4JkHirMldQ2k6Zp6IbJ2ZMeiNQPx8/IbDqawTOK1OSfD2uy6Ry3QkBEyZY5cLNAOzTrRvFdEqIbXG/dOkkZ9dPqFgkn2bN1nunMGIhUpfPWkXDr8xtGAI4eQTZLJStTnEgm6cV16X7gF5+baPJMaV2EgzHKvYNG54Uyzxx2kQuRm+CaCnb80cwr8c0R4PZFPWMmICAgICAgIKCTsUO/fhjzg0V4/J1paF21A6LmGEIApVITdp90CoaMHIVjLrkJ/c5ZilXL+mPcvo+G17gItnmiJ45jTJs2DUcccQQOOOAAAMDy5cvR0tKCfv36WXUHDRqE5cuX6zqU5FHn1TkfisUi1q5da20dhf7O7ttqoB1VM3UK9UOzRF0pGviP8MkcMGnM8/LQIDE+h+CuZmVRyeqS+uexwjrOztbCy8weX/0KnnPUOmt1qgx/zRYjTuOrkjgrnqvD1uWbnUs2+aQvbFHdiVcm904sY5P2Q9I6UtsCyyL3Sqi5r5SCyHD7krblOZxoXh73aiumxRzTlb9iNW7VsNMXMj2QceIz1amuOB2nUuUlckH5BnsBKtVe6U/zB9GOsC+VH9bAZvSYGpx8Y10lVUfwm5M74SOBOLcloVcz05s6Zg8A2p3ODcpJIdhUg6XW9yDzDAkJOHpYqiSzefRbNtW4OfUQ0gfq4kOTVtL657quL6Ig+2wVM52rhypWzsYAvONJmE/G39hMFYgjanwweZDp/wgQEBAQEBAQELDV4ujvXI6Fb04CkHyd2WWflRj83Ccxb8YXAAAtPXbAS8UT0NK7iAUzpzXQ0q0L2zzRM3XqVDz//PO48847t7iumTNnom/fvnobOnRoh2Wp7+odQXt+vPfpVFON9sjwzhc90Ty+ORuXkyc3b8uS4dNhp9bNDxywNztXjpsa2N0kk6oWWze22n9VHqBIZwFR0TzJr/pSb2Yhd/XTfqxXjBIJuQABs+C7uramXazbRPpTiijNY2NWnorJeSNP2RChmm4AoJY6j9O1q1W/2am31b6JSnJzOGVfBfuVLLvcjjoRJIhHRdWoCCmyopbK2ZOZl4fRU8LMjTXnRK+zMLmL9D9fRE8Ww+HcKFIXM5ftrnSDrUAuQv5NnUOo6Jw2NExGSCCix0a2NxgrR63FrXBOz/dQyPqkupTtcMyjfJxNZEu4csm+Hp5RcmWdUC4JT+NUNOXbpDT1NTGjNtsfYdmTRvEUiDGWygxWRg9h4nBEFPhCN30kW0BAQEBAQEDAVojm0vsAgHn/OAnFtd3RvEMZR466B69cOAJrVryDfT43BQDQtOHtRpq5VWGbJnrOPvts3H///fj73/+O3XbbTZcPHjwYpVIJq1evtuqvWLECgwcP1nX4KlzqWNXhmDFjBtasWaO3ZcuWddj2nHlRTfB5Unt1dkR3xo/fTjRPls6ssky5no228e3TMt+cl7fzb/y3ekqf2JZIXU5LbIulVRNEQxJxUoUgupKwDUPT2DoTv0jcjjD0Cu9X218jX4JF1qR2IEOnak+TO6tlwNl8m/Wt8tLELVnjRGZFS9m9lcyLTT2rP/TENimSsUyjIGLtl/HVRPiYVbn8dxGlgOhk3JAVaQQPHy2xhOOOxXA4qohSATWWLN1cFo/qiVPhWTdLHih/QTiJpF+FZzOyHbKmhk5rjGYRUrV8zfBRm+u6ZfMb3EbPtbGGKOhzzbMpcoj5qe5N15hUmdabjkMemiaR5tjxXUzPE1VVUw5bjJzSKV1ReTIDAgICAgICArYiVHruCgBo6tUPa495FP96Ppn773XAMkS/HY3Xfj7DqhewjRI9UkqcffbZuOeee/DQQw9hzz33tM6PHTsWzc3NmDNnji5bunQp3nzzTUyYMAEAMGHCBDz33HNYuXKlrjN79mz06dMH+++/v1dvt27d0KdPH2vrsA9qp4PfsTeJrBH2cb366NzMmtBkRPMoHfXKrXerBz66wjch868xpfbc6B4uxSQ+ttvYklQrXidKfri3rDFhG4ZeMXl5KD2S8C2UZrJh64z0xnPW6HKm08ikfkpACs1BkPmup+ci/Q9p9A9PesOjeqQlSSkhUVWKdCCidIROJNKVr5RfdjSPgMkP5MulZKbWjAKy5/VpKyWTXO+siB4+bLw3ilnMXuuWcGXwqJ5I+Z+jL1Mn8U3a5EhuZI+uQ2Tl6ZTWrkmc7Buweb769CnXyfVRZJX+5AyQR5cgck13CrjEiSoz9tOoL8stkf6xSDKijCeASsetuQi8PzOe2NQvPXCkbUjmuPDoCQgICAgICAjYyjB+xg0orW9JEi/vsTv2vnIpHnnq46gWC9hhwEYcPvZhVNoKGD/jhkabutWgqXaVrQ9Tp07FHXfcgf/93/9F7969dU6dvn37okePHujbty+mTJmC6dOno3///ujTpw++8Y1vYMKECTjssMMAAMcffzz2339/fPGLX8Q111yD5cuX47vf/S6mTp2Kbt26bXEf9ETZOagP7ayu1WhVAm7C0jr1+eepfglZ0whlR5beekiovPMip07+D/vSKudEEV8ditMEfn2EJLF0yjSiJ4Y7CLL0CKtQklkstYXqNJYlOpIEx5LU9esEjM9Uv0l0LfQ8UcDO9wMgjeRJdSJGshpV1lUT5K/UE9Dkg1goDP8hY/sqWxN89U9HSwjYklx/jTRhjx9SzQzz2O03nq/Gt5/pvkh71r6+xrGMtjH80Rq1blgqX/UpddZnL31eKGIl7wZW4snQ1ryJj+RhC0Q5n9wWQq7Q55l1VR0SxGOnNGMKINfY994XkyH4Dn2o67w+rBH1xbl2VVundY7cbNZKXpJVoTcJzM0JT5ss8iggICAgICAgYCtCj1698fCSo3D42DlYdeO+eKl4AoZ/6WI89vMqDj/wITR1q6KpexXvXDcahc/fiyEjD2y0yQ3HNrm8ushYJurnP/85vvSlLwEA2tracN555+E3v/kNisUiJk2ahFtuucV6LeuNN97A1772NcydOxc9e/bE6aefjquuugpNTfXxX5uyvHrs+3Jd55Xo6PLqyWs0TFXdOjlVYZBnTSylc74elVnLq6u2/vS5yflqury6T1fevLRSBYpoyagv2DzUjmAqx02I01mlOzcmOWfYuXK1gCJayHzWHtuxI88cl6oFxGRZHtu+iOwDdPq7odKEimy2fKM6YmYr1VmsNCX1Pcu6WyuCMV82VFpQlYUMvoMmdLblyjhZRj4p9KWlZn2bnowlsLHckowDSgjQz9gcW3ZLoFRthhXtIO3+UOwCt6dYbAIQZZM8GWSDlEC10uS2yYMiKFrJ8uq0fY4+AECcLq+O+kkb1a7QJpC5jHwGOSRk0rapAhe1btRy9vLqIrXJaZt+RpUYhSo756knuK3lCprbOKNEEMduW6WzWEVEl+CyHljS1a32W8soFEvpOdJefciY2EGIKCkhN7aZLOWSKJAg9dy2lUoRc8u/C0tVB2wzCMurBwQEBHRdPDz9Mxg34hG09CrpstK6Zqxa2Q+D9noPQgDFtd2weN3/xZHfurKBlvrRmf8P2yaJnq0Fm0L0JNEGHdO7SURPDZ1Zp0s5RE8W6QIAUkr45nW12lZjoJRxLu836FpEj0+nqlOuAmU0WQQFJTHsY2HN1Uqa6HHl8tWw6Lm2agHllFxySRKX5KGETWuV6zT7sdbLbQHays0oo9lrJ9cJZntrtUmTPKaNkWOWQ7d1biy3oCqbMubzkd1G2n60Vps9bZDOYYXWafEpEthYbkYsC+DRPFyHJRNALAXKjp923dgzcGUsUCw1wyF6tFFuG+pHXC74qxBixtUJiGIG0cMN95yLypzoYSS672aRgGgDIh/Rw3Q6S5/HQMHH4BLZjt0SQDUlejxEjfAdEzmiEqPAH0Ie8o3LQamMlmJagelNdEirjH5GbVVE9GHL66pzKZmjbS4WUShWCTlDCRppf0r7nNzYaoggSdpoPbHbXkpU4hLmln8fJs0B2wwC0RMQEBDQtdG6fh0WzJyGpg1vo9JzV4yfcQN69OqNv3/3LEzY/bdo7lmGrAo8s3gUxlzzMJqam2sL7SR05v/DtslXt7YH+OZU5sSWg3r1xVLTDp1OigeYRE/tIYFU3bwMEfQcl533tpt6Wcgn3VeqjqP0b55NSd+50TnCkmwmz6qUvvZFyZkCBCqktekXSnbwF8S47Ty6RrC/wrIFQkB4SAz75S8WWeN0hO0jJYhUimhHp4dAs95OUjcFHaPSkAV+Ak75o97+oSuepTrp62XqvArKiX3+uSSs9jPVE1n9k/ZFBPuic0OzXiGir9ZowzzgvIq6+Xw3ZZ4dYGV5DwP+tp0AUM2OquQ6edNMcjvvgZDqzDxPZRAuhDb3yrQMS/fpA0uQTrRvzlSHej1LmrxD3BivjZLoF/a1EhGSDlbN0x2R6hPS2Kg7VLrXUhM6pIDK1A+ljMisgICAgICAgICtFD169cZHr/iZU/5/Lv8pXv77yej7xJew0+6rcNC4Z/HBdXth7YTbsc8xxzXA0sYifMNrEKzJR+ZsegshnTzzVZPteBGnSeYWI3uBnCxwXVweL/PV89moPm1aIdunmG2etZQcnb6+kh5v7PamjGqsejRxnVkLkdMZtb0CmHuFYrUKVbryVC2dlDKim9STRAmpN0AKCZFuSqekPSslYrLal9kMx6H1kLEJQC/6pHTC0gOo1cRipldFzSkdcTrJljHUwlwawtoTmTcCtSXWvZbqk2pVL6sj6ZDIGLgCVnbjvJvRHqz+G4/ry7pZKC9JiQe+0ZW3YlXm0ZGhU11TyMTNuvL/clnCUybhJnZOu5KvZO4F7TvA7SdrNSyzL2ScbHqlOij2j+RqZv1HO9kiyaT9upUeQ8yodIU8JzmSJIrVOb2JdIl1ag/RpVaok1l0fEBAQEBAQEDAtoWP/J/jMOD817FowWjEVYEBw1Zht1dOwryLz2y0aZ2OQPQ0CNLZ6Vy9dczPLGSRQek0w7tATj3zOSqH7/tk+QkPV4aagptj1zcuJ/FBeP5RCZSwMWtg0XgWutE1uOySRFtEykwNN6rIzOm5HYresXXa9BBdWSvSPtpt/JFMkuvUu2lUUPqp9qW0e1P3qhCIhFoFi27QpI1ekl0kmxRUp3A2TeVJob1Ua32ZVbfsiT8EICKZbIycSnpMTbTdhd+l3SnWtVN97F0ByzfYKERKeunJO1dI9PoGbb03CiNEnIcBQAgHsmnWTdryfbo9tqjLB2HEOX5x+Gz36LOWhVebPUz98n196fShb/AISERmUyu4ER4m4Wgy2CjBbACVDyCKiC5iC4x+014pjQkxxPylg1Z6fBJMZkBAQEBAQEDANo6m5mYceuPjeOLdc9C2pjuadyjjiBF34PnzR6N13dpGm9dpCERPg8C/v+dOBDejTpHueL/v56jPI4ZqkURZyKpfDxnFdXL9zlzaU8Z1kDgQ8k/JtXtH/aVUD5VIyRFKYygNKvIkdmqYmtx+RSy4dtD2cRrZwj0zNsVk395zoWggM9FMa1kRPbHeh464MeESavUrmc6CVSSPCZRQWlJNEoY8SskaLdfq19RmYeuJZRq95OiyiSKd34eTU0KkuvzcCR07sY5USiOJVFZpu+tr3ij0/ssErVBLvm/z3RTpp6RleiMEh+432NwF7Yw8nYTnqPs5weUwX7MiEq1nWRbJ49Ph+KEHKOiAte56xd04D1Dhkad8UPcQMUKVValOalt6XidoVvdjZJNDui7pcOqz+oxtnwICAgICAgICtjcc9e0rsObouXhr6WAIAex38Ktou3VfPPu7XzfatE5BIHoaBMkPakwEN5dO/X1ferYc9VmT3jyOqqNu+HTU0mnPYc2spla30vb+iB4qk0uwiQcqTVj7sCQqwibS8nkN+7Uz2we+J5z2kSWFkkLmvN0Gjk7bS2KBDs0wkTx8I+83WToUcWAieQxRZV0jAUMcQSY+EnLGkitBdCGRnfoYcV3W+4rpRN2K6klJOLJ0tY/PUBAACmmkUqRyENGoE5D9vEFr3X85dw01RrXlUS5ZOn0g70gKKt9HdLC+c16/qlMn5X5qPuuoLOn66o3m8WxeuVl2R/STnCCkl6Z5WBJwLzGTJZ8bpM4XiC4VaSOI0fxCyThd/YsPDjYgtKxUV6R0CvJ6V0BAQEBAQEDA9oUhI0dh98tew/wFRyAuR+gzeC1GrPsaHj7/xEabtsURiJ5GoxN/TKVzhFrzTz5Xq2dCxSdWtaYPvrmi0tUenTF4N1JiI3/uSeeRJvWJm5eHSjARPDx7TnaP8HgdlVPGPmsm+9n9yAkUu1UMO8uQOkfrxaS+0ZNHMdAJb1qXRPBItvmiemIAvmgeZR2haiwSSfcrJxqUnwKwE7WYTEt2TiBhRfRIK6IngpSG5stL7qLmxnavpbog2xdhQ+blVm6XrBvHN5Dr1QfySeVxud7XegjZoV/XI3LawbQIWpRHQlEodij1NS+/mBoONfgmVz63V0fe0MFq7iUhFUEIc29Z3Irwy44BhyWjh1Xy/pfKnWPZQRoIARPRwwWRNtQxzuhLoOZSjAEBAQEBAQEB2ziOvPGvWFy8Ahve74lCtyqOOPgveO2ifbH6rWWNNm2LIRA9jUbds5FNh54jpFu980NuZnvIoTxbfHNFJb89OnkQBdecMee0ypUck2uI0jmmtmCbTaQYqygRJJkHKqpHZc3xx9/wvnB1Jv9sS01kji1VEkk8W1AW4eYjiZL/1ACyyRNfVI+yJUoFq8gaIahF5urQKBtN4EhXl9EHQwiR17AEVESP0hsnxFO6CSuiJ9aklLT8dAeMzmErSD/AE9FjX/L8jfIIeci6MflnFsvBy4kcqeVLd6O6TVf75dYotxacYjbkQgIpF+ema1LmCfJJzvlkWT5RWA8VPXgAX0SPGrk0kbaW7RtAMAyVZQ85Vq9hWRE96pg5oEmpVJeQ9nnaFgLueEgLQkRPQEBAQEBAQBfA+LO+ifjzz+C1Z3cHAOwx8i0U7j0YT/z42gZbtmUQiJ6tAZ30gyqfYNVD1pDqdW+5ekmZj9DgOmsFLPAVv2xpnGLx20DLE3kqLa9NQQACMSKHXFFUBbVMWJ/2OZoXx+QF8vchoT8cnSJlCVwSCERP7NTh8T48IipXpyDEDHntSbCcPXaUjdQBEiqyRr32AhjChObMiUnUjYkQkmaiHCWfasUvbg+gInqgCSAVuZNs6TUmZZQEyxq0dj4r28cORfRILdoei3kDlsJiOMjmu6h8gBF5ghuRl6iXchVZOrP8zCKJ8qAuCVttzInqoWXknLcffeXcbrWSlS+iRxGFMtlcYocJpxfWtwqXImPi2NFn2EXVjx7mjD7yrI3KASGPYHSHiJ6AgICAgICALoJ+Q4bgI1e9iEcWT0alrQk79N+IsT0vw/xzj0Ucb18rkQaip0EQQDYzsiW1Mp05c0/esq6Nt1E6KLIJDXe/Xr2uDfaRT5/PZzuax35JC5CIECPSVBDd/NbQuBVK0KijAvQLQzl9SOOC7FW+fJbaeox0E3ckOqwzmc/a/ilyxkT0ROS1K2H8FIC9BLuRn0hVUTcSkdogCVGTTJJlLJJlvtUrRCTCJ6mbaDYRPXbkjiARPZGgdB4hbTIGrZkze/pbL5PuHQo1N0oLap0eG6z91D9HJ88Fk3WjSFe0RRDoHD3kXETqZunM8pGSRD4/fQ8g1ee+HD1qQ3JeeiJ++Pj26vX5I2M1aJMCFdFDX/0TIo3osdsKJ2qHOKLHPyFEVT/rxMpgepkwndCZXVDnfTZqP3WSyAqrbgUEBAQEBAR0MXz02t9iyY63Ys07fRE1xTh03AK8c/neePvZpxtt2mZDU6MN6KrQP8xaBfVBtK+6rYR/x/fXympdt968ej63BduvZUdtXWoW7JeZNbWJyRl7/ik8ZVS63Tu2X8J7TlEclDuWzDIeEwTnrAu7vrFEWSGEsH7Ez9Pp6pVWXwrAitBI5rN230sAiCLEVX+va30O6ZCWC2ZheiD1TeR6muxH6atcvE/SMp4rReaMQVZVpGwStRtRqts3IPNuCM2lSPta+Aatz0Ah7EFE29S6YYXSzcroDh3aAgk/4ZOdp5PwEpp8qffmVzyFfaOY6jKnDPb4tGT7HqTkWEAkETY+nfpYOueBZGx5+1SyQiWD2qJflyOEDpWjOlDl8KED1745zDkqR3jqBwQEBAQEBAR0MYz+3L+jdf0n8PwlR2PkwS9jl31Wojj/ODzyp6/gqBnXAABa16/DgpnT0LThbVR67orxM25Aj169G2x5fQhET4Ogv9d3gLHpGMmTaFVRGR2RmUygsmvyuRn9zNKRV1bPFMSmFPLbZZEXtt2xdWT22CQclMTx22Dn5/HrTQIhzGtUeT5TfTw0w0dK+fwAACml1lkfjE4hhEOeJAcsGoWRbDKOIYTQ805DxpAAChIYocgxrYuQQJSAkGSfQyKGEL6gRSWF+aIJCGG/0eLIFk6ZifSRHYyQUJN3vy9eQkJvnKmxxWZeaErQcT7BlzCYcR6ZbnKdbGBnRvTk+Z1xc1CuT2SUOc2y+pnZLCGTiB56c0pGHKUdpwNrlB0RkqXSSR2vHl9Bep9oxkr3AWOLdD1N4RLyx+Mzt4UTSwEBAQEBAQEBXQw9evXG6OufxtxLvo7xQ3+Dbr2LmLDDLVh07lyslzvj0P0fx1EjS7p+6Y4/4OElR+Ho6+9roNX1Iby61SBYP6jac/aaaEdVR6ueBDGdtWTq6nrJagG+Og8v43MprjZvq9dP3s7odAkYn2xXJ02VnJxJX/KxarupmoVzHs6RTX+INN+PqmXHACgKKKtnANq7dkve89Lql2RSKvTs1KZk8nVagQFUr5NkVuq/EgJCRAnpoj/JeIH7GpT2RCVXTuur17HsJdOhX+tJXtcRiR5EMDNwukWQ6abHLtdNSQJHhHTKhAAQmeTP7UJK1ui+zbsprM5PFaulsvn5LNII7jk795DykVRSxIMw9evW6bXd45vPV3KtfbeAlYsH/rJMXoVeP2anEMkTwBhA7KFN1Tgm9kogJcXo4LA361/6vpmwlCiCh3SAzhTPOlSSncwBKGBdS+WkGkcBAQEBAQEBAV0YH/3eLXhnv//Fe/8cAFGQGDPuBRwxbi42rO6BR1+dghWjn8Cjr07BulW9cPjYOXh4+mcabXJNhIieBoF87U7Qjh9VNzWiR8tg3/vr0Zm0k95zvjI17ag3UIGWt8cuijydPHjAPW9+vqc+JGdsSsS0F7Dz5ij9pr6rT6VDFnrP9kBRJLYc01pNGG1bkVFfEKuktDUaYqy2zmROmOpUc1HNHrrQfSdjkoBZlVIL/JNTlUsn5UJs/6TZV/NiIzlNRC39ET2JG8k5EwNhT9gh/QEQZjZPyilZ05EbVOUTYjqZYnac7sReIz0PGa6TNGMEnmlHK9n1hafc0SlNsVPHdxN69k3/es4RwkefYmUWiWNuA0uW5DJk+izgSZatQ3OxGP9ESClyQTMuU0IeqTuSdYw98H2tbUGQGded3GOCyQsRPQEBAQEBAQEB2PvIo1EZ/xoWnf9RHHzoMxAC6NV/I+Tr6zBk5CgMGXkTSq1XYdWN+2Lcvo+idf26rfo1rhDR0yA4X62zfrn3oB1VvVqtOZz6wbkGVDxL8oMy+ZU5K8KHaOSkD92ijHK+2R4YZPWDmjb5AgGy9Cfn7VKThtgX0WOyzyqKRHqt9kwE9eLqic4o3bhe13Ka8VYtr877xFdCZIrIjsxqh061pLviFnRAgPM+ji1DRfREqW47TMM3CqJ0jmvIIaHHG2mqQjd0RI+AFBGkSMMfnHCQSG8mka5nFCn/SHNvcJBI7gcRCRNZ056bk062s24UHcnhnheiA3o9BItz69L+VeQBke/0BZetBScbVemNXIKnTNjF3De6upav3DIpj4BjN6ca00JddHVtHRPVPWTrMuSn+iQDSFitk39SQGeSpsZEUXrtlR3KuVSwl8zJco7UUUYqOfWO1YCAgICAgICA7RxNzc3Y2GsEhABK61vQvEMZR478LV789ihUymW09NgBLxVPQEvvIhbMnNZoc3MRiJ4GQX3H9m410I6q3sZqImQtrFMDfAnzZA4o0yiGZAM5BqmXZbtE/atRZ8nLcNGqmafHLTd77rLl7jlqnb2Eud9fs8WI01gSmS6wThc89+mkEgVkQnowaoacJf7b3koZ29fNo1Nk6YRI9tO5p1mYye5vs4R76ptUUT1mnAjp71t6Ffk63gIwq02n1aVEkppEsQgyBmSMJKKH+pj2gZRWPeFkMlbXk4wiok+RMkZ/oiNWS2DXC2tgG23WsyFmG+sqqTqC35zcCR8JxAkKdR3pFqtPWDoktY/foJwUIqocM3wPMs9QkICjx1pxi24e/ZZNNW5OPTT0gbrY0KSVpP/MKbakuyR2UDmpBHUPUsXK2RhmSXXaL5o1Ew5BZT0F1I0i1XiH+aQCaX8EBAQEBAQEBASgacPbAIDXd7sdby3ZBUIAPVqKaGpuBgDs87kpVr2tFYHoaRDUd/WOoL1BA1ynmmq0R4Z3vuiJ5vHN2bicPLl5G2+Tp4PSJr422Xoi/Us7pW4AHq1jNkkk0sXWjb+C1DDLnkc6hocudq7yx/h0wtYhTUQP99NuYfIOAcLKkSOEOUd18sge45fUs2spYed1sWygcUoi1RexsZLXp4JcXLuvaWoRFVGRpP/RO9ARU9rPNDdQZl4eMgGHNAQC6VzjY2KAEKZ3BdKonqyBW+tmk0q34RScC0oje2gZPHrrASE3TE4bdZBuET02sp1grDrU6H1O5PgeClmf1D9lOxzzDK9BOBrrwQcmK93XwzNdQc2JCNPXhnZGKp7xbRYLZckyIpwoKqRRPAWQpd099nLoIUzInIg65GnsI9kCAgICAgICAro4Kj13BQC8/9Qc7P69V/HIoknodcYD+vyr9/zMqre1IhA9DUK9czEf+DypvTo7opv/8K3LWDRPls565eZtvE2ezIw5oVXHH+VjomskO+NLcgxNSfA6lGiSpAaNdInTOBoezRMTasXVqWiQZJVlX6JnY53ak2lISBKBEJtoAmnO1aMzIYoMteXrW6UR2sfUczZW/NFSds9B++heg0SMmV3LWEKkUTpKt/Ez1pFMOvKMyLKJKkMBUQLA6k8pEUsrriONroG7+TqJd5hQvcvm5VwWH7RxKizrZrEvCtNpNisyRgLeqB4i2yFrasAao76bk9qY5SvfCBcoyfWxOC+HSPHoIcf0UWZF9KgKgu/zsUOOHfKNdViqQ0ecmVCi1HdPB1uHtAO4w5zUybtQm/J/o4CAgICAgICA7QvjZ9yA0voW7NdyD0qtG/HR6/6AnffeGwBQat2I/brdi9K6bhg/44bGGloDgegBcPPNN2OPPfZA9+7dMX78eDz55JNbXKf+2t3B79ibRNYIu6xefXz6kMwrzC/GPlm+Mt/EqD1bPfKzIl1oHV+AhLD2zD9DqZhZI6UqqBZVn+f/4XKBKI2jodaY6BpDr0TaV0unlJZ03zze1mlHuShdqjxLJ7hOKTQHAWlP4jUZpPUmkUtqyXIrwkC4ET2SSdLEArkGakl0O9jC5MkRkYBaNU1H8yg/nZw9lKZTmx0Npuf1Vt+q/qwjoocPPu+NYkdnqb51ZPBBq1Zh6siNwjgLSo44UT00skfXsTokW6e0+RRhOZkhJ+sGBWujXCfXR5FV+lN62rGbk5JBpjv5WCEVKOkFe1+qPZHWtx72gt0wgm0RUSdMPUUE+dhCWp8SU9xv7zXiBQEBAQEBAQEBXRs9evXGwiVHof/QVVh9476Yd9k38Pazz2DeZd/A6hv3Rf+hq7Bw6ZFbdSJmIBA9uOuuuzB9+nRceumlWLx4MUaPHo1JkyZh5cqVW1SvyDyoD/USNLXU+L77+/Vl/+N5eWrppOV5P9hnbSBt/bbm+5Uv357u02gbnvnG0A92mWTWunuqTowqAOkkYvHn6HFeqhI0GsidyymdJn4o3VO5ckAiX3J0gusUKiWzUajmvjHpOSNZRdcAdsiEL89RSucoTkF3LukDkWy2qWnkTpzkyol5biAS3WOieWzYRBVRzXw0V9D0qoQ0OVVqDVwfhIBDlSojVHtfrh4V+dFefUp++im5s040D9nAOIcaN6ciTrRK381J/aQbj+qh8gmfQfkKi++qRbIpGaTckESUXCEVpbQ4GD1OLZ8io8sidrh/qTyda6lq69R+e5ga3f9pPUhY7KcgRkpaD8ZhyZMsBQQEBAQEBAQEHH39fXh80XHo3X89jhx+GwY/fwSOHH4beu+4AY8vOg5HX39fo02siS6/vPr111+PM888E2eccQYAYNasWfjTn/6E2267DRdccMEW0+t8tRa+ws0gl51TE1xZhz7fvM3XhL42weGu/CzZsR/6F3WPTQJ0SWx/2/acU12RnIsy6vKUvULbU0uDIH/p3E8CKECgkq4wxdsndfj039iRJDM2kz9jnwTS/D+mFZErIggpiC2C2cV9E5ZsARNVY+pJCMYbR0xnVu8L2HNQQJg3hWJiF48+8LAG6iiWiWQh3Am3utZ6rgt+HT00kFS9avrHGQP2gmjufh4Bk0Zn6duS1hPsk9iEQnrC17V5Ny0r51fT0skJixhJZBQv9+ki11Vxc/6HCLKGh6uDHYvUJscE5UqtBw1vKBR5IzwnaP3YJGJ2SCjpPtN9/UUZIwkkF7RKGqQn1FiXsd1U6yFsEw9jkrRBWqAyqUdRQuYFBAQEBAQEBARYOPr6+9C6fh0emTkNTRveRqXnrhg/4wYcvZVH8ih0aaKnVCph0aJFmDFjhi6LoggTJ07E/Pnzt6huOtHsCDrSVCJ/0sNP0XlKLtGTo5NOhT3Tpg7JreV7e8+r41j/FV67PDEXZP6uzrlElr0Ol32uChNdYv81P/8LIgewqSjahpI5SaQJ9YPYxSJapEen8k3p0DoVQSTMVTT2xea8JRdpfpwIbt8b6ZTk0IQNIWf44KXEAeVQpN7ihBySdBSqNjY5ZNskrLHJqidWS04HCXsFKt8gy71RGGnECYis9jqXi0efzw5LZ41Cn860LJbJ21xeeAkkWEEmXrX8InrkWcfSfAhywbSKvAcMHyzsXDJGyEkPcaJ5Ri6XP+gssgbJYKJROJaNVWYXcVIJp9FsoCy7tO5L60ELEJJItZe2joCAgICAgICAAAs9evXGR6/4WaPN6BC6NNHz/vvvo1qtYtCgQVb5oEGDsGTJEqd+sVhEsVjUx2vWrAEArFufF1/iR5z15bqO79zl3HiWbDHmhZbalXlR2deOwWdVLM3v01xDnrw4BspsFlUv6RRLgQoA30w2T2elChRZLU7PZM3lKzFQzViCSNEmiqiJSZ1yHKNERoNvPkrrU/KmWAVoRIuZlgrnk8ouVqqoEubCXDcqx943OqVFntj+URn2+VK1kiYv9kGk143bkPwpVygR5c7NJXlNRteRQLUMxNIefTGzi86zdbkEKpUWx0pr3i3dawkAcTGGNwlWHnGR6owrhcT+eufdMmkn2tQyTdnyvfpjABVhcRBZeixUgagkUJWeN3+5Hk76VIH05szXwY8rMaKSv462PePmjCqxuww816P6gD7EKmVUKi7Bo0ESJgvma1SpIopZA63LQxrpa1KGjMvpvofRgiQ2pgMgJWykLANx1dimzuvGnsEugIqspGYFwidg24Aaq2vXrm2wJQEBAQEBAe2D+n9XZ3zv6tJET3sxc+ZMXHbZZU753mOXNcCagICAgICAzYN169ahb9++jTYjIKAm1q1bBwAYOnRogy0JCAgICAjoGDrje1eXJnp22mknFAoFrFixwipfsWIFBg8e7NSfMWMGpk+fro/jOMaqVaswYMCAdBWjbR9r167F0KFDsWzZMvTp06fR5jQcoT8MQl/YCP1hEPrCxrbUH1JKrFu3DkOGDGm0KQEBdWHIkCFYtmwZevfu7Xz32pbuvc2F4HPX8Bnomn4Hn7uGz0DX8bszv3d1aaKnpaUFY8eOxZw5c3DCCScASMibOXPm4Oyzz3bqd+vWDd26dbPK+vXr1wmWdj769OmzXd9k7UXoD4PQFzZCfxiEvrCxrfRHiOQJ2JYQRRF222233Drbyr23ORF87jroin4Hn7sOuoLfnfW9q0sTPQAwffp0nH766TjkkENw6KGH4oYbbsCGDRv0KlwBAQEBAQEBAQEBAQEBAQEB2wq6PNFz8skn47333sMll1yC5cuXY8yYMXjwwQedBM0BAQEBAQEBAQEBAQEBAQEBWzu6PNEDAGeffbb3Va2uiG7duuHSSy91XlHrqgj9YRD6wkboD4PQFzZCfwQENAZd8d4LPncddEW/g89dB13V7y0JIcOaqgEBAQEBAQEBAQEBAQEBAQHbBaJGGxAQEBAQEBAQEBAQEBAQEBAQsHkQiJ6AgICAgICAgICAgICAgICA7QSB6AkICAgICAgICAgICAgICAjYThCInoCAgICAgICAgICAgICAgIDtBIHo6aKYOXMmxo0bh969e2PgwIE44YQTsHTpUqtOW1sbpk6digEDBqBXr1446aSTsGLFigZZ3Hm46qqrIITAtGnTdFlX6ou3334bX/jCFzBgwAD06NEDo0aNwlNPPaXPSylxySWXYJdddkGPHj0wceJEvPLKKw20eMuhWq3i4osvxp577okePXpg7733xve//33QHPbbc388/PDD+PSnP40hQ4ZACIF7773XOl+P76tWrcKpp56KPn36oF+/fpgyZQrWr1/fiV5sHuT1Rblcxne+8x2MGjUKPXv2xJAhQ3DaaafhnXfesWRsL30RELA14uabb8Yee+yB7t27Y/z48XjyyScbbdJmQ/jO1rW+m3W172Fd5btWV/xOFb47NRaB6OmimDdvHqZOnYonnngCs2fPRrlcxvHHH48NGzboOueeey7++Mc/4u6778a8efPwzjvv4MQTT2yg1VseCxcuxE9+8hMceOCBVnlX6YsPP/wQRxxxBJqbm/HAAw/gxRdfxHXXXYcdd9xR17nmmmtw0003YdasWViwYAF69uyJSZMmoa2trYGWbxlcffXV+PGPf4wf/ehHeOmll3D11VfjmmuuwQ9/+ENdZ3vujw0bNmD06NG4+eabvefr8f3UU0/FCy+8gNmzZ+P+++/Hww8/jLPOOquzXNhsyOuLjRs3YvHixbj44ouxePFi/OEPf8DSpUvxmc98xqq3vfRFQMDWhrvuugvTp0/HpZdeisWLF2P06NGYNGkSVq5c2WjTNgu6+ne2rvTdrCt+D+sq37W64neq8N2pwZABAVLKlStXSgBy3rx5UkopV69eLZubm+Xdd9+t67z00ksSgJw/f36jzNyiWLdunRw+fLicPXu2POaYY+Q555wjpexaffGd73xHHnnkkZnn4ziWgwcPlv/93/+ty1avXi27desmf/Ob33SGiZ2KyZMnyy9/+ctW2YknnihPPfVUKWXX6g8A8p577tHH9fj+4osvSgBy4cKFus4DDzwghRDy7bff7jTbNzd4X/jw5JNPSgDyjTfekFJuv30RELA14NBDD5VTp07Vx9VqVQ4ZMkTOnDmzgVZtOXSl72xd7btZV/we1hW/a3XF71Thu1PnI0T0BAAA1qxZAwDo378/AGDRokUol8uYOHGirjNixAgMGzYM8+fPb4iNWxpTp07F5MmTLZ+BrtUX9913Hw455BD827/9GwYOHIiDDjoIt956qz7/z3/+E8uXL7f6om/fvhg/fvx21xcAcPjhh2POnDl4+eWXAQD/+Mc/8Oijj+ITn/gEgK7XHxT1+D5//nz069cPhxxyiK4zceJERFGEBQsWdLrNnYk1a9ZACIF+/foB6Np9ERCwJVEqlbBo0SLrWRRFESZOnLjdPoe70ne2rvbdrCt+DwvftcJ3KoXw3WnzoqnRBgQ0HnEcY9q0aTjiiCNwwAEHAACWL1+OlpYWfaMpDBo0CMuXL2+AlVsWd955JxYvXoyFCxc657pSX7z++uv48Y9/jOnTp+PCCy/EwoUL8c1vfhMtLS04/fTTtb+DBg2y2m2PfQEAF1xwAdauXYsRI0agUCigWq3iiiuuwKmnngoAXa4/KOrxffny5Rg4cKB1vqmpCf3799+u+6etrQ3f+c538B//8R/o06cPgK7bFwEBWxrvv/8+qtWq91m0ZMmSBlm15dCVvrN1xe9mXfF7WPiuFb5TAeG705ZAIHoCMHXqVDz//PN49NFHG21KQ7Bs2TKcc845mD17Nrp3795ocxqKOI5xyCGH4MorrwQAHHTQQXj++ecxa9as/9/efYdFcb1vA7+X3osgTaq9gIhiQWOLxt6N3dhNVKwYY69RscQUY4vmq8ZEY+wmRqNGRdTYBcGGDUURxEKRDrvz/uHL/FxB2i677O79ua693D07Z+aZcWEenj1zBkOHDlVzdKq3a9cubN++HTt27ECdOnUQHh6OyZMnw8XFRSePBxUtJycHffv2hSAIWL9+vbrDISItoys5m67mZrqYhzHXIuZOZYOXbum48ePH49ChQzh16hRcXV3FdicnJ2RnZyMpKUlu+efPn8PJyUnFUZatq1evIiEhAfXr14eBgQEMDAxw+vRprF69GgYGBnB0dNSZY+Hs7IzatWvLtdWqVQsxMTEAIO7v+3e10MZjAQDTpk3DjBkz0L9/f/j4+OCzzz7DlClTEBwcDED3jse7irPvTk5O+SZDzc3NxevXr7Xy+OQlKo8fP8bx48fFb6QA3TsWRKpib28PfX19nfg9rEs5m67mZrqYhzHX0u2cirlT2WGhR0cJgoDx48dj//79OHnyJLy8vOTeb9CgAQwNDXHixAmxLSoqCjExMQgICFB1uGWqTZs2iIyMRHh4uPjw9/fHoEGDxOe6ciyaNWuW75atd+/ehYeHBwDAy8sLTk5OcsciJSUFFy9e1LpjAby9I4CenvyvSX19fchkMgC6dzzeVZx9DwgIQFJSEq5evSouc/LkSchkMjRu3FjlMZelvETl3r17+Pfff2FnZyf3vi4dCyJVMjIyQoMGDeR+F8lkMpw4cUJrfg/rYs6mq7mZLuZhzLV0N6di7lTG1DsXNKnL2LFjBWtrayEkJESIi4sTH+np6eIyY8aMEdzd3YWTJ08KV65cEQICAoSAgAA1Rq06797ZQRB051hcunRJMDAwEJYsWSLcu3dP2L59u2BmZib89ttv4jLLli0TbGxshIMHDwoRERFC9+7dBS8vLyEjI0ONkZeNoUOHCpUqVRIOHTokREdHC/v27RPs7e2Fr776SlxGm4/HmzdvhLCwMCEsLEwAIHz77bdCWFiYeDeE4ux7hw4dBD8/P+HixYvC2bNnhWrVqgkDBgxQ1y6VWmHHIjs7W+jWrZvg6uoqhIeHy/1OzcrKEtehLceCqLzZuXOnYGxsLGzdulW4deuW8Pnnnws2NjZCfHy8ukNTCuZsb+lCbqaLeZiu5Fq6mFMxd1IvFnp0FIACH1u2bBGXycjIEMaNGyfY2toKZmZmQs+ePYW4uDj1Ba1C7ycTunQs/vrrL8Hb21swNjYWatasKWzcuFHufZlMJsydO1dwdHQUjI2NhTZt2ghRUVFqirZspaSkCJMmTRLc3d0FExMToXLlysLs2bPlTkDafDxOnTpV4O+JoUOHCoJQvH1/9eqVMGDAAMHCwkKwsrIShg8fLrx580YNe6OYwo5FdHT0B3+nnjp1SlyHthwLovLoxx9/FNzd3QUjIyOhUaNGwoULF9QdktIwZ3tLV3IzXcvDdCXX0sWcirmTekkEQRCUP06IiIiIiIiIiIhUjXP0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqISKkEQQAALFiwQO41ERERESkfcy8iep9E4G8CIlKidevWwcDAAPfu3YO+vj46duyIli1bqjssIiIiIq3E3IuI3scRPUSkVOPGjUNycjJWr16Nrl27FivRaNWqFSQSCSQSCcLDw8s+yPcMGzZM3P6BAwdUvn0iIiKi0mLuRUTvY6GHiJRqw4YNsLa2xsSJE/HXX3/hzJkzxeo3evRoxMXFwdvbu4wjzO+HH35AXFycyrdLREREpCjmXkT0PgN1B0BE2uWLL76ARCLBggULsGDBgmJfJ25mZgYnJ6cyjq5g1tbWsLa2Vsu2iYiIiBTB3IuI3scRPURUIkuXLhWH2r77+P777wEAEokEwP9NCJj3uqRatWqFCRMmYPLkybC1tYWjoyM2bdqEtLQ0DB8+HJaWlqhatSqOHDmilH5ERERE5RFzLyIqKRZ6iKhEJkyYgLi4OPExevRoeHh44NNPP1X6tn755RfY29vj0qVLmDBhAsaOHYs+ffqgadOmuHbtGtq1a4fPPvsM6enpSulHREREVN4w9yKikuJdt4io1ObOnYtff/0VISEh8PT0LPV6WrVqhXr16onfTOW1SaVS8TpzqVQKa2tr9OrVC9u2bQMAxMfHw9nZGefPn0eTJk0U6ge8/QZs//796NGjR6n3hYiIiKisMPciouLgiB4iKpV58+YpJdEoTN26dcXn+vr6sLOzg4+Pj9jm6OgIAEhISFBKPyIiIqLyirkXERUXCz1EVGLz58/Htm3byjTRAABDQ0O51xKJRK4t7xp0mUymlH5ERERE5RFzLyIqCRZ6iKhE5s+fj19++aXMEw0iIiIiYu5FRCXH26sTUbEtXrwY69evx59//gkTExPEx8cDAGxtbWFsbKzm6IiIiIi0C3MvIioNFnqIqFgEQcDKlSuRkpKCgIAAufcuXbqEhg0bqikyIiIiIu3D3IuISouFHiIqFolEguTkZJVtLyQkJF/bo0eP8rW9f+PA0vYjIiIiKk+YexFRaXGOHiIqF9atWwcLCwtERkaqfNtjxoyBhYWFyrdLREREpC7MvYi0l0RgaZWI1Cw2NhYZGRkAAHd3dxgZGal0+wkJCUhJSQEAODs7w9zcXKXbJyIiIlIl5l5E2o2FHiIiIiIiIiIiLcFLt4iIiIiIiIiItAQLPUREREREREREWoKFHiIiIiIiIiIiLcFCDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi3BQg8RERERERERkZZgoYeIiIiIiIiISEuw0ENEREREREREpCVY6CEiIiIiIiIi0hIs9BARERERERERaQkWeoiIiIiIiIiItAQLPUREREREREREWoKFHiIiIiIiIiIiLcFCDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BAs9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi1Rrgs9r169goODAx49elTksjNmzMCECRPKPigiIiIiLVVU7hUSEgKJRIKkpCQAwD///IN69epBJpOpLkgiIiIqVLku9CxZsgTdu3eHp6dnkct++eWX+OWXX/Dw4cOyD4yIiIhIC5Uk9wKADh06wNDQENu3by/bwIiIiKjYDNQdwIekp6fjf//7H44ePVqs5e3t7dG+fXusX78eK1euLOPoiKg8kEqlyMnJUXcYRBrJ0NAQ+vr66g6DypGS5l55hg0bhtWrV+Ozzz4ro8iIqDxg3kWkGCMjI+jpqWasTbkt9Bw+fBjGxsZo0qSJ2Hbz5k1Mnz4doaGhEAQB9erVw9atW1GlShUAQNeuXTF79mwWeoi0nCAIiI+PFy8dIKLSsbGxgZOTEyQSibpDoXKgoNzr8OHDmDx5Mp48eYImTZpg6NCh+fp17doV48ePx4MHD8ScjIi0B/MuIuXQ09ODl5cXjIyMynxb5bbQc+bMGTRo0EB8HRsbixYtWqBVq1Y4efIkrKyscO7cOeTm5orLNGrUCE+fPsWjR4+KPeSYiDRPXrLh4OAAMzMz/pFKVEKCICA9PR0JCQkAAGdnZzVHROXB+7nXkydP0KtXLwQGBuLzzz/HlStXMHXq1Hz93N3d4ejoiDNnzrDQQ6SFmHcRKU4mk+HZs2eIi4uDu7t7mf8cldtCz+PHj+Hi4iK+Xrt2LaytrbFz504YGhoCAKpXry7XJ2/5x48fs9BDpKWkUqmYbNjZ2ak7HCKNZWpqCgBISEiAg4MDL+OifLnX+vXrUaVKFaxatQoAUKNGDURGRmL58uX5+rq4uODx48cqi5WIVIN5F5HyVKxYEc+ePUNubq5Y0ygr5XYy5oyMDJiYmIivw8PD0bx580IPSF7Smp6eXubxEZF65F0bbmZmpuZIiDRf3s8R51wgIH/udfv2bTRu3FhumYCAgAL7mpqaMv8i0kLMu4iUJ++SLalUWubbKreFHnt7eyQmJoqv84o4hXn9+jWAt5UyItJuHDZMpDj+HNG73s+9SuL169fMv4i0GM8XRIpT5c9RuS30+Pn54datW+LrunXr4syZM4V+63jjxg0YGhqiTp06qgiRiIiISGu8n3vVqlULly5dklvmwoUL+fplZmbiwYMH8PPzK/MYiYiIqGjlttDTvn173Lx5U/xmafz48UhJSUH//v1x5coV3Lt3D7/++iuioqLEPmfOnEHz5s2LNfqHiEjVQkND0bVrV7i4uEAikeDAgQNq2cawYcMgkUggkUhgaGgIR0dHfPLJJ9i8eTNkMpnSY9ImxT12np6e4nJ5D1dX13zvv/9H8+TJk9GqVSu5tpSUFMyePRs1a9aEiYkJnJyc0LZtW+zbtw+CIIjL3b9/H8OHD4erqyuMjY3h5eWFAQMG4MqVK2VzMEjrvJ97jRkzBvfu3cO0adMQFRWFHTt2YOvWrfn6XbhwAcbGxh+8rIuISF2Ye2k25l2lV24LPT4+Pqhfvz527doFALCzs8PJkyeRmpqKli1bokGDBti0aZPcnD07d+7E6NGj1RUyEVGh0tLS4Ovri7Vr15a4b6tWrQr8A6u02+jQoQPi4uLw6NEjHDlyBK1bt8akSZPQpUsXubsZUn7FPXaLFi1CXFyc+AgLC5Nbj4mJCaZPn17otpKSktC0aVNs27YNM2fOxLVr1xAaGop+/frhq6++QnJyMgDgypUraNCgAe7evYuffvoJt27dwv79+1GzZs0C75JEVJD3cy93d3fs3bsXBw4cgK+vLzZs2IClS5fm6/f7779j0KBBnMODiMod5l6aj3lXKQnl2KFDh4RatWoJUqm0yGUPHz4s1KpVS8jJyVFBZESkLhkZGcKtW7eEjIwMdYeiEADC/v37i718y5YthS1btihlG0OHDhW6d++er/3EiRMCAGHTpk0l2o4uKe6x8/DwEL777rsPrsfDw0OYOHGiYGRkJPz9999i+6RJk4SWLVuKr8eOHSuYm5sLsbGx+dbx5s0bIScnR5DJZEKdOnWEBg0aFHi+TExM/GAc2vLzRMpTktxLEAThxYsXQoUKFYSHDx+WcWREpA7adJ5g7qV5mHeVXrm9vToAdO7cGffu3UNsbCzc3NwKXTYtLQ1btmyBgUG53iUiUjJBENR2pxczMzOtmpzw448/hq+vL/bt24dRo0apJYa0tDQA8sc2OzsbOTk5MDAwgLGxcb5lTU1Noaf3doBqTk4OsrOzoa+vL3f3oIKWVabSHDsvLy+MGTMGM2fORIcOHfLFJZPJsHPnTgwaNEjultd5LCwsAABhYWG4efMmduzYUeC+2djYlHyHSGeVJPcCgEePHmHdunXw8vJSQXREVB4w91Iededeqsy7cnJylHZLceZdRSu3l27lmTx5crESjU8//TTfLUCJSPulp6fDwsJCLQ9tvJVwzZo18ejRI7VtP+/Yvnz5UmxbuXIlLCwsMH78eLllHRwcYGFhgZiYGLFt7dq1sLCwwMiRI+WW9fT0hIWFBW7fvl1msb9/7KZPny73eVm9enW+PnPmzEF0dDS2b9+e772XL18iMTERNWvWLHS79+7dE7dPpAzFzb0AwN/fH/369SvjiIioPGHupVzqzL1UmXcV5zK4kmDeVbhyX+ghItJFS5culTtZnTlzBmPGjJFre/dEqyyCIGjVN2Wq9P6xmzZtGsLDw8XHkCFD8vWpWLEivvzyS8ybNw/Z2dn51lfc7RIREZFimHtpFuZdheN1TkSk0czMzJCamqq2bZeVMWPGoG/fvuLrQYMGoXfv3ujVq5fYVtCwUkXdvn1brZdg5P1fvntsp02bhsmTJ+e7NDchIQEA5O60GBgYiNGjR0NfX19u2bxvfMryrozvHzt7e3tUrVq1yH5BQUFYt24d1q1bJ9desWJF2NjY4M6dO4X2r169OgDgzp07vL01ERGVOeZeyqXO3EuVedewYcOUGTrzriKw0ENEGk0ikcDc3FzdYShdhQoVUKFCBfG1qakpHBwcinUCK62TJ08iMjISU6ZMKbNtFKWg/0sjIyMYGRkVa1lDQ8MCr/8u68+IIsfOwsICc+fOxYIFC9CtWzexXU9PD/3798evv/6K+fPn50suU1NTYWJignr16qF27dpYtWoV+vXrl+968aSkpHJzvTgREWk+5l7Ko+7cS5V5l7Lm5wGYdxUHL90iIlKR1NRUcTgpAERHRyM8PFypw4CLu42srCzEx8cjNjYW165dw9KlS9G9e3d06dKlwKGu9H/K4th9/vnnsLa2xo4dO+TalyxZAjc3NzRu3Bjbtm3DrVu3cO/ePWzevBl+fn5ITU2FRCLBli1bcPfuXTRv3hyHDx/Gw4cPERERgSVLlqB79+7K2G0iIiKNw9xL8zHvKh2O6CEiUpErV66gdevW4uugoCAAwNChQ5U2QV1xt/HPP//A2dkZBgYGsLW1ha+vL1avXo2hQ4eWyV2ptElZHDtDQ0N8/fXXGDhwoFx7hQoVcOHCBSxbtgyLFy/G48ePYWtrCx8fH6xcuRLW1tYAgEaNGuHKlStYsmQJRo8ejZcvX8LZ2RlNmzbF999/r+guExERaSTmXpqPeVfpSARNmU2IiAhAZmYmoqOj4eXlJXcbRyIqOf48ERFRYXieIFIeVf48sXRIRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4i0ki8YSCR4vhzRERExcHzBZHiVPlzxEIPEWkUQ0NDAEB6erqaIyHSfHk/R3k/V0RERO9i3kWkPNnZ2QAAfX39Mt+WQZlvgYhIifT19WFjY4OEhAQAgJmZGSQSiZqjItIsgiAgPT0dCQkJsLGxUUnCQUREmod5F5FyyGQyvHjxAmZmZjAwKPsyDAs9RKRxnJycAEBMOoiodGxsbMSfJyIiooIw7yJSDj09Pbi7u6ukWCoReMElEWkoqVSKnJwcdYdBpJEMDQ05koeIiIqNeReRYoyMjKCnp5rZc1joISIiIiIiIiLSEpyMWUlCQ0PRtWtXuLi4QCKR4MCBA2W+zdjYWAwePBh2dnYwNTWFj48Prly5UubbJSIiIlI35l5EREQFY6FHSdLS0uDr64u1a9eqZHuJiYlo1qwZDA0NceTIEdy6dQurVq2Cra2tSrZPREREpE7MvYiIiArGS7fKgEQiwf79+9GjRw+xLSsrC7Nnz8bvv/+OpKQkeHt7Y/ny5WjVqlWptjFjxgycO3cOZ86cUU7QRERERBqKuRcREdH/4YgeFRk/fjzOnz+PnTt3IiIiAn369EGHDh1w7969Uq3vzz//hL+/P/r06QMHBwf4+flh06ZNSo6aiIiISDMx9yIiIl3FET1l4P1vlWJiYlC5cmXExMTAxcVFXK5t27Zo1KgRli5dWuJtmJiYAACCgoLQp08fXL58GZMmTcKGDRswdOhQpewHERERkSZg7kVERPR/DNQdgC6IjIyEVCpF9erV5dqzsrJgZ2cHALhz5w5q1apV6HqmT5+OZcuWAQBkMhn8/f3FRMXPzw83btxgskFEREQ6j7kXERHpMhZ6VCA1NRX6+vq4evUq9PX15d6zsLAAAFSuXBm3b98udD15iQkAODs7o3bt2nLv16pVC3v37lVS1ERERESaibkXERHpMhZ6VMDPzw9SqRQJCQlo3rx5gcsYGRmhZs2axV5ns2bNEBUVJdd29+5deHh4KBQrERERkaZj7kVERLqMhR4lSU1Nxf3798XX0dHRCA8PR4UKFVC9enUMGjQIQ4YMwapVq+Dn54cXL17gxIkTqFu3Ljp37lzi7U2ZMgVNmzbF0qVL0bdvX1y6dAkbN27Exo0blblbREREROUScy8iIqKCcTJmJQkJCUHr1q3ztQ8dOhRbt25FTk4OFi9ejG3btiE2Nhb29vZo0qQJFi5cCB8fn1Jt89ChQ5g5cybu3bsHLy8vBAUFYfTo0YruChEREVG5x9yLiIioYCz0EBERERERERFpCT11B0BERERERERERMrBQg8RERERERERkZbgZMwKkMlkePbsGSwtLSGRSNQdDhERUYkIgoA3b97AxcUFenr87ofKP+ZeRESkqVSZd7HQo4Bnz57Bzc1N3WEQEREp5MmTJ3B1dVV3GERFYu5FRESaThV5l9YUeoKDg7Fv3z7cuXMHpqamaNq0KZYvX44aNWp8sM/WrVsxfPhwuTZjY2NkZmYWa5uWlpYA3v5HWVlZlT54IiIiNUhJSYGbm5t4PiMq75h7ERGRplJl3qU1hZ7Tp08jMDAQDRs2RG5uLmbNmoV27drh1q1bMDc3/2A/KysrREVFia9LMgw4b1krKysmG0REpLF4CQxpCuZeRESk6VSRd2lNoeeff/6Re71161Y4ODjg6tWraNGixQf7SSQSODk5lXV4RERERERERERlTmtnXkxOTgYAVKhQodDlUlNT4eHhATc3N3Tv3h03b9784LJZWVlISUmRexARERERERERlRdaWeiRyWSYPHkymjVrBm9v7w8uV6NGDWzevBkHDx7Eb7/9BplMhqZNm+Lp06cFLh8cHAxra2vxwckAiYiIiIiIiKg8kQiCIKg7CGUbO3Ysjhw5grNnz5ZoNuucnBzUqlULAwYMwNdff53v/aysLGRlZYmv8yZTSk5OVtp14ps3b4aDgwM+/vhjmJmZKWWdREREBUlJSYG1tbVSz2NEZUnZn9nY2FicPn0a/fv3L/Nb3RIRkW5TZd6lNXP05Bk/fjwOHTqE0NDQEt+yzNDQEH5+frh//36B7xsbG8PY2FgZYRYoOzsbo0aNgiAIeP78uVjo2b59O/bu3YuePXvis88+E5fP+4BwEk0iIiKikhs8eDBCQkIQExODGTNmqDscIiIipdCary4EQcD48eOxf/9+nDx5El5eXiVeh1QqRWRkJJydncsgwqKlpqaiR48eaNy4MSpWrCi2X7hwAfv378etW7fEtuzsbNja2sLGxgavXr0S269cuYK9e/fiwYMHKo2diIiISJNkZ2cjJCQEADBr1ixo4SB3IiLSUVpT6AkMDMRvv/2GHTt2wNLSEvHx8YiPj0dGRoa4zJAhQzBz5kzx9aJFi3Ds2DE8fPgQ165dw+DBg/H48WOMGjVKHbuAChUqYN++fbhw4YLcKJ0hQ4ZgzZo16Natm9gWGxsLQRCQnZ0tN+H0tm3b8Omnn+Lnn38W23JyctC5c2eMGzdO7ngQERER6apLly6JzwVBwK+//qrGaIiIiJRHay7dWr9+PQCgVatWcu1btmzBsGHDAAAxMTFy118nJiZi9OjRiI+Ph62tLRo0aID//vsPtWvXVlXYxdKwYUM0bNhQrs3LywupqamIj4+XKwq5u7ujSZMmcpNQP3nyBIcPH4aJiQnWrl0rti9fvhynTp1CYGAgunbtWvY7QkRERFROnDp1Su71mDFjYG9vj06dOqkpIiIiIuXQysmYVUVTJrF8/fo19u3bh5SUFAQFBYntLVu2RGhoKDZu3IjRo0cDAF69eoU1a9agZcuW+YpmRESkXTTlPEaUR5mf2aSkJISGhsLa2horVqzA4cOHAQBffPEFZs+ezburEhGRUqky72KhRwGaniBHRkYiJCQE3bt3h7u7OwDgwIED6NmzJ2rXro2bN2+Ky964cQMeHh6wtLRUV7hERKRkmn4eI91TVp/ZrKwsTJs2DT/++CMAQE9PD61bt0bv3r3RokUL1KpVi3flIiIihfCuW6QSPj4+8PHxkWtzcHDAgAEDULVqVbn2Ll264OnTpzhz5gwCAgIAvL2enXf8IiIiIk1nbGyM1atXo3fv3li4cCFOnTqFEydO4MSJEwAACwsLVK9eHdWqVYOnpyccHBxQsWJFODg4oEKFCjA3N4eZmZn4r6mpKQtDVC5kZ2fj5s2buHbtGq5du4br16/j5cuXePPmDYyNjeHo6Ahvb2/Uq1cPzZs3h7e3Nz+7RFqAI3oUoCvfhCYlJcHPzw9Pnz5FYmIiLCwsAACrV6/G5s2bMW7cOHz++edqjpKIiEpKV85jpD1U9Zl9+PAhdu3ahWPHjuHSpUtIS0sr8TqMjY2hp6cHiUSS71+JRAKZTAZBEMR/330ukUhQsWJFODs7w9nZGS4uLqhUqZL4cHFxgZWVFUxMTMSHgYEBv4DTccnJybh+/br4CAsLQ2RkJHJycoq9DltbW3z00Udo0aIFWrRoAT8/PxgaGha4rCAIyMjIQEZGBmQyGYC3n3tLS0t+FokKwEu3NISuJcjPnz+Ho6Oj+LpXr17Yv38/li1bhunTpwMAMjMzERQUhObNm6Nv377Q19dXV7hERFQEXTuPkeZTx2c2NzcX9+7dw71793D37l08ffoUL168QEJCAhISEvD69WtkZGQgPT1drXc31dPTE4s+xsbGMDY2hkwmQ+3atVGzZk1kZmYiLi5OXFZPTw/6+vowMDCAoaEhDAwM8j3PK0ABEJ+/+6dDXvHqQwWtov7NKwbkPTcwMICNjQ0yMzORlJSEnJycfDG8G0tRzxV9v7iPd5c3MDCAlZWV+LC2toaDgwMcHR3h6OgIBwcHGBsbl/j/NzMzU7yrcN7jyZMnePTokfh49uxZgX1tbGxQv3591K9fH35+fnB1dYWFhQWys7Px+PFjRERE4PLly/jvv//yFTWNjY1hZ2cHKysryGQy5OTkICsrC6mpqUhNTRULPO/S19dHhQoVUKFCBVhYWMDMzEx85I16MzMzEwuU7z/e/QzmPYyMjOT65eTkIDMzE1lZWcjMzERKSgqSk5PFf/OeC4IAQ0NDGBkZwdjYWPw/eff/J++5jY0NXFxcYG1tzUIVlQkWejSErifIcXFxOHPmDOrXry9e6hUaGoqWLVvC0dERcXFx4i/JM2fOwNLSEt7e3jAw4BWDRETlga6fx0jzlPfPrEwmkyv6vDtK5/1/Cyp65D3Pzc1FQkIC4uLiEBcXh2fPniE2NhaxsbF49uwZnj17hrS0NGRnZ6t7l6kUbGxs5Io/jo6OsLe3h1QqFT8/iYmJckWdpKSkYq3b3d0dvr6+8PX1Rb169VC/fn14enoWq3CRk5ODsLAwhIaG4syZMzhz5gwSExMV3FvNY2lpCTc3N3h4eKBq1aqoUqWK+PDy8oKJiYm6QyQNxUKPhijvyYY63LlzBxs3boSpqSmWLFkittevXx9hYWHYtWsX+vTpAwB48+YNsrKyYG9vr65wiYh0Gs9jVFrBwcHYt28f7ty5A1NTUzRt2hTLly9HjRo1Pthn06ZN2LZtG27cuAEAaNCgAZYuXYpGjRoVe7v8zMqTyWTiiIb3H1lZWRAEARcuXEBCQgIMDAxQqVIl6OvrQyaTQSqVQiqVIjc3F7m5ucjJycn3b14BqqDHuyNaZDLZBwtaRf377oiY7OxsJCcnw8TEBDY2NuLIl/dH/xTUVpL3S7rsu48Ptec9srOz8ebNG7x58wYpKSlITEzE8+fPkZCQgOfPnyM3N7fU/9/GxsZwcnKCk5OTeEmfl5cXPD094enpiSpVqsDW1rbU63+fTCZDTEwMEhMTkZKSIo4AMzIygqWlJSwsLGBpaSk3J1VGRgYSExPx6tUrvH79Gunp6XKPtLQ08XlmZiakUqn4mSvskZmZKRbBMjMzYWhoKI5eMzExgaWlJaytrcUROnn/6uvrIzs7G9nZ2eLIn3dH/7z7/PXr10UW1CQSCSpVqiRX/KlatSqcnJzkRiyZm5vD3NwcJiYmHB1EIhZ6NASTjeKRyWTo3Lkzzp07h1u3bsHV1RUA8Msvv2DYsGHo168fdu7cKS7PSZ6JiFSD5zEqrQ4dOqB///5o2LAhcnNzMWvWLNy4cQO3bt2Cubl5gX0GDRqEZs2aoWnTpjAxMcHy5cuxf/9+3Lx5E5UqVSrWdvmZJU0mCIJY+Ml75BWAXr58CUNDQ5iamsLMzAzW1tZiQSevuMNLispeWloanj59ipiYGDx69Aj379/HgwcPxMebN29KtD4DA4N8BagPPWxtbcVHhQoVYGtrCysrK06OrUV41y3SKnp6ejhy5AikUqncnD0PHjwAALi5uYltMplMHCb5+++/w8nJSeXxEhERUeH++ecfuddbt26Fg4MDrl69ihYtWhTYZ/v27XKvf/75Z+zduxcnTpzAkCFDyixWovJCIpGIc9fUqlVL3eFQAczNzVGjRo0CRycKgoCXL1/KFX7yCkGvXr0SRyylpaUhKysLwNs5vl69eoVXr16VKh49PT2xCJQ3iipvtFBRz/NGO5mYmIgFRFNTU5iamopthoaGLB5qKRZ6SGXen5h50aJFmDJlitz15VFRUXj69ClevXoFOzs7sX3t2rW4cOEChg0bhjZt2qgsZiIiIipacnIyAKBChQrF7pOeno6cnJxC+2RlZYl/MAFvvw0lIlKHvLvhVaxYEU2aNCl0WalUirS0NLnJoYt6JCYmyj3y7maW97qs9imvQFSc4pGVlRVcXFzEOYxcXV054qicYqGH1Or964irV6+OGzdu4OHDh3K3cjx48CCOHz+Opk2bioWeV69eYdWqVQgICEDXrl1VGjcRERG9JZPJMHnyZDRr1gze3t7F7jd9+nS4uLigbdu2H1wmODgYCxcuVEaYREQqo6+vL97NK2/aipLKysqSK/zk3eksLS1N/Lew53nzd2VkZIiPvDmO8giCIK63NExMTFCtWjXUrVtXnATc19dX7k7NpB6co0cBvE5cdU6dOoWQkBAMHjwY1apVAwD8/fff6NKlC2rUqIE7d+6Iy8bGxsLZ2ZnVZSKiIvA8RsowduxYHDlyBGfPni32HzTLli3DihUrEBISgrp1635wuYJG9Li5ufEzS0RUSnkTn79b/ClO4Sg1NRXJycl4+vSpOI9RTk5OgdtwdHQUiz55RaCaNWvKfZGvizhHD9F7WrdujdatW8u1OTo6YuTIkfkmcPz444+RkpKCv/76C/7+/qoMk4iISKeMHz8ehw4dQmhoaLGLPN988w2WLVuGf//9t9AiD/D2LkN5d14iIiLFSSQS8XerjY1NqdeTm5uLmJgY3Lx5ExEREbh+/TquX7+Oe/fu4fnz5zh27BiOHTsmLm9kZITatWujVq1a8PT0hJeXl/hwd3cvl0Wg2NhYzJ49G2PHjkXjxo3VHU6JcESPAvhNaPnz/PlzVKtWDZmZmXj58qX4/3LixAk8evQIXbp04VBCIqL/j+cxKi1BEDBhwgTs378fISEh4mjboqxYsQJLlizB0aNHi5zjoiD8zBIRlW9paWm4ceMGrl+/LhaAIiIiCp1jTU9PD66urvkKQHkPFxcXlV6tkZWVJY48TU9PR7NmzXDmzBmFJ67W6hE9QUFBJe4zZ86cEk3uR7rL0dERL1++REREhNwPz5o1a3DgwAEsXLgQ8+bNA/A2SQXAmeaJiEirlUXuFRgYiB07duDgwYOwtLREfHw8AMDa2hqmpqYAgCFDhqBSpUoIDg4GACxfvhzz5s3Djh074OnpKfaxsLCAhYVFiWMkIqLyx9zcHI0bN5YbASMIAh49eoTr16/j/v37iI6OFh+PHj1CZmYmYmJiEBMTg9DQ0HzrtLa2RrNmzfDRRx+hffv28PPzK7O/4WQyGUaMGIEdO3YAAJo1a4Zvv/1W4/5mVPmIHj09PQQEBMDIyKhYy589exZRUVGoXLlyGUdWcvxWSXN88803+OOPP7Bp0ybUq1cPAHDhwgUMGjQIgwYNwqJFi9QbIBGRGvA8phvKIvf6UMK7ZcsWDBs2DADQqlUreHp6YuvWrQAAT09PPH78OF+f+fPnY8GCBcWKjZ9ZIiLtIggC4uPjxaLPu0Wg6OhoxMTEQCqVyvWpXLkyPv30U4wePRpVq1ZVWiwxMTEYOXIk/v33X+jr6+OXX37BwIEDlVbkUeU5TC2Fnvj4eDg4OBRreUtLS1y/fp2FHlK62bNnY+nSpejXrx927twptv/7779o2LAhrK2t1RgdEVHZ43lMNzD3IiIiTZWTk4OIiAicO3cOp06dwtGjR5GRkQHg7ZcO3bt3x8KFC4uc860oL168QNOmTXH//n0YGxtj48aNGDJkiDJ2QaTVl25t2bKlRH9A//TTT5xTRYPIZDKkpqYiKSkJSUlJePPmDYyNjcVh2ebm5rCwsCgXk23NmjUL/v7+cHJyEttevXqFDh06QE9PD0+fPi12UkxE6pN394h37w6Rd6vQrKwsWFlZwcbGRnyYmppq3PBbIkUw9yIiIk1laGiIBg0aoEGDBpg4cSLS0tJw+PBhbN68Gf/88w8OHDiAP//8E2PHjsXixYtLNcF0WloaunTpgvv378PT0xNHjx5F9erVlb8zKqSWyZilUin09fVVvVml08ZvlQRBkCvUvPtITEwssP3dR3JyMmQyWZHbMTQ0zFf8yfv3Q8+L02ZoaKjQH3BhYWEYNGgQDA0Ncf36dbF92bJlePPmDYYPH67U4YGaTBAEZGVl4c2bN0hJScGbN2/knhf0b25urkpiMzAwgJWVFSwtLWFpaSk+L6jN0tISJiYm/MNfBfI+M3m36SyoMFPa5yX5bBkZGckVforzsLW1FZ+bmJiU4VFSLW08j1HBmHsREZG2uXXrFubNm4e9e/cCADw8PLBr1y40atSo2OuQSqXo1asX/vzzT1SoUAH//fcfatSoUSbxavWlWwDg5OSEYcOGYcSIERpdKVN1siGTyZCVlYXMzMxiPTIyMj74Xlpa2geLNcUp1BTFyMgItra2sLCwQFZWlvhHWVn/oa+vrw9zc3OYm5vDzMys1M9lMhkcHR1hbm4OU1NTNG7cGHFxcfj777/RqVOnMt0HZZDJZMjOzkZOTg5ycnLE5wW15f3/FFWkKejfnJwcde+qUhgYGBS7KPTucwsLCxgZGcHQ0FD89/3n779W5R0DSiMnJ0cswqSnp8sVZd5/Xdy2d18r4/dLYfJGEOYVgY2MjPDmzRuxUK2M7efdjvT9h5mZGUxMTJT2ULRwXRz8o1l3MPciIiJtderUKYwaNQoPHz6EoaEh1qxZg88//7xYfcePH4+1a9fCxMQEJ06cQNOmTcssTq0v9Hz99df45ZdfEB0djaZNm2LkyJHo27cvzMzMVB2KQpT5H5WUlIQePXoUWqTJzs5WUuRFMzQ0lPsGu7jfdBf1jfeHLq94v6047727jKqOjZ6eHkxMTKCvr4/c3Fzk5ubC3NwcJiYm0NPTg76+PvT19ZXyXCKRFFmk+VBbWf8x/T5zc/N8BZKCCibFnQhUUdnZ2R8cafTu89TUVJXE8y59ff1iFYTef08QBEilUkilUshksgKfK+M9VX12jIyMCh3JV5xRfgU9NzD48BXJhY1YLO7IRVWeMiUSSYEFIAsLC1y6dEkp2+AfzbqDuRcREWmz5ORkjBo1Cnv27AHw9rw3e/bsQr8027hxI7744gtIJBLs3r0bvXv3LtMYtb7QkyckJARbtmzB3r17oa+vj759+2LUqFFyt2Irz5T5H5WcnFyi6wklEglMTU3FxP/d58V5mJqaFlrI0bQ5LHJycuRGDZT0eVHLafrIFYlE8sFCQt4f3EUVaj70r4WFhcZeDpA3p1RxikIfKhS9X3B7/7Wm+tDouA+1FfX63TYzM7NyMU9XSb0/B9n7RaHCRlEW95GVlVVkHObm5korUvKPZs1ga2tb7HPy69evC32fuRcREWkrQRCwYMEC8Y7KEydOxHfffVfgiPoLFy6gRYsWyMnJwdKlSzFz5swyj09nCj15UlNTsXPnTmzduhX//fcfatWqhZEjRyIoKEjdoRVKmf9RUqkU+/btK3ahxsDAQKMKMZou73KW9PR0ZGVlQSqVIioqCr///js+//xz2NjYQCqV4tq1a9i1axd69eqFOnXqfHAERXGeC4LwwcJMSdqMjIw0thCj6QRBQG5uboEFoJI+19PTkxv5VdioMEVem5iYwMzMDEZGRvwdowZ5l10WVgzKzc1F27ZtlbI9/tGsGX755Rfx+atXr7B48WK0b98eAQEBAIDz58/j6NGjmDt3LqZMmVKsdTL3IiIibbV69WpMmjQJANC/f39s3boVxsbG4vvPnj2Dv78/4uLi0Lt3b+zevVsleW+5LvSUJAH49ttvSxzQ33//jSFDhiApKQlSqbTE/VWJyQa9b+DAgfj9998xevRobNy4Ud3hEBEViucxzdO7d2+0bt0a48ePl2tfs2YN/v33Xxw4cKDE62TuRURE2mbHjh0YNmwYcnJy0KZNG+zZsweWlpY4ePAgpkyZgpiYGHh7e+P8+fOwsLBQSUzl+vbqYWFhcq+vXbuG3NxccWbqu3fvQl9fHw0aNCj2OtPT07Fr1y5s2bIFZ8+eRZUqVTBt2rSShkakdl9++SUsLCwwduxYse3p06eYN28exowZU6IZ4ImIiN539OhRLF++PF97hw4dMGPGjGKvh7kXERFps4EDB8Le3h69evXCiRMnULlyZZiamuLZs2cAAC8vLxw4cEBlRR5VK3Gh59SpU+Lzb7/9FpaWlvjll19ga2sLAEhMTMTw4cPRvHnzItf133//YfPmzdi9ezdyc3Px6aef4uuvv0aLFi1KGhZRuVC/fv18I3l+/vlnbNmyBQ8fPkRISIh6AiMiIq1gZ2eHgwcPYurUqXLtBw8ehJ2dXZH9mXsREZGuaNeuHU6fPo2BAwfi7t27SExMhK2tLcaOHYvZs2dr3A0JSqLEhZ53rVq1CseOHROLPMDbCQMXL16Mdu3a5UtC8qxYsQJbtmzB3bt34e/vj5UrV2LAgAGwtLRUJByicqlz5854+PAhunfvLrZlZWVhxowZGDZsGHx9fdUYHRERaZKFCxdi1KhRCAkJESdQvnjxIv755x9s2rTpg/2YexERkS5q0KABbty4gdDQUMhkMjRv3vyDd4jWJgpNxmxpaYm//voLrVq1kms/deoUunXrhjdv3hTYr2LFihg8eDBGjhwJb2/v0m5e7XidOJXWjh07MGjQILi5uSE6OpqTJRORWvA8ppkuXryI1atX4/bt2wCAWrVqYeLEiYXeOYu5FxERkXqV6zl63tWzZ08MHz4cq1atEuceuXjxIqZNm4ZevXp9sN+zZ8808ta6RMpSvXp19O3bF35+fmKRRxAErFy5Et26dUPNmjXVHCEREZVXjRs3xvbt20vUh7kXERGR7sh/Q/kS2LBhAzp27IiBAwfCw8MDHh4eGDhwIDp06IB169YV2Gf16tUluqPDhg0bPjgyiEhT+fv7448//pCbOPPKlSuYPn066tWrh5SUFDVGR0RE5dmDBw8wZ84cDBw4EAkJCQCAI0eO4ObNmwUuz9yLiIhItyhU6DEzM8O6devw6tUrhIWFISwsDK9fv8a6detgbm5eYJ8pU6aUKHn46quv8OLFC0XCJNIIhoaG6NatG/r37y83lO/y5cvIzc1VY2RERFRenD59Gj4+Prh48SL27t2L1NRUAMD169cxf/78Avsw9yIiItItCl26lScuLg5xcXFo0aIFTE1NIQgCJBJJgcsKgoA2bdrAwKB4m87IyFBGiETlXr169XDw4EHIZDKx7dmzZ2jevDnc3Nxw7tw5ODg4qDFCIiJStxkzZmDx4sUICgqSm0j5448/xpo1awrsw9yLiIhItyhU6Hn16hX69u2LU6dOQSKR4N69e6hcuTJGjhwJW1tbrFq1Kl+fD33b9CHdu3dHhQoVFAmTSKPo6f3fQLvbt2/DwsICjo6OqFixohqjIiKi8iAyMhI7duzI1+7g4ICXL18W2Ie5FxERkW5RqNAzZcoUGBoaIiYmBrVq1RLb+/Xrh6CgIKUUeoh0WZs2bfDo0SMkJCSIo+Sys7PRoUMHDBo0CEOGDOHkmkREOsTGxgZxcXHw8vKSaw8LC0OlSpUK7MPci4iISLcoVOg5duwYjh49CldXV7n2atWq4fHjxwoFRkRvWVhYwMLCQny9fft2nDp1Crdv38bAgQNZ6CEi0iH9+/fH9OnTsXv3bkgkEshkMpw7dw5ffvklhgwZou7wiIiIqBxQaDLmtLQ0mJmZ5Wt//fo1jI2NFVl1iQUHB6Nhw4awtLSEg4MDevTogaioqCL77d69GzVr1oSJiQl8fHxw+PBhFURLVHp9+/bFqlWrsGTJEpiamortf/31F7Kzs9UYGRERlbWlS5eiZs2acHNzQ2pqKmrXro0WLVqgadOmmDNnjrrDIyIionJAoUJP8+bNsW3bNvF13jdLK1asQOvWrRUOriROnz6NwMBAXLhwAcePH0dOTg7atWuHtLS0D/b577//MGDAAIwcORJhYWHo0aMHevTogRs3bqgwcqKSMTc3R1BQEEaMGCG2nT9/Ht26dUPt2rWRmZmpxuiIiKgsGRkZYdOmTXjw4AEOHTqE3377DXfu3MGvv/4KfX19dYdHRERE5YBEEAShtJ1v3LiBNm3aoH79+jh58iS6deuGmzdv4vXr1zh37hyqVKmizFhL5MWLF3BwcMDp06fRokWLApfp168f0tLScOjQIbGtSZMmqFevHjZs2FDkNlJSUmBtbY3k5GS522ETqdqff/6JMWPGoGPHjvjf//4nthd2BzwiIp7HSNPwM0tERJpKlecwhebo8fb2xt27d7FmzRpYWloiNTUVvXr1QmBgIJydnQvtm5OTg5o1a+LQoUNyEzkrS3JyMgAUeteI8+fPIygoSK6tffv2OHDggNLjISpL3bp1wyeffIL09HSx7fnz52jRogUmTpyIMWPG8JteIiIt8H7ekkcikcDExARVq1b94F2zyjr3IiIiovJBoUIPAFhbW2P27Nkl7mdoaFhml5jIZDJMnjwZzZo1g7e39weXi4+Ph6Ojo1ybo6Mj4uPjC1w+KysLWVlZ4uuUlBTlBEykBKampnJz9qxbtw53797Ftm3bMG7cODVGRkREyhIWFoZr165BKpWiRo0aAIC7d+9CX18fNWvWxLp16zB16lScPXsWtWvXlutblrkXERERlR8KFXoiIiIKbM/7Vsnd3b3QSZkDAwOxfPly/PzzzzAwULjmJLfeGzdu4OzZs0pbJ/B2wueFCxcqdZ1EZWXWrFlwdHREzZo1xcu3cnNzsWXLFgwePFiuKERERJohb7TOli1bxGHfycnJGDVqFD766COMHj0aAwcOxJQpU3D06NF8/csq9yIiIqLyQ6E5evT09MQ/IPNW8+58IIaGhujXrx9++uknmJiY5Ovfs2dPnDhxAhYWFvDx8YG5ubnc+/v27StxTOPHj8fBgwcRGhoKLy+vQpd1d3dHUFAQJk+eLLbNnz8fBw4cwPXr1/MtX9CIHjc3N14nThpj69atGD58OHx9fREWFsb5e4h0HOc70TyVKlXC8ePH843WuXnzJtq1a4fY2Fhcu3YN7dq1w8uXL/P1L4vcS5X4mSUiIk2lMXP07N+/H9OnT8e0adPQqFEjAMClS5ewatUqzJ8/H7m5uZgxYwbmzJmDb775Jl9/Gxsb9O7dW5EQRIIgYMKECdi/fz9CQkKKLPIAQEBAAE6cOCFX6Dl+/DgCAgIKXN7Y2Fjlt40nUiZzc3O4u7tj0KBBckUeqVTKOXyIiDRAcnIyEhIS8hV6Xrx4IV5SbmNjg+zs7AL7KzP3IiIiovJJoULPkiVL8MMPP6B9+/Zim4+PD1xdXTF37lxcunQJ5ubmmDp1aoGFni1btiiyeTmBgYHYsWMHDh48CEtLS3GeHWtra/ESlSFDhqBSpUoIDg4GAEyaNAktW7bEqlWr0LlzZ+zcuRNXrlzBxo0blRYXUXnSp08fdO/eHTKZTGwLCwtD7969sXz5cvTp00eN0RERUVG6d++OESNGYNWqVWjYsCEA4PLly/jyyy/Ro0cPAG+/dKtevXqB/ZWZexEREVH5pFChJzIyEh4eHvnaPTw8EBkZCQCoV68e4uLiCl3PixcvEBUVBQCoUaMGKlasWOJY1q9fDwBo1aqVXPuWLVswbNgwAEBMTAz09PTE95o2bYodO3Zgzpw5mDVrFqpVq4YDBw4UOoEzkaYzMjKSe718+XJER0dj//79LPQQEZVzP/30E6ZMmYL+/fsjNzcXAGBgYIChQ4fiu+++AwDUrFkTP//8c6HrUUbuRUREROWTQnP0+Pn5wdfXFxs3bhT/eMzJycHo0aNx/fp1hIWF4dy5cxg8eDCio6Pz9U9LS8OECROwbds2cYSBvr4+hgwZgh9//BFmZmalDU0leJ04aYP09HR88803GD58ONzc3AC8/Wynp6fDyclJzdERUVnieUxzpaam4uHDhwCAypUrw8LColj9mHsRERGphyrPYXpFL/Jha9euxaFDh+Dq6oq2bduibdu2cHV1xaFDh8QRNg8fPvzgrZ2DgoJw+vRp/PXXX0hKSkJSUhIOHjyI06dPY+rUqYqERkTFZGZmhnnz5olFHgBYvHgxqlevjq1bt6ovMCIi+iALCwvUrVsXdevWLXaRB2DuRUREpAsUGtEDAG/evMH27dtx9+5dAG+H/w4cOBCWlpZF9rW3t8eePXvyXW516tQp9O3bFy9evFAktDLHb5VIG0mlUrRq1Qpnz57FoUOH0LlzZ3WHRERlhOcxzXTlyhXs2rULMTEx+SZdLuquWcy9iIiI1ENj7roFAJaWlhgzZkyp+qanp8PR0TFfu4ODA9LT0xUNjYhKQV9fH6dPn8axY8fkJloPDQ2Fra0tfHx81BgdEZFu27lzJ4YMGYL27dvj2LFjaNeuHe7evYvnz5+jZ8+eRfZn7kVERKT9FB7RAwC3bt0q8Fulbt26FdqvTZs2sLOzw7Zt22BiYgIAyMjIwNChQ/H69Wv8+++/ioZWpvitEumKzMxM1K5dG48fP8b+/fuL/NkmIs3A85jmqVu3Lr744gsEBgbC0tIS169fh5eXF7744gs4Oztj4cKFhfZn7kVERKQeGjOi5+HDh+jZsyciIyMhkUiQVzOSSCQA3l4CUpjvv/8eHTp0gKurK3x9fQEA169fh4mJCY4ePapIaESkRKmpqWjQoAGys7Px8ccfqzscIiKd9eDBA/GSWiMjI6SlpUEikWDKlCn4+OOPiyz0MPciIiLSfgpNxjxp0iR4eXkhISEBZmZmuHnzJkJDQ+Hv74+QkJAi+/v4+ODevXsIDg5GvXr1UK9ePSxbtgz37t1DnTp1FAmNiJTI3t4eu3fvRkREhNykn9OmTcPhw4fVGBkRkW6xtbXFmzdvAACVKlXCjRs3AABJSUnFuvSKuRcREZH2U2hEz/nz53Hy5EnY29tDT08Penp6+OijjxAcHIyJEyciLCzsg31zcnJQs2ZNHDp0CKNHj1YkDCJSkQoVKojPQ0JC8M033+Dbb7/F/fv34eXlpcbIiIh0Q4sWLXD8+HH4+PigT58+mDRpEk6ePInjx4+jTZs2hfZl7kVERKQbFCr0SKVS8e5a9vb2ePbsGWrUqAEPDw9ERUUV2tfQ0BCZmZmKbJ6I1MjPzw9ffvklcnNz5Yo8UqkU+vr6aoyMiEh7rVmzRsyfZs+eDUNDQ/z333/o3bs35syZU2hf5l5ERES6QaFLt7y9vXH9+nUAQOPGjbFixQqcO3cOixYtQuXKlYvsHxgYiOXLlyM3N1eRMIhIDaytrbFy5Up89913Ytvz589RrVo1rFu3rsg5uoiIqGRyc3Nx6NAhsZiup6eHGTNm4M8//8SqVatga2tb5DqYexEREWk/hUb0zJkzB2lpaQCARYsWoUuXLmjevDns7Ozwxx9/FNn/8uXLOHHiBI4dOwYfHx+Ym5vLvb9v3z5FwiMiFVuzZg2io6OxZcsWjBkzRt3hEBFpFQMDA4wZMwa3b98u9TqYexEREWk/hQo97du3F59XrVoVd+7cwevXr2FrayveeaswNjY26N27tyIhEFE5Mn/+fDg7O8PPzw96em8HDEqlUsTExHAOHyIiJWjUqBHCw8Ph4eFRqv7MvYiIiLRfqQs9OTk5MDU1RXh4OLy9vcX2dydrLUxubi5at26Ndu3awcnJqbRhEFE5YmBggHHjxsm1bd26FWPHjsXcuXMxd+5cNUVGRKQdxo0bh6CgIDx58gQNGjTINyKnbt26H+zL3IuIiEg3lLrQY2hoCHd391LPw6GM4cdEVP6FhoYiJycn3x8jRERUcv379wcATJw4UWyTSCQQBAESiaTQvIy5FxERkW5QaDLm2bNnY9asWXj9+nWp+jdq1KjQW7ATkebbunUrjh49ivHjx4ttERER+PPPPyEIghojIyLSPNHR0fkeDx8+FP8tirJyr+DgYDRs2BCWlpZwcHBAjx49irzjKgDs3r0bNWvWhImJCXx8fHD48GGFYyEiIiJ5Cs3Rs2bNGty/fx8uLi7w8PDI9439tWvXCu0/btw4TJ06FU+fPi3x8GMi0gwSiQTt2rUTXwuCgMmTJ+PUqVNYvHgxZs+ercboiIg0S2nn5smjrNzr9OnTCAwMRMOGDZGbm4tZs2ahXbt2uHXr1gdHcP73338YMGAAgoOD0aVLF+zYsQM9evTAtWvX5KYBICIiIsVIBAW+Ul+4cGGh78+fP7/Q9/Mma5ULqJjDj8uDlJQUWFtbIzk5GVZWVuoOh0gj5OTkYP78+Vi/fr1CE4oSkeJ4HtNMv/76KzZs2IDo6GicP38eHh4e+P777+Hl5YXu3bsX2rescq8XL17AwcEBp0+fRosWLQpcpl+/fkhLS8OhQ4fEtiZNmqBevXrYsGFDsbbDzywREWkqVZ7DFBrRU1QhpyjR0dEK9ScizWNoaIilS5di1qxZsLCwENvnzZuHrKwszJw5EzY2NuoLkIioHFu/fj3mzZuHyZMnY8mSJWJhxsbGBt9//32RhZ6yyr2Sk5MBFH5TjvPnzyMoKEiurX379jhw4ECZxERERKSrFCr0AEBSUhL27NmDBw8eYNq0aahQoQKuXbsGR0dHVKpUqdC+/CafSHe9W+SJi4vDihUrkJWVhRYtWqBz585qjIyIqPz68ccfsWnTJvTo0QPLli0T2/39/fHll18W2b8sci+ZTIbJkyejWbNmhV6CFR8fD0dHR7k2R0dHxMfHf7BPVlYWsrKyxNcpKSmKB0xERKTlFJqMOSIiAtWrV8fy5cvxzTffICkpCQCwb98+zJw5s1jr+PXXX9GsWTO4uLjg8ePHAIDvv/8eBw8eVCQ0ItIgTk5O2Lt3L7744gt06tRJbH/27BknbCYiekd0dDT8/PzytRsbGyMtLa1Y61B27hUYGIgbN25g586dpepfmODgYFhbW4sPNzc3pW+DiIhI2yhU6AkKCsKwYcNw7949mJiYiO2dOnVCaGhokf3Xr1+PoKAgdOrUCUlJSfmGHxORbpBIJOjcuTM2bNgAiUQC4O23uM2bN0fz5s3x6NEj9QZIRFROeHl5ITw8PF/7P//8g1q1ahXZX9m51/jx43Ho0CGcOnUKrq6uhS7r5OSE58+fy7U9f/4cTk5OH+wzc+ZMJCcni48nT56UOEYiIiJdo1Ch5/Lly/jiiy/ytVeqVKnQYbh58oYfz549G/r6+mK7v78/IiMjFQmNiDTc1atXERcXh4cPH6JixYrqDoeIqFwICgpCYGAg/vjjDwiCgEuXLmHJkiWYOXMmvvrqqyL7Kyv3EgQB48ePx/79+3Hy5El4eXkV2ScgIAAnTpyQazt+/DgCAgI+2MfY2BhWVlZyDyIiIiqcQnP0GBsbF3it9N27d4v1h5kyhh8TkXZq2rQp7t69i4cPH8rdqnfz5s3o2bMnbG1t1RgdEZF6jBo1CqamppgzZw7S09MxcOBAuLi44IcffkD//v2L7K+s3CswMBA7duzAwYMHYWlpKX7BZ21tDVNTUwDAkCFDUKlSJQQHBwMAJk2ahJYtW2LVqlXo3Lkzdu7ciStXrmDjxo3F3i4REREVTaERPd26dcOiRYuQk5MD4O3lFzExMZg+fTp69+5dZH9Fhx8TkXZzdXWVu01vaGgoRo4ciRo1auDNmzdqjIyISH0GDRqEe/fuITU1FfHx8Xj69ClGjhxZrL7Kyr3Wr1+P5ORktGrVCs7OzuLjjz/+EJeJiYlBXFyc+Lpp06bYsWMHNm7cCF9fX+zZswcHDhwodAJnIiIiKjmFRvSsWrUKn376KRwcHJCRkYGWLVsiPj4eAQEBWLJkSZH984YfZ2ZmisOPf//9dwQHB+Pnn39WJDQi0kL6+vrw9vZGs2bNYGlpqe5wiIhUbvHixRg0aBC8vLxgZmYGMzOzEvVXVu5VnInyQ0JC8rX16dMHffr0KUnIREREVEISQQm3tDl79iwiIiKQmpqK+vXro23btsXuu337dixYsAAPHjwAALi4uGDhwoXF/mZKnVJSUmBtbY3k5GReM06kIlKpFBkZGeLt2Z8/f47PPvsMCxYsQNOmTdUcHZFm4XlM8/j6+uLGjRto3LgxBg8ejL59+8Le3r5E62DuRUREpHqqPIcpVOh58uSJ0m5zmZ6ejtTUVDg4OChlfarAZINI/SZMmIA1a9agYcOGuHjxonjXLiIqGs9jmunmzZvYvn07du7ciadPn+KTTz7BoEGD0KNHjxKN8GHuRUREpDqqPIcpNEePp6cnWrZsiU2bNiExMVGhQMzMzDQq0SCi8mHmzJkYNWoUvvnmG7HIk5OTk+8WvkRE2qJOnTpYunQpHj58iFOnTsHT0xOTJ08u9DblBWHuRUREpJ0UKvRcuXIFjRo1wqJFi+Ds7IwePXpgz549yMrKUlZ8RESFcnFxwaZNm+Qmbf7ll19QuXJlrFixQo2RERGVPXNzc5iamsLIyEi8OQYRERHpNoUKPX5+fli5ciViYmJw5MgRVKxYEZ9//jkcHR0xYsQIZcVIRFQiR48eRXp6OoyMjNQdChGR0kVHR2PJkiWoU6cO/P39ERYWhoULF4q3OCciIiLdppTJmN917do1jBw5EhEREZBKpcpcdbnD68SJyidBEHD48GF8/PHHMDU1BfB2BOKJEycwfvx4mJubqzlCovKB5zHN06RJE1y+fBl169bFoEGDMGDAAFSqVEndYakMP7NERKSpVHkOU+j26nmePn2KHTt2YMeOHbhx4wYCAgKwdu3aEq0jMzMTJiYmygiHiHScRCJB586d5dpmz56NY8eO4enTp/jxxx/VFBkRkWLatGmDzZs3o3bt2gqvi7kXERGRdlLo0q2ffvoJLVu2hKenJ7Zt24Z+/frhwYMHOHPmDMaMGVNkf5lMhq+//hqVKlWChYUFHj58CACYO3cu/ve//ykSGhGRSBAEDB48GDVr1kRQUJDYnpqayjktiEijLFmyRKEiD3MvIiIi7adQoWfx4sVo3Lgxrl69ihs3bmDmzJnw8PAoUf+tW7dixYoVcnNpeHt74+eff1YkNCIikUQiwWeffYZbt27By8tLbF+4cCFq1qyJw4cPqzE6IqKSefr0KdatW4cZM2YgKChI7lEU5l5ERETaT6FLt2JiYsTbGZfGtm3bsHHjRrRp00ZuBJCvry/u3LmjSGhERPm8+/sqJycHe/fuRXR0tEK/x4iIVOnEiRPo1q0bKleujDt37sDb2xuPHj2CIAioX79+kf2ZexEREWk/hQo9eX8cpaenIyYmBtnZ2XLv161bt9D+sbGxqFq1ar52mUzGyymIqEwZGhoiMjISe/bsQYcOHcT2v//+G7m5uejWrRsLQERU7sycORNffvklFi5cCEtLS+zduxcODg4YNGiQ3O+yD2HuRUREpP0UunTrxYsX6Ny5MywtLVGnTh34+fnJPYpSu3ZtnDlzJl/7nj17itX/XaGhoejatStcXFwgkUhw4MCBQpcPCQmBRCLJ9+CtSYl0h7m5OYYOHSoWdHJycjBx4kT06NEDmzdvVnN0RET53b59G0OGDAEAGBgYICMjAxYWFli0aBGWL19eZH9l5l5ERERUPik0omfy5MlITk7GxYsX0apVK+zfvx/Pnz/H4sWLsWrVqiL7z5s3D0OHDkVsbCxkMhn27duHqKgobNu2DYcOHSpRLGlpafD19cWIESPQq1evYveLioqSu7WZg4NDibZLRNojJycH/fr1wx9//IH+/fuL7RkZGeJt2omI1Mnc3FwcQe3s7IwHDx6gTp06AICXL18W2V+ZuRcRERGVTwoVek6ePImDBw/C398fenp68PDwwCeffAIrKysEBwfnu73x+7p3746//voLixYtgrm5OebNm4f69evjr7/+wieffFKiWDp27IiOHTuWeB8cHBxgY2NT4n5EpH3MzMywdOlSLFq0CAYG//frsU+fPsjOzsYPP/yAWrVqqTFCItJ1TZo0wdmzZ1GrVi106tQJU6dORWRkJPbt24cmTZoU2V+ZuRcRERGVTwoVetLS0sQRMLa2tnjx4gWqV68OHx8fXLt2rVjraN68OY4fP65IGAqpV68esrKy4O3tjQULFqBZs2YfXDYrKwtZWVni65SUFFWESEQq9m6R5/Hjxzh27BhkMhn09fXVGBUREfDtt98iNTUVwNs7B6ampuKPP/5AtWrV8O233xZrHerOvYiIiKhsKTRHT40aNRAVFQXg7d0afvrpJ8TGxmLDhg1wdnYusn/lypXx6tWrfO1JSUmoXLmyIqEVydnZGRs2bMDevXuxd+9euLm5oVWrVoUWqIKDg2FtbS0+3NzcyjRGIlI/Dw8PREVFYdOmTahevbrY/scff+DWrVtqjIyIdFHlypXFm12Ym5tjw4YNiIiIwN69e+Hh4VGs/urKvYiIiEg1JIIgCKXt/NtvvyE3NxfDhg3D1atX0aFDB7x+/RpGRkbYunUr+vXrV2h/PT09xMfH55sX5/nz53B3d5cbPVMSEokE+/fvR48ePUrUr2XLlnB3d8evv/5a4PsFjehxc3NDcnKy3Dw/RKTdEhISULlyZWRkZODChQto2LChukMiKpWUlBRYW1vzPKahxo0bh0WLFsHe3r7Yfcoq91IVfmaJiEhTqfIcptClW4MHDxafN2jQAI8fP8adO3fg7u5eaNLx559/is+PHj0Ka2tr8bVUKsWJEyfg6empSGil0qhRI5w9e/aD7xsbG8PY2FiFERFReZSZmYl27drh2bNn8Pf3F9sFQeAt2YlIZX777Td8+eWXxSr0lNfci4iIiJRPoULPu86dOwd/f3/Ur1+/yGXzRtpIJBIMHTpU7j1DQ0N4enoW665dyhYeHl6sS86ISLe5u7tj3759yMjIEAs7ubm5aNWqFXr27InAwECYmJioOUoi0nYlGZRdXnMvIiIiUj6lFXo6duyI8PDwYl3fLZPJAABeXl64fPlyiYYcf0hqairu378vvo6OjkZ4eDgqVKgAd3d3zJw5E7Gxsdi2bRsA4Pvvv4eXlxfq1KmDzMxM/Pzzzzh58iSOHTumcCxEpBveveX67t27ce7cOdy+fRujRo1ioYeIypWyyL2IiIiofFJaoac0U/1ER0cra/O4cuUKWrduLb4OCgoCAAwdOhRbt25FXFwcYmJixPezs7MxdepUxMbGwszMDHXr1sW///4rtw4iouLq27cvMjMzIZFI5C6JuH79OurWrctLuohI6d68eVPiPsrMvYiIiKh8Umgy5ndZWlri+vXrJbpjw6JFiwp9f968eYqGVaY4ISARFebq1avw9/dH27ZtcfjwYRgaGqo7JCI5PI9ppgcPHmDLli14+PAhvv/+ezg4OODIkSNwd3dHnTp1Cu3L3IuIiEg9NGYy5nf99NNPcHR0LFGf/fv3y73OyclBdHQ0DAwMUKVKlXKfbBARFSYsLAxGRkZwcnJikYeIlOL06dPo2LEjmjVrhtDQUCxevBgODg64fv06/ve//2HPnj2F9mfuRUREpP2UUui5f/8+7OzsoKenB6D4d54JCwvL15aSkoJhw4ahZ8+eygiNiEhtRo0ahU8++QQGBv/3qzYxMRFLlizBV199le/2xkRERZkxYwYWL16MoKAgWFpaiu0ff/wx1qxZU2R/5l5ERETaT0+Rzq9evULbtm1RvXp1dOrUCXFxcQCAkSNHYurUqaVap5WVFRYuXIi5c+cqEhoRUbng4eGBSpUqia+Dg4OxatUq8Q44REQlERkZWWBBxsHBAS9fvizVOpl7ERERaReFCj1TpkyBgYEBYmJiYGZmJrb369cP//zzT6nXm5ycjOTkZEVCIyIqlzp27IgGDRpg9uzZYptMJkNOTo4aoyIiTWFjYyN+sfausLAwuaJySTH3IiIi0h4KXbp17NgxHD16FK6urnLt1apVw+PHj4vsv3r1arnXgiAgLi4Ov/76Kzp27KhIaERE5VLr1q1x6dIluctbd+3ahfnz5+Obb75B165d1RgdEZV3/fv3x/Tp07F7925IJBLIZDKcO3cOX375JYYMGVJkf+ZeRERE2k+hQk9aWprcSJ48r1+/hrGxcZH9v/vuO7nXenp6qFixIoYOHYqZM2cqEhoRUbmVN59Znh9++AF3797F9evXWeghokItXboUgYGBcHNzg1QqRe3atSGVSjFw4EDMmTOnyP7MvYiIiLSfQrdX79SpExo0aICvv/4alpaWiIiIgIeHB/r37w+ZTFbknR80HW/xSUTKkJKSgjVr1mDSpEkwNzcH8Pb2yZmZmUXeKplIETyPaa4nT54gMjISqamp8PPzQ7Vq1dQdkkrwM0tERJpKlecwhQo9N27cQJs2bVC/fn2cPHkS3bp1w82bN/H69WucO3cOVapUUWas5Q6TDSIqK927d8ehQ4ewZs0ajB07Vt3hkJbieYw0DT+zRESkqVR5DlPo0i1vb2/cvXsXa9asgaWlJVJTU9GrVy8EBgbC2dm5wD69evUq9vr37dunSHhERBopOzsbhoaGkEgkaN26tbrDIaJypHfv3mjUqBGmT58u175ixQpcvnwZu3fvzteHuRcREZFuUajQAwDW1tZyd48pzvJERPRhRkZG2LNnDx49egRPT0+x/fvvvwcAjB07tljzoBGR9gkNDcWCBQvytXfs2BGrVq0qsA9zLyIiIt2icKEnMzMTERERSEhIgEwmk3uvW7du+ZbfsmWLopskItIJ7xZ5nj9/jjlz5iAtLQ0eHh7o2bOn+gIjIrVJTU2FkZFRvnZDQ0OkpKQU2Ie5FxERkW5RqNDzzz//YMiQIXj58mW+9yQSCaRSabHW8+LFC0RFRQEAatSogYoVKyoSFhGR1rGzs8N3332Hv//+Gz169BDbk5OT+W09kQ7x8fHBH3/8gXnz5sm179y5E7Vr1y72eph7ERERaS+FCj0TJkxAnz59MG/ePDg6Opa4f1paGiZMmIBt27aJo4H09fUxZMgQ/PjjjwXeup2ISBcZGBhg9OjRGD16tNgmlUrRrFkzeHp6Yv369XBzc1NjhESkCnPnzkWvXr3w4MEDfPzxxwCAEydO4Pfffy9wfp73MfciIiLSfnqKdH7+/DmCgoJKVeQBgKCgIJw+fRp//fUXkpKSkJSUhIMHD+L06dOYOnWqIqEREWm9S5cuISoqCv/99x8sLCzUHQ4RqUDXrl1x4MAB3L9/H+PGjcPUqVPx9OlT/Pvvv3Kj/T6EuRcREZH2U+j26iNGjECzZs0wcuTIUvW3t7fHnj170KpVK7n2U6dOoW/fvnjx4kVpQ1MJ3uKTiNTt7t27uHv3Lrp06SK27dq1C+3bt+clXVQknsd0D3MvIiIi9dCY26uvWbMGffr0wZkzZ+Dj4wNDQ0O59ydOnFho//T09AJHAzk4OCA9PV2R0IiIdEL16tVRvXp18XVYWBj69esHBwcH3LlzB7a2tmqMjojKG+ZeRERE2k+hQs/vv/+OY8eOwcTEBCEhIZBIJOJ7EomkyEJPQEAA5s+fj23btsHExAQAkJGRgYULFyIgIECR0IiIdFJaWhpq1KgBf39/FnmItJBUKsV3332HXbt2ISYmBtnZ2XLvv379utD+zL2IiIi0n0KFntmzZ2PhwoWYMWMG9PRKPt3PDz/8gPbt28PV1RW+vr4AgOvXr8PExARHjx5VJDQiIp300Ucf4caNG0hNTRXbEhMTMWDAAMyaNQstWrRQY3REpKiFCxfi559/xtSpUzFnzhzMnj0bjx49woEDB/LdiasgzL2IiIi0n0Jz9FSoUAGXL19GlSpVSh1Aeno6tm/fjjt37gAAatWqhUGDBsHU1LTU61QVXidORJpg1qxZCA4ORp06dRAREVGqwjxpJ57HNE+VKlWwevVqdO7cGZaWlggPDxfbLly4gB07dhS5DuZeREREqqcxc/QMHToUf/zxB2bNmlXqdZiZmcndLpiIiJRr4sSJSEpKQpcuXcQijyAISEhIKPVdE4lIPeLj4+Hj4wMAsLCwQHJyMgCgS5cumDt3brHWwdyLiIhIuyn0ta5UKsWKFSvQsmVLTJgwAUFBQXKPovzyyy/4+++/xddfffUVbGxs0LRpUzx+/FiR0IiI6P9zcnLCunXr0KlTJ7Ft9+7dqFy5MpYtW6bGyIiopFxdXREXFwfg7eieY8eOAQAuX74MY2PjIvsz9yIiItJ+ChV6IiMj4efnBz09Pdy4cQNhYWHiIzw8vMj+S5cuFYcJnz9/HmvWrMGKFStgb2+PKVOmKBIaEREV4s8//0R6enq+iVyJqHzr2bMnTpw4AQCYMGEC5s6di2rVqmHIkCEYMWJEkf2VmXuFhoaia9eucHFxgUQiwYEDB4rss337dvj6+sLMzAzOzs4YMWIEXr16VaLtEhERUeEUmqNHUWZmZrhz5w7c3d0xffp0xMXFYdu2bbh58yZatWqFFy9eqCu0YuF14kSkqQRBwMGDB9G2bVtYWFgAAKKiohAREYHevXtzHh8dwfOY5jt//jzOnz+PatWqoWvXrkUur8zc68iRIzh37hwaNGiAXr16Yf/+/ejRo8cHlz937hxatGiB7777Dl27dkVsbCzGjBmD6tWrY9++fcXaJj+zRESkqTRmjh5FWVhY4NWrV3B3d8exY8fEy71MTEyQkZGhztCIiLSaRCLJ9wfZjBkzcODAAUybNg0rVqxQT2BEVCIBAQElui26MnOvjh07omPHjsVe/vz58/D09MTEiRMBAF5eXvjiiy+wfPnyEm2XiIiIClfiQk+vXr2wdetWWFlZoVevXoUuW9S3M5988glGjRoFPz8/3L17V5w/4ubNm/D09CxpaEREVEoymQy+vr44deoUhg8fLtfO0T1E5UtUVBR+/PFH3L59G8Dbu2ZNmDABNWrUKLKvOnOvgIAAzJo1C4cPH0bHjh2RkJCAPXv2yM0f9r6srCxkZWWJr1NSUso0RiIiIm1Q4uzd2toaEolEfF7Yoyhr165FQEAAXrx4gb1798LOzg4AcPXqVQwYMKCkoRERUSnp6elhwYIFiI2NRa1atcT2xYsXo1u3brh586YaoyOiPHv37oW3tzeuXr0KX19f+Pr64tq1a/D29sbevXuL7K/O3KtZs2bYvn07+vXrByMjIzg5OcHa2hpr1679YJ/g4GC53NLNza1MYyQiItIGpZqjZ9GiRfjyyy9hZmZWFjFpDF4nTkTaLCMjA5UqVUJiYiJ27dqFPn36qDskUjKexzRPlSpVMGjQICxatEiuff78+fjtt9/w4MEDtcQlkUiKnKPn1q1baNu2LaZMmYL27dsjLi4O06ZNQ8OGDfG///2vwD4Fjehxc3PjZ5aIiDSOKvOuUhV69PX1ERcXBwcHB4UDSExMxP/+9z+54ccjRoxAhQoVFF53WWOCTETaLioqCps3b0ZwcLB4CVdYWBicnJzg7Oys5uhIUTyPaR4zMzNERESgatWqcu337t2Dr68v0tPTi1xHWeRexSn0fPbZZ8jMzMTu3bvFtrNnz6J58+Z49uxZsX6n8DNLRESaSpXnsFJNvKCsG3WFhobC09MTq1evRmJiIhITE/Hjjz/Cy8sLoaGhStkGERGVXo0aNbB8+XKxyCOVSvHZZ5+hSpUq+Oeff9QcHZHuadWqFc6cOZOvPa9gUhR15l7p6en55vzS19cHoLzckoiIiBS461bePD2KCAwMRL9+/bB+/XrxRC+VSjFu3DgEBgYiMjJS4W0QEZHyvHz5EtbW1jA2Nkbjxo3VHQ6RzunWrRumT5+Oq1evokmTJgCACxcuYPfu3Vi4cCH+/PNPuWXfp8zcKzU1Fffv3xdfR0dHIzw8HBUqVIC7uztmzpyJ2NhYbNu2DQDQtWtXjB49GuvXrxcv3Zo8eTIaNWoEFxeXUh0PIiIiyq9Ul27p6enJTcr8Ia9fvy70fVNTU4SHh+e7S0RUVBTq1atX7m+xzuHDRKSLBEHAo0eP4OXlJbZNmjQJVatWxeeffw5jY2M1RkclwfOY5inuXfAkEgmkUmm+dmXmXiEhIWjdunW+9qFDh2Lr1q0YNmwYHj16hJCQEPG9H3/8ERs2bEB0dDRsbGzw8ccfY/ny5ahUqVKxtsnPLBERaSpVnsNKPaJn4cKFxbqzVmHq16+P27dv50s2bt++DV9fX4XWTUREZUMikcgVeSIjI7F69WoAQIsWLfj7m6gMyWQyhforM/dq1apVoZdcbd26NV/bhAkTMGHChBJth4iIiEqm1IWe/v37l2oy5oiICPH5xIkTMWnSJNy/f19u+PHatWuxbNmy0oZGREQqVLNmTWzYsCHfH4r3799HlSpVlHKpL5GuO3/+PF69eoUuXbqIbdu2bcP8+fORlpaGHj164McffyxwRB1zLyIiIt2i8rtu6enpQSKRFDnp3oeGHJcnHD5MRFSwpKQkVK5cGVWrVsWBAwc4/0Y5xfOY5ujYsSNatWqF6dOnA3g7kq5+/foYNmwYatWqhZUrV+KLL77AggUL8vVl7kVERKR+5f7SLUXujBAdHV3qvkREpBmuXLmC7OxspKWlwdHRUd3hEGm88PBwfP311+LrnTt3onHjxti0aRMAwM3NDfPnzy+w0MPci4iISLeUqtCjyPXhHh4epe5bmNDQUKxcuRJXr15FXFwc9u/fjx49ehTaJyQkBEFBQbh58ybc3NwwZ84cDBs2rEziIyLSJW3btsWDBw8QFxcnd/vkr776CsOGDUOdOnXUHCGRZklMTJQrmp4+fRodO3YUXzds2BBPnjwpsG9Z5V5ERERUPpV6jh5lunXrFmJiYpCdnS3XXtBtQT8kLS0Nvr6+GDFiBHr16lXk8tHR0ejcuTPGjBmD7du348SJExg1ahScnZ3Rvn37Eu8DERHJc3R0lPvDdO/evfjmm2+wadMmxMbGwtzcXI3REWkWR0dHREdHw83NDdnZ2bh27RoWLlwovv/mzRsYGhoWe33KyL2IiIiofFJroefhw4fo2bMnIiMj5a4dz5u4syTXiXfs2FHum62ibNiwAV5eXli1ahUAoFatWjh79iy+++47FnqIiMqAj48PevfuDR8fH7kiT3h4OHx9fTlpM1EhOnXqhBkzZmD58uU4cOAAzMzM0Lx5c/H9iIgIVKlSpcj1KDP3IiIiovJJT50bnzRpEry8vJCQkAAzMzPcvHkToaGh8Pf3R0hISJlu+/z582jbtq1cW/v27XH+/PkP9snKykJKSorcg4iIiqdGjRrYs2cP5s2bJ7bdvn0bfn5+8Pf3R2ZmphqjIyrfvv76axgYGKBly5bYtGkTNm3aBCMjI/H9zZs3o127dkWuR525FxEREamGWkf0nD9/HidPnoS9vT309PSgp6eHjz76CMHBwZg4cSLCwsLKbNvx8fH5Jgh1dHRESkoKMjIyYGpqmq9PcHCw3DBpIiIquXdH7oSHh8PMzAweHh4wMTER26VSqTi3DxEB9vb2CA0NRXJyMiwsLPL9fOzevRsWFhZFrkeduRcRERGphlpH9EilUlhaWgJ4m8A8e/YMwNtJA6OiotQZWoFmzpyJ5ORk8fGhSQ+JiKh4BgwYgJiYGHz77bdiW3JyMry8vPDVV18hIyNDjdERlT/W1tYFFkErVKggN8LnQzQt9yIiIqKSU+uIHm9vb1y/fh1eXl5o3LgxVqxYASMjI2zcuBGVK1cu0207OTnh+fPncm3Pnz+HlZVVgaN5AMDY2BjGxsZlGhcRka6xs7ODnZ2d+Hrnzp148uQJ/v77byxbtkyNkRFpH3XmXkRERKQaai30zJkzB2lpaQCARYsWoUuXLmjevDns7Ozwxx9/lOm2AwICcPjwYbm248ePIyAgoEy3S0REhRs9ejQqVaoEfX196Om9HXgqk8nwxRdfoG/fvmjbti0nbiYqJXXmXkRERKQaEiHvdgvlxOvXr2Fra1viJD41NRX3798HAPj5+eHbb79F69atUaFCBbi7u2PmzJmIjY3Ftm3bALy9vbq3tzcCAwMxYsQInDx5EhMnTsTff/9d7LtupaSkwNraGsnJybCysirZjhIRUbEdOnQIXbt2hZWVFZ4+fSpeekKK4XmMgNLnXurAzywREWkqVZ7D1DqipyAVKlQoVb8rV66gdevW4uugoCAAwNChQ7F161bExcUhJiZGfN/Lywt///03pkyZgh9++AGurq74+eefeWt1IqJyqG7dupg0aRJsbW3lijx79+5F27ZtYW1trcboiDRbaXMvIiIiKp/K3YgeTcJvlYiI1CcqKgo1a9aEtbU1Hj58yD9WS4HnMdI0/MwSEZGm0ukRPURERMXx6tUr1KlTB1WqVJEr8iQkJMDBwUGNkRERERERqQ8LPUREpJGaNm2KyMhIJCcni20pKSmoXr06/P398fvvv6NixYpqjJCIiIiISPX01B0AERFRaUkkEtjY2Iivz549i9TUVDx9+lTulu1Xr15FYmKiGiIkIiIiIlItjughIiKt0alTJzx8+BCxsbHirdkFQUCXLl0QHx+PS5cuoWHDhgDe3rI9bxkiIiIiIm3BDJeIiLSKu7s7AgICxNevXr2CtbU1jI2N4ePjI7avXLkSVapUwZo1a9QRJhERERFRmWChh4iItJq9vT3u3LmD+Ph4mJiYiO1nz57Fw4cPkZubK7alpqaib9++WL16NaRSqTrCJSIiIiJSCC/dIiIinfDuXD4AsH37dvz333+oXbu22Hb+/Hns3r0bFy9exMSJE8X2o0ePwsLCAv7+/jA2NlZVyEREREREJcZCDxER6SQrKyt06NBBrq1KlSpYvHgxjIyM5NqnTp2KmzdvYt++fejZsyeAt6N/BEGApaWlymImIiIiIioKL90iIiL6/ypXrozZs2dj2rRpYltubi5q1qwJBwcHfPTRR2L777//DltbW4wZM0ZuHXFxcZDJZCqLmYiIiIjoXRzRQ0REVAgDAwPs2bMHgiBAIpGI7Tdv3oRUKkXFihXFtpycHLi6usLQ0BAxMTFwcHAAAISHh+Pp06eoW7cu3N3dVb4PRERERKQ7OKKHiIioGN4t8gDA999/j5iYGIwbN05se/bsGfT09KCnpydXANq8eTO6du2KtWvXim25ubkYPnw4vv76a2RmZpb9DhARERGRTmChh4iIqJTc3Nzg7Owsvvbw8EBGRgbu3r0rVxhydnZGvXr1UKdOHbEtJiYGW7duxZIlS+TmBJozZw78/Pywbds2sU0qleLBgwdydwgjIiIiIioIL90iIiJSIgMDA7i6usq1zZw5EzNnzpRrMzMzw+LFi5GWlgY9vf/73iUiIgLh4eFIT08X2548eYKqVavC3NwcKSkpcssTEREREb2LhR4iIiI1cHJywuzZs/O1f/fdd/j888/h4+MjtsXFxcHY2Biurq4s8hARERFRoVjoISIiKkeqVKmCKlWqyLUFBAQgPT0diYmJaoqKiIiIiDQFvxYkIiLSAHp6erCzs1N3GERERERUzrHQQ0RERERERESkJVjoISIiIiIiIiLSEiz0EBERERERERFpCRZ6iIiIiIiIiIi0BO+6pQBBEAAAKSkpao6EiIio5PLOX3nnM6LyjrkXERFpKlXmXSz0KODNmzcAADc3NzVHQkREVHpv3ryBtbW1usMgKhJzLyIi0nSqyLskAr/GKzWZTIZnz57B0tISEolE7r2UlBS4ubnhyZMnsLKyUlOEqqWL+wzo5n5zn3VjnwHd3G9d2mdBEPDmzRu4uLhAT49Xc1P5V1juVRq69PNeHDwe+fGY5MdjIo/HIz8eE3l5xyMmJgYSiUQleRdH9ChAT08Prq6uhS5jZWWlcx9uXdxnQDf3m/usO3Rxv3VlnzmShzRJcXKv0tCVn/fi4vHIj8ckPx4TeTwe+fGYyLO2tlbZ8eDXd0REREREREREWoKFHiIiIiIiIiIiLcFCTxkxNjbG/PnzYWxsrO5QVEYX9xnQzf3mPusOXdxvXdxnIl3Fn3d5PB758Zjkx2Mij8cjPx4Teeo4HpyMmYiIiIiIiIhIS3BEDxERERERERGRlmChh4iIiIiIiIhIS7DQQ0RERERERESkJVjoISIiIiIiIiLSEiz0lIG1a9fC09MTJiYmaNy4MS5duqTukJQmODgYDRs2hKWlJRwcHNCjRw9ERUXJLZOZmYnAwEDY2dnBwsICvXv3xvPnz9UUsfItW7YMEokEkydPFtu0dZ9jY2MxePBg2NnZwdTUFD4+Prhy5Yr4viAImDdvHpydnWFqaoq2bdvi3r17aoxYMVKpFHPnzoWXlxdMTU1RpUoVfP3113h3znpt2OfQ0FB07doVLi4ukEgkOHDggNz7xdnH169fY9CgQbCysoKNjQ1GjhyJ1NRUFe5FyRS2zzk5OZg+fTp8fHxgbm4OFxcXDBkyBM+ePZNbh6btMxEVTpvztXcpK3eLiYlB586dYWZmBgcHB0ybNg25ubmq3JUyUdq8TtuOhzJyPm06TyorJ9TkY6KqfDEiIgLNmzeHiYkJ3NzcsGLFirLetVJRVS6ptOMhkFLt3LlTMDIyEjZv3izcvHlTGD16tGBjYyM8f/5c3aEpRfv27YUtW7YIN27cEMLDw4VOnToJ7u7uQmpqqrjMmDFjBDc3N+HEiRPClStXhCZNmghNmzZVY9TKc+nSJcHT01OoW7euMGnSJLFdG/f59evXgoeHhzBs2DDh4sWLwsOHD4WjR48K9+/fF5dZtmyZYG1tLRw4cEC4fv260K1bN8HLy0vIyMhQY+Slt2TJEsHOzk44dOiQEB0dLezevVuwsLAQfvjhB3EZbdjnw4cPC7Nnzxb27dsnABD2798v935x9rFDhw6Cr6+vcOHCBeHMmTNC1apVhQEDBqh4T4qvsH1OSkoS2rZtK/zxxx/CnTt3hPPnzwuNGjUSGjRoILcOTdtnIvowbc/X3qWM3C03N1fw9vYW2rZtK4SFhQmHDx8W7O3thZkzZ6pjl5SmtHmdth0PZeV82nSeVFZOqMnHRBX5YnJysuDo6CgMGjRIuHHjhvD7778Lpqamwk8//aSq3Sw2VeSSyjweLPQoWaNGjYTAwEDxtVQqFVxcXITg4GA1RlV2EhISBADC6dOnBUF4+yE3NDQUdu/eLS5z+/ZtAYBw/vx5dYWpFG/evBGqVasmHD9+XGjZsqWYEGjrPk+fPl346KOPPvi+TCYTnJychJUrV4ptSUlJgrGxsfD777+rIkSl69y5szBixAi5tl69egmDBg0SBEE79/n9E1Vx9vHWrVsCAOHy5cviMkeOHBEkEokQGxursthLq6Bk5X2XLl0SAAiPHz8WBEHz95mI5Olavvau0uRuhw8fFvT09IT4+HhxmfXr1wtWVlZCVlaWandASRTJ67TteCgj59O286QyckJtOiZllS+uW7dOsLW1lfu5mT59ulCjRo0y3iPFlFUuqczjwUu3lCg7OxtXr15F27ZtxTY9PT20bdsW58+fV2NkZSc5ORkAUKFCBQDA1atXkZOTI3cMatasCXd3d40/BoGBgejcubPcvgHau89//vkn/P390adPHzg4OMDPzw+bNm0S34+OjkZ8fLzcfltbW6Nx48Yau99NmzbFiRMncPfuXQDA9evXcfbsWXTs2BGAdu7z+4qzj+fPn4eNjQ38/f3FZdq2bQs9PT1cvHhR5TGXheTkZEgkEtjY2ADQjX0m0hW6mK+9qzS52/nz5+Hj4wNHR0dxmfbt2yMlJQU3b95UYfTKo0hep23HQxk5n7adJ5WRE2rbMXmXsvb//PnzaNGiBYyMjMRl2rdvj6ioKCQmJqpob8pGaXJJZR4PA8V3gfK8fPkSUqlU7pc+ADg6OuLOnTtqiqrsyGQyTJ48Gc2aNYO3tzcAID4+HkZGRuIHOo+joyPi4+PVEKVy7Ny5E9euXcPly5fzvaet+/zw4UOsX78eQUFBmDVrFi5fvoyJEyfCyMgIQ4cOFfetoM+7pu73jBkzkJKSgpo1a0JfXx9SqRRLlizBoEGDAEAr9/l9xdnH+Ph4ODg4yL1vYGCAChUqaMVxyMzMxPTp0zFgwABYWVkB0P59JtIlupavvau0uVt8fHyBxyvvPU2jaF6nbcdDGTmftp0nlZETatsxeZey9j8+Ph5eXl751pH3nq2tbZnEX9ZKm0sq83iw0EOlFhgYiBs3buDs2bPqDqVMPXnyBJMmTcLx48dhYmKi7nBURiaTwd/fH0uXLgUA+Pn54caNG9iwYQOGDh2q5ujKxq5du7B9+3bs2LEDderUQXh4OCZPngwXFxet3WeSl5OTg759+0IQBKxfv17d4RARKZWu5G6F0dW8rjC6mPMVhTkhlVZ5ySV56ZYS2dvbQ19fP9+s/M+fP4eTk5Oaoiob48ePx6FDh3Dq1Cm4urqK7U5OTsjOzkZSUpLc8pp8DK5evYqEhATUr18fBgYGMDAwwOnTp7F69WoYGBjA0dFR6/YZAJydnVG7dm25tlq1aiEmJgYAxH3Tps/7tGnTMGPGDPTv3x8+Pj747LPPMGXKFAQHBwPQzn1+X3H20cnJCQkJCXLv5+bm4vXr1xp9HPJOzI8fP8bx48fFb2AA7d1nIl2kS/nauxTJ3ZycnAo8XnnvaRJl5HXadDwA5eR82naeVEZOqG3H5F3K2n9t+1lSNJdU5vFgoUeJjIyM0KBBA5w4cUJsk8lkOHHiBAICAtQYmfIIgoDx48dj//79OHnyZL6hZQ0aNIChoaHcMYiKikJMTIzGHoM2bdogMjIS4eHh4sPf3x+DBg0Sn2vbPgNAs2bN8t1+9e7du/Dw8AAAeHl5wcnJSW6/U1JScPHiRY3d7/T0dOjpyf9a1NfXh0wmA6Cd+/y+4uxjQEAAkpKScPXqVXGZkydPQiaToXHjxiqPWRnyTsz37t3Dv//+Czs7O7n3tXGfiXSVLuRr71JG7hYQEIDIyEi5P1Ly/oh5v0BQ3ikjr9Om4wEoJ+fTtvOkMnJCbTsm71LW/gcEBCA0NBQ5OTniMsePH0eNGjU07rItZeSSSj0eJZ6+mQq1c+dOwdjYWNi6datw69Yt4fPPPxdsbGzkZuXXZGPHjhWsra2FkJAQIS4uTnykp6eLy4wZM0Zwd3cXTp48KVy5ckUICAgQAgIC1Bi18r17dwZB0M59vnTpkmBgYCAsWbJEuHfvnrB9+3bBzMxM+O2338Rlli1bJtjY2AgHDx4UIiIihO7du2vcrcbfNXToUKFSpUrirTT37dsn2NvbC1999ZW4jDbs85s3b4SwsDAhLCxMACB8++23QlhYmHhXgOLsY4cOHQQ/Pz/h4sWLwtmzZ4Vq1aqV69uFFrbP2dnZQrdu3QRXV1chPDxc7nfbu3c90LR9JqIP0/Z87V3KyN3ybiferl07ITw8XPjnn3+EihUrauztxN9X0rxO246HsnI+bTpPKisn1ORjoop8MSkpSXB0dBQ+++wz4caNG8LOnTsFMzOzcnl7dVXkkso8Hiz0lIEff/xRcHd3F4yMjIRGjRoJFy5cUHdISgOgwMeWLVvEZTIyMoRx48YJtra2gpmZmdCzZ08hLi5OfUGXgfcTAm3d57/++kvw9vYWjI2NhZo1awobN26Ue18mkwlz584VHB0dBWNjY6FNmzZCVFSUmqJVXEpKijBp0iTB3d1dMDExESpXrizMnj1b7he0NuzzqVOnCvw5Hjp0qCAIxdvHV69eCQMGDBAsLCwEKysrYfjw4cKbN2/UsDfFU9g+R0dHf/B326lTp8R1aNo+E1HhtDlfe5eycrdHjx4JHTt2FExNTQV7e3th6tSpQk5Ojor3pmyUJq/TtuOhjJxPm86TysoJNfmYqCpfvH79uvDRRx8JxsbGQqVKlYRly5apahdLRFW5pLKOh0QQBKFkY4CIiIiIiIiIiKg84hw9RERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iUipBEAAACxYskHtNREREROrB/IxIt0gE/pQTkRKtW7cOBgYGuHfvHvT19dGxY0e0bNlS3WERERER6SzmZ0S6hSN6iEipxo0bh+TkZKxevRpdu3YtVhLRqlUrSCQSSCQShIeHl32Q7xk2bJi4/QMHDqh8+0RERERlqaT5WWlyM+ZTROUHCz1EpFQbNmyAtbU1Jk6ciL/++gtnzpwpVr/Ro0cjLi4O3t7eZRxhfj/88APi4uJUvl0iIiIiZZoyZQp69eqVr700+VlJczPmU0Tlh4G6AyAi7fLFF19AIpFgwYIFWLBgQbGvATczM4OTk1MZR1cwa2trWFtbq2XbRERERMpy6dIldO7cOV97afKzkuZmzKeIyg+O6CGiElm6dKk4LPfdx/fffw8AkEgkAP5vsr+81yXVqlUrTJgwAZMnT4atrS0cHR2xadMmpKWlYfjw4bC0tETVqlVx5MgRpfQjIiIi0lTZ2dkwNDTEf//9h9mzZ0MikaBJkybi+8rKz/bs2QMfHx+YmprCzs4Obdu2RVpamsLxE5FysdBDRCUyYcIExMXFiY/Ro0fDw8MDn376qdK39csvv8De3h6XLl3ChAkTMHbsWPTp0wdNmzbFtWvX0K5dO3z22WdIT09XSj8iIiIiTWRgYIBz584BAMLDwxEXF4d//vlHqduIi4vDgAEDMGLECNy+fRshISHo1asX7+BFVA6x0ENEJWJpaQknJyc4OTlh7dq1OHbsGEJCQuDq6qr0bfn6+mLOnDmoVq0aZs6cCRMTE9jb22P06NGoVq0a5s2bh1evXiEiIkIp/YiIiIg0kZ6eHp49ewY7Ozv4+vrCyckJNjY2St1GXFwccnNz0atXL3h6esLHxwfjxo2DhYWFUrdDRIpjoYeISmXevHn49ddfERISAk9PzzLZRt26dcXn+vr6sLOzg4+Pj9jm6OgIAEhISFBKPyIiIiJNFRYWBl9f3zJbv6+vL9q0aQMfHx/06dMHmzZtQmJiYpltj4hKj4UeIiqx+fPnY9u2bWVa5AEAQ0NDudcSiUSuLe/6cplMppR+RERERJoqPDy8TAs9+vr6OH78OI4cOYLatWvjxx9/RI0aNRAdHV1m2ySi0mGhh4hKZP78+fjll1/KvMhDRERERMUXGRmJevXqlek2JBIJmjVrhoULFyIsLAxGRkbYv39/mW6TiEqOt1cnomJbvHgx1q9fjz///BMmJiaIj48HANja2sLY2FjN0RERERHpLplMhqioKDx79gzm5uZKv9X5xYsXceLECbRr1w4ODg64ePEiXrx4gVq1ail1O0SkOI7oIaJiEQQBK1euxIsXLxAQEABnZ2fxwUmNiYiIiNRr8eLF2Lp1KypVqoTFixcrff1WVlYIDQ1Fp06dUL16dcyZMwerVq1Cx44dlb4tIlIMR/QQUbFIJBIkJyerbHshISH52h49epSv7f1bepa2HxEREZEmGzx4MAYPHlxm669Vq5bSb9lORGWDI3qIqFxYt24dLCwsEBkZqfJtjxkzhrcGJSIiInpHSXMz5lNE5YdE4NfaRKRmsbGxyMjIAAC4u7vDyMhIpdtPSEhASkoKAMDZ2Rnm5uYq3T4RERFReVKa3Iz5FFH5wUIPEREREREREZGW4KVbRERERERERERagoUeIiIiIiIiIiItwUIPEREREREREZGWYKGHiIiIiIiIiEhLsNBDRERERERERKQlWOghIiIiIiIiItISLPQQEREREREREWkJFnqIiIiIiIiIiLQECz1ERERERERERFqChR4iIiIiIiIiIi3BQg8RERERERERkZb4fy14mWAONTr2AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -683,7 +687,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAKSCAYAAABWc4s6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUVfqHn3snlZKEACGJtCgIgggIgggoClIEbFhQVFAWFEHFiqyC4q6isGvBVVHXFf2JsjZQWUERpClSRaWDhiIQAoQkJCFt7vn9MTM30zMzmRTC+3w+AzOnveece2Yy9zvveY+mlFIIgiAIgiAIgiAIgiAIZzR6dXdAEARBEARBEARBEARBqH5EJBIEQRAEQRAEQRAEQRBEJBIEQRAEQRAEQRAEQRBEJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYkEQRAEQRAEQRAEQRAERCQSBEEQBEEQBEEQBEEQEJFIEARBEARBEARBEARBoJaLRMePHycpKYm9e/cGVP7xxx/nvvvuq9xOCYIgCIIg1EKcv3ctX74cTdPIzs72WX7x4sV06tQJwzCqrpOCIAiCIPilVotEzz77LNdccw0tW7YMqPwjjzzCe++9xx9//FG5HRMEQRAEQahlBPu9a+DAgURGRjJ37tzK7ZggCIIgCAETUd0dqCwKCgp45513+OabbwKu06hRIwYMGMAbb7zBzJkzK7F3giAIgiAItYdQvncBjBo1ilmzZnH77bdXUs+8Y7VaKSkpqVKbgiAIghAqkZGRWCyWKrFVa0Wir7/+mujoaC6++GLA9mVg7NixLFu2jIyMDJo3b869997LAw884FJv6NChPPHEEyISCYIgCIIgBIj79y4HP/zwA5MnT2bXrl106tSJf//735x//vlm/tChQ5kwYQK///4755xzTqX3UylFRkaG321wgiAIglATSUhIIDk5GU3TKtVOrRWJVq1aRZcuXczXhmHQtGlTPvnkExo2bMiPP/7I2LFjSUlJ4aabbjLLdevWjT///JO9e/cG7C4tCELwzJkzh5YtW9KnT5/q7kqFKSoqYty4cXz33XdkZ2fTrl07XnrpJXr06FHdXRMEQagS3L93OXj00Ud55ZVXSE5O5q9//StDhw5l165dREZGAtC8eXOaNGnCqlWrqkQkcghESUlJ1KlTp9K/aAuCIAhCRVFKUVBQQGZmJgApKSmVaq/WikT79u0jNTXVfB0ZGcm0adPM12lpaaxZs4aPP/7YRSRy1Nm3b5+IRIJQCXz44Yemq6RSildffZV27drRt2/fau5Z6JSWltKyZUtWr15N06ZN+fjjjxk6dCh79+6lXr161d09QRCESsf9e5eDp556iiuvvBKA9957j6ZNmzJ//nyP71779u2r9D5arVZTIGrYsGGl2xMEQRCEcBEbGwtAZmYmSUlJlbr1rNYGrj516hQxMTEuaa+99hpdunShcePG1KtXj7feeov9+/e7lHFMfkFBQZX1VRDOJG6++WYyMjJ4+eWX+etf/0pCQkJAAtGoUaPQNA1N01y2KtQE6taty9SpU2nevDm6rjN8+HCioqLYuXOnWebll182+69pGseOHavGHguCIIQXb9+7ABePysTERNq0acP27dtdysTGxlbJ9y5HDKI6depUui1BEARBCDeOv1+VHVOv1opEjRo14sSJE+brefPm8cgjjzB69Gi+/fZbNm/ezJ133klxcbFLvaysLAAaN25cpf0VhDMJh3u/pmlBqeCNGjXi//7v/3j++ed9lnn99dfRNI3u3bv7bcswDBo3bsyMGTMCth8ou3fvJisri1atWplpAwcO5P/+7/+47rrrwm5PEAShunH/3hUMWVlZVfq9S7aYCYIgCKcjVfX3q9ZuN+vcuTMffPCB+fqHH37gkksu4d577zXTfv/9d496W7ZsITIykvbt21dJPwWhNpGZmcnXX3/Ntm3bOHHihKlyn3POOUyZMgWA//73vyQlJTFx4kRatGjBb7/9xtKlSwPyJqpbty633Xab3zJz586lZcuWrFu3jj179rgINc6sW7eOY8eOMXjw4CBH6Z9Tp05x2223MXnyZOLj4830tm3b0rZtW/bs2cP8+fPDalMQBKG6cf/e5eCnn36iefPmAJw4cYJdu3Zx3nnnmfmFhYX8/vvvdO7cucr6KgiCIAiCb2qtJ9GAAQPYunWr+atW69at2bBhA9988w27du1iypQprF+/3qPeqlWr6N27t7ntTBCEwHj55Ze5/fbbWbduHe+++y7//ve/OXLkCNOmTePJJ580y916660MHz4csKnh999/f9jiEaWnp/Pjjz/y4osv0rhxY+bOneuz7Ndff02LFi3CKgiXlJRw44030qpVK6ZOnRq2dgVBEGo67t+7HDzzzDMsXbqULVu2MGrUKBo1asS1115r5v/0009ER0efdoH+rVYry5cv56OPPmL58uVYrdZKt5mRkcF9993H2WefTXR0NM2aNWPo0KEsXbrULPPjjz9y1VVX0aBBA2JiYujQoQMvvviiR/8cW59/+uknl/SioiIaNmyIpmksX77cTF+xYgVXXHEFiYmJ1KlTh9atWzNy5EgXj3yr1cpLL71Ehw4diImJoUGDBgwaNIgffvjBxcacOXNISEgI38QINZqVK1cydOhQUlNT0TSNBQsWVIsN57AFkZGRNGnShCuvvJL//Oc/GIYR9j4JNYNAr3vLli1dwkJomkbTpk098t0/MydOnOhxCE9ubi5PPPEEbdu2JSYmhuTkZPr168fnn3+OUsost2fPHu68806aNm1KdHQ0aWlp3HLLLWzYsKFyJiMIaq1I1KFDBy688EI+/vhjAO6++26uv/56br75Zrp3787x48ddvIoczJs3jzFjxlR1dwXhtGbNmjV07dqVb775htdff50LL7wQTdN48803adGihVfXyFGjRoX9ZLO5c+fSoEEDBg8ezA033OBXJPrf//7n4kX09NNPo2kau3bt4rbbbiM+Pp7GjRszZcoUlFIcOHCAa665hri4OJKTk/nnP//p0p5hGNx+++1omsZ7770n2xkEQTijcP/e5eD555/ngQceoEuXLmRkZPDVV18RFRVl5n/00UeMGDHitIoT9Pnnn9OqVSsuv/xybr31Vi6//HJatWrF559/Xmk29+7dS5cuXVi2bBkzZ87kt99+Y/HixVx++eWMHz8egPnz53PZZZfRtGlTvv/+e3bs2MEDDzzA3//+d4YPH+5ycwLQrFkz3n33XZe0+fPnexy4sG3bNgYOHEjXrl1ZuXIlv/32G6+++ipRUVGm+KSUYvjw4TzzzDM88MADbN++neXLl9OsWTP69OlTKcKAcHqQn59Px44dee2114Ku26dPH+bMmRM2GwMHDuTw4cPs3buXRYsWcfnll/PAAw8wZMgQSktLg+6fcHoQ6HV/5plnOHz4sPn4+eefXdqJiYlh0qRJfm1lZ2dzySWX8P777zN58mQ2bdrEypUrufnmm3nsscfIyckBYMOGDXTp0oVdu3bx5ptvsm3bNubPn0/btm15+OGHwz8JwaJqMQsXLlTnnXeeslqtAZX/+uuv1XnnnadKSkoquWeCUHspKipSdevWVV26dAlruyNHjlQtWrTwW6Zt27Zq9OjRSimlVq5cqQC1bt06j3KHDx9WmqaphQsXmmlPPfWUAlSnTp3ULbfcol5//XU1ePBgBagXX3xRtWnTRo0bN069/vrrqmfPngpQK1asMOv/5S9/UZdeeqk6deqU3z467Bw9ejSI0QuCINR8gv3edfToUZWYmKj++OOPSu6ZjVOnTqlt27aV+zntj88++0xpmqaGDh2q1qxZo06ePKnWrFmjhg4dqjRNU5999lkYe1zGoEGD1FlnnaXy8vI88k6cOKHy8vJUw4YN1fXXX++R/+WXXypAzZs3z0wD1JNPPqni4uJUQUGBmX7llVeqKVOmKEB9//33SimlXnrpJdWyZUu//Zs3b54C1JdffumRd/3116uGDRuafX/33XdVfHx8IMMWahmAmj9/fsDlL7vsMvXuu++GxcbIkSPVNddc45G+dOlSBai33347KDvC6UGg171FixbqpZde8tlOixYt1P3336+ioqLU//73PzP9gQceUJdddpn5ety4capu3brq4MGDHm2cPHlSlZSUKMMwVPv27VWXLl28/r08ceKEz36E4+9YINRaTyKAwYMHM3bsWA4ePBhQ+fz8fN59910iImptqCZBqHRWrVpFfn4+AwcOrFK7GzduZMeOHeZWtl69etG0aVOv3kRff/01MTExXHHFFR553bp148MPP2TcuHF88cUXNG3alIcffpg777yT119/nXHjxrFw4UJiY2P5z3/+A9iOfv73v//NunXraNSoEfXq1aNevXqsWrWqcgctCIJQgwj2e9fevXt5/fXXSUtLq+SehQer1crDDz/MkCFDWLBgARdffDH16tXj4osvZsGCBQwZMoRHHnkk7FvPsrKyWLx4MePHj6du3boe+QkJCXz77bccP36cRx55xCN/6NChnHvuuXz00Ucu6V26dKFly5Z89tlnAOzfv5+VK1dy++23u5RLTk7m8OHDrFy50mcfP/zwQ84991yGDh3qkffwww9z/PhxlixZEtB4hfJRSpGfn18tD+XmkXa6c8UVV9CxY8dK9QSszXhbF8XFxeTn51NUVOS1rPM2r5KSEvLz8yksLCy3bDgJ5bqnpaVxzz33MHnyZK/9MgyDefPmMWLECFJTUz3y69WrR0REBJs3b2br1q08/PDD6LqnHFMTtuPWapEIbPsEmzVrFlDZG264odwTkQRB8M/ixYsBGDRoUJXanTt3Lk2aNOHyyy8HbPEWbr75ZubNm+fxhf3rr7/m8ssv9xp77C9/+Yv53GKx0LVrV5RSjB492kxPSEigTZs2/PHHHwC0aNECpRSnTp0iLy/PfPTu3bsyhioIglBjCeZ7V9euXbn55psruUfhY9WqVezdu5e//vWvHl/sdV1n8uTJpKenh/0Hgj179qCUom3btj7L7Nq1C8AlKLgzbdu2Ncs4c9ddd5k/eMyZM4errrrK46S5G2+8kVtuuYXLLruMlJQUrrvuOv71r3+Rm5vrYt+XbUe6N/tCaBQUFJg/SFX1o6CgoLqHH3batm3L3r17q7sbpyWOdXHs2DEzbebMmdSrV48JEya4lE1KSqJevXrs37/fTHvttdeoV6+ey/dssMUAqlevHtu3b6+0vrtf90mTJrms9VmzZnnUefLJJ0lPT/f6I/SxY8c4ceKE389qsJ2C7LBfU6n1IpEgCFXLokWLaNCgARdffHGV2bRarcybN4/LL7+c9PR09uzZw549e+jevTtHjhxxCepZUlLCkiVLfJ5q5jiFx0F8fDwxMTE0atTIIz3U454FQRCE04/Dhw8DcP7553vNd6Q7yoWLYDw3gvXyuO2221izZg1//PEHc+bM4a677vIoY7FYePfdd/nzzz+ZMWMGZ511Fs899xzt27d3GWtt8zARqp7nnnvO5SZ91apV3HPPPS5pzgJDuFBKSSzJMxD36/7oo4+yefNm83HHHXd41GncuDGPPPIIU6dOdQnc72gvULs1HdlXJQhC2Pjzzz/ZunUrN910ExaLpcrsLlu2jMOHDzNv3jzmzZvnkT937lz69+8PwOrVq8nNzeWqq67y2pa3fvsay+nwIS8IgiCEh5SUFAC2bNni9YeQLVu2uJQLF61bt0bTNHbs2OGzzLnnngvA9u3bueSSSzzyt2/fTrt27TzSGzZsyJAhQxg9ejSFhYUMGjSIkydPerVx1llncfvtt3P77bfzt7/9jXPPPZfZs2czbdo0zj33XJ+/+DvSHX0UKk6dOnXIy8urNtuVxT333MNNN91kvh4xYgTDhg3j+uuvN9O8beOpKNu3bz9ttr3WNBzr0HldPProo0ycONEjhEtmZiaAiyf/+PHjGTNmjMd3bYeHT2WeOO5+3Rs1akSrVq3KrffQQw/x+uuv8/rrr7ukN27cmISEBL+f1VD2Wbhjxw46d+4cQs8rH/EkEgQhbCxatAionq1mSUlJfPLJJx6PW265hfnz53Pq1CnAdqpZu3btaNmyZZX2URAEQTi96d27Ny1btuS5557ziEdhGAbTp08nLS0t7FuNExMTGTBgAK+99hr5+fke+dnZ2fTv35/ExESPkzcBvvzyS3bv3s0tt9zitf277rqL5cuXc8cddwT8A0+DBg1ISUkx+zN8+HB2797NV1995VH2n//8Jw0bNuTKK68MqG2hfDRNo27dutXyqEyPm8TERFq1amU+YmNjSUpKckkLd+zYZcuW8dtvvzFs2LCwtnum4G1dREVFUbduXaKjo72Wdd6uGxkZSd26dYmJiSm3bDipyHWvV68eU6ZM4dlnn3UR1XVdZ/jw4cydO5dDhw551MvLy6O0tJROnTrRrl07/vnPf3qNbZSdnR10n8KNeBIJghA2Fi5cCMCAAQPMtB07dlTqnttTp07x+eefc+ONN3LDDTd45KempvLRRx/x5ZdfcvPNN/P1118zZMiQSuuPIAiCUDuxWCz885//5IYbbuDaa69l8uTJnH/++WzZsoXp06ezcOFCPv3000rxpH3ttdfo2bMn3bp145lnnuGCCy6gtLSUJUuW8MYbb7B9+3befPNNhg8fztixY5kwYQJxcXEsXbqURx99lBtuuMHFQ8OZgQMHcvToUeLi4rzmv/nmm2zevJnrrruOc845h8LCQt5//322bt3Kq6++CthEok8++YSRI0cyc+ZM+vbtS25uLq+99hpffvkln3zyiUvQbavVyubNm13sREdH+4xrJJy+5OXlsWfPHvN1eno6mzdvJjEx0WOLf2XbKCoqIiMjA6vVypEjR1i8eDHTp09nyJAhXrcWCbWDyrjuY8eO5aWXXuLDDz90iWn87LPPsnz5crp3786zzz5L165diYyMZNWqVUyfPp3169eTkJDAu+++S79+/ejduzdPPPEEbdu2JS8vj6+++opvv/2WFStWhGv4ISEikSAIYWHHjh18/fXXRERE8Pvvv7Nt2zY+++wzhg0bVqki0ZdffsnJkye5+uqrveZffPHFNG7cmLlz59KtWze2b9/OG2+8UWn9EQRBEGov119/PZ9++ikPP/ywy7autLQ0Pv30U5dtMeHk7LPPZtOmTTz77LM8/PDDHD58mMaNG9OlSxfzb9oNN9zA999/z7PPPkvv3r0pLCykdevWPPHEE0ycONGnB4imaR5x95zp1q0bq1ev5p577uHQoUPUq1eP9u3bs2DBAi677DKzjY8//piXX36Zl156iXvvvZeYmBh69OjB8uXL6dmzp0ubeXl5HtsszjnnHJcbfaF2sGHDBvNQEbBt1QEYOXIkc+bMqVIbixcvJiUlhYiICBo0aEDHjh2ZNWsWI0eOrDSPFaH6qYzrHhkZyd/+9jduvfVWl/TExER++uknnn/+ef7+97+zb98+GjRoQIcOHZg5cybx8fGA7XN1w4YNPPvss4wZM4Zjx46RkpLCJZdcwssvv1zRIVcYTUlQDUEQKsDGjRt54YUXWLJkCdnZ2cTGxtK8eXMGDRrEY489FrbYDKNGjWL58uUep09cffXVLFmyhOPHj/vcJ3/nnXcyd+5cnnrqKWbOnMmxY8c83JWffvpppk2bxtGjR12+LI8aNYpPP/3UY+9/nz59OHbsmBmDIlB82REEQRAql8LCQtLT00lLS/PY2hAsVquVVatWcfjwYVJSUujdu3eVxuITBEEQzjzC+XfMHyISCYJwWjBq1CiWLVvGpk2biIiIICEhIeg2rrrqKurVq8fHH38c/g6WQ2FhIXl5ecyYMYOZM2eKSCQIglDFVNWXa0EQBEGoDKrq75hsNxME4bThwIEDNG7cmPbt2wftwQM2759wBxQNlNmzZ/Pggw9Wi21BEARBEARBEIRAEE8iQRBOC7Zt22aeFFCvXj2vxw/XZA4cOMDOnTvN15dddhmRkZHV2CNBEIQzC/EkEgRBEE5nxJNIEATBiXbt2tGuXbvq7kbINGvWjGbNmlV3NwRBEARBEARBEHwiYdwFQRAEQRAEQRAEQRAEEYkEQRAEQRCEMweJtCAIgiCcjlTV3y8RiQRBEARBEIRajyMOXEFBQTX3RBAEQRCCx/H3q7LjmkpMIkEQBEEQBKHWY7FYSEhIIDMzE4A6deqgaVo190oQBEEQ/KOUoqCggMzMTBISErBYLJVqT043EwRBEARBEM4IlFJkZGSQnZ1d3V0RBEEQhKBISEggOTm50n/gEJFIEARBEARBOKOwWq2UlJRUdzcEQRAEISAiIyMr3YPIgYhEgiAIgiAIgiAIgiAIggSuFgRBEARBEARBEARBEEQkEgRBEARBEARBEARBEBCRSBAEQRAEQRAEQRAEQUBEIkEQBEEQBEEQBEEQBAERiQRBEARBEARBEARBEAREJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYlqBS1btkTTNI/H+PHjAXjrrbfo06cPcXFxaJpGdnZ2QO2+9tprtGzZkpiYGLp37866detc8gsLCxk/fjwNGzakXr16DBs2jCNHjoR7eB5UxninT5/ORRddRP369UlKSuLaa69l586dLmX69OnjYfOee+6pjCG6UBnjffrppz3aa9u2rUuZ2nR9y2sTaub1zcrK4r777qNNmzbExsbSvHlz7r//fnJycvy2qZRi6tSppKSkEBsbS79+/di9e7dLmaysLEaMGEFcXBwJCQmMHj2avLy8yhwqEP7xlpSUMGnSJDp06EDdunVJTU3ljjvu4NChQ+Xaff755yt7uJVyfUeNGuXR3sCBA13KVNf1FQRBEARBEE5vRCSqBaxfv57Dhw+bjyVLlgBw4403AlBQUMDAgQP561//GnCb//3vf3nooYd46qmn2LRpEx07dmTAgAFkZmaaZR588EG++uorPvnkE1asWMGhQ4e4/vrrwzs4L1TGeFesWMH48eP56aefWLJkCSUlJfTv35/8/HyXcmPGjHGxPWPGjPANzAeVMV6A9u3bu7S7evVql/zadH3La9NBTbu+hw4d4tChQ/zjH/9gy5YtzJkzh8WLFzN69Gi/bc6YMYNZs2Yxe/Zs1q5dS926dRkwYACFhYVmmREjRrB161aWLFnCwoULWblyJWPHjq3UsUL4x1tQUMCmTZuYMmUKmzZt4vPPP2fnzp1cffXVHmWfeeYZF9v33XdfpY3TQWVcX4CBAwe6tPvRRx+55FfX9RUEQRAEQRBOc5RQ63jggQfUOeecowzDcEn//vvvFaBOnDhRbhvdunVT48ePN19brVaVmpqqpk+frpRSKjs7W0VGRqpPPvnELLN9+3YFqDVr1oRnIAESjvG6k5mZqQC1YsUKM+2yyy5TDzzwQAV7W3HCMd6nnnpKdezY0Wd+bb++3tqs6dfXwccff6yioqJUSUmJ13zDMFRycrKaOXOmmZadna2io6PVRx99pJRSatu2bQpQ69evN8ssWrRIaZqmDh48GMbRlE9Fx+uNdevWKUDt27fPTGvRooV66aWXKtrdChOO8Y4cOVJdc801PvNr0vUVBEEQBEEQTi/Ek6iWUVxczAcffMBdd92Fpmkht7Fx40b69etnpum6Tr9+/VizZg0AGzdupKSkxKVM27Ztad68uVmmKgjHeL3h2O6RmJjokj537lwaNWrE+eefz+TJkykoKAibzUAI53h3795NamoqZ599NiNGjGD//v1mXm2+vv7aPB2ub05ODnFxcURERHjNT09PJyMjw+XaxcfH0717d/ParVmzhoSEBLp27WqW6devH7qus3bt2jCOyD/hGK+vOpqmkZCQ4JL+/PPP07BhQzp37szMmTMpLS2tSPeDJpzjXb58OUlJSbRp04Zx48Zx/PhxM6+mXF9BEARBEATh9CPwb93CacGCBQvIzs5m1KhRIbdx7NgxrFYrTZo0cUlv0qQJO3bsACAjI4OoqCiPm7AmTZqQkZERsu1gCcd43TEMg4kTJ9KzZ0/OP/98M/3WW2+lRYsWpKam8uuvvzJp0iR27tzJ559/Hjbb5RGu8Xbv3p05c+bQpk0bDh8+zLRp0+jduzdbtmyhfv36tfr6+mrzdLi+x44d429/+5vfbUOO6+Pt/evIy8jIICkpySU/IiKCxMTEGnV9AxmvO4WFhUyaNIlbbrmFuLg4M/3+++/nwgsvJDExkR9//JHJkydz+PBhXnzxxYoOI2DCNd6BAwdy/fXXk5aWxu+//85f//pXBg0axJo1a7BYLDXm+gqCIAiCIAinHyIS1TLeeecdBg0aRGpqanV3pUqojPGOHz+eLVu2eMTocb5x69ChAykpKfTt25fff/+dc845J2z2/RGu8Q4aNMh8fsEFF9C9e3datGjBxx9/HFA8lKqiMq6vrzZr+vXNzc1l8ODBtGvXjqeffrpK+lPZhHu8JSUl3HTTTSileOONN1zyHnroIfP5BRdcQFRUFHfffTfTp08nOjq6QuMIlHCNd/jw4ebzDh06cMEFF3DOOeewfPly+vbtG+5uC4IgCIIgCGcQst2sFrFv3z6+++47/vKXv1SonUaNGmGxWDxOsjpy5AjJyckAJCcnU1xc7HGylHOZyiZc43VmwoQJLFy4kO+//56mTZv6Ldu9e3cA9uzZEzb7/qiM8TpISEjg3HPPNcdSW69vMG3WpOt78uRJBg4cSP369Zk/fz6RkZE+23Fcn/Lev85B6AFKS0vJysqqEdc3mPE6cAhE+/btY8mSJS5eRN7o3r07paWl7N27N9QhBEW4x+vM2WefTaNGjVzev9V9fQVBEARBEITTExGJahHvvvsuSUlJDB48uELtREVF0aVLF5YuXWqmGYbB0qVL6dGjBwBdunQhMjLSpczOnTvZv3+/WaayCdd4wXZk+IQJE5g/fz7Lli0jLS2t3DqbN28GICUlpcL2AyGc43UnLy+P33//3RxLbbu+obRZU65vbm4u/fv3Jyoqii+//JKYmBi/7aSlpZGcnOxy7XJzc1m7dq157Xr06EF2djYbN240yyxbtgzDMExxrLIJ13ihTCDavXs33333HQ0bNiy3zubNm9F13WNbVmURzvG68+eff3L8+HFzrdaE6ysIgiAIgiCcplR35GwhPFitVtW8eXM1adIkj7zDhw+rn3/+Wb399tsKUCtXrlQ///yzOn78uFnmiiuuUK+++qr5et68eSo6OlrNmTNHbdu2TY0dO1YlJCSojIwMs8w999yjmjdvrpYtW6Y2bNigevTooXr06FG5A7UT7vGOGzdOxcfHq+XLl6vDhw+bj4KCAqWUUnv27FHPPPOM2rBhg0pPT1dffPGFOvvss9Wll15a+YNV4R/vww8/rJYvX67S09PVDz/8oPr166caNWqkMjMzzTK16fqW12ZNvb45OTmqe/fuqkOHDmrPnj0ua7O0tNQs16ZNG/X555+br59//nmVkJCgvvjiC/Xrr7+qa665RqWlpalTp06ZZQYOHKg6d+6s1q5dq1avXq1at26tbrnllsofrArveIuLi9XVV1+tmjZtqjZv3uxSp6ioSCml1I8//qheeukltXnzZvX777+rDz74QDVu3Fjdcccdp914T548qR555BG1Zs0alZ6err777jt14YUXqtatW6vCwkKzTnVeX0EQBEEQBOH0RUSiWsI333yjALVz506PvKeeekoBHo93333XLNOiRQv11FNPudR79dVXVfPmzVVUVJTq1q2b+umnn1zyT506pe69917VoEEDVadOHXXdddepw4cPV8bwPAj3eL2Vd66zf/9+demll6rExEQVHR2tWrVqpR599FGVk5NTySO1Ee7x3nzzzSolJUVFRUWps846S918881qz549Lu3WputbXps19fp+//33Ptdmenq6Wc59/IZhqClTpqgmTZqo6Oho1bdvX4+2jx8/rm655RZVr149FRcXp+6880518uTJyhymSTjHm56e7rPO999/r5RSauPGjap79+4qPj5excTEqPPOO08999xzLqLK6TLegoIC1b9/f9W4cWMVGRmpWrRoocaMGeMi4CtVvddXEARBEARBOH3RlFKqwu5IgiAIgiAIgnCaYLVaKSkpqe5uCIIgCEJAREZGYrFYqsSWnG4mCIIgCIIgnBEopcjIyPA4mEEQBEEQajoJCQkkJyejaVql2hGRSBAEQRAEQTgjcAhESUlJ1KlTp9K/aAuCIAhCRVFKUVBQYJ5eW9kH64hIJAiCIAiCINR6rFarKRAFcgqiIAiCINQUYmNjAcjMzCQpKalSt57pldayIAiCIAiCINQQHDGI6tSpU809EQRBEITgcfz9quyYeiISCYIgCIIgCGcMssVMEARBOB2pqr9fIhIJgiAIgiAIgiAIgiAIIhIJZRQVFfH0009TVFRU3V2pEmS8tRsZb+1GxisIwpnE9OnTueiii6hfvz5JSUlce+217Ny506VMYWEh48ePp2HDhtSrV49hw4Zx5MgRlzL79+9n8ODB1KlTh6SkJB599FFKS0urcihCLeXgwYPcdtttNGzYkNjYWDp06MCGDRvMfKUUU6dOJSUlhdjYWPr168fu3btd2sjKymLEiBHExcWRkJDA6NGjycvLq+qhCLWMlStXMnToUFJTU9E0jQULFniUCdf6/PXXX+nduzcxMTE0a9aMGTNmVObQKg0RiQSToqIipk2bdsbchMh4azcy3tqNjFcQhDOJFStWMH78eH766SeWLFlCSUkJ/fv3Jz8/3yzz4IMP8tVXX/HJJ5+wYsUKDh06xPXXX2/mW61WBg8eTHFxMT/++CPvvfcec+bMYerUqdUxJKEWceLECXr27ElkZCSLFi1i27Zt/POf/6RBgwZmmRkzZjBr1ixmz57N2rVrqVu3LgMGDKCwsNAsM2LECLZu3cqSJUtYuHAhK1euZOzYsdUxJKEWkZ+fT8eOHXnttdd8lgnH+szNzaV///60aNGCjRs3MnPmTJ5++mneeuutSh1fpaAEwU5OTo4CVE5OTnV3pUqQ8dZuZLy1GxmvIAjBcurUKbVt2zZ16tSp6u5KhcnMzFSAWrFihVJKqezsbBUZGak++eQTs8z27dsVoNasWaOUUurrr79Wuq6rjIwMs8wbb7yh4uLiVFFRkVc7RUVFavz48So5OVlFR0er5s2bq+eee64SRyacjkyaNEn16tXLZ75hGCo5OVnNnDnTTMvOzlbR0dHqo48+UkoptW3bNgWo9evXm2UWLVqkNE1TBw8e9NnuU089pZo1a6aioqJUSkqKuu+++8I0KqE2Aqj58+e7pIVrfb7++uuqQYMGLp+nkyZNUm3atPHZn6ysLHXrrbeqRo0aqZiYGNWqVSv1n//8x2f5qvo7FlE90pQgCIIgCIIgVC9KKQoKCqrFdp06dUIOQpqTkwNAYmIiABs3bqSkpIR+/fqZZdq2bUvz5s1Zs2YNF198MWvWrKFDhw40adLELDNgwADGjRvH1q1b6dy5s4edWbNm8eWXX/Lxxx/TvHlzDhw4wIEDB0LqsxA8SilKTxVXi+2I2KiA1+eXX37JgAEDuPHGG1mxYgVnnXUW9957L2PGjAEgPT2djIwMl/UZHx9P9+7dWbNmDcOHD2fNmjUkJCTQtWtXs0y/fv3QdZ21a9dy3XXXedj97LPPeOmll5g3bx7t27cnIyODX375pYIjF4JBKQXWavgMtYT++elOuNbnmjVruPTSS4mKijLLDBgwgBdeeIETJ064eNY5mDJlCtu2bWPRokU0atSIPXv2cOrUqbCMqyKISFTNFBYWUlxcPR/+7uTm5rr8X9uR8dZuZLy1GxlvzSMqKoqYmJjq7oYgBEVBQQH16iVUi+28vGzq1q0bdD3DMJg4cSI9e/bk/PPPByAjI4OoqCgSEhJcyjZp0oSMjAyzjLNA5Mh35Hlj//79tG7dml69eqFpGi1atAi6v0LolJ4q5s3OD1SL7bt/foXIOtEBlf3jjz944403eOihh/jrX//K+vXruf/++4mKimLkyJHm+vK2/pzXZ1JSkkt+REQEiYmJftdncnIy/fr1IzIykubNm9OtW7dghypUBGsBxsdJ5ZcLM/pNmRAR/OenN8K1PjMyMkhLS/Now5HnTSTav38/nTt3NsWnli1bVnxAYUBEomqksLCQOrFJKE5Wd1dcaNasWXV3oUqR8dZuZLy1GxlvzSE5OZn09HQRigShkhk/fjxbtmxh9erVlW5r1KhRXHnllbRp04aBAwcyZMgQ+vfvX+l2hdMLwzDo2rUrzz33HACdO3dmy5YtzJ49m5EjR1aa3RtvvJGXX36Zs88+m4EDB3LVVVcxdOhQIiLkFlc4PRg3bhzDhg1j06ZN9O/fn2uvvZZLLrmkurslIlF1UlxcjOIkcVGT0YhGx+YyZ0HDomwxxR1pznnuaZoqi0DunGfmu5XXAV255mloXtuw5TmlKS9p5og0lz6529Tcyusu5RwtOJfxUt4tTSsnz72ctzR/5XXN9blLWxpoKI883T4ohwekpnmmmeU15ZGGS3n3eir4NN29P87ly/73ZdO5vO6vDd0zDa/t+++Hvzyzru67HE52vOUFZVP31Qa+2zAXkb08vm2ie147536YY/E6t87lXW16b8Opz1764Z6mafZ053I4vdYDKO98vbyO3W2ufIzdfO08BjPNy1jMttzbd813bd8zz3lecLqu7n10zkN3HTu6QrmvCRebnn1UHm2UlVPuH1y6Z5rSyuoq3Uue47njDe3ShmaW82jX/L9sXhxpJ/NKaH/OAYqLi0UkEk4r6tSpQ15edrXZDpYJEyaYAVObNm1qpicnJ1NcXEx2draLN9GRI0dITk42y6xbt86lPcfpZ44y7lx44YWkp6ezaNEivvvuO2666Sb69evHp59+GnTfheCJiI3i7p9fqTbbgZKSkkK7du1c0s477zw+++wzoGx9HTlyhJSUFLPMkSNH6NSpk1kmMzPTpY3S0lKysrJ8rs9mzZqxc+dOvvvuO5YsWcK9997LzJkzWbFiBZGRkQH3X6gAljo2r55qsBsuwrU+k5OTPU6ULO8zdtCgQezbt4+vv/6aJUuW0LdvX8aPH88//vGPsIwtVEQkqgFoRKNpMW4Cj3eRyFn8cRF9/JTzKhJ5CEEBikRe03Bqoyzf3aanSKThdg/iUsa7qBSaSORVCNL85Dnq+RGJ9LCLRMpLedcb/HCIRK7l/YhETjfkZSKRP0HFvwDjVSTyEBrKE4ncx+TPZnmiTEVEIj9tuN30++tj2EQid+EjSJHIm4jjXfQJViTy3b5XkUivJJFI9yxfIZHIo5zTOEIViZzS/ItEbja9iUQ65oIKWSTy1S7uIpGjP3JYqnB6omlaSFu+qhqlFPfddx/z589n+fLlHlsaunTpQmRkJEuXLmXYsGEA7Ny5k/3799OjRw8AevTowbPPPktmZqa5bWLJkiXExcV53OA7ExcXx80338zNN9/MDTfcwMCBA8nKyjLjIQmVh6ZpAW/5qk569uzJzp07XdJ27dplbk9MS0sjOTmZpUuXmjfdubm5rF27lnHjxgG29Zmdnc3GjRvp0qULAMuWLcMwDLp37+7TdmxsLEOHDmXo0KGMHz+etm3b8ttvv3HhhRdWwkgFdzRNC9u2r+oiXOuzR48ePPHEE5SUlJgi5ZIlS2jTpo3XrWYOGjduzMiRIxk5ciS9e/fm0UcfFZFIEARBEARBEATfjB8/ng8//JAvvviC+vXrmzEw4uPjiY2NJT4+ntGjR/PQQw+RmJhIXFwc9913Hz169ODiiy8GoH///rRr147bb7+dGTNmkJGRwZNPPsn48eOJjvYuRLz44oukpKTQuXNndF3nk08+ITk52SP2kXBm8+CDD3LJJZfw3HPPcdNNN7Fu3Treeust8+hvTdOYOHEif//732ndujVpaWlMmTKF1NRUrr32WsDmeTRw4EDGjBnD7NmzKSkpYcKECQwfPpzU1FSvdufMmYPVaqV79+7UqVOHDz74gNjYWImdJbiQl5fHnj17zNfp6els3ryZxMREmjdvHrb1eeuttzJt2jRGjx7NpEmT2LJlC6+88govvfSSz75NnTqVLl260L59e4qKili4cCHnnXdepc5HIIhIJAiCIAiCIAg1mDfeeAOAPn36uKS/++67jBo1CoCXXnoJXdcZNmwYRUVFDBgwgNdff90sa7FYWLhwIePGjaNHjx7UrVuXkSNH8swzz/i0W79+fWbMmMHu3buxWCxcdNFFfP311+jiPSg4cdFFFzF//nwmT57MM888Q1paGi+//DIjRowwyzz22GPk5+czduxYsrOz6dWrF4sXL3bZojx37lwmTJhA3759zbU8a9Ysn3YTEhJ4/vnneeihh7BarXTo0IGvvvqKhg0bVup4hdOLDRs2cPnll5uvH3roIQBGjhzJnDlzgPCsz/j4eL799lvGjx9Ply5daNSoEVOnTmXs2LE++xYVFcXkyZPZu3cvsbGx9O7dm3nz5oV5BoJHU0qp6u7EmUpubi7x8fHERz2NpsVgCTEmka5C2G6mXNPCEZPIZbuZcm/LczuYjuY3JpFsN/Pc+iXbzWS7mWw3c2tftpvViO1muXklNG+8j5ycHOLi4hCEmkhhYSHp6emkpaVJ7CxBEAThtKOq/o7JzwCCIAiCIAiCIAiCIAiCiESCIAiCIAiCIAiCIAiCiESCIAiCIAiCIAiCIAgCIhIJgiAIgiAIgiAIgiAIiEgkCIIgCIIgCIIgCIIgICKRIAiCIAiCIAiCIAiCgIhEgiAIgiAIgiAIgiAIAiISCYIgCIIgCIIgCIIgCIhIJAiCIAiCIAiCIAiCICAikSAIgiAIgiAIgiAIgoCIRIIgCIIgCIJw2vD888+jaRoTJ050SS8sLGT8+PE0bNiQevXqMWzYMI4cOeJSZv/+/QwePJg6deqQlJTEo48+SmlpaRX2XqiNWK1WpkyZQlpaGrGxsZxzzjn87W9/QyllllFKMXXqVFJSUoiNjaVfv37s3r3bpZ2srCxGjBhBXFwcCQkJjB49mry8vKoejiCc8YhIJAiCIAiCIAinAevXr+fNN9/kggsu8Mh78MEH+eqrr/jkk09YsWIFhw4d4vrrrzfzrVYrgwcPpri4mB9//JH33nuPOXPmMHXq1KocglALeeGFF3jjjTf417/+xfbt23nhhReYMWMGr776qllmxowZzJo1i9mzZ7N27Vrq1q3LgAEDKCwsNMuMGDGCrVu3smTJEhYuXMjKlSsZO3ZsdQxJEM5oRCQSBEEQBEEQhBpOXl4eI0aM4O2336ZBgwYueTk5Obzzzju8+OKLXHHFFXTp0oV3332XH3/8kZ9++gmAb7/9lm3btvHBBx/QqVMnBg0axN/+9jdee+01iouLvdosLi5mwoQJpKSkEBMTQ4sWLZg+fXqlj1U4vfjxxx+55pprGDx4MC1btuSGG26gf//+rFu3DrB5Eb388ss8+eSTXHPNNVxwwQW8//77HDp0iAULFgCwfft2Fi9ezL///W+6d+9Or169ePXVV5k3bx6HDh3yalcpxdNPP03z5s2Jjo4mNTWV+++/v6qGLQi1FhGJBEEQBEEQhDMSpRSn8ouq5eG8FScQxo8fz+DBg+nXr59H3saNGykpKXHJa9u2Lc2bN2fNmjUArFmzhg4dOtCkSROzzIABA8jNzWXr1q1ebc6aNYsvv/ySjz/+mJ07dzJ37lxatmwZVL+F0FFKYRSeqpZHMOvzkksuYenSpezatQuAX375hdWrVzNo0CAA0tPTycjIcFmf8fHxdO/e3WV9JiQk0LVrV7NMv3790HWdtWvXerX72Wef8dJLL/Hmm2+ye/duFixYQIcOHYKeZ0EQXImo7g4IgiAIgiAIQnVQWFDMkKSJ1WJ7YebLxNaNDqjsvHnz2LRpE+vXr/ean5GRQVRUFAkJCS7pTZo0ISMjwyzjLBA58h153ti/fz+tW7emV69eaJpGixYtAuqvEB5UUSF7b/UUBauClh9+hxYTG1DZxx9/nNzcXNq2bYvFYsFqtfLss88yYsQIoGx9eVt/zuszKSnJJT8iIoLExES/6zM5OZl+/foRGRlJ8+bN6datW1DjFATBExGJagCKIlBgoAGgoaEph5OX5vK/huaRphQosy3N/F+51HHOA6Vsz51tOizq9jTdzHNKU17SzJFoZXWUe1tl/Siz41zO0YJzGS/l3dK0cvK8zaKZ5mHbV7ue5Rz/a/aZd21DebHpmlZWXnmk4VLe/r9hT9cUmr3jmhZgGq55mkv5sv919zTlWV7314byTMNr+05tGJ798NdHs67uuxxOdrzleWvXp03dVxv4bsN9geHbJrrntXPuhzkW3ds4ncu72vTehlOfvfTDPU3T7OnO5XB6rQdQ3vl6eR2721z5GLv52nkMZpqXsZhtubfvmu/avmee87w4f3C499HlQ0V3HTu6Qnl86Djb9Oyj8mijrJxy/8DQPdOU058JpXvJczx3vKFd2tDMch7tmv+XzYsj7WSe/UNKEISwc+DAAR544AGWLFlCTExMldoeNWoUV155JW3atGHgwIEMGTKE/v37V2kfhJrPxx9/zNy5c/nwww9p3749mzdvZuLEiaSmpjJy5MhKs3vjjTfy8ssvc/bZZzNw4ECuuuoqhg4dSkSE3OIKQkWQd1A1EhUVRXJyMhkZsre7xqJ8PBcEQRBcSE5OJioqqrq7IQhBEVMnioWZL1eb7UDYuHEjmZmZXHjhhWaa1Wpl5cqV/Otf/6KoqIjk5GSKi4vJzs528SY6cuQIycnJgO096ogR45zvyPPGhRdeSHp6OosWLeK7777jpptuol+/fnz66afBDFUIES06hpYffldttgPl0Ucf5fHHH2f48OEAdOjQgX379jF9+nRGjhxprq8jR46QkpJi1jty5AidOnUCbGswMzPTpd3S0lKysrJ8rs9mzZqxc+dOvvvuO5YsWcK9997LzJkzWbFiBZGRkcEMVxAEJ0QkqkZiYmJIT0/3GSxQEARBEE4XoqKiqtzLQRAqiqZpAW/5qi769u3Lb7/95pJ255130rZtWyZNmoTFYqFLly5ERkaydOlShg0bBsDOnTvZv38/PXr0AKBHjx48++yzZGZmmtt6lixZQlxcHO3atfNpPy4ujptvvpmbb76ZG264gYEDB5KVlUViYmIljVhwoGlawFu+qpOCggJ03TXUrcViwTBsXqZpaWkkJyezdOlSUxTKzc1l7dq1jBs3DrCtz+zsbDZu3EiXLl0AWLZsGYZh0L17d5+2Y2NjGTp0KEOHDmX8+PG0bduW3377zUVUFQQhOEQkqmZiYmLkS7UgCIIgCILglfr163P++ee7pNWtW5eGDRua6fHx8YwePZqHHnqIxMRE4uLiuO++++jRowcXX3wxAP3796ddu3bcfvvtzJgxg4yMDJ588knGjx9PdLR3oezFF18kJSWFzp07o+s6n3zyCcnJyR6xj4Qzm6FDh/Lss8/SvHlz2rdvz88//8yLL77IXXfdBdjErokTJ/L3v/+d1q1bk5aWxpQpU0hNTeXaa68F4LzzzmPgwIGMGTOG2bNnU1JSwoQJExg+fDipqale7c6ZMwer1Ur37t2pU6cOH3zwAbGxsRI7SxAqiIhEgiAIgiAIgnCa89JLL6HrOsOGDaOoqIgBAwbw+uuvm/kWi4WFCxcybtw4evToQd26dRk5ciTPPPOMzzbr16/PjBkz2L17NxaLhYsuuoivv/7aw2tEOLN59dVXmTJlCvfeey+ZmZmkpqZy9913M3XqVLPMY489Rn5+PmPHjiU7O5tevXqxePFilx/L586dy4QJE+jbt6+5lmfNmuXTbkJCAs8//zwPPfQQVquVDh068NVXX9GwYcNKHa8g1HY0Fez5m4IgCIIgCIJwmlFYWEh6ejppaWnixS0IgiCcdlTV3zH5GUAQBEEQBEEQBEEQBEEQkUgQBEEQBEEQBEEQBEEQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYkEQRAEQRAEQRAEQRAERCQSBEEQBEEQziDkYF9BEAThdKSq/n6JSCQIgiAIgiDUeiIjIwEoKCio5p4IgiAIQvA4/n45/p5VFhGV2rogCIIgCIIg1AAsFgsJCQlkZmYCUKdOHTRNq+ZeCYIgCIJ/lFIUFBSQmZlJQkICFoulUu1pSnxuBUEQBEEQhDMApRQZGRlkZ2dXd1cEQRAEISgSEhJITk6u9B84RCQSBEEQBEEQziisVislJSXV3Q1BEARBCIjIyMhK9yByICKRIAiCIAiCIAiCIAiCIIGrBUEQBEEQBEEQBEEQBBGJBEEQBEEQBEEQBEEQBEQkEgRBEARBEARBEARBEBCRSBAEQRAEQRAEQRAEQUBEIkEQBEEQBEEQBEEQBAERiQRBEARBEARBEARBEAREJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEASBWigSrVy5kqFDh5KamoqmaSxYsMDMKykpYdKkSXTo0IG6deuSmprKHXfcwaFDh1zayMrKYsSIEcTFxZGQkMDo0aPJy8tzKfPrr7/Su3dvYmJiaNasGTNmzKiK4QmCIAiCIAiCIAiCIFQKtU4kys/Pp2PHjrz22mseeQUFBWzatIkpU6awadMmPv/8c3bu3MnVV1/tUm7EiBFs3bqVJUuWsHDhQlauXMnYsWPN/NzcXPr370+LFi3YuHEjM2fO5Omnn+att96q9PEJgiAIgiAIgiAIgiBUBppSSlV3JyoLTdOYP38+1157rc8y69evp1u3buzbt4/mzZuzfft22rVrx/r16+natSsAixcv5qqrruLPP/8kNTWVN954gyeeeIKMjAyioqIAePzxx1mwYAE7duyoiqEJgiAIgiAIgiAIgiCElVrnSRQsOTk5aJpGQkICAGvWrCEhIcEUiAD69euHruusXbvWLHPppZeaAhHAgAED2LlzJydOnKjS/guCIAiCIAiCIAiCIISDiOruQHVSWFjIpEmTuOWWW4iLiwMgIyODpKQkl3IREREkJiaSkZFhlklLS3Mp06RJEzOvQYMGXu0VFRVRVFRkvjYMg6ysLBo2bIimaWEblyAIgiBUNkopTp48SWpqKrp+xv/mJJwGGIbBoUOHqF+/vnzvEgRBEE47quq71xkrEpWUlHDTTTehlOKNN96oEpvTp09n2rRpVWJLEARBEKqCAwcO0LRp0+ruhiCUy6FDh2jWrFl1d0MQBEEQKkRlf/c6I0Uih0C0b98+li1bZnoRASQnJ5OZmelSvrS0lKysLJKTk80yR44ccSnjeO0o443Jkyfz0EMPma9zcnJo3rw5Bw4ccOmDIAiCINR0cnNzadasGfXr16/urghCQDjWqnzvEgRBEE5Hquq71xknEjkEot27d/P999/TsGFDl/wePXqQnZ3Nxo0b6dKlCwDLli3DMAy6d+9ulnniiScoKSkhMjISgCVLltCmTRufW80AoqOjiY6O9kiPi4uTLyuCIAjCaYls2xFOFxxrVb53CYIgCKczlf3dq9YFEcjLy2Pz5s1s3rwZgPT0dDZv3sz+/fspKSnhhhtuYMOGDcydOxer1UpGRgYZGRkUFxcDcN555zFw4EDGjBnDunXr+OGHH5gwYQLDhw8nNTUVgFtvvZWoqChGjx7N1q1b+e9//8srr7zi4iUkCIIgCIIgCIIgCMKZh2E1+HPtTnYtXM+fa3diWI3q7lLAaEopVd2dCCfLly/n8ssv90gfOXIkTz/9tEfAaQfff/89ffr0ASArK4sJEybw1Vdfoes6w4YNY9asWdSrV88s/+uvvzJ+/HjWr19Po0aNuO+++5g0aVJQfc3NzSU+Pp6cnBz5RUsQBEE4rZC/YcLphqxZQRAEoSr4/dufWf38p5w8eNxMq39WQ3o9fgPn9O8ccrtV9Xes1olEpxPyZUUQBEE4XZG/YcLphqxZQRAEobL5/dufWXT/W7Ts04Gu9wwksXUqWbsPsWH2YvYu/41Bs8aGLBRV1d+xMy4mUU3kj21/p17daJRhoAyFoRQKBQagwFAKNIUybHqeUgaGodA1zbYfUQNNs+9NVBqaRUMDdHTQFRoamq6ha6AMKzqRKDQMZYCyHaVnKIVSyvbaAMOWgTJs6YZmoCvQ0G32dA0NhaZZAANdt+2LdBzFp1t0UGDRNKylJVj0aAxloBS2cWi2o2gVgK0bGIZCGQZooFAYVgNdA03pKEC32OZD1+w2dA1NBw3bHOi6jqYpNKWBYQUt2mbDNiywz5vNpsJWzD5mDJRSKGVrT0Oh0NB10JSGptvGreMYu32OdR1dA5QCK6BHYNivoYZWZl/Z51MpDMNxPW3VDGXrs6ZpaLpCUzoagEVDt9vRHGMz7WpgGBhWC5oegWG/hprSMJQVpTSU/foaykDZJtxmDyuaYUEZBrpuAU2habptDSnNXEvu/+saWEtL0YhBw4KBbT7BNm+GuT7L1o3CaU0psI8MxzZaW/t2+9iup44O2NJ0TcMoKUFZYtHQ7WvEZtNQCsOwLSBlt6EoW9PKnq9rGijbHIL9tcM2TuME0HR0XcMoNsASjbJ7hRrKMVbbvCplu+aGYbuuhl1rN1CoUtA0HcxrZ/9f0811ZZtPzdxPrGsa1mIFlmg0TbMtJ8PAwLC9P5RjPm3vG5TmNL8Kq7XMpsU2EPsE29rWbE/M+XeklZZoaJYo8/opzfb5ouzvE8e6NQxl+0wwbO8dK4DhNI+ajtLAgoayr1fH+x/H3KKh6zpFRQo9IgbDarV9DlgVSlNO66dsbpWyfUY4+mMoveya2W05Pg8005aGrjTQHe8eRXGhjh4Vaf+cM7Cbss8lWJVCs68plMKw2vKthhWIsH2A2Nep47oq+zW0XdWya2xbI4riEgt6pIbhWDOaQlkNbEtKoayq7Ln5GWzrCwb2z3X7563Dnu3D13YN7dcUpaHrGtZSg0JNYYmyoAwNA6utbcPAQLN/PhhY7Z+/yvw8NjA023qzrVXbZ4Fy+qxT2MaK0xwDlBq2bdqCIAiCIAiCbYvZ6uc/pWWfDgx8ZQw7FvxExuY/6DSqH4Nfv4f/3TubH174jLS+HW33yzUUEYlqALlHPsJaRy8TL8AuLNjyHeKNYYodUHjKMG+WbDdKtrJmCCvdHnDKfoOhabbndaPtNzH2dsoEDMwbJ9tL5ZRvexSeMsz20BxiCvabJ4cdzcWmBtSJtt2a2u/ty2w6jdMxZhzP7TfGhQXKvJF2tIdp37xnQcO5X1A3yuI0f07z6RAQ0Fzz7fNhWG3j1O0T5hwTzPHcZa4dwpEGsREWUJqLTYeA4jFGp9dGqaKo0BGArMym83hcn2vmmGMsEW42lct4lP2G1X0erCVQVOyYT81pbu2ijX3AjuHr9g7oQLQl0i5SeFknONl2s1tcbBMlXK6fKRqVCWC49EUjQulEaBEeY3S8tgk07tfTVqaoSMNa6iZMmeKCw4rj+mrmXEeqCHQiXN6LdjkMh1biGDc4RFVQSuPUKTCUoyVlCjPOi1dTmsu11dCIJAoMC/ZZK3s/4jxmzRybrS8aBor8gjLBCeWYxLLrZ86nvU+aZutDhBGDUrpjZC7rUuF8/crm2GH/5Kmy9t3tOVtzudIKLNY6KKWbohdgimzu8+xYT47rnHdKd1of9mupnO2UrSnTrgGU1rW9FyjrP+ZzZRNVncbrGH2pocgrKvsMMgUibIKqDfsfeOU0fqVRWhpb9p43r6oq64NbqrIbL1aKAlVqjkO5jUmZK9j8ZEBDw1AaxUSWjaOsVadnTtcVw3xWSCmFlJhjc1qsKLer6vy8FBGJBEEQBEEQHBzasJuTB49z3vU9+HDwNHIPHINInWOJpVw++Eq63D2Qz4bP4NCG3TTt3qa6u+sTEYlqAK3bRhFX3xJcJT9xrzTfWWAo201TsDjqKO/Zfm1acbXpow1vNjVfZf22odBKNN/j9FfXANvP7AHUU67PtRINTek+833aVoDhrCRrrnl+bKriMmEqYFsOQcXQg6sLGKUaqiTCSxkfc+ZUThkaWC34XC3e5gsotWqookjv9dz74JZmtepg6KZw5b2eZ12jVMNaFOW9qAKPmP/ONkt1UN5tut+AO9ctLY7EWuLlc0BpLvWUl3kurWsB5eXXCGebXq5tcWE0pVaLc/GyJ+5rw2zPll5iP9nRrOfSvkPg0Jz6YKPwVAyGoTuNw1ngcxInvFyjYiK8llNONt3rKAX51hgMpbu26SIqOo/PaSiaRpFucelP2Vg11/kyRShb2ZNGBIZ9nSinGVDubeE6P1YF9bzkKbdy7mkGihzN6iT9eG9fOeWXpZWaozHzNSeRzq2uo76hCgL/PBcEQRAEQajFKKXY+/1vAKx7dSEAuaWn+DZzMz9c+x+atmjGzOeeA6DgaG619TMQRCSqAVhjwBrrK9f3DbVPAcWvMddf+wP6gm+/K9K83aUE0IZWqsrvq492NcNPnq+2DNv9su5XFPBdt8xly7We3zEoxz21EfwcGUCJt4xyRBHD9tCcb1b92isTCjSrBqVebJQjEtnWne6lnvIo5y4cKauGi7uYP2nROctQaBYvi8/jjtm9TxqaYdvKpPmz5aHm2Lc16T7s2a+z8iai2L07nKfDVQzxfU0Nb+qP2Tebj4dZ30Og020inLfhKA3lNn6HKavh5dJ5EYiUvR1TWEHHsOpex+Mi4DjqOXXJWqrZPImc1oezyOPsCefcpkKjpCTCS/uudW24ikjFxTrKSdhzt2FbXZ6CllVpFFktngKRx0eEa11DQaGizJvOqaw/vVwBpShOuYkx7s/dhSNHu3mUeClT1gdvthVQrFk5Zf8Qcp5C5VTf1Z4trZQSEYkEQRAEQTijUUrx55od/PTSFxz5dS8AhUYxB5KKuOnZe7ivSye2bt3Kc8+9wGOjJ/JQs6HUaVyz4+KJSFQDUFEGKirYSnjc+HniJd9q3zRUnhjgnqd8eeaUFfIlothiafix50/M8SoSld30eLepYbt38eMR5GvcBrbYQn666dWmfW+QZviaBD+vNW8FnNJ8ZRnY4sIoLyvBj0hUdkOu+SrofY5MgcLwIsjgmuY+Jkd7Ec7t+BJF3HptWMBStkXIRawxbWpehqNsF8vn/HqpZ29T123rVimnd5GjnCqLQeOhSZjtuGzEKuuOpvAQNBw20TE0zUMIchZa3M04nhvKOddziF7f78omLnl4Pdk/W3wLWvZtZ26eOd6EHUcHnD2FlNJtnkTOY1Rl9tzFG+c2DKXbY0/ZB+Ys6ijX9LJkDSs2EU3hJBB5lHPOs2G1apQYvkQ/xzy52wfD0ChRYHX6rPJ6CZxt25+XoCgyoxV5L+OtjVINCjTblmBXbyLnzWb2/rnVPUUpRU5eSJj1ysoZWpk85HhYVbFfr1ZBEARBEITazOFNv/PTS19wcN0uACJio8gryOdkPcX97z3DCzNmYv2/93nnnbeZ//knTOs2huy8UzTpfHY199w/IhLVBHTl5vYSAI5tUX7x02Z5Vf2VUT4K+SqvOd09+XK+KA+Xu6Oym2ivzhz2TJ/3zX60EYdm4FdI8obu9H8g9Zzv9i2U3Z26z62ffpod1bxsQ3Iet/NdtHPAI90+gb4ELA9xQTnpLW6VzAwfni5gxsUyO+q1j04ZZj+soCzel4nm8K6x2zbn1fZc00DTbUHCXZo1BSa3cSh7m2gY9htuM90xPA1MrxT3demYXntgcjPLFD3cbDpdG1tg97L4QK5lnLyB3EQKW67NtuF1W6jmpT27CKCcpACHo5ejj5rTQjCcqzts2gNdG+5eR05rTOESz8g2zrL4Zy6dcp5rFwHQ1qY9RrinmOPos7P4A07ClC3WmNWx9ctdgPIQpBz91mwatX27n3JyEvRa1+m5gfMGLk9RxvuWLxtWlFnecCvh/Mrw8tyw13ARdzyEqrK4SI66VhRWuyzkbNPQXOsqyiQnBVhFIRIEQRAE4Qzk2I4/+enlL8ztZXpkBB1uuZSiDnE8MmICo1P7MrPP/Sw5vpkjJdncd+Od/LlgM0kF0fz78Hf0+vFH+vS5rJpH4RsRiWoCpRYo9RHLxhcK31to/NW32vWMgAUQe0H7vUDQW9wUUKpcAkC7N+2znrmdKti6Cs3qdROWZxvuRQxCj2VkP/3Kr8DkLd0KWJ08YgKtZ2C/kdZc7+n91DWfGpqTzUD6qrkleRNJ/LSjbDfZGF5seq1rqmD2m38vMYD8CUuOeoaGGdPHo69OddzSbCdk6a5igCpbUY659hBu7IaU0ssEI1P0cNPFNGwqll0M0TXdHprK7qXksnOx7N1ualsu7SlQmhlU3XVKnaUpzUWA0XQN3bFNTWEGwnfMhOkNZP/PsLekbObQ0NAsZQZtnldl1pWmlc2VXXhxnIRodpsyXQj7lNjSneUom8qn2wU8Z+8wl8DQylHe3mm7zcgI0O2qXVkQe81xWV3nzNFfTYEBFvtpYsptnGXalOt7QynQDY1I5ZznHKi6rI/eRCLHR1/ZfJele5Yva9cAolSEh6BTVsrVhvIo4frM+T2jnNOdhCOrKotLJQiCIAiCUNs58UcG615dyO6vNwCgWXTOu74HF907mKOF2YwePYZf8vbxzqGlXNe4Ow83HwrA6gfeJ65pI/q8cAf3XfsOhw8frs5hlIuIRDUASwFYLK43Ti74E1iUU5FABBxDoQW6zcdbGfdy5dlUCqxawI5SLjad75b82fTWdolHaGHfZZ0xt3D5qef0XHNOKwHNm1VvNl3acxJsfNn10YYqcou14te20+wamm1/iks5zec4TUo1m6iJn/Xq8tppPqyaXSTyJqz4fq5KNe9bAL31Gff27QKa42bd33pyuis2rJjxZMqaVqaoUaZ6mopCmXlchRLDqZiZ66woOGyqUpSKLCvs0EI0J7HGzHCIkbayuu7k/+HlfaqwizUOrz5727ql1Lzpd54Pw3kezf473seO7WYu7kVOQykTTTyEFwURERpKRXiJheTmkeTUFti2cDmOfy8LVu00Jz7SDQOirGBVlrKuOF1z5VbfGavVfvS70pyn23WZqjIvJrNZA0pLdCeRSHM2WVbXy//R2ASmsjLKaznH/47nVgVWzTYB7jbKyimPdIBirBS5rFmHLIT5v7Nw5ChZqmA/giAIgiAItZvcg8dZ/9r/2DF/DcruEt96yEV0v28Ix615PPDkY7z//gdYrbablpj2Tbjyn/fSPKIRBUdzqdM4jtSurVm7bi0AKSkp1TaWQBCRqAYQlQNRVh/qhS9RI0DRxQOrT1+V8tsNUiCyCVea3aYPEcSlMJ53UMGKUg6bpWUHcHvm+3it3B7e6vu5HqrUOZCv5qewm00DbLFhfBcvy3PzwihxFmw0H3U8b36xYj/drDx7jnbtN7tWXEQi78GbvbVhE3uU4VW6K8emVnb6m1dhCO/z47BZ3ty62LQ/0zSc3d9MYUFz8thyE5fMXXSacplvrWwo9vIOzzrXDEuEhuEihpWJSVpZVZvc4JahdLfg1MptyKa6YbPpyIuIUBiGs9hjs6lj99hxFkWcGjQMiIzUXMo4e1rhVN6lXwYoVYoybZZt5XKr5tRtW33DaosVBZqP8q6xgxxrxfSQcqrkLiY5C0DO7RhWiIpUZf1wtOlU0Ry+0/iVAktRhNmoN4HJq+AElBpQrJxPHvQtUJlt2/saoyJcbeAqGLkHrnY8SoigxK2sazvu/bS9Kgn175AgCIIgCMJpQMGxXDbMXsSWeaswSkoBaHn5BVw88WqyIwqZ+PRkPvjgQ1McGjCgP7/88itJSUlc1K07W9f8QVYBJBZpNDEMpk+fQVpaGr1796rOYZWLiEQ1AEs2WEr8SjduN5lu/7s/94cCzd+NvZ96Idk0RZBAbGqe43QWawIRjBw3Ulbs8V0CsOleP1ib9nRVquHDf8m/TedtWH7G5K2vRqnuadNrH93qWjXzmnhzLPPVD6MUUBGe7XnU8cw3Sh02ncYagG1lBWW1eCnrxRPKvSnDizAVgE3Dit17yWkrkdd6bh4+eK47DR9z7DwByi64ue11dPFUQ3MSl3CZRt2iQLlFsPFi01100nSFrrn9GXART7yvS6XAWqqXZamydA/7bu99QymU3avH2aZy6Rku19QhklhLHaKL5mLT/fq490PTSz1sGubWR82znpPAVFJqdRXD3MQoj3lWtp2nkRERKGVx/ej08GTTPPpeaoUSq/2auAlPZlEvp88pA2KdvJc8xuZkxkOYAkrcr5OPss7CWLHtiERBEARBEIRaRWFOPj+/s4Rf3l9G6aliAJpe3IaLH7yGk3WtPPz3KXzwwYfmj61XXTWIqVOfoHv37nz++XzuuekxBiWPQxWWfc/WYkr5NWcLsz+egcVi8Wq3piAiUQ1AOxlpO8EpmF9lAyrr5abZiouHhMtP4gHZLDfSj6f9UiebIY3Ri+dIeVVLy7ameHVv8IUBHvF2ArZpPxo+2F/XHZ5EQdm0b/mx6vbn7tdaeW/LkWZ1sunHhoc4YABWJ2+FIMbq7BHku5qnTcMArE4fpP5sutd1F+4CFDaV4+Qvf+37bcv1PVaeRGoKPe5H0mv215qTQYdrjJMlw2K42lE+/ejMvikFlkjl5NXj1B8v43QWH5QBmlbqJpb4G6XdG0hBFFqZV4+zEFTOklWGhsWiXPvhLqB6CDa24NM2DySrh6BTNnQ3rykzXyPS4d7lPA9OIpK3/ioDIiMNDC/va8O5z85jtj+xGlBqddvKZx+LN2wCmm1bXUyJ/b3pNhbvQbfL2is1oMTw8WXFue8ufdIoUsrnaZCCIAiCIAinG8X5hfz6/jI2vbOE4pOnAGjSMY2LH7yGgkSNR/8+jQ8/nGeKQ4MHX8XUqU/QrVs3s43GlpZ0iOlHnnGU7YU/km+coK7egPOiLqFDTD8aW1pWx9CCQkSiGoAqiEQRoJoYrADhXtcA5VUkciYAr59gxAFn4SWgCsHbKMN+4+VTDHMr69VmaIKWYdXwGpPIbMrHdjBvnlYBanbK6iSCBHMt7TaDFXpsnkRBXEsH9vmBALd+OYsPpfi8QS7Dx/wpbwIa5ffB6qeMuzDh0RNli/Oj3Ir5UUBMbyMvqoMjkLOTAXtCmX1dV3hzb/HnJaZp2AJBe3G0cglT5DRe86muoexutd5jCbn22fFUV6AsBrh7EjkXd34POqUrVVbNtOmkm/lqTxmgYfX0XnIq6GXWQYHV0FCG4REfCZzEHi+2DQN0i9WrN6M3kcZhUymwWkEZVq8eQd5sOo8zqtgCjr8lTuNy18ndP49KS+0xm7y8V1zjeLl+ZhSqUsjzqCIIgiAIglBjMawGhzbsdokVZJRa2fLRSja+uZhTWScBaHjuWVz84DUUpkQy+dnn+Oij/5ri0NChQ5g69Qm6du3q0rbVajB78mf0GNSBWx8bwJtPf0J+XgG3TetLz56XMO3Wt3nzr59xyZCOWCwh3FNVESIS1QRORWI7IsiViuhBPjEgIBHIKyF4yWAXbHyKROU1WJ7Q46W8ctzYhLitzuO4Ix/9ca9qBY9TuALB0Vef4/Njs1Tzm++znulJFNw1tZ1QphP8dbHXDcUmmB5IwWLzCApB9NNCrOcoHmhdJwHIFgep/HKuljR7tgKUh+jn9VRBpzRNdw1k7yI9ebVnt6aULbi1QzxxtuljCI4mlLMnkXu2m6rhEbzaWop77KXyMB2vvO/58/Bgci5mMcAwlFv5ciZV2d7SFp0yTyKXBvD0gHLCamD/AuLNY8q5HVchzSZMRWK69rgJSS423dortWIX0Tzn1qteaLevG8UiEgmCIAiCcNrw+7c/s/r5Tzl58LiZFp1QFw0ozM4HIL5FY7rffzWlaXV54tnpzJv3X/NAm6uvHsrUqU/QpUsXr+3/smo3GfuOUy+hDvf1+Qdg+47fvvUFREZGcssjA7n/ipn89sMeOl16buUOtgKISFQDUFbdHoA4iDpBG7H/b4DLOdeVin0bicOrJxSvpRD7abPpy2vFj+ji/d41cJs+RSI/4/Rq008fnZ7YPIkqKBIFU68UCNTrDVxvVP3Ojx9KwX8/feQpXE9T81XGGwHH0fLWprMKE4BN09OonMXutTtObkGaH4HHR9OabuAzaLqXHYxmll10UZrvDajeYvVgvxy65rqOXdr1atNmRdM0V+HIzYYvzylDL7UJ8V48cNznzEVM0cFQVs9KXu2VbZvTFRBp+I2L5s07CcBiaCjDERrabUuau02n54byMn9ebTpelBW2GhqGeyRvH/WcnxtGsX+DgiAIgiAINYTfv/2ZRfe/Rcs+Hej/j7s4kZ7BullfkZeRDUBMQl16PHIdxrlxTJ3+Ah9//IkpDl177TVMnfoEnTt39tp2YUExSz78ifen/w+APb8cwBKh02dYV264ry+Nz2oAQFq7VACyMnIqebQVQ0SiGoAqsaAiQghe5f5FPuA6oXoSBWrEgeb0q3mIXj2h2KQCnkQ+6wUgZgW7rc5R1acwVX7/y7xzgrRpBmUOUiSyOawEXc9WuSJ1QxVsnJSJYPDquROwUdsjyD5XRLu1nahm+LbpK1nTbP5Hmp9iXtQUWzBou7eVLwHKczcVABaLaz+9VvdItIlDhtLsE+UQx7yacG3KLtqYWpyPkt7eh0qBZnU6XSwAew4jSkV4G4hL22XPy1rSdXusJBXoerBdgzKRyHuvyk508xTYHB5Tns5j/tdwqVUCEgmCIAiCUPMxrAarn/+UFpedz7lXX8TCR96i6KBNqIlJrEedxDjyc07yzCev88mnn5ri0HXXXcvUqU/QqVMnr+1mZeTwxVsr+PLfK8k9nm+m9xvejb88c60pDjlI33YIgMTk+EoYZfgQkagGoKy6PQBxIIUrlB3aTXoFvY58i0QBeHiE6kkUomBTke14oQpTqgJeK749ify3512YCqAPBrie9BR43bL5CVKYqsg1AVxOVAvVZtDrUPPv1hGIsBKUTeV/u5qP9jQUrgGIvHXKR190hVaekOHFm8imYwRrU5kCSHnbzdy9iTRAd1rvPk07HI2cPYkAQ/MmhLhOtLt3j1JgUaUeAq5r+87pjvbswrph9RSzyvGaMsxtq34OF1C4ekqZbWkYjgDdDqHdzabhpdEIr3MjCIIgCIJQszi4bhcnDx6n4FQB+5b/BkCBtYilJ35jZ14WF5S2on/u2WzatAqlFMOGXc+UKX+lY8eOXttL33qQT19dytL/rqek2Hbaa0rLhlw77nI++9cy8nNP0TDFVQgyDIOP/rGYlJYN6dCzVeUOuIKISFQDCEokCtlI2X+al+OTK9NmhTxPfG5mKcdmqF49oUyG4yj5sHsv+THp4g0Q4toJRphy3opTwesZEqEu0kpb3FVg09dUeW0/gHn1JkDp5eg1Hl5E9pcaWEttBTRv5f30QdNdFSB/3jguL5XNY0rz0y/3NIfQYdGNgMQs5TZJtlPcyj8l0UXcszs66bqG615SHx4+hmt7tgPDdPs4neyU48Vk213rf7+seeqZezBqVSYw+nDS8vyUURBh2wsqCIIgCIJQIzGsBr9/s4nVL3wKgDXrFCW6QfOhnWkyoB2Ln/0b+77/hYzDGfRvfTZXXtKHz158lAsuuMCjLaUUG5du55NZ37Fh6XYzvV33s7nx/r70HNoJi0WnSbNEpo14m6k3z+aWRwaS1i6V9G2H+Ogfi/lp0RaemjumRgetBhGJagaGZo+dEh7KuxlSwdyoV+iGtyxGR1DigPLxPAhUCN4jpr0QtreZdUPxJPJbrxyPoFBtViCwd1DBuZXXp04E0IeAt92U15Hwvcf8YmoglWTTS5OaZrflbU+UnzY09+LuE+2jKdt2M+cL42+/mre++sGXAKTZJWNluiP5bsJZ6NAAXfMvhpndd1tsFtA0w0ewau82wTavum7gKq0or+XNMwuc3suaZvWhSfn2YFIOm37GaQ5Dx+l9Zbfp5hTkS8ZzCexdjiglCIIgCIJQHRhWgz2LNrL+9f9x4vcMM/3PuFNcM3MsM2e9zPyZ9wO28AsdUm2ePY//7a80v+A8l7aKi0pY9t/1fPrqUnO7mK5r9LqmMzfc15f23c92Kd/7ms48NXcMsyd/xv1XzDTTU1o25Km5Y+h9TedKGXM4qdkSVgisXLmSoUOHkpqaiqZpLFiwwCVfKcXUqVNJSUkhNjaWfv36sXv3bpcyWVlZjBgxgri4OBISEhg9ejR5ea5HuPz666/07t2bmJgYmjVrxowZM0LuszL0sD7w8ygv3+OhQnwYepn4ZQ3y4VzP/lwF+cAgpIcybAJT4A/bTZOtXrB1HX319/DX1/Lq+nk4YskE+VBmPS2wB04Pr2UCsIlbO0E/wP1Gt1LxcUNfJYY1bAqFv4fz5Oq4vi6vrv2h6c7lA7DpVtflobk93PPtDzRl22ym2baeedRzeui628Nbmo+Hu000haYZXh72/tgfuub08NOm4+Fh26LQLQZoBpput4H9Ydq02h+217pe9rBYDHS9FN1i+HxYnB7OrzXN9lrTyx5lbVud7FrR9bKHZpHtZoJ3WrZsiaZpHo/x48eTlZXFfffdR5s2bYiNjaV58+bcf//95OTk+GyvpKSESZMm0aFDB+rWrUtqaip33HEHhw4dqsJRCYIgCDUdw2qw88u1fDTkGb59+B1O/J5BdFwdGg9pT1bJSVRBCT0v78P8+QvQNI2bb76JX3/ZxP09b+JYcS6/nyoTlHKO5zF3xiJGnPckM8f9H+nbDhFTN5rr772c936dxlMfjPEQiBz0vqYz7//2DP9c9CBPvHsX/1z0IO/9+sxpIRBBLfQkys/Pp2PHjtx1111cf/31HvkzZsxg1qxZvPfee6SlpTFlyhQGDBjAtm3biImJAWDEiBEcPnyYJUuWUFJSwp133snYsWP58MMPAcjNzaV///7069eP2bNn89tvv3HXXXeRkJDA2LFjg++0Cq8nkX9bQXoShcNkiN4uFXEfcbUZpBdTqHZDjUkU6vwAoQd09mYzwLZC9dIKxoaLPcc/Ic5tKHNUkXVgehIFWS3EemV1Axyn5vxUuVYLwn55J2m5U+aB4ja5AbajA4bp+hTcRGma25Hyfss6PVe2Hxa899GzFZftqk4/wXhU9+PBZbFoWI3yPqXLKiin6dQtOr4i4Xs4iTmJmZoORhBbnh02LSHtzxXOBNavX4/VKbD5li1buPLKK7nxxhs5dOgQhw4d4h//+Aft2rVj37593HPPPRw6dIhPP/3Ua3sFBQVs2rSJKVOm0LFjR06cOMEDDzzA1VdfzYYNG6pqWIIgCEINxSi1smvheja8sYjsvUcAiI6vQ8c7ruDPhoU8NuUJ6h21cldKX8ae1Z+SVk24dNBVpCU1Iv21FeT8cpAFx9bR5sjVHNh9hM9fW8Y3H6yh6FQJAI1SE7j+3ssZfGcv6iXUCahPFoteo4+594emVO39lqdpGvPnz+faa68FbF/2U1NTefjhh3nkkUcAyMnJoUmTJsyZM4fhw4ezfft22rVrx/r16+natSsAixcv5qqrruLPP/8kNTWVN954gyeeeIKMjAyioqIAePzxx1mwYAE7duwIuH+5ubnEx8eTMf0y4mKqRq+z3e/Ybj8CuvDhWB1ON+pVtdiUoQU3TrNi6OVUecet+2oq6B0bTje7FQmWHYJIFOqpaK51g8OwOnslBVu3AjZDdLS0jTP4urYYPyGccggYpaF5TYVqU+GYIwc+bHp5n1jd5zbA95xSYBhOffVZz7Mv1lJQBFLXFcM8PVAr0yoDpLRUw5zbQOrZyxgKlPLXVx+fawqspbrvfG8m7WKxzRvS4pTm3aY7+aWFDN0wnZycHOLi4gKwKJypTJw4kYULF7J7925bkH03PvnkE2677Tby8/OJiAjs+9D69evp1q0b+/bto3nz5gHVcXzvkjUrCIJQOzBKrez8ah0bZi8iZ28mANEJdbng9svZHpXJjJdfZvv2svhBo7veStucusRoZTdghejUu6Itk9+ayfDL7mb3ukPm6WatOjbjxvv70WdYFyIiQ/ueHk6q6u9YrfMk8kd6ejoZGRn069fPTIuPj6d79+6sWbOG4cOHs2bNGhISEkyBCKBfv37ous7atWu57rrrWLNmDZdeeqkpEAEMGDCAF154gRMnTtCgQQOv9ouKiigqKjJf5+bmApRtkaoKVIhCjfL6tBw0pwrljC9s6pHdjuMUrorYDKhPTjYqEOcnONvhsumtXgBtVciTyBuVuPYdTfu40a5JVMiTSLdXVME1YrtXC8GoouxGz58Hk5csj1D0QVwKM56RU6Blr53zqOc9vTx0CyjD5jaj+bXp1gMFuqZhBpL2uQ6dO2n7zwIYjq2Y5RpytWk4BQXXnNJ9mtTsJZXDv6u8AZZdPTMulSCUQ3FxMR988AEPPfSQV4EIML/sBioQOepomkZCQoLPMr6+dwmCIAinN9YSKzu/XMvG2YvI2X8UgJiEurS/7TI2FKdz08wH2L9/PwBxcXGMG3c3X7y7jPRtsTQZ2J6rrm5PfN1ITuQW8cHba9jz/jYujBnCrrUHAbh4UAduvL8fHXu39vm3qzZzRolEGRm2PYZNmjRxSW/SpImZl5GRQVJSkkt+REQEiYmJLmXS0tI82nDk+RKJpk+fzrRp0zwzwhS4OnDPoOrc+lXZNu2/oodTsAm0aojiSUC+fD7KhBygO6j5cfJcqognUYgxbss8tMIphtUylMcTAhp3qMKU5iQXaMHZDFmY0kBT3mw64SNZ0zW0QIMsuwnihkMEcxaoyuuqBkq3unovBWAPHN6eblvcvImcblvWNA0sFiuml5byUdXDvrIJTJrmKuC5VHTkuMpIllDf1MIZxYIFC8jOzmbUqFFe848dO8bf/va3oLbrFxYWMmnSJG655Ra/v6T6/N4lCIIgnJZYS6zsXPATG95cRO6BYwDENKhH21t6sTxrC5OfuZtjx2zpTZo04cEHH+Cee8ZSr159dnz0MOk5O/m1+Aj9Us/n500nmP/G9+QcLcDxpWrwXb248b6+NDs3ubqGWCM4o0Si6mby5Mk89NBD5uvc3FyaNWtWFnA6RLzeH/or7O8epxJ+GFZKC+k2PbSNkGWeRCEJGaGYdNStyIlqIePHpp92PbeqVJWQcgYINhUh1OnxGzPHd6OhCjY2LxKndoP4ENJ0LbQ3twJd9yViOBr3XtW2bSxAm25t6BZ3m4G1Yyi9TNTyV83NngI0ZTiJPN4G5b0xA7eYRCqwJaWUu+6meeR7w6IkcLVQPu+88w6DBg0iNTXVIy83N5fBgwfTrl07nn766YDaKykp4aabbkIpxRtvvOG3rK/vXYIgCMLphbW4lB0L1rBh9mJOHjwOQGxifc65qTuLDqznoSl3cfLkSQDS0tJ49NGHGDVqJLGxsQBsXrmLk8cKufX+IXzyn695eun7RGi2XUFWvZgOl6axbflBrrjxojNeIIIzTCRKTrZd8CNHjpCSkmKmHzlyhE6dOpllMjMzXeqVlpaSlZVl1k9OTubIkSMuZRyvHWW8ER0dTXR0tEd6VW43s90MhG7L5+2Rv/smZbvRCbv+5E8EqQ6PqRBjEvlvtJJsljt37mhOeaGNMXhdwHW7YkgB1yu8DqrifVnZNspRU0Iwb3NAUq4JAdWyewOFIBIpBZrhzWb5xvUQt0XZ4iA5iS6B2FQOmwF42XjplsIuarlbCmAtW3RFKPGwbOP0llGOPfEkEsph3759fPfdd3z++eceeSdPnmTgwIHUr1+f+fPnExkZWW57DoFo3759LFu2rNx4DL6+dwmCIAg1C8NqcGjDbgqO5lKncRypXVujW3SsxaVs//xHNr61mJMHswCIbVifFtd14dOdy7n38ZEUFxcD0KHD+Tz++GPcdNONLtuXrVaDnxb/BsC3r/1GPM1Agwapdeh14/nc/cQtKAOGJj9IVkZO1Q++BnJGiURpaWkkJyezdOlSUxTKzc1l7dq1jBs3DoAePXqQnZ3Nxo0b6dKlCwDLli3DMAy6d+9ulnniiScoKSkxv9QsWbKENm3a+Nxq5g9l1VBBnCxTEZQC5W1fZaWFllAhexJVzK0Hgr77rYjnkj+bobQbaEyiEMZZIQ8tn6/LsRlivdAthmNJV6Z44zVYT+itmUfZB2rTHrfG4RkT5GQpDbRy9QH3AamyZC14mxqgvHoSlb/dzTY/wQsaSoHuVXQp36YKMQCcoQKQeXyJNxYdFYJ3j1JO8Z5MvLg4uaGLJ5FQDu+++y5JSUkMHjzYJT03N5cBAwYQHR3Nl19+aZ4u6w+HQLR7926+//57GjZsWFndFgRBEKqQ37/9mdXPf2p6CAHUS02kea927F+1lbzDJwCo0ziOJoPa8+GvS5j3+Ejzh7yePS9h8uRJXHXVIJf4QSdP5LPo/TV8+fYKDqfbtqBpGvS46gKuubsPXa5oa5bfuvYPABKT46tkzDWdWicS5eXlsWfPHvN1eno6mzdvJjExkebNmzNx4kT+/ve/07p1a9LS0pgyZQqpqanmCWjnnXceAwcOZMyYMcyePZuSkhImTJjA8OHDTVfpW2+9lWnTpjF69GgmTZrEli1beOWVV3jppZdC6nOVehJBKPdKFcARFDWM4wvgxqtCx8oHhVO8niqLg+Rk03mcYRT6/HuMlXkvBWWy3ML+5i5EmxWivL2ZoVIdW+7KsRlkl7QKTI25Sy3I+oZPT6LysR3ZHvzKsfXVKGvDK947oofo5KdBWVghn159PjqjGaBCOK1OgVK+xul7ELp4Egl+MAyDd999l5EjR7r8opubm0v//v0pKCjggw8+IDc31wwo3bhxYywW2xpu27Yt06dP57rrrqOkpIQbbriBTZs2sXDhQqxWqxknMjEx0eUgkapCGVY4+gPqVAZabDI07ommV//JN4IgCKcTv3/7M4vuf4sWfc6n8W0XcsLIR9+cRfbK39n28WoA6jSOJ6Fva/6z9gv+92TZ/fZVVw3i8ccfo3fvXi5t/rHlIAtmL+e7eWvNI+zrJ9TBahi0ubAF0+bdja6X/SRnGAYf/WMxKS0b0qFnqyoYdc2n1olEGzZs4PLLLzdfO/aijxw5kjlz5vDYY4+Rn5/P2LFjyc7OplevXixevNjlV6y5c+cyYcIE+vbti67rDBs2jFmzZpn58fHxfPvtt4wfP54uXbrQqFEjpk6dGlTQRWeCiklUwTvkyrrt9WtT4Qh+4tqRSrYZjP9SaN417o0Ed1dYcZsqdHExRBHNdrMd5DiDthJgG5WuFlXWO8V7rKAKSWCaZ3vebbpVCzEmUWD4GGeINm3iiRmoJ5DSJrquYarjQZg2FGCxfTb7ipXtc89YiFHBDQPTTcvvCvTiTaR8vvCPTSQKJLaZaxmLIZ5Egm++++479u/fz1133eWSvmnTJtauXQtAq1auX8bT09Np2bIlADt37iQnx+b2f/DgQb788ksA0xPcwffff0+fPn3CPwA/qANfYGyaDPn7bK8B6rZAv3A6WrNrwmtLxChBEGophtVg9fOfEt22EQ99M4uz/htL3wYdaBBZ11YgQkePsvCesZaVz7wIgK7r3HTTjTz++KN07NjRbMtaauWHhb+wYPZyflm120w/+/yzuHZcH/re1I31S7YybcTbTL15Nrc8MpC0dqmkbzvER/9YzE+LtvDU3DFYLFWzu6emoykVlttjIQRyc3OJj49n36RBxEWXvxc/bIQakyiAar5Wk+8brOAIuJkwehIFbNPAVQwL8zvLa3Nu3kvBzU8w+IlJFOjWuBAp89AKwzgDrFi2jkO9nsGP23a/HdofplC92Cpi0/lzJJi/IqHatG+Qc08I0GZobj223Xg+PPcqy6YpxDrb9IZn2xUap+PENAIfZ15JEZf8703z+HJBqOk4vndVZM2qA19grBoBZw1Cb/8oxLeDnG0YW2fCwUXoveeGTShyF6OAShOjBEEQqpo/1+5kwR0vsSZnJ10atCbK7jQR2aAOK/N3sHbPb0xsPphXDvyP/dYs7rxzJI8++jDnnHOO2Ub20ZN8PecHvvr3SjL/tG1L0y06va7uxHX39KFDz1YuW9BWffEzsyd/Rsa+sq1tKS0bcvdzw+h9TecqGnnohOPvWCDUOk+i0xKlhS7cBGuqIuJJqKJHBbebBW9WBTef4RKw3G7uqsJ+dWyrC6cAFyq+rHtMZYWurdsNd8BGQzNb5mFT/tx6RI8J1TsnxHruwoW3MGduJcqeBRQ/yZtRn02WS8giteFqp/z5cn6fKEISwwyC7LDT3IYoppqfXQHPqa2gxQjTh6cgnCYow2oTbc4ahNbjHYyFF0BEPYioa3tEN8T48S/QbCFaZH2IrFeWH2n7X4uoZz7HfG7P08o+M1zEqJ5zXMQoY9WIsIpRjrGJx5IgCFVF7sHjbHxrMQA94tuAAfWbNSL/3Fj++c3/sfuP34nWbE4Ut15zA/e8+JjLwVO7ft7H/DeW8/2nGygpKgUgoVE9Bt/ViyGje5PUNNGr3d7XdOaSIR357Yc9ZGXkkJgcT4eercSDyA0RiWoAQW03C6V9ny+qAhXkzUfoZsrQKrytLqBpchNLfG1xq9Qpr6BgE3TfvHj1BNxOiBPhUwirjvvTarBZqSbLV3fCRNkotHK3xgXWjn/ct7iF+IngLGgFucg15y1uweBtfvx6EznZdBfvAjRp85hyrezfg8nuexTICW6CUJs4+gPk77OJNtZ8VOFR4Khnub0f+nzb+v0osdSBSLt4VPAnRCWAtRhj+yyb6BTTGC2pN6rgIMb6B9HqtECr0wSiG6PpoX+lr8rtc4IgnNkc33WQTf/+lt3/W49RavseEZlUl2PnRPDPL7/g1PJiitQpGjVsxG39roGf4aI+PUhJSaGkuJSV8zex4M0VbLMHmgZoc2ELrr2nD32GdSEqpvzdORaLTqdLz620MdYGRCSqAYR4InSIxgjsziFs/bELNhX1lAq2Pwrvp7gF0WbQU1BBj6lQ8NiC47tQmG2Go1AFcR92WG36mNMAbYYWjca7zcocZqAakVcnnpDdc3zMjvL7MsTz9Gy1whJ7Kci3tlk8HBfMp223caoQxTAvQqzvtVE2IF1EIuEMQ52yBcsmvh1YotGvWgcleVCaB6X5qKJjqHX3QYsb0eqfAyUnoTQfSvNQJfn2crayZfXyHHuGwVpgeziEp+ITkPGdzba3/nzTsyw9uiFEN7YJSTGNzeeer5MgMs7cflHVHkuCIJyZHN64h41vf8ve738106wpseQfOE7G3mNs2BDD2XoviLblJTVqwAUFddhXvI2Y0gLee3YhC99ZRdYR20EHEZEWLru+C9eN60Pbri1dtpQJFUdEoppARbebBXETYhNsQrTj6GJIO0UCCYrqr35QxkKoFAbCYC8UYarCNgNqw/36Vex6Bk1N29USQH9CE4pCNFnJjjnhF6q8tKD5femSGvi2QnuGFqJs52dey3vfmHWDFZf8tOvbpi1D10NbCKH+SKHLdjPhDEOLTba923K2oTXqBgntXQscXYsC9FZ3oTW5NKA2lVJgLYTSk6Z4ZBz4ErY8h9bjHVClNkGpJAcKj0LRUZtYlbkaIuPKRKai47ZH7o7yw/HpUTbBKLox5O6A2FSo3wqV+QPk7kar2wztwhkoZWBs+iv6WUPCuvVMtrYJwpmBUop9K7aw8a1vOLzRfvq4plH3ghS+ztjApysW0TvuIm5scgH1UkpJvbYttz58GzuXb+OHl74kb8ef/Jpt8MPkdRhW2ydZw+R4hvylN0Pu7CXH1VciIhLVBAwt9FOqgiTUH5ptlb0+DbBeFau75Y2z0u5tfButvNspPzbDbbQi7ZXjKVJ+vTAEwQ6qtB97AWoO4RSKwi06mY36w5enVEUuRTlbv/zrID5858rpj6aH+HHg57OrIo6Kfq+j4btEeTZD9utxmtug0MSTSDjDaNwT6rbA2DoT/dL/usYQUgbGtn9A3Za2cgGiaRpExNoedvTiExhbQKt/tk2MckMdXYux5Ar0S/9rs1V83CYgFR61bYErOlr22uk5hUdtYpRRDAUHbQ+AUwdhxyzP39g0HZSBsbgXWuIFULcF1G2OVrcF1GsBsalBb3OTrW2CUPuxlljZ8/UGNv77G7J2HQJAj7DAeQ14f8s3rP1ksy1Nt2AtPYefCk/Rv1VTTv5vOx/+7wkzb91xyCluACjO73EO197Th15XdyIySiSMykZmuAaglOb7+OFKsReuhsLUTiUQli1uwdoMkxgW/PWpwmDZYbzmQcVLCXFeK3WJBhHI+rQ1GXaDDoHIdwM+TVYglpFWjgjis1WtnKH6yyxHY/TZZAXC0/nwsyq/XnlbZX2KhTX4j4AgVAKabkG/cDrGqhEYK29Gb/cIJLSD7G02gchxullFvWKCEKM03WLbQhaTZOtjOU2r0gIoOgaFRzH2fQ47Xkbr8KTpqaROZdjiIeXvt4lJANm/orLLtoiUiUgWqNMU6rZAq9e8XBFJtrYJQu2m5FQx2z79gc3vLuHkwSwAImKjyGkewew1n7N3m02YjouL4y9/uYsruw9l5p0f8b+DX5LTugc9zu/KgY2HOZFbxLEiK4Yy0DULD746giF39arOoZ1xiEhUE6jC082qA6XCHB834C1qVS8SebNYLbdRcu9mo4aIYf6bq773vhbqQCvSZb0icXMqcmFCs+ltjgJybqsOJ5uKCGn+5tZHk7ouHzTCmYfW7Br03nMxNk3GWHJFWUbdlmETOSpTjNIi6kBEc6jbHL00H2PHy2gpfT08lpQyUH8uQq26Ca39Y2CJhfx9qPx9kLcfCvaDUWLzCMrfh8p0qmsaKxORqNsM/lwICR3Q2t4HsSkQUQetUTf0S/+LsfLmStnaJghC5VOYnc9vc5fzy/99T+GJPAAi42NJjzvJG6vnkftLPgAtW7bkgQcmcNdddxIXF8eSD38CYGinkRz66QTLsHkYFhp5FMQd4YFpo/i/h1dTp1509QzsDEZEohqAZ+DqcN00+voCX/U3peHc9hRoW5V+upnXelXo1WOLzh1q5dAsVsM9YdXaDDD2UiA49TugWPEVMFUpW9H8oVz+Ow2omBhWbm1vIZZCvJ5aBWwSohdSyO8xEYmEMxSt2TXoZw2p1Lg6VSFG+fNYAlB/zIG6LdE6POkxNqUMOJVhE4jy9tk8j/yISCbZv6KWDrJ9hFliIe5ctPi2aLEpqINfo/b9F1rcVKHT2gRBCB+G1eDQht0UHM2lTuM4Uru2RrcfF5+XcYKf3/2ObR+vpqSgCICIhnXYYN3H++v/R4myAnDJJT146KGJXHPN1URERPDnnkw+euE7vn53NQCHdpxA0zTO6ZJMWvdEug1oz2V9LmXHhn38H6sl9lA1IJ/ANQKNyhFuPNsMu1dPAFTX0fAeN91VYbBKbVYXoS+g0KejagK7V7/N0wTN5b+gCHVqKrTqQgxc7dhCWq5trwUqtghCsakC9LZyL6GFuFVWPImEMxlNt0CTSyv1Z7fKFqMq4rGkaTrUSYU6qWiNe3jku4tI6uD/YP/nkHSpPR7SfrCeghO/oE78UlZvzRjU2vEQ1xot/jyIOw8tvi3Et4X656Dp5R9vbbYlAbIFoUL8/u3PrH7+U04ePG6m1T+rIZ1G9eXo9gPs+modRolNCKJRDIuPbWbRmh8xUFgsFm6+4SYefPB+unfvTklxKasWbOZ//1nNzyt2mu3pFo2UtMa88MUEUlo2NtMNw+CjfywmpWVDOvRsVWVjFmyISFQDUFUYuBqqyRukqq2p8oKJVJ7pqkMLWxykqqIawvhUj9EzIV5RiIS8Wiu0xS3EehXY4hby52yFL1j5E+W9RAixjCQmkSBUOpUtRlWWx5K7iKTqpGLs/xy90zS0Rt1sAk7+XsjZgcrZjspcBYe/Az0ajCLI3orK3go4b1+LgLjWENfWJiDFt7UJSPVboVlct6NIgGxBqBi/f/szi+5/ixZ9zqfxbReSrZ8i5kARJxbvZNWzH5vlihpH8vGe5azbtQOwxRsaO/Yv3HffeJo3b86fezJ584nP+faDNWQfs21F0zSNbv3bM2R0L4qLSvn7He/w2qOfcMsjA0lrl0r6tkN89I/F/LRoC0/NHYPFUoGAjUJIiEhUE1DUvDu5cBFi+JGK2fTi0VPpaHYvrTLDlS/GVXxyQ+liAH4VIbTpm7BMY60XDCtisrZ++NhQ5r/Br1tnr8vg3s/K/lkQwtw6xRUK9jNEq9AfkxAiVIlIJAi1gqrYPuextU23QP1zbI+zBqGOrbVtbRuyGe3UQVM8IncHKmcH5OyA0jzI2Q4521EH5gP2TzzN3lacXTQqzUftfA1SB0iAbEEIAcNqsPr5T4lu24j7v3mZOh+U0q/BBbSuk2KWseqKf/25mD3208vS0tKYOPE+7rxzFNFRMfzw1S+8cvdnbF65y6zTMCWeq0b1ZNDInjRplmimWyw6syd/xv1XzDTTUlo25Km5Y+h9TecqGLHgjohENQCFVnVBlqtatNGqPm5OdcTqcUxsqMJQaPVsY9QqsH8w2JpKVVBSqPq9RqHVr8ggKxL+JtRxhrj9qyLeLqeLPOAk21asnSAntyIisbJXDvqtXZEdksr9r1AAHkmy3UwQag2V7rEU6NY2SyTUawn1WqKdNdCsr5SynbqWs90mGjmLRyU5kLsLcneh/vyyzOjhJRi5eyChPVrDC9Faj0VZiyVAtiCUw6ENuzl58DhLt/zGPUmXUdd+5LzSYXPBPjZn/cGdqZeD1aBXr5489NBErr56KIfTj/Ph9G/5Zu5P5Dh7DQ1oz5C7etF9wPlYIjzfd72v6cwlQzry2w97yMrIITE5ng49W4kHUTUiIlFNoApPN/N1AlflUR1bobRqiL1UZrOqt/NVx/bBkHG+JkH1+/TZUhf6GE8vQhum7U0S8qlqIWKXXKrUZkXGGOpnl6rA3xFPr6ny+y/bzQRBCIaKbG3TNM12QlrdZmip/c10pZQt9lGuTTxSGd/Dwa8hoj6UnoS83yHvd1fxCDCWDUFL7Y/W8EJo0AktSgLjCgJA7sHj/PzOEgD6NugAJWBEaGw5dYxv/vyF/SV7ibEHln/52Rlcee8NrP5yM48NmeXiNdQoNYFBIy/x8BryhcWi0+nScytnUELQiEhUA/A83azy7VWsgeCKVshDogI2q9LjJSw2Q+I0Ek/cOY27HhAhL4aqW0VaqG9Oze9LvxXDEasnuCZEmAqc4DyYJHC1IAjBEu6tbZqmQZ0UqJOClnwFRnQj1MGv0a7djWYtsHkenfgVsjahsn6Gk3tsFTNXojJXln1qxp2LltgZEi9ES7wQEjuiRdQNqA8SIFs43VFKcXjj7/zy/lL+WLIZZdjeGad0g63HSzhcEE2pakSryL60S9Tpd+058P0uNi5P552X/2p6Dem6xkX92zNkdG+692/v1WtIOD0QkagmUIWeRFWNOaoqvJc4U2xWC9WxTKsjrlU47FXlFreKtFfF3iAhe/hpXp8GVNG2fauKBZtQ59VLtcBacohhVYcmXuCCIIRAZW5t02KTbV8bcrejNeoGsU3QkvuY+cah71DLr0E7505UcTZkbYT8/batarm7YO9/7XGOdFuMo4YXlglHDTqgWWJc7EmAbOF0xlpcyu6vN/DL+8s4unW/mb6fEySW1uFkSTSbco6gNc3mznuH0+OCPrz71Fdkfb2LuEhY8d1+QKNRagJXjerJwDsuCchrSKj5iEhUA1BoFdomIHinarebVRdVvbetas1Vu93qIFzrtqau/yq/lsr+WVB1hsskqVADV5eb5MVmlUW2M5HtZoIg1DjcA2Q7qdlKGajdb9oCZF/0Crrd20cVHoWsn1FZP6OyNsHxjXDqMORsQ+Vsgz8+sAtHEbb4RokXQsMLoSQX9fMTcNZVEiBbOK0oOJ7L1nmr+O2jFRQczQVs8YY2ndrLN4c3cbg4mxsb3ELvRoqHh15Mx9sH8dPqP3jj1TmcZRSQHANrj0Ori1IZ+di14jVUC9GUOq0imtQqcnNziY+PZ8eYm6gfFVVFVlWI4knom6mq/Df8MBgMeqR2m9VwqFq1UJUCXHU4ElVcUKhAhO7T7c0SjDVV9cJC9awfh+Wqpyo/3k8WldB69mfk5OQQFxcXimVBqFIc37tkzdZu1IEvMFaNgLMG+Q6QXY54owoO24WjTajjGyFrExQd81JSh4YXmsKR1rgnqm4L1KrhkL0NfeivsvVMqDEc2/Env7y3jF0L12EtLgWg0GJlyZGf+SF7B/lGEampqdw44DZ++28WTZudoqNejyhrqdnGKaWzxTjFn4djmPm/+7mwz3nVNZwzkqr6O3ZGehJZrVaefvppPvjgAzIyMkhNTWXUqFE8+eST5klRSimeeuop3n77bbKzs+nZsydvvPEGrVu3NtvJysrivvvu46uvvkLXdYYNG8Yrr7xCvXr1gutQqKcWh3I3oCoUTtW9sfLNOYI5V/VtWjUdeR6yNBDStTT/qXLCJS0H3Ix2unmGBf9eqT6qOgaSCvFEvtD6qVWHSlT1JwSYhGM7X8BVJCaRIAg1kIoEyDbbcMQ5anoV4HS62vGNNuEoYxlk/QwYcHwD6vgG2G3/SxWbCvFtIX8vau9HkDaiQifRCkJFMKwGe7//lV/eW8bBdWWBpQ+rXL7J2MjPJ9MxUPTtewX33D2W1Lqt+HDGN0AWfx6I5U9KaRyjcd4FqZzVJYlvti9m8aJvuTT2DrIz86pvYEKlckaKRC+88AJvvPEG7733Hu3bt2fDhg3ceeedxMfHc//99wMwY8YMZs2axXvvvUdaWhpTpkxhwIABbNu2jZgY237kESNGcPjwYZYsWUJJSQl33nknY8eO5cMPPwyqPwotJBEl2B/kHcXD90N+AEckq9PJEyT0Y6kqGqC7THQJ4pwo8z60Kmc3VE80z3Yg0G00tpLV4fNY8bEG2+mqHmRlvjv9jaWqA4aFa90GhtIUVRsdyHElq0icctgQkUgQhBpKpQTIdpyu1vxajL3no368E23QWsjZbguMfWydLcbRqUO2B6B+utu2JS2pF1pST7SknpDQwWUbnCCEgmE1OLRhNwVHc6nTOI7Urq3RnY6ML847xfbPfuSX//ue3AM2LziFYnP+PpYd/5W9hUdt974T7+Pqftez64cM/jtpHVlHvjPbiEuKJb3gF1Zlrqdk+SlYDmlpabwy/V989sw6EpPlVMDayhm53WzIkCE0adKEd955x0wbNmwYsbGxfPDBByilSE1N5eGHH+aRRx4BICcnhyZNmjBnzhyGDx/O9u3badeuHevXr6dr164ALF68mKuuuoo///yT1NTUcvvhcBfbPvrmKtxuFn4CWUDV8ftJlf5oUw1KWOXcFNbEq1kZN/gBjDPs3ksBftRW8Xazqv9xs4oFGxynfoXTqP9rqQhl7ZSzPgJsLzi7Ffvzf7KohHNe/UK27ginDbLdTAgX6shKjKWD0Pt/bwuQ7UgvLYDj6zHS58Ef74MeBUaxa+XIBGjcA61JL7TGvSCxE5oe2O/2cpKaAPD7tz+z+vlPOXnwuJlW/6yG9Hr8Bhq1bcqv//c92z77kZL8QgCKKGVl1lZWZm8nuzSfzp07MXrkX2hES5Z/soldP5cFrY5vVI8rbryIlQs20bpTM57+aCw//PAjhw8fJiUlhZ49L2HarW+zd9sh3vv1GSwWETyrEtluVolccsklvPXWW+zatYtzzz2XX375hdWrV/Piiy8CkJ6eTkZGBv369TPrxMfH0717d9asWcPw4cNZs2YNCQkJpkAE0K9fP3RdZ+3atVx33XUB90ep2h64WtXozTblEVDf7YWqQT4Js83yWgunKFVNewLPCJuCB5UaC8n1A8ARtNp1e0El2Xd5P1atACfbzQRBOGPxESBbi6iDSuoNO/5lC5B91Xq07F9QmatRmavh6E9Qkg2HFqEOLbL9ZYioC40uRkvqhZbUCxp2QbNEe5iUk9QEsAlEi+5/k9+tR1nw5xoOFZ0gNboBw41LOXnfmy5xBjNLc1l2/FfW5/6OFmXhpuE3cnnnq9i77jhfPvUbpSWbAYiItHDxoA70H3Ex3fq3JzIqgo69WzNtxNtMu/VtbnlkIN2GdCd92yGm3fo2Py3awlNzx4hAVIs5I0Wixx9/nNzcXNq2bYvFYsFqtfLss88yYsQIADIyMgBo0qSJS70mTZqYeRkZGSQlJbnkR0REkJiYaJZxp6ioiKKiIvN1bq49mryhoYyq/GZfdaYqStVFLgkDVRyHxIz3FOKAQ76ZrMgEh3ijXhF/x+o5gak23jyHa0wqiMVXcZsOS4F79odpnFoway98cysxiQRBECofTbegXzgdY9UIjJU3+w6QHVnH5jXUuAe0fxRllMKJX1GZq1CZP8DRH6H4BGQsRWUstf010KOhUTe7aNQTGnWHw0vKgnHLSWpnLIbV4Nup7/Pbyf0cvjCaue98TOyBYja9u4RTB07YCinYmn+A5Se2sqPgIGlpaTx21xTiS5qy5svf+ODzZWZ753ZuTv8RF3PFjRcR38g1pm7vazrz1NwxzJ78GfdfMdNMT2nZkKfmjqH3NZ2rZMynM8pqpXD7L1hPHMfSoCEx53VEs5wenn9npEj08ccfM3fuXD788EPat2/P5s2bmThxIqmpqYwcObLS7E6fPp1p06Z5ZijN9qgUlMcrrQq9liocqydUw5qqhhg21RB5SYV+Uxja/NijIIUsMIUo+3mtFtgAAvbSq0aPDP9UgQdMVeA2vxVvI5hqvq5nZY7fwHuH3WxWcJ25Vlc+xLAwj9OMSWSEt11BEITTiFACZGt6hO0UtIYXwnkPoJQB2VvtgtEPqMxVUHgUMlfZhCQALQI0C9RLQ2s1GuLbokXWg0bd0C/9L8bKmzE2/RX9rCGy9ayW8+e6nVhPnMLaOo5He97Arw9+RmneKQCKVSnb8g7QqX4aS0/8xrm9unLrOY+wf2M2P755ADgAQIOkOK68pRv9R1xMWvuz/NrrfU1nLhnSkd9+2ENWRg6JyfF06NlKPIgCIP+n5Ryf8y9KMw+baRFJKTQcNYG6F/epvo4FyBkpEj366KM8/vjjDB8+HIAOHTqwb98+pk+fzsiRI0lOTgbgyJEjpKSkmPWOHDlCp06dAEhOTiYzM9Ol3dLSUrKyssz67kyePJmHHnrIfJ2bm0uzZs0qtN2s/K/+1X+nG55oIEEEdAZQFdiGFfIv8VUvTFXEk6g6bIYivPheP4GHvQ7YkKNZ+4mDFTsJMMjaWqDjDN8F18ISdyn4WEtehQyPZny0G0p/NSPAgYZhbp22nHl42lTmGAG0QMTN8NkUTyJBEM50KhogW9N0aNABrUEHaHOP7RS1k7ttolHmKtsWtYKDoEoh7w/UimEoTYeGF6Gl9EdL7Y923kOo7/rB0R+gyaWVPGKhurCWWFn9/iIAOh1O4Jd3bQGmC0rhjzzYfrKQw5FH6VQ/jSFtb+a3NQUsX70VgMioCHoO7Uj/Wy+ma7/zsEQELiZaLDqdLj03/AOqxeT/tJwjM5+kTpdLSHrwaaKan03x/j/I/ux9jsx8kiaP/r3GC0VnpEhUUFCArrvepVgsFgzD9qtoWloaycnJLF261BSFcnNzWbt2LePGjQOgR48eZGdns3HjRrp06QLAsmXLMAyD7t27e7UbHR1NdLSXPcZVGpOoOuIDVaVE5GS1wtupghOmNOXzLr/SCC1AbsUsOra5hVQ7hLk1CclmCDFhlL2ez+KBBb0OusN+tyvW4C1z4QrQHHA7QcxFQN5LQQaM9tNP1ywvwpT5MozX01l88+sBF57A2C5VqmUrpyAIQs1C0y3Q5NKwfAXUNA3izkWLOxda3YlSCmPnG7DpUWh5CxxbB3m/w7G1qGNrUb/9DaIbAmDsn48efx5aTOMw9ESoKeQeOMbWT1az/bMfKThmD1Wi4MCpU6zI/pWf83Zycdt+NIg+m6STtiDqB9NPYlg1zruoJQNu60GfYV2o36BudQ7jjEFZrRyf8y/qdLmEJo8/j2bXHGLanE+Tx5/nyPOPc/y916hzUe8avfXsjBSJhg4dyrPPPkvz5s1p3749P//8My+++CJ33XUXYPuAnjhxIn//+99p3bo1aWlpTJkyhdTUVK699loAzjvvPAYOHMiYMWOYPXs2JSUlTJgwgeHDhwd0spkzp0vgai2gGy5XlMMNpML3EsHPTziimQTThkIRmvNliHF6sIX4CXnphLp1JyxLNZhGVJjCPQW3EH1rfo7UcN8g12AhyBshr5+q3sqnAvSw8VXXS3IAbWmUJ6IEKjYGgWaEeF2Ce4OVxXmS7WaCIAiViaZp6A3OxwD0c8eiXfJvVP6fqMNLUIeXwOFlUGQ/4Wr3Wxi734bEC20eRilXQsOusgXtNMQotbJ3+W9smbeK/au3mb+y5pQWEKvHkllUyHsnV3DFhUM459ggjuw9QR6FXNwQ8ksV5w4+j5lPDqd5G++7W850KjNWUOH2XyjNPEyDW8ZQsOEHSo8cwiguosGwO9B0nYRhd3Bo8t0Ubv+F2PMvDIvNyuCMFIleffVVpkyZwr333ktmZiapqancfffdTJ061Szz2GOPkZ+fz9ixY8nOzqZXr14sXryYmJgYs8zcuXOZMGECffv2Rdd1hg0bxqxZs4Luj1JVuWUo9G1Yrn0M8iY/RJvu7VQ9wdkMrYfuakQwHkwV2FanfL4IrmoVED5RIdD4RIGM0FdbVS+8BHuTX3GbVRuk3afNIMJN+Q9cHap3kr9iYRSmAm0nnGJYAB5Tst1MEAShCnA/Sa1uU7RWd0KrOzGsRailV0HOdqjbArJ/hayNqKyNqC3TIaoBWnJfSL0SLaWfbTucUGM5eTiLbZ/8wLZPVpOfmWOmb88/yA85O8g4pXFl/BV0axjDXxjIrl9LyS3JIqleBN3S6hFx4gTrjmk8OHqACEQ+CEesIGUtpfT4UUqPHKIk4yClmYcpOXKI0iOHKP5zLwBHX3nGLK/FxJJw/e1omkZU8zQArCeOh21MlYGmVNWH9xVs5ObmEh8fzy+33kH9qKgqslrFN3cVDEhUblVfcWErsg3Co03lO8u9atjmNvD+h3xTGBIK9Kq3GZ7YOcHZJGSbob7HDJu9KrSp+Qx0XDn2ADTNqAabFRgnhLgVqwLjDMmmqoCXln1ug6ybW1hCs2eXkJOTQ1xcXCiGBaFKcXzvkjUrnG6oA1+UnW7m6yS1ZtegTh1GHf4ODi1BHV4KJdmuDTXoiJZyJVpqf9sJanqkd3uGNeQ4S0JwGFaD/au2smXeKvau+A0M2/eAk6Wn+Cl3N+ty/iCp4Xm0atCRnP1FKAWpMYrzE6Cuk7tHQWQp8/atpoFxOU+8exdX3HRR9QyoBuMcKyhh2B0usYIKNv5oxgpSSmGczDGFn5IjhyjNPFz2/OgRMKx+bWmxdYhMbUZkUioRTVJJvGUMWmQkhTu3cGjy3aQ882pInkRV9XfsjPQkqmlUuSdRFcqCNo0o9Ju7crvqJ8xI+I5413xnBdSZUAis89USE6Qi67UCYk9FbAZdJWSxpoLU/F2nvqmSvgd3Mlig71x/9ioi3IW21r1sGQvYkyj07WahjFM8iQRBEKqGQE9S02JT0M6+Hc6+HWWUwvENqEPf2ramZW2CE7+gTvyC2vYPiIyH5MvtotGVaHVsJ12pA19gbJoM+ftsrwHqtkC/cLrXE9uE0Mg7ks32z35k68eryDt8wkzfVXCINdl7OGaNol1KN84v6oSRq8jOLTLLNO7Tgn+v/wAO5xIfUYec0gKM5FgefnIynz2zjsTk+OoYUoWo7OPi3WMFqZISSo8exjiZS2zHiyg+kE7mK38j8r//oSTzMOpUgf8GIyKJTEomoslZRDZJJSIphcjkVCyNmnBkxhNEt2zlEpMIQBkG2Z+9T0STVGLO6xi2sVUGIhLVBJRWgcAyQZqqhi1bFQl0HJI9bHu4q2NLVOhCRvkVvTpNVUMsq1BiMjtTlSejhRzvSVV8nDWZsIknVVq3gp5EodoM8ZRXTQvjFsBAt7hVxPstiHGa280kcLUgCEKVEexJapoeAY0vRmt8MXSciirMtHkXHfoWlbHUFsvowALUgQW2bwPx7aD+2fDnQkgdiN5zji0tZxvG1pkYq0a4CFKCd0qKS/jm3fkc23eYRi1SGHDndURG2Ty2lGFw4McdbJm3kvSlv6DsXkP51kLW5f7OtpO5JDVoTwNLH+IMRWEGgKLVBU3pc0NXLr3uQh4b8gp19Hi2/b6ZH374kcOHD5OSkkLPnpcw7da3SWnZkA49W1XfBIRAZRwXr0pLKT2WQWlmBiVHDnFq68+UZh5Gi4ll/1+uxZrtfbtX8b7fzeeWxEZ2AcjmDRTZJMX2f1IqlsRGLgKQM43uup8jM5/kyPOP2z2W0ijen+7isVSTg1aDbDerVhzuYj/fPKpKt5tVuWBTHTFaNBX6/X2V3/yGToVufkOiYp4VFfFyqEphQcOwbasLxWRFxhmiIOGy9oKybRCa93gFBBsqsA3LR73yuxLqOCvm1eO8ZgNfvxWYW4urzcDbCc0DKbewlLOeXiZbd4TTBtluJgg2lGGFrJ9Rh79FHVoCx9fj8t0woh40uQztrKvQmg6G6IYYK2+G7G3oQ3+VrWc+mPvMbPZ+sIZ4Lfb/2bvv+CjK/IHjn5lN7ySkQoCAKCBIlybI2bBjO8txinqnpwcqcnqKd/aCyt3pz4p6d5aznnd2xRMriNJBaQJSAyQkAdL7zvP7Y5PNbrK72Z1tKd+3r5Vkd2a+z8xONjPffJ/nsT9Xpmroc+EYhuQNZMObS6jcf9j+2o6ag/xQVkQlqSRrvTEaWraVe3QmJ/1yDFMvHOM0vtDS99dx74wXGH/GUC675XTyhuSwa/MB3vjLpyxftJG7X7uGydNHhmR/A8HbLmCtKasV65ESGg4W2LqCFRXQUHSAxubvDxeD4XmCDS02zpYEyswhIjWd8kX/Jfm8X5F40tlEpGehu5iV3Jf9apP4yswhbeYs04kvCN3vMUkShVHzm7z24quCmiRyvGlQKhCJDN9PmVAnT/yqVjC5Vji6KGmtbkS9F47xgUze/GphiOnH+EBmu1dqmgp5Yip04wPZzjet6WvfYzadrybaaqsIM3Dzx552GCYriZR/x9bEtbcGoId2P8trG8i562u54RadhiSJhHBN1R1C/fQ0atMjENUD6lu6P6HpkH4CWo/hqK1Pop+8CC1zSvga20G9dt9CDr26jpKEeo4650R69M6leM1GDi/ZSHSjjtZ0IVttrePHigJ2V0O03hcaW34BZ/ZJ5RcXjeGkX46l/7Be9nVaW/r+OhbO+y+Fe1qqYbL7pfG7hy4MeIIomN3AlNVK/qxLiOrTv03XLMNq5eADf6B+7y5Sr/g9jSUHW8YFKiqgseQgNDZ63L4WFUVEejYRmdlolgiqV31Lj19dS9yI44nIzEFPSLIfY3/HCnK3f4E+dl12TKIPPvjA53VOPfVUYmNj21+wW/FhBizl+Xvf+Xo3GsA8pLfdLjC7n5of4yf5Ub1k+hiFOvsW4JxyKJpvpsnNv5RNrKtMJiiV+QKStoJ+XNsOrux9SD8GkTbb9cv0uuZjouFHgslkTMcxgnxN4vmwfEt3M19iCCGE6Ki06DRU8iDb1+duRqvcYRvLKP8DOLIeipagipYAYKyYjTbwarTc89AS+oWv0R1IQ30Du1/9ntqoCPKrszi4cDn94peTGAkxWECDRsPK14cKqWjMAGse0QAGpGYmMfXC0fzil2MYPDbPbWLI0eTpI5l49nA2LPuZw4VlpGYlM2zSUVgspkvSXQpGN7BmSimqVi2lsaiAxJPPpuz9N2gsLrQlgJoeqt42DpPjTGFOLBYiembaxwSKyMgmMsPWJSwiPQtLSqo98dSckKrbtsk201gIxgrSLJYOPc29JyGvJNJ9/DOnpmls376d/v37B6lF4dNSSXQ1CZGdrbuZb6dN54npT9e4EB1bU11Y2sYwe3z8quoxQ/NzpjFTMW1VIOYOr/kKEs3SmSqJzCUktEB1cfMlpmY1uZ8Ox8fX4+tP9ZLZKjbd7Ptpbr3y2kay//yNVGWITkMqiYRwTx1cgvHFGeinfYXW8/iW5yt3o/LfR+18Dco2Oa/UYzha7nTboynJ1B198PQb7H3iG0rqIC265Vd4ndHIniqD8oYoxqTC0mIoqdNITI1nynkj+cVFYzjuhIEBT+4EgtluYM2UYWA9cojG4kJbV7Bi2/hAjcWFNBYX0FhciKqv99yIpgFfI3v1IXrgECIycpoGi84hMiMbS2q6T5U5bfep7VhB/ia/gq3LVhIBFBYWkpGR4dWyiYmJQW5NZ+f7TXBg0oK+3MEEKg/pfUxNUyGvJDI/hmvrG/x2GuAQRynz49i4Oj7eJmICmln2ImbACxba2WAYeg4GXlB3wKH7WNDitD7LHH5OTFQwhaLqxZcfYxtXP4TNbTWR+NNNJn+bB9k2EU8IIUQXkT4J4vtibFqAPuUttKYLTC2hHwy6AVX0LdSXoQ2Zg9r3IRQtbZkt7cf7IOkYe8KIHsO9qojpzJRSFK7fxeb/LmP3O8vQgZ5NQ9gU1lWxu1KjuDaORqUR0XST0PeYJObecwWjTxpMRGTHHdep9UxgzVU3MccMJfP2hzn48O2UvPQUUf2OpvFQkT0RZEsANVUDlRRBY4PnQE1JoKi+A4jqO4CI9CzbIyObyMwcGg+XUHDnLHr+7taAVOTEj59K5q0PcOilpzgw73f25yMyczpFgiiUQp4kmjlzpk9dx3796193/b/2+DW7mYmuXwH7zPb2BiGQvyS8i6mUZr7ypLP0/PKL68a2n1hzHFsmQGFdxQz2sWxnP5t/HEP7lgawu6IvgySb1GZmq1AMzOywCZ9i+vNG+lC95HhENH/GRQv5jGomk0Qyu5kQQnQZmm5BHzUfY+kMjCWXoA+5BVKGQOlmjM1/gf2LWmY3O+Z6VG0Jav/HqPz3ofBLKN+K2vQoatOjEN8PLfdctNzzoOdYe8KpNWVYvZ6traMo33+In95bzvo3v6a+qAJo+bW9q7KRHZURVDQmABAVE8mJZw4jRquAFds4esoAxk0bGpB2BHOsoNotP9BYVEDqr6+nZsMa23hATQmgxqJCGg7sxXrkEPm//6XnDekWInpmNCV+bAmgyPRs+9eWlDT2zfk1EelZpN94Z5suYIdefCLgXcDix08lbuzkoB27rkIGrg4je3ezX/7Gz+5mHfcttM9uFvIBnUM965dt3YAPrtxuxYs/04KbWcsIziDSHrcXpC5uHrZnfgYuMN/dzGw3LHBXZePi2wDFNHxKnji1x3QXNz/eEz8GdDYd02IN+CDS7R5mi4Hezs+S6w07Jqa8/wwsr20k6/ZvpeuO6DSku5kQ7VP572OsnQdVe1qejO+HPuohW4LI1Tr1Zaj9i1D7PoADn4G1puXF2Gy03uei9ZnelASK8BCnL/qo+W7jhEt9VS0/f7qWVf9aTMWWlvF5GgyD/TWKfdUWRvaA8gZYWxXJmFOOZeoFo5hw5nFEx0Zw79hriC+PZtT9Mzn1VxP8bo+/YwUpw8BadqQp+XOwJQlUYvu64UA+qqa6/Ybouq3rV3MFUFMVUER6FpEZWbZp4i2ea1K6QhewUOoWs5vV1NSglCIuLg6APXv28O677zJkyBBOO+20cDUrZJrf5DUX/jZ0YxL5PW6Ob6eLLUmEH0kiP6dqD6GwJKY084MA+zPeTkhmGnMoGwn9OEjhGJMoQEmiZl514/NnfCDXXaW8iamZTEy5PK7evEl+jA+k6V7GaE03myRSoBvmPjfNJsM0s7ObNZJ1mySJROchSSIhvONPhY9qrIIDi23jGO1fBI0VLS9G90TrfTbEZNgqjnqdiX7srZA8BMo2Y2xa4FyxFEaG1WD/iq2sePl/FCz9Cc3a8lpRrUF+tc6BGmhUGrEJ0fRorOX4NEVxfD2T557H6FMnsmbxdyx97D16Vkax6pDGH96dy4gpR/vVLm/GCoodMY7GkiIaSwpbkkCOCSFvuoIBWlQ0EZnZRPTMIqJnJhEZWUSmZ2HU1lCy8FGy7vk/4o4b49f+NO9TMKaL74q6RZLotNNO44ILLuC6666jtLSUQYMGERkZSUlJCX/729+4/vrrw9W0kOicSSJH7Z86/ieJfI/ZLNQJm6AmidxuN4hJIpcLBKmSyG0823rmYpo/rp26kgh8qCYKUCWR5yDOi3msJPL0ninzg0jrnipsvIipOT/nDc1iuDln2xuY3mwSDbQIq7mP2uYkkcfqurbKaxrJ/OMyueEWnYYkiYQILWWtg8KvmhJGH0Ndy5TtaBHQ9yL03OmQfQpaRBxKGRhLLoHSzejn/BiwrmeG1eDA6u1UF5cTl55EzpiB6G4Giz6yo5CVr3zG1g9Xole1TLFe0aDYW62RXw01Vo20nGROOGcEJ5wzgmMnDODqUfeSGV9Pz7JC+sUbREc0UtcYwa4qnUPJWRRVR/Hyj/f5NUi1slrZ+/uLiczuTY+Lr8Z6pKQpGWSrBKrZuBZVUwPKaH9juo6lR09b8ic90+lfS2o6Bx+ZR1TfAWTNe6RNN7CDD99Off4ucp96M2DdtILZfa4r6dIDVzdbu3Ytjz32GAD/+c9/yMzMZN26dfz3v//lrrvu6vJJonBQigD2TvPudkRp/oy1Yt+Kb4uHaXygoAxnFJR90Zra6qHFAU8fN++Imw176hmmmxlwXaPdJFo7TelUw0w58noH/Ktia/ucN2ED3C0z2DE9nD/BiWk7b31Z2iGkzyet1jwWkanxhTpuV2chhBDhp1miodfpaL1ORxmNULQUY+tC2P8RqEbY/SbG7jchIsE26HXeZWiDb0Z9fioUL4PMKX63Ycdn6/j24bep2H/Y/lxir1ROuP2XDDhtJAA1RypZ9++vWfval3DQ1s1KB+oN2FcNe6vhSL1G74GZnDd9JCecO4JjRvV1Gpz7uvkX8sHNCzhrRAmJVNmfP5Z4Xl3fyO8eu7XdBJFqaKDxyCGshw7SeKjYlgA6ZHtYDxXTULgfo6IMa3EhBT+u9rgtLTbO1v3LMQlk/zqLiNSeaBHuUwE9r76Rgwv+zMGHb3fbDSyQSZzOPF18VxTWJFF1dbV99rLPPvuMCy64AF3XGT9+PHv27Gln7a5DqUDNOOYNrRPd+ToPA+vLWppSJm9f/Dk45pNhHsct93DDrzm+7iuXJV7tbcy/42NuG+G5Ee00PyZeCGrSy8VGPcYLRCN8jRkkwdlP5dX6Ll823UXSu5jeNUIIIYRoS9MjIOsXaLXFqP0fof3iQyj4zDbwddVe1K7XULteg9hsAIySVVj8TBLt+Gwdn9zwHAW1jTTqtURYGmm0RhCxo5HyG55j2Mxf8NOKH6n/qQS96ZeaoeBgrS0xVFgD/UfkcuH5Y5h0znD6HJPlNtaozDJyRuxla0Uq727KYn9lDL0Sajl/aCnXjdhLZtohGg4eoLGkCOuhIlsS6FCR0/fWssPe3RRaImwDQqf2dEr86EnJFP3lTnr+/naSTjnHr2MnM4F1b2FNEh111FG89957nH/++fzvf//j5ptvBqCoqEjKgLuagExH78tGfE1+BIpjXB9mf/NmUa9mAfN3PzWXXwZu++aYKJDolDEDxl1CMRjcnRLuAgbiFPI1pj/dSE0PDm9yveZuq2bWVSZnRtMcHr6uJ4QQQvhAi82yXWNFJqCNehg1cj6ULEftehO1979Q0zQuzQ93Yd3ztq26qO/FaHHZPsUxrAYf3/YiMdFlnHfUAXpGt3QdK6uLYNvBHDa+/BUAOhql9bbE0P5aGHB8fy765Tgmnj2c9JwUj3GUUhgV5ZT8/TFijh7CxFPOpd8P26kvKiTWWkmcstCQX07R3+727vhERmFJSyciLYOItHQsaRm2hFBaBtbSQ5QsXED2fU8SO/i4NuvWbt0IQGRWLy+PkmcyE1j3FdYk0V133cWvfvUrbr75Zk4++WQmTLCN9v7ZZ58xcuTIcDYtpJTSUB5LSVwz05UhLENQBexu25dqotZdPbwp1fGXL4O0BOt9CGDMDtTnKhxN6AC77TsPjQ7a2+lrTK31B4KvXatMJF/MJl38mZnRdFmh+XX9Gm/O26SwQ+5eM9VFTXQH/fr1c1kR/vvf/57777+fu+++m88++4y9e/eSnp7Oeeedx/33309ycrLbbSqluPvuu3nhhRcoLS1l0qRJPPvsswwcODCYuyKECLT0SRDfF2PTAvQpb6FpOqRPQEufgDHqYdTnp0HZT6AaoHQDat0G1Po/Q+ZUW8Ko97lokQnthtm7/CeyLcWM7LeXyMGjWHekBz9/e4AsSz0DehYxJncva/P7sOZgMttrNPpNOIpf/uoExp8+lMQe8QAYdbU0FO6j8VCJbfyfwyVYD5fQeKQE66Fi27+HS1B1tQBYD5dQt20TMUBMUzuchoeOiLRV/aRluEwCRaSloyelOHVjc6SsVkrfeZWyd18l5piH24wVVPrfVwI+Zbx0A+uewjpwNUBhYSEFBQUMHz4cvelEX7lyJUlJSQwaNCicTQu65oGnVp1/TegGrg7DrF9+xfSjy0ZIZuByYP6GyfzxcT1Ytpft8DC+i3tBHLjaU0w/utGYnm7dYjZmmAeu9mnwYav52c1072Y3a/OUZn7WL81i8hzyY6YxrXk/fY3rZcw2P0smZxoDwGJyP00Oll1e00jG3O9lEOBOaOnSpUyePJlly5YxadKkgG+/uLgYq7VlKqCNGzdy6qmn8tVXX9GzZ0/uvvturrzySoYMGcKePXu47rrrOO644/jPf/7jdpuPPPII8+fP5+WXXyYvL48777yTDRs2sHnzZmJiYtyu50gGrhaiY1D572MsnQE5p9MQey6NtSlExJQSWfMBHPgUffJrkDEZtfdd1O43oPj7lpUtcWi556D1u8zWfU13XfPw9OXzOfHI/zhcG82P+f1o/kVuVVBYa/CLAbvpnVDLWstxnHHVZLSKI62SP4cwqipcbtudyN79bImf1J5OSSBLQiIH7rie9Dl3kzjFvxm8Zcr47q1bzG7W3XWfJJGff+E2FdBwm4V3FsDTX3M3m5EXbfB1sFmHdb27KTQ3XXnb5Q3zXWFMn3tmpy9vihnyhE04kkRmp2o3P7uZrzON2RcznSQywOysX7rVr2ShL8fVvqjF6mFGNc8x8TGmPbbFau5nTLP6kSRaLjfcndAdd9zBOeecw4cffshDDz0U9Hhz5szho48+Yvv27S5/N7/99tv8+te/pqqqiggXA6kqpcjJyeEPf/gDt9xyCwBlZWVkZmby0ksvcemll3rVjmBcXBdu2QxAz6MGEhEZaWvbwQJqDh8hJimZlF692iyb2q8fUbFxAFQWl1BZUkRUfDypffqaWvbg9m2oxkaSc3OJTbCN9Vl95AjlhQVYoqJJHzDA1LLFO3Zgra8jKSubuB49AKiprKAsP9+nZbWICDIHtkz7fXjvHuqrqkjomUFCek+fl62vqebw7t0AZA0eYl+2dP9+asvLiE3tQXJmts/LNjY0UPLzdrfvpy/LevPeB+I8cfV+BuI8aX4//T1PWr+fjstqa59B3/MYETE19tcba2Ix+t1M7Ml/cnrv42MrULvexNjxGlr1LvvyxGSi9buY8pip1KjeFO0u4rsXPkbfU0Df+EqOyS7iQGkyDdYIUrJLiE2sJVJpaIejUYYOqvniQKFZbDOCKavDL0TdQIuMgOR0otNzsKT2RE9OoU4ptIQeJA8eSnRGFg0H9lH44M3EXPcn4oaMbPN+Gvt2UPvsfLLve4rYoaP8fu+rln9N0T/+CqXFKKvtAjAiM4e48y6nsc9R8hnRwT4jHLfrr1AliczPwWfSjz/+iGF4MS1fk02bNtHY2Nj+gj7av38/v/71r0lLSyM2NpZhw4axenXLKPFKKe666y6ys7OJjY3llFNOYfv27U7bOHz4MDNmzCApKYmUlBR+85vfUFlZGfC2BpKiZaDsTvHA3KP9blctS3YIPu6g42Dn3h1LrdXDxDF2jBuohw+HR3RsWjsPO9NvZsfodBj0/dSaV/buoTk8vFpec/Uw2VbRKd177700NjZy0kknYbVaue+++4Iar76+nldffZWrr77a7R9vmi92XSWIAHbt2kVhYSGnnHKK/bnk5GTGjRvH999/73IdgLq6OsrLy50egZa+bizp68ay45sv7c/tfvRM0teNpey5E52WTVs1jvR1Y9nwzuv257Y+eBbp68ZS89JUp2V7fD+B9HVjWf383+zPbXzwAtLXjaXhtclOyyZ9Zdvuqv+72/7cunsvIX3dWPR3nJdNWDyR9HVjWTF/jv25VQ9cTfq6sUR+6FxVFv2xrQ2rHrzW/tyKB64nfd1YYheNd1o24v0TbO2973L7cysX3Eb6urEkfuG8rPWNSaSvG8uPD1xsf27Nsw+Tvm4syd8c77Rs3b+mkL5uLFsePLdl3/71AunrxpK6wnm7FS9MJn3dWHY+3DJg70+LPiB93Vh6rhnrtOzhZ39B+rqx5C843f5c/trV9veztrTM/nzhYyeTvm4shY+dbH+utrTMvmz+2pb7h/wFp5O+biyHn/2FU7yea2zL/rToA/tzOx8+h/R1Y6l4wfk9Sl0xnvR1Y1n3rxfsz2158FzS142l7l/OAzknf3M86evGsubZh+3P/fjAxaSvG4v1Def3M/EL23ZXLrjN/tzq+y4nfd1YIt4/wWnZ2EW2ZTffdaltWnWrlVUPXkv6urFEfzzBadnID23v56oHrrY/t2L+HNLXjSVh8USnZfV3bO/RtnvOpeCZRRwpvJKf9tiOVWNNBEcOXknBM4uoWv41Da/Zlt304PlYa+NpiD2PH3+0/UwZjRqGioPag6ifniRx/YVk/DCO/ltmcGb8Ek7N28Pgfgfoc/4Gxl2xjAmXfcewszZy1JSf6Xvidvqcv5G0MXsBqI5JRh19NH3O30Cf8zeQfsOfybr7cXo/8RrG0Yfpc85aapK2k3P/U2TefA/WCaeRHftnsqyzqIyMIzKrN7HDx5Iw+CCZxZdQ/NTJTvucvm4smcWXQmqivRuYv58R8eOnkjNhCX3O30D5sOPIvu9Jcp96k58X/UU+I+h4nxGdUciTRCNHjuTQoUNeLz9hwgT27t0b0DYcOXKESZMmERkZyaJFi9i8eTN//etf6dGU1QR49NFHeeKJJ1i4cCErVqwgPj6eadOmUVtba19mxowZbNq0icWLF/PRRx+xZMkSrr32WlchPWp7Ax+8h20arVA//OAuS+HNw61g3RGZPQ5hOrbNgpTYCVhswpMeEL7x+vQx/WY2bUEz93CdHGnvYdjjuk3EuIupm2wryqePAKePdR17d1B3jzaak1LNbfb1ITqdu+++m4EDB3L//fczcOBA7rrrrqDGe++99ygtLeXKK690+XpJSQn333+/x+unwsJCADIzM52ez8zMtL/myvz580lOTrY/cnNzfd8BIbqZquVfo2u2P+hnV+dTcNcN5M+6hHirb12vPEnjCLHDxpB08TUUH7BVQyhDx5LdF0uPnhQ9fi8xFluRQJ6lmL3Xns/+P/6W9J22pLCy6uS/cxRFy/Ko2peMaqo/iMspp9eZm0k9YSd676YKJV1RUZlBcf0fqMz9LyV7UgGI71NKbE4pfW69h8ZTLrO3LfEXZxA3fCxRvft5PWasZrFQ0RgNQFJkPbVbN2LUVNkHkgawjjs9KAM+V6f2JnboKBlMWgRUyLub6brOtddeS1xcnFfLP/PMM2zevJn+/fsHrA233347y5YtY+nSpS5f96asecuWLQwZMoRVq1YxZswYAD799FPOPPNM9u3bR05OTrvtaC4XW3netV28u1mgYvp2qpru+mUydRqeMYkC2MXNq+34NyZR2/FXvIwZhjGJOmV3s2ZeH6wAdDdrDul1TD/GQbIY9n3z6XzwZ0yiUI+D1DwmkZn99NTFzWOe2mqqK195TSMZc1ZId7NO6Nlnn+X666/nueee43e/+137K/hh2rRpREVF8eGHH7Z5rby8nFNPPZXU1FQ++OADIptK91v77rvvmDRpEgcOHCA7u2WGo4svvhhN03jrrbdcrldXV0ddXZ1TvNzcXOluJl1JOm13s8jYGOIqS+0zTZVFxoKhAtbdrHm8G8uQ44iccibJI4/Hcqioabybb4n+1fVEjZjY5r1vrK0hMSmRKA2sZUeoKdxP9b5dqOpKYvUIrOWlWMuOUH+4EFV2CFVb3/QXDrD9rjUAranrVBPdQNOUrVuYFkEN0ZRVWVGGjmFEUF0bQ31jJLUNFioj6sgZeZjREyvoYdlq34RSUFcVycfvT6R4R2+U0omIaKBWa+CSX31JSno10VcWYqC57Brk63lS+e3n1H/6H9ShEvs2tLRUok6/mMxzL5XPiG76GdEZu5uFPEk0depUL8eKafH66687XRT4a8iQIUybNo19+/bxzTff0KtXL37/+99zzTXXALBz504GDBjAunXrGDFihH29E088kREjRvB///d//POf/+QPf/gDR44csb/e2NhITEwMb7/9Nueff3677QhXkijU/JoBp51Txf3L4Rgs22xywJ8kmtnxekze+DYnbAKVmPKC5meSyEzST/MnYaMZphJw/sY0N1ZU6MYkaqb5NSaRyXPIdJLI9zGJ7MyMSaQ1xzT5mRlhNqbV1Fyn5TWNZNy0UpJEwq09e/bQv39/3nnnHaZPn+70WkVFBdOmTSMuLo6PPvrI4+DT3lyXeUMGrhadWdXyrzn00lM0FhXYn4vIyCbtytkBGahYWa3kz7qEqD79ybhtPtTXYi07grWslMbSw5S++XcaDxWRMGUa1ooyjKbXrGVHsJaXgmFtN4YjQ0F9o4UGawR1jRHUNUZS2aCTXxnBKXlFVBw3jf+tr6XwxyJSDAup0S2/4JRSlGAQMySTC+/8FUePbrkJV5V7ULvfQv38D6jeZ3++ojKalWv68eP63uRF1TLumCKyT9qOfvIitEznbnz+UFarTBkvgiZUv8dMXBb65+uvvw51yDZ27tzJs88+y9y5c7njjjtYtWoVN954I1FRUcycOdOrsubCwkIyMjKcXo+IiCA1NdVt6bOrv2hBS3cz/3lzY6GFvJJIKT+SCu3skruXu80YG4HcT6+2FdgD62URrx8R2p4hQT81FG16A4YsZhhp/iagzVbT+Re1nQ1rtqSfqXgmkr/NXb98COT3j63WlHgz8Tnt93suwq6oqKjNtUwgvfjii2RkZHDWWWc5PV9eXs60adOIjo7mgw8+aHd2sry8PLKysvjiiy/sSaLy8nJWrFjB9ddfH6zmC+GVUCQFHGe0yrj5HqL69Kd+705K//sKBxf82eOMVkopjOpKjPIyW3Kn6V9rRRlGRRnWctu/DYX7aCwqwKipYvdlJ4GbMWHLP3E/C6Een4glOQVLcg/05B5YkmxfOz7qCw9w6Jn5fL8zj+2WSKbMPZ9Rp07ky9cWs/6Fzzkmqh4o4vv/bCOuIYH+kRH2/TgSoUgbn8eFf/o12QNcdx/VEvqiDf0j1vi+8P3VNCaeiXbocxIT6jj5xK2cfOJW6spS0Ab8Gkq2o2oKA3s5LVPGiy4g5EmijsAwDMaMGWOf0WPkyJFs3LiRhQsXMnPmzKDFnT9/Pvfee2+AtiYX5+0xe4TCca9ttp6v6d7O3Lqtd9TbDQXwAHmX1gysLhnTr3F+TK7XKhHm9emjme3SabbroIfxeLyIadtAm2e8immaD2P9OC6p6X4kpszcz4R8VEMRaA888AALFiwgOjra5et79+6lT58+prZtGAYvvvgiM2fOdBqQury8nNNOO43q6mpeffVVpwGl09PTsTTdXA8aNIj58+dz/vnno2kac+bM4YEHHmDgwIHk5eVx5513kpOTw3nnnWeqfaLrC1XyJpjVPWDbj0MvPWVLEN36AKqmmsbDxaAUCSefTWPJQYqfeYTarZswKsuxVpRjVJQ2/VuGtaLcpyofo6JlgHctKhpLSiqWpBT0hCRq1q8gbswkYoaOakr6pGBJakoAJaWgueky6mhzYSRRdZHkZhbR6zf3serLLbzwpwdIrq2lV2wER/XaT3V9JI0N8SilKI+B3FOHcNZNl5DWJ8vr/dDjsjGAqAm3opL/Rf2qv6MffBe9ZhXRyaVQ8pTt+O59D9VjGFryYK+3LURX1y2TRNnZ2QwZ4tw3cPDgwfz3v/8FICvL9gF08OBBp25uBw8etP8FKysri6KiIqdtNDY2cvjwYfv6rc2bN4+5c+fav2/uG2+O2TsQZTohYZb5myXzd1nKbG8qlPubwHa7vmlhyEz5d4za36SLhYLQezAclV/hqO4JWsyQVxK5T08Grxlay0kbiuNququryZWau+V66J7bbkzHSiRPK3nsDunFD3jz8v50JRYdglKKv//978yaNcvl6//4xz+47rrrTHX5//zzz9m7dy9XX3210/Nr165lxYoVABx11FFOr+3atYt+/foBsHXrVsrKyuyv/fGPf6Sqqoprr72W0tJSTjjhBD799NN2q5BE9xSK5I3Z6h5lbcSoqsSorMBaVYFRWYHR9K+1srzl66Z/G0uKaCwqwFp2hN2X/MJte8ref93tawBaTCyWxGT0xGQsSU3/Nj30xCSsZUcoffsl0m/4E7FDR6EnJqPHxNrXr926kZr1K0g+91JTlTLlh6v48dvt/OeBfzPJyGZU7l52PHsPCcXpTI2LIbFHLQN6FpORWMHa/D6UZ8Uz6407SM7p6XMsANInQXxfjE0L0Ke8RczE2cBsVE0BascrqE0LwFoD+97H2Pc+pE9EO+pqtNzz0CJi2928EF1Zt0wSTZo0ia1btzo9t23bNvr2tQ3w5U1Z84QJEygtLWXNmjWMHj0agC+//BLDMBg3bpzLuNHR0a7/WqdwGLwtmJruJENcdRDqpBT4mZhS4HNyRGv1r6/MHKPm+/Sglr20vhsPzpvp6RwJVgLJm7fTLy424lVeLkCxQsLF+Re84+p+y+3GdJU88TZmc3csn2OarJhSTd24gjnul1P5EW6Tb6Lri4iI4MYbb+TZZ59l+vTpnHHGGUycOBG9aRCvyy67jPvuu49nn33W522fdtppuBr2curUqS6fb631Mpqmcd9993Hffff53BbRsQS7wsefrlletd8wMCorKPnH/xEzZDjJ5/0Ko6qC6tXLsFZWED1wCPX5uyh64kFiv/7U1tWrsiXxo2qqzcWta5lhWYuLb0nwxCdQ88MqYkeOJ2bQMKcEkO6QBNKjXFcM2rdvtVL5zf+o+v5rEk48Hc1hMD9lGJT+9xUiMnPs07i3p6q8hh+X/cz6b7ay+svN7N18gJ5RcFQCHIxNZm1+HwZnFXBU6k77OvVRiRwaPYODf/+R2KHp5hNEgKZb0EfNx1g6A2PJJehDboGUIVC5F3VoNVhr0I69DVW2GfZ/AsXfoYq/Q625FS3vV7aEUfIg0/GF6My6ZZLo5ptvZuLEiTz00ENcfPHFrFy5kueff57nn38ewKuy5sGDB3P66adzzTXXsHDhQhoaGpg9ezaXXnqpVzObBV8wbubbu4MI9C1wuP5K7cVf4kMpHPHDUdnjKWaAkmEh3a3m0ygUVS/Nx8dNzHBw2wTTP9Zau0lKjzHNlv60ihn0Q9uqG5/P63rzXGsOs6n5EqYDnGbCTz169OC4447j6KOPZuHChTz88MOkpKQwbdo0zj77bPLy8li0aFG4m9mthWoQ3FDFCcXgy81dszJvf9ie6Ig5ZigZt83n4PzbKPnnE0T26oeqq8Gormp6VDp8XYVRU2Wr9qmpbnqtEqPa9rVjksd6qIiCP7uuxAOoXul6JmWwVfboCUlY4hPRE2wPS0ISevP38YlYEhJpKDnIkX89S8bc+4gdNgo9PhHNoQtn7daN1PywipTzZ/g1Fo5msZB25WwOLvgzhfNvp2TAVEqsifS0VNBzx9fUrP2OzFsfcHte1FTVsfG7HaxfspV132xl27q9RGKQFQNZMTA0GyId/nhyoDyJg2m9GTO+N0eN6Et8vz5EHTOM2066n37AUeP8n9lay52OPvk1jLXzMBaf1PJCfD/0ya+j5doG1FfVBaidr6B+fhGq81Fbn0ZtfRoyTkAbcBVan/PQLFK1KLqPkM9u1lF89NFHzJs3j+3bt5OXl8fcuXPts5uB7S9Yd999N88//7y9rPmZZ57h6KMdptw7fJjZs2fz4Ycfous6F154IU888QQJCQletaF5dPIV5/6OhEjP2X3PfHwLA3JlH6Lp6E3SNH9mDDPXBk0zO2aKP/tpfka1cMxuZma95n0093YaoZ/dzDGmTzfe4ZjdzPx09Ganhtc0szGbznUzMXUrug/j/NhWssU0PaOaxZ8Z1Uz+fPoyu5nTcj7Obta0bnlNI+mzVstMUZ3Yxx9/zOrVq7n77rsxDINly5bxySef8Mknn7BhwwY0TSMiIsJp0o3OLJCzwnSV8W5CHae5wiflwiucKnyq13zXpsJHGYYtkVNTg6qtwaitwaipRtVW276ubXq+ptr+ekPBPmrWLSf66GPRLBbbctVV9mSPu8GYzdITk9Hj4tHjEtDj45sSO0lo0TGUf/IfEk46k7jhx7ckfhISbUmhVokeTxxnHXNMfDUfo4MP3059/i5yn3ozIOfgqideRP/sVXpEtVQuHa6PQZ32a8beeJX9ubqaejav2Mn6JdtYv2QbW1bvxtrQSFIEZMXaEkOpUcppVuvGaI200X0p+HY7ZXWRMHYYv/rjGeQNyWHX5gO8/ugiWLWB+Oh6bt30HJFR7Y9x5A1lWKF4mW2Q6tgsSJ+E5uJiRBlWKFiM8fM/4cAiUE2TV0SntVQXJR3dZj0hQiVUs5t12yRRR+B/ksiP0Y5NMxez8yWJfK8m0kwPrOtmP72KGeAkUbsxDb8GAXa1Xvvb8iem6yRR+5sKQJLIIYh3TfcvprkESmCTRF6FN50kUmgRRptnvYoZroSNr+to2BJ+via0mkU2xfQ49pGr56y+/Zw4JIl6SpKoU2tsbOTyyy/njTfeaPPa/v37+fvf/85DDz0kSaJWQj3ejTcJlXDEUVYrqr4WVVePUV+LqqtF1ddh1NWi6uqcvjdqayj994voSSnEj52Eqq/HqKtB1dRg1FZT9/MWjNoaItIy7Akfx+5VgaZFRaEnpjQleJqSPLFx6PEJ6LFNz8U3PReXYF9Oa1q2ftd2Cu+fS87854g5Zmib7ddu3ciBeb8j+74nAzLTVdv3KY/6vbsCfj4sfX8d98x4nprIIvISdpAeoyiu1dhVOYDY+gyuuutcDMNg/ZJtbF6xk4a6RnQUPaNtiaHMGIOECOdfKFpmHEdPG81x555AxrG5aLrOa/ct5PCr6yish21lGuUNkBQJRycrsqIg9dcjmXHXdX7vjz9U9X7b2EU7XoLqfS0vZExBO+oqtNzpaJa292/eJqSEMKNLJomWLl3K5MmTWbZsGZMmTQpV2A4rcJVE4FNCJWB9BHypsgnu9tvGC1Qlkfft6LKVRE7LBT5J1CZcm2U6WSWRZjg31suGB6SSyMeYfieJvIjV5mXdbMJGoVkMczHDkSSy+FDV06ypekmLMPl57kslkROrbXYzH9eVSqKuYdu2bVRUVNjHV2zt4osv5t///neIWxUcgbi4DkXyxpfKEVCo+npUY4Pt3wYPXzfUoxoaWr6ur6P0v6/YEjfHT7Et21CPqrMldmq3/ICqriKq7wBUQ31T8qe2KcFTC40Nfu2n13Td1jWr6aHFxNmSNzGx9ue1mFj02DispYep+PxDUi6aSVS/gfblmit96vfvpfDeOX4nb0Jd3QNukpOZOaTNnBWQBJHVanBh/z+gyvcyKSeVuMaWdlcZig2HoaDWtp9RuiIrBjJiGsmK0Yl03H8dkof2Yvj5kxlw8nASMnu4jPfafQvZ/er3JGstg0SXqhryfj0h7AkiR7bqos8wtv8DCv7nUF3UE63/DFt3tKSBtmXz38dYOw+q9rRsIL4v+qj59q5tQvijSyaJ7rjjDs455xw+/PBD+/Tz3Zl0NwtsDOd4gUgS+VZNFPBKIq9iBiFJ5DFmcJJEnrcX+EoiaO/QBqe7WTBjaia6uAWju1n74a3opkbDc0hM+RozotFcVQ/KobuZj2MTmUnYNCeJ3Oyn6+VbxWxvGVd015VE7c1zIJVE3cPXX3/N1KlTw92MgPD34toxMZDxh/uo2bAGGhtR1kZUQwNlH7xB46Fielx8FRiG7flG2wNro/17rI2oRiuqsaHpa9trWK2oxkasZYep37WdyNw8tMiopmUabAkeewVOte0XYwfpEKBFRaNFx6BFRaNHN38dY/s6KhpreSl12zaReMo56PEJtuVi4uxJHiw6xY/fR49LriZ+/FSH5E8cWlSUU5clT0KZvAlVdY+jYHZz/PbDdTx35XMcn6aojk/gx4MNFJfXkxQJxyTauo/tq4boiHrSoyKd3hMtIYp+vxjKkLPG03v8ICJjo7yK2VDfwP9efJeSPQX07JvNtKvOD1gXs2BQVftQO162VRfVHGh5IXMKWo/hqJ+ehF5noh97KyQPgbLNGJsWwP5F6JNfk0SR8FuXSxLde++9VFVV8eSTT3LjjTcSHx/PXXfdFYrQHZZ0NwtOLFs8f5JEZvexi1YSgcOywa8ksod0jNmZKolcxfSy62DAKom8jBmqMYmcFvOnu5luMqbpMYkUuOji5tXqZquXNIeKKV+ZHZNIaxp7yVsyJpHopPy9uK7ZuJaCu24gZ/5zRGb2Ys/VZwehlX7QLbaESkSk7d9Ih68jIm2JnMhI+9eNh0uo++lHEk8915awiYqyvR4VgxYdAxocev6vJJ97GbEjx6FHx6A1JX1sX9sSQVpkpFMyxhXHYxfs7lmhTN4Eu7onWAzDYO9PhWxauZPNK3axecVO9m4t4LQsKG+A5YdslzI9ohtIi66ld2wUya3uVeL6pTHkrHH0P2k46cf28TqR1xUooxEO/K9p7KL/Yb+W16PgmN+jH3U1WuIA27LKwFhyCZRuRj/nR+l6JvwSqiRRyGY3u/vuu3nhhRe4//77SUlJ4be//W2oQnd8GgRravG2QvcXp5bfFYHs+hVsZgd0xr/kWzhihmO7nkJ6ihmg2c3axAz8JtvdeFBiNh8fU5UrAYjry6aDeNDdbrrNQD0+fA62c+65fMnMe2GPp9ptXUBitp4Jz5efsY5RuCBEyFmPHAIgqk9/UIroowaDJQItIsJWzaHr1KxfSfTAIURk9UKzWNAsEWgRkRAR0fS1xbaO0/MW2yDGTc83FO6j9O2XSL3890T17d8UI9KWjImMon7fHoofu5uMWx8gdujoliSQjxUlzYmbxJPOcpu4AYgbM9HvxE3M4OFEZGRT+t9XXFb4+Dq9uifx46eSeesDHHrpKQ7M+539+YjMnIBX98SPn0rc2MkhmRkObF3CNiz7mcOFZaRmJTNs0lFYLO3/RaKqvIYtq3azeeVONi/fyZbVu6gsrXFapmc0xEfAruoKhqc20jsmkSg9ErBV9ihdQzMUjcek89sX/kBCZkoQ9rBz0PQI6H0Wlt5noaryMX64F3a/AUY9bHkcY8vjkH0q+qDZkHUy+pBbbLOrFS+DzCnhbr4Q7QpZkghsAyTecsstPPfcc6EM28X5frUe3oRNaO4u/Kok8qcCKeDHtu3xct4vs8dTtTTVxza3VBKZiN3RkmHB1PrwBHMfHG/0fYnp14+j5nYDHsP6+xHgIZnhbtOaFZTT9boXb0bzkEtKcxvT7VYUTT8o7Ydpu0G9ZbwDd4u4i2loJv/g0LRVXwuLTRY8CdFZWXqkAVC/dycxxwyl16N/d3q9dutGatavJPXy6/0e76bym/9Ru+UHkqdf1iahcuSNF4jIzCH++Cl+JSNCmbhxnF794MO3u63wCVRyJZTJG81iCcjg1O1Z+v46Fs77L4V7Dtmfy+qbxnXzL2Ty9JH255RS7N9RzKblO9i8cheblu9k9+YDtOk8oiuUfoikiGqyoyMZEJ8GRDI0KdG+SGSPOAaeNop+Jw7j8fvf4+iCAvpOHNCtE0StafG5aDmnoXa/gTbxRdSuN6BgsW2WtILFkDwY7ajfANgGsw5ze4XwhsxuFkbN5WIrz7uWhEjv+u76r7tUEpmJ6d1AvB5j+ty9xBbTfELLMDlQrZcJrTbLKBPdzRzOOa+6XbVmmBx02LauN93NXMYM4Oxm7cfzP6a52c3MxvRuDCTXFS/mB67GYrS7jy5f9mcQaZfHtZ3PUQ00i4sugN58/mq+datzWjXC6v1qTt3Nmgau9mEVtKbuZjeulO5motMI5JhEXWW8m1CPq9NZu2eF29L313HvjBcYd/qxDD4lCyO6Fr0uhi2fF7J80UauvPNsLBaLrVJo5S7KSirbbEOLsVLVWECCVkVOTBT949JIi0xss1xJHUT2y+aUG05n6KnHsXtLAa8v+JRtX/zIiRlw7ks30WfC4FDsdqehDi7B+OIM9NO+Qut5PKpiJ2rrM6id/4JGh/ei36XoIx9Ai80OX2NFp9blxiQSbbUkia4JYZIokJVEwZ7dzMt4bv7C75ywCcFprhmt+mMHP6bmaiwar3hxE+ry9SCPSRSEmO0mFdzEDFpiym2BSYDHJGoV0zWzMVX707S720+/kkSO76cvnz9WNNNjL7VqQ6udct/FzfyYRLSTJHL7ki/JMH/GJGpSXtNIxpwVkiQSnUZwZjfr/OPdhDpxE8zBl7siq9XgimF3EZOq81X+G8SWaGRFZmIY8TRqaUQ1tj2X9QgN4usortpDnKqkV0wMR8Wl0ys6zWk5zaKTNbI/uRMG02v80bw/62m27M9nS00qqralw4kW08jg2MMM6d2H3y37K7oXXdy6E2VYMT4cBinHok95C63pJkTVl6F2vIT68X6wNnXv0yPR+lyINmg2WupID1sVoq1ukSSaOHEin376abe9uGx+k1edH8okUWep6jHJVPWSHz8Crbp+mY1pvpJI+VAh4dtsba6X8zNh40tch5jmEzZmBxMP0ExjIYupvB6TxnkR84NIo3v/fjpXoPgzHb138dowm7DxIWabRSxW0zPyaSY7gmtmYjZXTJlNEs1dLkki0WkE6uI6lEmVUCVUJHHT8RiGwf4dxXz+xkpefeQTUqLKOD41kfiIlg/6qkbYWAoHajX0lDr2VfxEpLWc3Nh4jo7Npl9sBpZWFyVpx/Qid9JgcscPInvMUUTFx9hf2/HZOhbd+Bw7Gov5omA7pfWNpERFcHLOQAZY0jnjid8x4DRJbLii8t/HWDoDep2BPuQWSBkCpZsxNv8F9n+CNngOqmQFFH/fslLGCejHzIJeZ8mA1sIr3SJJpOs6hYWFZGRkOD1fXl7Ogw8+yCOPPBKmloVG85u8+oLfhrSSyD9Bnt3MTPcMd5tqc1MY3FNda1NJFIqYrhJTJqfPdveck+BW9biNaXp2M/NJIs1iNmYYk0TgYwVKAJJEngMEsCufmwotb2L6Ub3kyyxuTkxXEhkmq57ws5LI8UXvPkPKaxrJ/MP3kiQSnUYgL64lqSKamR1M2lFjg5W9WwvZvn4v29fns/2Hvez4cR81lXUA5MQojk+DwlrYXqWh0qLQtTJyaqvJi+5BfpVGvXaIPrFJROvOU8gn9k4jd+JgcicMovf4Y4hNbdvFzNGOz9bx7cP/oWJ/y9hHib3TOOG2iyRB1A6V/z7G2nlQtaflyfh+6KMeQsudblvm0BrUT0+h9r4DqtG+jHbM9WgDrkCLlN+nwr0unSS66KKLGDNmDH/605/44YcfGDrUeUaFgoICevfujdVqDXXTQqr5TV5zYSiTRGHICfo1Hb3ZmK4SNq4E8nh4u5/e3Vy7ozkt7yIJ4nKX/IvpuJ1wJImkkqg93lcS4bRYaCqJnBcLQJLI15ia2XOodfLEh5hmxkECW8LGx/GlHGOa+tnUrKbGtCqvaSTz1u8kSSQ6jVBdXIvuw9vBpB3V1zawc9N+WzJo/V5+/iGfnRv301DX2GbZyOgIIhMUJ0Q2coRa/ln4NUZ9BQPjshgUl8PAuBySImKd1onpkWBLCE04ht4TBpGcm+7zfhlWgwOrt1NdXE5cehI5YwZKFzMvKcMKxctsg1THZkH6JJdVQqp6P2rb86if/wn1h21PRiSiDZhpSxgl9Attw0WnEKrfYyGd3axZnz59+Oijj1BKMXz4cNLS0hg+fDjDhw9nxIgRbN26lexsGdAroBwu/v1P2HifWLFPCuQ2ZjCTVqFNiNmqelztqA/tCEQyTfMuptbmC2/4mSRy2wgvuFy2ZZvhnbWvY/D9EJg9aAqUb+u2zLiu+TyJln1NH9dTDl/42NyWmAbeVThqzq9oBihT19Mamo8HyDGmNwO1t6XbZ73x7eNAfuiEEN1X82DS488Yyp9eupq8ITns2nyA1xd8yr0zXuDu165h9EmD+fnHfLavz+fnH2z/7vmpAMPadnrIuMQY0vslouLqKK7ez8Zda9lXtINx1qOJz5rEkRrFDZkn0CMywWk9pdl+b0SNzuaCu35D2tE5ToOqm6FbdHqPO8avbXRXmm6BzCntD/0Z1wttxL2oobehdr2O2vo0lG9DbX0Kte0Z6H0O+jGzIX2Cy/sLb5NRQpgRliTR3/72NwCioqJYtmwZBw4cYN26daxfv553330XwzB49NFHw9G0sNB0LwaB9aijjz0e+va5T9g4Cka7/Nymh+m9XS/c0d/7VkxVOQBuu5s1Pxvg49BJ732VD+ePv0fOafzojn68TGcQVcs/zgMruV3U/q2mmSzWUyilOWbVvKIBSjUltXxhW9F2jJRv54OSJJEQopuyWg0Wzvsv488Yyt2vX8OyZd+x4o1lqMoohozLY9u6vdx/xd8xrKrt1PNAcloC2Uf1QE9soKT2AFv2/sDX29YRUxxBXmwmeTEZTI8dSN+jJhKl227Xesc2VQzpGhlD+xHXP5s1Pxay/NudnJUDGSP60XNQ71AeBhEAWkQc2sDfoo66GgoWY/z0NBR+AfnvY+S/D6mj0I6ZhdbnAjSLredJ625tCiC+L/qo+fZubUL4IyxJomZVVVVERtr6zU6fLid0yATkut67Wwn7MCkhjOkcORDb8jJiu4kpDzH9OD6duoLG27YHKhHhc9eoUNK82E1355DmvIgXO2BfzGRVj89lPa3jmonZHNLXjSjNZFCHqifl48+aYfIs0rSmpE3Ttz4dZs33t1PZYpp6OyVJJITowAIxVpArZSWVfP7WSgr3HCI+M4IT02eQRRyJETHUGrYp5B1/6aT36kHuoHQikg2O1Beybd8GFv+wgsqvKsmITCYvNoMhsZmclXse2dE92sSLjI+moaqOPVF1VDamsyO/HOve3cBusvql0eOYCqhIZNTk4/3eNxE+mqZDzjQsOdNQpZtRW59B7X4DDq9Fff8b1Po/ox39O4jNRi2/zjZA9qSXIHkIlG3G2LQAY+kM9MmvSaJI+C2sSaLmBFG358NYIu434K1AJUe0AG4rHDHdHTN/tt9uYWkQYnZy3uy6V6e3l8fWy0PdfO/b8W6BA7ufoUy8BZwviaIA7Wcg09RuKedgPsU0+1GizHWN68afXEKIDs7MWEGOlFIcLixnz08FDo9C9vxUQFlJpX25mh8LmZ6WSrzDHVWVMvj84G6MxgHED63i+8LPeOvDvURqFvrEpNM/JoNfJY+nf1YW8ZboNrFT8jLJHjmArFH9yR41gOQ+6Tw/+VbK8/dyYGQpM2+8gpT4NEqrDvHmx6+Qs64OS24GvY+X7mFdhZYyBG3cU6jhd6N+fhG1/TmoKUD9cA+gQVxvtOH3oqUMsa3Q83j0KW9hLLkEY+0d6L3Olq5nwi9hTRKJJqHuNeTXDVM4bgvkVqTLCkeCwYuYfudtw61TN74dZvZNeiN65mKHvNnHLncchBBdgjdjBTUnipRSFO07wp4tzsmgvVsLqCytcRsjNTOJmLIyjk9TaL3TqD4miV21e9m1bjP9SuI4JzOP9UcU27b8xOiYbH7ZZwS5MWlYWg0cZ4mOJHNYX7JGDiB71ACyRvQnNjWhTbzT7rsC643PEbe1mD9/MZuCuiNkR/fgvN7jGZDYh9Puu0IGlu6CtJh0tKF/RA2eg9r7H9TGh6FiB1Tnoz4ZizX7VPTBN0LmL9A0HX3ILRiLT4LiZZA5JdzNF52YJIk6re6SrJEEUZcWsEqiwMYMTyWR8iNeqH9OwvRzafYABfiN9Oq09Sem6ZKgTt79VAgh/ORqrKAfPlxJZkYm1zx4HocPlvPXWa/y7Yc/kL+tkL1bC+3TzLem6xrZ/dPpOyibvoOySOgZSZUqZV/JLr76+itO1wawt6aWv361AO0rjezoHvSPyaQ2NgJDKUalaoxilNM249KTyB7VlBAaOYD0wblYotq/HRtw2kjOeOJ3fPvwfxigt8xWJlPTdw+aJQot71dYscD3V0OvM2H/ItsYRgWLIXU0+rG3opoSQ6qmUP6QI/wiSaJOy4+uS6bvP3z/uLH1CFF+3FKaHL3E9E2WyTGFwOSMTa027ePuNg9fYoa52c2CJNRtaCdep60k0jx+63qVEO9oQBJhPm9EmQysWo6Pr+tryuRMY+73s90mmJ0AQTN5fPxIZgkhuq9gjRVkbbTyzbtrKdxziJzjEhmXcw715QZxejJxWgoWreW25/M3Vti/tkTo9B6YaU8GZeWlUm+p4MDhvWzasolvfljCj//bQFlZGQCRmoXjkwaSkDmQsvo47up3BT2iIrC4+CDVU2M49vRxZI20dR1L7JXmxcQqrg04bSR5Jw+Xqem7MT0uGwPQj70VRj+K+ulp1I6X4PAajKWXQnxf24LR6Z42I0S7JEnUAShDQ5kd5LQN99uxjU+q/LwpNHNT4OfMQmbWDMq9i+f9CMjNto+DnjRPSuRXoJAMtNIOT20IRsx24pnM2XU4wTus4RiTzA/+vpEhPxFMVpUpTCamMDWiuIlhsoUQ3Zy/YwVVltVQsKuEgt3FTf+WULCrhAO7Sji49xDWRtsUj2s/3E0P+tEzHmJ0bANKNygqG4+QoKdy4vmjmHrRaCKTFIWl+9i0eRM//PAFr/9rA9u3b7fPSBarR9E7Oo1R0bn0yRlJ/8RseqhYmuev7BUHYBtjtcGAw/VQHxdH/5P60/D5RnLOH8mJf7wsYMdPpqbv5tInQXxfjE0L0Ke8hT7mL6ihf7QNcr3tuZbZzlbOxhgyF63/DDRLTJgbLTqjbp8kevjhh5k3bx433XQTjz/+OAC1tbX84Q9/4M0336Suro5p06bxzDPPkJmZaV9v7969XH/99Xz11VckJCQwc+ZM5s+fT0RExz2kgbnPMV9pE9hY7cULfWIqaDrouD1dOWanrSRyk90K/L64SDKG8oD5PLuZrxt34DFOoD4vHKuHFJrJRI9m8aOSqDmmL+MTdcofEiGEK8Gq7nHkzVhBE886juL9pRTsKuZAUwKoYHcJBTtLOLC7hIrDVR5jWCJ0rI0GvVIbGJuWgFZTa38tqmcCnxbnU7Y/lc83vsvfPppnrw4CSLLEkRuTxmk9hjMgOYc+MenEW1td1zd9zEYlxVJfXsOBpBquuGsWR2oV1VaNtJwUjp3Qn6vP/BXjSJUZx0RAaboFfdR8jKUzMJZcgj7kFkgZgpZzBurweihYDJFJULUbtepG1MaH0AbdiHbUb9Ai2451JYQ7HTejEQKrVq3iueee47jjjnN6/uabb+bjjz/m7bffJjk5mdmzZ3PBBRewbNkyAKxWK2eddRZZWVl89913FBQUcMUVVxAZGclDDz0Ujl3xnvKjysbphsD7jQRq9nKfbsi60s1LkMpBPB7NDjb8lKb70a3O0zWum2126koiF412d+j8qwQJYxelduO2TvT4Me2XV/Ha8qtq0+yHpj/rYVu3U57zQgi/+Fvd443msYLGnX4sNzx2CV8uWsJ7//4Y6iJJzUoiKS2e+6/4u23Zpmogd1LSE8nO60lOv55k5/Uku+nfrH5pfPP9N/znuvcZGxdLTXIjmzJLWb1rIzX7jnBq5XH8Ir4PS6Or+WrzCvKiU+mXcQxHp/YhS08isrHVJ6DV9k9irzTSh+SSPqQP6UNy6Tk4l9i0RJ4/4RYO5e/lj8/PZ94df+T4oUPZuHEjF15wG9mb67Dk9pIZx0TAabnT0Se/hrF2nm2Q6mbx/dAnvw7Zp6J2vIza8hhU70etuwO16S9ox1yPdvR1aNGp4Wu86DQ0pYLTMaejq6ysZNSoUTzzzDM88MADjBgxgscff5yysjLS09N5/fXXueiiiwD46aefGDx4MN9//z3jx49n0aJFnH322Rw4cMBeXbRw4UJuu+02iouLiYqK8qoN5eXlJCcns+bC35IQ6d06nZLpmyU/Ts0wxNTMjuvhJqZ37TdfdeAptsd4mh9d3EytZ/gV09zxMTA/c6gRhpiqTfmTd4fLajKmahn/xueYZvfTcFntEvSYLtbzKqZuRTd5HmBpG8SrmBFWc73NNKvt2Pr4M1Ze00jmrd9RVlZGUlKSmchChFTzdVdnOmeDXeHjWN3zq1tPd6ruWb5oo9NMYJ4opagqq6GkoIxDBaWUHCjlUEEZJQW2f/dutQ0SrekayvB87REZFUFWvzSy+/Ukp3+6PQmU3a8n2f3SqLfWsX37drZtc3xsY/v2n6kor+DevMuobYzlw4N7yW/8kYQIgwGxuRybcAz9Y+KI0pXLcYE0XaPHgGzSB+fSc0iu7d/BvYlJjnfZzh2frWPRjc+xw1rMe/uWO884ZknnjCd+JwNKi6BRhhWKl9kGqY7NgvRJTtPeK2s9avcbqM1/g4qfbU9GJKAN/A3aoBvQYrPD1HLhj1D9Huu2SaKZM2eSmprKY489xtSpU+1Joi+//JKTTz6ZI0eOkJKSYl++b9++zJkzh5tvvpm77rqLDz74gPXr19tf37VrF/3792ft2rWMHOn6F0JdXR11dS0zKJSXl5Obm8vqC0KTJGoe5Djks990qiSRP+3wYz9Nzjet+Z0katUOL5YJS5JIN1vhYD5JpFnMxgxjkqiZlw3XApEk8jlmAJJEPsQD0DTDv4SNCVqAk0RexbRY0U2dtFZTMSVJJDqbzpYkCnaFj9VqcMWwu8g7Nof73roO3eFDyzAM7rpkIbs3H+CFlXdypKjclvRpTv4cKOVQQSmHClueq62u9zKyok96NJkZiehJUaw9sJ2N23/gmKhJ3PDXSzj32inU19ezY8cOpyRQ89dFRUVtthirR5EZlcxxCX05NXU4RdQSZ40hTsf156JFJ6O5OqgpKZR2dC8iY327Ht/x2Tq+ffg/VOxveY9kxjHRkSjDisp/D7VpAZRusD2pR6MNuAJt8By0hH5hbZ/wTah+j3XL7mZvvvkma9euZdWqVW1eKywsJCoqyilBBJCZmUlhYaF9GcfxiZpfb37Nnfnz53Pvvff62XrzOl860PG3uo/d21Qge0x5d+dkfkY1v0P7qROcGIHrs+i1TtvtJujjEXmO2YGGlgpvzCA0KmgxO+3JLkT4hLLCx934PWYTRYZhUFVWw4r/baJwzyHOu24qi19fwfrVGyg6cAhVbyHSiGH/zmIKdh/i7Iw5Xm87sUccaVnJ9MxJIS07hZ45yaRlp1B2qIKXH/iYPoMqmJrch4r9h6GsDsqgT2o6MX17U1EAT/3zceY8/Fv27t1L679ja0BqRAKD43pxVM9cBvToRWZUMvH1EWg1VqdlM4ixJ/n1mCgS+mTQd9xA3vzsfY49mMRJD17OkPMnmDp+jmTGMdHRaboFre+FqD4XwIH/YWxaACXLUdtfQP38T7S+F6Md+we05MHhbqroQLpdkig/P5+bbrqJxYsXExMT2tHe582bx9y5c+3fN1cSCU+CMZV9MOIFSXvN0QDPXffdMztddjiE4SY2DHmpwGg1oFJIJo5ziOnNKRv6mH50Iw31Z4KHUdPb3U+zJ62mmfs86JQ/IEL4LxQVPgvn/ZfxZwx1qvAZcnx/7nvrOu66ZCHP3fFfJp49nMb6RsoPV1F+qIryI1W2rw9XUX640vbc4VbPHa6i8kg1hkOXr4Xz/ttum6JiIumZk2JL/mQlk5bdnAiy/dsz2/Z1tEMlTmVlJfn5+eTn72Pp1qWkRVczqiKebY37WMo21u7eTLqewGmVwzm5aaygt1d9QpRmoVdUKnkp2RyT0ZfecT1JVrFEVFrBcbyimqZH0+BBCVk9iE1LpHjTXr44soHkYb256g/XMPKE49m0aRPz5z/KxtUrOTb3HJJyAjcui8w4JjoDTdOg1+noOdOg6FtbsqjwC1uXtN1vQO9z0Y+9FS1tlNN67XVrE11Tt0sSrVmzhqKiIkaNavkBsFqtLFmyhKeeeor//e9/1NfXU1pa6lRNdPDgQbKysgDIyspi5cqVTts9ePCg/TV3oqOjiY6ODuDedAet70I6cmIjWKNIByOsAuVhRbcvhen4SyWRb0JZTeRhhjjfXuiIMc0PXO1fXJObNJUgAtvngYn1O/UPiRDmBKLCRylFfW0DNZV11FbXU1NZS01VHbVV9dRU1bF1zR4K9xxiwpnD+NfDn7D9px0cKSlDs0YQbYmleN8RCnYf4qz0m2ioazS9L9GxkdTVNFBllJLYM5YxA/uQkZpEY7Tiy5/WsPHHLRwdNZ77/309E84c5jSOT319Pfv37yc/fx8/7lpJ/pJ95Ofns3dvvj0xdOTIEfvyGhr35l1GYa3Gh3tK2NOYT5QWSc+YLOq0nlRbNSakRTG+99VE1Tk0sq7pQQMAemQEKXkZ9MjLokf/LHr0z6RH/yxS+mUSlRCDYTX416l3cubgk3johzd5+awz7JvKy8tj3mlXE12hyBkz0PRxE6Iz0zQNMidjyZyMOrQWY/NfIP992PcBxr4PIOtk9GNvhYwTbM+tnQdVe4Cmq6L4vuij5qPlTg/rfojg6nZjElVUVLBnzx6n56666ioGDRrEbbfdRm5uLunp6bzxxhtceOGFAGzdupVBgwa1Gbi6oKCAjIwMAJ5//nluvfVWioqKvE4ENfcpDNWYRM06z5hEjkzMpqY5PhN8LbMZhe5Hyq+Ynt4Tt6/5N4i0jEnkeb2AjUnUrN3ZqgI4JpHXMQM0JpEvMTWz4wOplmnlfT0ZTI9JFIaYmmF+4OpbZEwi0Xn4O5aD4xg+d7x4Nd999GNTcqeO6spaPn9jBaXFFUw8ewR1NfXUVtZRU11n+9chCVRbVedUyeMv3aKTlBrv5pFAUlrb5xJT40CDU9KuIa+nhZPyspzG1YnLSuaLXYXsPaw4967hHCg4QH5+SyLo4MGDbbqDOdKAREscuSkZDMjoQz9LKgPr0yiPBr1GIxpFpIfPq5geCU5JoOZHYq+0drty2QaUfp6+U4diGZtFqaWGFGss1lWF7Pl6I2c8ca2MFySEA1W2BbXpr6g9/wbV1HUz6Wgo3wY5Z6AP/SMkD4GyzbYKpP2L0Ce/JomiMJAxiYIkMTGRoUOHOj0XHx9PWlqa/fnf/OY3zJ07l9TUVJKSkrjhhhuYMGEC48ePB+C0005jyJAhXH755Tz66KMUFhby5z//mVmzZkmlUNCYG5+o7bqeBOqCzZc7rQ4as6PNAS+VRL5r1d0saPvjYsMeYwapkig4Mf2oJApHTH+GwDBTRdTpf0iE8M2GZT9TuOcQf3rpaqora5n/mxddLvf5Gyu83mZ0bCQx8dHExkcTExdFbEI0jQ1Wtq/P55B1H5m5qZxw7GB6JidQa7GyeMNyNq7/iYFR47njn1cx7vRhxCfFuJytq5lSisrKSoqLiykq3semXSUUFxezfPlK0LcxJvI4tu0t4ofoA2yv3E3MkQhOqx7O+Ng48i0/8sfb3mizTQs6mfGpHJ2dR7/UbLISUkmNSCDOiMRSbWAtrUE1dw2zYp9OPqkOh9kxNWLSk8kY3JulP6ygb2k8Y35/JsMvP4nY1ASvj2FrA04byRlPXGsbUPor20C9h4Gk3j0lQSSEC1ryYLSJf0cd92fUlsdRO16xJYgAqvehqvaipY5G63k8+pS3MJZcgrH2DvReZ0vXsy6q2yWJvPHYY4+h6zoXXnghdXV1TJs2jWeeecb+usVi4aOPPuL6669nwoQJxMfHM3PmTO67774wtro78CehEorqntaZjHAU6QUwZke6AZQxiTouV6ecp8qeQJyiZmKaejM1N8G8YHp8IHPhANv4ZGYTRb62V9Gxe/8KEQSHC8sA+PHnNdxx8Z9Jth6DVTVgpZG4hBgmTZ7AhsX5nPTLMQydeJQ96RMTF01sQlMiqDkhFB9FTHy0y8Gu6+sbOCXtGoZnZHBSbhYVW3ZjBSKBS3r1J713HLtKqskYHMf6DWsoLrYlfVr+LXZ6rqSkxGl23WYaGnfn/ZJt1cWsORRLrN6H3vQBYMWhCixZ5UxLO4p+/XtyTE4eSVo00XU6qqKehtKalhlRSpse1KKopbkDnKZrxGemkJiThiU6gn3f/cTiwz+Qelwfrvj9VYycOo4t236yjRW0YSVzc8+h9/hj/EoQNZMBpYXwnZbQD23s4xiZU1HfzgBLLJRuQC2biUp8AG3YPLQ+F6EPuQVj8UlQvAwyp4S72SIIJEkEfP31107fx8TE8PTTT/P000+7Xadv37588sknQW5ZF+HX3XYoKm2CFSMUMdtrgx8xO1A1UYecvaqjaafBQXs72xlkuc3LQRyTKPD76MfPqT9j54djDKROd8ILEXqpWckAXHf5HKaceTyz776CrMSeFFaU8NQ7r/DSR88wOvoczrp6MiOmHN1mfaUUNTU1VFRUUFBUTGVlJRUVlVRUVDR9XUFFRQU//rjRXuHzc34JuzIqKdSK0QsVI3fUMSY6ml36Fo4b7ltFTGJsPH3Sc+iVmkFmUk9SqiNIK0/E0juRX49NwyhrhOpG9NoGjJqWRM3x1XHws21wIMdJ7i3RkSRmp5LYK5XEnFQSc9Js//ay/RufkYIl0lZl0DxW0NmDT+GhH97kpYvesW8nWGMFyYDSQphk2H7StbPXwc5/obY+AxXbUd9djdq0AG3IHwBsg1mHs50iaCRJJIKvw3x6BPvP3q7u7jpZNVGHea+chaOqp9NVEnmRIQnK/jiebt4ECHQlUdBH5e5ElUSd7qQVonMZMj6PBr2G6X1OZ2pFBtse/h9NHTL4RWwW0T0nc6CikjsX3EbVPc3Jnyp78qeyshLDaH9K0jYVPgeSgCSswFKjnNFp5ZyU2o91jZvpl5NLTo8MspLS6BmXQkp0AokRscSqCKIadbRaK0ZVAw3lNTRU1toCVDc9mqQcBONgy3hEzS1s0A0iDZ2eQ3LJGX0UCdk9SMpJa0oKpRGbluixm5sj3aJzwu0XsejG53li2hyXYwWd9MS1UukjRAegxWbZLilqCtCG3YEadANq67OoLf8HZVtQ3//WtmDVHpRSXn8OiM5DkkSigzN7k+bqbsnVB1ggkzhuRg4Oakxv2+FlTHeLhfmzXyqJvOBFg4NSTeRrBVMQK4ncxjQtTJVE4UgwCSHa9d1339krfIrLG3glfyk7a/PpH5PLGWmjmZKUzNs1P/LRR6va3VZCQgKJiYkkJyTSIyGZHnFJJMcmkBgTR9ShRtIOJdKYF88vczJoLDXQ6yAuMoKEmByqCo7QeKia+bmX2j4vypoeQHMGqIHm+cCc6RE6samJxKYloVt0ijbuYXXFDpLyMjh1+jSOGjaIgooSnnz57/zw1Qrm5p7DCbdfFJCKHBkrSIhOIn0SxPfF2LQAfcpbaJGJaEP/iDr6WowtT8Dmv4JqRP1wD2rfx+jH/RmyTpZkURciSSLRCZhJFIWjq5e7OzupJvKXVBJ5wcsGB3yfWp9qLgI4PRWMMYnai2laN6ok6nQnvBChd2D/AU5OyyNhUG++31pF/8jJHBMFEToUKUiP0ziz50AmjR/KUX3yiFA6FkNDb1BojQbUG1hrGrDW1FNfXUdDZQ1GowFV2B6tZO7TYV8JkU3fW3HIBYH94yk6JZ641ERi0xKJTU0kLq3l69i0pu+bvo5OirPfyDV3AZuUlM5DP7zJk7f9277pYHUBk7GChOj4NN2CPmo+xtIZGEsuQR9yC6QMgbKtULoBVCP0PgcKvoBDqzC+mg7pk9CPuxMtc3K4my8CQJJEopPw9WbN0x2P5rBMILUXLxgx3fEjpqfFw3QTKZVEXvLiRr9DVBN1mpgyJpEQokVSpYW0yERyLz6OhSefwCtT73BeoEZBRCwJu6Fm9x6fth0ZF01kfAxR8TGAonR3ET/XFBKXkcxxY4aT1acXpfUVfPL1F2z7YTMXZUzg9CeuIe+kEfZxf3wVri5gMlaQEB2fljsdffJrGGvn2QapbhbfD33y62i501E1B1Gb/4ra/ncoXobxxemQORX9uLvQ0seFr/HCb5IkEl1Ue3c8wUjWtHd318ErijrwTaIUOXivuyTUQhMzTJVEUjonRId0VHZfdgNPv/kSk6efQlRCjC2x0/TvT9u3kVoTRfboAfQc1JuohNimxE9009fRRDks3/x1RGy0UyKmucLn2KYKn/nPvW5/LS8vj3knXkJ0haL/KSP9TuBIFzAhhDta7nT0XmdD8TLbINWxWZA+yT7tvRabiTb6UdTgOahNj6J2vAQHv8ZY/DXkTLNVFqXKZ0hnJEki0Yn4ccPmcluu+LP99u6wghGzPT7E9LYZYbiRlHtX7ykfbvYDclw1387gzhWzk1US+UN+yIRoV0JmCgA/fLmCX86Ywbyn/sjQoUPZuHGjbRr3bbZp3MfddK5flTKhrvCRLmBCCHc03QKZUzxeJmhxOWhjH0cNvhm16RHUzlfhwP8wDvwPep+Lftyf0FKGhqzNwn+SJBKdQDgqcLqhDnyTKEUOXtA8fhuOJnSBmGGoJBJCdFg5YwaS2CuNeYOv5qEf3mTixCn21wI9hk+oK3ykC5gQwl9aQl+0cc+ghvwBteEh1O63YN8HGPs+ROtzIdqwO9CS5XOmM5AkkegEOsK08t1AB64kCodOd4+vXHzbzg4EusLGm1Mo0Mc0uDHDNAB8qE8++UgVwitS4SOEEO3TEgegTfwH6thbbMmive+g9v4Hlf8OWr9L0YbOQ0vs77SOMqxuu7WJ0JMkUTekzN4QmLxpCcy9jtzFhEynyowET6c8DCGrJnJfYdO1qonCVEkUqvU65UkuRHhJhY8QQnhHSx6MdsK/UEduxdjwIOz7CLXrddTuf6P1vxxt6G1o8bmo/Pcx1s6DKtuA/wogvi/6qPloudPDug/dlSSJOgSN0F2t+5FsMXuv5PfNku+BFaDJDZA57g53Nzuena6SyIVwTFTXtWKGKTlt9uTzdT3HKeB8XDeUv7WE6GikwkcIIbyn9TgOy5S3UIfWYPx4PxQsRu14EbXrNcicCgWfQa8z0Se9BMlDoGwzxqYFGEtnoE9+TRJFYSBJItEJmL1bEqZ1tLu/MGRsOtoh8IqLed+Dvh8u3pvAxXT+Ofa83a4xk5+dmXPe7GxqmvKY9XG7WU0+Z0X3JRU+QgjhGy1tNJZfvIcq/h7jx/vg4BJbgggdEgdAQh5aZAL0PB59ylsYSy7BWHsHeq+zpetZiMmfPIQQbSkPj3AIw019p739bXWsgv5WunhvPMbUPL3qqYXKtq7e9G+bB+4fequHp2VdPTC5TqiZfVPbSUh1tI8D0fH169cPTdPaPGbNmgXA888/z9SpU0lKSkLTNEpLS9vdptVq5c477yQvL4/Y2FgGDBjA/fffjzLdh14IIUQ4aOkTsJy8CG3kw03PGPDTkxgfHIux/m5UfSmapqMPuQWqdkPxsnA2t1uSJFE3I5dSwq2uePPrh85QbNJGqwqiUL+VXsU0/V760eLO+MFntirIbCzV9qmO+nEgOr5Vq1ZRUFBgfyxevBiAX/7ylwBUV1dz+umnc8cdd3i9zUceeYRnn32Wp556ii1btvDII4/w6KOP8uSTTwZlH4QQQgRZbCYA2uQ3IHUUNFahNv8F44NhGD89iUocAICqKQxnK7sl6W7WASjlx2DSZsiVvXDF1TnYUc6VMFUSdZTd95pDd7OQzTTmcKC8itm1RrZu4mLPTSd5lPk/3zRXVJlZ1UzWp9P9gIhQSU9Pd/r+4YcfZsCAAZx44okAzJkzB4Cvv/7a621+9913TJ8+nbPOOguwVSu98cYbrFy5MiBtFkIIEVpabJbtMjI2C23aEtj/CcYPd0PZFtTa22Hz47YFYzLC2cxuSSqJhBDOOmKZgFQSec+HaqJghQ9OJZE/fOni1urhpoub5vSg7UNXvj+atgX43r1N8yMB12lPdtEZ1NfX8+qrr3L11Vej+ZElnjhxIl988QXbtm0D4IcffuDbb7/ljDPOcLtOXV0d5eXlTg8hhBAdRPokiO+LsWkBoNB6n4V+xgq0cc9AbDbU2iqI1Lo/ow5+E962djOSJBIdm9l7O9PraqZjKn8eZpsbjBK0jjjwSJgqiTolh/fMmx+TkMfsVAkJ941t93j6c4DNHiOzMZUfMYVox3vvvUdpaSlXXnmlX9u5/fbbufTSSxk0aBCRkZGMHDmSOXPmMGPGDLfrzJ8/n+TkZPsjNzfXrzYIIYQIHE23oI+aD/sXYSy5BFW8AqzVaEmDIGWYbSFLLBxZh/HFmVi/vgBVuim8je4mJEkkQsDEn8TD9vCnvcHhMWKw+u6EZte8J5VEvtHafuv6/PEvRJvqGYdttx4r2j5mtKuqGy8fpttqel3PJ57HHxN/TiCz57vpSqKmbLWZKish2vGPf/yDM844g5ycHL+28+9//5vXXnuN119/nbVr1/Lyyy/zl7/8hZdfftntOvPmzaOsrMz+yM/P96sNQgghAkvLnY4++TUo3YSx+CSMt7MwFp8E5dvQJ7+OPn0z2tHXgRYBB/6HsWg8xvLrUdUHwt30Lq1bJonmz5/P2LFjSUxMJCMjg/POO4+tW7c6LVNbW8usWbNIS0sjISGBCy+8kIMHDzots3fvXs466yzi4uLIyMjg1ltvpbGxMZS7ItplpgSpE1GOX3Th/ZRKIs9ad3/C+RHw86Cd5GHQ3q5QV9j4syfhiGmEOGan+iER4bBnzx4+//xzfvvb3/q9rVtvvdVeTTRs2DAuv/xybr75ZubPn+92nejoaJKSkpweQgghOhYtdzr6ORvQT16ENvFF9JMXoZ/zI1rudLSYDPQxf0U/aw1anwtAGaidr2B8eBzGD/eg6svC3fwuqVsmib755htmzZrF8uXLWbx4MQ0NDZx22mlUVVXZl7n55pv58MMPefvtt/nmm284cOAAF1xwgf11q9XKWWedRX19Pd999x0vv/wyL730EnfddVc4dsknoe4SFV7hrwTyl8fjqDl+EcD9bOdNNXsOmT5ZpJLIM8fjE4rCOceALl5XTY8O82MWpEoi7342AxvTI9O/0U3E7Ngfm6KDePHFF8nIyLAPNu2P6upqdN35JLdYLBiG6eyoEEKIDkLTLWiZU9D7XYyWOQVNtzi/nnQU+gn/Qj/tK0ifCNYa1KYFtmTR1mdR1vowtbxr6pazm3366adO37/00ktkZGSwZs0apkyZQllZGf/4xz94/fXXOemkkwDbhc7gwYNZvnw548eP57PPPmPz5s18/vnnZGZmMmLECO6//35uu+027rnnHqKionxoUWe42lam7138ur83eVjarhb+dJVHXjTP1SKad6uaWysclSIdJiCda5gWx4a2fmuDshMO55CbE7NDHTvTb2b7PytuN2s2ZusknE8xFZqZRFFz/0AhAsgwDF588UVmzpxJRITz5WZhYSGFhYX8/PPPAGzYsIHExET69OlDamoqACeffDLnn38+s2fPBuCcc87hwQcfpE+fPhx77LGsW7eOv/3tb1x99dWh3TEhhBBho/U8Hv2Uz2wzoa2/E8q3otbcgtr6DPqIeyH3fL8mSRA2clkIlJXZytSaL0zWrFlDQ0MDp5xyin2ZQYMG0adPH77//nsAvv/+e4YNG0ZmZqZ9mWnTplFeXs6mTb4NqOXXgMdmqjlMMVNuEIDkl9uqk3ZKVNrsZyiqiMwelzAd2/aEoxTMTcxwfNR3ql8vniqJgh7QdczAnz7hKCdrr7xN2f9r8xnU5tgHrv7S5VJmEz2O1WGajw+9gyffRVh9/vnn7N2712USZ+HChYwcOZJrrrkGgClTpjBy5Eg++OAD+zI7duygpKTE/v2TTz7JRRddxO9//3sGDx7MLbfcwu9+9zvuv//+4O+MEEKIDkPTNNtMaGeuRDv+SYjJgMqdGN9ejvHZVFTRt+FuYqfXLSuJHBmGwZw5c5g0aRJDhw4FbH/hioqKIiUlxWnZzMxMCgsL7cs4JoiaX29+zZW6ujrq6urs38tUrN4I5E1IsG9oXJUOdKKbqA6ciQlHVU+nqiRy1HzKBbXxrSpsmr4M7h9uNMDwar/aLOI4tbyvUTVXCR9vmFxP07xKvrjctC8nbevlzLS1E328idA77bTT3M7Aec8993DPPfd4XH/37t1O3ycmJvL444/z+OOPB6aBQgghOjVNj0A76mpU34tRPz2J2vIYHFqN8fk06HUW+oj70JIHtVlPGVYoXoaqKUSLzYL0SW26t3V33b6SaNasWWzcuJE333wz6LFkKlYzfMgiKOcn2lZRaS4egaq0ctfWjjIoixfMFzYEPWYHzl91LCE7zRzeIIeYwT2FvN9KOGK2YfY9aBoAzlQNoS8xHQ9S86BzQgghhBCdjBaZgD5snm2w64HXgGaB/R9jfDIWY+UNqJoC+7Iq/32MD4dhfHEG6rurML44A+PDYaj898O4Bx1Pt04SzZ49m48++oivvvqK3r1725/Pysqivr6e0tJSp+UPHjxIVlaWfZnWs501f9+8TGsyFatZPnS/ahoxV6l27ljtD63Nw13yKHCPtokqs4JyXxeOvFY7Mf06Rq7eA9pPYpiZEdze29FkTL+FKrnnIWbwOkb6tpVwxHRi5vg3dRnTND9OPl+7i2nKdiXgw3qOM+kJIYQQQnQEWmwW+tjH0c9aDb3PBWWgfv4nxgfHYfx4P8auNzGWzoCUY9FP+wr9lwdtA2GnHIuxdIYkihx0yySRUorZs2fz7rvv8uWXX5KXl+f0+ujRo4mMjOSLL76wP7d161b27t3LhAkTAJgwYQIbNmygqKjIvszixYtJSkpiyJAhLuO6n4rVnzFpfH+4rqhp72E+KWI75ubXDQ8TxzYc7Q1GTHf3n4D3x8OV1hOzOzzcnHfNiTvNIQHo28P7fWw9vFVAkgztHJKg5HJCmdxzEdNTCsM/vm0hHDGd+FNJFKqYzaGUbye8pIaEEEII0VFpSUdjmfIG+qmfQ89xYK1GbXwY9f01kDwE7YRX0XoejxaZYBsIe8pb0OsMjLV32Lqiie45JtGsWbN4/fXXef/990lMTLSPIZScnExsbCzJycn85je/Ye7cuaSmppKUlMQNN9zAhAkTGD9+PGDraz9kyBAuv/xyHn30UQoLC/nzn//MrFmziI6O9qk9/idEfFvZ3Ngc5u84lWovpvv2mz0u3WZQ+0DuZ0C25f0b5mvPGH+bF45ToruchhCKfdVwPL+CHk9r+p9mtH3aKybHQdKb9tPLdZ0Wc/xBcVXl4z5/i2Yq9SPpIiGEEEJ0TFr6BPRTv4B9H2CsvhVq9kPZJtQn41Aj7oPe59gGwdZ09CG3YCw+CYqXQeaUcDc97LplkujZZ58FYOrUqU7Pv/jii1x55ZUAPPbYY+i6zoUXXkhdXR3Tpk3jmWeesS9rsVj46KOPuP7665kwYQLx8fHMnDmT++67L1S74cD55qnzcXfn0pn3yTemk2HYCmbMruvcCLMrevui8vCd5y0GIiHgyyEOVBVRyGJqrf71ej1/qlacExlev5/N3Zt8Zpib3h1b0thc4rhpr0ztp4lwGrYPA4v374vjkppF+X4eaU1bMXNsu2UtshBCCCE6C03TIHc6NFTB8msgOg0qtmMsvQzSJ6KPfhQtdSSk2HoCqZrCbvVHXne6ZZLI3WwbjmJiYnj66ad5+umn3S7Tt29fPvnkk0A2zUfmbvC6Q3VOQLuqef0X/TDVqpjaV+VXcsmfpJbT9162IRCVRO7aEAod9kcngD8noa4k6vAxvT1pvVgmIDE9bcT0gew+iXwhhBBCdF56fG8MQJv0MhR9i9ryf1D8Hcank9EGzIReZwPYZjsT3TNJ1OEoTJaDmFnH7GArKgxjBJm/BTSf0FJt73u83W/dh2UDxfR++pFcarf7oA9b86INgU5OerPbAet5p4U4pq8CmBwISCFaezGbg/hwXKH5HPLxhG9eR8Op4srrmBbzn7Wa2c9pzcR6jvvpczwT6wghhBBChFr6JIjvi9r6DPqUt9AGXIVafydqz79RO16Cna9CVA9U6li5vEGKxbsAT8PEBnLoWH9Gw9VMPsLBQ/z2mhvoBJE3hyjQFVMhfluauwF5egRDSHZRa/tt0GKaPQ9Mnz9tWxz800drsxGvY/ra7691Q10k8QMa09VGzXC1nqdG6g7/hrCZQgghhBChpOkW9FHzYf8ijCWXQPV+tOOfQBv7BEQmgWqE+iOoT8ej9i/yqudRVyaVRJ2a7yevj5PYBCRmuO4k/OtW52JlT9sLxj52pHhBitneexSsJFGoD23QY5raQKCmcLNvrV2a/X9mI/g+DpIGtqneTf1JpGmadzNtdpewMbuuN8sGOsHkhr1ITrJEQgghhOgktNzp6JNfw1g7zzZIdbO4vmj9LkXlvwcVP2N8cxFkn4I+6hG05EFha284SZKoA7BP9+0zd+sEM/PpW0wFaEqZbJGfdQcmb5yVh9ietqlcdVXzitYqnBcbcex2E4jxgbw5Vq26+gSax/crkIMSNccL7ObactFmzzH9+bl1n8jwGFOZnIGrOXliSqsxfgL0RgTn/fT8A9ZeTJ/3zTHJY1/X83F2/jn2YUYzR7ryLenTvJzevf/KJoQQQojORcudjt7rbCheZhukOjYL0ieh6RbUiHtRmxagfnoKCj7H+OR4tKN/hzbsDrSoHuFuekhJkqjTM1dNFOyYjjdHCrNDOofpBsRDWE/HTjN9t9t6oz6WEZitIjETLojcHVstSP1aulQ1kcfkpYfVArGjPm7Dr5nGtJZt+BbUZDwMPB1Bz8e2vTI5dxtVrpM97hZv3f3O23Ud4yt8mlGtbSJLCCGEEKJz0HQLZE5pcxmjRSahjbgfNeBKjHV3wL6PUFufQe1+C+24O9EGXIWmd4/0SffYyw5OKUxVEtluqr1dr+UGQDfZ7aJF+zGdbvg1sxU2bnixy/4kwjrELG5Bb4PW8pYoX0Jqtvtmk+1Trc49rwqY/Kxg0lpV9ITs7Q1lTJ+rlhzW80dIY2poGOZiYqJiyl4t4/6l9rfRame9WVFr+uk0VVzq0CXPl/V1D2PWeS5F8yGIEEIIIUTHpyUOwDLlLVThlxhr/ghlW1Cr5qC2v4A+egFa5onhbmLQSZKoQzB3C+l80xPsi3VXbfQypjJb7eJue14sY7orTCAqrXzX5gbWh6miAjUdvW8zRQVG8MexcQikuY8Z0CRO88baiRnQNrhY2av9DHD2yquaOL/GJDIZ03Qc5fSvx223+XOUm0RPuw30MkHkbhnH88/Tsq1/f3iTWGr9uSrdzYQQQgjRRWlZJ6GfsRz18z9QOE6OEQAAzBdJREFUP94PpZswvjgTcqejj3wILaFfuJsYNJIk6gCUYXv4x4eKooDNaedl7YkfCRvzOkI5kPfcJnra2w2lme+64y5kiA+d19UnAWxXUHfRTVs7ZEyzM3CB20SsF3WG5g+Gm8RLu5szPTW8j59fjjHa677lKcnjS3vbxDRRvaTjU8Kn+TOic33KCiGEEEL4RtMj0I7+HarvRagND6G2vwD572Ps/xRt8I1oQ25Bi0wIdzMDLmDpAuEPLXQPzZ/1zWkemDu0D0w/zO+n+XXdb7TVIwTaPR5BqD7x9AhYTIcNuo0TCI5tbSdmwOK7OT7txgnCb4B2Y5rqRoXHj6HAHU/VlKBx2IqmvH84tMBlbsnlfrTeRtsudS731kVM+/SV7X5st223pnnx0G0P53WFEEIIIbo2LToNfcxf0c9YDlm/AKMOtWkBxkfDMXa+hnJR8aEMK+rgEozd/0YdXIIyrGFouTlSSdQBmEpOmOzB5V8io/Xdr5drdbI/N3senLqddU3G9KkbS4i1Ph6mh5jSWt1Tam1e9tCI9hZoP7YPTwdGKKuJPByfdo9rEITjlPUY01WVTAAa6bH7ng5a6wPsVTcyDTT3paWeY3oYe8lTbG//DtCmS50X6wghhBBCdBFayhD0X3wI+z/BWHs7VO5ELb8Wtf159NF/Qes5FgCV/z7G2nlQtcf2PUB8X/RR89Fyp4dvB7wkSaLOyuyNuj80t994ppT55InpmxAtKBkbzwkk89kTd0dI0/C4TYXZP+a3uX11jtnOeuZ6uCnXeUZvEp7+3oy23lmTSVavY7l634J5Q22265euTLXLVRcs3zZj4qTVmhMgPqzr0CjNTNWU1upfX7Q+38H9OaG1es6b99NVm7xJ9rjatu5hPXcfMBoyJpEQQgghuh1N06D3WejZp6C2Po3a+AgcWo3x2VS0fpdBxgmolbOh1xnok16C5CFQthlj0wKMpTPQJ7/W4RNFkiTqdvy4UzV5P2Bu3Grbnbb5QZnN3fzaQ7cfwMV6ZnbUIVPi6lWHtrhO3gR+J5tjuk0W+VvVQ9v1PR+FMMUMhFDG9KUyy2EBs4lYzekLXyoL/ajqcZV4aTdg6330sq3N++UhaePy/Wz+Rne1ZOuFXW9Va84yeruvLruYecpot43Z7vvoqopIKomEEEII0U1plmi0IXNReb9C/XAvaue/ULvfgN1vQtJAtEkvo0XE2RbueTz6lLcwllyCsfYO9F5no+mW8O6ABzImUQfgz/g5Herh5j/n+w7l5aMD85jJcPw6cPvZobrs+VHdpZofPo4xhYl17GNT0fRoOk9bvwXuz+cAcPE2d5i30t8d1FRTJZJqm6RoSsy4eoCL59uu3vJwWMZe8eLm4XK79vfAh5+51pU9Ht41V/kW+wnnKqa7Jjjti2PSxs2j9VhI9nhG06Od5Z2eo9W/Lh7utiGEEEII0Y1psVno459Fn7bEVjWEgvJtqI/HoPa+h2r6C7ym6ehDboGq3VC8LKxtbo9UEnUIofyTbBAv6pWbahiU7Z4F8G0/ldeLt02imK9Cajem25s8zeE13/bT7dJNL9ire9y8HgxuK4pU8OI2H76Abr7VRl29fS7jmU0UORaUudhwUPex1VNB/1TxEMTtfrqqdPGqoapVvLY77RTTcZv2bnW+x3SufHJ/RjjF1ABL87c+xmwej8jXz77mBI+nP/2426ZuuD+uLiqI7Mm+9mZwE0IIIYToJrS0UTDkFvj+aojNgao9GN/OgIwp6BP/iRaXDSlDAFA1hR3nD8cuSJKoA/B3Vq2Q8bdbShDXbHP8lDI3Bgl4lxlw1bRg3JV7UYTgYjB9L2he1RFqtD62GljcNKRdbWd88rZCyvyhdVjLXdIrmNwl9wJN8/htx4qroM2J4O58an2OugjgsbBPc/zaZExv47XetruYrjbQunJJa//EcVnB1F77HOM7xdRod1Y1x9dUq3+FEEIIIQR6XDYGoE34OxR9i9ryN6jeB9GptgVKNwO26qOOTJJEHUIoK4nMMt//JlT3EVrrfECwKokctu1036T5EdMHoUxyuKwGCUQyzENVT6tF2sYPUUzTHHvh+BLTn+ChSka1DujVszhX49i7UuFbgx2npW9a1+PqjjF15/U8cnrvHLtmOb/cNl6rTetuumO1F99eDeR5XeUqpsVD9aXHBJBhS/56017H7yMkSySEEEIIYZc+CeL7orY+hT7lLbQBl0PNQTRLNEoZGJv/AvH9bMt1YJIk6gA6RyWRH/VAmh/5Gh+yPY5Lae3eQXq5ofYWdYihmRuh2+eGqFb3u/4dWxfPt3sTazKgI+c3q91FApLvczxuwcymuEmAtBvSn88Av/bHx8BO3Zvart9uUxwrZXyMqbmJ2S4FmjczcbXO12t4N4OXy+ogL7vLtvkbgYZm73Lm60nRTkyXVUS0ek/a6W7mFK7D/+ISQgghhAgZTbegj5qPsXQGxpJLbGMQpQxBFa+wJYj2L7LNbtaBB60GSRL57emnn2bBggUUFhYyfPhwnnzySY4//nifttEyOG8XZrJ7UtvBRbyMoSkwvC0ZcORjosehC5NCMzkdvXJzeDw3RNNs547ZhIe7prq777OHMdptWvtBXXVd8RTTnyq2psonp5DBvLdVuOyy1G41kZnkh8NNv8/Tw9NU4WPmvbQPXty2KV6v51MVEdg+D3wYr8cxgRvhpqqnnfXQlMOYP94nizQA3WFdX94X3XA9hpLbNjp8GeGhy5inY6ZbmyqJ3MR0lTwDiDTV11UIIYQQosvScqejT34NY+08jMUntbwQ38+WIMqdHr7GeUmSRH546623mDt3LgsXLmTcuHE8/vjjTJs2ja1bt5KRkeH1dpTSUO0mNFzw+Bde9+uYnlbebDJCKZPrmtlBb9b1fhnnHJX7mM3H1Nyx1dp+50XzlQJNMztAt8P4QD7m4MxXhmlovladBEKY869eh/f1oLbZsO/vivJ1Pa3Vl6ayou18HnhKcjgmxXwK2c4YZW6SLrbvW7qb+XYqKc+fHe7GW2quXnIZr53uYLqLY+tq39oso4HF2nbbrrbhtJpUEgkhhBBCtKblTkfvdTYUL7MNUh2bBemTOnwFUTNJEvnhb3/7G9dccw1XXXUVAAsXLuTjjz/mn//8J7fffrvX21GGjjLMjrJs34rnl5sv8k13iTI/JpFfI0h7GgDEE2+6iLiL2fo7+1NeVPaY+sO64XTD6EMPOzRNQzd1eLWWsYV8OlQayjCbMFS2ijmHmN6E1vBjpjqH6i4fa2z8mh3Py0KpNuv5pPn98ylIq5A+V/M4fq9cPt3u+roPcVslOHyq6nFcr81YPV52qdIUmqX5h9qLRI/jqhGGw0efFxVB9m0aDp9fLqqu3CZ6miqJ2vs8cBnT2jImkcuucy7W1YBGqSQSQgghhHBF0y2QOSXcf682RZJEJtXX17NmzRrmzZtnf07XdU455RS+//57n7ZlWHWsPidSWv/FOPinn1djerhaDwNzvem86Urlpk1+VC+1Xk/zdHPp+ErrLhm+xGz50vEfL1Y1m8zQ2owD7MUqNCeXTMXU2ovpZgwme2xf49E2CeZb+YmJoNirpXxvcuvp1t0GaEs3zJ3vmoeYHrstOazna1xP07S7S4A0Dx6tO3c38y50Uzc13fUKWpuYjoNXGbbBoNs0UbV+oi3dcN2Fy9XnhFPypW1Ml9tw/LL5e8ckkTcVRc0s7mK2Wr71NhokSSSEEEII0dVIksikkpISrFYrmZmZTs9nZmby008/uVynrq6Ouro6+/dlZWUAlNc1YLX6W0nkraYbWLM33aZWM3kD294grB7oejvTOXuIabZbnaYZJoumDJPVQLaYus836X7E1KzovlSCODHQXFRYtr8pK7qnG1h3mvfTl3XtjbE6977xYX81zRbT50OkWbFYzY1JpFmsbrontbO6pdHle+Iplu1rw/Yz5vi02wRPK0YjlvaSRC5fM2yVMoBjwkQDL6pnGtzH9BRbM2wzeDkdWzfJsdbf6422giDNub3txtQNW0mitxU99tcUGI3tx3GxrjLcJHvaWa+8qZJIyQDWopNoPlfLy8vD3BIhhBDCd82/v4J97SVJohCaP38+9957b5vnz1/+ZBhaI4QQQvivoqKC5OTkcDdDiHZVVFQAkJubG+aWCCGEEOYF+9pLkkQm9ezZE4vFwsGDB52eP3jwIFlZWS7XmTdvHnPnzrV/bxgGhw8fJi0tDS2oc3KHTnl5Obm5ueTn55OUlBTu5oSVHAtncjxayLFwJsejRWc6FkopKioqyMnJCXdThPBKTk4O+fn5JCYmtrnu6kw/e4HSHfcZuud+yz53j32G7rnf3WmfQ3XtJUkik6Kiohg9ejRffPEF5513HmBL+nzxxRfMnj3b5TrR0dFER0c7PZeSkhLkloZHUlJSl/8h9ZYcC2dyPFrIsXAmx6NFZzkWUkEkOhNd1+ndu7fHZTrLz14gdcd9hu6537LP3Ud33O/uss+huPaSJJEf5s6dy8yZMxkzZgzHH388jz/+OFVVVfbZzoQQQgghhBBCCCE6C0kS+eGSSy6huLiYu+66i8LCQkaMGMGnn37aZjBrIYQQQgghhBBCiI5OkkR+mj17ttvuZd1RdHQ0d999d5tudd2RHAtncjxayLFwJsejhRwLIcKjO/7sdcd9hu6537LP3Ud33O/uuM/BpimZu1YIIYQQQgghhBCi29PD3QAhhBBCCCGEEEIIEX6SJBJCCCGEEEIIIYQQkiQSQgghhBBCCCGEEJIkEkIIIYQQQgghhBBIkkiYMH/+fMaOHUtiYiIZGRmcd955bN261WmZ2tpaZs2aRVpaGgkJCVx44YUcPHgwTC0OnYcffhhN05gzZ479ue52LPbv38+vf/1r0tLSiI2NZdiwYaxevdr+ulKKu+66i+zsbGJjYznllFPYvn17GFscHFarlTvvvJO8vDxiY2MZMGAA999/P45zBXTlY7FkyRLOOecccnJy0DSN9957z+l1b/b98OHDzJgxg6SkJFJSUvjNb35DZWVlCPciMDwdi4aGBm677TaGDRtGfHw8OTk5XHHFFRw4cMBpG13lWAjRET399NP069ePmJgYxo0bx8qVK8PdpICRa7budW3W3a7Busu1Vne8ppJrp/CSJJHw2TfffMOsWbNYvnw5ixcvpqGhgdNOO42qqir7MjfffDMffvghb7/9Nt988w0HDhzgggsuCGOrg2/VqlU899xzHHfccU7Pd6djceTIESZNmkRkZCSLFi1i8+bN/PWvf6VHjx72ZR599FGeeOIJFi5cyIoVK4iPj2fatGnU1taGseWB98gjj/Dss8/y1FNPsWXLFh555BEeffRRnnzySfsyXflYVFVVMXz4cJ5++mmXr3uz7zNmzGDTpk0sXryYjz76iCVLlnDttdeGahcCxtOxqK6uZu3atdx5552sXbuWd955h61bt3Luuec6LddVjoUQHc1bb73F3Llzufvuu1m7di3Dhw9n2rRpFBUVhbtpAdHdr9m607VZd7wG6y7XWt3xmkquncJMCeGnoqIiBahvvvlGKaVUaWmpioyMVG+//bZ9mS1btihAff/99+FqZlBVVFSogQMHqsWLF6sTTzxR3XTTTUqp7ncsbrvtNnXCCSe4fd0wDJWVlaUWLFhgf660tFRFR0erN954IxRNDJmzzjpLXX311U7PXXDBBWrGjBlKqe51LAD17rvv2r/3Zt83b96sALVq1Sr7MosWLVKapqn9+/eHrO2B1vpYuLJy5UoFqD179iiluu6xEKIjOP7449WsWbPs31utVpWTk6Pmz58fxlYFT3e6Zutu12bd8RqsO15rdcdrKrl2Cj2pJBJ+KysrAyA1NRWANWvW0NDQwCmnnGJfZtCgQfTp04fvv/8+LG0MtlmzZnHWWWc57TN0v2PxwQcfMGbMGH75y1+SkZHByJEjeeGFF+yv79q1i8LCQqfjkZyczLhx47rc8Zg4cSJffPEF27ZtA+CHH37g22+/5YwzzgC617FozZt9//7770lJSWHMmDH2ZU455RR0XWfFihUhb3MolZWVoWkaKSkpQPc+FkIEU319PWvWrHH6LNJ1nVNOOaXLfg53p2u27nZt1h2vweRaS66pmsm1U2BFhLsBonMzDIM5c+YwadIkhg4dCkBhYSFRUVH2H9JmmZmZFBYWhqGVwfXmm2+ydu1aVq1a1ea17nYsdu7cybPPPsvcuXO54447WLVqFTfeeCNRUVHMnDnTvs+ZmZlO63XF43H77bdTXl7OoEGDsFgsWK1WHnzwQWbMmAHQrY5Fa97se2FhIRkZGU6vR0REkJqa2qWPT21tLbfddhuXXXYZSUlJQPc9FkIEW0lJCVar1eVn0U8//RSmVgVPd7pm647XZt3xGkyuteSaCuTaKRgkSST8MmvWLDZu3Mi3334b7qaERX5+PjfddBOLFy8mJiYm3M0JO8MwGDNmDA899BAAI0eOZOPGjSxcuJCZM2eGuXWh9e9//5vXXnuN119/nWOPPZb169czZ84ccnJyut2xEN5paGjg4osvRinFs88+G+7mCCG6mO5yzdZdr8264zWYXGsJuXYKDuluJkybPXs2H330EV999RW9e/e2P5+VlUV9fT2lpaVOyx88eJCsrKwQtzK41qxZQ1FREaNGjSIiIoKIiAi++eYbnnjiCSIiIsjMzOw2xwIgOzubIUOGOD03ePBg9u7dC2Df59YziHTF43Hrrbdy++23c+mllzJs2DAuv/xybr75ZubPnw90r2PRmjf7npWV1Wbg2MbGRg4fPtwlj0/zRc6ePXtYvHix/S9h0P2OhRCh0rNnTywWS7f4HO5O12zd9dqsO16DybVW976mkmun4JEkkfCZUorZs2fz7rvv8uWXX5KXl+f0+ujRo4mMjOSLL76wP7d161b27t3LhAkTQt3coDr55JPZsGED69evtz/GjBnDjBkz7F93l2MBMGnSpDZT627bto2+ffsCkJeXR1ZWltPxKC8vZ8WKFV3ueFRXV6Przh+xFosFwzCA7nUsWvNm3ydMmEBpaSlr1qyxL/Pll19iGAbjxo0LeZuDqfkiZ/v27Xz++eekpaU5vd6djoUQoRQVFcXo0aOdPosMw+CLL77oMp/D3fGarbtem3XHazC51uq+11Ry7RRk4R03W3RG119/vUpOTlZff/21KigosD+qq6vty1x33XWqT58+6ssvv1SrV69WEyZMUBMmTAhjq0PHcQYNpbrXsVi5cqWKiIhQDz74oNq+fbt67bXXVFxcnHr11Vftyzz88MMqJSVFvf/+++rHH39U06dPV3l5eaqmpiaMLQ+8mTNnql69eqmPPvpI7dq1S73zzjuqZ8+e6o9//KN9ma58LCoqKtS6devUunXrFKD+9re/qXXr1tlnnfBm308//XQ1cuRItWLFCvXtt9+qgQMHqssuuyxcu2Sap2NRX1+vzj33XNW7d2+1fv16p8/Uuro6+za6yrEQoqN58803VXR0tHrppZfU5s2b1bXXXqtSUlJUYWFhuJsWEHLNZtMdrs264zVYd7nW6o7XVHLtFF6SJBI+A1w+XnzxRfsyNTU16ve//73q0aOHiouLU+eff74qKCgIX6NDqPWFSHc7Fh9++KEaOnSoio6OVoMGDVLPP/+80+uGYag777xTZWZmqujoaHXyySerrVu3hqm1wVNeXq5uuukm1adPHxUTE6P69++v/vSnPzn98urKx+Krr75y+Tkxc+ZMpZR3+37o0CF12WWXqYSEBJWUlKSuuuoqVVFREYa98Y+nY7Fr1y63n6lfffWVfRtd5VgI0RE9+eSTqk+fPioqKkodf/zxavny5eFuUsDINZtNd7k2627XYN3lWqs7XlPJtVN4aUopFfj6JCGEEEIIIYQQQgjRmciYREIIIYQQQgghhBBCkkRCCCGEEEIIIYQQQpJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREKIDUUoBcM899zh9L4QQQgghAk+uvYQQrWlKPgmEEB3EM888Q0REBNu3b8disXDGGWdw4oknhrtZQgghhBBdklx7CSFak0oiIUSH8fvf/56ysjKeeOIJzjnnHK8uUqZOnYqmaWiaxvr164PfyFauvPJKe/z33nsv5PGFEEIIIcySay8hRGuSJBJCdBgLFy4kOTmZG2+8kQ8//JClS5d6td4111xDQUEBQ4cODXIL2/q///s/CgoKQh5XCCGEEMJfcu0lhGgtItwNEEKIZr/73e/QNI177rmHe+65x+t+8XFxcWRlZQW5da4lJyeTnJwclthCCCGEEP6Qay8hRGtSSSSECJmHHnrIXh7s+Hj88ccB0DQNaBk8sfl7X02dOpUbbriBOXPm0KNHDzIzM3nhhReoqqriqquuIjExkaOOOopFixYFZD0hhBBCiI5Irr2EEL6SJJEQImRuuOEGCgoK7I9rrrmGvn37ctFFFwU81ssvv0zPnj1ZuXIlN9xwA9dffz2//OUvmThxImvXruW0007j8ssvp7q6OiDrCSGEEEJ0NHLtJYTwlcxuJoQIizvvvJN//etffP311/Tr18/0dqZOncqIESPsfxFrfs5qtdr71VutVpKTk7ngggt45ZVXACgsLCQ7O5vvv/+e8ePH+7Ue2P7y9u6773LeeeeZ3hchhBBCiGCRay8hhDekkkgIEXJ33XVXQC5SPDnuuOPsX1ssFtLS0hg2bJj9uczMTACKiooCsp4QQgghREcl115CCG9JkkgIEVJ33303r7zySlAvUgAiIyOdvtc0zem55j73hmEEZD0hhBBCiI5Irr2EEL6QJJEQImTuvvtuXn755aBfpAghhBBCCLn2EkL4LiLcDRBCdA8PPPAAzz77LB988AExMTEUFhYC0KNHD6Kjo8PcOiGEEEKIrkWuvYQQZkiSSAgRdEopFixYQHl5ORMmTHB6beXKlYwdOzZMLRNCCCGE6Hrk2ksIYZYkiYQQQadpGmVlZSGL9/XXX7d5bvfu3W2eaz25o9n1hBBCCCE6Ern2EkKYJWMSCSE6vWeeeYaEhAQ2bNgQ8tjXXXcdCQkJIY8rhBBCCBEucu0lRNelKUnLCiE6sf3791NTUwNAnz59iIqKCmn8oqIiysvLAcjOziY+Pj6k8YUQQgghQkmuvYTo2iRJJIQQQgghhBBCCCGku5kQQgghhBBCCCGEkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEIIuniQ6dOgQGRkZ7N69u91lb7/9dm644YbgN0oIIYQQogtq77rr66+/RtM0SktLAfj0008ZMWIEhmGErpFCCCGE8KhLJ4kefPBBpk+fTr9+/dpd9pZbbuHll19m586dwW+YEEIIIUQX48t1F8Dpp59OZGQkr732WnAbJoQQQgivRYS7AcFSXV3NP/7xD/73v/95tXzPnj2ZNm0azz77LAsWLAhy64QQ4Wa1WmloaAh3M4TolCIjI7FYLOFuhuhAfL3uanbllVfyxBNPcPnllwepZUKIjkKuvYQwL5TXXl02SfTJJ58QHR3N+PHj7c9t2rSJ2267jSVLlqCUYsSIEbz00ksMGDAAgHPOOYc//elPkiQSogtTSlFYWGjv7iCEMCclJYWsrCw0TQt3U0QH4Oq665NPPmHOnDnk5+czfvx4Zs6c2Wa9c845h9mzZ7Njxw779ZgQomuRay8hAiNU115dNkm0dOlSRo8ebf9+//79TJkyhalTp/Lll1+SlJTEsmXLaGxstC9z/PHHs2/fPnbv3u11qbQQonNpvkjJyMggLi5ObnCF8JFSiurqaoqKigDIzs4Oc4tER9D6uis/P58LLriAWbNmce2117J69Wr+8Ic/tFmvT58+ZGZmsnTpUkkSCdFFybWXEP4J9bVXl00S7dmzh5ycHPv3Tz/9NMnJybz55ptERkYCcPTRRzut07z8nj17JEkkRBdktVrtFylpaWnhbo4QnVZsbCwARUVFZGRkSNcz0ea669lnn2XAgAH89a9/BeCYY45hw4YNPPLII23WzcnJYc+ePSFrqxAidOTaS4jACOW1V5cduLqmpoaYmBj79+vXr2fy5Mn2BJErzQe+uro66O0TQoRecz/4uLi4MLdEiM6v+edIxpcQ0Pa6a8uWLYwbN85pmQkTJrhcNzY2Vq69hOii5NpLiMAJ1bVXl00S9ezZkyNHjti/b04AeXL48GEA0tPTg9YuIUT4SZmzEP6TnyPhqPV1ly8OHz4s115CdHHyO0MI/4Xq56jLJolGjhzJ5s2b7d8fd9xxLF261GPWbePGjURGRnLssceGoolCCCGEEF1C6+uuwYMHs3LlSqdlli9f3ma92tpaduzYwciRI4PeRiGEEEK0r8smiaZNm8amTZvsf9WaPXs25eXlXHrppaxevZrt27fzr3/9i61bt9rXWbp0KZMnT/aq6kgIIUJtyZIlnHPOOeTk5KBpGu+9915YYlx55ZVomoamaURGRpKZmcmpp57KP//5TwzDCHibugpvj1u/fv3syzU/evfu3eb11jfcc+bMYerUqU7PlZeX86c//YlBgwYRExNDVlYWp5xyCu+88w5KKftyP//8M1dddRW9e/cmOjqavLw8LrvsMlavXh2cgyG6nNbXXddddx3bt2/n1ltvZevWrbz++uu89NJLbdZbvnw50dHRbruiCSFEuMh1V+cn117mdNkk0bBhwxg1ahT//ve/AUhLS+PLL7+ksrKSE088kdGjR/PCCy84jVH05ptvcs0114SryUII4VFVVRXDhw/n6aef9nndqVOnurxBMxvj9NNPp6CggN27d7No0SJ+8YtfcNNNN3H22Wc7zRopnHl73O677z4KCgrsj3Xr1jltJyYmhttuu81jrNLSUiZOnMgrr7zCvHnzWLt2LUuWLOGSSy7hj3/8I2VlZQCsXr2a0aNHs23bNp577jk2b97Mu+++y6BBg1zORiWEK62vu/r06cN///tf3nvvPYYPH87ChQt56KGH2qz3xhtvMGPGDBmvRAjR4ch1V9cg114mqC7so48+UoMHD1ZWq7XdZT/55BM1ePBg1dDQEIKWCSHCoaamRm3evFnV1NSEuyl+A9S7777r9fInnniievHFFwMSY+bMmWr69Oltnv/iiy8UoF544QWf4nQX3h63vn37qscee8ztdvr27atuvPFGFRUVpT7++GP78zfddJM68cQT7d9ff/31Kj4+Xu3fv7/NNioqKlRDQ4MyDEMde+yxavTo0S5/Vx45csRtO7rSz5MIDF+uu5RSqri4WKWmpqqdO3cGuWVCiHDpKr8r5Lqrc5JrL3MiwpeeCr6zzjqL7du3s3//fnJzcz0uW1VVxYsvvkhERJc+JEKIVpRSYZlVJy4urssN4njSSScxfPhw3nnnHX7729+GPH5VVRXgfGzr6+tpaGggIiKC6OjoNsvGxsai67ai2oaGBurr67FYLE6zNLlb1tNsmb4wc9zy8vK47rrrmDdvHqeffrq9Xc0Mw+DNN99kxowZTtOSN0tISABg3bp1bNq0iddff73NNgBSUlJ83yHRbfly3QWwe/dunnnmGfLy8kLQOiFERxCu6y7oetde4b7ugtBeewWSXHt51mW7mzWbM2eOVxcqF110UZupWoUQXV91dTUJCQkhf3TV6Z4HDRrE7t27wxK7+diWlJTYn1uwYAEJCQnMnj3badmMjAwSEhLYu3ev/bmnn36ahIQEfvOb3zgt269fPxISEtiyZYv9OW9KyH3R+rjddtttTufLE0880WadP//5z+zatYvXXnutzWslJSUcOXKEQYMGeYy7fft2e3whAsHb6y6AMWPGcMkllwS5RUKIjiRc111d9dornNddENprr0CTay/3unySSAghuqOHHnrI6Rfd0qVLue6665yec/wlHShKqS71V7pQaX3cbr31VtavX29/XHHFFW3WSU9P55ZbbuGuu+6ivr6+zfa8jSuEEEII/8h1V+cj117uSd8qIUS3FhcXR2VlZVjiBtN1113HxRdfbP9+xowZXHjhhVxwwQX251yVwvpry5YtYes60vw+Oh7bW2+9lTlz5rTpSlxUVATgNJvlrFmzuOaaa7BYLE7LNv+VyXHZK6+8MpBNb3PcevbsyVFHHdXuenPnzuWZZ57hmWeecXo+PT2dlJQUfvrpJ4/rH3300QD89NNPMgW5EEKIoAvXdVdz7GDpjtddENprr0CTay/3JEkkhOjWNE0jPj4+3M0IuNTUVFJTU+3fx8bGkpGR4dUvP7O+/PJLNmzYwM033xy0GJ64eh+joqKIioryatnIyEiX4wy5WzZQ/DluCQkJ3Hnnndxzzz2ce+659ud1XefSSy/lX//6F3fffXebC9PKykpiYmIYMWIEQ4YM4a9//SuXXHJJm77xpaWlHaJvvBBCiK5BrrsCJ9zXXRDaa69Akmsvz6S7mRBCdBKVlZX2EliAXbt2sX79+oCWL3sbo66ujsLCQvbv38/atWt56KGHmD59OmeffbbL8lxhE4zjdu2115KcnMzrr7/u9PyDDz5Ibm4u48aN45VXXmHz5s1s376df/7zn4wcOZLKyko0TePFF19k27ZtTJ48mU8++YSdO3fy448/8uCDDzJ9+vRA7LYQQgjR6ch1V9cg116+k0oiIYToJFavXs0vfvEL+/dz584FYObMmQEbSNnbGJ9++inZ2dlERETQo0cPhg8fzhNPPMHMmTODMgtFVxGM4xYZGcn999/Pr371K6fnU1NTWb58OQ8//DAPPPAAe/bsoUePHgwbNowFCxaQnJwMwPHHH8/q1at58MEHueaaaygpKSE7O5uJEyfy+OOP+7vLQgghRKck111dg1x7+U5TnWHkJCGECIDa2lp27dpFXl6e0zSbQgjfyc+TEEKI9sjvCiECJ1Q/T5J2FEIIIYQQQgghhBCSJBJCCCGEEEIIIYQQkiQSQgghhBBCCCGEEEiSSAghhBBCCCGEEEIgSSIhhBBCCCGEEEIIgSSJhBDdkEzqKIT/5OdICCGEt+R3hhD+C9XPkSSJhBDdRmRkJADV1dVhbokQnV/zz1Hzz5UQQgjRmlx7CRE4obr2igjq1oUQogOxWCykpKRQVFQEQFxcHJqmhblVQnQuSimqq6spKioiJSUFi8US7iYJIYTooOTaSwj/hfraS1NS+yeE6EaUUhQWFlJaWhrupgjRqaWkpJCVlSUX+0IIITySay8hAiNU116SJBJCdEtWq5WGhoZwN0OITikyMlIqiIQQQvhErr2EMC+U116SJBJCCCGEEEIIIYQQMnC1EEIIIYQQQgghhJAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIYCIcDegOzMMgwMHDpCYmIimaeFujhBCCOE1pRQVFRXk5OSg6/I3J9HxyXWXEEKIzixU116SJAqjAwcOkJubG+5mCCGEEKbl5+fTu3fvcDdDiHbJdZcQQoiuINjXXpIkCoOnn36ap59+msbGRsD2JiclJYW5VUIIIYT3ysvLyc3NJTExMdxNEcIrzeeqXHcJIYTojEJ17aUppVRQIwi3ysvLSU5OpqysTC5WhBDi/9m783iqtv9/4K+DiAglVFQ0p6IUlUqD5pHmUaX6dHNLaZ7nSaWJ5tyGW9I83uZJIypTg1mR0CCzDOes3x9+9rcTlcOZ8H4+Hudxs84+a79xrr3Oe6/1XqRMoWsYKSsKbs7x+XyEhYXRe5YQQkiZJK2xFxURIIQQQggh5ZajoyPevHkDPz8/WYdCCCGEyD1KEhFCCCGEEEIIIYQQShIRQgghhJDyy93dHc2aNUPbtm1lHQohhBAi9yhJRAghhJRjKSkp8PHxQWxsrKxDIUQmaLkZIYQQSdi/fz/27duH+Ph4WYciVpQkkgG6o0UIIUTcvn//jlu3bsHDw0Oofdq0aWjXrh08PT1lFBkhhBBCSNn25MkT3Lx5U6ht5cqVmDZtGt6/f8+1paam4tOnT9IOT6woSSQDdEeLEEJIaTx79gzr1q3D9evXuba0tDT07NkTkydPRmZmJtfetGlT1KpVSxZhEiIX6OYcIYSQ0jh+/DisrKzw999/g8/nc+22trbo06cPmjdvzrXt378fhoaGWLVqlSxCFQtKEhFCCCFyKjs7G/Pnz8fAgQORnZ3NtV+9ehVLly7F+fPnuTYdHR1YWlpi0KBBSE1N5dqXLl2KuLg4zJ8/X6qxEyIv6OYcIYSQ0hgwYADq1q2LTp06ISMjg2t3d3fHf//9B3V1da7t+fPnyMnJgYGBgSxCFQslWQdACCGEEOD8+fPYvn07OnXqhLVr1wIAlJWVsXfvXqSlpSEiIgImJiYAgE6dOsHe3h7W1tbc63k8Hp49e1aoXwUFuh9ECCGEECKKrKwsqKqqAgCqVq2K4OBgaGho/PF1J0+exNy5c9GsWTNJhygxlCQihBBCpIgxBjs7O/j4+ODRo0cwNjYGkF9g2tvbG0pK/3dp5vF4WLZsGapUqYIaNWpw7T179kTPnj2lHjshZZG7uzvc3d2FlggQQgghv/L69Wv06tULbm5uGDx4MAAUK0FUoE2bNhKKTDp4jDEmixNfunRJ5Nf06NGDy+aVB6mpqdDU1ERKSgqqVq0q63AIIYSI2YMHD7Bo0SLUqVMHJ0+e5NrNzc3x8uVLnDt3Dra2tgCA9+/f4+HDh2jZsiVatmwpq5CLja5hZQuNu+g9SwghpHhmzJgBNzc3WFpa4smTJ3IzK1ta1zGZzSQqyMgVF4/HQ3h4OHfHlRBCCJEn8+bNw5UrV7Br1y7Y2NgAAJSUlPD06dNC289v2bIFlStXhqmpKddWt25d1K1bV6oxk4qDxl2EEEJI8Wzbtg3VqlWDk5OT3CSIpEmm33FCQgIEAkGxHmpqarIMlRBCCAEAhIeHo0+fPujSpYtQe0xMDEJCQvDy5UuuzczMDCdOnCi0ZWrXrl3Rvn17urYRqaJxFyGEEFK0hIQE7t9KSkpYtWoVqlWrJsOIZEdmSSJ7e3uRpjCPHTu23EwNpq1YCSGkbHB3d0e7du3g4eHBtWloaOD69evw9vYW2uFi1qxZuHbtGiZNmsS1ValSBaNGjULTpk2lGjchP6vI4y5CCCHkd/z8/NCsWTOsW7dO1qHIBZnVJCK0Np4QQuRFZmYmtm3bhhcvXuD06dNQVFQEACxZsgTr16/H1KlTsW/fPu74Q4cOwcTEBG3atBEqNF2R0DWMlBU/Fq4OCwuj9ywhhBAhO3bswKxZs9C+fXvcv38fysrKsg6pSNIae1GSSIbE/Uv29/fHt2/f0LRpU9SsWRMAkJ2djQ8fPkBVVRW1atXijmWMgcfjlfqchBBS1nz58gUPHjyAqqoq+vbtCwDg8/nQ1tZGWloa/P39YWZmBgAICgrC27dvYWFhASMjIxlGLX8oSUTKGnrPEkII+ZVjx45h8ODBIu1iJm3Suo7JZLlZVlYW4uLiCrW/fv1aBtGUH8uXL0f37t1x9epVri0sLAwNGjRAq1athI4dPXo0FBUV4ebmxrXFxsaifv36MDc3FzrW1dUVffr0wenTp7m2jIwMzJ49G0uXLoVAIODaAwMDcfnyZYSHh3NtjDF8+vQJGRkZoJwkIUSaBAIBXr16hbS0NK7twoULGDp0KFxcXLg2RUVFLFiwADt27IC+vj7X3rJlS4wYMYISRKRMo3GX5OTm5so6BEIIISLKy8vD7t27kZ2dzbWNGzdOrhNE0iT1JNGZM2fQsGFD9OvXDy1btoSPjw/33Lhx46QdTrlSp04dNG/eHDVq1ODa+Hw+1NXVoa6uLnRsTk4OBAIBt6QCyF9uERUVhejoaKFjAwMDcf36dbx//55r+/btG7Zv3w4XFxehiu/79+/HwIED8e+//3Jtqamp0NPTg7q6OnJycrj2zZs3o3nz5ti+fTvXJhAI4ODggJkzZwrV+ggJCcGNGzcQERFRgp8MIaSi4PP5Ql936tQJLVq0wO3bt7m2jh07omXLloUS4kuWLMHMmTOFkkSElHU07pKcQ4cOwdjYWOhnSgghRP6NGDECjo6OmDp1Kk1iKILUk0Rr167FixcvEBAQgH/++QcODg44ceIEANAvqJTc3d0RHByMQYMGcW1mZmZIS0tDZGSk0LH//PMPPn78KDRArFOnDp48eYIrV64IHTt16lQcPnwYvXv35trU1NSwYMECODk5CR1bp04dWFhYCG3jnJmZCQBQUFAQWt8ZExOD169f4+vXr0LHenh4YNeuXULL4Y4dO4bevXtj586dXBtjDFpaWjA0NMSnT5+49v/++w9OTk44f/68UGxPnjxBcHAw3fUjpByKjIxEu3bt0KRJE6H25s2bQ01NTWjHiiZNmiAwMBBbt26VdpiESB2NuyTn8ePH+PDhAy5fvizrUAghhIjgr7/+gra2Nvr27UslWIog9Wqbubm50NPTAwCYm5vD29sbtra2iIiIoF+QFFWtWrXQOkZVVVW0b9++0LFWVlawsrISaqtWrRo2btxY6NgFCxZgwYIFQm01a9YEn89HZmam0O941qxZsLW1haGhIdemqKiI9evXIyMjQ2gXlho1asDU1BTGxsZcW3p6OlJSUpCSkiI0U+rx48fYuXMnGGOwtbUFkD8Q7ty5M/h8PuLi4rj6THv27MG2bdswYsQIrFmzhuvjyJEj0NTUhI2NTaFZWIQQ2bp58yZOnDiBrl27wt7eHgCgp6eH58+fg8/n48OHDzAwMAAAbNy4EW5ubqhUqZIsQyZEZmjcJTlr165FpUqVsHLlSlmHQggh5BcEAgHOnDkDZWVlDB48GABgY2ODd+/eUX26X5D6TCJdXV0EBQVxX1erVg23bt3C27dvhdpJ+aKgoFAo2VK/fn1069YNDRs25NpUVVWxaNEirF27tlBCKSAgALNmzeLa1NTUEBERAT8/P6GEUpcuXbBo0SL07NmTa8vKykL9+vVRo0YNaGlpce0fPnxAeHi4UL0SgUCAyZMnw9bWFsnJyVz73r170bhxY6xatUro+zhx4gSuXr3KzZgihIgPYwwvX74UWkbm7++PI0eO4NKlS1yburo6Lly4gOjoaNSuXZtr19bWpgQRqdBo3CU5tWrVwr59+7gdDhljGD16NPbs2YPv37/LODpCCCFA/gqaESNGYNasWUKlTyhB9GtS393sw4cPUFJSKrLmw+PHjwvNWJF3tra2uH//Prp3744zZ86I9FraZUP24uLiEB0dDV1dXTRq1AhA/pK30aNHIyEhAd7e3twSuYULF2LTpk1wcnLi6igJBAIoKytzsxcKPpzu378fu3btwqhRo7B48WLufGfPnkXNmjXRunVrVK5cWbrfLCFlDGMMrVq1QmBgIB4+fIiOHTsCyN9x7NSpU7CxsUGXLl1kG2QFRtewsqG8jbtKwt3dHe7u7uDz+QgLC5PYe/bEiRMYM2YMNDQ0EBMTI3RTihBCiHRERUUhOzsbTZs2BZA/WcDc3BwjR47E3LlzoaamJuMIS05aYy+pLzcrWALws+/fv6NSpUq4cuWK0G5ZADBw4EBphFYiTk5OmDRpEo4cOSLrUEgJ1K5dW2jWAZA/Q+nChQuFjp05cyb69OkDXV1dri0rKws9e/ZEYmKiUHtkZCRevXqFL1++cG0CgQAjRowAn89HTEwMt8zuv//+w82bN9GjRw/069dPzN8hIWVDeno6zp8/j5CQEKxbtw4AwOPx0KJFC4SHhyMiIoJLErVs2RItW7aUZbiElBnlbdxVEo6OjnB0dOQG15IyePBg7Ny5E7m5uUIJotGjR8PAwACzZ89GzZo1JXZ+Qgip6Dw8PODg4AAbGxvcunULQP5KlVevXglttkR+T+oziYpy/fp1jBs3TqiAcQEej1dotxp5c//+fbi5udFMIsKJiYlBaGgoatWqBRMTEwD5H4IHDBiADx8+ICQkhNtZbs6cOXB1dYWzszNXSJfP58PY2Bi1a9fG5cuXUb16dQBAQkIC+Hw+atasSX/oSJmXk5PDzdT78OEDDA0NwePxkJCQwCVdExISoKWlRTPv5BBdw8qusj7uKilZvGcTExO5WVzx8fHcvx89eoR3796hQ4cOQvUWCSGEFM+HDx9w5swZdO7cGa1btwaQP4uoUaNG6NKlCy5fvixUkqQ8kNZ1TC4+Zc6YMQPDhw9HfHw8BAKB0KM0AxVvb28MGDAAtWrVAo/HK3J2iLu7O+rVq4fKlSvD0tISvr6+pfhOCMlXp04d9OjRg0sQAfk1U+7du4fw8HAuQQQAPXv2xLx589CjRw+u7ePHj4iJiYGfn5/Q3citW7fCwMAAc+fO5doEAgFcXV1x/vx52rmNlAmXL19Gs2bNMH36dK7NwMAAo0ePxpIlS4SO1dfXpwQRIWImqXEXKUxdXR2enp5YunSp0JK//fv3Y9y4cfD09OTavn37hilTpmDt2rVCO8/9PNOLEEIIsHz5csyePRuHDh3i2oyNjZGYmIjbt2+XuwSRNEl9uVlREhMT4ezszO2+IS4ZGRkwNTXFpEmTYGdnV+h5Ly8vODs7Y+/evbC0tMT27dvRq1cvhIaGcnexzczMkJeXV+i1N2/e5HbIIqQ0evXqhV69egm1FezUlJCQIJRQSk9Ph6KiIoyMjLi2jx8/Ys6cOVBUVBQqlPnvv/8iMDAQdnZ2Re5aR4g0ZGZm4tatWzA3N+eWvaiqquLt27dITU0FY4wrUn/8+HFZhkpIhSGpcRcprEqVKhg5cmSh9iZNmgjd/QaA6OhoHDx4EHp6eli6dCnXbm9vjxs3bsDFxQUTJkwAkH83+dy5czA0NET37t0l/n0QQoisMMZw+PBhnDhxAkePHuWW7Y4cORLh4eGwsLAQOr5gBQYpOblIEg0dOhT3799H/fr1xdpvnz590KdPn18+7+rqiilTpmDixIkA8nevunr1Kjw8PLBw4UIAQEBAgNjiyc7ORnZ2Nvd1amqq2Pom5YuysjLMzc0Lte/Zswe7du0SSlzm5eVhxIgRyM7O5nZYAYAzZ87g4sWLqF27Npck+vbtG1asWIHWrVvD3t6etj8mEjdkyBBcv34dW7duhbOzMwCgc+fO8PT0RO/evek9SIgMSGrcJQ2l2TBEnixevFhoYwsA0NHRwapVqwotJ4+NjcXnz5+hoqLCtYWHh2PixInQ19dHfHw8175w4UK8fPkSzs7O6N27N4D8pb2xsbEwNDTklvgSQkhZwePxcODAATx9+hReXl7cbtc9e/YU2s2aiI9cJInc3NwwbNgwPHz4EC1atCi0XfHMmTPFfs6cnBy8ePECixYt4toUFBRgY2ODp0+fiv18ALBhw4ZC26cTIiolJSWhZFC9evVw8uTJQseNGTMGBgYGsLa25tr8/f2xa9cuGBkZcXcjgfytIXNyctC3b1+uoDYhokhOTsbu3btx69YtXLt2jVsi1qdPH7x9+1bow42ysnKRd9YJIdIhi3GXuJTnDUPq1KmD5cuXF2o/f/48YmNjhYqQKyoqolevXoV2UHv27BkePHiASZMmcW2vX79G69atUbNmTXz8+JFrP3PmDL59+wYbGxuhGcqE/EwgEHDJSz6fD19fX/B4PJibm3N/P759+4b09HRoa2tDXV1dluGSMiwrKwuHDx/G+fPn8d9//3GfeWbNmoX+/fvD1tZWxhFWEEwOHDx4kCkpKTF1dXVWt25dVq9ePe5hZGQklnMAYOfPn+e+jouLYwDYkydPhI6bN28es7CwKHa/3bt3Zzo6OkxVVZXVrl27UH8/+v79O0tJSeEesbGxDABLSUkR+fshpCRev37NnJ2d2YoVK4TamzdvzgCwy5cvc20RERFsx44dzMfHR8pRkrIoKyuL6evrMwDs2rVrXHtOTg4TCAQyjIxISkpKCl3DyihpjLsk6d69e2zIkCEiv64ivGefPHnCDh8+zN6/f8+13bhxg1WuXJlZWloKHdu5c2cGgHl6enJtwcHBrG3btszBwUHo2MePH7P79++zr1+/SvYbIDKTnJxc6HPMihUrmIaGBlu2bBnXlp2dzQAwAOzz589c+/r16xkANnHiRKE+rKysWNeuXVlMTAzXFhUVxe7du8c+fPggoe+GlFWpqamsevXqDAA7ffq0rMORO9K6jsnFTKIlS5Zg1apVWLhwYZnbsen27dvFPlZFRQUqKipwd3eHu7s7FYckUtesWTNuB7UCjDHY2tqidu3aQrUR7ty5AycnJ/To0QM3b97k2o8dO4ZatWqhffv2UFNTk1rsRH4wxnD79m3cunULLi4uAIDKlStj+/btSElJEVoq+fMMBUKI7Elq3OXt7Y3NmzfjxYsXiI+Px/nz5zF48GChY9zd3bF582YkJCTA1NQUu3btKlRPgpRc+/btC9Uh7NmzJzIzM5GWlibU3qVLF6irq6NJkyZcW3h4OPz8/Ar1u2DBAjx69AinTp3CsGHDAAC+vr4YO3YsTE1Ncfr0ae7Y48eP49OnT+jXrx8aNWoEIL9OaExMDLS0tLh6IkS2fpwdlJiYiFq1akEgECA5ORmampoA8mespaWlIS4ujntdpUqV0LBhQ+Tl5Qld4wu+1tDQ4Npyc3Px5MkTMMaEZhSfPn0aCxYswNixY3Hs2DGuffLkydDU1MTChQtRo0YNrg8lJSVanl5OCQQCPH36FFZWVgAADQ0NuLi4IC0tTWhTHyJdcpEkysnJwYgRI6SaINLR0YGioiISExOF2n/cqlRSHB0d4ejoyG1hR4gs8Xg8rF69ulB7rVq1MHDgQO6PNpA/xXjatGnIzMzE27dvuYFlUlISlJWVaXpxBZGQkIC+ffsiLy8PQ4cO5T7gjRgxQsaREVK+aGtrF/uDUVJSUrH7ldS4izYMkV88Hq/QdslFlUBo3749Ll26VKh2UZ06ddCwYUOhJW+JiYkIDw8vtORtz549ePz4MerUqcMliV68eAFra2s0atQIoaGh3LFjxozBs2fP4OrqikGDBgEAIiIisGjRIhgYGGDbtm3csV5eXoiOjkbfvn3RsmVLAPn1Pe/duwd1dXWhAt6RkZFITU2FoaEhdHR0AOQnMb58+QJlZWVUq1aNO5b9sIFCRXDx4kWsXLkS7du3x+7duwHkb5hSr1495OXlIT4+nvt8MnnyZAwfPhy1a9fmXs/j8RAWFlao32XLlmHZsmVCu/HxeDzcuXMHCQkJQsWEVVVV0ahRIzRs2JBry87O5napKqgNCwDbtm3DihUrMH36dKEbncePH4eenh46duxIu6CWUd+/f0f37t3x9OlT+Pj4oG3btgAgtFyWyIhE5ykV06xZs9i6deskeg78tNyMMcYsLCzY33//zX3N5/NZ7dq12YYNGyQai5ubG2vatClr1KhRuZ/2TMqXpKQkNmzYMNaiRQuWl5fHtS9evJipqKiwjRs3yjA6IikZGRns/v37Qm3Tp09nM2fOZLGxsTKKishaRVi6I2uHDx/mHlu3bmXa2tps5MiRbMeOHWzHjh1s5MiRTFtbm7m6uorUryzHXY6OjtzXfD6f1apVS+RxFy03kw9JSUnM29u70BKltWvXslGjRjF/f3+u7c6dO6xatWqsXbt2Qsd27NiRAWBnzpzh2h4+fMgAsIYNGwod26dPHwaAeXh4cG3+/v4MAKtZs6bQsUOHDmUA2K5du7i2sLAwBoBVrVpV6Fh7e3vG4/HY5s2bubaPHz8yHR0dZmBgIHTsqlWrmImJCdu9ezfXlpaWxjp37sy6du3KcnJyuPYjR46woUOHsmPHjgn1sWLFCubq6srS0tK4ttzcXIkszb506RKbMWMGCw8P59ouXrzIALDGjRsLHSvr/y8yMjLY9u3b2bx584R+Fo6OjgwAW7RoEdf2/fv3Ipe8HT16lA0aNIgdPXpUqO/09HTJfwOkRMaNG8fU1dXZiRMnZB1KmSBXy80KdqQpDldX12IfW4DP58PFxQU3btxAy5YtCy1PKEmfQP524REREdzX0dHRCAgIQLVq1VCnTh04OzvD3t4ebdq0gYWFBbZv346MjAxutzNJoZlEpKzS1tbGqVOnCrUHBAQgOztbqOj1t2/f4OHhgcGDB5fJHXRIvri4OJiZmSE9PR3v37/n7va7u7vLODJCyj97e3vu30OGDMHq1avx999/c20zZ86Em5sbbt++jdmzZxe7X0mNu35HFhuG0K6ykqWtrY1OnToVal+yZEmhtm7duuHr16+F2j08PPD582duxhEAGBkZwc3NDVWqVBE6tlevXtDT00Pjxo25tkqVKsHS0pKbLVSgYFnbj7On8vLywOPxCr3f+Xw+GGNCM+tyc3Px5cuXQjNU4uLi8Pr1a3z58oVry87Ohre3N4D85VkFAgICcObMGaExUFZWFjeD68fZEi4uLli/fj1mzpyJ9evXc+0XL16EgYFBkf+f/ig7OxsBAQH49OkTBgwYwLW7urri/v37aNasGRo0aAAAsLa2xsmTJ9G5c2ehPn6eaSZtampqcHJyKtTu6uqKOXPmCP0u0tPT0bt3byQmJgrNUPL19cXFixfRrFkzri03NxdaWlrQ1dVFUFAQd/ynT5+goqJCn8WkzM/PDyYmJlzJii1btmDjxo00U1TOFCtJ5O/vL/T1y5cvkZeXx/2RDgsLg6KiYpFbdhdHcHAwWrVqBQB49eqV0HOlmf75/PlzdO3alfu6INllb2+Pw4cPY8SIEfj8+TOWL1+OhIQEmJmZ4fr169DT0yvxOQmpiK5cuYLXr1+jbt26XNvVq1cxd+5c/PPPP4X+vybyLTs7m6sdUKtWLdSvXx+JiYmIiorikkSEEOm6ceMGNm3aVKi9d+/eQkszikNS467f+fLlC/h8fqExlp6eHkJCQordj42NDQIDA5GRkQEDAwOcPn26UA2eArSrrPxr2LCh0JIjAKhduzYcHR0LHVtUAsHExATPnj0r1H7gwIFCbU2bNoVAIChUE3T37t3YsmWLUFKqZs2aeP36daFj58yZg5EjR6JevXpcm7q6Ok6fPo28vDyhRJOdnR2MjY2F6j3m5eXB0dERSUlJQkmZd+/eISMjQygRlJGRwdX0SkpKgra2NgBg586dOH36NCZPnswlkj98+IB27dqhSpUqSE5O5naEGjVqFJo1awZTU1OuX01NzTK1PFxZWbnQ7nvVq1fHtWvXCh07fvx4NGvWjPv7BuRPEsjLy0NqaqrQMsONGzdi27ZtWLlyJVasWMG18/l8oWQfEZ8dO3Zgzpw5mDZtGtzc3ACAxpVyqlhJonv37nH/dnV1hYaGBo4cOcL9sfr27RsmTpxY5N0EUfsXpy5duoAx9ttj/v77b6G7ctJAhatJecPj8dC8eXOhturVq6Nbt25Cd6oYY+jYsSPMzc2xYsUKobs/RPY+f/4MZ2dnPH36FG/fvkWlSpXA4/Fw5swZ6Ovrc4NOQoj0Va9eHRcvXsScOXOE2i9evCjy31JJjbukQZQNQxYtWgRnZ2ccOHAABw4cAJ/PF5phTiqmnxMAGhoaQsWWgfwZSj/ORinQqFEjoVlPQP7GNEOHDi10bMeOHdGxY8dC5yr4cPyjnTt3Yu7cuUK1HVNSUtCuXTuhBBEAhIaG4tGjR0Kfu+rVq4d69erB2NgYX79+5ZKxU6dOLXSu8qxt27ZcXZsCjRo1wrdv3xAbGyuUBI+NjQUAoQRUXFwcTExM0KVLF5w9e5aSRWLWrFkz8Pl8JCcnUzJOzvHYn7IoP6lduzZu3rwJExMTofZXr16hZ8+e+PjxY7H7Wr58OQYNGlTiGUhlXcFys5SUFJlP8SREUtgPBSFfvHiBNm3aoEqVKvj8+TNUVVUB5N/l0dXVLTS1nEhXVlYW6tWrh0+fPuH69evo1auXrEMicoyuYdJ1+PBhTJ48GX369IGlpSUAwMfHB9evX8eBAwcwYcKEP/YhzXEXj8cT2t0sJycHampqOHPmjNCOZ/b29khOTsbFixclHhO9Z0l5EBQUhPDwcDRq1AgtWrSQdThl2ufPn1G5cmUuSXj8+HGMHTsWbdu2ha+vL3fckSNHUKNGDXTr1o2KZItAIBAgLi5OqByFv7+/0EwvIhppXcdE3tYiNTUVnz9/LtT++fPnQltr/smHDx/Qp08fGBgY4K+//sK1a9eQk5MjakiEEDn2412bZs2a4dKlS9i0aROXIAKA//3vf9DR0cHZs2dlEWKFxOfzcfbsWcyaNYtrU1VVxb59++Dn50cJIkLkzIQJE/D48WNUrVoV586dw7lz51C1alU8evSoWAkiQLbjLmVlZZibm+POnTtcm0AgwJ07d365XExc3N3d0axZs0IzDAgpi1q2bIkhQ4ZQgkgMatSoITSLbOTIkXj+/Dk2b97MtfH5fMydOxf9+vXDkydPZBFmmZSYmIiePXvCysoKKSkpXDsliMoGkWcSjR8/Hg8fPsTWrVu5bY99fHwwb948dOrUCUeOHBEpAIFAgMePH+Py5cu4ePEi4uPj0aNHDwwaNAj9+/cXWjtaXvy43CwsLIzuaJEKLS8vD82bN0doaCjCwsK42gQvXryAt7c3Bg8eXGgtOim9mJgYGBsbg8/nw8/PD23atJF1SKSMoVkZZZMkx10/bhjSqlUruLq6omvXrtyGIV5eXrC3t8e+ffu4DUNOnTqFkJAQqdSDpPcsIURUKSkpWLRoER49eoQXL15wdaOOHz+O169f46+//hKaKUPypaenw8zMDB8/fsSlS5dgY2Mj65DKBWldx0ROEmVmZmLu3Lnw8PBAbm4uAEBJSQkODg7YvHlzqZeLvH37lhu4PH/+HJaWlhg4cCBGjRqF2rVrl6pveUODFULyMcbw9u1bofX/M2fOxK5duzBx4kR4eHjIMLryITk5Gb6+vujZsyfXNnPmTFStWhVOTk6oUaOGDKMjZRFdw6QvMjIS//zzD6KiorB9+3bo6uri2rVrqFOnTqEyAMUlznHX/fv3hTYMKVCwYQgAuLm5YfPmzdyGITt37uSWz0kavWcJIeLSpk0bvHjxAhs2bBB584DyKisrS2ilwMuXL6Gurl6ojhcpOblNEhXIyMhAZGQkAKB+/foSqSXy+fNneHp64s6dO+jUqRPmzp0r9nPIEg1WCPm1Y8eOwcPDg5viC+TvuhUYGMjNYiTFEx0djZYtW4LP5+P9+/eUECJiQdcw6Xrw4AH69OkDKysreHt74+3btzA2NsbGjRvx/PlznDlzptTnKK/jLprBTQgRJ8YYzp49i3/++QfHjx+HlpYWACAqKgoZGRkVcingvXv3YG9vDzc3NwwcOFDW4ZRbcp8kioiIQGRkJDp37gxVVVWh4rSllZaWBk9PTxw6dAjPnz8vd7uA0WCFkJJZvnw51q5di5UrV2L58uWyDqfMYIzBwsIC379/x7Fjx2BmZibrkEg5QEki6Wrfvj2GDRsGZ2dnaGhoIDAwEMbGxvD19YWdnR0+fPhQ4r7L+7irAL1nCSGSNGTIEJw/fx47d+6U+u7ZsjZ37lxs3boVHTp0wKNHj8SWFyDC5LZw9devX9G9e3c0atQIffv2RXx8PADAwcGh0LasovL29oa9vT1q1qyJLVu2oGvXrnj27Fmp+pRHjo6OePPmDfz8/GQdCiFlBmMMnz59AmOsyG1pibCkpCQU3APg8Xi4evUqgoKCKEFESBkVHBwMW1vbQu26urr48uVLifqsKOMuKlxNCJG03NxcKCkpQUFBAd26dZN1OFK3bt06rFy5Ejdu3KAEUTkgcpJo9uzZqFSpEmJiYqCmpsa1jxgxAtevXxc5gISEBGzcuBENGzbEsGHDULVqVWRnZ+PChQvYuHEjXdAJIQDyEx179+7Fy5cvMXToUK49JCREaNcEAnz8+BHm5uaYPXs2BAIBgPwPknTRJqTs0tLS4m7M/cjf31+k2kEVcdxFN+cIIZJWqVIleHl5ITIyUuhm5vHjx3H//n3ZBSYBjDG4u7tj4sSJ3A1JFRUVrFixAurq6jKOjoiDyEmimzdvYtOmTTAwMBBqb9iwId6/fy9SXwMGDEDjxo0RFBSE7du34+PHj9i1a5eoIRFCKpAft87MysrCoEGDYGJigpcvX8owKvly9+5dvHv3DleuXEFycrKswyGEiMHIkSOxYMECJCQkgMfjcbuUzZ07F+PHjy9WHzTuIoQQyapbty737w8fPmDatGno2rUr7t69K8OoxCs0NBSzZs3C4cOHcfPmTVmHQyRASdQXZGRkCM0gKpCUlAQVFRWR+rp27RpmzpyJv/76i9v2mhBCiuvDhw8QCAQQCAQwMjKSdThyY+zYsVBWVkabNm1KtZ01IUR+rF+/Ho6OjjA0NASfz0ezZs3A5/MxevRoLF26tFh9VNRx14+1IAkhRFrU1dUxatQohIeHw9raWtbhiE2TJk2wfv16qKiooEePHrIOh0iAyDOJOnXqhKNHj3JfF9zNcnFxKXLb09959OgR0tLSYG5uDktLS7i5uZV4XX1ZQmvjCRGPhg0bIigoCNevX4e2tjbX7u/vL8OoZCMvLw85OTnc18OHD4exsbEMIyKEiJOysjIOHDiAyMhIXLlyBf/++y9CQkJw7NgxKCoqFquPijruouVmhBBZ0NLSwv79+3H9+nXu7zRjrMzVfhMIBNi6dSsSExO5tnnz5mHmzJlQUBA5nUDKAJF3N3v16hW6d++O1q1b4+7duxg4cCBev36NpKQkPH78GPXr1xc5iIyMDHh5ecHDwwO+vr7g8/lwdXXFpEmToKGhIXJ/ZQXtskGI+N2/fx9du3bFkCFDcPLkSSgpiTxhssxhjGHq1KmIjY3FmTNnaD04kQq6hpVdNO6i9ywhRDY2btyIRYsWYe3atViyZImswymWmTNnYteuXejWrRtu3bpFiSEZktZ1TORPT82bN0dYWBjc3NygoaGB9PR02NnZwdHRETVr1ixREFWqVMGkSZMwadIkhIaG4tChQ9i4cSMWLlyIHj164NKlSyXqlxBS8bx+/RpKSkrQ0dGpEAkiAAgLC8OJEyfw/ft3PH36lKb+ElIOOTs7F9nO4/FQuXJlNGjQAIMGDSrWElMadxFCiGx8+vQJAFC9enUZR1J8f/31F06ePIlx48ZRgqiCEHkmkbTw+XxcvnwZHh4e5XawQne0CJGMwMBAGBkZcf9fpaSkICUlBXXq1JFxZJLj4+ODt2/fYsKECbIOhVQQdA2Trq5du+Lly5fg8/lo3LgxgPwEsaKiIpo0aYLQ0FDweDw8evRIaGed4irP464faxKFhYXRe5YQIlOPHz+GlZWVrMP4rW/fvgmVcsjIyECVKlVkGBEBpDf2EjlJFBQUVHRH//9OVp06dUQuYF1R0QCbEOmYMmUKvLy8cODAAYwYMULW4YgNn88vdi0SQsSNrmHStX37djx8+BD//POPUAJ88uTJ6NixI6ZMmYLRo0cjKysLN27ckHG08ones4QQeZOTk4OdO3di5syZUFZWlnU4YIxhx44dWLNmDR49eoSmTZvKOiTyA2ldx0SeL2ZmZoZWrVqhVatWMDMz4742MzNDkyZNoKmpCXt7e3z//v23/QQFBUEgEBT7vK9fv0ZeXp6o4RJCKrjv37/jzZs3SEtLQ61atWQdjtjcunULrVu3RkxMjKxDIYRIwebNm7FmzRqhQaGmpiZWrlwJFxcXqKmpYfny5Xjx4kWRr6dxFyGEyJ8xY8Zg3rx5mDx5sqxDAQBkZ2fD09MTSUlJ8PLyknU4REZEThKdP38eDRs2xP79+xEYGIjAwEDs378fjRs3xokTJ3Do0CHcvXv3j9uxtmrVCl+/fi32edu3b19uPgzR7maESE/lypXh7e2Nu3fvolOnTlx7eHh4md0Omc/nw8nJCUFBQdiyZYuswyGESEFKSgpXy+JHnz9/RmpqKoD8nXR+3OXwRxV53EUIIfLKwcEBmpqaGD16tKxDAZA/br5+/To8PDywYsUKWYdDZETkqq7r1q3Djh070KtXL66tRYsWMDAwwLJly+Dr64sqVapgzpw5v/3wwhjDsmXLoKamVqzz/mrQUxY5OjrC0dGRmy5GCJEsRUVFdO3alfs6KSkJnTp1gpGREc6ePVvmZhgpKirixo0b2LBhAzZv3izrcAghUjBo0CBMmjQJW7du5W4y+fn5Ye7cuRg8eDAAwNfXF40aNSry9RV53EUIIfKqd+/eePfuHbS0tGQWg0AggK+vL9q1awcA0NbWxsSJE2UWD5E9kZNEwcHBqFu3bqH2unXrIjg4GED+krT4+Pjf9tO5c2eEhoYW+7zt27eHqqqqaMESQkgRgoKCkJmZiZSUlGLtBCQvGGPg8XgAAENDQ+zevVvGERFCpGXfvn2YPXs2Ro4cyS0DU1JSgr29PbZt2wYAaNKkCQ4ePFjk6yvyuOvHwtWEECJvfkwQJScn4927dzAzM5PKuRljcHJywt69e3Hu3DkMGDBAKucl8k3kwtWtWrWCqakp9u/fzxXXys3NxZQpUxAYGAh/f388fvwYY8eORXR0tESCLi+ogCIhshMbG4vk5GS0aNECQP5FMjo6GsbGxjKOrGjJyckYPHgwNmzYgPbt28s6HELoGiYj6enpiIqKAgAYGxtDXV1dxhGVHfSeJYTIs3fv3qFXr17IyMhAUFCQVG5k5uXlYcyYMTh9+jROnDiBkSNHSvycpOTktnC1u7s7rly5AgMDA9jY2MDGxgYGBga4cuUK9uzZAwCIiorC9OnTxR4sIYSIi6GhIZcgAoDTp0+jcePGWL16tQyj+rXly5fjwYMHGD9+PBWTJaQCU1dXR8uWLdGyZUtKEBFCSDlSo0YNAPm7hkurJpySkhJOnDiBe/fuUYKIcERebtahQwdER0fj+PHjCAsLAwAMGzYMo0ePhoaGBgBg3Lhx4o2SEEIk7O7du8jLyxNp9x9p2rBhA758+YKFCxdCSUnkP92EkHLg+fPnOHXqFGJiYgrVDDp37pyMoiKEECIOVapUwcWLF6GnpwdtbW2Jnis1NZWbiaKoqAhra2uJno+ULSIvNyPiQ9OeCZEvV69eRY8ePbiltIGBgbh58yamT5+OKlWqyDg6QuQLXcOk6+TJkxg/fjx69eqFmzdvomfPnggLC0NiYiJsbW3xzz//yDpEuUfvWUIIyd/ApVWrVhg7dixWr14NRUVFWYdEikla17ES345+8+ZNkXeyBg4cWOqgCCFEFvr16yf09cqVK3HhwgWEh4dj//79Uo9n+fLlaNiwIc3OJIRg/fr12LZtGxwdHaGhoYEdO3bAyMgI//vf/1CzZk1Zh0cIIUTMbt26BV9fXyxZskSs/Z45cwYxMTE4ffo0FixYQElzUojISaKoqCjY2toiODgYPB4PBRORCnbcEXXniNzcXPTu3Rt79+5Fw4YNRQ2nTKJdNggpGwYPHozXr19j9uzZXFtaWhoAcMtrJeX69etYs2YNeDweWrVqhebNm0v0fIQQ+RYZGcklspWVlZGRkQEej4fZs2ejW7duWLVqVbH6qYjjLkIIKWvevHmDnj17gsfjoVevXmjTpo3Y+p46dSp0dXVhYGBACSJSJJELVzs5OcHIyAifPn2CmpoaXr9+DW9vb7Rp0wb3798XOYBKlSohKChI5NeVZY6Ojnjz5g38/PxkHQoh5Dfs7e0REhKCpk2bcm0uLi4wMjLC0aNHJXrunj17Yvbs2Vi7di0liAgh0NbW5pLUtWvXxqtXrwDk73yYmZlZ7H4q4rjL3d0dzZo1Q9u2bWUdCiGEFEuzZs0wYcIEzJw5Ew0aNBB7/4MHDxZr4omULyIniZ4+fYrVq1dDR0cHCgoKUFBQQMeOHbFhwwbMnDmzREGMHTsWhw4dKtFrCSFEkhQU/u/PJGMM169fx9evXyW+q5CCggK2bt2KRYsWSfQ8hJCyoXPnzrh16xaA/A1DnJycMGXKFIwaNQrdu3cXqa+KNu6im3OEkLLIw8MD27dvh5aWllj6u3jxokg3FUjFJfJyMz6fzy2z0NHRwcePH9G4cWPUrVsXoaGhJQoiLy8PHh4euH37NszNzQsViHV1dS1Rv4QQIk48Hg9Pnz7F5cuXMWjQIK794sWLePXqFWbMmFGqabu+vr64cuUKVq1aBR6Pxy3jJYQQNzc3fP/+HQCwZMkSVKpUCU+ePMGQIUOwdOlSkfqicRchhMg/cY4D/fz8MHjwYNStWxdBQUG0zIz8lshJoubNmyMwMBBGRkawtLSEi4sLlJWVsX//fhgbG5coiFevXqF169YAgLCwMKHn6EMSIUSeKCkpwdbWlvuaz+dj8eLFePPmDXg8HhYvXlyifpOTk9GvXz98+fIF1apVw6xZs8QUMSGkrMvLy8OVK1fQq1cvAPkzDRcuXFji/mjcRQghZce7d++wbt06DB8+HD169ChRH58/f0bdunXRuXNnShCRP+KxgsrTxXTjxg1kZGTAzs4OERER6N+/P8LCwlC9enV4eXmhW7dukoq13KGtWAkp+wQCAby8vLBr1y5cu3YNmpqaAIC4uDioq6tzXxeHh4cHDhw4gJs3b0q8MDYhpUXXMOlSU1PD27dvUbduXVmHUmbRe5YQUhbNmjULO3bsQJ8+ffDff/+VuJ+cnBxkZmaKbfkakT5pXcdEThIVJSkpCdra2qW6+5ScnIxDhw7h7du3AAATExNMmjRJpA9YZQ0NVggpv4YNG4bbt2/j4MGDGDJkSLFfx+fzoaioKMHICBEPuoZJV5cuXTB79myhpa6lURbHXbGxsRg3bhw+ffoEJSUlLFu2DMOGDSv26+k9SwgpiyIiIjBnzhw4OTnRhIwKTi6TRLm5uVBVVUVAQIBYd9t5/vw5evXqBVVVVVhYWADIXzeZlZWFmzdvclOiyxsarBBSPmVlZcHCwgKvXr1CcHDwL/9eZmZmYv369ViyZAlUVVWlHCUhpUPXMOk6deoUFi1ahNmzZxdZR6hly5bF7qusjrvi4+ORmJgIMzMzJCQkwNzcHGFhYYV+Fr9C71lCSEUTFhaG+Ph4dO7cmZYTlwNymSQCAGNjY5w/fx6mpqZiC6JTp05o0KABDhw4ACWl/DJJeXl5mDx5MqKiouDt7S22c4kT3dEihPyKQCDA06dPYWVlxbW5uroiJSUFs2bNgra2NoYPH47Tp09jwIABuHTpkgyjJUR0dA2Trh93WizA4/HAGAOPxwOfzy92X2V13PUzU1NTXLlyBYaGhsU6nt6zhJCKxsHBAR4eHpg3bx5cXFxkHQ4pJWldxwqPOP5gyZIlWLx4MZKSksQWxPPnz7FgwQJuoALkF4edP38+nj9/LrbziJuSkhK2b9+ON2/e4ObNm5g1axYyMjJkHRYhRA4oKCgIJYhSUlKwZs0arF69mtvGesaMGahZsybmz58vqzAJIWVEdHR0oUdUVBT3X1FIatzl7e2NAQMGoFatWuDxeLhw4UKhY9zd3VGvXj1UrlwZlpaW8PX1LdG5Xrx4AT6fX+wEESGElHWfP3+Gu7s7nj59WuzXaGhoQE1NDYMHD5ZcYKTcEXl3Mzc3N0RERKBWrVqoW7duoSm+L1++FDmIqlWrIiYmBk2aNBFqj42NlevirTVr1kTNmjUBAPr6+tDR0UFSUlKxpz0TQioODQ0NHDx4EF5eXhg6dCiA/Lv5kZGRtNSMEPJH4ixYLalxV0ZGBkxNTTFp0iTY2dkVet7LywvOzs7Yu3cvLC0tsX37dvTq1QuhoaHQ1dUFAJiZmSEvL6/Qa2/evIlatWoByK+FOX78eBw4cKDEsRJCSFmzevVquLm5YcyYMWjfvn2xXrN9+3asWrWKZk8SkYicJJJEFnLEiBFwcHDAli1b0KFDBwDA48ePMW/ePIwaNarE/Xp7e2Pz5s148eIF4uPjcf78+ULxu7u7Y/PmzUhISICpqSl27drFrc8XBd3RIoT8joKCAoYMGVKoiDUliAghxXXs2DHs3bsX0dHRePr0KerWrYvt27fDyMhIpILWkhp39enTB3369Pnl866urpgyZQomTpwIANi7dy+uXr0KDw8PLFy4EAAQEBDw23NkZ2dj8ODBWLhwIRf7747Nzs7mvk5NTS3md0IIIfJnzJgxePr0KTp27CjS6+R5QwIin0ROEq1YsULsQWzZsgU8Hg/jx4/n7h5VqlQJf/31FzZu3FjifumOFiGEEELKgz179mD58uWYNWsW1q1bx9Ug0tLSwvbt20VKEklq3PU7OTk5ePHiBRYtWsS1KSgowMbGpthLJxhjmDBhArp164Zx48b98fgNGzZg1apVJY6ZEELkSbt27Yq9JDg5ORnZ2dnQ09OTcFSkPBK5cDWQ/6Y7c+YMIiMjMW/ePFSrVg0vX76Enp4eateuXeJgMjMzERkZCQCoX78+1NTUStzXz3g8XqGZRJaWlmjbti3c3NwA5BeaNTQ0xIwZM7g7Wn+SnZ2NHj16YMqUKX8csBR1R8vQ0JAKKBJCCClzqAiwdDVr1gzr16/H4MGDoaGhgcDAQBgbG+PVq1fo0qULvnz5InKf0hx3ffz4EbVr18aTJ0+ElknMnz8fDx48gI+Pzx/7fPToETp37iy0k9uxY8fQokWLIo+ncRchpKLatm0b5s6dCycnJ7i6uso6HCIm0hp7iTyTKCgoCDY2NtDU1MS7d+8wZcoUVKtWDefOnUNMTAyOHj0qUn+5ubno3bs39u7di4YNG/7yQi9udEeLEEIIIWVFdHQ0WrVqVahdRUVFpE0zZDXuEoeOHTtCIBAU+3gVFRWoqKjA3d0d7u7uIu0ARwgh8iovLw9BQUFo3br1L4958eIFBAIBjIyMpBgZKS9E3t3M2dkZEyZMQHh4OCpXrsy19+3bt0RbplaqVAlBQUEiv660vnz5Aj6fX2gKnp6eHhISEorVx+PHj+Hl5YULFy7AzMwMZmZmCA4O/uXxixYtQkpKCveIjY0t1fdACCGEkIrByMioyHo9169fR9OmTYvdj6zGXTo6OlBUVERiYqJQe2JiIvT19SV6bkdHR7x58wZ+fn4SPQ8hhEhaZmYm9PT0YG5ujri4uF8e9++//yIuLg7jx4+XYnTlk5+fH+bOnYvdu3dXmJsNIs8k8vPzw759+wq1165du9jJlZ+NHTsWhw4dktg6eEmhO1qEEEIIkQZnZ2c4Ojri+/fvYIzB19cXnp6e2LBhAw4ePChSX7IYdykrK8Pc3Bx37tzhlqAJBALcuXMHf//9t0TPTeMuQkh5oaamhgYNGiA0NBRv3rz5bamXgvq5pOT27NkDR0dHFFToCQgIwP79+2UcleSJnCRSUVEpcneIsLAw1KhRo0RB5OXlwcPDA7dv34a5uXmhLeQlsY5S1ne0HB0duTWFhBBCCCG/M3nyZKiqqmLp0qXIzMzE6NGjUatWLezYsQMjR44UqS9JjbvS09MRERHBfR0dHY2AgABUq1YNderUgbOzM+zt7dGmTRtYWFhg+/btyMjI4HY7kxQadxFCypMrV66gevXqUFAQeVEQEYGbmxtmzJgBADA3N8fLly9x4MAB9OjRA8OGDZNxdJIl8jtr4MCBWL16NXJzcwHkFyaMiYnBggULCm3tXFyvXr1C69atoaGhgbCwMPj7+3OPP22FWlI/3tEqUHBH68eCipLg7u6OZs2aoW3bthI9DyGEEELKjzFjxiA8PBzp6elISEjAhw8f4ODgIHI/khp3PX/+HK1ateJqJzk7O6NVq1ZYvnw5AGDEiBHYsmULli9fDjMzMwQEBOD69esS331HUuOuN2/ewNDQELt37xZrv4QQ8js1atT4bYJoxIgRcHBwQFRUlBSjKl+ePXuG2bNnAwCWLFkCPz8/LF26FED+hgs/bopQHom8u1lKSgqGDh2K58+fIy0tDbVq1UJCQgLat2+P//77r9DdKFn68Y5Wq1at4Orqiq5du3J3tLy8vGBvb499+/Zxd7ROnTqFkJAQqWwXSDvDEEIIKavoGiZda9euxZgxY6gIaSmI+z07ZMgQnDt3DgBQgs2CCSFE7NLT06GlpQU+n493796hbt26sg6pzElKSoKZmRliY2MxYsQIeHp6gsfjITMzEw0aNEB8fDx27tzJzTKSJmmNvUSeSaSpqYlbt27h8uXL2LlzJ/7++2/8999/ePDgQYkSRLm5uejevTvCw8NFfu2fyOsdLUIIIYQQUZw+fRoNGjRAhw4dsHv37hJteQ9IdtxV0dBSD0KIrKxduxZdunSBr6+vULuSkhLOnTsHFxcXShCVgEAggL29PWJjY9GgQQPs378fPB4PQH49qBUrVgAA1q1bh5ycHFmGKlEizySKjY2FoaGhWIOoUaMGnjx5goYNG4q1X3n1YwHFsLAwugtLCCGkzKGZRNL3+vVrHD9+HCdPnsSHDx/Qo0cPjBkzBoMHD4aamlqx+6Fxl3jes3/99Rf27t0LAPj8+TN0dHRK3SchhBRH//79cfXqVbi5ucHR0VHW4ZQbW7Zswbx586CiooKnT59yk00K5Obmok6dOkhISMDp06cxdOhQqcYntzOJ6tWrB2traxw4cADfvn0TSxAFu2xUFLQVKyGEEEJEZWJigvXr1yMqKgr37t1DvXr1MGvWLJE33KBxl3j8WJMiNDRUrH0TQsjvTJ8+HYcPH0a/fv1kHUq58eDBAyxcuBAAsH379kIJIgCoVKkSt9mCl5eXVOOTJpF3N3v+/DlOnDiB1atXY8aMGejduzfGjh2LAQMGQEVFpURByGJ3M0IIIYSQsqpKlSpQVVWFsrIy0tLSRHotjbvEIzk5mfv327dvYWVlJbtgCCEVSt++fYtsv3z5MvT09GBqalriz+YVUWxsLIYNGwY+n4/Ro0fjf//73y+P7dOnDzZs2IBHjx6BMcYtRytPRE4SFdT4cXFxwf3793HixAlMnToVAoEAdnZ28PDwEDmIgl02ACAsLEzoufL4Q/9x2jMhhBBCSHFER0fjxIkTOHHiBEJDQ2FtbY1Vq1aJPN2dxl3i8eOMekntxksIIcUlEAgwYsQIZGVlISwsrMIsKS6trKws2NnZ4fPnzzAzM8OBAwd+ey1s27YtlJWVkZCQgMjISDRo0ECK0UqHyDWJivLy5Us4ODggKCiIEh8ioHoOhBBCyiq6hklXu3bt4Ofnh5YtW2LMmDEYNWoUateuLeuwyhRxv2fNzMwQGBgIAGjfvj2ePHlS6j4JIaS4QkJCEBYWhm7dukFdXR3JyckYPHgwoqKiEBUVBSUlkeeDVDgCgQDjx4/H8ePHUb16dTx//hz16tX74+usrKzw5MkTHDt2DGPHjpV8oP+f3NYkKvDhwwe4uLjAzMwMFhYWUFdXh7u7e4kDefjwIcaOHYsOHTogLi4OAHDs2DE8evSoxH0SQgghhJQH3bt3R3BwMPz9/TF37txSJ4ho3FV6Py43CwgIoBulhBCp6tGjBwYNGoRXr14BALS0tHD//n3ExMRQgqgYGGOYOXMmjh8/DkVFRXh5eRUrQQQApqamAIDg4GAJRig7IieJ9u3bB2tra9SrVw9Hjx7FiBEjEBkZiYcPH2LatGklCuLs2bPo1asXVFVV8fLlS64QYEpKCtavX1+iPgkhhBBCyot169ahWbNmYumroo273N3d0axZM7Rt21as/f643CwrKwv+/v5i7Z8QQn6ndevWaNWqVbneil1SGGNYsGAB3N3dwePxcOTIEXTv3r3Yr2/RogWAPyeJsrKyShWnrIi83MzQ0BCjRo3CmDFjuAxaabVq1QqzZ8/G+PHjoaGhgcDAQBgbG8Pf3x99+vRBQkKCWM4jLyS1FSshhBAiLbTcTPo+fPiAS5cuISYmptCHAlGKTVe0cVcBcb5n+Xw+d6e+Xbt2ePbsGTZt2oT58+eLI1RCCCESkpubiylTpuDIkSMAgL179/62UHVRHj16hE6dOsHAwACxsbFFHpOTkwNzc3N06NABmzZtgpaWVmlDl9rYS+R5aDExMWIvahgaGorOnTsXatfU1BSaylteODo6wtHRkfslE0IIIYT8zp07dzBw4EAYGxsjJCQEzZs3x7t378AY44pQF1dFG3dJQkpKCvfvIUOG4NmzZ7hz5w4liQghMvP333/jxYsXWLJkCfr37y/rcOTSp0+fMGbMGNy+fRuKiorYu3cvJk+eLHI/JiYmAPJv3qSnp0NdXb3QMVu2bMGrV6+QmJiIDRs2lDp2aRJ5uVlBgigzMxMhISEICgoSepSEvr4+IiIiCrU/evQIxsbGJeqTEEIIIaS8WLRoEebOnYvg4GBUrlwZZ8+eRWxsLKytrTFs2DCR+qJxV+nx+XwMGjQIPXv2RO/evQHk13kqWLpHCCHS5u/vj2fPnuH79++yDkUu3bt3D2ZmZrh9+zZUVVVx4cKFEiWIAEBbW5ubGfTu3btCz0dERGDNmjUAgG3btqFatWolDVsmRE4Sff78Gf369YOGhgZMTEzQqlUroUdJTJkyBU5OTvDx8QGPx8PHjx9x/PhxzJ07F3/99VeJ+iSEEEIIKS/evn2L8ePHAwCUlJSQlZUFdXV1rF69Gps2bRKpLxp3lV6NGjVw4cIF3LhxAyYmJtDV1UVWVhZ8fHxkHRohpIIICgpC9+7dYWdnBwDYvXs3zp07BysrKxlHJl8+ffqEiRMnolu3boiPj0fTpk3h6+tb6tlWRkZGAIDo6GihdsYYpk+fju/fv8PGxgajR48u1XlkQeTlZrNmzUJKSgp8fHzQpUsXnD9/HomJiVi7di22bt1aoiAWLlwIgUCA7t27IzMzE507d4aKigrmzp2LGTNmlKhPefZjTSJCCCGEkD+pUqUKV4eoZs2aiIyM5Ka7f/nyRaS+aNwlXjweD927d4enpyeuXLlS5FI+QgiRhLt370JHRwdA/o5b4qoZXB5ERERgx44d+Oeff5CRkQEAmDp1KlxdXVGlSpVS929kZAR/f/9CM4mCgoJw69YtqKioYM+ePWIv1SMNIheurlmzJi5evAgLCwtUrVoVz58/R6NGjXDp0iW4uLiUauvUnJwcREREID09Hc2aNStybV95QkU/CSGElFV0DZOuwYMHo1+/fpgyZQrmzp2LixcvYsKECTh37hy0tbVx+/ZtkfukcZf4nD17FkOHDkXdunURHR1dJj8UEELKloyMDJw7dw4GBgbo2rWrrMORCzk5Obhy5QoOHTqEa9euoSDV0bp1a7i7u6Ndu3ZiO9ecOXPg6uqK2bNnC20e4eXlhZEjR8LKyqpUuZGiyG3h6oyMDOjq6gLIX4v3+fNnNGrUCC1atMDLly9LFYyysrLYtnclhBBCCCkvXF1dkZ6eDgBYtWoV0tPT4eXlhYYNG4q0s9mPaNwlPn379oW6ujrev38PHx8fsX4QIYSQolSpUgXjxo0DkL+k6uHDh6hdu3aF+vvD5/MREBCAu3fv4u7du3j48CE3awjI/9s8e/ZsdO/eXezJ+18tNyuo+Ve/fn2xnk+aRE4SNW7cGKGhoahXrx5MTU2xb98+1KtXD3v37kXNmjUlESMhhBBCSIX2Y0HpKlWqYO/evTKMhvxMVVUVAwcOxIkTJ+Dl5VWhPqSRiuXbt2+4d+8eVFRU0KVLF7Es2yGl9+LFCwwdOhRmZmbw9/eXdTgSFxgYCHd3d5w5cwbfvn0Tek5fXx/29vZwcHBAw4YNJRZDQZLo5+VmkZGRACpYksjJyQnx8fEAgBUrVqB37944fvw4lJWVcfjwYXHHRwghhBBCfjB9+nSsXr2aq0NB5MPIkSNx4sQJeHp6YtOmTVBWVpZ1SISI1b///otp06ZxMzVq1aqF06dPo0OHDjKOrOJ69eoVPnz4gOTkZHTo0AGNGzeWdUgSw+fzcebMGezatQuPHz/m2jU0NGBtbY3u3bujW7duaN68ORQURN6fS2S/mklUHpJEItck+llmZiZCQkJQp04dGqyIiOo5EEIIKavoGiY7VatWRUBAAG1XLyJJv2dzc3NRt25dxMfHw8vLC8OHDxf7OQiRlaNHj8Le3h4A0KhRI2RkZCAuLg6amprw8/OT6IwN8mtdu3bF/fv3cfLkSYwYMULW4UjMpUuXsHjxYrx+/RpA/i6fdnZ2mDZtGjp16gQlJZHnvpRaRkYGV8svKSkJ2traYIxBX18fnz59wrNnz2BpaSnWc0pr7FWqFNvjx4+hqKiI1q1bU4JIBO7u7mjWrBnatm0r61AIIYQQUsaU8v4ekZBKlSphypQpAIA9e/bIOBpCxCcsLAx//fUXgPydrt++fYvQ0FC0b98eKSkpGDt2LAQCgYyjrJgaN24MMzMzqKqqyjoUiWCMYc6cORg0aBBev34NLS0trFixAu/fv4eXlxe6du0qkwQRkL/0u6BWc8GSs3fv3uHTp0+oVKkSWrZsKZO4xKFUSaI+ffogLi5OLIE8fPgQY8eORfv27bk+jx07JvaK4PLA0dERb968gZ+fn6xDIYQQUgF8//4dgYGBOHnyJFJSUmQdDpEDFWncJc2bc5MnT4aCggLu37+P4OBgiZ+PEEkTCAQYP348MjMz0a1bN2zduhUKCgqoUqUKTp06BQ0NDfj6+sLT01PWoVZIe/fuhb+/PwYOHCjrUMSOMYa5c+dymzPMnTsX0dHRWLlyJWrVqiXj6PL9vOSsYBlc69aty3TirlRJInHdyTp79ix69eoFVVVV+Pv7Izs7GwCQkpKC9evXi+UchBBCSHmXkZGBFy9e4NixY1i0aBEGDRqEhg0bokqVKjAzM8OoUaNKvRMpkb20tLRSLTWraOMuad6cMzQ0xJAhQwAAGzZskPj5CJE0Ly8v+Pj4QENDA4cPHxaq9WJgYIAFCxYAADZu3EizHGVo1qxZsLCwwIULF2QditgsX76cSxAdOHAAmzdvhpaWlmyD+kmdOnUAAB8+fAAAeHt7AwCsrKxkFpM4SL6iUzGsXbsWe/fuxYEDB1CpUiWu3crKigazhBBCyE9SU1Ph4+ODf/75B/PmzUO/fv1gZGQEdXV1tGnTBuPHj8fGjRtx6dIlREREQCAQQEtLq8wPWiq6yMhILF26FKNHj8anT58AANeuXeNqNBQXjbska/HixQDyP1yHhYXJOBpCSi4vLw8rVqwAAMyfPx+GhoaFjnF0dIS6ujpevXqF+/fvSzlCUuDVq1fw8/MT2v69LDtw4ADWrl0LAHBzc8PkyZNlHFHR9PT0AACJiYlgjOHatWsAgB49esgyrFIr1QK+ffv2cT+Y0ggNDUXnzp0LtWtqaiI5ObnU/RNCCCFlUVJSEt68ecM93r59izdv3nB3rIpSo0YNNGvWrNBDT08PPB5PitETcXrw4AH69OkDKysreHt7Y+3atdDV1UVgYCAOHTqEM2fOFLsvGndJlpmZGfr164erV69i5cqVOHHihKxDIqREPD09ER4eDh0dHTg5ORV5jJaWFkaOHImDBw/C09MTXbt2lXKUFdutW7ewfv16MMZw8eJFtG7dWtYhldrDhw+5GlgrV66Eo6OjjCP6tR+TRAU7zampqaFLly6yDayUSpwkioiIQPXq1bkph4yxEg8+9fX1ERERgXr16gm1P3r0iHbuIIQQUq4xxvD582ehZFDBIzEx8Zevq1WrVqFEUNOmTWkjiXJq4cKFWLt2LZydnaGhocG1d+vWDW5ubiL1ReMuyVu9ejX+++8/eHp6YsaMGWjfvr2sQyJEZO7u7gBQ6O/Oz0aNGoWDBw/izJkzcHNzg7KysrRCrPBSU1Nx//59WFlZlYu6RN++fcOYMWPA5/MxatQoLF++XNYh/daPSaKIiAgAQMuWLVG5cmVZhlVqIieJvn79ihEjRuDu3bvg8XgIDw+HsbExHBwcoK2tja1bt4ocxJQpU+Dk5AQPDw/weDx8/PgRT58+xdy5c7Fs2TKR+yOEEELkUW5uLkJCQhAQEIDAwEAEBgYiICAAX758+eVr6tSpU2QySN7W5RPJCg4OLnJGiq6u7m/fP0WhcZfktW7dGhMmTMA///yDmTNn4unTpzLbgYeQkvD394ePjw8qVaoEBweH3x5rbW0NfX19JCQk4ObNm+jfv7+UoiSWlpbw9PQscilgWcMYw9SpUxEbG4sGDRpg3759cj8DuiBJlJCQwC0DF8dKK1kT+Wo1e/ZsKCkpISYmBk2bNuXaR4wYAWdn5xIliRYuXAiBQIDu3bsjMzMTnTt3hoqKCubOnYsZM2aI3B8hhBAia0lJSVwiqCAZ9ObNG+Tk5BQ6lsfjwcjIqFAyqEmTJr+9e0sqDi0tLcTHx3M7qRTw9/dH7dq1ReqrrI67kpOTYWNjg7y8POTl5cHJyYnbcl4erV+/HmfPnsXz58+xefNmLFq0SNYhEVJs+/btAwDY2dlx23z/iqKiIoYPH46dO3fizJkzlCSSIgMDA/Tv3x9Xr17Fo0eP0LFjR1mHVGJeXl44c+YMlJSUcOLEiTIx/tHX1weQP5OoYPb3n/5/KQtEThLdvHkTN27cgIGBgVB7w4YN8f79+xIFwePxsGTJEsybNw8RERFIT09Hs2bNoK6uXqL+5J27uzvc3d3B5/NlHQohhJBSEggEiIyMFEoGBQYGIjY2tsjjq1atipYtW8LMzAympqYwNTWFiYkJ1NTUpBw5KUtGjhyJBQsW4PTp0+DxeBAIBHj8+DHmzp2L8ePHi9RXWR13aWhowNvbG2pqasjIyEDz5s1hZ2eH6tWryzq0Iunr62Pnzp2YMGECVqxYARsbG7Rt21bWYRHyR2lpaTh+/DgAYNq0acV6zYABA7Bz507cvn27VGVIiOgiIyMxcuRI6Orq/naZujzLyMjAvHnzAOTvalZW/lb+uNysQieJMjIyihzIJiUlQUVFpURBxMTEwNDQEMrKymjWrFmh5wq2lisvHB0d4ejoiNTUVGhqaso6HEIIIcWUkZGB4OBgoYRQcHAw0tPTizy+Xr16QskgMzMz1KtXjwbPRGTr16+Ho6MjDA0Nwefz0axZM/D5fIwePRpLly4Vqa+yOu5SVFTkxqDZ2dlgjMn9ltvjx4/HxYsXcf78eQwaNAh+fn4iz/wqjufPn+PMmTOIj49Ho0aN4ODgwN3hJkRUJ06cQHp6Oho3bgxra+tivcbKygoqKiqIi4tDaGgomjRpIuEoSYGCHS4bNGgg40hKbvPmzfjw4QPq1avHJYvKgoIkUU5ODsLDwwFU0CRRp06dcPToUaxZswYAuLtZLi4uJa5mb2RkhPj4+EI/0K9fv8LIyIhm3BBCCJG6jx8/wt/fX2h2UHh4eJEfSitXrozmzZsLJYNatmxJNwKI2CgrK+PAgQNYvnw5l5hs1aoVGjZsKHJfkhp3eXt7Y/PmzXjx4gXi4+Nx/vx5DB48WOgYd3d3bN68GQkJCTA1NcWuXbtgYWFR7HMkJyfD2toa4eHh2Lx5s9wXaufxeDh8+DBCQ0Px5s0b9OzZE3fv3hVbzYqYmBjMnDkTFy9eFGrfsmULPD090bt3b7Gch1Qsnp6eAAAHB4di39RQVVWFlZUV7t69izt37pSbJFFBMrpgsyZ5tGXLFgDA4sWLZRxJycTGxsLFxQVAfrKoLBV9rly5MpSVlZGTk8MVrq6QNYlcXFzQvXt3PH/+HDk5OZg/fz5ev36NpKQkPH78uERB/GpKYnp6epl6kxBCCCmb8vLyEBQUhCdPnuDx48d48uQJYmJiijxWX1+fSwQVJIUaNWpERWmJVBgaGpa6QKmkxl0ZGRkwNTXFpEmTYGdnV+h5Ly8vODs7Y+/evbC0tMT27dvRq1cvhIaGcgkrMzMz5OXlFXrtzZs3UatWLWhpaSEwMBCJiYmws7PD0KFD5X5AXrVqVVy+fBmdO3fGmzdvYG1tjcuXL5cowVeAMYZjx45hxowZSE1NhYKCAkaMGIHmzZvj7NmzePnyJQYOHIj79++jQ4cOYvxuSHmXkJAAb29vAMDw4cNFeq2NjQ3u3r2L27dvy/W25cXx4sULzJ8/H97e3sjLy4OOjg5atWqF1q1bo1OnTrC2tpabJbotW7aEgoICFBUVZR1KiWzcuBFZWVno3LkzhgwZIutwRKahoYGvX78iOjoaQPmYScRjJZinm5KSAjc3NwQGBiI9PR2tW7eGo6MjatasKVI/zs7OAIAdO3ZgypQpQsvY+Hw+fHx8oKioWOLkk7wrWG6WkpKCqlWryjocQgipMJKTk/Hs2TMuIeTj44OMjAyhYxQUFNC0aVOhZJCpqancfyCVFrqGSdeQIUNgYWGBBQsWCLW7uLjAz88Pp0+f/mMf0hx38Xi8QjOJLC0t0bZtW7i5uQHIr+dlaGiIGTNmYOHChSKfY/r06ejWrRuGDh1a5PPZ2dnIzs7mvk5NTYWhoaHM3rMRERHo2rUrPnz4AE1NTezevRsjR44UeYZCfHw8pk2bhkuXLgEAOnTogIMHD3IbyuTk5GDEiBG4cOEC6tWrhzdv3kBVVVXs3w8pn9zd3fH333/DwsICPj4+Ir3W19cXlpaW0NLSwtevX+V69s3v+Pv7o3Pnzr9cSg4AlSpVQocOHdCvXz+MHTtW5M/BJF9SUhIMDQ2RmZmJO3fuoFu3brIOSWT16tUTqs0cHByM5s2bS+Rc0hp7lei2p6amJpYsWVLqk/v7+wPIvxsSHBwMZWVl7jllZWWYmppi7ty5pT4PIYSQiosxhsjISKFZQq9fvy60bExTUxPt27dHhw4dYGVlBQsLC7m5S0iIt7c3Vq5cWai9T58+xd5ZVpbjrpycHLx48UJohy8FBQXY2Njg6dOnxeojMTERampq0NDQQEpKCry9vfHXX3/98vgNGzZg1apVpY5dXBo0aABfX18MGzYMjx8/xpgxY7BmzRosWLAAo0ePFvp9FCU+Ph779+/Hjh078O3bN1SqVAmrVq3C/PnzhWYQKCsr4+jRozAxMcG7d+/g4uKCFStWSPrbI+VEQcJZ1FlEANC6dWuoqakhOTkZoaGhQjthlxXv379H3759kZ6eDmtra+zfvx/VqlVDdHQ0/P394evrizt37uDdu3d48OABHjx4gEWLFsHJyQlr1qyR+00ocnNz8eLFC4SEhIDH40FfXx+NGjVCQEAADh06BF9fX1SpUgVTp06Fo6Mj/v33Xzx58gQqKiro1asXhg4dKtbk34EDB5CZmQlTU9MSl66RtZ93YZPXzRREwkogKyuL+fj4sMuXL7OLFy8KPUpiwoQJLCUlpUSvLctSUlIYgAr5vRNCiKR8//6dPX78mLm4uLDBgwczXV1dBqDQo0GDBmz8+PFs3759LDg4mPH5fFmHXqbQNUy6KleuzEJCQgq1v337llWuXFmkvqQx7gLAzp8/z30dFxfHALAnT54IHTdv3jxmYWFRrD59fHyYqakpa9myJWvRogXbu3fvb4///v07S0lJYVu2bGGNGzdmDRo0kIv3bE5ODlu9ejXT1NTk/h7Vrl2bTZs2jXl6erKAgAAWFxfHkpOTWVhYGDt48CAbPnw4U1JS4o5v3bo1CwoK+u15vLy8GABWuXJlFhMTI6XvjpRlX758YQoKCgwAi46OLlEfVlZWDAA7evSoeIOTgqSkJNa0aVMGgLVo0YIlJycXeZxAIGDh4eHM3d2d+34LXpOYmCjlqP8sMzOTXbhwgY0fP55pa2sXOSYq7qNbt27Mx8eHpaamljqurKwsVrNmTQaAHT58WAzfqWy0b99e6GeUnp4usXNJa+wlcpLo2rVrrEaNGozH4xV6KCgoSCLGcosG2IQQUnoJCQns/PnzbO7cuaxDhw5MWVm50KBGWVmZdejQgc2dO5edP3+eJSQkyDrsMo+uYdLVtm1btmrVqkLtK1asYK1bt5ZBRL8niSRRacnbezYlJYW5uLhwH5KK87CysmLHjx9nOTk5f+xfIBCwzp07MwBs5syZUviOSFl39OhRLtlRUrNmzWIA2IwZM8QYmXQMGzaMS9rGxsYW+3VXr15lenp6DADr0KEDy87OlmCUxcPn89mNGzfY0KFDmZqamtDfER0dHda9e3fWq1cv1rRpU6akpMT09fXZggULmJ+fHztw4ACrWrUqA8AMDAzY2rVr2bx585iqqqpQP1paWszMzIwtX76cJSUliRzjnj17uHPIw8+spHr27Mn9TBQVFZlAIJDYuaR1HRN5udmMGTMwbNgwLF++XGx1GVavXv3b55cvXy6W84hbcnIybGxskJeXh7y8PDg5OWHKlCkyiSU2NhbZ2dlQUlKCoqIilJSUuMfPX5fV9cGEEMIYw+vXr7llY48fP0ZkZGSh42rUqAErKytu6Vjr1q1pIwRSpi1btgx2dnaIjIzkajbcuXMHnp6exapH9CNZjLt0dHSgqKiIxMREofbExESJb9Xu7u4Od3d3udstt2rVqpg3bx5mzpyJa9euwdvbG97e3oiJicHXr18hEAgAABYWFmjbti0mT54MMzOzYvfP4/GwbNky9OjRAwcPHsS6detoCS35rcuXLwMABgwYUOI+2rZtCwDw8/MT6XVJSUnQ1tYu9m5q4vbo0SOcPn0aCgoKuHjxIgwMDIr92r59++LBgwdo164dnjx5gk2bNmHZsmUSjPb3YmNjMWbMGDx8+JBrq1u3LmxtbWFnZ4cOHToILVFlP21m0KZNG9jZ2SEkJARmZmbcEropU6Zg8eLFuHPnDr59+4bk5GQEBAQgICAAO3fuxOLFizFjxoxijbdyc3OxadMmAMD8+fP/uNxWnv34d7Vq1aoyew+Lk8iFq6tWrQp/f3/Ur19fbEG0atVK6Ovc3FxER0dDSUkJ9evXx8uXL8V2LnHi8/nIzs6GmpoaMjIy0Lx5czx//rzY6xDFWXiqe/fuuHv3brGP/1UCqbhfq6mpoUqVKtx/Cx4/fv275wq+LqtV+Akh0pOeno7bt2/j6tWr+O+///Dx48dCx5iYmAglherXr18uLtLyjApXS9/Vq1exfv16BAQEQFVVFS1btsSKFStgbW0tUj/SGHf9qnC1hYUFdu3aBSC/cHWdOnXw999/l6hwtajK0nuWMYbs7GwoKyuX6uYeYwyNGzdGeHg4Dh8+DHt7ezFGScqTnJwc1KhRA6mpqXj69CnatWtXon7CwsLQuHFjVK5cGampqahUqdJvj8/IyMCgQYNw584dtGjRAteuXUPt2rVLdO7SsLW1xYULFzB58mQcOHCgRH14enpi9OjRqFy5MiIiImTyfTx8+BC2trb4+vUrqlSpAgcHB4wfPx6tW7cW67goLS0NMTExCAgIwMaNG/Hq1SsAQM2aNTFixAgMGTIE7du3L/KzXlxcHDZu3Ag3Nzfo6uri3bt3Zbq4/oQJE3DkyBEA+cm4d+/eSexcclu4eujQobh//75Yk0QFhRR/lJqaigkTJsDW1lZs5xE3RUVFLrOanZ0Nlr98TyaxqKqqQkNDg5vVxOfzuTtQRSk4TtZUVFR+m1DS0NCApqZmkY+qVasKfa2mpkYfCgkpJyIjI3H16lVcvXoV9+/fR05ODvecqqoq2rVrxyWF2rVrB21tbRlGS4h09OvXD/369St1P5Iad6WnpyMiIoL7Ojo6GgEBAahWrRrq1KkDZ2dn2Nvbo02bNrCwsMD27duRkZGBiRMnlvic5RWPxxPL7Ecej4fx48dj2bJlOHr0KCWJyC89fPgQqamp0NXVhYWFRYn7adCgAfch9vXr17+d/cbn8zFq1CjcuXMHQP6uUAsXLsSxY8dKfP6S+Pz5M7db4OzZs0vcz8iRI7F79248evQImzZtws6dO8UVYrEcO3YMDg4OyM3NRevWrXHq1Cmxfmb/kYaGBkxMTGBiYoKRI0fi2LFjWLp0KeLi4rB9+3Zs374dDRo0gIeHBzp16gQg//Pn+PHj4enpyfXj6upaphNEgHDhak1NTRlGIj4izyTKzMzEsGHDUKNGDbRo0aJQdnjmzJliCy44OBgDBgwocTbO29sbmzdvxosXLxAfH1/ojhaQPwV58+bNSEhIgKmpKXbt2iXSH8bk5GRYW1sjPDwcmzdvhqOjY7FfK+lMoEAgAJ/P55JGPyaQivp3cY/Lzc1FVlYWMjIykJGRgczMzCL//bvnJJFMU1RU/G0S6XdJpmrVqqFGjRp/vNtBCJGM3NxcPHr0CFevXsWVK1cQGhoq9LyRkRH69++Pfv36wdrampaOyYGyNCuDFE9px133798vcncae3t7HD58GADg5ubGjbvMzMywc+dOWFpaliLqP/txuVlYWFiFe8++e/cORkZG4PF4ePfuHerUqSPrkMj/l5eXBx8fHwQEBCAxMRH169dH9+7dRVrqJC6zZs3Cjh07MHHiRHh4eJSqLxsbG9y5cwcHDhzA5MmTizyGz+dj4sSJOHbsGFRUVLBx40bMnj0bCgoKiIyMRL169UoVgyj++ecfTJo0Ca1atSr1TMpbt26hZ8+eUFdXR1xcnNT+1qxbtw5Lly4FAAwZMgRHjx6V+k5r2dnZuHHjBs6cOYNLly4hJSUFqqqqePz4MVq1aoUVK1Zwy52rVq2K+fPnY/HixWX+Jv+iRYuwceNGAEDHjh2FlvmJm9zOJPL09MTNmzdRuXJl3L9/X+iXyuPxxJokSklJQUpKSolfn5GRAVNTU0yaNAl2dnaFnvfy8oKzszP27t0LS0tLbN++Hb169UJoaCh0dXUBAGZmZkXOuLl58yZq1aoFLS0tBAYGIjExEXZ2dhg6dKjYajWVloKCAhQUFOQu8cEYw/fv34uVXEpNTUVKSgr336Ieqamp4PP54PP5SEpKQlJSUoljq169OvT09KCrqws9Pb3fPlRUVMT4UyGk4vn06RP+++8/XL16FTdv3kRqair3nJKSEjp27MjNnGjSpEmZH0QQUhp8Ph/btm3DqVOnEBMTIzS7DkCprn0FSjvu6tKlyx9vAv3999/4+++/S3yOknB0dISjoyM3uK5o6tWrB2trazx48ACnT5/GnDlzZB1Shff27Vts2bIFFy9exNevX4WeU1RUxLx587BmzRooKYn8Ua3Erly5AqB09YgKmJmZ4c6dOwgMDPzlMc7Ozjh27BgUFRXh6ekJW1tbXLlyBXfu3MH+/fuxfv36UsdRXBcvXgQADBo0qNR92djYoHHjxggNDcXp06fh4OBQ6j7/ZPfu3VyCaOHChVi3bp1MatCqqKhg4MCBGDhwINLS0jB06FDcvHkTEydOxL59+7gaRMePH8eoUaPKzbjux5lE5eUGhMh/eZYsWYJVq1Zh4cKFYnvz/TwVjzGG+Ph4HDt2DH369Clxv3369Pnt611dXTFlyhRumvPevXtx9epVeHh4cGvjAwICinUuPT09mJqa4uHDhxg6dGiRx2RnZyM7O5v7+scPRBUJj8eDqqoqVFVVi12/6XcYY8jMzPxtEulPzyUlJYHP5+Pr16/4+vUr3rx588fzampqCiWNfpdYqlKlSqm/T0LKOoFAAH9/f24ZmZ+fn9AHyho1aqBPnz7o168fevbsCS0tLdkFS4icWbVqFQ4ePIg5c+Zg6dKlWLJkCd69e4cLFy6IXGhaUuMueSWvhaulaejQoXjw4AHOnz9PSSIZio2NxapVq/DPP/9wZSGqV6+ODh06oFatWnj58iX8/PywceNGJCQkwMPDQyofpGNiYhAZGQlFRUXY2NiUur+WLVsCAIKCgop8PiAggKtNVpAgAoDp06fjzp07cHd3x8yZMyVe1B4AsrKycPPmTQDiSRIVLPFcsmQJvLy8JJokys7OxrZt27B48WIA+dcJednwSUNDA0ePHoWJiQkCAwO5GlfdunUrVwkioHwuN4Oo26Fpa2uziIgIMWys9n/q1asn9DA2NmaWlpZs0aJFLDU1VSznwE9bsWZnZzNFRUWhNsYYGz9+PBs4cGCx+kxISODiS05OZiYmJiwoKOiXx69YsaLI7UzlZSvWiozP57PPnz+zV69esTt37rATJ06wbdu2sYULF7KJEyeyvn37MnNzc2ZgYMAqVapU7K1qCx5VqlRhxsbGzMrKio0dO5atWLGCHT16lD1+/JglJCRIdKtEQmQpNTWVnTt3jjk4OBS5zXOrVq3Y0qVL2bNnz1heXp6swyUikLftxMs7Y2NjduXKFcYYY+rq6txYbMeOHWzUqFEi9SWNcZc8qsjv2djYWAaA8Xg89u7dO1mHU+F8+fKFzZkzh6moqHDXv8GDB7N79+6x3NxcoWNPnjzJFBQUGAB28uRJqcT377//MgCsbdu2YukvICCAAWCamppFjnHHjRvHALDhw4cLtefl5bE2bdowAKx9+/bsw4cPYonndy5dusQAsDp16ohtPB4eHs5th/7t2zex9PkzX19fZmJiwr2f/v77b7n8PPH06VOmp6fHALBOnTqxL1++yDoksfPw8OB+D//73/8kei5pXcdEnklkb28PLy8vLmMpDtHR0WLrq7i+fPkCPp9faGmYnp4eQkJCitXH+/fvMXXqVK5g9YwZM9CiRYtfHr9o0SI4OztzX6empsLQ0LBk3wARKwUFBejo6EBHRwcmJia/PZYxhuTkZCQmJhZ6fPr0qVBbQf2mqKgoREVF4fHjx4X6VFdXh7GxMerXr1/oUadOHalONyaktCIiIrjZQg8ePBBaFlOlShX06NED/fr1Q9++fVGrVi0ZRkpI2ZGQkMCNMdTV1bllYf379xd5q2VZjLuIbBkYGKBbt264e/cuDh06xNUFIZKVkZGB7du3w8XFhVtB0LlzZ2zYsAEdOnQo8jUjRozA27dvsWrVKsyfPx92dnYSLx3h7e3NxSYOTZs2hZKSElJSUhATE4O6detyzyUnJ+PUqVMAIPS5CMhfanf48GFYWVnh6dOn6NChA16+fCmWlQe/UrDUbODAgWKb3dKgQQNuydm9e/fEvhHTzp07MXv2bAgEAujq6mLDhg2YOHGiXM7OadeuHd69e4dPnz7B0NBQLmMsrR83T/lxVlFZJvInTz6fDxcXF9y4cQMtW7Ys9EfL1dW1WP38/Efhd4rbp7RZWFgUezkakL9OU0VFhaY9l3E8Hg/a2trQ1tZGkyZNfnssYwzp6elcwiguLg5RUVGIjIzkHrGxsUhPT0dQUFCR03IVFRVRt27dIhNI9evXp6VsROYYY/D19cWpU6dw5coVhIWFCT1vbGwsVHSa6nkRIjoDAwPEx8ejTp06qF+/Pm7evInWrVvDz8+vWP9PlYdxV0nRuCvf1KlTcffuXWzZsgWtW7fGoEGDyuUHNnmQnZ2NAwcOYO3atUhMTAQAmJqaYsOGDejdu/cff+4LFizA7t27ERMTgwsXLmDYsGF/PGdmZiYqV65conIg4k4SKSsro2nTpggODkZQUJBQkuj69evIzs5GkyZNitwsyMTEBA8fPsSgQYMQHR2N8ePH4/LlyxKpscPn83H58mUA4llq9qOePXsiNDQUN27cEGuS6NatW3BycgIAjBo1Cjt37oSOjo7Y+peEypUrl+uC+d26deP+XfD/e1kncpIoODgYrVq1AgC8evVK6DlRLjRFbb9aFEldvHR0dKCoqFjoF5mYmCjx9a8VvYBiRcLj8aChoQENDQ00aNCgyGOys7Px7t07ocRRwSMqKgrZ2dncLKRbt24Ver2enl6hxFGDBg3QvHlzqKurS/pbJBVYVlYWvLy84ObmhhcvXnDtSkpK6NSpE1d0unHjxvRBhJBSsrW1xZ07d2BpaYkZM2Zg7NixOHToEGJiYoq1ZbOsx12yROOufMOGDcPBgwdx+/Zt2Nraws7ODkeOHKGxghhlZ2fDw8MD69evx4cPHwDk3yhZu3YtRowYUexEh6qqKv73v/9h7dq18PDw+G2SKC0tDVOnTsXJkyehq6uL06dPi5Ts+fTpE7eKomPHjsV+3Z+YmpoiODgYgYGBQsWwC5Iyv5u506JFC5w/fx7t2rXDf//9BxcXF65e7O9ER0fj7NmzqFmzJoYPH/7HGVgPHjzAp0+foKWlBWtraxG+uz/r3r07du3aJdadrvh8Ppfw/9///oe9e/eKrW9SclWrVsWGDRuwZMkSqRQqlwqJLmaTI/ipJhFjjFlYWLC///6b+5rP57PatWuzDRs2SDQWNzc31rRpU9aoUaMKuzaeFA+fz2exsbHs/v377NChQ2zx4sVsxIgRrE2bNkxbW/u3dZAUFBRYixYt2OTJk9n+/ftZQEBAoXXvhJREVFQUmzdvHqtWrRr3flNRUWGjR49mp06dYsnJybIOkUhBRa7vIg+ePHnCtm7dyi5duiTrUMoMes8ylpaWxhYvXsyUlZUZANaiRQsWFRUl67DKvLdv3zJnZ2dWvXp17rpYu3Zttnv3bpadnV2iPkNCQhgAVqlSJZaUlFTkMQKBgHXv3l1o/KehocEePnxY7POcOXOGey+Ik4uLCwPAhg4dyrXl5uZy41dvb+8/9nHw4EFuTPvgwYPfHnvx4kVWuXJl7udgbm7OEhISfvsaBwcHBoBNmTKleN+UCBITE7lYfleXKDk5mc2cOZN16tSJOTs7F/pd5+TksKtXrzJ3d3c2e/ZsBoBpa2v/8j1BZCcrK0vi55DWdaxcJ4nS0tKYv78/8/f3ZwCYq6sr8/f3Z+/fv2eM5ReGU1FRYYcPH2Zv3rxhU6dOZVpaWn/8gyIuNFghpZWUlMT8/PzYyZMn2fr165mDgwPr0qVLkQWCATA1NTXWqVMnNmfOHObl5cXevXsnl0XuiPzh8/ns+vXrrH///ozH43HvqTp16rANGzawT58+yTpEImV0DSNlDb1n/8/Tp0+Zvr4+A8B0dHTY0aNH2dGjR7kk//v375m1tTU7c+aMjCOVX9+/f2dHjx5lnTp1EhprGRgYsF27donlA2NBYeLjx48X+fyJEye48d2tW7eYtbU1l1S5f/9+sc4xc+ZMBoBNnz691PH+6Pbt2wwAq1u3Ltd2//59BoBVr169WJtVCAQCNn78eAaAmZiY/PI1Pxb7NjU15W5iNWjQgEVHRxf5mqysLKapqckAFPtnJar69eszAOz69etFPp+bm8vat28v9P4xNjZmhw4dYsuXL2dDhgwRSjwWPLZu3SqReIn8k6skka2tLReIra3tbx8l9e3bN7Zlyxbm4ODAHBwc2NatW0t9N/revXtFflC2t7fnjtm1axerU6cOU1ZWZhYWFuzZs2elOqcoaLBCJCkuLo6dP3+eLVq0iHXr1o1paGgU+f+Drq4u69+/P1u9ejW7ceMG3ZkgQr59+8a2bdvGGjRoIPS+6dGjB7t48SLtSFaB0TVM+kJCQpijoyPr1q0b69atG3N0dGQhISEl6ksS4y55RTO4ixYbG8vMzc2F/ra3bduWff/+nfXt25drI8LS0tKYu7s7MzQ0FJq9PXDgQHb58mWxztqeN28eA8AmTpxY6DmBQMD9/lavXs0Yy99R1MbGhgFgNjY2xTqHmZmZRHZSS0lJ4RI3cXFxjDHGnJ2dGQA2fvz4Yvfz7ds3bvaRp6dnoefv3LnD7Tw8YcIElpuby8LDw1m9evUYAKavr1/k57uzZ88yAMzQ0JDx+fySf6O/MWrUKAaArV+/vsjnd+3axQCwqlWrMldXVy7mnx96enqsQ4cOjMfjsfHjx7OcnByJxEvkn1wliSZMmMBtiTphwoTfPkrCz8+PVatWjdWuXZtLNhkYGLDq1auzFy9elKhPeUaDFSILfD6fvXnzhv3zzz/sr7/+Yubm5kxJSanIi1HDhg3Z2LFj2c6dO9mzZ8/Y9+/fZR0+kbLAwEA2depUpqamxr0vqlatymbOnFniD6WkfKEkkXSdOXOGKSkpsXbt2rHZs2ez2bNns/bt2zMlJSWRZ3tUtHFXAXrPFpaRkcEmT54s9Lf+33//Zerq6tzXBZ8B5FleXl6hmdF8Pp9du3aNHT58WCzbkJ89e5a1aNFCaLxUs2ZNtmbNGolt1X7jxg1udtLP319gYCC33Pvz589ce3R0NJec+dUsmgKpqanc7OCCRI44mZqaMgDs9OnTTCAQcDecTp8+LVI/K1euZABY+/bthX4O9+7dY1WqVGEA2LBhw4SSPR8+fGDNmzfnfn7p6elCfdrZ2TEAbP78+aX7Jn9j48aNDAAbMWJEoefy8vKYkZERA8Dc3NwYY4x9+fKF/fXXX6x169Zs/PjxzNXVld29e5dLPNJ4nMhVkogxxlatWsUyMjIkEkTHjh25zG+B3NxcZm9vzzp16iSRc8oDGqwQWcvKymJPnjxh27dvZ6NHj+amxf78qFSpEmvbti1zdHRkR44cYSEhIRK760JkJycnh508ebLQ1PnmzZuzvXv3srS0NFmHSOQIXcOky9jYmC1btqxQ+/Lly5mxsbFIfdG4i96zRVmyZAk3m+jHa8CNGzdkHdpvJSYmssaNGwslEDw9PYUSOsbGxiVeFh0YGMgGDhwo9DOpX78+c3d3l3gNkoyMDO6GXkG5jAJbtmxhAFjfvn0Lva5Lly7FWpZUsPzL0NBQrHEXmDVrFgPABgwYwHx9fRkApqysLHLi8ePHj1wdrXPnzrFr164xOzs7bgZRz549i/xdpKSksLp16zIAbNOmTVz7p0+fuP4CAgJK/X3+yn///ccAsKZNmxZ67vr16wwAq1atmsQ+Y5PyR+6SRAoKCiwxMVEiQVSuXJm9ffu2UPvr16+ZqqqqRM4pD2iwQuTRly9f2LVr19iqVatY3759mY6OTpGJI01NTWZjY8M2bdrEYmNjZR02KYW4uDi2YsUKoVpWioqKbNiwYezBgwdUt4oUia5h0qWqqsrCw8MLtYeFhYk8VqJxF71nixIQEFDk9X7v3r2yDu23xo0bx8UaEhLCJT4AMFVVVW6W1PDhw9mhQ4dYmzZtWKdOndjUqVPZtm3bhP6/CgsLYy4uLmzDhg1s06ZN3FIsAExJSYktWrSIxcfHS/W62KpVqyJn3xQsCSwqEVSwjKlhw4YsMzPzl31v3ryZAShVyZDfCQ0N5X5+BTOWxowZU6K+Cpbe/fyws7P7bbLu0KFDDMivjVSwRH7GjBkMAGvTpo1Ef5dxcXHccsSfYxwzZgwDwBwdHSV2flL+yF2SiMfjSSxJpKurW+RdiuvXrzNdXV2JnFOWaLkZKUsEAgGLiopinp6ebPbs2czKykpo94iCC7+NjQ07evQozTYpIwQCAXvw4AEbPny40LJDfX19tnz5colNnSflB33glq4+ffowDw+PQu0eHh6sZ8+eIvVV0cZdBeg9+3sCgeCPRXIzMzPZxYsXWWhoaInPc+bMGTZ58mR24cIFxhhj6enp3OzkefPmMV1dXebs7PzbPrKzs9nTp09ZXl4eN1MEADt06BAbNGgQtzTp/fv3zN/fX2jDhaIeP47Li5pNPWTIEPb69esSf8+lMW3aNAaAzZs3j2sTCARc0eWilogmJyezWrVqMQBs+/btv+x7+PDhDPh1zRxx+Pvvv7mfpa6uLouJiSlRPxkZGWzAgAHc8ncnJycWGBj4x9dlZmYyLS0tBuTvqBYWFsaNe+7cuVOiWIpLIBCwqlWrMgBC75/s7Gyu/cmTJxKNgZQvcpkkktTuNTNmzGAGBgbs5MmTLCYmhsXExDBPT09mYGDAnJycJHJOeUCDFVJW5eTksJcvXzI3NzfWuXNnocFUlSpV2Lhx49itW7eoqLEcSktLY3v37i1UV6Fjx47s5MmTJd6ql1Q8dA2Trj179rAaNWowR0dHduzYMXbs2DHm6OjIdHV12Z49e9jFixe5x59UtHEX3ZwrvoIEy4+PgqLIwcHBXEJGQ0Oj2Ju93L9/n5mbmzN9fX2uRs2Py7YUFRWZtbU1CwwMFErm/DzbLSoqikVFRbHMzExmYWHBAHBbmBc8Jk6cyO1s9WN8ixYt4mZ0LFu2jB08eJAtX76c2djYCN0o4fF4rFevXmzYsGFs4MCBzM3NjX358kV8P+ASKNgG/sdC1NHR0VwC61fX7R07djAAzMrK6pd9GxsbMwDs1q1bYo+7QF5eHvv333/Zrl27hGonlVRiYqLItXlGjx7NgPz6QwW1iIpapicJBTPBLl26xLUV7Pymq6tL5RuISOQySaSlpcW0tbV/+yiJ7OxsNnPmTKasrMwUFBSYgoICU1FRYbNmzSrXBbpogE3Ki6ioKLZ69WrWsGFDocFarVq12Pz589mrV69kHWKFFxoaypycnLg7j0D+lrlTp06V6Hp8Un7RNUy6eDxesR4KCgp/7IvGXfSe/RV3d3fuGtGhQwcGgC1YsIAxxgrVq9PU1PxjofM7d+4wFRUVodcpKCgUOWPp54eSkhJr1aoVW7NmDZs6dSqXFCmY/VLUo6BfNTW1QjtAXb9+nT1//rxQjImJiezKlSvs7t277OPHj+L7YYrJ48ePGQBWp04dru3ChQsMyN/u/VdiYmK4xFdRq0G+fPnC/dzK+862np6ehd6D0hqbDh06lAFg27Zt49oKls6VdNMnUnFJ6zqmBBGsWrUKmpqaorykWJSVlbFjxw5s2LABkZGRAID69etDTU1N7OcihIifkZERli1bhqVLl8LHxwdHjx7FyZMn8fHjR7i4uMDFxQWtW7fGuHHjMGrUKOjp6ck65Arj5s2b2Lp1K27evMm1NWjQAI6OjpgwYQK0tLRkFxwhpNgEAoHY+qJxF/mVqVOnQl9fH40aNcLJkyfx5MkTZGRk4OXLl3j48CGUlZXh7++PqVOn4vHjx+jduzdevnwJAwODQn09e/YMAwcORHZ2NgYMGIDJkycjIiIC3bt3R9OmTeHi4oKnT5/C2NgYbm5u3OtWrlwJV1dXpKamwt/fH/7+/txzubm5OHXqVKFzKSkpIS8vD1+/fgUAtGnTBpUqVRI6plevXkV+z7q6uujXr1+Jfl7S0KhRIwBATEwMsrKyoKqqisDAQACAmZnZL19naGgIExMTvH79mvtd/Oj58+cA8scE2trakgleTgwaNAgGBgb48OEDAGDSpEkwMTGRyrnr168PANzfWgB48uQJAKBLly5SiYEQkRU3myTJmkSZmZlCVd3fvXvHtm3bJve7KZQUTXsmFcH379/ZuXPn2ODBg7ndJ4D8gsj9+vVjJ0+e/G0xRVI6ubm5zNnZWWgKff/+/dn169dpajMRC5qVIR1Pnjxhly9fFmo7cuQIq1evHqtRowabMmWKyLN/Ktq4qwC9Z0Wzfv16bglXwQyjPn36MMbyf5YFS8fatWtXaMlTfHw8q1GjBgPAevTo8dv3aE5ODqtduzYDwPT09FhOTg77+vUru3v3Ljt48CBr3Lgx09XVZe7u7tyW5jwej5tdBORvMY4fZopMmjRJoj8baRIIBExbW5sBYMHBwYyx/1s+9eOOXUWZNGkSA8AWL15c6DkXFxcG5Bf0rghu3LjB9PX1mZGRkVRnjO3fv58BYL1792aM5Y+PC2bXhYWFSS0OUj5I6zqmUNxkEo/HE0NKqmiDBg3C0aNHAQDJycmwtLTE1q1bMWjQIOzZs0di55UVR0dHvHnzBn5+frIOhRCJUVFRga2tLc6fP4/4+Hi4u7vD0tISfD4fV69exciRI6Gvr48pU6bg4cOHYr1LXtF9/vwZPXv2hKurK4D8vzmRkZG4fPkyevXqBQWFYv/pJ4TI2OrVq/H69Wvu6+DgYDg4OMDGxgYLFy7E5cuXsWHDBpH6rGjjLlIyVapUAQBkZGQUmrlStWpVnD17FlpaWnj27Bk6duwIW1tbODo6Ijs7G3PmzMHnz5/RsmVLnD9/HioqKr88T6VKlXDv3j1s374d169fR6VKlVCtWjV07doVDg4OCAkJQWJiIqZPn45Tp05h6tSp8PHxwdSpU7k+1qxZI9RnvXr1xPvDkCEej8fNJgoNDQUAvHv3DkD+TO7fsbS0BAD4+PgUeu7t27cAgGbNmokrVLnWs2dPxMfHIzIyEjVr1pTaeevWrQsA+PjxI4D8v+HZ2dmoXr06GjRoILU4CBFFsT8pMMYkFsTLly/RqVMnAMCZM2egp6eH9+/f4+jRo9i5c6fEzksIkY7q1atj+vTpePbsGUJCQrB06VLUrVsXqampOHjwIDp37oz69etj+fLlCA8Pl3W4ZZqfnx/Mzc1x7949qKur49y5c3Bzc/vjQJIQIp8CAgLQvXt37uuTJ0/C0tISBw4cgLOzM3bu3Fnk8pvfoXEXKY6ikkSmpqbc8/Xr18e///4LIP/ac+HCBezevRudOnXCiRMnAAAeHh5cP7/TsGFDODk5/Xb5FAA0bdoU+/btQ9u2bWFubo7du3fj/PnzaNiwodDy6fKUJAL+7/uJjY0FAERHRwMofpLIz8+v0M24kJAQAECTJk3EGarck+TEh6IUlFhISEgAAG6ca2JiIvVYCCmuYieJBAIBdHV1JRJEZmYmNDQ0AOTXz7Czs4OCggLatWuH9+/fS+SchBDZaNy4MdasWYOoqCjcv38fDg4O0NDQwLt377BmzRo0atQI7du3x549e5CUlCTrcMsUDw8PdOrUCbGxsWjcuDF8fX1ha2sr67AIIaXw7ds3oTpuDx48QJ8+fbiv27Zty31wLC4ad5Hi+DFJ9ObNGwBAixYthI7p168fLl++jOHDh3N1fQpmyo8YMQLm5uYSjfGvv/7C4MGDAQC1atXi2stbkqhg5ktCQgKysrIQHx8P4M/fp4mJCdTU1JCamsolhYD8m/8FM4maNm0qmaAJAEBfXx9A/izvvLw8LklEs4iIPJOLNQcNGjTAhQsXEBsbixs3bqBnz54AgE+fPqFq1aoyjk783N3d0axZM7Rt21bWoRAiMwoKCrC2tsbBgweRkJAAT09P9O3bF4qKinj27BmmT58OfX19DBkyBBcuXEBOTo6sQ5Zb2dnZmDZtGhwcHJCdnY1BgwbB19eXBn6ElAN6enrcrIGcnBy8fPkS7dq1455PS0srVKD3T2jcRYqjIEn09etXpKWlAQBq165d6Lj+/fvDy8sLV65cwbBhwwAAlStXLrQETNJ+LJ5d3pJEBYmG+Ph4xMTEAADU1dVRvXr1375OSUmJe98/e/aMa//06ROSk5PB4/HQsGFDCUVNAEBHRwcKCgpgjOHz58+IiIgAQEkiIt/kIkm0fPlyzJ07F/Xq1YOFhQXat28PIP/uVqtWrWQcnfhRTSJChKmpqWHkyJG4evUqPnz4AFdXV5iZmSE3Nxfnzp2Dra0tjIyM8OjRI1mHKnfi4uLQpUsX7Nu3DzweD2vXrsW5c+fK5Qc9Qiqivn37YuHChXj48CEWLVoENTU1bqkYAAQFBXG75xQXjbtIcRTsdlcwu6xSpUp/vLZ4eHjg4sWLCA4OlnryYcGCBejUqRNmzpxZ5G5rZdmPM4kKfh9169Yt1nKlgiTRj7vEFcwiMjIygqqqqrjDJT9QVFTkVuMkJCRQkoiUCUqyDgAAhg4dio4dOyI+Pl5orXP37t1pqQQhFYy+vj5mz56N2bNnIzg4GMeOHcO///6Ljx8/omvXrti5cyemTZtG67gBPHz4EMOGDUNiYiK0tbVx4sQJ9O7dW9ZhEULEaM2aNbCzs4O1tTXU1dVx5MgRKCsrc897eHhwM4GKi8ZdpDgKZhKlpqYCAGrUqPHHa6+6unqhrdalpVu3bujWrZtMzi1pP84k+vTpk1DbnxQUpi5IDP34b5pxLB36+vpISEhAQkICNzPU2NhYxlER8mtykSQC8v/n0dfXB2MMjDHweDxYWFjIOixCiAy1aNECLi4uWLFiBRwcHODl5YXp06fj5cuXcHNz++1uKeUZYwy7du3CnDlzkJeXx+0eQwMOQsofHR0deHt7IyUlBerq6lBUVBR6/vTp01BXVxe5Xxp3kT/5ueB0jRo1ZBQJKZhJFB8fj8TERAAQqlX2O0UliSpq0WpZKUjoffz4EZ8/fwYAqe6wRoio5GK5GQAcOnQIzZs3R+XKlVG5cmU0b94cBw8elHVYhBA5UKVKFXh6esLFxQUKCgo4ePAgunTpwm0nWpFkZmbC3t4eTk5OyMvLw+jRo/HkyRNKEBFSzmlqahZKEAFAtWrVhGYWFReNu8ifUJJIfhQkGb58+YK4uDgAKPaGQgWJoI8fPyI5ORkAzSSStoLfVWhoKPh8PoD8GwCEyCu5SBItX74cTk5OGDBgAE6fPo3Tp09jwIABmD17NpYvXy7r8AghcoDH42HevHn477//oKWlhWfPnsHc3BxPnz6VdWhSEx0dDSsrKxw7dgyKiorYtm0b/v3332JtL0wIIQXK+rgrMzMTdevWxdy5c2UdSrn287WFPtTKTvXq1aGklL8AJDg4GEDxk0SamppcwfGC5FBQUBAAoHnz5uIOlRRBU1MTALh6RNra2iVK7hMiLXKx3GzPnj04cOAARo0axbUNHDgQLVu2xIwZM7B69WoZRid+7u7ucHd35zLJhJDi69WrF54/f47Bgwfj1atXsLa2hru7O6ZMmSLr0CTq5s2bGDVqFJKSkqCrq4tTp07B2tpa1mERQsqgsj7uWrdundAOb0QyaCaR/FBQUICenh7i4uK4BE9xl5sB+TOG4uLi8PbtWxgbGyMxMRE8Ho+SRFJSUPA9PDwcgGi/O0JkQS5mEuXm5qJNmzaF2s3NzZGXlyeDiCSLdtkgpHTq16+Pp0+fYujQocjNzcXUqVMxbdo05OTkyDo0sWOMYcOGDejduzeSkpJgYWGBFy9eUIKIEFJiZXncFR4ejpCQEPTp00fWoZR7VapUQZ06dbivKUkkWwU1bAoKVxd3JhHwf3WJ3rx5g+fPnwMAGjZsSDORpaRgJlFBkkiU3x0hsiAXSaJx48Zhz549hdr379+PMWPGyCAiQoi8U1dXx6lTp7B+/XrweDzs27cP3bp1Q0JCgqxDE5u0tDQMHToUixcvBmMMkydPhre3d7nb2pcQIl2SGnd5e3tjwIABqFWrFng8Hi5cuFDoGHd3d9SrVw+VK1eGpaUlfH19RTrH3LlzsWHDhhLHSIqPx+Ph1KlTqFOnDjQ0NGBjYyPrkCq0n3czK0mS6OTJkxg3bhwAoHXr1uILjvxWwUyi7OxsAJQkIvJPZsvNnJ2duX/zeDwcPHgQN2/e5KYP+/j4ICYmBuPHj5dViIQQOcfj8bBo0SKYmZlh1KhRePz4MczNzXHu3DlYWlrKOrxSCQ0Nha2tLd6+fQtlZWW4ubmV+yV1hBDJkca4KyMjA6amppg0aRLs7OwKPe/l5QVnZ2fs3bsXlpaW2L59O3r16oXQ0FDuQ5OZmVmRs5lu3rwJPz8/NGrUCI0aNcKTJ09KHCcpPktLS7x//x4CgQAKCnJxb7nC+nk3rII6Q8VhYmICAFzR69q1a2PZsmXiC478VkGSqAAtNyPyTmZJIn9/f6Gvzc3NAQCRkZEA8ovj6ejo4PXr11KPjRBStvTp0wd+fn4YPHgw3rx5g86dO2PPnj2YNGmSrEMrkYsXL2LcuHFIS0tD7dq1cfbs2TKf9CKEyJY0xl19+vT57TIwV1dXTJkyBRMnTgQA7N27F1evXoWHhwcWLlwIAAgICPjl6589e4aTJ0/i9OnTSE9PR25uLqpWrfrLYtvZ2dncnXsASE1NLcF3RQBQgkgO/DiTqHbt2qhVq1axX2tlZYWlS5ciPT0dXbt2Rbdu3aCuri6JMEkRCpabFaAi8ETeySxJdO/ePVmdmhBSDjVs2BDPnj2Dvb09zp8/DwcHB7x8+RLbtm1DpUqVZB1esfD5fKxcuRJr164FAHTu3BmnTp2iO06EkFKT9bgrJycHL168wKJFi7g2BQUF2NjYFHuXyg0bNnBLzQ4fPoxXr179dje2DRs2YNWqVaULnBA58eNMIisrK/B4vGK/lsfjYc2aNZIIixTDzzOJfv6aEHkjF7ubFXjz5g1iYmKEis/yeDwMGDBAhlERQsoKDQ0NnDlzBuvXr8eyZcvg7u6OoKAgnD59Wu4TLd++fcPo0aNx/fp1AMCsWbPg4uJSZhJchJCyR5rjri9fvoDP5xf6W6ynp4eQkBCxnw8AFi1aJLTMLjU1FYaGhhI5FyGSVlBXCAB69Oghw0iIqChJRMoauUgSRUVFwdbWFsHBweDxeGCMAQCXIaet4gkhxaWgoIClS5fC1NQUY8eOxcOHD9GmTRucO3cObdu2lXV4RQoKCoKtrS2ioqKgqqqKAwcOUNF+QojElIdx14QJE/54jIqKClRUVODu7g53d/cy8X0R8iudO3fG3bt3kZGRgd69e8s6HCKCn5ebUZKIyDu5WGDs5OQEIyMjfPr0CWpqanj9+jW8vb3Rpk0b3L9/X9bhiZ27uzuaNWsmtx9YCSkPBgwYAF9fXzRu3BgfPnxAp06dcOTIEVmHVYinpyfatWuHqKgoGBkZ4enTp5QgIoRIlCzGXTo6OlBUVERiYqJQe2JiYqFdm8TN0dERb968gZ+fn0TPQ4gk8Xg8dO3aFf3794eSklzc5yfF9HNSSENDQ0aREFI8cpEkevr0KVavXg0dHR0oKChAQUEBHTt2xIYNGzBz5kxZhyd2NFghRDoaN24MHx8fDBgwANnZ2ZgwYQKcnJyQm5sr69CQm5sLZ2dnjB49GllZWejVqxeeP38OU1NTWYdGCCnnZDHuUlZWhrm5Oe7cucO1CQQC3LlzB+3bt5fIOQvQzTlCiCz9nBSimURE3slFkojP53P/8+jo6ODjx48AgLp16yI0NFSWoRFCyjhNTU1cuHABK1asAADs3LkTPXv2xOfPn6Uei0AgwNu3b/HPP/+ge/fu2LZtGwBgyZIluHr1KqpVqyb1mAghFY+kxl3p6ekICAjgdiiLjo5GQEAAYmJiAADOzs44cOAAjhw5grdv3+Kvv/5CRkYGt9uZpNDNOUKILCkpKQntJkdJIiLv5GKuYvPmzREYGAgjIyNYWlrCxcUFysrK2L9/P4yNjWUdHiGkjFNQUMDKlSthZmaGcePG4f79+2jTpg3Onz+P1q1bS+y8nz9/ho+PD549ewYfHx/4+fkhJSWFe15DQwNHjhyBra2txGIghJCfSWrc9fz5c3Tt2pX7uqBotL29PQ4fPowRI0bg8+fPWL58ORISEmBmZobr169LfGMBqklECJE1fX19REREAKAkEZF/PFZQrVCGbty4gYyMDNjZ2SEiIgL9+/dHWFgYqlevDi8vL3Tr1k3WIUpEamoqNDU1kZKSQn8sCJGSN2/eYPDgwQgPD0flypVx8OBBsdQAys7Ohr+/P3x8fLjEUHR0dKHj1NTU0KZNG1haWmLKlClo2LBhqc9NiCzQNazsonEXvWcJIdJlZWWFJ0+eAAC+fv1Ks8dJiUjrOiYXSaKiJCUlQVtbm9tpozyiwQohspGcnIyxY8fi6tWrAPLvdm/atKnYhSAZY4iKihKaJRQQECC0jXSBpk2bwtLSEu3atYOlpSWaN29OBSdJuUDXsPKFxl2EECI5vXv3xo0bNwAAOTk5qFSpkowjImWRtK5jcvtJhbKrhBBJ0dLSwqVLl7BixQqsXbsWrq6uCAwMxMmTJ6Gjo1Po+OTkZPj6+nKzhHx8fPDly5dCx9WoUQOWlpbco23bttDS0pLCd0QIIaVTnsddtNyMECJrP36gpwQRkXdymyQihBBJUlBQwJo1a2BmZgZ7e3vcuXMHbdu2xenTp6GoqCg0SygkJKTQ65WVldGqVStuhpClpSWMjIzK9V14QggpixwdHeHo6MjdgSWEEGmjbe9JWUJJolLKzMxE06ZNMWzYMGzZskXW4RBCRDRkyBA0btwYgwcPRmRk5C+3SK5fv77QLCEzMzOoqKhIOVpCCCGEEFLWUJKIlCWUJCqldevWoV27drIOgxBSCs2bN4efnx/GjBmDa9euQVNTExYWFtwsIQsLC9SoUUPWYRJCCCkBWm5GCJG1GTNmYMeOHRj+/9q79+Co7jKM488mIRcuuZCYXQIEsOVWkwYEoYFqcchAU4ZaUaoMYKBOlBIoFK2AtIAjFMZqp5fhosy0VK1NxSn0IqAYoBQNCYQskFIonUKJkBAKzYWLEMjPP5ysLIE2l7O72bPfz8zOsOec3fO+72Rz3rycs+fhhwMdCvCFGBK1wbFjx3TkyBGNHz9eZWVlgQ4HQBskJCRo8+bNOnfunBISEhQWFhbokAAAFuByMwCBdscdd6i6upozihAUbPtX0K5duzR+/HilpKTI4XBo06ZNTbZZtWqVevfurejoaA0fPlzFxcUt2sdPf/pTrVixwqKIAbQHiYmJDIgAAABgqbi4OHpMBAXb/pRevHhRGRkZWrVq1S3Xv/7665o3b56WLFmi/fv3KyMjQ2PHjlVVVZVnm0GDBiktLa3J4/Tp03rzzTfVr18/9evXz18pAQAAAAAA+IxtLzfLzs5Wdnb2bdc/++yzys3N1fTp0yVJa9eu1V//+le99NJLWrBggSTJ7Xbf9vV79uxRfn6+NmzYoAsXLqi+vl6xsbFavHjxbV9z5coVXblyxfO8tra2hVkBAACgJfhOIgAAms+2ZxJ9nqtXr6qkpERZWVmeZWFhYcrKylJhYWGz3mPFihUqLy/XiRMn9Otf/1q5ubmfOyBqfE1cXJzn0bNnzzblAQAAgM+Xl5enw4cPa+/evYEOBQCAdi8kh0Sffvqprl+/LqfT6bXc6XSqsrLSZ/tduHChampqPI/y8nKf7QsAAAAAAKAlbHu5mT9NmzatWdtFRUUpKirKc9rztWvXJHHZGQAg+DQeu4wxAY4EaJ7Gn1X6LgBAMPJX7xWSQ6KkpCSFh4frzJkzXsvPnDkjl8vl8/033or13//+t3r27MllZwCAoFVXV8dtxREU6urqJIm+CwAQ1Hzde4XkkCgyMlJDhgxRQUGBHnroIUlSQ0ODCgoKNGvWLL/FkZKSovLycnXp0kUOh8OzvLa2Vj179lR5ebliY2P9Fk+ghWLe5BwaOUuhmTc52ztnY4zq6uqUkpIS6FCAZrld39VaofR5by5q4o16NEVNmqIm3qhHU401OXnypBwOh897L9sOiS5cuKCPPvrI8/z48eNyu93q2rWrUlNTNW/ePOXk5Gjo0KEaNmyYnnvuOV28eNFztzN/CAsLU48ePW67PjY2NiQ/GKGYNzmHjlDMm5ztizOIEEy+qO9qrVD5vLcENfFGPZqiJk1RE2/Uo6m4uDi/1MS2Q6J9+/bpm9/8puf5vHnzJEk5OTlav369vve97+ns2bNavHixKisrNWjQIG3durXJl1kDAAAAAACEAtsOiUaNGvWFX+g0a9Ysv15eBgAAAAAA0F6FBToANBUVFaUlS5YoKioq0KH4VSjmTc6hIxTzJmcAdsbnvSlq4o16NEVNmqIm3qhHU/6uicNw71oAAAAAAICQx5lEAAAAAAAAYEgEAAAAAAAAhkQAAAAAAAAQQyIAAAAAAACIIVG7tGrVKvXu3VvR0dEaPny4iouLAx2SZVasWKGvfe1r6tKli5KTk/XQQw/p6NGjXtv85z//UV5enhITE9W5c2d95zvf0ZkzZwIUsfVWrlwph8OhuXPnepbZMedTp05pypQpSkxMVExMjNLT07Vv3z7PemOMFi9erG7duikmJkZZWVk6duxYACNuu+vXr+upp55Snz59FBMTozvuuEO//OUvdeP9AYI97127dmn8+PFKSUmRw+HQpk2bvNY3J7/z589r8uTJio2NVXx8vH74wx/qwoULfsyi5T4v7/r6es2fP1/p6enq1KmTUlJS9IMf/ECnT5/2eo9gzBvArdm5V7uRVX3byZMnNW7cOHXs2FHJycl64okndO3aNX+m4jOt7evsVhMr+j67HCet6geDuR7+6hcPHjyor3/964qOjlbPnj31q1/9yteptZq/eklLamLQruTn55vIyEjz0ksvmffff9/k5uaa+Ph4c+bMmUCHZomxY8eal19+2ZSVlRm3220eeOABk5qaai5cuODZZsaMGaZnz56moKDA7Nu3z9xzzz1mxIgRAYzaOsXFxaZ3797m7rvvNnPmzPEst1vO58+fN7169TLTpk0zRUVF5uOPPzZ/+9vfzEcffeTZZuXKlSYuLs5s2rTJHDhwwDz44IOmT58+5vLlywGMvG2WL19uEhMTzTvvvGOOHz9uNmzYYDp37myef/55zzbBnvfmzZvNokWLzBtvvGEkmY0bN3qtb05+999/v8nIyDB79uwx7733nrnzzjvNpEmT/JxJy3xe3tXV1SYrK8u8/vrr5siRI6awsNAMGzbMDBkyxOs9gjFvAE3ZvVe7kRV927Vr10xaWprJysoypaWlZvPmzSYpKcksXLgwEClZqrV9nd1qYlXfZ5fjpFX9YDDXwx/9Yk1NjXE6nWby5MmmrKzMvPbaayYmJsb89re/9VeaLeKPXtKqmjAkameGDRtm8vLyPM+vX79uUlJSzIoVKwIYle9UVVUZSebdd981xvzvA9KhQwezYcMGzzYffPCBkWQKCwsDFaYl6urqTN++fc22bdvMfffd52km7Jjz/Pnzzb333nvb9Q0NDcblcplnnnnGs6y6utpERUWZ1157zR8h+sS4cePMI4884rVswoQJZvLkycYY++V98wGuOfkdPnzYSDJ79+71bLNlyxbjcDjMqVOn/BZ7W9yq2blZcXGxkWQ++eQTY4w98gbwP6HWq92oNX3b5s2bTVhYmKmsrPRss2bNGhMbG2uuXLni3wQs1Ja+zm41saLvs9Nx0op+0E718FW/uHr1apOQkOD1mZk/f77p37+/jzNqO1/1klbVhMvN2pGrV6+qpKREWVlZnmVhYWHKyspSYWFhACPznZqaGklS165dJUklJSWqr6/3qsGAAQOUmpoa9DXIy8vTuHHjvHKT7JnzW2+9paFDh2rixIlKTk7W4MGDtW7dOs/648ePq7Ky0ivnuLg4DR8+PGhzlqQRI0aooKBAH374oSTpwIED2r17t7KzsyXZN+9GzcmvsLBQ8fHxGjp0qGebrKwshYWFqaioyO8x+0pNTY0cDofi4+MlhU7egN2FYq92o9b0bYWFhUpPT5fT6fRsM3bsWNXW1ur999/3Y/TWaktfZ7eaWNH32ek4aUU/aKd63Myq/AsLC/WNb3xDkZGRnm3Gjh2ro0eP6rPPPvNTNr7Tml7SqppEWJMCrPDpp5/q+vXrXgcMSXI6nTpy5EiAovKdhoYGzZ07VyNHjlRaWpokqbKyUpGRkZ4PQyOn06nKysoARGmN/Px87d+/X3v37m2yzo45f/zxx1qzZo3mzZunn//859q7d68ee+wxRUZGKicnx5PXrX7WgzVnSVqwYIFqa2s1YMAAhYeH6/r161q+fLkmT54sSbbNu1Fz8qusrFRycrLX+oiICHXt2tUWNZD+910U8+fP16RJkxQbGyspNPIGQkGo9Wo3am3fVllZect6Na4LRm3t6+xWEyv6PjsdJ63oB+1Uj5tZlX9lZaX69OnT5D0a1yUkJPgkfn9obS9pVU0YEiFg8vLyVFZWpt27dwc6FJ8qLy/XnDlztG3bNkVHRwc6HL9oaGjQ0KFD9fTTT0uSBg8erLKyMq1du1Y5OTkBjs53/vznP+vVV1/Vn/70J33lK1+R2+3W3LlzlZKSYuu88X/19fV6+OGHZYzRmjVrAh0OAFgmVPq2LxKKfd0XCdW+73boB9EW7aGX5HKzdiQpKUnh4eFN7n5w5swZuVyuAEXlG7NmzdI777yjHTt2qEePHp7lLpdLV69eVXV1tdf2wVyDkpISVVVV6atf/aoiIiIUERGhd999Vy+88IIiIiLkdDptl3O3bt101113eS0bOHCgTp48KUmevOz2s/7EE09owYIF+v73v6/09HRNnTpVjz/+uFasWCHJvnk3ak5+LpdLVVVVXuuvXbum8+fPB30NGg/qn3zyibZt2+b5nx/J3nkDoSSUerUbtaVvc7lct6xX47pgY0VfZ7eaWNH32ek4aUU/aKd63Myq/O32OZLa3ktaVROGRO1IZGSkhgwZooKCAs+yhoYGFRQUKDMzM4CRWccYo1mzZmnjxo3avn17k9PhhgwZog4dOnjV4OjRozp58mTQ1mD06NE6dOiQ3G635zF06FBNnjzZ82+75Txy5Mgmt8j98MMP1atXL0lSnz595HK5vHKura1VUVFR0OYsSZcuXVJYmPev1fDwcDU0NEiyb96NmpNfZmamqqurVVJS4tlm+/btamho0PDhw/0es1UaD+rHjh3TP/7xDyUmJnqtt2veQKgJhV7tRlb0bZmZmTp06JDXHzeNf/zcPFgIBlb0dXariRV9n52Ok1b0g3aqx82syj8zM1O7du1SfX29Z5tt27apf//+QXmpmRW9pGU1adHXXMPn8vPzTVRUlFm/fr05fPiw+dGPfmTi4+O97n4QzB599FETFxdndu7caSoqKjyPS5cuebaZMWOGSU1NNdu3bzf79u0zmZmZJjMzM4BRW+/Gu2AYY7+ci4uLTUREhFm+fLk5duyYefXVV03Hjh3NH//4R882K1euNPHx8ebNN980Bw8eNN/61reC6lbwt5KTk2O6d+/uueXpG2+8YZKSkszPfvYzzzbBnnddXZ0pLS01paWlRpJ59tlnTWlpqefOC83J7/777zeDBw82RUVFZvfu3aZv377t/paun5f31atXzYMPPmh69Ohh3G631++2G+8uEYx5A2jK7r3ajazo2xpv9z5mzBjjdrvN1q1bzZe+9KWgvd37rbS0r7NbTazq++xynLSqHwzmevijX6yurjZOp9NMnTrVlJWVmfz8fNOxY8cW3+7dX/zRS1pVE4ZE7dCLL75oUlNTTWRkpBk2bJjZs2dPoEOyjKRbPl5++WXPNpcvXzYzZ840CQkJpmPHjubb3/62qaioCFzQPnBzM2HHnN9++22TlpZmoqKizIABA8zvfvc7r/UNDQ3mqaeeMk6n00RFRZnRo0ebo0ePBihaa9TW1po5c+aY1NRUEx0dbb785S+bRYsWef1yD/a8d+zYccvPcE5OjjGmefmdO3fOTJo0yXTu3NnExsaa6dOnm7q6ugBk03yfl/fx48dv+7ttx44dnvcIxrwB3Jqde7UbWdW3nThxwmRnZ5uYmBiTlJRkfvKTn5j6+no/Z+M7renr7FYTK/o+uxwnreoHg7ke/uoXDxw4YO69914TFRVlunfvblauXOmvFFvMX72kFTVxGGNM8887AgAAAAAAgB3xnUQAAAAAAABgSAQAAAAAAACGRAAAAAAAABBDIgAAAAAAAIghEQAAAAAAAMSQCAAAAAAAAGJIBAAAAAAAADEkAgAAAAAAgBgSAQAAAAAAQAyJALQjxhhJ0tKlS72eAwAAIHDo0YDQ4TB8wgG0E6tXr1ZERISOHTum8PBwZWdn67777gt0WAAAACGNHg0IHZxJBKDdmDlzpmpqavTCCy9o/PjxzWo+Ro0aJYfDIYfDIbfb7fsgbzJt2jTP/jdt2uT3/QMAAPhaS3u01vRn9FRA+8CQCEC7sXbtWsXFxemxxx7T22+/rffee69Zr8vNzVVFRYXS0tJ8HGFTzz//vCoqKvy+XwAAAKs9/vjjmjBhQpPlrenRWtqf0VMB7UNEoAMAgEY//vGP5XA4tHTpUi1durTZ17t37NhRLpfLx9HdWlxcnOLi4gKybwAAACsVFxdr3LhxTZa3pkdraX9GTwW0D5xJBMBvnn76ac9pxDc+nnvuOUmSw+GQ9P8vRWx83lKjRo3S7NmzNXfuXCUkJMjpdGrdunW6ePGipk+fri5duujOO+/Uli1bLHkdAABAMLt69ao6dOigf/3rX1q0aJEcDofuuecez3qrerS//OUvSk9PV0xMjBITE5WVlaWLFy+2OX4A1mFIBMBvZs+erYqKCs8jNzdXvXr10ne/+13L9/XKK68oKSlJxcXFmj17th599FFNnDhRI0aM0P79+zVmzBhNnTpVly5dsuR1AAAAwSoiIkL//Oc/JUlut1sVFRXaunWrpfuoqKjQpEmT9Mgjj+iDDz7Qzp07NWHCBO6UBrQzDIkA+E2XLl3kcrnkcrm0atUq/f3vf9fOnTvVo0cPy/eVkZGhJ598Un379tXChQsVHR2tpKQk5ebmqm/fvlq8eLHOnTungwcPWvI6AACAYBUWFqbTp08rMTFRGRkZcrlcio+Pt3QfFRUVunbtmiZMmKDevXsrPT1dM2fOVOfOnS3dD4C2YUgEwO8WL16sP/zhD9q5c6d69+7tk33cfffdnn+Hh4crMTFR6enpnmVOp1OSVFVVZcnrAAAAgllpaakyMjJ89v4ZGRkaPXq00tPTNXHiRK1bt06fffaZz/YHoHUYEgHwqyVLluj3v/+9TwdEktShQwev5w6Hw2tZ47X0DQ0NlrwOAAAgmLndbp8OicLDw7Vt2zZt2bJFd911l1588UX1799fx48f99k+AbQcQyIAfrNkyRK98sorPh8QAQAAoGUOHTqkQYMG+XQfDodDI0eO1C9+8QuVlpYqMjJSGzdu9Ok+AbRMRKADABAali1bpjVr1uitt95SdHS0KisrJUkJCQmKiooKcHQAAAChraGhQUePHtXp06fVqVMny29HX1RUpIKCAo0ZM0bJyckqKirS2bNnNXDgQEv3A6BtOJMIgM8ZY/TMM8/o7NmzyszMVLdu3TwPvgAaAAAg8JYtW6b169ere/fuWrZsmeXvHxsbq127dumBBx5Qv3799OSTT+o3v/mNsrOzLd8XgNbjTCIAPudwOFRTU+O3/e3cubPJshMnTjRZdvMtV1v7OgAAgGA3ZcoUTZkyxWfvP3DgQG3dutVn7w/AGpxJBCDorV69Wp07d9ahQ4f8vu8ZM2Zw61YAAICbtLQ/o6cC2geH4b/EAQSxU6dO6fLly5Kk1NRURUZG+nX/VVVVqq2tlSR169ZNnTp18uv+AQAA2pvW9Gf0VED7wJAIAAAAAAAAXG4GAAAAAAAAhkQAAAAAAAAQQyIAAAAAAACIIREAAAAAAADEkAgAAAAAAABiSAQAAAAAAAAxJAIAAAAAAIAYEgEAAAAAAEAMiQAAAAAAACCGRAAAAAAAABBDIgAAAAAAAEj6L4sJQXFI9pNOAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIkAAAKSCAYAAABWc4s6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUVfqHn3snlZKEACGJtCgIgggIgggoClIEbFhQVFAWFEHFiqyC4q6isGvBVVHXFf2JsjZQWUERpClSRaWDhiIQAoQkJCFt7vn9MTM30zMzmRTC+3w+AzOnveece2Yy9zvveY+mlFIIgiAIgiAIgiAIgiAIZzR6dXdAEARBEARBEARBEARBqH5EJBIEQRAEQRAEQRAEQRBEJBIEQRAEQRAEQRAEQRBEJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYkEQRAEQRAEQRAEQRAERCQSBEEQBEEQBEEQBEEQEJFIEARBEARBEARBEARBoJaLRMePHycpKYm9e/cGVP7xxx/nvvvuq9xOCYIgCIIg1EKcv3ctX74cTdPIzs72WX7x4sV06tQJwzCqrpOCIAiCIPilVotEzz77LNdccw0tW7YMqPwjjzzCe++9xx9//FG5HRMEQRAEQahlBPu9a+DAgURGRjJ37tzK7ZggCIIgCAETUd0dqCwKCgp45513+OabbwKu06hRIwYMGMAbb7zBzJkzK7F3giAIgiAItYdQvncBjBo1ilmzZnH77bdXUs+8Y7VaKSkpqVKbgiAIghAqkZGRWCyWKrFVa0Wir7/+mujoaC6++GLA9mVg7NixLFu2jIyMDJo3b869997LAw884FJv6NChPPHEEyISCYIgCIIgBIj79y4HP/zwA5MnT2bXrl106tSJf//735x//vlm/tChQ5kwYQK///4755xzTqX3UylFRkaG321wgiAIglATSUhIIDk5GU3TKtVOrRWJVq1aRZcuXczXhmHQtGlTPvnkExo2bMiPP/7I2LFjSUlJ4aabbjLLdevWjT///JO9e/cG7C4tCELwzJkzh5YtW9KnT5/q7kqFKSoqYty4cXz33XdkZ2fTrl07XnrpJXr06FHdXRMEQagS3L93OXj00Ud55ZVXSE5O5q9//StDhw5l165dREZGAtC8eXOaNGnCqlWrqkQkcghESUlJ1KlTp9K/aAuCIAhCRVFKUVBQQGZmJgApKSmVaq/WikT79u0jNTXVfB0ZGcm0adPM12lpaaxZs4aPP/7YRSRy1Nm3b5+IRIJQCXz44Yemq6RSildffZV27drRt2/fau5Z6JSWltKyZUtWr15N06ZN+fjjjxk6dCh79+6lXr161d09QRCESsf9e5eDp556iiuvvBKA9957j6ZNmzJ//nyP71779u2r9D5arVZTIGrYsGGl2xMEQRCEcBEbGwtAZmYmSUlJlbr1rNYGrj516hQxMTEuaa+99hpdunShcePG1KtXj7feeov9+/e7lHFMfkFBQZX1VRDOJG6++WYyMjJ4+eWX+etf/0pCQkJAAtGoUaPQNA1N01y2KtQE6taty9SpU2nevDm6rjN8+HCioqLYuXOnWebll182+69pGseOHavGHguCIIQXb9+7ABePysTERNq0acP27dtdysTGxlbJ9y5HDKI6depUui1BEARBCDeOv1+VHVOv1opEjRo14sSJE+brefPm8cgjjzB69Gi+/fZbNm/ezJ133klxcbFLvaysLAAaN25cpf0VhDMJh3u/pmlBqeCNGjXi//7v/3j++ed9lnn99dfRNI3u3bv7bcswDBo3bsyMGTMCth8ou3fvJisri1atWplpAwcO5P/+7/+47rrrwm5PEAShunH/3hUMWVlZVfq9S7aYCYIgCKcjVfX3q9ZuN+vcuTMffPCB+fqHH37gkksu4d577zXTfv/9d496W7ZsITIykvbt21dJPwWhNpGZmcnXX3/Ntm3bOHHihKlyn3POOUyZMgWA//73vyQlJTFx4kRatGjBb7/9xtKlSwPyJqpbty633Xab3zJz586lZcuWrFu3jj179rgINc6sW7eOY8eOMXjw4CBH6Z9Tp05x2223MXnyZOLj4830tm3b0rZtW/bs2cP8+fPDalMQBKG6cf/e5eCnn36iefPmAJw4cYJdu3Zx3nnnmfmFhYX8/vvvdO7cucr6KgiCIAiCb2qtJ9GAAQPYunWr+atW69at2bBhA9988w27du1iypQprF+/3qPeqlWr6N27t7ntTBCEwHj55Ze5/fbbWbduHe+++y7//ve/OXLkCNOmTePJJ580y916660MHz4csKnh999/f9jiEaWnp/Pjjz/y4osv0rhxY+bOneuz7Ndff02LFi3CKgiXlJRw44030qpVK6ZOnRq2dgVBEGo67t+7HDzzzDMsXbqULVu2MGrUKBo1asS1115r5v/0009ER0efdoH+rVYry5cv56OPPmL58uVYrdZKt5mRkcF9993H2WefTXR0NM2aNWPo0KEsXbrULPPjjz9y1VVX0aBBA2JiYujQoQMvvviiR/8cW59/+uknl/SioiIaNmyIpmksX77cTF+xYgVXXHEFiYmJ1KlTh9atWzNy5EgXj3yr1cpLL71Ehw4diImJoUGDBgwaNIgffvjBxcacOXNISEgI38QINZqVK1cydOhQUlNT0TSNBQsWVIsN57AFkZGRNGnShCuvvJL//Oc/GIYR9j4JNYNAr3vLli1dwkJomkbTpk098t0/MydOnOhxCE9ubi5PPPEEbdu2JSYmhuTkZPr168fnn3+OUsost2fPHu68806aNm1KdHQ0aWlp3HLLLWzYsKFyJiMIaq1I1KFDBy688EI+/vhjAO6++26uv/56br75Zrp3787x48ddvIoczJs3jzFjxlR1dwXhtGbNmjV07dqVb775htdff50LL7wQTdN48803adGihVfXyFGjRoX9ZLO5c+fSoEEDBg8ezA033OBXJPrf//7n4kX09NNPo2kau3bt4rbbbiM+Pp7GjRszZcoUlFIcOHCAa665hri4OJKTk/nnP//p0p5hGNx+++1omsZ7770n2xkEQTijcP/e5eD555/ngQceoEuXLmRkZPDVV18RFRVl5n/00UeMGDHitIoT9Pnnn9OqVSsuv/xybr31Vi6//HJatWrF559/Xmk29+7dS5cuXVi2bBkzZ87kt99+Y/HixVx++eWMHz8egPnz53PZZZfRtGlTvv/+e3bs2MEDDzzA3//+d4YPH+5ycwLQrFkz3n33XZe0+fPnexy4sG3bNgYOHEjXrl1ZuXIlv/32G6+++ipRUVGm+KSUYvjw4TzzzDM88MADbN++neXLl9OsWTP69OlTKcKAcHqQn59Px44dee2114Ku26dPH+bMmRM2GwMHDuTw4cPs3buXRYsWcfnll/PAAw8wZMgQSktLg+6fcHoQ6HV/5plnOHz4sPn4+eefXdqJiYlh0qRJfm1lZ2dzySWX8P777zN58mQ2bdrEypUrufnmm3nsscfIyckBYMOGDXTp0oVdu3bx5ptvsm3bNubPn0/btm15+OGHwz8JwaJqMQsXLlTnnXeeslqtAZX/+uuv1XnnnadKSkoquWeCUHspKipSdevWVV26dAlruyNHjlQtWrTwW6Zt27Zq9OjRSimlVq5cqQC1bt06j3KHDx9WmqaphQsXmmlPPfWUAlSnTp3ULbfcol5//XU1ePBgBagXX3xRtWnTRo0bN069/vrrqmfPngpQK1asMOv/5S9/UZdeeqk6deqU3z467Bw9ejSI0QuCINR8gv3edfToUZWYmKj++OOPSu6ZjVOnTqlt27aV+zntj88++0xpmqaGDh2q1qxZo06ePKnWrFmjhg4dqjRNU5999lkYe1zGoEGD1FlnnaXy8vI88k6cOKHy8vJUw4YN1fXXX++R/+WXXypAzZs3z0wD1JNPPqni4uJUQUGBmX7llVeqKVOmKEB9//33SimlXnrpJdWyZUu//Zs3b54C1JdffumRd/3116uGDRuafX/33XdVfHx8IMMWahmAmj9/fsDlL7vsMvXuu++GxcbIkSPVNddc45G+dOlSBai33347KDvC6UGg171FixbqpZde8tlOixYt1P3336+ioqLU//73PzP9gQceUJdddpn5ety4capu3brq4MGDHm2cPHlSlZSUKMMwVPv27VWXLl28/r08ceKEz36E4+9YINRaTyKAwYMHM3bsWA4ePBhQ+fz8fN59910iImptqCZBqHRWrVpFfn4+AwcOrFK7GzduZMeOHeZWtl69etG0aVOv3kRff/01MTExXHHFFR553bp148MPP2TcuHF88cUXNG3alIcffpg777yT119/nXHjxrFw4UJiY2P5z3/+A9iOfv73v//NunXraNSoEfXq1aNevXqsWrWqcgctCIJQgwj2e9fevXt5/fXXSUtLq+SehQer1crDDz/MkCFDWLBgARdffDH16tXj4osvZsGCBQwZMoRHHnkk7FvPsrKyWLx4MePHj6du3boe+QkJCXz77bccP36cRx55xCN/6NChnHvuuXz00Ucu6V26dKFly5Z89tlnAOzfv5+VK1dy++23u5RLTk7m8OHDrFy50mcfP/zwQ84991yGDh3qkffwww9z/PhxlixZEtB4hfJRSpGfn18tD+XmkXa6c8UVV9CxY8dK9QSszXhbF8XFxeTn51NUVOS1rPM2r5KSEvLz8yksLCy3bDgJ5bqnpaVxzz33MHnyZK/9MgyDefPmMWLECFJTUz3y69WrR0REBJs3b2br1q08/PDD6LqnHFMTtuPWapEIbPsEmzVrFlDZG264odwTkQRB8M/ixYsBGDRoUJXanTt3Lk2aNOHyyy8HbPEWbr75ZubNm+fxhf3rr7/m8ssv9xp77C9/+Yv53GKx0LVrV5RSjB492kxPSEigTZs2/PHHHwC0aNECpRSnTp0iLy/PfPTu3bsyhioIglBjCeZ7V9euXbn55psruUfhY9WqVezdu5e//vWvHl/sdV1n8uTJpKenh/0Hgj179qCUom3btj7L7Nq1C8AlKLgzbdu2Ncs4c9ddd5k/eMyZM4errrrK46S5G2+8kVtuuYXLLruMlJQUrrvuOv71r3+Rm5vrYt+XbUe6N/tCaBQUFJg/SFX1o6CgoLqHH3batm3L3r17q7sbpyWOdXHs2DEzbebMmdSrV48JEya4lE1KSqJevXrs37/fTHvttdeoV6+ey/dssMUAqlevHtu3b6+0vrtf90mTJrms9VmzZnnUefLJJ0lPT/f6I/SxY8c4ceKE389qsJ2C7LBfU6n1IpEgCFXLokWLaNCgARdffHGV2bRarcybN4/LL7+c9PR09uzZw549e+jevTtHjhxxCepZUlLCkiVLfJ5q5jiFx0F8fDwxMTE0atTIIz3U454FQRCE04/Dhw8DcP7553vNd6Q7yoWLYDw3gvXyuO2221izZg1//PEHc+bM4a677vIoY7FYePfdd/nzzz+ZMWMGZ511Fs899xzt27d3GWtt8zARqp7nnnvO5SZ91apV3HPPPS5pzgJDuFBKSSzJMxD36/7oo4+yefNm83HHHXd41GncuDGPPPIIU6dOdQnc72gvULs1HdlXJQhC2Pjzzz/ZunUrN910ExaLpcrsLlu2jMOHDzNv3jzmzZvnkT937lz69+8PwOrVq8nNzeWqq67y2pa3fvsay+nwIS8IgiCEh5SUFAC2bNni9YeQLVu2uJQLF61bt0bTNHbs2OGzzLnnngvA9u3bueSSSzzyt2/fTrt27TzSGzZsyJAhQxg9ejSFhYUMGjSIkydPerVx1llncfvtt3P77bfzt7/9jXPPPZfZs2czbdo0zj33XJ+/+DvSHX0UKk6dOnXIy8urNtuVxT333MNNN91kvh4xYgTDhg3j+uuvN9O8beOpKNu3bz9ttr3WNBzr0HldPProo0ycONEjhEtmZiaAiyf/+PHjGTNmjMd3bYeHT2WeOO5+3Rs1akSrVq3KrffQQw/x+uuv8/rrr7ukN27cmISEBL+f1VD2Wbhjxw46d+4cQs8rH/EkEgQhbCxatAionq1mSUlJfPLJJx6PW265hfnz53Pq1CnAdqpZu3btaNmyZZX2URAEQTi96d27Ny1btuS5557ziEdhGAbTp08nLS0t7FuNExMTGTBgAK+99hr5+fke+dnZ2fTv35/ExESPkzcBvvzyS3bv3s0tt9zitf277rqL5cuXc8cddwT8A0+DBg1ISUkx+zN8+HB2797NV1995VH2n//8Jw0bNuTKK68MqG2hfDRNo27dutXyqEyPm8TERFq1amU+YmNjSUpKckkLd+zYZcuW8dtvvzFs2LCwtnum4G1dREVFUbduXaKjo72Wdd6uGxkZSd26dYmJiSm3bDipyHWvV68eU6ZM4dlnn3UR1XVdZ/jw4cydO5dDhw551MvLy6O0tJROnTrRrl07/vnPf3qNbZSdnR10n8KNeBIJghA2Fi5cCMCAAQPMtB07dlTqnttTp07x+eefc+ONN3LDDTd45KempvLRRx/x5ZdfcvPNN/P1118zZMiQSuuPIAiCUDuxWCz885//5IYbbuDaa69l8uTJnH/++WzZsoXp06ezcOFCPv3000rxpH3ttdfo2bMn3bp145lnnuGCCy6gtLSUJUuW8MYbb7B9+3befPNNhg8fztixY5kwYQJxcXEsXbqURx99lBtuuMHFQ8OZgQMHcvToUeLi4rzmv/nmm2zevJnrrruOc845h8LCQt5//322bt3Kq6++CthEok8++YSRI0cyc+ZM+vbtS25uLq+99hpffvkln3zyiUvQbavVyubNm13sREdH+4xrJJy+5OXlsWfPHvN1eno6mzdvJjEx0WOLf2XbKCoqIiMjA6vVypEjR1i8eDHTp09nyJAhXrcWCbWDyrjuY8eO5aWXXuLDDz90iWn87LPPsnz5crp3786zzz5L165diYyMZNWqVUyfPp3169eTkJDAu+++S79+/ejduzdPPPEEbdu2JS8vj6+++opvv/2WFStWhGv4ISEikSAIYWHHjh18/fXXRERE8Pvvv7Nt2zY+++wzhg0bVqki0ZdffsnJkye5+uqrveZffPHFNG7cmLlz59KtWze2b9/OG2+8UWn9EQRBEGov119/PZ9++ikPP/ywy7autLQ0Pv30U5dtMeHk7LPPZtOmTTz77LM8/PDDHD58mMaNG9OlSxfzb9oNN9zA999/z7PPPkvv3r0pLCykdevWPPHEE0ycONGnB4imaR5x95zp1q0bq1ev5p577uHQoUPUq1eP9u3bs2DBAi677DKzjY8//piXX36Zl156iXvvvZeYmBh69OjB8uXL6dmzp0ubeXl5HtsszjnnHJcbfaF2sGHDBvNQEbBt1QEYOXIkc+bMqVIbixcvJiUlhYiICBo0aEDHjh2ZNWsWI0eOrDSPFaH6qYzrHhkZyd/+9jduvfVWl/TExER++uknnn/+ef7+97+zb98+GjRoQIcOHZg5cybx8fGA7XN1w4YNPPvss4wZM4Zjx46RkpLCJZdcwssvv1zRIVcYTUlQDUEQKsDGjRt54YUXWLJkCdnZ2cTGxtK8eXMGDRrEY489FrbYDKNGjWL58uUep09cffXVLFmyhOPHj/vcJ3/nnXcyd+5cnnrqKWbOnMmxY8c83JWffvpppk2bxtGjR12+LI8aNYpPP/3UY+9/nz59OHbsmBmDIlB82REEQRAql8LCQtLT00lLS/PY2hAsVquVVatWcfjwYVJSUujdu3eVxuITBEEQzjzC+XfMHyISCYJwWjBq1CiWLVvGpk2biIiIICEhIeg2rrrqKurVq8fHH38c/g6WQ2FhIXl5ecyYMYOZM2eKSCQIglDFVNWXa0EQBEGoDKrq75hsNxME4bThwIEDNG7cmPbt2wftwQM2759wBxQNlNmzZ/Pggw9Wi21BEARBEARBEIRAEE8iQRBOC7Zt22aeFFCvXj2vxw/XZA4cOMDOnTvN15dddhmRkZHV2CNBEIQzC/EkEgRBEE5nxJNIEATBiXbt2tGuXbvq7kbINGvWjGbNmlV3NwRBEARBEARBEHwiYdwFQRAEQRAEQRAEQRAEEYkEQRAEQRCEMweJtCAIgiCcjlTV3y8RiQRBEARBEIRajyMOXEFBQTX3RBAEQRCCx/H3q7LjmkpMIkEQBEEQBKHWY7FYSEhIIDMzE4A6deqgaVo190oQBEEQ/KOUoqCggMzMTBISErBYLJVqT043EwRBEARBEM4IlFJkZGSQnZ1d3V0RBEEQhKBISEggOTm50n/gEJFIEARBEARBOKOwWq2UlJRUdzcEQRAEISAiIyMr3YPIgYhEgiAIgiAIgiAIgiAIggSuFgRBEARBEARBEARBEEQkEgRBEARBEARBEARBEBCRSBAEQRAEQRAEQRAEQUBEIkEQBEEQBEEQBEEQBAERiQRBEARBEARBEARBEAREJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYlqBS1btkTTNI/H+PHjAXjrrbfo06cPcXFxaJpGdnZ2QO2+9tprtGzZkpiYGLp37866detc8gsLCxk/fjwNGzakXr16DBs2jCNHjoR7eB5UxninT5/ORRddRP369UlKSuLaa69l586dLmX69OnjYfOee+6pjCG6UBnjffrppz3aa9u2rUuZ2nR9y2sTaub1zcrK4r777qNNmzbExsbSvHlz7r//fnJycvy2qZRi6tSppKSkEBsbS79+/di9e7dLmaysLEaMGEFcXBwJCQmMHj2avLy8yhwqEP7xlpSUMGnSJDp06EDdunVJTU3ljjvu4NChQ+Xaff755yt7uJVyfUeNGuXR3sCBA13KVNf1FQRBEARBEE5vRCSqBaxfv57Dhw+bjyVLlgBw4403AlBQUMDAgQP561//GnCb//3vf3nooYd46qmn2LRpEx07dmTAgAFkZmaaZR588EG++uorPvnkE1asWMGhQ4e4/vrrwzs4L1TGeFesWMH48eP56aefWLJkCSUlJfTv35/8/HyXcmPGjHGxPWPGjPANzAeVMV6A9u3bu7S7evVql/zadH3La9NBTbu+hw4d4tChQ/zjH/9gy5YtzJkzh8WLFzN69Gi/bc6YMYNZs2Yxe/Zs1q5dS926dRkwYACFhYVmmREjRrB161aWLFnCwoULWblyJWPHjq3UsUL4x1tQUMCmTZuYMmUKmzZt4vPPP2fnzp1cffXVHmWfeeYZF9v33XdfpY3TQWVcX4CBAwe6tPvRRx+55FfX9RUEQRAEQRBOc5RQ63jggQfUOeecowzDcEn//vvvFaBOnDhRbhvdunVT48ePN19brVaVmpqqpk+frpRSKjs7W0VGRqpPPvnELLN9+3YFqDVr1oRnIAESjvG6k5mZqQC1YsUKM+2yyy5TDzzwQAV7W3HCMd6nnnpKdezY0Wd+bb++3tqs6dfXwccff6yioqJUSUmJ13zDMFRycrKaOXOmmZadna2io6PVRx99pJRSatu2bQpQ69evN8ssWrRIaZqmDh48GMbRlE9Fx+uNdevWKUDt27fPTGvRooV66aWXKtrdChOO8Y4cOVJdc801PvNr0vUVBEEQBEEQTi/Ek6iWUVxczAcffMBdd92Fpmkht7Fx40b69etnpum6Tr9+/VizZg0AGzdupKSkxKVM27Ztad68uVmmKgjHeL3h2O6RmJjokj537lwaNWrE+eefz+TJkykoKAibzUAI53h3795NamoqZ599NiNGjGD//v1mXm2+vv7aPB2ub05ODnFxcURERHjNT09PJyMjw+XaxcfH0717d/ParVmzhoSEBLp27WqW6devH7qus3bt2jCOyD/hGK+vOpqmkZCQ4JL+/PPP07BhQzp37szMmTMpLS2tSPeDJpzjXb58OUlJSbRp04Zx48Zx/PhxM6+mXF9BEARBEATh9CPwb93CacGCBQvIzs5m1KhRIbdx7NgxrFYrTZo0cUlv0qQJO3bsACAjI4OoqCiPm7AmTZqQkZERsu1gCcd43TEMg4kTJ9KzZ0/OP/98M/3WW2+lRYsWpKam8uuvvzJp0iR27tzJ559/Hjbb5RGu8Xbv3p05c+bQpk0bDh8+zLRp0+jduzdbtmyhfv36tfr6+mrzdLi+x44d429/+5vfbUOO6+Pt/evIy8jIICkpySU/IiKCxMTEGnV9AxmvO4WFhUyaNIlbbrmFuLg4M/3+++/nwgsvJDExkR9//JHJkydz+PBhXnzxxYoOI2DCNd6BAwdy/fXXk5aWxu+//85f//pXBg0axJo1a7BYLDXm+gqCIAiCIAinHyIS1TLeeecdBg0aRGpqanV3pUqojPGOHz+eLVu2eMTocb5x69ChAykpKfTt25fff/+dc845J2z2/RGu8Q4aNMh8fsEFF9C9e3datGjBxx9/HFA8lKqiMq6vrzZr+vXNzc1l8ODBtGvXjqeffrpK+lPZhHu8JSUl3HTTTSileOONN1zyHnroIfP5BRdcQFRUFHfffTfTp08nOjq6QuMIlHCNd/jw4ebzDh06cMEFF3DOOeewfPly+vbtG+5uC4IgCIIgCGcQst2sFrFv3z6+++47/vKXv1SonUaNGmGxWDxOsjpy5AjJyckAJCcnU1xc7HGylHOZyiZc43VmwoQJLFy4kO+//56mTZv6Ldu9e3cA9uzZEzb7/qiM8TpISEjg3HPPNcdSW69vMG3WpOt78uRJBg4cSP369Zk/fz6RkZE+23Fcn/Lev85B6AFKS0vJysqqEdc3mPE6cAhE+/btY8mSJS5eRN7o3r07paWl7N27N9QhBEW4x+vM2WefTaNGjVzev9V9fQVBEARBEITTExGJahHvvvsuSUlJDB48uELtREVF0aVLF5YuXWqmGYbB0qVL6dGjBwBdunQhMjLSpczOnTvZv3+/WaayCdd4wXZk+IQJE5g/fz7Lli0jLS2t3DqbN28GICUlpcL2AyGc43UnLy+P33//3RxLbbu+obRZU65vbm4u/fv3Jyoqii+//JKYmBi/7aSlpZGcnOxy7XJzc1m7dq157Xr06EF2djYbN240yyxbtgzDMExxrLIJ13ihTCDavXs33333HQ0bNiy3zubNm9F13WNbVmURzvG68+eff3L8+HFzrdaE6ysIgiAIgiCcplR35GwhPFitVtW8eXM1adIkj7zDhw+rn3/+Wb399tsKUCtXrlQ///yzOn78uFnmiiuuUK+++qr5et68eSo6OlrNmTNHbdu2TY0dO1YlJCSojIwMs8w999yjmjdvrpYtW6Y2bNigevTooXr06FG5A7UT7vGOGzdOxcfHq+XLl6vDhw+bj4KCAqWUUnv27FHPPPOM2rBhg0pPT1dffPGFOvvss9Wll15a+YNV4R/vww8/rJYvX67S09PVDz/8oPr166caNWqkMjMzzTK16fqW12ZNvb45OTmqe/fuqkOHDmrPnj0ua7O0tNQs16ZNG/X555+br59//nmVkJCgvvjiC/Xrr7+qa665RqWlpalTp06ZZQYOHKg6d+6s1q5dq1avXq1at26tbrnllsofrArveIuLi9XVV1+tmjZtqjZv3uxSp6ioSCml1I8//qheeukltXnzZvX777+rDz74QDVu3Fjdcccdp914T548qR555BG1Zs0alZ6err777jt14YUXqtatW6vCwkKzTnVeX0EQBEEQBOH0RUSiWsI333yjALVz506PvKeeekoBHo93333XLNOiRQv11FNPudR79dVXVfPmzVVUVJTq1q2b+umnn1zyT506pe69917VoEEDVadOHXXdddepw4cPV8bwPAj3eL2Vd66zf/9+demll6rExEQVHR2tWrVqpR599FGVk5NTySO1Ee7x3nzzzSolJUVFRUWps846S918881qz549Lu3WputbXps19fp+//33Ptdmenq6Wc59/IZhqClTpqgmTZqo6Oho1bdvX4+2jx8/rm655RZVr149FRcXp+6880518uTJyhymSTjHm56e7rPO999/r5RSauPGjap79+4qPj5excTEqPPOO08999xzLqLK6TLegoIC1b9/f9W4cWMVGRmpWrRoocaMGeMi4CtVvddXEARBEARBOH3RlFKqwu5IgiAIgiAIgnCaYLVaKSkpqe5uCIIgCEJAREZGYrFYqsSWnG4mCIIgCIIgnBEopcjIyPA4mEEQBEEQajoJCQkkJyejaVql2hGRSBAEQRAEQTgjcAhESUlJ1KlTp9K/aAuCIAhCRVFKUVBQYJ5eW9kH64hIJAiCIAiCINR6rFarKRAFcgqiIAiCINQUYmNjAcjMzCQpKalSt57pldayIAiCIAiCINQQHDGI6tSpU809EQRBEITgcfz9quyYeiISCYIgCIIgCGcMssVMEARBOB2pqr9fIhIJgiAIgiAIgiAIgiAIIhIJZRQVFfH0009TVFRU3V2pEmS8tRsZb+1GxisIwpnE9OnTueiii6hfvz5JSUlce+217Ny506VMYWEh48ePp2HDhtSrV49hw4Zx5MgRlzL79+9n8ODB1KlTh6SkJB599FFKS0urcihCLeXgwYPcdtttNGzYkNjYWDp06MCGDRvMfKUUU6dOJSUlhdjYWPr168fu3btd2sjKymLEiBHExcWRkJDA6NGjycvLq+qhCLWMlStXMnToUFJTU9E0jQULFniUCdf6/PXXX+nduzcxMTE0a9aMGTNmVObQKg0RiQSToqIipk2bdsbchMh4azcy3tqNjFcQhDOJFStWMH78eH766SeWLFlCSUkJ/fv3Jz8/3yzz4IMP8tVXX/HJJ5+wYsUKDh06xPXXX2/mW61WBg8eTHFxMT/++CPvvfcec+bMYerUqdUxJKEWceLECXr27ElkZCSLFi1i27Zt/POf/6RBgwZmmRkzZjBr1ixmz57N2rVrqVu3LgMGDKCwsNAsM2LECLZu3cqSJUtYuHAhK1euZOzYsdUxJKEWkZ+fT8eOHXnttdd8lgnH+szNzaV///60aNGCjRs3MnPmTJ5++mneeuutSh1fpaAEwU5OTo4CVE5OTnV3pUqQ8dZuZLy1GxmvIAjBcurUKbVt2zZ16tSp6u5KhcnMzFSAWrFihVJKqezsbBUZGak++eQTs8z27dsVoNasWaOUUurrr79Wuq6rjIwMs8wbb7yh4uLiVFFRkVc7RUVFavz48So5OVlFR0er5s2bq+eee64SRyacjkyaNEn16tXLZ75hGCo5OVnNnDnTTMvOzlbR0dHqo48+UkoptW3bNgWo9evXm2UWLVqkNE1TBw8e9NnuU089pZo1a6aioqJUSkqKuu+++8I0KqE2Aqj58+e7pIVrfb7++uuqQYMGLp+nkyZNUm3atPHZn6ysLHXrrbeqRo0aqZiYGNWqVSv1n//8x2f5qvo7FlE90pQgCIIgCIIgVC9KKQoKCqrFdp06dUIOQpqTkwNAYmIiABs3bqSkpIR+/fqZZdq2bUvz5s1Zs2YNF198MWvWrKFDhw40adLELDNgwADGjRvH1q1b6dy5s4edWbNm8eWXX/Lxxx/TvHlzDhw4wIEDB0LqsxA8SilKTxVXi+2I2KiA1+eXX37JgAEDuPHGG1mxYgVnnXUW9957L2PGjAEgPT2djIwMl/UZHx9P9+7dWbNmDcOHD2fNmjUkJCTQtWtXs0y/fv3QdZ21a9dy3XXXedj97LPPeOmll5g3bx7t27cnIyODX375pYIjF4JBKQXWavgMtYT++elOuNbnmjVruPTSS4mKijLLDBgwgBdeeIETJ064eNY5mDJlCtu2bWPRokU0atSIPXv2cOrUqbCMqyKISFTNFBYWUlxcPR/+7uTm5rr8X9uR8dZuZLy1GxlvzSMqKoqYmJjq7oYgBEVBQQH16iVUi+28vGzq1q0bdD3DMJg4cSI9e/bk/PPPByAjI4OoqCgSEhJcyjZp0oSMjAyzjLNA5Mh35Hlj//79tG7dml69eqFpGi1atAi6v0LolJ4q5s3OD1SL7bt/foXIOtEBlf3jjz944403eOihh/jrX//K+vXruf/++4mKimLkyJHm+vK2/pzXZ1JSkkt+REQEiYmJftdncnIy/fr1IzIykubNm9OtW7dghypUBGsBxsdJ5ZcLM/pNmRAR/OenN8K1PjMyMkhLS/Now5HnTSTav38/nTt3NsWnli1bVnxAYUBEomqksLCQOrFJKE5Wd1dcaNasWXV3oUqR8dZuZLy1GxlvzSE5OZn09HQRigShkhk/fjxbtmxh9erVlW5r1KhRXHnllbRp04aBAwcyZMgQ+vfvX+l2hdMLwzDo2rUrzz33HACdO3dmy5YtzJ49m5EjR1aa3RtvvJGXX36Zs88+m4EDB3LVVVcxdOhQIiLkFlc4PRg3bhzDhg1j06ZN9O/fn2uvvZZLLrmkurslIlF1UlxcjOIkcVGT0YhGx+YyZ0HDomwxxR1pznnuaZoqi0DunGfmu5XXAV255mloXtuw5TmlKS9p5og0lz6529Tcyusu5RwtOJfxUt4tTSsnz72ctzR/5XXN9blLWxpoKI883T4ohwekpnmmmeU15ZGGS3n3eir4NN29P87ly/73ZdO5vO6vDd0zDa/t+++Hvzyzru67HE52vOUFZVP31Qa+2zAXkb08vm2ie147536YY/E6t87lXW16b8Opz1764Z6mafZ053I4vdYDKO98vbyO3W2ufIzdfO08BjPNy1jMttzbd813bd8zz3lecLqu7n10zkN3HTu6QrmvCRebnn1UHm2UlVPuH1y6Z5rSyuoq3Uue47njDe3ShmaW82jX/L9sXhxpJ/NKaH/OAYqLi0UkEk4r6tSpQ15edrXZDpYJEyaYAVObNm1qpicnJ1NcXEx2draLN9GRI0dITk42y6xbt86lPcfpZ44y7lx44YWkp6ezaNEivvvuO2666Sb69evHp59+GnTfheCJiI3i7p9fqTbbgZKSkkK7du1c0s477zw+++wzoGx9HTlyhJSUFLPMkSNH6NSpk1kmMzPTpY3S0lKysrJ8rs9mzZqxc+dOvvvuO5YsWcK9997LzJkzWbFiBZGRkQH3X6gAljo2r55qsBsuwrU+k5OTPU6ULO8zdtCgQezbt4+vv/6aJUuW0LdvX8aPH88//vGPsIwtVEQkqgFoRKNpMW4Cj3eRyFn8cRF9/JTzKhJ5CEEBikRe03Bqoyzf3aanSKThdg/iUsa7qBSaSORVCNL85Dnq+RGJ9LCLRMpLedcb/HCIRK7l/YhETjfkZSKRP0HFvwDjVSTyEBrKE4ncx+TPZnmiTEVEIj9tuN30++tj2EQid+EjSJHIm4jjXfQJViTy3b5XkUivJJFI9yxfIZHIo5zTOEIViZzS/ItEbja9iUQ65oIKWSTy1S7uIpGjP3JYqnB6omlaSFu+qhqlFPfddx/z589n+fLlHlsaunTpQmRkJEuXLmXYsGEA7Ny5k/3799OjRw8AevTowbPPPktmZqa5bWLJkiXExcV53OA7ExcXx80338zNN9/MDTfcwMCBA8nKyjLjIQmVh6ZpAW/5qk569uzJzp07XdJ27dplbk9MS0sjOTmZpUuXmjfdubm5rF27lnHjxgG29Zmdnc3GjRvp0qULAMuWLcMwDLp37+7TdmxsLEOHDmXo0KGMHz+etm3b8ttvv3HhhRdWwkgFdzRNC9u2r+oiXOuzR48ePPHEE5SUlJgi5ZIlS2jTpo3XrWYOGjduzMiRIxk5ciS9e/fm0UcfFZFIEARBEARBEATfjB8/ng8//JAvvviC+vXrmzEw4uPjiY2NJT4+ntGjR/PQQw+RmJhIXFwc9913Hz169ODiiy8GoH///rRr147bb7+dGTNmkJGRwZNPPsn48eOJjvYuRLz44oukpKTQuXNndF3nk08+ITk52SP2kXBm8+CDD3LJJZfw3HPPcdNNN7Fu3Treeust8+hvTdOYOHEif//732ndujVpaWlMmTKF1NRUrr32WsDmeTRw4EDGjBnD7NmzKSkpYcKECQwfPpzU1FSvdufMmYPVaqV79+7UqVOHDz74gNjYWImdJbiQl5fHnj17zNfp6els3ryZxMREmjdvHrb1eeuttzJt2jRGjx7NpEmT2LJlC6+88govvfSSz75NnTqVLl260L59e4qKili4cCHnnXdepc5HIIhIJAiCIAiCIAg1mDfeeAOAPn36uKS/++67jBo1CoCXXnoJXdcZNmwYRUVFDBgwgNdff90sa7FYWLhwIePGjaNHjx7UrVuXkSNH8swzz/i0W79+fWbMmMHu3buxWCxcdNFFfP311+jiPSg4cdFFFzF//nwmT57MM888Q1paGi+//DIjRowwyzz22GPk5+czduxYsrOz6dWrF4sXL3bZojx37lwmTJhA3759zbU8a9Ysn3YTEhJ4/vnneeihh7BarXTo0IGvvvqKhg0bVup4hdOLDRs2cPnll5uvH3roIQBGjhzJnDlzgPCsz/j4eL799lvGjx9Ply5daNSoEVOnTmXs2LE++xYVFcXkyZPZu3cvsbGx9O7dm3nz5oV5BoJHU0qp6u7EmUpubi7x8fHERz2NpsVgCTEmka5C2G6mXNPCEZPIZbuZcm/LczuYjuY3JpFsN/Pc+iXbzWS7mWw3c2tftpvViO1muXklNG+8j5ycHOLi4hCEmkhhYSHp6emkpaVJ7CxBEAThtKOq/o7JzwCCIAiCIAiCIAiCIAiCiESCIAiCIAiCIAiCIAiCiESCIAiCIAiCIAiCIAgCIhIJgiAIgiAIgiAIgiAIiEgkCIIgCIIgCIIgCIIgICKRIAiCIAiCIAiCIAiCgIhEgiAIgiAIgiAIgiAIAiISCYIgCIIgCIIgCIIgCIhIJAiCIAiCIAiCIAiCICAikSAIgiAIgiAIgiAIgoCIRIIgCIIgCIJw2vD888+jaRoTJ050SS8sLGT8+PE0bNiQevXqMWzYMI4cOeJSZv/+/QwePJg6deqQlJTEo48+SmlpaRX2XqiNWK1WpkyZQlpaGrGxsZxzzjn87W9/QyllllFKMXXqVFJSUoiNjaVfv37s3r3bpZ2srCxGjBhBXFwcCQkJjB49mry8vKoejiCc8YhIJAiCIAiCIAinAevXr+fNN9/kggsu8Mh78MEH+eqrr/jkk09YsWIFhw4d4vrrrzfzrVYrgwcPpri4mB9//JH33nuPOXPmMHXq1KocglALeeGFF3jjjTf417/+xfbt23nhhReYMWMGr776qllmxowZzJo1i9mzZ7N27Vrq1q3LgAEDKCwsNMuMGDGCrVu3smTJEhYuXMjKlSsZO3ZsdQxJEM5oRCQSBEEQBEEQhBpOXl4eI0aM4O2336ZBgwYueTk5Obzzzju8+OKLXHHFFXTp0oV3332XH3/8kZ9++gmAb7/9lm3btvHBBx/QqVMnBg0axN/+9jdee+01iouLvdosLi5mwoQJpKSkEBMTQ4sWLZg+fXqlj1U4vfjxxx+55pprGDx4MC1btuSGG26gf//+rFu3DrB5Eb388ss8+eSTXHPNNVxwwQW8//77HDp0iAULFgCwfft2Fi9ezL///W+6d+9Or169ePXVV5k3bx6HDh3yalcpxdNPP03z5s2Jjo4mNTWV+++/v6qGLQi1FhGJBEEQBEEQhDMSpRSn8ouq5eG8FScQxo8fz+DBg+nXr59H3saNGykpKXHJa9u2Lc2bN2fNmjUArFmzhg4dOtCkSROzzIABA8jNzWXr1q1ebc6aNYsvv/ySjz/+mJ07dzJ37lxatmwZVL+F0FFKYRSeqpZHMOvzkksuYenSpezatQuAX375hdWrVzNo0CAA0tPTycjIcFmf8fHxdO/e3WV9JiQk0LVrV7NMv3790HWdtWvXerX72Wef8dJLL/Hmm2+ye/duFixYQIcOHYKeZ0EQXImo7g4IgiAIgiAIQnVQWFDMkKSJ1WJ7YebLxNaNDqjsvHnz2LRpE+vXr/ean5GRQVRUFAkJCS7pTZo0ISMjwyzjLBA58h153ti/fz+tW7emV69eaJpGixYtAuqvEB5UUSF7b/UUBauClh9+hxYTG1DZxx9/nNzcXNq2bYvFYsFqtfLss88yYsQIoGx9eVt/zuszKSnJJT8iIoLExES/6zM5OZl+/foRGRlJ8+bN6datW1DjFATBExGJagCKIlBgoAGgoaEph5OX5vK/huaRphQosy3N/F+51HHOA6Vsz51tOizq9jTdzHNKU17SzJFoZXWUe1tl/Siz41zO0YJzGS/l3dK0cvK8zaKZ5mHbV7ue5Rz/a/aZd21DebHpmlZWXnmk4VLe/r9hT9cUmr3jmhZgGq55mkv5sv919zTlWV7314byTMNr+05tGJ798NdHs67uuxxOdrzleWvXp03dVxv4bsN9geHbJrrntXPuhzkW3ds4ncu72vTehlOfvfTDPU3T7OnO5XB6rQdQ3vl6eR2721z5GLv52nkMZpqXsZhtubfvmu/avmee87w4f3C499HlQ0V3HTu6Qnl86Djb9Oyj8mijrJxy/8DQPdOU058JpXvJczx3vKFd2tDMch7tmv+XzYsj7WSe/UNKEISwc+DAAR544AGWLFlCTExMldoeNWoUV155JW3atGHgwIEMGTKE/v37V2kfhJrPxx9/zNy5c/nwww9p3749mzdvZuLEiaSmpjJy5MhKs3vjjTfy8ssvc/bZZzNw4ECuuuoqhg4dSkSE3OIKQkWQd1A1EhUVRXJyMhkZsre7xqJ8PBcEQRBcSE5OJioqqrq7IQhBEVMnioWZL1eb7UDYuHEjmZmZXHjhhWaa1Wpl5cqV/Otf/6KoqIjk5GSKi4vJzs528SY6cuQIycnJgO096ogR45zvyPPGhRdeSHp6OosWLeK7777jpptuol+/fnz66afBDFUIES06hpYffldttgPl0Ucf5fHHH2f48OEAdOjQgX379jF9+nRGjhxprq8jR46QkpJi1jty5AidOnUCbGswMzPTpd3S0lKysrJ8rs9mzZqxc+dOvvvuO5YsWcK9997LzJkzWbFiBZGRkcEMVxAEJ0QkqkZiYmJIT0/3GSxQEARBEE4XoqKiqtzLQRAqiqZpAW/5qi769u3Lb7/95pJ255130rZtWyZNmoTFYqFLly5ERkaydOlShg0bBsDOnTvZv38/PXr0AKBHjx48++yzZGZmmtt6lixZQlxcHO3atfNpPy4ujptvvpmbb76ZG264gYEDB5KVlUViYmIljVhwoGlawFu+qpOCggJ03TXUrcViwTBsXqZpaWkkJyezdOlSUxTKzc1l7dq1jBs3DrCtz+zsbDZu3EiXLl0AWLZsGYZh0L17d5+2Y2NjGTp0KEOHDmX8+PG0bduW3377zUVUFQQhOEQkqmZiYmLkS7UgCIIgCILglfr163P++ee7pNWtW5eGDRua6fHx8YwePZqHHnqIxMRE4uLiuO++++jRowcXX3wxAP3796ddu3bcfvvtzJgxg4yMDJ588knGjx9PdLR3oezFF18kJSWFzp07o+s6n3zyCcnJyR6xj4Qzm6FDh/Lss8/SvHlz2rdvz88//8yLL77IXXfdBdjErokTJ/L3v/+d1q1bk5aWxpQpU0hNTeXaa68F4LzzzmPgwIGMGTOG2bNnU1JSwoQJExg+fDipqale7c6ZMwer1Ur37t2pU6cOH3zwAbGxsRI7SxAqiIhEgiAIgiAIgnCa89JLL6HrOsOGDaOoqIgBAwbw+uuvm/kWi4WFCxcybtw4evToQd26dRk5ciTPPPOMzzbr16/PjBkz2L17NxaLhYsuuoivv/7aw2tEOLN59dVXmTJlCvfeey+ZmZmkpqZy9913M3XqVLPMY489Rn5+PmPHjiU7O5tevXqxePFilx/L586dy4QJE+jbt6+5lmfNmuXTbkJCAs8//zwPPfQQVquVDh068NVXX9GwYcNKHa8g1HY0Fez5m4IgCIIgCIJwmlFYWEh6ejppaWnixS0IgiCcdlTV3zH5GUAQBEEQBEEQBEEQBEEQkUgQBEEQBEEQBEEQBEEQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEAQBEYkEQRAEQRAEQRAEQRAERCQSBEEQBEEQziDkYF9BEAThdKSq/n6JSCQIgiAIgiDUeiIjIwEoKCio5p4IgiAIQvA4/n45/p5VFhGV2rogCIIgCIIg1AAsFgsJCQlkZmYCUKdOHTRNq+ZeCYIgCIJ/lFIUFBSQmZlJQkICFoulUu1pSnxuBUEQBEEQhDMApRQZGRlkZ2dXd1cEQRAEISgSEhJITk6u9B84RCQSBEEQBEEQziisVislJSXV3Q1BEARBCIjIyMhK9yByICKRIAiCIAiCIAiCIAiCIIGrBUEQBEEQBEEQBEEQBBGJBEEQBEEQBEEQBEEQBEQkEgRBEARBEARBEARBEBCRSBAEQRAEQRAEQRAEQUBEIkEQBEEQBEEQBEEQBAERiQRBEARBEARBEARBEAREJBIEQRAEQRAEQRAEQRAQkUgQBEEQBEEQBEEQBEFARCJBEARBEARBEARBEASBWigSrVy5kqFDh5KamoqmaSxYsMDMKykpYdKkSXTo0IG6deuSmprKHXfcwaFDh1zayMrKYsSIEcTFxZGQkMDo0aPJy8tzKfPrr7/Su3dvYmJiaNasGTNmzKiK4QmCIAiCIAiCIAiCIFQKtU4kys/Pp2PHjrz22mseeQUFBWzatIkpU6awadMmPv/8c3bu3MnVV1/tUm7EiBFs3bqVJUuWsHDhQlauXMnYsWPN/NzcXPr370+LFi3YuHEjM2fO5Omnn+att96q9PEJgiAIgiAIgiAIgiBUBppSSlV3JyoLTdOYP38+1157rc8y69evp1u3buzbt4/mzZuzfft22rVrx/r16+natSsAixcv5qqrruLPP/8kNTWVN954gyeeeIKMjAyioqIAePzxx1mwYAE7duyoiqEJgiAIgiAIgiAIgiCElVrnSRQsOTk5aJpGQkICAGvWrCEhIcEUiAD69euHruusXbvWLHPppZeaAhHAgAED2LlzJydOnKjS/guCIAiCIAiCIAiCIISDiOruQHVSWFjIpEmTuOWWW4iLiwMgIyODpKQkl3IREREkJiaSkZFhlklLS3Mp06RJEzOvQYMGXu0VFRVRVFRkvjYMg6ysLBo2bIimaWEblyAIgiBUNkopTp48SWpqKrp+xv/mJJwGGIbBoUOHqF+/vnzvEgRBEE47quq71xkrEpWUlHDTTTehlOKNN96oEpvTp09n2rRpVWJLEARBEKqCAwcO0LRp0+ruhiCUy6FDh2jWrFl1d0MQBEEQKkRlf/c6I0Uih0C0b98+li1bZnoRASQnJ5OZmelSvrS0lKysLJKTk80yR44ccSnjeO0o443Jkyfz0EMPma9zcnJo3rw5Bw4ccOmDIAiCINR0cnNzadasGfXr16/urghCQDjWqnzvEgRBEE5Hquq71xknEjkEot27d/P999/TsGFDl/wePXqQnZ3Nxo0b6dKlCwDLli3DMAy6d+9ulnniiScoKSkhMjISgCVLltCmTRufW80AoqOjiY6O9kiPi4uTLyuCIAjCaYls2xFOFxxrVb53CYIgCKczlf3dq9YFEcjLy2Pz5s1s3rwZgPT0dDZv3sz+/fspKSnhhhtuYMOGDcydOxer1UpGRgYZGRkUFxcDcN555zFw4EDGjBnDunXr+OGHH5gwYQLDhw8nNTUVgFtvvZWoqChGjx7N1q1b+e9//8srr7zi4iUkCIIgCIIgCIIgCMKZh2E1+HPtTnYtXM+fa3diWI3q7lLAaEopVd2dCCfLly/n8ssv90gfOXIkTz/9tEfAaQfff/89ffr0ASArK4sJEybw1Vdfoes6w4YNY9asWdSrV88s/+uvvzJ+/HjWr19Po0aNuO+++5g0aVJQfc3NzSU+Pp6cnBz5RUsQBEE4rZC/YcLphqxZQRAEoSr4/dufWf38p5w8eNxMq39WQ3o9fgPn9O8ccrtV9Xes1olEpxPyZUUQBEE4XZG/YcLphqxZQRAEobL5/dufWXT/W7Ts04Gu9wwksXUqWbsPsWH2YvYu/41Bs8aGLBRV1d+xMy4mUU3kj21/p17daJRhoAyFoRQKBQagwFAKNIUybHqeUgaGodA1zbYfUQNNs+9NVBqaRUMDdHTQFRoamq6ha6AMKzqRKDQMZYCyHaVnKIVSyvbaAMOWgTJs6YZmoCvQ0G32dA0NhaZZAANdt+2LdBzFp1t0UGDRNKylJVj0aAxloBS2cWi2o2gVgK0bGIZCGQZooFAYVgNdA03pKEC32OZD1+w2dA1NBw3bHOi6jqYpNKWBYQUt2mbDNiywz5vNpsJWzD5mDJRSKGVrT0Oh0NB10JSGptvGreMYu32OdR1dA5QCK6BHYNivoYZWZl/Z51MpDMNxPW3VDGXrs6ZpaLpCUzoagEVDt9vRHGMz7WpgGBhWC5oegWG/hprSMJQVpTSU/foaykDZJtxmDyuaYUEZBrpuAU2habptDSnNXEvu/+saWEtL0YhBw4KBbT7BNm+GuT7L1o3CaU0psI8MxzZaW/t2+9iup44O2NJ0TcMoKUFZYtHQ7WvEZtNQCsOwLSBlt6EoW9PKnq9rGijbHIL9tcM2TuME0HR0XcMoNsASjbJ7hRrKMVbbvCplu+aGYbuuhl1rN1CoUtA0HcxrZ/9f0811ZZtPzdxPrGsa1mIFlmg0TbMtJ8PAwLC9P5RjPm3vG5TmNL8Kq7XMpsU2EPsE29rWbE/M+XeklZZoaJYo8/opzfb5ouzvE8e6NQxl+0wwbO8dK4DhNI+ajtLAgoayr1fH+x/H3KKh6zpFRQo9IgbDarV9DlgVSlNO66dsbpWyfUY4+mMoveya2W05Pg8005aGrjTQHe8eRXGhjh4Vaf+cM7Cbss8lWJVCs68plMKw2vKthhWIsH2A2Nep47oq+zW0XdWya2xbI4riEgt6pIbhWDOaQlkNbEtKoayq7Ln5GWzrCwb2z3X7563Dnu3D13YN7dcUpaHrGtZSg0JNYYmyoAwNA6utbcPAQLN/PhhY7Z+/yvw8NjA023qzrVXbZ4Fy+qxT2MaK0xwDlBq2bdqCIAiCIAiCbYvZ6uc/pWWfDgx8ZQw7FvxExuY/6DSqH4Nfv4f/3TubH174jLS+HW33yzUUEYlqALlHPsJaRy8TL8AuLNjyHeKNYYodUHjKMG+WbDdKtrJmCCvdHnDKfoOhabbndaPtNzH2dsoEDMwbJ9tL5ZRvexSeMsz20BxiCvabJ4cdzcWmBtSJtt2a2u/ty2w6jdMxZhzP7TfGhQXKvJF2tIdp37xnQcO5X1A3yuI0f07z6RAQ0Fzz7fNhWG3j1O0T5hwTzPHcZa4dwpEGsREWUJqLTYeA4jFGp9dGqaKo0BGArMym83hcn2vmmGMsEW42lct4lP2G1X0erCVQVOyYT81pbu2ijX3AjuHr9g7oQLQl0i5SeFknONl2s1tcbBMlXK6fKRqVCWC49EUjQulEaBEeY3S8tgk07tfTVqaoSMNa6iZMmeKCw4rj+mrmXEeqCHQiXN6LdjkMh1biGDc4RFVQSuPUKTCUoyVlCjPOi1dTmsu11dCIJAoMC/ZZK3s/4jxmzRybrS8aBor8gjLBCeWYxLLrZ86nvU+aZutDhBGDUrpjZC7rUuF8/crm2GH/5Kmy9t3tOVtzudIKLNY6KKWbohdgimzu8+xYT47rnHdKd1of9mupnO2UrSnTrgGU1rW9FyjrP+ZzZRNVncbrGH2pocgrKvsMMgUibIKqDfsfeOU0fqVRWhpb9p43r6oq64NbqrIbL1aKAlVqjkO5jUmZK9j8ZEBDw1AaxUSWjaOsVadnTtcVw3xWSCmFlJhjc1qsKLer6vy8FBGJBEEQBEEQHBzasJuTB49z3vU9+HDwNHIPHINInWOJpVw++Eq63D2Qz4bP4NCG3TTt3qa6u+sTEYlqAK3bRhFX3xJcJT9xrzTfWWAo201TsDjqKO/Zfm1acbXpow1vNjVfZf22odBKNN/j9FfXANvP7AHUU67PtRINTek+833aVoDhrCRrrnl+bKriMmEqYFsOQcXQg6sLGKUaqiTCSxkfc+ZUThkaWC34XC3e5gsotWqookjv9dz74JZmtepg6KZw5b2eZ12jVMNaFOW9qAKPmP/ONkt1UN5tut+AO9ctLY7EWuLlc0BpLvWUl3kurWsB5eXXCGebXq5tcWE0pVaLc/GyJ+5rw2zPll5iP9nRrOfSvkPg0Jz6YKPwVAyGoTuNw1ngcxInvFyjYiK8llNONt3rKAX51hgMpbu26SIqOo/PaSiaRpFucelP2Vg11/kyRShb2ZNGBIZ9nSinGVDubeE6P1YF9bzkKbdy7mkGihzN6iT9eG9fOeWXpZWaozHzNSeRzq2uo76hCgL/PBcEQRAEQajFKKXY+/1vAKx7dSEAuaWn+DZzMz9c+x+atmjGzOeeA6DgaG619TMQRCSqAVhjwBrrK9f3DbVPAcWvMddf+wP6gm+/K9K83aUE0IZWqsrvq492NcNPnq+2DNv9su5XFPBdt8xly7We3zEoxz21EfwcGUCJt4xyRBHD9tCcb1b92isTCjSrBqVebJQjEtnWne6lnvIo5y4cKauGi7uYP2nROctQaBYvi8/jjtm9TxqaYdvKpPmz5aHm2Lc16T7s2a+z8iai2L07nKfDVQzxfU0Nb+qP2Tebj4dZ30Og020inLfhKA3lNn6HKavh5dJ5EYiUvR1TWEHHsOpex+Mi4DjqOXXJWqrZPImc1oezyOPsCefcpkKjpCTCS/uudW24ikjFxTrKSdhzt2FbXZ6CllVpFFktngKRx0eEa11DQaGizJvOqaw/vVwBpShOuYkx7s/dhSNHu3mUeClT1gdvthVQrFk5Zf8Qcp5C5VTf1Z4trZQSEYkEQRAEQTijUUrx55od/PTSFxz5dS8AhUYxB5KKuOnZe7ivSye2bt3Kc8+9wGOjJ/JQs6HUaVyz4+KJSFQDUFEGKirYSnjc+HniJd9q3zRUnhjgnqd8eeaUFfIlothiafix50/M8SoSld30eLepYbt38eMR5GvcBrbYQn666dWmfW+QZviaBD+vNW8FnNJ8ZRnY4sIoLyvBj0hUdkOu+SrofY5MgcLwIsjgmuY+Jkd7Ec7t+BJF3HptWMBStkXIRawxbWpehqNsF8vn/HqpZ29T123rVimnd5GjnCqLQeOhSZjtuGzEKuuOpvAQNBw20TE0zUMIchZa3M04nhvKOddziF7f78omLnl4Pdk/W3wLWvZtZ26eOd6EHUcHnD2FlNJtnkTOY1Rl9tzFG+c2DKXbY0/ZB+Ys6ijX9LJkDSs2EU3hJBB5lHPOs2G1apQYvkQ/xzy52wfD0ChRYHX6rPJ6CZxt25+XoCgyoxV5L+OtjVINCjTblmBXbyLnzWb2/rnVPUUpRU5eSJj1ysoZWpk85HhYVbFfr1ZBEARBEITazOFNv/PTS19wcN0uACJio8gryOdkPcX97z3DCzNmYv2/93nnnbeZ//knTOs2huy8UzTpfHY199w/IhLVBHTl5vYSAI5tUX7x02Z5Vf2VUT4K+SqvOd09+XK+KA+Xu6Oym2ivzhz2TJ/3zX60EYdm4FdI8obu9H8g9Zzv9i2U3Z26z62ffpod1bxsQ3Iet/NdtHPAI90+gb4ELA9xQTnpLW6VzAwfni5gxsUyO+q1j04ZZj+soCzel4nm8K6x2zbn1fZc00DTbUHCXZo1BSa3cSh7m2gY9htuM90xPA1MrxT3demYXntgcjPLFD3cbDpdG1tg97L4QK5lnLyB3EQKW67NtuF1W6jmpT27CKCcpACHo5ejj5rTQjCcqzts2gNdG+5eR05rTOESz8g2zrL4Zy6dcp5rFwHQ1qY9RrinmOPos7P4A07ClC3WmNWx9ctdgPIQpBz91mwatX27n3JyEvRa1+m5gfMGLk9RxvuWLxtWlFnecCvh/Mrw8tyw13ARdzyEqrK4SI66VhRWuyzkbNPQXOsqyiQnBVhFIRIEQRAE4Qzk2I4/+enlL8ztZXpkBB1uuZSiDnE8MmICo1P7MrPP/Sw5vpkjJdncd+Od/LlgM0kF0fz78Hf0+vFH+vS5rJpH4RsRiWoCpRYo9RHLxhcK31to/NW32vWMgAUQe0H7vUDQW9wUUKpcAkC7N+2znrmdKti6Cs3qdROWZxvuRQxCj2VkP/3Kr8DkLd0KWJ08YgKtZ2C/kdZc7+n91DWfGpqTzUD6qrkleRNJ/LSjbDfZGF5seq1rqmD2m38vMYD8CUuOeoaGGdPHo69OddzSbCdk6a5igCpbUY659hBu7IaU0ssEI1P0cNPFNGwqll0M0TXdHprK7qXksnOx7N1ualsu7SlQmhlU3XVKnaUpzUWA0XQN3bFNTWEGwnfMhOkNZP/PsLekbObQ0NAsZQZtnldl1pWmlc2VXXhxnIRodpsyXQj7lNjSneUom8qn2wU8Z+8wl8DQylHe3mm7zcgI0O2qXVkQe81xWV3nzNFfTYEBFvtpYsptnGXalOt7QynQDY1I5ZznHKi6rI/eRCLHR1/ZfJele5Yva9cAolSEh6BTVsrVhvIo4frM+T2jnNOdhCOrKotLJQiCIAiCUNs58UcG615dyO6vNwCgWXTOu74HF907mKOF2YwePYZf8vbxzqGlXNe4Ow83HwrA6gfeJ65pI/q8cAf3XfsOhw8frs5hlIuIRDUASwFYLK43Ti74E1iUU5FABBxDoQW6zcdbGfdy5dlUCqxawI5SLjad75b82fTWdolHaGHfZZ0xt3D5qef0XHNOKwHNm1VvNl3acxJsfNn10YYqcou14te20+wamm1/iks5zec4TUo1m6iJn/Xq8tppPqyaXSTyJqz4fq5KNe9bAL31Gff27QKa42bd33pyuis2rJjxZMqaVqaoUaZ6mopCmXlchRLDqZiZ66woOGyqUpSKLCvs0EI0J7HGzHCIkbayuu7k/+HlfaqwizUOrz5727ql1Lzpd54Pw3kezf473seO7WYu7kVOQykTTTyEFwURERpKRXiJheTmkeTUFti2cDmOfy8LVu00Jz7SDQOirGBVlrKuOF1z5VbfGavVfvS70pyn23WZqjIvJrNZA0pLdCeRSHM2WVbXy//R2ASmsjLKaznH/47nVgVWzTYB7jbKyimPdIBirBS5rFmHLIT5v7Nw5ChZqmA/giAIgiAItZvcg8dZ/9r/2DF/DcruEt96yEV0v28Ix615PPDkY7z//gdYrbablpj2Tbjyn/fSPKIRBUdzqdM4jtSurVm7bi0AKSkp1TaWQBCRqAYQlQNRVh/qhS9RI0DRxQOrT1+V8tsNUiCyCVea3aYPEcSlMJ53UMGKUg6bpWUHcHvm+3it3B7e6vu5HqrUOZCv5qewm00DbLFhfBcvy3PzwihxFmw0H3U8b36xYj/drDx7jnbtN7tWXEQi78GbvbVhE3uU4VW6K8emVnb6m1dhCO/z47BZ3ty62LQ/0zSc3d9MYUFz8thyE5fMXXSacplvrWwo9vIOzzrXDEuEhuEihpWJSVpZVZvc4JahdLfg1MptyKa6YbPpyIuIUBiGs9hjs6lj99hxFkWcGjQMiIzUXMo4e1rhVN6lXwYoVYoybZZt5XKr5tRtW33DaosVBZqP8q6xgxxrxfSQcqrkLiY5C0DO7RhWiIpUZf1wtOlU0Ry+0/iVAktRhNmoN4HJq+AElBpQrJxPHvQtUJlt2/saoyJcbeAqGLkHrnY8SoigxK2sazvu/bS9Kgn175AgCIIgCMJpQMGxXDbMXsSWeaswSkoBaHn5BVw88WqyIwqZ+PRkPvjgQ1McGjCgP7/88itJSUlc1K07W9f8QVYBJBZpNDEMpk+fQVpaGr1796rOYZWLiEQ1AEs2WEr8SjduN5lu/7s/94cCzd+NvZ96Idk0RZBAbGqe43QWawIRjBw3Ulbs8V0CsOleP1ib9nRVquHDf8m/TedtWH7G5K2vRqnuadNrH93qWjXzmnhzLPPVD6MUUBGe7XnU8cw3Sh02ncYagG1lBWW1eCnrxRPKvSnDizAVgE3Dit17yWkrkdd6bh4+eK47DR9z7DwByi64ue11dPFUQ3MSl3CZRt2iQLlFsPFi01100nSFrrn9GXART7yvS6XAWqqXZamydA/7bu99QymU3avH2aZy6Rku19QhklhLHaKL5mLT/fq490PTSz1sGubWR82znpPAVFJqdRXD3MQoj3lWtp2nkRERKGVx/ej08GTTPPpeaoUSq/2auAlPZlEvp88pA2KdvJc8xuZkxkOYAkrcr5OPss7CWLHtiERBEARBEIRaRWFOPj+/s4Rf3l9G6aliAJpe3IaLH7yGk3WtPPz3KXzwwYfmj61XXTWIqVOfoHv37nz++XzuuekxBiWPQxWWfc/WYkr5NWcLsz+egcVi8Wq3piAiUQ1AOxlpO8EpmF9lAyrr5abZiouHhMtP4gHZLDfSj6f9UiebIY3Ri+dIeVVLy7ameHVv8IUBHvF2ArZpPxo+2F/XHZ5EQdm0b/mx6vbn7tdaeW/LkWZ1sunHhoc4YABWJ2+FIMbq7BHku5qnTcMArE4fpP5sutd1F+4CFDaV4+Qvf+37bcv1PVaeRGoKPe5H0mv215qTQYdrjJMlw2K42lE+/ejMvikFlkjl5NXj1B8v43QWH5QBmlbqJpb4G6XdG0hBFFqZV4+zEFTOklWGhsWiXPvhLqB6CDa24NM2DySrh6BTNnQ3rykzXyPS4d7lPA9OIpK3/ioDIiMNDC/va8O5z85jtj+xGlBqddvKZx+LN2wCmm1bXUyJ/b3pNhbvQbfL2is1oMTw8WXFue8ufdIoUsrnaZCCIAiCIAinG8X5hfz6/jI2vbOE4pOnAGjSMY2LH7yGgkSNR/8+jQ8/nGeKQ4MHX8XUqU/QrVs3s43GlpZ0iOlHnnGU7YU/km+coK7egPOiLqFDTD8aW1pWx9CCQkSiGoAqiEQRoJoYrADhXtcA5VUkciYAr59gxAFn4SWgCsHbKMN+4+VTDHMr69VmaIKWYdXwGpPIbMrHdjBvnlYBanbK6iSCBHMt7TaDFXpsnkRBXEsH9vmBALd+OYsPpfi8QS7Dx/wpbwIa5ffB6qeMuzDh0RNli/Oj3Ir5UUBMbyMvqoMjkLOTAXtCmX1dV3hzb/HnJaZp2AJBe3G0cglT5DRe86muoexutd5jCbn22fFUV6AsBrh7EjkXd34POqUrVVbNtOmkm/lqTxmgYfX0XnIq6GXWQYHV0FCG4REfCZzEHi+2DQN0i9WrN6M3kcZhUymwWkEZVq8eQd5sOo8zqtgCjr8lTuNy18ndP49KS+0xm7y8V1zjeLl+ZhSqUsjzqCIIgiAIglBjMawGhzbsdokVZJRa2fLRSja+uZhTWScBaHjuWVz84DUUpkQy+dnn+Oij/5ri0NChQ5g69Qm6du3q0rbVajB78mf0GNSBWx8bwJtPf0J+XgG3TetLz56XMO3Wt3nzr59xyZCOWCwh3FNVESIS1QRORWI7IsiViuhBPjEgIBHIKyF4yWAXbHyKROU1WJ7Q46W8ctzYhLitzuO4Ix/9ca9qBY9TuALB0Vef4/Njs1Tzm++znulJFNw1tZ1QphP8dbHXDcUmmB5IwWLzCApB9NNCrOcoHmhdJwHIFgep/HKuljR7tgKUh+jn9VRBpzRNdw1k7yI9ebVnt6aULbi1QzxxtuljCI4mlLMnkXu2m6rhEbzaWop77KXyMB2vvO/58/Bgci5mMcAwlFv5ciZV2d7SFp0yTyKXBvD0gHLCamD/AuLNY8q5HVchzSZMRWK69rgJSS423dortWIX0Tzn1qteaLevG8UiEgmCIAiCcNrw+7c/s/r5Tzl58LiZFp1QFw0ozM4HIL5FY7rffzWlaXV54tnpzJv3X/NAm6uvHsrUqU/QpUsXr+3/smo3GfuOUy+hDvf1+Qdg+47fvvUFREZGcssjA7n/ipn89sMeOl16buUOtgKISFQDUFbdHoA4iDpBG7H/b4DLOdeVin0bicOrJxSvpRD7abPpy2vFj+ji/d41cJs+RSI/4/Rq008fnZ7YPIkqKBIFU68UCNTrDVxvVP3Ojx9KwX8/feQpXE9T81XGGwHH0fLWprMKE4BN09OonMXutTtObkGaH4HHR9OabuAzaLqXHYxmll10UZrvDajeYvVgvxy65rqOXdr1atNmRdM0V+HIzYYvzylDL7UJ8V48cNznzEVM0cFQVs9KXu2VbZvTFRBp+I2L5s07CcBiaCjDERrabUuau02n54byMn9ebTpelBW2GhqGeyRvH/WcnxtGsX+DgiAIgiAINYTfv/2ZRfe/Rcs+Hej/j7s4kZ7BullfkZeRDUBMQl16PHIdxrlxTJ3+Ah9//IkpDl177TVMnfoEnTt39tp2YUExSz78ifen/w+APb8cwBKh02dYV264ry+Nz2oAQFq7VACyMnIqebQVQ0SiGoAqsaAiQghe5f5FPuA6oXoSBWrEgeb0q3mIXj2h2KQCnkQ+6wUgZgW7rc5R1acwVX7/y7xzgrRpBmUOUiSyOawEXc9WuSJ1QxVsnJSJYPDquROwUdsjyD5XRLu1nahm+LbpK1nTbP5Hmp9iXtQUWzBou7eVLwHKczcVABaLaz+9VvdItIlDhtLsE+UQx7yacG3KLtqYWpyPkt7eh0qBZnU6XSwAew4jSkV4G4hL22XPy1rSdXusJBXoerBdgzKRyHuvyk508xTYHB5Tns5j/tdwqVUCEgmCIAiCUPMxrAarn/+UFpedz7lXX8TCR96i6KBNqIlJrEedxDjyc07yzCev88mnn5ri0HXXXcvUqU/QqVMnr+1mZeTwxVsr+PLfK8k9nm+m9xvejb88c60pDjlI33YIgMTk+EoYZfgQkagGoKy6PQBxIIUrlB3aTXoFvY58i0QBeHiE6kkUomBTke14oQpTqgJeK749ify3512YCqAPBrie9BR43bL5CVKYqsg1AVxOVAvVZtDrUPPv1hGIsBKUTeV/u5qP9jQUrgGIvHXKR190hVaekOHFm8imYwRrU5kCSHnbzdy9iTRAd1rvPk07HI2cPYkAQ/MmhLhOtLt3j1JgUaUeAq5r+87pjvbswrph9RSzyvGaMsxtq34OF1C4ekqZbWkYjgDdDqHdzabhpdEIr3MjCIIgCIJQszi4bhcnDx6n4FQB+5b/BkCBtYilJ35jZ14WF5S2on/u2WzatAqlFMOGXc+UKX+lY8eOXttL33qQT19dytL/rqek2Hbaa0rLhlw77nI++9cy8nNP0TDFVQgyDIOP/rGYlJYN6dCzVeUOuIKISFQDCEokCtlI2X+al+OTK9NmhTxPfG5mKcdmqF49oUyG4yj5sHsv+THp4g0Q4toJRphy3opTwesZEqEu0kpb3FVg09dUeW0/gHn1JkDp5eg1Hl5E9pcaWEttBTRv5f30QdNdFSB/3jguL5XNY0rz0y/3NIfQYdGNgMQs5TZJtlPcyj8l0UXcszs66bqG615SHx4+hmt7tgPDdPs4neyU48Vk213rf7+seeqZezBqVSYw+nDS8vyUURBh2wsqCIIgCIJQIzGsBr9/s4nVL3wKgDXrFCW6QfOhnWkyoB2Ln/0b+77/hYzDGfRvfTZXXtKHz158lAsuuMCjLaUUG5du55NZ37Fh6XYzvV33s7nx/r70HNoJi0WnSbNEpo14m6k3z+aWRwaS1i6V9G2H+Ogfi/lp0RaemjumRgetBhGJagaGZo+dEh7KuxlSwdyoV+iGtyxGR1DigPLxPAhUCN4jpr0QtreZdUPxJPJbrxyPoFBtViCwd1DBuZXXp04E0IeAt92U15Hwvcf8YmoglWTTS5OaZrflbU+UnzY09+LuE+2jKdt2M+cL42+/mre++sGXAKTZJWNluiP5bsJZ6NAAXfMvhpndd1tsFtA0w0ewau82wTavum7gKq0or+XNMwuc3suaZvWhSfn2YFIOm37GaQ5Dx+l9Zbfp5hTkS8ZzCexdjiglCIIgCIJQHRhWgz2LNrL+9f9x4vcMM/3PuFNcM3MsM2e9zPyZ9wO28AsdUm2ePY//7a80v+A8l7aKi0pY9t/1fPrqUnO7mK5r9LqmMzfc15f23c92Kd/7ms48NXcMsyd/xv1XzDTTU1o25Km5Y+h9TedKGXM4qdkSVgisXLmSoUOHkpqaiqZpLFiwwCVfKcXUqVNJSUkhNjaWfv36sXv3bpcyWVlZjBgxgri4OBISEhg9ejR5ea5HuPz666/07t2bmJgYmjVrxowZM0LuszL0sD7w8ygv3+OhQnwYepn4ZQ3y4VzP/lwF+cAgpIcybAJT4A/bTZOtXrB1HX319/DX1/Lq+nk4YskE+VBmPS2wB04Pr2UCsIlbO0E/wP1Gt1LxcUNfJYY1bAqFv4fz5Oq4vi6vrv2h6c7lA7DpVtflobk93PPtDzRl22ym2baeedRzeui628Nbmo+Hu000haYZXh72/tgfuub08NOm4+Fh26LQLQZoBpput4H9Ydq02h+217pe9rBYDHS9FN1i+HxYnB7OrzXN9lrTyx5lbVud7FrR9bKHZpHtZoJ3WrZsiaZpHo/x48eTlZXFfffdR5s2bYiNjaV58+bcf//95OTk+GyvpKSESZMm0aFDB+rWrUtqaip33HEHhw4dqsJRCYIgCDUdw2qw88u1fDTkGb59+B1O/J5BdFwdGg9pT1bJSVRBCT0v78P8+QvQNI2bb76JX3/ZxP09b+JYcS6/nyoTlHKO5zF3xiJGnPckM8f9H+nbDhFTN5rr772c936dxlMfjPEQiBz0vqYz7//2DP9c9CBPvHsX/1z0IO/9+sxpIRBBLfQkys/Pp2PHjtx1111cf/31HvkzZsxg1qxZvPfee6SlpTFlyhQGDBjAtm3biImJAWDEiBEcPnyYJUuWUFJSwp133snYsWP58MMPAcjNzaV///7069eP2bNn89tvv3HXXXeRkJDA2LFjg++0Cq8nkX9bQXoShcNkiN4uFXEfcbUZpBdTqHZDjUkU6vwAoQd09mYzwLZC9dIKxoaLPcc/Ic5tKHNUkXVgehIFWS3EemV1Axyn5vxUuVYLwn55J2m5U+aB4ja5AbajA4bp+hTcRGma25Hyfss6PVe2Hxa899GzFZftqk4/wXhU9+PBZbFoWI3yPqXLKiin6dQtOr4i4Xs4iTmJmZoORhBbnh02LSHtzxXOBNavX4/VKbD5li1buPLKK7nxxhs5dOgQhw4d4h//+Aft2rVj37593HPPPRw6dIhPP/3Ua3sFBQVs2rSJKVOm0LFjR06cOMEDDzzA1VdfzYYNG6pqWIIgCEINxSi1smvheja8sYjsvUcAiI6vQ8c7ruDPhoU8NuUJ6h21cldKX8ae1Z+SVk24dNBVpCU1Iv21FeT8cpAFx9bR5sjVHNh9hM9fW8Y3H6yh6FQJAI1SE7j+3ssZfGcv6iXUCahPFoteo4+594emVO39lqdpGvPnz+faa68FbF/2U1NTefjhh3nkkUcAyMnJoUmTJsyZM4fhw4ezfft22rVrx/r16+natSsAixcv5qqrruLPP/8kNTWVN954gyeeeIKMjAyioqIAePzxx1mwYAE7duwIuH+5ubnEx8eTMf0y4mKqRq+z3e/Ybj8CuvDhWB1ON+pVtdiUoQU3TrNi6OVUecet+2oq6B0bTje7FQmWHYJIFOqpaK51g8OwOnslBVu3AjZDdLS0jTP4urYYPyGccggYpaF5TYVqU+GYIwc+bHp5n1jd5zbA95xSYBhOffVZz7Mv1lJQBFLXFcM8PVAr0yoDpLRUw5zbQOrZyxgKlPLXVx+fawqspbrvfG8m7WKxzRvS4pTm3aY7+aWFDN0wnZycHOLi4gKwKJypTJw4kYULF7J7925bkH03PvnkE2677Tby8/OJiAjs+9D69evp1q0b+/bto3nz5gHVcXzvkjUrCIJQOzBKrez8ah0bZi8iZ28mANEJdbng9svZHpXJjJdfZvv2svhBo7veStucusRoZTdghejUu6Itk9+ayfDL7mb3ukPm6WatOjbjxvv70WdYFyIiQ/ueHk6q6u9YrfMk8kd6ejoZGRn069fPTIuPj6d79+6sWbOG4cOHs2bNGhISEkyBCKBfv37ous7atWu57rrrWLNmDZdeeqkpEAEMGDCAF154gRMnTtCgQQOv9ouKiigqKjJf5+bmApRtkaoKVIhCjfL6tBw0pwrljC9s6pHdjuMUrorYDKhPTjYqEOcnONvhsumtXgBtVciTyBuVuPYdTfu40a5JVMiTSLdXVME1YrtXC8GoouxGz58Hk5csj1D0QVwKM56RU6Blr53zqOc9vTx0CyjD5jaj+bXp1gMFuqZhBpL2uQ6dO2n7zwIYjq2Y5RpytWk4BQXXnNJ9mtTsJZXDv6u8AZZdPTMulSCUQ3FxMR988AEPPfSQV4EIML/sBioQOepomkZCQoLPMr6+dwmCIAinN9YSKzu/XMvG2YvI2X8UgJiEurS/7TI2FKdz08wH2L9/PwBxcXGMG3c3X7y7jPRtsTQZ2J6rrm5PfN1ITuQW8cHba9jz/jYujBnCrrUHAbh4UAduvL8fHXu39vm3qzZzRolEGRm2PYZNmjRxSW/SpImZl5GRQVJSkkt+REQEiYmJLmXS0tI82nDk+RKJpk+fzrRp0zwzwhS4OnDPoOrc+lXZNu2/oodTsAm0aojiSUC+fD7KhBygO6j5cfJcqognUYgxbss8tMIphtUylMcTAhp3qMKU5iQXaMHZDFmY0kBT3mw64SNZ0zW0QIMsuwnihkMEcxaoyuuqBkq3unovBWAPHN6eblvcvImcblvWNA0sFiuml5byUdXDvrIJTJrmKuC5VHTkuMpIllDf1MIZxYIFC8jOzmbUqFFe848dO8bf/va3oLbrFxYWMmnSJG655Ra/v6T6/N4lCIIgnJZYS6zsXPATG95cRO6BYwDENKhH21t6sTxrC5OfuZtjx2zpTZo04cEHH+Cee8ZSr159dnz0MOk5O/m1+Aj9Us/n500nmP/G9+QcLcDxpWrwXb248b6+NDs3ubqGWCM4o0Si6mby5Mk89NBD5uvc3FyaNWtWFnA6RLzeH/or7O8epxJ+GFZKC+k2PbSNkGWeRCEJGaGYdNStyIlqIePHpp92PbeqVJWQcgYINhUh1OnxGzPHd6OhCjY2LxKndoP4ENJ0LbQ3twJd9yViOBr3XtW2bSxAm25t6BZ3m4G1Yyi9TNTyV83NngI0ZTiJPN4G5b0xA7eYRCqwJaWUu+6meeR7w6IkcLVQPu+88w6DBg0iNTXVIy83N5fBgwfTrl07nn766YDaKykp4aabbkIpxRtvvOG3rK/vXYIgCMLphbW4lB0L1rBh9mJOHjwOQGxifc65qTuLDqznoSl3cfLkSQDS0tJ49NGHGDVqJLGxsQBsXrmLk8cKufX+IXzyn695eun7RGi2XUFWvZgOl6axbflBrrjxojNeIIIzTCRKTrZd8CNHjpCSkmKmHzlyhE6dOpllMjMzXeqVlpaSlZVl1k9OTubIkSMuZRyvHWW8ER0dTXR0tEd6VW43s90MhG7L5+2Rv/smZbvRCbv+5E8EqQ6PqRBjEvlvtJJsljt37mhOeaGNMXhdwHW7YkgB1yu8DqrifVnZNspRU0Iwb3NAUq4JAdWyewOFIBIpBZrhzWb5xvUQt0XZ4iA5iS6B2FQOmwF42XjplsIuarlbCmAtW3RFKPGwbOP0llGOPfEkEsph3759fPfdd3z++eceeSdPnmTgwIHUr1+f+fPnExkZWW57DoFo3759LFu2rNx4DL6+dwmCIAg1C8NqcGjDbgqO5lKncRypXVujW3SsxaVs//xHNr61mJMHswCIbVifFtd14dOdy7n38ZEUFxcD0KHD+Tz++GPcdNONLtuXrVaDnxb/BsC3r/1GPM1Agwapdeh14/nc/cQtKAOGJj9IVkZO1Q++BnJGiURpaWkkJyezdOlSUxTKzc1l7dq1jBs3DoAePXqQnZ3Nxo0b6dKlCwDLli3DMAy6d+9ulnniiScoKSkxv9QsWbKENm3a+Nxq5g9l1VBBnCxTEZQC5W1fZaWFllAhexJVzK0Hgr77rYjnkj+bobQbaEyiEMZZIQ8tn6/LsRlivdAthmNJV6Z44zVYT+itmUfZB2rTHrfG4RkT5GQpDbRy9QH3AamyZC14mxqgvHoSlb/dzTY/wQsaSoHuVXQp36YKMQCcoQKQeXyJNxYdFYJ3j1JO8Z5MvLg4uaGLJ5FQDu+++y5JSUkMHjzYJT03N5cBAwYQHR3Nl19+aZ4u6w+HQLR7926+//57GjZsWFndFgRBEKqQ37/9mdXPf2p6CAHUS02kea927F+1lbzDJwCo0ziOJoPa8+GvS5j3+Ejzh7yePS9h8uRJXHXVIJf4QSdP5LPo/TV8+fYKDqfbtqBpGvS46gKuubsPXa5oa5bfuvYPABKT46tkzDWdWicS5eXlsWfPHvN1eno6mzdvJjExkebNmzNx4kT+/ve/07p1a9LS0pgyZQqpqanmCWjnnXceAwcOZMyYMcyePZuSkhImTJjA8OHDTVfpW2+9lWnTpjF69GgmTZrEli1beOWVV3jppZdC6nOVehJBKPdKFcARFDWM4wvgxqtCx8oHhVO8niqLg+Rk03mcYRT6/HuMlXkvBWWy3ML+5i5EmxWivL2ZoVIdW+7KsRlkl7QKTI25Sy3I+oZPT6LysR3ZHvzKsfXVKGvDK947oofo5KdBWVghn159PjqjGaBCOK1OgVK+xul7ELp4Egl+MAyDd999l5EjR7r8opubm0v//v0pKCjggw8+IDc31wwo3bhxYywW2xpu27Yt06dP57rrrqOkpIQbbriBTZs2sXDhQqxWqxknMjEx0eUgkapCGVY4+gPqVAZabDI07ommV//JN4IgCKcTv3/7M4vuf4sWfc6n8W0XcsLIR9+cRfbK39n28WoA6jSOJ6Fva/6z9gv+92TZ/fZVVw3i8ccfo3fvXi5t/rHlIAtmL+e7eWvNI+zrJ9TBahi0ubAF0+bdja6X/SRnGAYf/WMxKS0b0qFnqyoYdc2n1olEGzZs4PLLLzdfO/aijxw5kjlz5vDYY4+Rn5/P2LFjyc7OplevXixevNjlV6y5c+cyYcIE+vbti67rDBs2jFmzZpn58fHxfPvtt4wfP54uXbrQqFEjpk6dGlTQRWeCiklUwTvkyrrt9WtT4Qh+4tqRSrYZjP9SaN417o0Ed1dYcZsqdHExRBHNdrMd5DiDthJgG5WuFlXWO8V7rKAKSWCaZ3vebbpVCzEmUWD4GGeINm3iiRmoJ5DSJrquYarjQZg2FGCxfTb7ipXtc89YiFHBDQPTTcvvCvTiTaR8vvCPTSQKJLaZaxmLIZ5Egm++++479u/fz1133eWSvmnTJtauXQtAq1auX8bT09Np2bIlADt37iQnx+b2f/DgQb788ksA0xPcwffff0+fPn3CPwA/qANfYGyaDPn7bK8B6rZAv3A6WrNrwmtLxChBEGophtVg9fOfEt22EQ99M4uz/htL3wYdaBBZ11YgQkePsvCesZaVz7wIgK7r3HTTjTz++KN07NjRbMtaauWHhb+wYPZyflm120w/+/yzuHZcH/re1I31S7YybcTbTL15Nrc8MpC0dqmkbzvER/9YzE+LtvDU3DFYLFWzu6emoykVlttjIQRyc3OJj49n36RBxEWXvxc/bIQakyiAar5Wk+8brOAIuJkwehIFbNPAVQwL8zvLa3Nu3kvBzU8w+IlJFOjWuBAp89AKwzgDrFi2jkO9nsGP23a/HdofplC92Cpi0/lzJJi/IqHatG+Qc08I0GZobj223Xg+PPcqy6YpxDrb9IZn2xUap+PENAIfZ15JEZf8703z+HJBqOk4vndVZM2qA19grBoBZw1Cb/8oxLeDnG0YW2fCwUXoveeGTShyF6OAShOjBEEQqpo/1+5kwR0vsSZnJ10atCbK7jQR2aAOK/N3sHbPb0xsPphXDvyP/dYs7rxzJI8++jDnnHOO2Ub20ZN8PecHvvr3SjL/tG1L0y06va7uxHX39KFDz1YuW9BWffEzsyd/Rsa+sq1tKS0bcvdzw+h9TecqGnnohOPvWCDUOk+i0xKlhS7cBGuqIuJJqKJHBbebBW9WBTef4RKw3G7uqsJ+dWyrC6cAFyq+rHtMZYWurdsNd8BGQzNb5mFT/tx6RI8J1TsnxHruwoW3MGduJcqeBRQ/yZtRn02WS8giteFqp/z5cn6fKEISwwyC7LDT3IYoppqfXQHPqa2gxQjTh6cgnCYow2oTbc4ahNbjHYyFF0BEPYioa3tEN8T48S/QbCFaZH2IrFeWH2n7X4uoZz7HfG7P08o+M1zEqJ5zXMQoY9WIsIpRjrGJx5IgCFVF7sHjbHxrMQA94tuAAfWbNSL/3Fj++c3/sfuP34nWbE4Ut15zA/e8+JjLwVO7ft7H/DeW8/2nGygpKgUgoVE9Bt/ViyGje5PUNNGr3d7XdOaSIR357Yc9ZGXkkJgcT4eercSDyA0RiWoAQW03C6V9ny+qAhXkzUfoZsrQKrytLqBpchNLfG1xq9Qpr6BgE3TfvHj1BNxOiBPhUwirjvvTarBZqSbLV3fCRNkotHK3xgXWjn/ct7iF+IngLGgFucg15y1uweBtfvx6EznZdBfvAjRp85hyrezfg8nuexTICW6CUJs4+gPk77OJNtZ8VOFR4Khnub0f+nzb+v0osdSBSLt4VPAnRCWAtRhj+yyb6BTTGC2pN6rgIMb6B9HqtECr0wSiG6PpoX+lr8rtc4IgnNkc33WQTf/+lt3/W49RavseEZlUl2PnRPDPL7/g1PJiitQpGjVsxG39roGf4aI+PUhJSaGkuJSV8zex4M0VbLMHmgZoc2ELrr2nD32GdSEqpvzdORaLTqdLz620MdYGRCSqAYR4InSIxgjsziFs/bELNhX1lAq2Pwrvp7gF0WbQU1BBj6lQ8NiC47tQmG2Go1AFcR92WG36mNMAbYYWjca7zcocZqAakVcnnpDdc3zMjvL7MsTz9Gy1whJ7Kci3tlk8HBfMp223caoQxTAvQqzvtVE2IF1EIuEMQ52yBcsmvh1YotGvWgcleVCaB6X5qKJjqHX3QYsb0eqfAyUnoTQfSvNQJfn2crayZfXyHHuGwVpgeziEp+ITkPGdzba3/nzTsyw9uiFEN7YJSTGNzeeer5MgMs7cflHVHkuCIJyZHN64h41vf8ve738106wpseQfOE7G3mNs2BDD2XoviLblJTVqwAUFddhXvI2Y0gLee3YhC99ZRdYR20EHEZEWLru+C9eN60Pbri1dtpQJFUdEoppARbebBXETYhNsQrTj6GJIO0UCCYrqr35QxkKoFAbCYC8UYarCNgNqw/36Vex6Bk1N29USQH9CE4pCNFnJjjnhF6q8tKD5femSGvi2QnuGFqJs52dey3vfmHWDFZf8tOvbpi1D10NbCKH+SKHLdjPhDEOLTba923K2oTXqBgntXQscXYsC9FZ3oTW5NKA2lVJgLYTSk6Z4ZBz4ErY8h9bjHVClNkGpJAcKj0LRUZtYlbkaIuPKRKai47ZH7o7yw/HpUTbBKLox5O6A2FSo3wqV+QPk7kar2wztwhkoZWBs+iv6WUPCuvVMtrYJwpmBUop9K7aw8a1vOLzRfvq4plH3ghS+ztjApysW0TvuIm5scgH1UkpJvbYttz58GzuXb+OHl74kb8ef/Jpt8MPkdRhW2ydZw+R4hvylN0Pu7CXH1VciIhLVBAwt9FOqgiTUH5ptlb0+DbBeFau75Y2z0u5tfButvNspPzbDbbQi7ZXjKVJ+vTAEwQ6qtB97AWoO4RSKwi06mY36w5enVEUuRTlbv/zrID5858rpj6aH+HHg57OrIo6Kfq+j4btEeTZD9utxmtug0MSTSDjDaNwT6rbA2DoT/dL/usYQUgbGtn9A3Za2cgGiaRpExNoedvTiExhbQKt/tk2MckMdXYux5Ar0S/9rs1V83CYgFR61bYErOlr22uk5hUdtYpRRDAUHbQ+AUwdhxyzP39g0HZSBsbgXWuIFULcF1G2OVrcF1GsBsalBb3OTrW2CUPuxlljZ8/UGNv77G7J2HQJAj7DAeQ14f8s3rP1ksy1Nt2AtPYefCk/Rv1VTTv5vOx/+7wkzb91xyCluACjO73EO197Th15XdyIySiSMykZmuAaglOb7+OFKsReuhsLUTiUQli1uwdoMkxgW/PWpwmDZYbzmQcVLCXFeK3WJBhHI+rQ1GXaDDoHIdwM+TVYglpFWjgjis1WtnKH6yyxHY/TZZAXC0/nwsyq/XnlbZX2KhTX4j4AgVAKabkG/cDrGqhEYK29Gb/cIJLSD7G02gchxullFvWKCEKM03WLbQhaTZOtjOU2r0gIoOgaFRzH2fQ47Xkbr8KTpqaROZdjiIeXvt4lJANm/orLLtoiUiUgWqNMU6rZAq9e8XBFJtrYJQu2m5FQx2z79gc3vLuHkwSwAImKjyGkewew1n7N3m02YjouL4y9/uYsruw9l5p0f8b+DX5LTugc9zu/KgY2HOZFbxLEiK4Yy0DULD746giF39arOoZ1xiEhUE6jC082qA6XCHB834C1qVS8SebNYLbdRcu9mo4aIYf6bq773vhbqQCvSZb0icXMqcmFCs+ltjgJybqsOJ5uKCGn+5tZHk7ouHzTCmYfW7Br03nMxNk3GWHJFWUbdlmETOSpTjNIi6kBEc6jbHL00H2PHy2gpfT08lpQyUH8uQq26Ca39Y2CJhfx9qPx9kLcfCvaDUWLzCMrfh8p0qmsaKxORqNsM/lwICR3Q2t4HsSkQUQetUTf0S/+LsfLmStnaJghC5VOYnc9vc5fzy/99T+GJPAAi42NJjzvJG6vnkftLPgAtW7bkgQcmcNdddxIXF8eSD38CYGinkRz66QTLsHkYFhp5FMQd4YFpo/i/h1dTp1509QzsDEZEohqAZ+DqcN00+voCX/U3peHc9hRoW5V+upnXelXo1WOLzh1q5dAsVsM9YdXaDDD2UiA49TugWPEVMFUpW9H8oVz+Ow2omBhWbm1vIZZCvJ5aBWwSohdSyO8xEYmEMxSt2TXoZw2p1Lg6VSFG+fNYAlB/zIG6LdE6POkxNqUMOJVhE4jy9tk8j/yISCbZv6KWDrJ9hFliIe5ctPi2aLEpqINfo/b9F1rcVKHT2gRBCB+G1eDQht0UHM2lTuM4Uru2RrcfF5+XcYKf3/2ObR+vpqSgCICIhnXYYN3H++v/R4myAnDJJT146KGJXHPN1URERPDnnkw+euE7vn53NQCHdpxA0zTO6ZJMWvdEug1oz2V9LmXHhn38H6sl9lA1IJ/ANQKNyhFuPNsMu1dPAFTX0fAeN91VYbBKbVYXoS+g0KejagK7V7/N0wTN5b+gCHVqKrTqQgxc7dhCWq5trwUqtghCsakC9LZyL6GFuFVWPImEMxlNt0CTSyv1Z7fKFqMq4rGkaTrUSYU6qWiNe3jku4tI6uD/YP/nkHSpPR7SfrCeghO/oE78UlZvzRjU2vEQ1xot/jyIOw8tvi3Et4X656Dp5R9vbbYlAbIFoUL8/u3PrH7+U04ePG6m1T+rIZ1G9eXo9gPs+modRolNCKJRDIuPbWbRmh8xUFgsFm6+4SYefPB+unfvTklxKasWbOZ//1nNzyt2mu3pFo2UtMa88MUEUlo2NtMNw+CjfywmpWVDOvRsVWVjFmyISFQDUFUYuBqqyRukqq2p8oKJVJ7pqkMLWxykqqIawvhUj9EzIV5RiIS8Wiu0xS3EehXY4hby52yFL1j5E+W9RAixjCQmkSBUOpUtRlWWx5K7iKTqpGLs/xy90zS0Rt1sAk7+XsjZgcrZjspcBYe/Az0ajCLI3orK3go4b1+LgLjWENfWJiDFt7UJSPVboVlct6NIgGxBqBi/f/szi+5/ixZ9zqfxbReSrZ8i5kARJxbvZNWzH5vlihpH8vGe5azbtQOwxRsaO/Yv3HffeJo3b86fezJ584nP+faDNWQfs21F0zSNbv3bM2R0L4qLSvn7He/w2qOfcMsjA0lrl0r6tkN89I/F/LRoC0/NHYPFUoGAjUJIiEhUE1DUvDu5cBFi+JGK2fTi0VPpaHYvrTLDlS/GVXxyQ+liAH4VIbTpm7BMY60XDCtisrZ++NhQ5r/Br1tnr8vg3s/K/lkQwtw6xRUK9jNEq9AfkxAiVIlIJAi1gqrYPuextU23QP1zbI+zBqGOrbVtbRuyGe3UQVM8IncHKmcH5OyA0jzI2Q4521EH5gP2TzzN3lacXTQqzUftfA1SB0iAbEEIAcNqsPr5T4lu24j7v3mZOh+U0q/BBbSuk2KWseqKf/25mD3208vS0tKYOPE+7rxzFNFRMfzw1S+8cvdnbF65y6zTMCWeq0b1ZNDInjRplmimWyw6syd/xv1XzDTTUlo25Km5Y+h9TecqGLHgjohENQCFVnVBlqtatNGqPm5OdcTqcUxsqMJQaPVsY9QqsH8w2JpKVVBSqPq9RqHVr8ggKxL+JtRxhrj9qyLeLqeLPOAk21asnSAntyIisbJXDvqtXZEdksr9r1AAHkmy3UwQag2V7rEU6NY2SyTUawn1WqKdNdCsr5SynbqWs90mGjmLRyU5kLsLcneh/vyyzOjhJRi5eyChPVrDC9Faj0VZiyVAtiCUw6ENuzl58DhLt/zGPUmXUdd+5LzSYXPBPjZn/cGdqZeD1aBXr5489NBErr56KIfTj/Ph9G/5Zu5P5Dh7DQ1oz5C7etF9wPlYIjzfd72v6cwlQzry2w97yMrIITE5ng49W4kHUTUiIlFNoApPN/N1AlflUR1bobRqiL1UZrOqt/NVx/bBkHG+JkH1+/TZUhf6GE8vQhum7U0S8qlqIWKXXKrUZkXGGOpnl6rA3xFPr6ny+y/bzQRBCIaKbG3TNM12QlrdZmip/c10pZQt9lGuTTxSGd/Dwa8hoj6UnoS83yHvd1fxCDCWDUFL7Y/W8EJo0AktSgLjCgJA7sHj/PzOEgD6NugAJWBEaGw5dYxv/vyF/SV7ibEHln/52Rlcee8NrP5yM48NmeXiNdQoNYFBIy/x8BryhcWi0+nScytnUELQiEhUA/A83azy7VWsgeCKVshDogI2q9LjJSw2Q+I0Ek/cOY27HhAhL4aqW0VaqG9Oze9LvxXDEasnuCZEmAqc4DyYJHC1IAjBEu6tbZqmQZ0UqJOClnwFRnQj1MGv0a7djWYtsHkenfgVsjahsn6Gk3tsFTNXojJXln1qxp2LltgZEi9ES7wQEjuiRdQNqA8SIFs43VFKcXjj7/zy/lL+WLIZZdjeGad0g63HSzhcEE2pakSryL60S9Tpd+058P0uNi5P552X/2p6Dem6xkX92zNkdG+692/v1WtIOD0QkagmUIWeRFWNOaoqvJc4U2xWC9WxTKsjrlU47FXlFreKtFfF3iAhe/hpXp8GVNG2fauKBZtQ59VLtcBacohhVYcmXuCCIIRAZW5t02KTbV8bcrejNeoGsU3QkvuY+cah71DLr0E7505UcTZkbYT8/batarm7YO9/7XGOdFuMo4YXlglHDTqgWWJc7EmAbOF0xlpcyu6vN/DL+8s4unW/mb6fEySW1uFkSTSbco6gNc3mznuH0+OCPrz71Fdkfb2LuEhY8d1+QKNRagJXjerJwDsuCchrSKj5iEhUA1BoFdomIHinarebVRdVvbetas1Vu93qIFzrtqau/yq/lsr+WVB1hsskqVADV5eb5MVmlUW2M5HtZoIg1DjcA2Q7qdlKGajdb9oCZF/0Crrd20cVHoWsn1FZP6OyNsHxjXDqMORsQ+Vsgz8+sAtHEbb4RokXQsMLoSQX9fMTcNZVEiBbOK0oOJ7L1nmr+O2jFRQczQVs8YY2ndrLN4c3cbg4mxsb3ELvRoqHh15Mx9sH8dPqP3jj1TmcZRSQHANrj0Ori1IZ+di14jVUC9GUOq0imtQqcnNziY+PZ8eYm6gfFVVFVlWI4knom6mq/Df8MBgMeqR2m9VwqFq1UJUCXHU4ElVcUKhAhO7T7c0SjDVV9cJC9awfh+Wqpyo/3k8WldB69mfk5OQQFxcXimVBqFIc37tkzdZu1IEvMFaNgLMG+Q6QXY54owoO24WjTajjGyFrExQd81JSh4YXmsKR1rgnqm4L1KrhkL0NfeivsvVMqDEc2/Env7y3jF0L12EtLgWg0GJlyZGf+SF7B/lGEampqdw44DZ++28WTZudoqNejyhrqdnGKaWzxTjFn4djmPm/+7mwz3nVNZwzkqr6O3ZGehJZrVaefvppPvjgAzIyMkhNTWXUqFE8+eST5klRSimeeuop3n77bbKzs+nZsydvvPEGrVu3NtvJysrivvvu46uvvkLXdYYNG8Yrr7xCvXr1gutQqKcWh3I3oCoUTtW9sfLNOYI5V/VtWjUdeR6yNBDStTT/qXLCJS0H3Ix2unmGBf9eqT6qOgaSCvFEvtD6qVWHSlT1JwSYhGM7X8BVJCaRIAg1kIoEyDbbcMQ5anoV4HS62vGNNuEoYxlk/QwYcHwD6vgG2G3/SxWbCvFtIX8vau9HkDaiQifRCkJFMKwGe7//lV/eW8bBdWWBpQ+rXL7J2MjPJ9MxUPTtewX33D2W1Lqt+HDGN0AWfx6I5U9KaRyjcd4FqZzVJYlvti9m8aJvuTT2DrIz86pvYEKlckaKRC+88AJvvPEG7733Hu3bt2fDhg3ceeedxMfHc//99wMwY8YMZs2axXvvvUdaWhpTpkxhwIABbNu2jZgY237kESNGcPjwYZYsWUJJSQl33nknY8eO5cMPPwyqPwotJBEl2B/kHcXD90N+AEckq9PJEyT0Y6kqGqC7THQJ4pwo8z60Kmc3VE80z3Yg0G00tpLV4fNY8bEG2+mqHmRlvjv9jaWqA4aFa90GhtIUVRsdyHElq0icctgQkUgQhBpKpQTIdpyu1vxajL3no368E23QWsjZbguMfWydLcbRqUO2B6B+utu2JS2pF1pST7SknpDQwWUbnCCEgmE1OLRhNwVHc6nTOI7Urq3RnY6ML847xfbPfuSX//ue3AM2LziFYnP+PpYd/5W9hUdt974T7+Pqftez64cM/jtpHVlHvjPbiEuKJb3gF1Zlrqdk+SlYDmlpabwy/V989sw6EpPlVMDayhm53WzIkCE0adKEd955x0wbNmwYsbGxfPDBByilSE1N5eGHH+aRRx4BICcnhyZNmjBnzhyGDx/O9u3badeuHevXr6dr164ALF68mKuuuoo///yT1NTUcvvhcBfbPvrmKtxuFn4CWUDV8ftJlf5oUw1KWOXcFNbEq1kZN/gBjDPs3ksBftRW8Xazqv9xs4oFGxynfoXTqP9rqQhl7ZSzPgJsLzi7Ffvzf7KohHNe/UK27ginDbLdTAgX6shKjKWD0Pt/bwuQ7UgvLYDj6zHS58Ef74MeBUaxa+XIBGjcA61JL7TGvSCxE5oe2O/2cpKaAPD7tz+z+vlPOXnwuJlW/6yG9Hr8Bhq1bcqv//c92z77kZL8QgCKKGVl1lZWZm8nuzSfzp07MXrkX2hES5Z/soldP5cFrY5vVI8rbryIlQs20bpTM57+aCw//PAjhw8fJiUlhZ49L2HarW+zd9sh3vv1GSwWETyrEtluVolccsklvPXWW+zatYtzzz2XX375hdWrV/Piiy8CkJ6eTkZGBv369TPrxMfH0717d9asWcPw4cNZs2YNCQkJpkAE0K9fP3RdZ+3atVx33XUB90ep2h64WtXozTblEVDf7YWqQT4Js83yWgunKFVNewLPCJuCB5UaC8n1A8ARtNp1e0El2Xd5P1atACfbzQRBOGPxESBbi6iDSuoNO/5lC5B91Xq07F9QmatRmavh6E9Qkg2HFqEOLbL9ZYioC40uRkvqhZbUCxp2QbNEe5iUk9QEsAlEi+5/k9+tR1nw5xoOFZ0gNboBw41LOXnfmy5xBjNLc1l2/FfW5/6OFmXhpuE3cnnnq9i77jhfPvUbpSWbAYiItHDxoA70H3Ex3fq3JzIqgo69WzNtxNtMu/VtbnlkIN2GdCd92yGm3fo2Py3awlNzx4hAVIs5I0Wixx9/nNzcXNq2bYvFYsFqtfLss88yYsQIADIyMgBo0qSJS70mTZqYeRkZGSQlJbnkR0REkJiYaJZxp6ioiKKiIvN1bq49mryhoYyq/GZfdaYqStVFLgkDVRyHxIz3FOKAQ76ZrMgEh3ijXhF/x+o5gak23jyHa0wqiMVXcZsOS4F79odpnFoway98cysxiQRBECofTbegXzgdY9UIjJU3+w6QHVnH5jXUuAe0fxRllMKJX1GZq1CZP8DRH6H4BGQsRWUstf010KOhUTe7aNQTGnWHw0vKgnHLSWpnLIbV4Nup7/Pbyf0cvjCaue98TOyBYja9u4RTB07YCinYmn+A5Se2sqPgIGlpaTx21xTiS5qy5svf+ODzZWZ753ZuTv8RF3PFjRcR38g1pm7vazrz1NwxzJ78GfdfMdNMT2nZkKfmjqH3NZ2rZMynM8pqpXD7L1hPHMfSoCEx53VEs5wenn9npEj08ccfM3fuXD788EPat2/P5s2bmThxIqmpqYwcObLS7E6fPp1p06Z5ZijN9qgUlMcrrQq9liocqydUw5qqhhg21RB5SYV+Uxja/NijIIUsMIUo+3mtFtgAAvbSq0aPDP9UgQdMVeA2vxVvI5hqvq5nZY7fwHuH3WxWcJ25Vlc+xLAwj9OMSWSEt11BEITTiFACZGt6hO0UtIYXwnkPoJQB2VvtgtEPqMxVUHgUMlfZhCQALQI0C9RLQ2s1GuLbokXWg0bd0C/9L8bKmzE2/RX9rCGy9ayW8+e6nVhPnMLaOo5He97Arw9+RmneKQCKVSnb8g7QqX4aS0/8xrm9unLrOY+wf2M2P755ADgAQIOkOK68pRv9R1xMWvuz/NrrfU1nLhnSkd9+2ENWRg6JyfF06NlKPIgCIP+n5Ryf8y9KMw+baRFJKTQcNYG6F/epvo4FyBkpEj366KM8/vjjDB8+HIAOHTqwb98+pk+fzsiRI0lOTgbgyJEjpKSkmPWOHDlCp06dAEhOTiYzM9Ol3dLSUrKyssz67kyePJmHHnrIfJ2bm0uzZs0qtN2s/K/+1X+nG55oIEEEdAZQFdiGFfIv8VUvTFXEk6g6bIYivPheP4GHvQ7YkKNZ+4mDFTsJMMjaWqDjDN8F18ISdyn4WEtehQyPZny0G0p/NSPAgYZhbp22nHl42lTmGAG0QMTN8NkUTyJBEM50KhogW9N0aNABrUEHaHOP7RS1k7ttolHmKtsWtYKDoEoh7w/UimEoTYeGF6Gl9EdL7Y923kOo7/rB0R+gyaWVPGKhurCWWFn9/iIAOh1O4Jd3bQGmC0rhjzzYfrKQw5FH6VQ/jSFtb+a3NQUsX70VgMioCHoO7Uj/Wy+ma7/zsEQELiZaLDqdLj03/AOqxeT/tJwjM5+kTpdLSHrwaaKan03x/j/I/ux9jsx8kiaP/r3GC0VnpEhUUFCArrvepVgsFgzD9qtoWloaycnJLF261BSFcnNzWbt2LePGjQOgR48eZGdns3HjRrp06QLAsmXLMAyD7t27e7UbHR1NdLSXPcZVGpOoOuIDVaVE5GS1wtupghOmNOXzLr/SCC1AbsUsOra5hVQ7hLk1CclmCDFhlL2ez+KBBb0OusN+tyvW4C1z4QrQHHA7QcxFQN5LQQaM9tNP1ywvwpT5MozX01l88+sBF57A2C5VqmUrpyAIQs1C0y3Q5NKwfAXUNA3izkWLOxda3YlSCmPnG7DpUWh5CxxbB3m/w7G1qGNrUb/9DaIbAmDsn48efx5aTOMw9ESoKeQeOMbWT1az/bMfKThmD1Wi4MCpU6zI/pWf83Zycdt+NIg+m6STtiDqB9NPYlg1zruoJQNu60GfYV2o36BudQ7jjEFZrRyf8y/qdLmEJo8/j2bXHGLanE+Tx5/nyPOPc/y916hzUe8avfXsjBSJhg4dyrPPPkvz5s1p3749P//8My+++CJ33XUXYPuAnjhxIn//+99p3bo1aWlpTJkyhdTUVK699loAzjvvPAYOHMiYMWOYPXs2JSUlTJgwgeHDhwd0spkzp0vgai2gGy5XlMMNpML3EsHPTziimQTThkIRmvNliHF6sIX4CXnphLp1JyxLNZhGVJjCPQW3EH1rfo7UcN8g12AhyBshr5+q3sqnAvSw8VXXS3IAbWmUJ6IEKjYGgWaEeF2Ce4OVxXmS7WaCIAiViaZp6A3OxwD0c8eiXfJvVP6fqMNLUIeXwOFlUGQ/4Wr3Wxi734bEC20eRilXQsOusgXtNMQotbJ3+W9smbeK/au3mb+y5pQWEKvHkllUyHsnV3DFhUM459ggjuw9QR6FXNwQ8ksV5w4+j5lPDqd5G++7W850KjNWUOH2XyjNPEyDW8ZQsOEHSo8cwiguosGwO9B0nYRhd3Bo8t0Ubv+F2PMvDIvNyuCMFIleffVVpkyZwr333ktmZiapqancfffdTJ061Szz2GOPkZ+fz9ixY8nOzqZXr14sXryYmJgYs8zcuXOZMGECffv2Rdd1hg0bxqxZs4Luj1JVuWUo9G1Yrn0M8iY/RJvu7VQ9wdkMrYfuakQwHkwV2FanfL4IrmoVED5RIdD4RIGM0FdbVS+8BHuTX3GbVRuk3afNIMJN+Q9cHap3kr9iYRSmAm0nnGJYAB5Tst1MEAShCnA/Sa1uU7RWd0KrOzGsRailV0HOdqjbArJ/hayNqKyNqC3TIaoBWnJfSL0SLaWfbTucUGM5eTiLbZ/8wLZPVpOfmWOmb88/yA85O8g4pXFl/BV0axjDXxjIrl9LyS3JIqleBN3S6hFx4gTrjmk8OHqACEQ+CEesIGUtpfT4UUqPHKIk4yClmYcpOXKI0iOHKP5zLwBHX3nGLK/FxJJw/e1omkZU8zQArCeOh21MlYGmVNWH9xVs5ObmEh8fzy+33kH9qKgqslrFN3cVDEhUblVfcWErsg3Co03lO8u9atjmNvD+h3xTGBIK9Kq3GZ7YOcHZJGSbob7HDJu9KrSp+Qx0XDn2ADTNqAabFRgnhLgVqwLjDMmmqoCXln1ug6ybW1hCs2eXkJOTQ1xcXCiGBaFKcXzvkjUrnG6oA1+UnW7m6yS1ZtegTh1GHf4ODi1BHV4KJdmuDTXoiJZyJVpqf9sJanqkd3uGNeQ4S0JwGFaD/au2smXeKvau+A0M2/eAk6Wn+Cl3N+ty/iCp4Xm0atCRnP1FKAWpMYrzE6Cuk7tHQWQp8/atpoFxOU+8exdX3HRR9QyoBuMcKyhh2B0usYIKNv5oxgpSSmGczDGFn5IjhyjNPFz2/OgRMKx+bWmxdYhMbUZkUioRTVJJvGUMWmQkhTu3cGjy3aQ882pInkRV9XfsjPQkqmlUuSdRFcqCNo0o9Ju7crvqJ8xI+I5413xnBdSZUAis89USE6Qi67UCYk9FbAZdJWSxpoLU/F2nvqmSvgd3Mlig71x/9ioi3IW21r1sGQvYkyj07WahjFM8iQRBEKqGQE9S02JT0M6+Hc6+HWWUwvENqEPf2ramZW2CE7+gTvyC2vYPiIyH5MvtotGVaHVsJ12pA19gbJoM+ftsrwHqtkC/cLrXE9uE0Mg7ks32z35k68eryDt8wkzfVXCINdl7OGaNol1KN84v6oSRq8jOLTLLNO7Tgn+v/wAO5xIfUYec0gKM5FgefnIynz2zjsTk+OoYUoWo7OPi3WMFqZISSo8exjiZS2zHiyg+kE7mK38j8r//oSTzMOpUgf8GIyKJTEomoslZRDZJJSIphcjkVCyNmnBkxhNEt2zlEpMIQBkG2Z+9T0STVGLO6xi2sVUGIhLVBJRWgcAyQZqqhi1bFQl0HJI9bHu4q2NLVOhCRvkVvTpNVUMsq1BiMjtTlSejhRzvSVV8nDWZsIknVVq3gp5EodoM8ZRXTQvjFsBAt7hVxPstiHGa280kcLUgCEKVEexJapoeAY0vRmt8MXSciirMtHkXHfoWlbHUFsvowALUgQW2bwPx7aD+2fDnQkgdiN5zji0tZxvG1pkYq0a4CFKCd0qKS/jm3fkc23eYRi1SGHDndURG2Ty2lGFw4McdbJm3kvSlv6DsXkP51kLW5f7OtpO5JDVoTwNLH+IMRWEGgKLVBU3pc0NXLr3uQh4b8gp19Hi2/b6ZH374kcOHD5OSkkLPnpcw7da3SWnZkA49W1XfBIRAZRwXr0pLKT2WQWlmBiVHDnFq68+UZh5Gi4ll/1+uxZrtfbtX8b7fzeeWxEZ2AcjmDRTZJMX2f1IqlsRGLgKQM43uup8jM5/kyPOP2z2W0ijen+7isVSTg1aDbDerVhzuYj/fPKpKt5tVuWBTHTFaNBX6/X2V3/yGToVufkOiYp4VFfFyqEphQcOwbasLxWRFxhmiIOGy9oKybRCa93gFBBsqsA3LR73yuxLqOCvm1eO8ZgNfvxWYW4urzcDbCc0DKbewlLOeXiZbd4TTBtluJgg2lGGFrJ9Rh79FHVoCx9fj8t0woh40uQztrKvQmg6G6IYYK2+G7G3oQ3+VrWc+mPvMbPZ+sIZ4Lfb/2bvv+CjK/IHjn5lN7ySkQoCAKCBIlybI2bBjO8txinqnpwcqcnqKd/aCyt3pz4p6d5aznnd2xRMriNJBaQJSAyQkAdL7zvP7Y5PNbrK72Z1tKd+3r5Vkd2a+z8xONjPffJ/nsT9Xpmroc+EYhuQNZMObS6jcf9j+2o6ag/xQVkQlqSRrvTEaWraVe3QmJ/1yDFMvHOM0vtDS99dx74wXGH/GUC675XTyhuSwa/MB3vjLpyxftJG7X7uGydNHhmR/A8HbLmCtKasV65ESGg4W2LqCFRXQUHSAxubvDxeD4XmCDS02zpYEyswhIjWd8kX/Jfm8X5F40tlEpGehu5iV3Jf9apP4yswhbeYs04kvCN3vMUkShVHzm7z24quCmiRyvGlQKhCJDN9PmVAnT/yqVjC5Vji6KGmtbkS9F47xgUze/GphiOnH+EBmu1dqmgp5Yip04wPZzjet6WvfYzadrybaaqsIM3Dzx552GCYriZR/x9bEtbcGoId2P8trG8i562u54RadhiSJhHBN1R1C/fQ0atMjENUD6lu6P6HpkH4CWo/hqK1Pop+8CC1zSvga20G9dt9CDr26jpKEeo4650R69M6leM1GDi/ZSHSjjtZ0IVttrePHigJ2V0O03hcaW34BZ/ZJ5RcXjeGkX46l/7Be9nVaW/r+OhbO+y+Fe1qqYbL7pfG7hy4MeIIomN3AlNVK/qxLiOrTv03XLMNq5eADf6B+7y5Sr/g9jSUHW8YFKiqgseQgNDZ63L4WFUVEejYRmdlolgiqV31Lj19dS9yI44nIzEFPSLIfY3/HCnK3f4E+dl12TKIPPvjA53VOPfVUYmNj21+wW/FhBizl+Xvf+Xo3GsA8pLfdLjC7n5of4yf5Ub1k+hiFOvsW4JxyKJpvpsnNv5RNrKtMJiiV+QKStoJ+XNsOrux9SD8GkTbb9cv0uuZjouFHgslkTMcxgnxN4vmwfEt3M19iCCGE6Ki06DRU8iDb1+duRqvcYRvLKP8DOLIeipagipYAYKyYjTbwarTc89AS+oWv0R1IQ30Du1/9ntqoCPKrszi4cDn94peTGAkxWECDRsPK14cKqWjMAGse0QAGpGYmMfXC0fzil2MYPDbPbWLI0eTpI5l49nA2LPuZw4VlpGYlM2zSUVgspkvSXQpGN7BmSimqVi2lsaiAxJPPpuz9N2gsLrQlgJoeqt42DpPjTGFOLBYiembaxwSKyMgmMsPWJSwiPQtLSqo98dSckKrbtsk201gIxgrSLJYOPc29JyGvJNJ9/DOnpmls376d/v37B6lF4dNSSXQ1CZGdrbuZb6dN54npT9e4EB1bU11Y2sYwe3z8quoxQ/NzpjFTMW1VIOYOr/kKEs3SmSqJzCUktEB1cfMlpmY1uZ8Ox8fX4+tP9ZLZKjbd7Ptpbr3y2kay//yNVGWITkMqiYRwTx1cgvHFGeinfYXW8/iW5yt3o/LfR+18Dco2Oa/UYzha7nTboynJ1B198PQb7H3iG0rqIC265Vd4ndHIniqD8oYoxqTC0mIoqdNITI1nynkj+cVFYzjuhIEBT+4EgtluYM2UYWA9cojG4kJbV7Bi2/hAjcWFNBYX0FhciKqv99yIpgFfI3v1IXrgECIycpoGi84hMiMbS2q6T5U5bfep7VhB/ia/gq3LVhIBFBYWkpGR4dWyiYmJQW5NZ+f7TXBg0oK+3MEEKg/pfUxNUyGvJDI/hmvrG/x2GuAQRynz49i4Oj7eJmICmln2ImbACxba2WAYeg4GXlB3wKH7WNDitD7LHH5OTFQwhaLqxZcfYxtXP4TNbTWR+NNNJn+bB9k2EU8IIUQXkT4J4vtibFqAPuUttKYLTC2hHwy6AVX0LdSXoQ2Zg9r3IRQtbZkt7cf7IOkYe8KIHsO9qojpzJRSFK7fxeb/LmP3O8vQgZ5NQ9gU1lWxu1KjuDaORqUR0XST0PeYJObecwWjTxpMRGTHHdep9UxgzVU3MccMJfP2hzn48O2UvPQUUf2OpvFQkT0RZEsANVUDlRRBY4PnQE1JoKi+A4jqO4CI9CzbIyObyMwcGg+XUHDnLHr+7taAVOTEj59K5q0PcOilpzgw73f25yMyczpFgiiUQp4kmjlzpk9dx3796193/b/2+DW7mYmuXwH7zPb2BiGQvyS8i6mUZr7ypLP0/PKL68a2n1hzHFsmQGFdxQz2sWxnP5t/HEP7lgawu6IvgySb1GZmq1AMzOywCZ9i+vNG+lC95HhENH/GRQv5jGomk0Qyu5kQQnQZmm5BHzUfY+kMjCWXoA+5BVKGQOlmjM1/gf2LWmY3O+Z6VG0Jav/HqPz3ofBLKN+K2vQoatOjEN8PLfdctNzzoOdYe8KpNWVYvZ6traMo33+In95bzvo3v6a+qAJo+bW9q7KRHZURVDQmABAVE8mJZw4jRquAFds4esoAxk0bGpB2BHOsoNotP9BYVEDqr6+nZsMa23hATQmgxqJCGg7sxXrkEPm//6XnDekWInpmNCV+bAmgyPRs+9eWlDT2zfk1EelZpN94Z5suYIdefCLgXcDix08lbuzkoB27rkIGrg4je3ezX/7Gz+5mHfcttM9uFvIBnUM965dt3YAPrtxuxYs/04KbWcsIziDSHrcXpC5uHrZnfgYuMN/dzGw3LHBXZePi2wDFNHxKnji1x3QXNz/eEz8GdDYd02IN+CDS7R5mi4Hezs+S6w07Jqa8/wwsr20k6/ZvpeuO6DSku5kQ7VP572OsnQdVe1qejO+HPuohW4LI1Tr1Zaj9i1D7PoADn4G1puXF2Gy03uei9ZnelASK8BCnL/qo+W7jhEt9VS0/f7qWVf9aTMWWlvF5GgyD/TWKfdUWRvaA8gZYWxXJmFOOZeoFo5hw5nFEx0Zw79hriC+PZtT9Mzn1VxP8bo+/YwUpw8BadqQp+XOwJQlUYvu64UA+qqa6/Ybouq3rV3MFUFMVUER6FpEZWbZp4i2ea1K6QhewUOoWs5vV1NSglCIuLg6APXv28O677zJkyBBOO+20cDUrZJrf5DUX/jZ0YxL5PW6Ob6eLLUmEH0kiP6dqD6GwJKY084MA+zPeTkhmGnMoGwn9OEjhGJMoQEmiZl514/NnfCDXXaW8iamZTEy5PK7evEl+jA+k6V7GaE03myRSoBvmPjfNJsM0s7ObNZJ1mySJROchSSIhvONPhY9qrIIDi23jGO1fBI0VLS9G90TrfTbEZNgqjnqdiX7srZA8BMo2Y2xa4FyxFEaG1WD/iq2sePl/FCz9Cc3a8lpRrUF+tc6BGmhUGrEJ0fRorOX4NEVxfD2T557H6FMnsmbxdyx97D16Vkax6pDGH96dy4gpR/vVLm/GCoodMY7GkiIaSwpbkkCOCSFvuoIBWlQ0EZnZRPTMIqJnJhEZWUSmZ2HU1lCy8FGy7vk/4o4b49f+NO9TMKaL74q6RZLotNNO44ILLuC6666jtLSUQYMGERkZSUlJCX/729+4/vrrw9W0kOicSSJH7Z86/ieJfI/ZLNQJm6AmidxuN4hJIpcLBKmSyG0823rmYpo/rp26kgh8qCYKUCWR5yDOi3msJPL0ninzg0jrnipsvIipOT/nDc1iuDln2xuY3mwSDbQIq7mP2uYkkcfqurbKaxrJ/OMyueEWnYYkiYQILWWtg8KvmhJGH0Ndy5TtaBHQ9yL03OmQfQpaRBxKGRhLLoHSzejn/BiwrmeG1eDA6u1UF5cTl55EzpiB6G4Giz6yo5CVr3zG1g9Xole1TLFe0aDYW62RXw01Vo20nGROOGcEJ5wzgmMnDODqUfeSGV9Pz7JC+sUbREc0UtcYwa4qnUPJWRRVR/Hyj/f5NUi1slrZ+/uLiczuTY+Lr8Z6pKQpGWSrBKrZuBZVUwPKaH9juo6lR09b8ic90+lfS2o6Bx+ZR1TfAWTNe6RNN7CDD99Off4ucp96M2DdtILZfa4r6dIDVzdbu3Ytjz32GAD/+c9/yMzMZN26dfz3v//lrrvu6vJJonBQigD2TvPudkRp/oy1Yt+Kb4uHaXygoAxnFJR90Zra6qHFAU8fN++Imw176hmmmxlwXaPdJFo7TelUw0w58noH/Ktia/ucN2ED3C0z2DE9nD/BiWk7b31Z2iGkzyet1jwWkanxhTpuV2chhBDhp1miodfpaL1ORxmNULQUY+tC2P8RqEbY/SbG7jchIsE26HXeZWiDb0Z9fioUL4PMKX63Ycdn6/j24bep2H/Y/lxir1ROuP2XDDhtJAA1RypZ9++vWfval3DQ1s1KB+oN2FcNe6vhSL1G74GZnDd9JCecO4JjRvV1Gpz7uvkX8sHNCzhrRAmJVNmfP5Z4Xl3fyO8eu7XdBJFqaKDxyCGshw7SeKjYlgA6ZHtYDxXTULgfo6IMa3EhBT+u9rgtLTbO1v3LMQlk/zqLiNSeaBHuUwE9r76Rgwv+zMGHb3fbDSyQSZzOPF18VxTWJFF1dbV99rLPPvuMCy64AF3XGT9+PHv27Gln7a5DqUDNOOYNrRPd+ToPA+vLWppSJm9f/Dk45pNhHsct93DDrzm+7iuXJV7tbcy/42NuG+G5Ee00PyZeCGrSy8VGPcYLRCN8jRkkwdlP5dX6Ll823UXSu5jeNUIIIYRoS9MjIOsXaLXFqP0fof3iQyj4zDbwddVe1K7XULteg9hsAIySVVj8TBLt+Gwdn9zwHAW1jTTqtURYGmm0RhCxo5HyG55j2Mxf8NOKH6n/qQS96ZeaoeBgrS0xVFgD/UfkcuH5Y5h0znD6HJPlNtaozDJyRuxla0Uq727KYn9lDL0Sajl/aCnXjdhLZtohGg4eoLGkCOuhIlsS6FCR0/fWssPe3RRaImwDQqf2dEr86EnJFP3lTnr+/naSTjnHr2MnM4F1b2FNEh111FG89957nH/++fzvf//j5ptvBqCoqEjKgLuagExH78tGfE1+BIpjXB9mf/NmUa9mAfN3PzWXXwZu++aYKJDolDEDxl1CMRjcnRLuAgbiFPI1pj/dSE0PDm9yveZuq2bWVSZnRtMcHr6uJ4QQQvhAi82yXWNFJqCNehg1cj6ULEftehO1979Q0zQuzQ93Yd3ztq26qO/FaHHZPsUxrAYf3/YiMdFlnHfUAXpGt3QdK6uLYNvBHDa+/BUAOhql9bbE0P5aGHB8fy765Tgmnj2c9JwUj3GUUhgV5ZT8/TFijh7CxFPOpd8P26kvKiTWWkmcstCQX07R3+727vhERmFJSyciLYOItHQsaRm2hFBaBtbSQ5QsXED2fU8SO/i4NuvWbt0IQGRWLy+PkmcyE1j3FdYk0V133cWvfvUrbr75Zk4++WQmTLCN9v7ZZ58xcuTIcDYtpJTSUB5LSVwz05UhLENQBexu25dqotZdPbwp1fGXL4O0BOt9CGDMDtTnKhxN6AC77TsPjQ7a2+lrTK31B4KvXatMJF/MJl38mZnRdFmh+XX9Gm/O26SwQ+5eM9VFTXQH/fr1c1kR/vvf/57777+fu+++m88++4y9e/eSnp7Oeeedx/33309ycrLbbSqluPvuu3nhhRcoLS1l0qRJPPvsswwcODCYuyKECLT0SRDfF2PTAvQpb6FpOqRPQEufgDHqYdTnp0HZT6AaoHQDat0G1Po/Q+ZUW8Ko97lokQnthtm7/CeyLcWM7LeXyMGjWHekBz9/e4AsSz0DehYxJncva/P7sOZgMttrNPpNOIpf/uoExp8+lMQe8QAYdbU0FO6j8VCJbfyfwyVYD5fQeKQE66Fi27+HS1B1tQBYD5dQt20TMUBMUzuchoeOiLRV/aRluEwCRaSloyelOHVjc6SsVkrfeZWyd18l5piH24wVVPrfVwI+Zbx0A+uewjpwNUBhYSEFBQUMHz4cvelEX7lyJUlJSQwaNCicTQu65oGnVp1/TegGrg7DrF9+xfSjy0ZIZuByYP6GyfzxcT1Ytpft8DC+i3tBHLjaU0w/utGYnm7dYjZmmAeu9mnwYav52c1072Y3a/OUZn7WL81i8hzyY6YxrXk/fY3rZcw2P0smZxoDwGJyP00Oll1e00jG3O9lEOBOaOnSpUyePJlly5YxadKkgG+/uLgYq7VlKqCNGzdy6qmn8tVXX9GzZ0/uvvturrzySoYMGcKePXu47rrrOO644/jPf/7jdpuPPPII8+fP5+WXXyYvL48777yTDRs2sHnzZmJiYtyu50gGrhaiY1D572MsnQE5p9MQey6NtSlExJQSWfMBHPgUffJrkDEZtfdd1O43oPj7lpUtcWi556D1u8zWfU13XfPw9OXzOfHI/zhcG82P+f1o/kVuVVBYa/CLAbvpnVDLWstxnHHVZLSKI62SP4cwqipcbtudyN79bImf1J5OSSBLQiIH7rie9Dl3kzjFvxm8Zcr47q1bzG7W3XWfJJGff+E2FdBwm4V3FsDTX3M3m5EXbfB1sFmHdb27KTQ3XXnb5Q3zXWFMn3tmpy9vihnyhE04kkRmp2o3P7uZrzON2RcznSQywOysX7rVr2ShL8fVvqjF6mFGNc8x8TGmPbbFau5nTLP6kSRaLjfcndAdd9zBOeecw4cffshDDz0U9Hhz5szho48+Yvv27S5/N7/99tv8+te/pqqqiggXA6kqpcjJyeEPf/gDt9xyCwBlZWVkZmby0ksvcemll3rVjmBcXBdu2QxAz6MGEhEZaWvbwQJqDh8hJimZlF692iyb2q8fUbFxAFQWl1BZUkRUfDypffqaWvbg9m2oxkaSc3OJTbCN9Vl95AjlhQVYoqJJHzDA1LLFO3Zgra8jKSubuB49AKiprKAsP9+nZbWICDIHtkz7fXjvHuqrqkjomUFCek+fl62vqebw7t0AZA0eYl+2dP9+asvLiE3tQXJmts/LNjY0UPLzdrfvpy/LevPeB+I8cfV+BuI8aX4//T1PWr+fjstqa59B3/MYETE19tcba2Ix+t1M7Ml/cnrv42MrULvexNjxGlr1LvvyxGSi9buY8pip1KjeFO0u4rsXPkbfU0Df+EqOyS7iQGkyDdYIUrJLiE2sJVJpaIejUYYOqvniQKFZbDOCKavDL0TdQIuMgOR0otNzsKT2RE9OoU4ptIQeJA8eSnRGFg0H9lH44M3EXPcn4oaMbPN+Gvt2UPvsfLLve4rYoaP8fu+rln9N0T/+CqXFKKvtAjAiM4e48y6nsc9R8hnRwT4jHLfrr1AliczPwWfSjz/+iGF4MS1fk02bNtHY2Nj+gj7av38/v/71r0lLSyM2NpZhw4axenXLKPFKKe666y6ys7OJjY3llFNOYfv27U7bOHz4MDNmzCApKYmUlBR+85vfUFlZGfC2BpKiZaDsTvHA3KP9blctS3YIPu6g42Dn3h1LrdXDxDF2jBuohw+HR3RsWjsPO9NvZsfodBj0/dSaV/buoTk8vFpec/Uw2VbRKd177700NjZy0kknYbVaue+++4Iar76+nldffZWrr77a7R9vmi92XSWIAHbt2kVhYSGnnHKK/bnk5GTGjRvH999/73IdgLq6OsrLy50egZa+bizp68ay45sv7c/tfvRM0teNpey5E52WTVs1jvR1Y9nwzuv257Y+eBbp68ZS89JUp2V7fD+B9HVjWf383+zPbXzwAtLXjaXhtclOyyZ9Zdvuqv+72/7cunsvIX3dWPR3nJdNWDyR9HVjWTF/jv25VQ9cTfq6sUR+6FxVFv2xrQ2rHrzW/tyKB64nfd1YYheNd1o24v0TbO2973L7cysX3Eb6urEkfuG8rPWNSaSvG8uPD1xsf27Nsw+Tvm4syd8c77Rs3b+mkL5uLFsePLdl3/71AunrxpK6wnm7FS9MJn3dWHY+3DJg70+LPiB93Vh6rhnrtOzhZ39B+rqx5C843f5c/trV9veztrTM/nzhYyeTvm4shY+dbH+utrTMvmz+2pb7h/wFp5O+biyHn/2FU7yea2zL/rToA/tzOx8+h/R1Y6l4wfk9Sl0xnvR1Y1n3rxfsz2158FzS142l7l/OAzknf3M86evGsubZh+3P/fjAxaSvG4v1Def3M/EL23ZXLrjN/tzq+y4nfd1YIt4/wWnZ2EW2ZTffdaltWnWrlVUPXkv6urFEfzzBadnID23v56oHrrY/t2L+HNLXjSVh8USnZfV3bO/RtnvOpeCZRRwpvJKf9tiOVWNNBEcOXknBM4uoWv41Da/Zlt304PlYa+NpiD2PH3+0/UwZjRqGioPag6ifniRx/YVk/DCO/ltmcGb8Ek7N28Pgfgfoc/4Gxl2xjAmXfcewszZy1JSf6Xvidvqcv5G0MXsBqI5JRh19NH3O30Cf8zeQfsOfybr7cXo/8RrG0Yfpc85aapK2k3P/U2TefA/WCaeRHftnsqyzqIyMIzKrN7HDx5Iw+CCZxZdQ/NTJTvucvm4smcWXQmqivRuYv58R8eOnkjNhCX3O30D5sOPIvu9Jcp96k58X/UU+I+h4nxGdUciTRCNHjuTQoUNeLz9hwgT27t0b0DYcOXKESZMmERkZyaJFi9i8eTN//etf6dGU1QR49NFHeeKJJ1i4cCErVqwgPj6eadOmUVtba19mxowZbNq0icWLF/PRRx+xZMkSrr32WlchPWp7Ax+8h20arVA//OAuS+HNw61g3RGZPQ5hOrbNgpTYCVhswpMeEL7x+vQx/WY2bUEz93CdHGnvYdjjuk3EuIupm2wryqePAKePdR17d1B3jzaak1LNbfb1ITqdu+++m4EDB3L//fczcOBA7rrrrqDGe++99ygtLeXKK690+XpJSQn333+/x+unwsJCADIzM52ez8zMtL/myvz580lOTrY/cnNzfd8BIbqZquVfo2u2P+hnV+dTcNcN5M+6hHirb12vPEnjCLHDxpB08TUUH7BVQyhDx5LdF0uPnhQ9fi8xFluRQJ6lmL3Xns/+P/6W9J22pLCy6uS/cxRFy/Ko2peMaqo/iMspp9eZm0k9YSd676YKJV1RUZlBcf0fqMz9LyV7UgGI71NKbE4pfW69h8ZTLrO3LfEXZxA3fCxRvft5PWasZrFQ0RgNQFJkPbVbN2LUVNkHkgawjjs9KAM+V6f2JnboKBlMWgRUyLub6brOtddeS1xcnFfLP/PMM2zevJn+/fsHrA233347y5YtY+nSpS5f96asecuWLQwZMoRVq1YxZswYAD799FPOPPNM9u3bR05OTrvtaC4XW3netV28u1mgYvp2qpru+mUydRqeMYkC2MXNq+34NyZR2/FXvIwZhjGJOmV3s2ZeH6wAdDdrDul1TD/GQbIY9n3z6XzwZ0yiUI+D1DwmkZn99NTFzWOe2mqqK195TSMZc1ZId7NO6Nlnn+X666/nueee43e/+137K/hh2rRpREVF8eGHH7Z5rby8nFNPPZXU1FQ++OADIptK91v77rvvmDRpEgcOHCA7u2WGo4svvhhN03jrrbdcrldXV0ddXZ1TvNzcXOluJl1JOm13s8jYGOIqS+0zTZVFxoKhAtbdrHm8G8uQ44iccibJI4/Hcqioabybb4n+1fVEjZjY5r1vrK0hMSmRKA2sZUeoKdxP9b5dqOpKYvUIrOWlWMuOUH+4EFV2CFVb3/QXDrD9rjUAranrVBPdQNOUrVuYFkEN0ZRVWVGGjmFEUF0bQ31jJLUNFioj6sgZeZjREyvoYdlq34RSUFcVycfvT6R4R2+U0omIaKBWa+CSX31JSno10VcWYqC57Brk63lS+e3n1H/6H9ShEvs2tLRUok6/mMxzL5XPiG76GdEZu5uFPEk0depUL8eKafH66687XRT4a8iQIUybNo19+/bxzTff0KtXL37/+99zzTXXALBz504GDBjAunXrGDFihH29E088kREjRvB///d//POf/+QPf/gDR44csb/e2NhITEwMb7/9Nueff3677QhXkijU/JoBp51Txf3L4Rgs22xywJ8kmtnxekze+DYnbAKVmPKC5meSyEzST/MnYaMZphJw/sY0N1ZU6MYkaqb5NSaRyXPIdJLI9zGJ7MyMSaQ1xzT5mRlhNqbV1Fyn5TWNZNy0UpJEwq09e/bQv39/3nnnHaZPn+70WkVFBdOmTSMuLo6PPvrI4+DT3lyXeUMGrhadWdXyrzn00lM0FhXYn4vIyCbtytkBGahYWa3kz7qEqD79ybhtPtTXYi07grWslMbSw5S++XcaDxWRMGUa1ooyjKbXrGVHsJaXgmFtN4YjQ0F9o4UGawR1jRHUNUZS2aCTXxnBKXlFVBw3jf+tr6XwxyJSDAup0S2/4JRSlGAQMySTC+/8FUePbrkJV5V7ULvfQv38D6jeZ3++ojKalWv68eP63uRF1TLumCKyT9qOfvIitEznbnz+UFarTBkvgiZUv8dMXBb65+uvvw51yDZ27tzJs88+y9y5c7njjjtYtWoVN954I1FRUcycOdOrsubCwkIyMjKcXo+IiCA1NdVt6bOrv2hBS3cz/3lzY6GFvJJIKT+SCu3skruXu80YG4HcT6+2FdgD62URrx8R2p4hQT81FG16A4YsZhhp/iagzVbT+Re1nQ1rtqSfqXgmkr/NXb98COT3j63WlHgz8Tnt93suwq6oqKjNtUwgvfjii2RkZHDWWWc5PV9eXs60adOIjo7mgw8+aHd2sry8PLKysvjiiy/sSaLy8nJWrFjB9ddfH6zmC+GVUCQFHGe0yrj5HqL69Kd+705K//sKBxf82eOMVkopjOpKjPIyW3Kn6V9rRRlGRRnWctu/DYX7aCwqwKipYvdlJ4GbMWHLP3E/C6Een4glOQVLcg/05B5YkmxfOz7qCw9w6Jn5fL8zj+2WSKbMPZ9Rp07ky9cWs/6Fzzkmqh4o4vv/bCOuIYH+kRH2/TgSoUgbn8eFf/o12QNcdx/VEvqiDf0j1vi+8P3VNCaeiXbocxIT6jj5xK2cfOJW6spS0Ab8Gkq2o2oKA3s5LVPGiy4g5EmijsAwDMaMGWOf0WPkyJFs3LiRhQsXMnPmzKDFnT9/Pvfee2+AtiYX5+0xe4TCca9ttp6v6d7O3Lqtd9TbDQXwAHmX1gysLhnTr3F+TK7XKhHm9emjme3SabbroIfxeLyIadtAm2e8immaD2P9OC6p6X4kpszcz4R8VEMRaA888AALFiwgOjra5et79+6lT58+prZtGAYvvvgiM2fOdBqQury8nNNOO43q6mpeffVVpwGl09PTsTTdXA8aNIj58+dz/vnno2kac+bM4YEHHmDgwIHk5eVx5513kpOTw3nnnWeqfaLrC1XyJpjVPWDbj0MvPWVLEN36AKqmmsbDxaAUCSefTWPJQYqfeYTarZswKsuxVpRjVJQ2/VuGtaLcpyofo6JlgHctKhpLSiqWpBT0hCRq1q8gbswkYoaOakr6pGBJakoAJaWgueky6mhzYSRRdZHkZhbR6zf3serLLbzwpwdIrq2lV2wER/XaT3V9JI0N8SilKI+B3FOHcNZNl5DWJ8vr/dDjsjGAqAm3opL/Rf2qv6MffBe9ZhXRyaVQ8pTt+O59D9VjGFryYK+3LURX1y2TRNnZ2QwZ4tw3cPDgwfz3v/8FICvL9gF08OBBp25uBw8etP8FKysri6KiIqdtNDY2cvjwYfv6rc2bN4+5c+fav2/uG2+O2TsQZTohYZb5myXzd1nKbG8qlPubwHa7vmlhyEz5d4za36SLhYLQezAclV/hqO4JWsyQVxK5T08Grxlay0kbiuNququryZWau+V66J7bbkzHSiRPK3nsDunFD3jz8v50JRYdglKKv//978yaNcvl6//4xz+47rrrTHX5//zzz9m7dy9XX3210/Nr165lxYoVABx11FFOr+3atYt+/foBsHXrVsrKyuyv/fGPf6Sqqoprr72W0tJSTjjhBD799NN2q5BE9xSK5I3Z6h5lbcSoqsSorMBaVYFRWYHR9K+1srzl66Z/G0uKaCwqwFp2hN2X/MJte8ref93tawBaTCyWxGT0xGQsSU3/Nj30xCSsZUcoffsl0m/4E7FDR6EnJqPHxNrXr926kZr1K0g+91JTlTLlh6v48dvt/OeBfzPJyGZU7l52PHsPCcXpTI2LIbFHLQN6FpORWMHa/D6UZ8Uz6407SM7p6XMsANInQXxfjE0L0Ke8RczE2cBsVE0BascrqE0LwFoD+97H2Pc+pE9EO+pqtNzz0CJi2928EF1Zt0wSTZo0ia1btzo9t23bNvr2tQ3w5U1Z84QJEygtLWXNmjWMHj0agC+//BLDMBg3bpzLuNHR0a7/WqdwGLwtmJruJENcdRDqpBT4mZhS4HNyRGv1r6/MHKPm+/Sglr20vhsPzpvp6RwJVgLJm7fTLy424lVeLkCxQsLF+Re84+p+y+3GdJU88TZmc3csn2OarJhSTd24gjnul1P5EW6Tb6Lri4iI4MYbb+TZZ59l+vTpnHHGGUycOBG9aRCvyy67jPvuu49nn33W522fdtppuBr2curUqS6fb631Mpqmcd9993Hffff53BbRsQS7wsefrlletd8wMCorKPnH/xEzZDjJ5/0Ko6qC6tXLsFZWED1wCPX5uyh64kFiv/7U1tWrsiXxo2qqzcWta5lhWYuLb0nwxCdQ88MqYkeOJ2bQMKcEkO6QBNKjXFcM2rdvtVL5zf+o+v5rEk48Hc1hMD9lGJT+9xUiMnPs07i3p6q8hh+X/cz6b7ay+svN7N18gJ5RcFQCHIxNZm1+HwZnFXBU6k77OvVRiRwaPYODf/+R2KHp5hNEgKZb0EfNx1g6A2PJJehDboGUIVC5F3VoNVhr0I69DVW2GfZ/AsXfoYq/Q625FS3vV7aEUfIg0/GF6My6ZZLo5ptvZuLEiTz00ENcfPHFrFy5kueff57nn38ewKuy5sGDB3P66adzzTXXsHDhQhoaGpg9ezaXXnqpVzObBV8wbubbu4MI9C1wuP5K7cVf4kMpHPHDUdnjKWaAkmEh3a3m0ygUVS/Nx8dNzHBw2wTTP9Zau0lKjzHNlv60ihn0Q9uqG5/P63rzXGsOs6n5EqYDnGbCTz169OC4447j6KOPZuHChTz88MOkpKQwbdo0zj77bPLy8li0aFG4m9mthWoQ3FDFCcXgy81dszJvf9ie6Ig5ZigZt83n4PzbKPnnE0T26oeqq8Gormp6VDp8XYVRU2Wr9qmpbnqtEqPa9rVjksd6qIiCP7uuxAOoXul6JmWwVfboCUlY4hPRE2wPS0ISevP38YlYEhJpKDnIkX89S8bc+4gdNgo9PhHNoQtn7daN1PywipTzZ/g1Fo5msZB25WwOLvgzhfNvp2TAVEqsifS0VNBzx9fUrP2OzFsfcHte1FTVsfG7HaxfspV132xl27q9RGKQFQNZMTA0GyId/nhyoDyJg2m9GTO+N0eN6Et8vz5EHTOM2066n37AUeP8n9lay52OPvk1jLXzMBaf1PJCfD/0ya+j5doG1FfVBaidr6B+fhGq81Fbn0ZtfRoyTkAbcBVan/PQLFK1KLqPkM9u1lF89NFHzJs3j+3bt5OXl8fcuXPts5uB7S9Yd999N88//7y9rPmZZ57h6KMdptw7fJjZs2fz4Ycfous6F154IU888QQJCQletaF5dPIV5/6OhEjP2X3PfHwLA3JlH6Lp6E3SNH9mDDPXBk0zO2aKP/tpfka1cMxuZma95n0093YaoZ/dzDGmTzfe4ZjdzPx09Ganhtc0szGbznUzMXUrug/j/NhWssU0PaOaxZ8Z1Uz+fPoyu5nTcj7Obta0bnlNI+mzVstMUZ3Yxx9/zOrVq7n77rsxDINly5bxySef8Mknn7BhwwY0TSMiIsJp0o3OLJCzwnSV8W5CHae5wiflwiucKnyq13zXpsJHGYYtkVNTg6qtwaitwaipRtVW276ubXq+ptr+ekPBPmrWLSf66GPRLBbbctVV9mSPu8GYzdITk9Hj4tHjEtDj45sSO0lo0TGUf/IfEk46k7jhx7ckfhISbUmhVokeTxxnHXNMfDUfo4MP3059/i5yn3ozIOfgqideRP/sVXpEtVQuHa6PQZ32a8beeJX9ubqaejav2Mn6JdtYv2QbW1bvxtrQSFIEZMXaEkOpUcppVuvGaI200X0p+HY7ZXWRMHYYv/rjGeQNyWHX5gO8/ugiWLWB+Oh6bt30HJFR7Y9x5A1lWKF4mW2Q6tgsSJ+E5uJiRBlWKFiM8fM/4cAiUE2TV0SntVQXJR3dZj0hQiVUs5t12yRRR+B/ksiP0Y5NMxez8yWJfK8m0kwPrOtmP72KGeAkUbsxDb8GAXa1Xvvb8iem6yRR+5sKQJLIIYh3TfcvprkESmCTRF6FN50kUmgRRptnvYoZroSNr+to2BJ+via0mkU2xfQ49pGr56y+/Zw4JIl6SpKoU2tsbOTyyy/njTfeaPPa/v37+fvf/85DDz0kSaJWQj3ejTcJlXDEUVYrqr4WVVePUV+LqqtF1ddh1NWi6uqcvjdqayj994voSSnEj52Eqq/HqKtB1dRg1FZT9/MWjNoaItIy7Akfx+5VgaZFRaEnpjQleJqSPLFx6PEJ6LFNz8U3PReXYF9Oa1q2ftd2Cu+fS87854g5Zmib7ddu3ciBeb8j+74nAzLTVdv3KY/6vbsCfj4sfX8d98x4nprIIvISdpAeoyiu1dhVOYDY+gyuuutcDMNg/ZJtbF6xk4a6RnQUPaNtiaHMGIOECOdfKFpmHEdPG81x555AxrG5aLrOa/ct5PCr6yish21lGuUNkBQJRycrsqIg9dcjmXHXdX7vjz9U9X7b2EU7XoLqfS0vZExBO+oqtNzpaJa292/eJqSEMKNLJomWLl3K5MmTWbZsGZMmTQpV2A4rcJVE4FNCJWB9BHypsgnu9tvGC1Qlkfft6LKVRE7LBT5J1CZcm2U6WSWRZjg31suGB6SSyMeYfieJvIjV5mXdbMJGoVkMczHDkSSy+FDV06ypekmLMPl57kslkROrbXYzH9eVSqKuYdu2bVRUVNjHV2zt4osv5t///neIWxUcgbi4DkXyxpfKEVCo+npUY4Pt3wYPXzfUoxoaWr6ur6P0v6/YEjfHT7Et21CPqrMldmq3/ICqriKq7wBUQ31T8qe2KcFTC40Nfu2n13Td1jWr6aHFxNmSNzGx9ue1mFj02DispYep+PxDUi6aSVS/gfblmit96vfvpfDeOX4nb0Jd3QNukpOZOaTNnBWQBJHVanBh/z+gyvcyKSeVuMaWdlcZig2HoaDWtp9RuiIrBjJiGsmK0Yl03H8dkof2Yvj5kxlw8nASMnu4jPfafQvZ/er3JGstg0SXqhryfj0h7AkiR7bqos8wtv8DCv7nUF3UE63/DFt3tKSBtmXz38dYOw+q9rRsIL4v+qj59q5tQvijSyaJ7rjjDs455xw+/PBD+/Tz3Zl0NwtsDOd4gUgS+VZNFPBKIq9iBiFJ5DFmcJJEnrcX+EoiaO/QBqe7WTBjaia6uAWju1n74a3opkbDc0hM+RozotFcVQ/KobuZj2MTmUnYNCeJ3Oyn6+VbxWxvGVd015VE7c1zIJVE3cPXX3/N1KlTw92MgPD34toxMZDxh/uo2bAGGhtR1kZUQwNlH7xB46Fielx8FRiG7flG2wNro/17rI2oRiuqsaHpa9trWK2oxkasZYep37WdyNw8tMiopmUabAkeewVOte0XYwfpEKBFRaNFx6BFRaNHN38dY/s6KhpreSl12zaReMo56PEJtuVi4uxJHiw6xY/fR49LriZ+/FSH5E8cWlSUU5clT0KZvAlVdY+jYHZz/PbDdTx35XMcn6aojk/gx4MNFJfXkxQJxyTauo/tq4boiHrSoyKd3hMtIYp+vxjKkLPG03v8ICJjo7yK2VDfwP9efJeSPQX07JvNtKvOD1gXs2BQVftQO162VRfVHGh5IXMKWo/hqJ+ehF5noh97KyQPgbLNGJsWwP5F6JNfk0SR8FuXSxLde++9VFVV8eSTT3LjjTcSHx/PXXfdFYrQHZZ0NwtOLFs8f5JEZvexi1YSgcOywa8ksod0jNmZKolcxfSy62DAKom8jBmqMYmcFvOnu5luMqbpMYkUuOji5tXqZquXNIeKKV+ZHZNIaxp7yVsyJpHopPy9uK7ZuJaCu24gZ/5zRGb2Ys/VZwehlX7QLbaESkSk7d9Ih68jIm2JnMhI+9eNh0uo++lHEk8915awiYqyvR4VgxYdAxocev6vJJ97GbEjx6FHx6A1JX1sX9sSQVpkpFMyxhXHYxfs7lmhTN4Eu7onWAzDYO9PhWxauZPNK3axecVO9m4t4LQsKG+A5YdslzI9ohtIi66ld2wUya3uVeL6pTHkrHH0P2k46cf28TqR1xUooxEO/K9p7KL/Yb+W16PgmN+jH3U1WuIA27LKwFhyCZRuRj/nR+l6JvwSqiRRyGY3u/vuu3nhhRe4//77SUlJ4be//W2oQnd8GgRravG2QvcXp5bfFYHs+hVsZgd0xr/kWzhihmO7nkJ6ihmg2c3axAz8JtvdeFBiNh8fU5UrAYjry6aDeNDdbrrNQD0+fA62c+65fMnMe2GPp9ptXUBitp4Jz5efsY5RuCBEyFmPHAIgqk9/UIroowaDJQItIsJWzaHr1KxfSfTAIURk9UKzWNAsEWgRkRAR0fS1xbaO0/MW2yDGTc83FO6j9O2XSL3890T17d8UI9KWjImMon7fHoofu5uMWx8gdujoliSQjxUlzYmbxJPOcpu4AYgbM9HvxE3M4OFEZGRT+t9XXFb4+Dq9uifx46eSeesDHHrpKQ7M+539+YjMnIBX98SPn0rc2MkhmRkObF3CNiz7mcOFZaRmJTNs0lFYLO3/RaKqvIYtq3azeeVONi/fyZbVu6gsrXFapmc0xEfAruoKhqc20jsmkSg9ErBV9ihdQzMUjcek89sX/kBCZkoQ9rBz0PQI6H0Wlt5noaryMX64F3a/AUY9bHkcY8vjkH0q+qDZkHUy+pBbbLOrFS+DzCnhbr4Q7QpZkghsAyTecsstPPfcc6EM28X5frUe3oRNaO4u/Kok8qcCKeDHtu3xct4vs8dTtTTVxza3VBKZiN3RkmHB1PrwBHMfHG/0fYnp14+j5nYDHsP6+xHgIZnhbtOaFZTT9boXb0bzkEtKcxvT7VYUTT8o7Ydpu0G9ZbwDd4u4i2loJv/g0LRVXwuLTRY8CdFZWXqkAVC/dycxxwyl16N/d3q9dutGatavJPXy6/0e76bym/9Ru+UHkqdf1iahcuSNF4jIzCH++Cl+JSNCmbhxnF794MO3u63wCVRyJZTJG81iCcjg1O1Z+v46Fs77L4V7Dtmfy+qbxnXzL2Ty9JH255RS7N9RzKblO9i8cheblu9k9+YDtOk8oiuUfoikiGqyoyMZEJ8GRDI0KdG+SGSPOAaeNop+Jw7j8fvf4+iCAvpOHNCtE0StafG5aDmnoXa/gTbxRdSuN6BgsW2WtILFkDwY7ajfANgGsw5ze4XwhsxuFkbN5WIrz7uWhEjv+u76r7tUEpmJ6d1AvB5j+ty9xBbTfELLMDlQrZcJrTbLKBPdzRzOOa+6XbVmmBx02LauN93NXMYM4Oxm7cfzP6a52c3MxvRuDCTXFS/mB67GYrS7jy5f9mcQaZfHtZ3PUQ00i4sugN58/mq+datzWjXC6v1qTt3Nmgau9mEVtKbuZjeulO5motMI5JhEXWW8m1CPq9NZu2eF29L313HvjBcYd/qxDD4lCyO6Fr0uhi2fF7J80UauvPNsLBaLrVJo5S7KSirbbEOLsVLVWECCVkVOTBT949JIi0xss1xJHUT2y+aUG05n6KnHsXtLAa8v+JRtX/zIiRlw7ks30WfC4FDsdqehDi7B+OIM9NO+Qut5PKpiJ2rrM6id/4JGh/ei36XoIx9Ai80OX2NFp9blxiQSbbUkia4JYZIokJVEwZ7dzMt4bv7C75ywCcFprhmt+mMHP6bmaiwar3hxE+ry9SCPSRSEmO0mFdzEDFpiym2BSYDHJGoV0zWzMVX707S720+/kkSO76cvnz9WNNNjL7VqQ6udct/FzfyYRLSTJHL7ki/JMH/GJGpSXtNIxpwVkiQSnUZwZjfr/OPdhDpxE8zBl7siq9XgimF3EZOq81X+G8SWaGRFZmIY8TRqaUQ1tj2X9QgN4usortpDnKqkV0wMR8Wl0ys6zWk5zaKTNbI/uRMG02v80bw/62m27M9nS00qqralw4kW08jg2MMM6d2H3y37K7oXXdy6E2VYMT4cBinHok95C63pJkTVl6F2vIT68X6wNnXv0yPR+lyINmg2WupID1sVoq1ukSSaOHEin376abe9uGx+k1edH8okUWep6jHJVPWSHz8Crbp+mY1pvpJI+VAh4dtsba6X8zNh40tch5jmEzZmBxMP0ExjIYupvB6TxnkR84NIo3v/fjpXoPgzHb138dowm7DxIWabRSxW0zPyaSY7gmtmYjZXTJlNEs1dLkki0WkE6uI6lEmVUCVUJHHT8RiGwf4dxXz+xkpefeQTUqLKOD41kfiIlg/6qkbYWAoHajX0lDr2VfxEpLWc3Nh4jo7Npl9sBpZWFyVpx/Qid9JgcscPInvMUUTFx9hf2/HZOhbd+Bw7Gov5omA7pfWNpERFcHLOQAZY0jnjid8x4DRJbLii8t/HWDoDep2BPuQWSBkCpZsxNv8F9n+CNngOqmQFFH/fslLGCejHzIJeZ8mA1sIr3SJJpOs6hYWFZGRkOD1fXl7Ogw8+yCOPPBKmloVG85u8+oLfhrSSyD9Bnt3MTPcMd5tqc1MY3FNda1NJFIqYrhJTJqfPdveck+BW9biNaXp2M/NJIs1iNmYYk0TgYwVKAJJEngMEsCufmwotb2L6Ub3kyyxuTkxXEhkmq57ws5LI8UXvPkPKaxrJ/MP3kiQSnUYgL64lqSKamR1M2lFjg5W9WwvZvn4v29fns/2Hvez4cR81lXUA5MQojk+DwlrYXqWh0qLQtTJyaqvJi+5BfpVGvXaIPrFJROvOU8gn9k4jd+JgcicMovf4Y4hNbdvFzNGOz9bx7cP/oWJ/y9hHib3TOOG2iyRB1A6V/z7G2nlQtaflyfh+6KMeQsudblvm0BrUT0+h9r4DqtG+jHbM9WgDrkCLlN+nwr0unSS66KKLGDNmDH/605/44YcfGDrUeUaFgoICevfujdVqDXXTQqr5TV5zYSiTRGHICfo1Hb3ZmK4SNq4E8nh4u5/e3Vy7ozkt7yIJ4nKX/IvpuJ1wJImkkqg93lcS4bRYaCqJnBcLQJLI15ia2XOodfLEh5hmxkECW8LGx/GlHGOa+tnUrKbGtCqvaSTz1u8kSSQ6jVBdXIvuw9vBpB3V1zawc9N+WzJo/V5+/iGfnRv301DX2GbZyOgIIhMUJ0Q2coRa/ln4NUZ9BQPjshgUl8PAuBySImKd1onpkWBLCE04ht4TBpGcm+7zfhlWgwOrt1NdXE5cehI5YwZKFzMvKcMKxctsg1THZkH6JJdVQqp6P2rb86if/wn1h21PRiSiDZhpSxgl9Attw0WnEKrfYyGd3axZnz59+Oijj1BKMXz4cNLS0hg+fDjDhw9nxIgRbN26lexsGdAroBwu/v1P2HifWLFPCuQ2ZjCTVqFNiNmqelztqA/tCEQyTfMuptbmC2/4mSRy2wgvuFy2ZZvhnbWvY/D9EJg9aAqUb+u2zLiu+TyJln1NH9dTDl/42NyWmAbeVThqzq9oBihT19Mamo8HyDGmNwO1t6XbZ73x7eNAfuiEEN1X82DS488Yyp9eupq8ITns2nyA1xd8yr0zXuDu165h9EmD+fnHfLavz+fnH2z/7vmpAMPadnrIuMQY0vslouLqKK7ez8Zda9lXtINx1qOJz5rEkRrFDZkn0CMywWk9pdl+b0SNzuaCu35D2tE5ToOqm6FbdHqPO8avbXRXmm6BzCntD/0Z1wttxL2oobehdr2O2vo0lG9DbX0Kte0Z6H0O+jGzIX2Cy/sLb5NRQpgRliTR3/72NwCioqJYtmwZBw4cYN26daxfv553330XwzB49NFHw9G0sNB0LwaB9aijjz0e+va5T9g4Cka7/Nymh+m9XS/c0d/7VkxVOQBuu5s1Pxvg49BJ732VD+ePv0fOafzojn68TGcQVcs/zgMruV3U/q2mmSzWUyilOWbVvKIBSjUltXxhW9F2jJRv54OSJJEQopuyWg0Wzvsv488Yyt2vX8OyZd+x4o1lqMoohozLY9u6vdx/xd8xrKrt1PNAcloC2Uf1QE9soKT2AFv2/sDX29YRUxxBXmwmeTEZTI8dSN+jJhKl227Xesc2VQzpGhlD+xHXP5s1Pxay/NudnJUDGSP60XNQ71AeBhEAWkQc2sDfoo66GgoWY/z0NBR+AfnvY+S/D6mj0I6ZhdbnAjSLredJ625tCiC+L/qo+fZubUL4IyxJomZVVVVERtr6zU6fLid0yATkut67Wwn7MCkhjOkcORDb8jJiu4kpDzH9OD6duoLG27YHKhHhc9eoUNK82E1355DmvIgXO2BfzGRVj89lPa3jmonZHNLXjSjNZFCHqifl48+aYfIs0rSmpE3Ttz4dZs33t1PZYpp6OyVJJITowAIxVpArZSWVfP7WSgr3HCI+M4IT02eQRRyJETHUGrYp5B1/6aT36kHuoHQikg2O1Beybd8GFv+wgsqvKsmITCYvNoMhsZmclXse2dE92sSLjI+moaqOPVF1VDamsyO/HOve3cBusvql0eOYCqhIZNTk4/3eNxE+mqZDzjQsOdNQpZtRW59B7X4DDq9Fff8b1Po/ox39O4jNRi2/zjZA9qSXIHkIlG3G2LQAY+kM9MmvSaJI+C2sSaLmBFG358NYIu434K1AJUe0AG4rHDHdHTN/tt9uYWkQYnZy3uy6V6e3l8fWy0PdfO/b8W6BA7ufoUy8BZwviaIA7Wcg09RuKedgPsU0+1GizHWN68afXEKIDs7MWEGOlFIcLixnz08FDo9C9vxUQFlJpX25mh8LmZ6WSrzDHVWVMvj84G6MxgHED63i+8LPeOvDvURqFvrEpNM/JoNfJY+nf1YW8ZboNrFT8jLJHjmArFH9yR41gOQ+6Tw/+VbK8/dyYGQpM2+8gpT4NEqrDvHmx6+Qs64OS24GvY+X7mFdhZYyBG3cU6jhd6N+fhG1/TmoKUD9cA+gQVxvtOH3oqUMsa3Q83j0KW9hLLkEY+0d6L3Olq5nwi9hTRKJJqHuNeTXDVM4bgvkVqTLCkeCwYuYfudtw61TN74dZvZNeiN65mKHvNnHLncchBBdgjdjBTUnipRSFO07wp4tzsmgvVsLqCytcRsjNTOJmLIyjk9TaL3TqD4miV21e9m1bjP9SuI4JzOP9UcU27b8xOiYbH7ZZwS5MWlYWg0cZ4mOJHNYX7JGDiB71ACyRvQnNjWhTbzT7rsC643PEbe1mD9/MZuCuiNkR/fgvN7jGZDYh9Puu0IGlu6CtJh0tKF/RA2eg9r7H9TGh6FiB1Tnoz4ZizX7VPTBN0LmL9A0HX3ILRiLT4LiZZA5JdzNF52YJIk6re6SrJEEUZcWsEqiwMYMTyWR8iNeqH9OwvRzafYABfiN9Oq09Sem6ZKgTt79VAgh/ORqrKAfPlxJZkYm1zx4HocPlvPXWa/y7Yc/kL+tkL1bC+3TzLem6xrZ/dPpOyibvoOySOgZSZUqZV/JLr76+itO1wawt6aWv361AO0rjezoHvSPyaQ2NgJDKUalaoxilNM249KTyB7VlBAaOYD0wblYotq/HRtw2kjOeOJ3fPvwfxigt8xWJlPTdw+aJQot71dYscD3V0OvM2H/ItsYRgWLIXU0+rG3opoSQ6qmUP6QI/wiSaJOy4+uS6bvP3z/uLH1CFF+3FKaHL3E9E2WyTGFwOSMTa027ePuNg9fYoa52c2CJNRtaCdep60k0jx+63qVEO9oQBJhPm9EmQysWo6Pr+tryuRMY+73s90mmJ0AQTN5fPxIZgkhuq9gjRVkbbTyzbtrKdxziJzjEhmXcw715QZxejJxWgoWreW25/M3Vti/tkTo9B6YaU8GZeWlUm+p4MDhvWzasolvfljCj//bQFlZGQCRmoXjkwaSkDmQsvo47up3BT2iIrC4+CDVU2M49vRxZI20dR1L7JXmxcQqrg04bSR5Jw+Xqem7MT0uGwPQj70VRj+K+ulp1I6X4PAajKWXQnxf24LR6Z42I0S7JEnUAShDQ5kd5LQN99uxjU+q/LwpNHNT4OfMQmbWDMq9i+f9CMjNto+DnjRPSuRXoJAMtNIOT20IRsx24pnM2XU4wTus4RiTzA/+vpEhPxFMVpUpTCamMDWiuIlhsoUQ3Zy/YwVVltVQsKuEgt3FTf+WULCrhAO7Sji49xDWRtsUj2s/3E0P+tEzHmJ0bANKNygqG4+QoKdy4vmjmHrRaCKTFIWl+9i0eRM//PAFr/9rA9u3b7fPSBarR9E7Oo1R0bn0yRlJ/8RseqhYmuev7BUHYBtjtcGAw/VQHxdH/5P60/D5RnLOH8mJf7wsYMdPpqbv5tInQXxfjE0L0Ke8hT7mL6ihf7QNcr3tuZbZzlbOxhgyF63/DDRLTJgbLTqjbp8kevjhh5k3bx433XQTjz/+OAC1tbX84Q9/4M0336Suro5p06bxzDPPkJmZaV9v7969XH/99Xz11VckJCQwc+ZM5s+fT0RExz2kgbnPMV9pE9hY7cULfWIqaDrouD1dOWanrSRyk90K/L64SDKG8oD5PLuZrxt34DFOoD4vHKuHFJrJRI9m8aOSqDmmL+MTdcofEiGEK8Gq7nHkzVhBE886juL9pRTsKuZAUwKoYHcJBTtLOLC7hIrDVR5jWCJ0rI0GvVIbGJuWgFZTa38tqmcCnxbnU7Y/lc83vsvfPppnrw4CSLLEkRuTxmk9hjMgOYc+MenEW1td1zd9zEYlxVJfXsOBpBquuGsWR2oV1VaNtJwUjp3Qn6vP/BXjSJUZx0RAaboFfdR8jKUzMJZcgj7kFkgZgpZzBurweihYDJFJULUbtepG1MaH0AbdiHbUb9Ai2451JYQ7HTejEQKrVq3iueee47jjjnN6/uabb+bjjz/m7bffJjk5mdmzZ3PBBRewbNkyAKxWK2eddRZZWVl89913FBQUcMUVVxAZGclDDz0Ujl3xnvKjysbphsD7jQRq9nKfbsi60s1LkMpBPB7NDjb8lKb70a3O0zWum2126koiF412d+j8qwQJYxelduO2TvT4Me2XV/Ha8qtq0+yHpj/rYVu3U57zQgi/+Fvd443msYLGnX4sNzx2CV8uWsJ7//4Y6iJJzUoiKS2e+6/4u23Zpmogd1LSE8nO60lOv55k5/Uku+nfrH5pfPP9N/znuvcZGxdLTXIjmzJLWb1rIzX7jnBq5XH8Ir4PS6Or+WrzCvKiU+mXcQxHp/YhS08isrHVJ6DV9k9irzTSh+SSPqQP6UNy6Tk4l9i0RJ4/4RYO5e/lj8/PZ94df+T4oUPZuHEjF15wG9mb67Dk9pIZx0TAabnT0Se/hrF2nm2Q6mbx/dAnvw7Zp6J2vIza8hhU70etuwO16S9ox1yPdvR1aNGp4Wu86DQ0pYLTMaejq6ysZNSoUTzzzDM88MADjBgxgscff5yysjLS09N5/fXXueiiiwD46aefGDx4MN9//z3jx49n0aJFnH322Rw4cMBeXbRw4UJuu+02iouLiYqK8qoN5eXlJCcns+bC35IQ6d06nZLpmyU/Ts0wxNTMjuvhJqZ37TdfdeAptsd4mh9d3EytZ/gV09zxMTA/c6gRhpiqTfmTd4fLajKmahn/xueYZvfTcFntEvSYLtbzKqZuRTd5HmBpG8SrmBFWc73NNKvt2Pr4M1Ze00jmrd9RVlZGUlKSmchChFTzdVdnOmeDXeHjWN3zq1tPd6ruWb5oo9NMYJ4opagqq6GkoIxDBaWUHCjlUEEZJQW2f/dutQ0SrekayvB87REZFUFWvzSy+/Ukp3+6PQmU3a8n2f3SqLfWsX37drZtc3xsY/v2n6kor+DevMuobYzlw4N7yW/8kYQIgwGxuRybcAz9Y+KI0pXLcYE0XaPHgGzSB+fSc0iu7d/BvYlJjnfZzh2frWPRjc+xw1rMe/uWO884ZknnjCd+JwNKi6BRhhWKl9kGqY7NgvRJTtPeK2s9avcbqM1/g4qfbU9GJKAN/A3aoBvQYrPD1HLhj1D9Huu2SaKZM2eSmprKY489xtSpU+1Joi+//JKTTz6ZI0eOkJKSYl++b9++zJkzh5tvvpm77rqLDz74gPXr19tf37VrF/3792ft2rWMHOn6F0JdXR11dS0zKJSXl5Obm8vqC0KTJGoe5Djks990qiSRP+3wYz9Nzjet+Z0katUOL5YJS5JIN1vhYD5JpFnMxgxjkqiZlw3XApEk8jlmAJJEPsQD0DTDv4SNCVqAk0RexbRY0U2dtFZTMSVJJDqbzpYkCnaFj9VqcMWwu8g7Nof73roO3eFDyzAM7rpkIbs3H+CFlXdypKjclvRpTv4cKOVQQSmHClueq62u9zKyok96NJkZiehJUaw9sJ2N23/gmKhJ3PDXSzj32inU19ezY8cOpyRQ89dFRUVtthirR5EZlcxxCX05NXU4RdQSZ40hTsf156JFJ6O5OqgpKZR2dC8iY327Ht/x2Tq+ffg/VOxveY9kxjHRkSjDisp/D7VpAZRusD2pR6MNuAJt8By0hH5hbZ/wTah+j3XL7mZvvvkma9euZdWqVW1eKywsJCoqyilBBJCZmUlhYaF9GcfxiZpfb37Nnfnz53Pvvff62XrzOl860PG3uo/d21Qge0x5d+dkfkY1v0P7qROcGIHrs+i1TtvtJujjEXmO2YGGlgpvzCA0KmgxO+3JLkT4hLLCx934PWYTRYZhUFVWw4r/baJwzyHOu24qi19fwfrVGyg6cAhVbyHSiGH/zmIKdh/i7Iw5Xm87sUccaVnJ9MxJIS07hZ45yaRlp1B2qIKXH/iYPoMqmJrch4r9h6GsDsqgT2o6MX17U1EAT/3zceY8/Fv27t1L679ja0BqRAKD43pxVM9cBvToRWZUMvH1EWg1VqdlM4ixJ/n1mCgS+mTQd9xA3vzsfY49mMRJD17OkPMnmDp+jmTGMdHRaboFre+FqD4XwIH/YWxaACXLUdtfQP38T7S+F6Md+we05MHhbqroQLpdkig/P5+bbrqJxYsXExMT2tHe582bx9y5c+3fN1cSCU+CMZV9MOIFSXvN0QDPXffdMztddjiE4SY2DHmpwGg1oFJIJo5ziOnNKRv6mH50Iw31Z4KHUdPb3U+zJ62mmfs86JQ/IEL4LxQVPgvn/ZfxZwx1qvAZcnx/7nvrOu66ZCHP3fFfJp49nMb6RsoPV1F+qIryI1W2rw9XUX640vbc4VbPHa6i8kg1hkOXr4Xz/ttum6JiIumZk2JL/mQlk5bdnAiy/dsz2/Z1tEMlTmVlJfn5+eTn72Pp1qWkRVczqiKebY37WMo21u7eTLqewGmVwzm5aaygt1d9QpRmoVdUKnkp2RyT0ZfecT1JVrFEVFrBcbyimqZH0+BBCVk9iE1LpHjTXr44soHkYb256g/XMPKE49m0aRPz5z/KxtUrOTb3HJJyAjcui8w4JjoDTdOg1+noOdOg6FtbsqjwC1uXtN1vQO9z0Y+9FS1tlNN67XVrE11Tt0sSrVmzhqKiIkaNavkBsFqtLFmyhKeeeor//e9/1NfXU1pa6lRNdPDgQbKysgDIyspi5cqVTts9ePCg/TV3oqOjiY6ODuDedAet70I6cmIjWKNIByOsAuVhRbcvhen4SyWRb0JZTeRhhjjfXuiIMc0PXO1fXJObNJUgAtvngYn1O/UPiRDmBKLCRylFfW0DNZV11FbXU1NZS01VHbVV9dRU1bF1zR4K9xxiwpnD+NfDn7D9px0cKSlDs0YQbYmleN8RCnYf4qz0m2ioazS9L9GxkdTVNFBllJLYM5YxA/uQkZpEY7Tiy5/WsPHHLRwdNZ77/309E84c5jSOT319Pfv37yc/fx8/7lpJ/pJ95Ofns3dvvj0xdOTIEfvyGhr35l1GYa3Gh3tK2NOYT5QWSc+YLOq0nlRbNSakRTG+99VE1Tk0sq7pQQMAemQEKXkZ9MjLokf/LHr0z6RH/yxS+mUSlRCDYTX416l3cubgk3johzd5+awz7JvKy8tj3mlXE12hyBkz0PRxE6Iz0zQNMidjyZyMOrQWY/NfIP992PcBxr4PIOtk9GNvhYwTbM+tnQdVe4Cmq6L4vuij5qPlTg/rfojg6nZjElVUVLBnzx6n56666ioGDRrEbbfdRm5uLunp6bzxxhtceOGFAGzdupVBgwa1Gbi6oKCAjIwMAJ5//nluvfVWioqKvE4ENfcpDNWYRM06z5hEjkzMpqY5PhN8LbMZhe5Hyq+Ynt4Tt6/5N4i0jEnkeb2AjUnUrN3ZqgI4JpHXMQM0JpEvMTWz4wOplmnlfT0ZTI9JFIaYmmF+4OpbZEwi0Xn4O5aD4xg+d7x4Nd999GNTcqeO6spaPn9jBaXFFUw8ewR1NfXUVtZRU11n+9chCVRbVedUyeMv3aKTlBrv5pFAUlrb5xJT40CDU9KuIa+nhZPyspzG1YnLSuaLXYXsPaw4967hHCg4QH5+SyLo4MGDbbqDOdKAREscuSkZDMjoQz9LKgPr0yiPBr1GIxpFpIfPq5geCU5JoOZHYq+0drty2QaUfp6+U4diGZtFqaWGFGss1lWF7Pl6I2c8ca2MFySEA1W2BbXpr6g9/wbV1HUz6Wgo3wY5Z6AP/SMkD4GyzbYKpP2L0Ce/JomiMJAxiYIkMTGRoUOHOj0XHx9PWlqa/fnf/OY3zJ07l9TUVJKSkrjhhhuYMGEC48ePB+C0005jyJAhXH755Tz66KMUFhby5z//mVmzZkmlUNCYG5+o7bqeBOqCzZc7rQ4as6PNAS+VRL5r1d0saPvjYsMeYwapkig4Mf2oJApHTH+GwDBTRdTpf0iE8M2GZT9TuOcQf3rpaqora5n/mxddLvf5Gyu83mZ0bCQx8dHExkcTExdFbEI0jQ1Wtq/P55B1H5m5qZxw7GB6JidQa7GyeMNyNq7/iYFR47njn1cx7vRhxCfFuJytq5lSisrKSoqLiykq3semXSUUFxezfPlK0LcxJvI4tu0t4ofoA2yv3E3MkQhOqx7O+Ng48i0/8sfb3mizTQs6mfGpHJ2dR7/UbLISUkmNSCDOiMRSbWAtrUE1dw2zYp9OPqkOh9kxNWLSk8kY3JulP6ygb2k8Y35/JsMvP4nY1ASvj2FrA04byRlPXGsbUPor20C9h4Gk3j0lQSSEC1ryYLSJf0cd92fUlsdRO16xJYgAqvehqvaipY5G63k8+pS3MJZcgrH2DvReZ0vXsy6q2yWJvPHYY4+h6zoXXnghdXV1TJs2jWeeecb+usVi4aOPPuL6669nwoQJxMfHM3PmTO67774wtro78CehEorqntaZjHAU6QUwZke6AZQxiTouV6ecp8qeQJyiZmKaejM1N8G8YHp8IHPhANv4ZGYTRb62V9Gxe/8KEQSHC8sA+PHnNdxx8Z9Jth6DVTVgpZG4hBgmTZ7AhsX5nPTLMQydeJQ96RMTF01sQlMiqDkhFB9FTHy0y8Gu6+sbOCXtGoZnZHBSbhYVW3ZjBSKBS3r1J713HLtKqskYHMf6DWsoLrYlfVr+LXZ6rqSkxGl23WYaGnfn/ZJt1cWsORRLrN6H3vQBYMWhCixZ5UxLO4p+/XtyTE4eSVo00XU6qqKehtKalhlRSpse1KKopbkDnKZrxGemkJiThiU6gn3f/cTiwz+Qelwfrvj9VYycOo4t236yjRW0YSVzc8+h9/hj/EoQNZMBpYXwnZbQD23s4xiZU1HfzgBLLJRuQC2biUp8AG3YPLQ+F6EPuQVj8UlQvAwyp4S72SIIJEkEfP31107fx8TE8PTTT/P000+7Xadv37588sknQW5ZF+HX3XYoKm2CFSMUMdtrgx8xO1A1UYecvaqjaafBQXs72xlkuc3LQRyTKPD76MfPqT9j54djDKROd8ILEXqpWckAXHf5HKaceTyz776CrMSeFFaU8NQ7r/DSR88wOvoczrp6MiOmHN1mfaUUNTU1VFRUUFBUTGVlJRUVlVRUVDR9XUFFRQU//rjRXuHzc34JuzIqKdSK0QsVI3fUMSY6ml36Fo4b7ltFTGJsPH3Sc+iVmkFmUk9SqiNIK0/E0juRX49NwyhrhOpG9NoGjJqWRM3x1XHws21wIMdJ7i3RkSRmp5LYK5XEnFQSc9Js//ay/RufkYIl0lZl0DxW0NmDT+GhH97kpYvesW8nWGMFyYDSQphk2H7StbPXwc5/obY+AxXbUd9djdq0AG3IHwBsg1mHs50iaCRJJIKvw3x6BPvP3q7u7jpZNVGHea+chaOqp9NVEnmRIQnK/jiebt4ECHQlUdBH5e5ElUSd7qQVonMZMj6PBr2G6X1OZ2pFBtse/h9NHTL4RWwW0T0nc6CikjsX3EbVPc3Jnyp78qeyshLDaH9K0jYVPgeSgCSswFKjnNFp5ZyU2o91jZvpl5NLTo8MspLS6BmXQkp0AokRscSqCKIadbRaK0ZVAw3lNTRU1toCVDc9mqQcBONgy3hEzS1s0A0iDZ2eQ3LJGX0UCdk9SMpJa0oKpRGbluixm5sj3aJzwu0XsejG53li2hyXYwWd9MS1UukjRAegxWbZLilqCtCG3YEadANq67OoLf8HZVtQ3//WtmDVHpRSXn8OiM5DkkSigzN7k+bqbsnVB1ggkzhuRg4Oakxv2+FlTHeLhfmzXyqJvOBFg4NSTeRrBVMQK4ncxjQtTJVE4UgwCSHa9d1339krfIrLG3glfyk7a/PpH5PLGWmjmZKUzNs1P/LRR6va3VZCQgKJiYkkJyTSIyGZHnFJJMcmkBgTR9ShRtIOJdKYF88vczJoLDXQ6yAuMoKEmByqCo7QeKia+bmX2j4vypoeQHMGqIHm+cCc6RE6samJxKYloVt0ijbuYXXFDpLyMjh1+jSOGjaIgooSnnz57/zw1Qrm5p7DCbdfFJCKHBkrSIhOIn0SxPfF2LQAfcpbaJGJaEP/iDr6WowtT8Dmv4JqRP1wD2rfx+jH/RmyTpZkURciSSLRCZhJFIWjq5e7OzupJvKXVBJ5wcsGB3yfWp9qLgI4PRWMMYnai2laN6ok6nQnvBChd2D/AU5OyyNhUG++31pF/8jJHBMFEToUKUiP0ziz50AmjR/KUX3yiFA6FkNDb1BojQbUG1hrGrDW1FNfXUdDZQ1GowFV2B6tZO7TYV8JkU3fW3HIBYH94yk6JZ641ERi0xKJTU0kLq3l69i0pu+bvo5OirPfyDV3AZuUlM5DP7zJk7f9277pYHUBk7GChOj4NN2CPmo+xtIZGEsuQR9yC6QMgbKtULoBVCP0PgcKvoBDqzC+mg7pk9CPuxMtc3K4my8CQJJEopPw9WbN0x2P5rBMILUXLxgx3fEjpqfFw3QTKZVEXvLiRr9DVBN1mpgyJpEQokVSpYW0yERyLz6OhSefwCtT73BeoEZBRCwJu6Fm9x6fth0ZF01kfAxR8TGAonR3ET/XFBKXkcxxY4aT1acXpfUVfPL1F2z7YTMXZUzg9CeuIe+kEfZxf3wVri5gMlaQEB2fljsdffJrGGvn2QapbhbfD33y62i501E1B1Gb/4ra/ncoXobxxemQORX9uLvQ0seFr/HCb5IkEl1Ue3c8wUjWtHd318ErijrwTaIUOXivuyTUQhMzTJVEUjonRId0VHZfdgNPv/kSk6efQlRCjC2x0/TvT9u3kVoTRfboAfQc1JuohNimxE9009fRRDks3/x1RGy0UyKmucLn2KYKn/nPvW5/LS8vj3knXkJ0haL/KSP9TuBIFzAhhDta7nT0XmdD8TLbINWxWZA+yT7tvRabiTb6UdTgOahNj6J2vAQHv8ZY/DXkTLNVFqXKZ0hnJEki0Yn4ccPmcluu+LP99u6wghGzPT7E9LYZYbiRlHtX7ykfbvYDclw1387gzhWzk1US+UN+yIRoV0JmCgA/fLmCX86Ywbyn/sjQoUPZuHGjbRr3bbZp3MfddK5flTKhrvCRLmBCCHc03QKZUzxeJmhxOWhjH0cNvhm16RHUzlfhwP8wDvwPep+Lftyf0FKGhqzNwn+SJBKdQDgqcLqhDnyTKEUOXtA8fhuOJnSBmGGoJBJCdFg5YwaS2CuNeYOv5qEf3mTixCn21wI9hk+oK3ykC5gQwl9aQl+0cc+ghvwBteEh1O63YN8HGPs+ROtzIdqwO9CS5XOmM5AkkegEOsK08t1AB64kCodOd4+vXHzbzg4EusLGm1Mo0Mc0uDHDNAB8qE8++UgVwitS4SOEEO3TEgegTfwH6thbbMmive+g9v4Hlf8OWr9L0YbOQ0vs77SOMqxuu7WJ0JMkUTekzN4QmLxpCcy9jtzFhEynyowET6c8DCGrJnJfYdO1qonCVEkUqvU65UkuRHhJhY8QQnhHSx6MdsK/UEduxdjwIOz7CLXrddTuf6P1vxxt6G1o8bmo/Pcx1s6DKtuA/wogvi/6qPloudPDug/dlSSJOgSN0F2t+5FsMXuv5PfNku+BFaDJDZA57g53Nzuena6SyIVwTFTXtWKGKTlt9uTzdT3HKeB8XDeUv7WE6GikwkcIIbyn9TgOy5S3UIfWYPx4PxQsRu14EbXrNcicCgWfQa8z0Se9BMlDoGwzxqYFGEtnoE9+TRJFYSBJItEJmL1bEqZ1tLu/MGRsOtoh8IqLed+Dvh8u3pvAxXT+Ofa83a4xk5+dmXPe7GxqmvKY9XG7WU0+Z0X3JRU+QgjhGy1tNJZfvIcq/h7jx/vg4BJbgggdEgdAQh5aZAL0PB59ylsYSy7BWHsHeq+zpetZiMmfPIQQbSkPj3AIw019p739bXWsgv5WunhvPMbUPL3qqYXKtq7e9G+bB+4fequHp2VdPTC5TqiZfVPbSUh1tI8D0fH169cPTdPaPGbNmgXA888/z9SpU0lKSkLTNEpLS9vdptVq5c477yQvL4/Y2FgGDBjA/fffjzLdh14IIUQ4aOkTsJy8CG3kw03PGPDTkxgfHIux/m5UfSmapqMPuQWqdkPxsnA2t1uSJFE3I5dSwq2uePPrh85QbNJGqwqiUL+VXsU0/V760eLO+MFntirIbCzV9qmO+nEgOr5Vq1ZRUFBgfyxevBiAX/7ylwBUV1dz+umnc8cdd3i9zUceeYRnn32Wp556ii1btvDII4/w6KOP8uSTTwZlH4QQQgRZbCYA2uQ3IHUUNFahNv8F44NhGD89iUocAICqKQxnK7sl6W7WASjlx2DSZsiVvXDF1TnYUc6VMFUSdZTd95pDd7OQzTTmcKC8itm1RrZu4mLPTSd5lPk/3zRXVJlZ1UzWp9P9gIhQSU9Pd/r+4YcfZsCAAZx44okAzJkzB4Cvv/7a621+9913TJ8+nbPOOguwVSu98cYbrFy5MiBtFkIIEVpabJbtMjI2C23aEtj/CcYPd0PZFtTa22Hz47YFYzLC2cxuSSqJhBDOOmKZgFQSec+HaqJghQ9OJZE/fOni1urhpoub5vSg7UNXvj+atgX43r1N8yMB12lPdtEZ1NfX8+qrr3L11Vej+ZElnjhxIl988QXbtm0D4IcffuDbb7/ljDPOcLtOXV0d5eXlTg8hhBAdRPokiO+LsWkBoNB6n4V+xgq0cc9AbDbU2iqI1Lo/ow5+E962djOSJBIdm9l7O9PraqZjKn8eZpsbjBK0jjjwSJgqiTolh/fMmx+TkMfsVAkJ941t93j6c4DNHiOzMZUfMYVox3vvvUdpaSlXXnmlX9u5/fbbufTSSxk0aBCRkZGMHDmSOXPmMGPGDLfrzJ8/n+TkZPsjNzfXrzYIIYQIHE23oI+aD/sXYSy5BFW8AqzVaEmDIGWYbSFLLBxZh/HFmVi/vgBVuim8je4mJEkkQsDEn8TD9vCnvcHhMWKw+u6EZte8J5VEvtHafuv6/PEvRJvqGYdttx4r2j5mtKuqGy8fpttqel3PJ57HHxN/TiCz57vpSqKmbLWZKish2vGPf/yDM844g5ycHL+28+9//5vXXnuN119/nbVr1/Lyyy/zl7/8hZdfftntOvPmzaOsrMz+yM/P96sNQgghAkvLnY4++TUo3YSx+CSMt7MwFp8E5dvQJ7+OPn0z2tHXgRYBB/6HsWg8xvLrUdUHwt30Lq1bJonmz5/P2LFjSUxMJCMjg/POO4+tW7c6LVNbW8usWbNIS0sjISGBCy+8kIMHDzots3fvXs466yzi4uLIyMjg1ltvpbGxMZS7ItplpgSpE1GOX3Th/ZRKIs9ad3/C+RHw86Cd5GHQ3q5QV9j4syfhiGmEOGan+iER4bBnzx4+//xzfvvb3/q9rVtvvdVeTTRs2DAuv/xybr75ZubPn+92nejoaJKSkpweQgghOhYtdzr6ORvQT16ENvFF9JMXoZ/zI1rudLSYDPQxf0U/aw1anwtAGaidr2B8eBzGD/eg6svC3fwuqVsmib755htmzZrF8uXLWbx4MQ0NDZx22mlUVVXZl7n55pv58MMPefvtt/nmm284cOAAF1xwgf11q9XKWWedRX19Pd999x0vv/wyL730EnfddVc4dsknoe4SFV7hrwTyl8fjqDl+EcD9bOdNNXsOmT5ZpJLIM8fjE4rCOceALl5XTY8O82MWpEoi7342AxvTI9O/0U3E7Ngfm6KDePHFF8nIyLAPNu2P6upqdN35JLdYLBiG6eyoEEKIDkLTLWiZU9D7XYyWOQVNtzi/nnQU+gn/Qj/tK0ifCNYa1KYFtmTR1mdR1vowtbxr6pazm3366adO37/00ktkZGSwZs0apkyZQllZGf/4xz94/fXXOemkkwDbhc7gwYNZvnw548eP57PPPmPz5s18/vnnZGZmMmLECO6//35uu+027rnnHqKionxoUWe42lam7138ur83eVjarhb+dJVHXjTP1SKad6uaWysclSIdJiCda5gWx4a2fmuDshMO55CbE7NDHTvTb2b7PytuN2s2ZusknE8xFZqZRFFz/0AhAsgwDF588UVmzpxJRITz5WZhYSGFhYX8/PPPAGzYsIHExET69OlDamoqACeffDLnn38+s2fPBuCcc87hwQcfpE+fPhx77LGsW7eOv/3tb1x99dWh3TEhhBBho/U8Hv2Uz2wzoa2/E8q3otbcgtr6DPqIeyH3fL8mSRA2clkIlJXZytSaL0zWrFlDQ0MDp5xyin2ZQYMG0adPH77//nsAvv/+e4YNG0ZmZqZ9mWnTplFeXs6mTb4NqOXXgMdmqjlMMVNuEIDkl9uqk3ZKVNrsZyiqiMwelzAd2/aEoxTMTcxwfNR3ql8vniqJgh7QdczAnz7hKCdrr7xN2f9r8xnU5tgHrv7S5VJmEz2O1WGajw+9gyffRVh9/vnn7N2712USZ+HChYwcOZJrrrkGgClTpjBy5Eg++OAD+zI7duygpKTE/v2TTz7JRRddxO9//3sGDx7MLbfcwu9+9zvuv//+4O+MEEKIDkPTNNtMaGeuRDv+SYjJgMqdGN9ejvHZVFTRt+FuYqfXLSuJHBmGwZw5c5g0aRJDhw4FbH/hioqKIiUlxWnZzMxMCgsL7cs4JoiaX29+zZW6ujrq6urs38tUrN4I5E1IsG9oXJUOdKKbqA6ciQlHVU+nqiRy1HzKBbXxrSpsmr4M7h9uNMDwar/aLOI4tbyvUTVXCR9vmFxP07xKvrjctC8nbevlzLS1E328idA77bTT3M7Aec8993DPPfd4XH/37t1O3ycmJvL444/z+OOPB6aBQgghOjVNj0A76mpU34tRPz2J2vIYHFqN8fk06HUW+oj70JIHtVlPGVYoXoaqKUSLzYL0SW26t3V33b6SaNasWWzcuJE333wz6LFkKlYzfMgiKOcn2lZRaS4egaq0ctfWjjIoixfMFzYEPWYHzl91LCE7zRzeIIeYwT2FvN9KOGK2YfY9aBoAzlQNoS8xHQ9S86BzQgghhBCdjBaZgD5snm2w64HXgGaB/R9jfDIWY+UNqJoC+7Iq/32MD4dhfHEG6rurML44A+PDYaj898O4Bx1Pt04SzZ49m48++oivvvqK3r1725/Pysqivr6e0tJSp+UPHjxIVlaWfZnWs501f9+8TGsyFatZPnS/ahoxV6l27ljtD63Nw13yKHCPtokqs4JyXxeOvFY7Mf06Rq7eA9pPYpiZEdze29FkTL+FKrnnIWbwOkb6tpVwxHRi5vg3dRnTND9OPl+7i2nKdiXgw3qOM+kJIYQQQnQEWmwW+tjH0c9aDb3PBWWgfv4nxgfHYfx4P8auNzGWzoCUY9FP+wr9lwdtA2GnHIuxdIYkihx0yySRUorZs2fz7rvv8uWXX5KXl+f0+ujRo4mMjOSLL76wP7d161b27t3LhAkTAJgwYQIbNmygqKjIvszixYtJSkpiyJAhLuO6n4rVnzFpfH+4rqhp72E+KWI75ubXDQ8TxzYc7Q1GTHf3n4D3x8OV1hOzOzzcnHfNiTvNIQHo28P7fWw9vFVAkgztHJKg5HJCmdxzEdNTCsM/vm0hHDGd+FNJFKqYzaGUbye8pIaEEEII0VFpSUdjmfIG+qmfQ89xYK1GbXwY9f01kDwE7YRX0XoejxaZYBsIe8pb0OsMjLV32Lqiie45JtGsWbN4/fXXef/990lMTLSPIZScnExsbCzJycn85je/Ye7cuaSmppKUlMQNN9zAhAkTGD9+PGDraz9kyBAuv/xyHn30UQoLC/nzn//MrFmziI6O9qk9/idEfFvZ3Ngc5u84lWovpvv2mz0u3WZQ+0DuZ0C25f0b5mvPGH+bF45ToruchhCKfdVwPL+CHk9r+p9mtH3aKybHQdKb9tPLdZ0Wc/xBcVXl4z5/i2Yq9SPpIiGEEEJ0TFr6BPRTv4B9H2CsvhVq9kPZJtQn41Aj7oPe59gGwdZ09CG3YCw+CYqXQeaUcDc97LplkujZZ58FYOrUqU7Pv/jii1x55ZUAPPbYY+i6zoUXXkhdXR3Tpk3jmWeesS9rsVj46KOPuP7665kwYQLx8fHMnDmT++67L1S74cD55qnzcXfn0pn3yTemk2HYCmbMruvcCLMrevui8vCd5y0GIiHgyyEOVBVRyGJqrf71ej1/qlacExlev5/N3Zt8Zpib3h1b0thc4rhpr0ztp4lwGrYPA4v374vjkppF+X4eaU1bMXNsu2UtshBCCCE6C03TIHc6NFTB8msgOg0qtmMsvQzSJ6KPfhQtdSSk2HoCqZrCbvVHXne6ZZLI3WwbjmJiYnj66ad5+umn3S7Tt29fPvnkk0A2zUfmbvC6Q3VOQLuqef0X/TDVqpjaV+VXcsmfpJbT9162IRCVRO7aEAod9kcngD8noa4k6vAxvT1pvVgmIDE9bcT0gew+iXwhhBBCdF56fG8MQJv0MhR9i9ryf1D8Hcank9EGzIReZwPYZjsT3TNJ1OEoTJaDmFnH7GArKgxjBJm/BTSf0FJt73u83W/dh2UDxfR++pFcarf7oA9b86INgU5OerPbAet5p4U4pq8CmBwISCFaezGbg/hwXKH5HPLxhG9eR8Op4srrmBbzn7Wa2c9pzcR6jvvpczwT6wghhBBChFr6JIjvi9r6DPqUt9AGXIVafydqz79RO16Cna9CVA9U6li5vEGKxbsAT8PEBnLoWH9Gw9VMPsLBQ/z2mhvoBJE3hyjQFVMhfluauwF5egRDSHZRa/tt0GKaPQ9Mnz9tWxz800drsxGvY/ra7691Q10k8QMa09VGzXC1nqdG6g7/hrCZQgghhBChpOkW9FHzYf8ijCWXQPV+tOOfQBv7BEQmgWqE+iOoT8ej9i/yqudRVyaVRJ2a7yevj5PYBCRmuO4k/OtW52JlT9sLxj52pHhBitneexSsJFGoD23QY5raQKCmcLNvrV2a/X9mI/g+DpIGtqneTf1JpGmadzNtdpewMbuuN8sGOsHkhr1ITrJEQgghhOgktNzp6JNfw1g7zzZIdbO4vmj9LkXlvwcVP2N8cxFkn4I+6hG05EFha284SZKoA7BP9+0zd+sEM/PpW0wFaEqZbJGfdQcmb5yVh9ietqlcdVXzitYqnBcbcex2E4jxgbw5Vq26+gSax/crkIMSNccL7ObactFmzzH9+bl1n8jwGFOZnIGrOXliSqsxfgL0RgTn/fT8A9ZeTJ/3zTHJY1/X83F2/jn2YUYzR7ryLenTvJzevf/KJoQQQojORcudjt7rbCheZhukOjYL0ieh6RbUiHtRmxagfnoKCj7H+OR4tKN/hzbsDrSoHuFuekhJkqjTM1dNFOyYjjdHCrNDOofpBsRDWE/HTjN9t9t6oz6WEZitIjETLojcHVstSP1aulQ1kcfkpYfVArGjPm7Dr5nGtJZt+BbUZDwMPB1Bz8e2vTI5dxtVrpM97hZv3f3O23Ud4yt8mlGtbSJLCCGEEKJz0HQLZE5pcxmjRSahjbgfNeBKjHV3wL6PUFufQe1+C+24O9EGXIWmd4/0SffYyw5OKUxVEtluqr1dr+UGQDfZ7aJF+zGdbvg1sxU2bnixy/4kwjrELG5Bb4PW8pYoX0Jqtvtmk+1Trc49rwqY/Kxg0lpV9ITs7Q1lTJ+rlhzW80dIY2poGOZiYqJiyl4t4/6l9rfRame9WVFr+uk0VVzq0CXPl/V1D2PWeS5F8yGIEEIIIUTHpyUOwDLlLVThlxhr/ghlW1Cr5qC2v4A+egFa5onhbmLQSZKoQzB3C+l80xPsi3VXbfQypjJb7eJue14sY7orTCAqrXzX5gbWh6miAjUdvW8zRQVG8MexcQikuY8Z0CRO88baiRnQNrhY2av9DHD2yquaOL/GJDIZ03Qc5fSvx223+XOUm0RPuw30MkHkbhnH88/Tsq1/f3iTWGr9uSrdzYQQQgjRRWlZJ6GfsRz18z9QOE6OEQAAzDVJREFUP94PpZswvjgTcqejj3wILaFfuJsYNJIk6gCUYXv4x4eKooDNaedl7YkfCRvzOkI5kPfcJnra2w2lme+64y5kiA+d19UnAWxXUHfRTVs7ZEyzM3CB20SsF3WG5g+Gm8RLu5szPTW8j59fjjHa677lKcnjS3vbxDRRvaTjU8Kn+TOic33KCiGEEEL4RtMj0I7+HarvRagND6G2vwD572Ps/xRt8I1oQ25Bi0wIdzMDLmDpAuEPLXQPzZ/1zWkemDu0D0w/zO+n+XXdb7TVIwTaPR5BqD7x9AhYTIcNuo0TCI5tbSdmwOK7OT7txgnCb4B2Y5rqRoXHj6HAHU/VlKBx2IqmvH84tMBlbsnlfrTeRtsudS731kVM+/SV7X5st223pnnx0G0P53WFEEIIIbo2LToNfcxf0c9YDlm/AKMOtWkBxkfDMXa+hnJR8aEMK+rgEozd/0YdXIIyrGFouTlSSdQBmEpOmOzB5V8io/Xdr5drdbI/N3senLqddU3G9KkbS4i1Ph6mh5jSWt1Tam1e9tCI9hZoP7YPTwdGKKuJPByfdo9rEITjlPUY01WVTAAa6bH7ng5a6wPsVTcyDTT3paWeY3oYe8lTbG//DtCmS50X6wghhBBCdBFayhD0X3wI+z/BWHs7VO5ELb8Wtf159NF/Qes5FgCV/z7G2nlQtcf2PUB8X/RR89Fyp4dvB7wkSaLOyuyNuj80t994ppT55InpmxAtKBkbzwkk89kTd0dI0/C4TYXZP+a3uX11jtnOeuZ6uCnXeUZvEp7+3oy23lmTSVavY7l634J5Q22265euTLXLVRcs3zZj4qTVmhMgPqzr0CjNTNWU1upfX7Q+38H9OaG1es6b99NVm7xJ9rjatu5hPXcfMBoyJpEQQgghuh1N06D3WejZp6C2Po3a+AgcWo3x2VS0fpdBxgmolbOh1xnok16C5CFQthlj0wKMpTPQJ7/W4RNFkiTqdvy4UzV5P2Bu3Grbnbb5QZnN3fzaQ7cfwMV6ZnbUIVPi6lWHtrhO3gR+J5tjuk0W+VvVQ9v1PR+FMMUMhFDG9KUyy2EBs4lYzekLXyoL/ajqcZV4aTdg6330sq3N++UhaePy/Wz+Rne1ZOuFXW9Va84yeruvLruYecpot43Z7vvoqopIKomEEEII0U1plmi0IXNReb9C/XAvaue/ULvfgN1vQtJAtEkvo0XE2RbueTz6lLcwllyCsfYO9F5no+mW8O6ABzImUQfgz/g5Herh5j/n+w7l5aMD85jJcPw6cPvZobrs+VHdpZofPo4xhYl17GNT0fRoOk9bvwXuz+cAcPE2d5i30t8d1FRTJZJqm6RoSsy4eoCL59uu3vJwWMZe8eLm4XK79vfAh5+51pU9Ht41V/kW+wnnKqa7Jjjti2PSxs2j9VhI9nhG06Od5Z2eo9W/Lh7utiGEEEII0Y1psVno459Fn7bEVjWEgvJtqI/HoPa+h2r6C7ym6ehDboGq3VC8LKxtbo9UEnUIofyTbBAv6pWbahiU7Z4F8G0/ldeLt02imK9Cajem25s8zeE13/bT7dJNL9ire9y8HgxuK4pU8OI2H76Abr7VRl29fS7jmU0UORaUudhwUPex1VNB/1TxEMTtfrqqdPGqoapVvLY77RTTcZv2bnW+x3SufHJ/RjjF1ABL87c+xmwej8jXz77mBI+nP/2426ZuuD+uLiqI7Mm+9mZwE0IIIYToJrS0UTDkFvj+aojNgao9GN/OgIwp6BP/iRaXDSlDAFA1hR3nD8cuSJKoA/B3Vq2Q8bdbShDXbHP8lDI3Bgl4lxlw1bRg3JV7UYTgYjB9L2he1RFqtD62GljcNKRdbWd88rZCyvyhdVjLXdIrmNwl9wJN8/htx4qroM2J4O58an2OugjgsbBPc/zaZExv47XetruYrjbQunJJa//EcVnB1F77HOM7xdRod1Y1x9dUq3+FEEIIIQR6XDYGoE34OxR9i9ryN6jeB9GptgVKNwO26qOOTJJEHUIoK4nMMt//JlT3EVrrfECwKokctu1036T5EdMHoUxyuKwGCUQyzENVT6tF2sYPUUzTHHvh+BLTn+ChSka1DujVszhX49i7UuFbgx2npW9a1+PqjjF15/U8cnrvHLtmOb/cNl6rTetuumO1F99eDeR5XeUqpsVD9aXHBJBhS/56017H7yMkSySEEEIIYZc+CeL7orY+hT7lLbQBl0PNQTRLNEoZGJv/AvH9bMt1YJIk6gA6RyWRH/VAmh/5Gh+yPY5Lae3eQXq5ofYWdYihmRuh2+eGqFb3u/4dWxfPt3sTazKgI+c3q91FApLvczxuwcymuEmAtBvSn88Av/bHx8BO3Zvart9uUxwrZXyMqbmJ2S4FmjczcbXO12t4N4OXy+ogL7vLtvkbgYZm73Lm60nRTkyXVUS0ek/a6W7mFK7D/+ISQgghhAgZTbegj5qPsXQGxpJLbGMQpQxBFa+wJYj2L7LNbtaBB60GSRL57emnn2bBggUUFhYyfPhwnnzySY4//nifttEyOG8XZrJ7UtvBRbyMoSkwvC0ZcORjosehC5NCMzkdvXJzeDw3RNNs547ZhIe7prq777OHMdptWvtBXXVd8RTTnyq2psonp5DBvLdVuOyy1G41kZnkh8NNv8/Tw9NU4WPmvbQPXty2KV6v51MVEdg+D3wYr8cxgRvhpqqnnfXQlMOYP94nizQA3WFdX94X3XA9hpLbNjp8GeGhy5inY6ZbmyqJ3MR0lTwDiDTV11UIIYQQosvScqejT34NY+08jMUntbwQ38+WIMqdHr7GeUmSRH546623mDt3LgsXLmTcuHE8/vjjTJs2ja1bt5KRkeH1dpTSUO0mNFzw+Bde9+uYnlbebDJCKZPrmtlBb9b1fhnnHJX7mM3H1Nyx1dp+50XzlQJNMztAt8P4QD7m4MxXhmlovladBEKY869eh/f1oLbZsO/vivJ1Pa3Vl6ayou18HnhKcjgmxXwK2c4YZW6SLrbvW7qb+XYqKc+fHe7GW2quXnIZr53uYLqLY+tq39oso4HF2nbbrrbhtJpUEgkhhBBCtKblTkfvdTYUL7MNUh2bBemTOnwFUTNJEvnhb3/7G9dccw1XXXUVAAsXLuTjjz/mn//8J7fffrvX21GGjjLMjrJs34rnl5sv8k13iTI/JpFfI0h7GgDEE2+6iLiL2fo7+1NeVPaY+sO64XTD6EMPOzRNQzd1eLWWsYV8OlQayjCbMFS2ijmHmN6E1vBjpjqH6i4fa2z8mh3Py0KpNuv5pPn98ylIq5A+V/M4fq9cPt3u+roPcVslOHyq6nFcr81YPV52qdIUmqX5h9qLRI/jqhGGw0efFxVB9m0aDp9fLqqu3CZ6miqJ2vs8cBnT2jImkcuucy7W1YBGqSQSQgghhHBF0y2QOSXcf682RZJEJtXX17NmzRrmzZtnf07XdU455RS+//57n7ZlWHWsPidSWv/FOPinn1djerhaDwNzvem86Urlpk1+VC+1Xk/zdHPp+ErrLhm+xGz50vEfL1Y1m8zQ2owD7MUqNCeXTMXU2ovpZgwme2xf49E2CeZb+YmJoNirpXxvcuvp1t0GaEs3zJ3vmoeYHrstOazna1xP07S7S4A0Dx6tO3c38y50Uzc13fUKWpuYjoNXGbbBoNs0UbV+oi3dcN2Fy9XnhFPypW1Ml9tw/LL5e8ckkTcVRc0s7mK2Wr71NhokSSSEEEII0dVIksikkpISrFYrmZmZTs9nZmby008/uVynrq6Ouro6+/dlZWUAlNc1YLX6W0nkraYbWLM33aZWM3kD294grB7oejvTOXuIabZbnaYZJoumDJPVQLaYus836X7E1KzovlSCODHQXFRYtr8pK7qnG1h3mvfTl3XtjbE6977xYX81zRbT50OkWbFYzY1JpFmsbrontbO6pdHle+Iplu1rw/Yz5vi02wRPK0YjlvaSRC5fM2yVMoBjwkQDL6pnGtzH9BRbM2wzeDkdWzfJsdbf6422giDNub3txtQNW0mitxU99tcUGI3tx3GxrjLcJHvaWa+8qZJIyQDWopNoPlfLy8vD3BIhhBDCd82/v4J97SVJohCaP38+9957b5vnz1/+ZBhaI4QQQvivoqKC5OTkcDdDiHZVVFQAkJubG+aWCCGEEOYF+9pLkkQm9ezZE4vFwsGDB52eP3jwIFlZWS7XmTdvHnPnzrV/bxgGhw8fJi0tDS2oc3KHTnl5Obm5ueTn55OUlBTu5oSVHAtncjxayLFwJsejRWc6FkopKioqyMnJCXdThPBKTk4O+fn5JCYmtrnu6kw/e4HSHfcZuud+yz53j32G7rnf3WmfQ3XtJUkik6Kiohg9ejRffPEF5513HmBL+nzxxRfMnj3b5TrR0dFER0c7PZeSkhLkloZHUlJSl/8h9ZYcC2dyPFrIsXAmx6NFZzkWUkEkOhNd1+ndu7fHZTrLz14gdcd9hu6537LP3Ud33O/uss+huPaSJJEf5s6dy8yZMxkzZgzHH388jz/+OFVVVfbZzoQQQgghhBBCCCE6C0kS+eGSSy6huLiYu+66i8LCQkaMGMGnn37aZjBrIYQQQgghhBBCiI5OkkR+mj17ttvuZd1RdHQ0d999d5tudd2RHAtncjxayLFwJsejhRwLIcKjO/7sdcd9hu6537LP3Ud33O/uuM/BpimZu1YIIYQQQgghhBCi29PD3QAhhBBCCCGEEEIIEX6SJBJCCCGEEEIIIYQQkiQSQgghhBBCCCGEEJIkEkIIIYQQQgghhBBIkkiYMH/+fMaOHUtiYiIZGRmcd955bN261WmZ2tpaZs2aRVpaGgkJCVx44YUcPHgwTC0OnYcffhhN05gzZ479ue52LPbv38+vf/1r0tLSiI2NZdiwYaxevdr+ulKKu+66i+zsbGJjYznllFPYvn17GFscHFarlTvvvJO8vDxiY2MZMGAA999/P45zBXTlY7FkyRLOOecccnJy0DSN9957z+l1b/b98OHDzJgxg6SkJFJSUvjNb35DZWVlCPciMDwdi4aGBm677TaGDRtGfHw8OTk5XHHFFRw4cMBpG13lWAjRET399NP069ePmJgYxo0bx8qVK8PdpICRa7budW3W3a7Busu1Vne8ppJrp/CSJJHw2TfffMOsWbNYvnw5ixcvpqGhgdNOO42qqir7MjfffDMffvghb7/9Nt988w0HDhzgggsuCGOrg2/VqlU899xzHHfccU7Pd6djceTIESZNmkRkZCSLFi1i8+bN/PWvf6VHjx72ZR599FGeeOIJFi5cyIoVK4iPj2fatGnU1taGseWB98gjj/Dss8/y1FNPsWXLFh555BEeffRRnnzySfsyXflYVFVVMXz4cJ5++mmXr3uz7zNmzGDTpk0sXryYjz76iCVLlnDttdeGahcCxtOxqK6uZu3atdx5552sXbuWd955h61bt3Luuec6LddVjoUQHc1bb73F3Llzufvuu1m7di3Dhw9n2rRpFBUVhbtpAdHdr9m607VZd7wG6y7XWt3xmkquncJMCeGnoqIiBahvvvlGKaVUaWmpioyMVG+//bZ9mS1btihAff/99+FqZlBVVFSogQMHqsWLF6sTTzxR3XTTTUqp7ncsbrvtNnXCCSe4fd0wDJWVlaUWLFhgf660tFRFR0erN954IxRNDJmzzjpLXX311U7PXXDBBWrGjBlKqe51LAD17rvv2r/3Zt83b96sALVq1Sr7MosWLVKapqn9+/eHrO2B1vpYuLJy5UoFqD179iiluu6xEKIjOP7449WsWbPs31utVpWTk6Pmz58fxlYFT3e6Zutu12bd8RqsO15rdcdrKrl2Cj2pJBJ+KysrAyA1NRWANWvW0NDQwCmnnGJfZtCgQfTp04fvv/8+LG0MtlmzZnHWWWc57TN0v2PxwQcfMGbMGH75y1+SkZHByJEjeeGFF+yv79q1i8LCQqfjkZyczLhx47rc8Zg4cSJffPEF27ZtA+CHH37g22+/5YwzzgC617FozZt9//7770lJSWHMmDH2ZU455RR0XWfFihUhb3MolZWVoWkaKSkpQPc+FkIEU319PWvWrHH6LNJ1nVNOOaXLfg53p2u27nZt1h2vweRaS66pmsm1U2BFhLsBonMzDIM5c+YwadIkhg4dCkBhYSFRUVH2H9JmmZmZFBYWhqGVwfXmm2+ydu1aVq1a1ea17nYsdu7cybPPPsvcuXO54447WLVqFTfeeCNRUVHMnDnTvs+ZmZlO63XF43H77bdTXl7OoEGDsFgsWK1WHnzwQWbMmAHQrY5Fa97se2FhIRkZGU6vR0REkJqa2qWPT21tLbfddhuXXXYZSUlJQPc9FkIEW0lJCVar1eVn0U8//RSmVgVPd7pm647XZt3xGkyuteSaCuTaKRgkSST8MmvWLDZu3Mi3334b7qaERX5+PjfddBOLFy8mJiYm3M0JO8MwGDNmDA899BAAI0eOZOPGjSxcuJCZM2eGuXWh9e9//5vXXnuN119/nWOPPZb169czZ84ccnJyut2xEN5paGjg4osvRinFs88+G+7mCCG6mO5yzdZdr8264zWYXGsJuXYKDuluJkybPXs2H330EV999RW9e/e2P5+VlUV9fT2lpaVOyx88eJCsrKwQtzK41qxZQ1FREaNGjSIiIoKIiAi++eYbnnjiCSIiIsjMzOw2xwIgOzubIUOGOD03ePBg9u7dC2Df59YziHTF43Hrrbdy++23c+mllzJs2DAuv/xybr75ZubPnw90r2PRmjf7npWV1Wbg2MbGRg4fPtwlj0/zRc6ePXtYvHix/S9h0P2OhRCh0rNnTywWS7f4HO5O12zd9dqsO16DybVW976mkmun4JEkkfCZUorZs2fz7rvv8uWXX5KXl+f0+ujRo4mMjOSLL76wP7d161b27t3LhAkTQt3coDr55JPZsGED69evtz/GjBnDjBkz7F93l2MBMGnSpDZT627bto2+ffsCkJeXR1ZWltPxKC8vZ8WKFV3ueFRXV6Przh+xFosFwzCA7nUsWvNm3ydMmEBpaSlr1qyxL/Pll19iGAbjxo0LeZuDqfkiZ/v27Xz++eekpaU5vd6djoUQoRQVFcXo0aOdPosMw+CLL77oMp/D3fGarbtem3XHazC51uq+11Ry7RRk4R03W3RG119/vUpOTlZff/21KigosD+qq6vty1x33XWqT58+6ssvv1SrV69WEyZMUBMmTAhjq0PHcQYNpbrXsVi5cqWKiIhQDz74oNq+fbt67bXXVFxcnHr11Vftyzz88MMqJSVFvf/+++rHH39U06dPV3l5eaqmpiaMLQ+8mTNnql69eqmPPvpI7dq1S73zzjuqZ8+e6o9//KN9ma58LCoqKtS6devUunXrFKD+9re/qXXr1tlnnfBm308//XQ1cuRItWLFCvXtt9+qgQMHqssuuyxcu2Sap2NRX1+vzj33XNW7d2+1fv16p8/Uuro6+za6yrEQoqN58803VXR0tHrppZfU5s2b1bXXXqtSUlJUYWFhuJsWEHLNZtMdrs264zVYd7nW6o7XVHLtFF6SJBI+A1w+XnzxRfsyNTU16ve//73q0aOHiouLU+eff74qKCgIX6NDqPWFSHc7Fh9++KEaOnSoio6OVoMGDVLPP/+80+uGYag777xTZWZmqujoaHXyySerrVu3hqm1wVNeXq5uuukm1adPHxUTE6P69++v/vSnPzn98urKx+Krr75y+Tkxc+ZMpZR3+37o0CF12WWXqYSEBJWUlKSuuuoqVVFREYa98Y+nY7Fr1y63n6lfffWVfRtd5VgI0RE9+eSTqk+fPioqKkodf/zxavny5eFuUsDINZtNd7k2627XYN3lWqs7XlPJtVN4aUopFfj6JCGEEEIIIYQQQgjRmciYREIIIYQQQgghhBBCkkRCCCGEEEIIIYQQQpJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREKIDUUoBcM899zh9L4QQQgghAk+uvYQQrWlKPgmEEB3EM888Q0REBNu3b8disXDGGWdw4oknhrtZQgghhBBdklx7CSFak0oiIUSH8fvf/56ysjKeeOIJzjnnHK8uUqZOnYqmaWiaxvr164PfyFauvPJKe/z33nsv5PGFEEIIIcySay8hRGuSJBJCdBgLFy4kOTmZG2+8kQ8//JClS5d6td4111xDQUEBQ4cODXIL2/q///s/CgoKQh5XCCGEEMJfcu0lhGgtItwNEEKIZr/73e/QNI177rmHe+65x+t+8XFxcWRlZQW5da4lJyeTnJwclthCCCGEEP6Qay8hRGtSSSSECJmHHnrIXh7s+Hj88ccB0DQNaBk8sfl7X02dOpUbbriBOXPm0KNHDzIzM3nhhReoqqriqquuIjExkaOOOopFixYFZD0hhBBCiI5Irr2EEL6SJJEQImRuuOEGCgoK7I9rrrmGvn37ctFFFwU81ssvv0zPnj1ZuXIlN9xwA9dffz2//OUvmThxImvXruW0007j8ssvp7q6OiDrCSGEEEJ0NHLtJYTwlcxuJoQIizvvvJN//etffP311/Tr18/0dqZOncqIESPsfxFrfs5qtdr71VutVpKTk7ngggt45ZVXACgsLCQ7O5vvv/+e8ePH+7Ue2P7y9u6773LeeeeZ3hchhBBCiGCRay8hhDekkkgIEXJ33XVXQC5SPDnuuOPsX1ssFtLS0hg2bJj9uczMTACKiooCsp4QQgghREcl115CCG9JkkgIEVJ33303r7zySlAvUgAiIyOdvtc0zem55j73hmEEZD0hhBBCiI5Irr2EEL6QJJEQImTuvvtuXn755aBfpAghhBBCCLn2EkL4LiLcDRBCdA8PPPAAzz77LB988AExMTEUFhYC0KNHD6Kjo8PcOiGEEEKIrkWuvYQQZkiSSAgRdEopFixYQHl5ORMmTHB6beXKlYwdOzZMLRNCCCGE6Hrk2ksIYZYkiYQQQadpGmVlZSGL9/XXX7d5bvfu3W2eaz25o9n1hBBCCCE6Ern2EkKYJWMSCSE6vWeeeYaEhAQ2bNgQ8tjXXXcdCQkJIY8rhBBCCBEucu0lRNelKUnLCiE6sf3791NTUwNAnz59iIqKCmn8oqIiysvLAcjOziY+Pj6k8YUQQgghQkmuvYTo2iRJJIQQQgghhBBCCCGku5kQQgghhBBCCCGEkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIZAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEIIuniQ6dOgQGRkZ7N69u91lb7/9dm644YbgN0oIIYQQogtq77rr66+/RtM0SktLAfj0008ZMWIEhmGErpFCCCGE8KhLJ4kefPBBpk+fTr9+/dpd9pZbbuHll19m586dwW+YEEIIIUQX48t1F8Dpp59OZGQkr732WnAbJoQQQgivRYS7AcFSXV3NP/7xD/73v/95tXzPnj2ZNm0azz77LAsWLAhy64QQ4Wa1WmloaAh3M4TolCIjI7FYLOFuhuhAfL3uanbllVfyxBNPcPnllwepZUKIjkKuvYQwL5TXXl02SfTJJ58QHR3N+PHj7c9t2rSJ2267jSVLlqCUYsSIEbz00ksMGDAAgHPOOYc//elPkiQSogtTSlFYWGjv7iCEMCclJYWsrCw0TQt3U0QH4Oq665NPPmHOnDnk5+czfvx4Zs6c2Wa9c845h9mzZ7Njxw779ZgQomuRay8hAiNU115dNkm0dOlSRo8ebf9+//79TJkyhalTp/Lll1+SlJTEsmXLaGxstC9z/PHHs2/fPnbv3u11qbQQonNpvkjJyMggLi5ObnCF8JFSiurqaoqKigDIzs4Oc4tER9D6uis/P58LLriAWbNmce2117J69Wr+8Ic/tFmvT58+ZGZmsnTpUkkSCdFFybWXEP4J9bVXl00S7dmzh5ycHPv3Tz/9NMnJybz55ptERkYCcPTRRzut07z8nj17JEkkRBdktVrtFylpaWnhbo4QnVZsbCwARUVFZGRkSNcz0ea669lnn2XAgAH89a9/BeCYY45hw4YNPPLII23WzcnJYc+ePSFrqxAidOTaS4jACOW1V5cduLqmpoaYmBj79+vXr2fy5Mn2BJErzQe+uro66O0TQoRecz/4uLi4MLdEiM6v+edIxpcQ0Pa6a8uWLYwbN85pmQkTJrhcNzY2Vq69hOii5NpLiMAJ1bVXl00S9ezZkyNHjti/b04AeXL48GEA0tPTg9YuIUT4SZmzEP6TnyPhqPV1ly8OHz4s115CdHHyO0MI/4Xq56jLJolGjhzJ5s2b7d8fd9xxLF261GPWbePGjURGRnLssceGoolCCCGEEF1C6+uuwYMHs3LlSqdlli9f3ma92tpaduzYwciRI4PeRiGEEEK0r8smiaZNm8amTZvsf9WaPXs25eXlXHrppaxevZrt27fzr3/9i61bt9rXWbp0KZMnT/aq6kgIIUJtyZIlnHPOOeTk5KBpGu+9915YYlx55ZVomoamaURGRpKZmcmpp57KP//5TwzDCHibugpvj1u/fv3syzU/evfu3eb11jfcc+bMYerUqU7PlZeX86c//YlBgwYRExNDVlYWp5xyCu+88w5KKftyP//8M1dddRW9e/cmOjqavLw8LrvsMlavXh2cgyG6nNbXXddddx3bt2/n1ltvZevWrbz++uu89NJLbdZbvnw50dHRbruiCSFEuMh1V+cn117mdNkk0bBhwxg1ahT//ve/AUhLS+PLL7+ksrKSE088kdGjR/PCCy84jVH05ptvcs0114SryUII4VFVVRXDhw/n6aef9nndqVOnurxBMxvj9NNPp6CggN27d7No0SJ+8YtfcNNNN3H22Wc7zRopnHl73O677z4KCgrsj3Xr1jltJyYmhttuu81jrNLSUiZOnMgrr7zCvHnzWLt2LUuWLOGSSy7hj3/8I2VlZQCsXr2a0aNHs23bNp577jk2b97Mu+++y6BBg1zORiWEK62vu/r06cN///tf3nvvPYYPH87ChQt56KGH2qz3xhtvMGPGDBmvRAjR4ch1V9cg114mqC7so48+UoMHD1ZWq7XdZT/55BM1ePBg1dDQEIKWCSHCoaamRm3evFnV1NSEuyl+A9S7777r9fInnniievHFFwMSY+bMmWr69Oltnv/iiy8UoF544QWf4nQX3h63vn37qscee8ztdvr27atuvPFGFRUVpT7++GP78zfddJM68cQT7d9ff/31Kj4+Xu3fv7/NNioqKlRDQ4MyDEMde+yxavTo0S5/Vx45csRtO7rSz5MIDF+uu5RSqri4WKWmpqqdO3cGuWVCiHDpKr8r5Lqrc5JrL3MiwpeeCr6zzjqL7du3s3//fnJzcz0uW1VVxYsvvkhERJc+JEKIVpRSYZlVJy4urssN4njSSScxfPhw3nnnHX7729+GPH5VVRXgfGzr6+tpaGggIiKC6OjoNsvGxsai67ai2oaGBurr67FYLE6zNLlb1tNsmb4wc9zy8vK47rrrmDdvHqeffrq9Xc0Mw+DNN99kxowZTtOSN0tISABg3bp1bNq0iddff73NNgBSUlJ83yHRbfly3QWwe/dunnnmGfLy8kLQOiFERxCu6y7oetde4b7ugtBeewWSXHt51mW7mzWbM2eOVxcqF110UZupWoUQXV91dTUJCQkhf3TV6Z4HDRrE7t27wxK7+diWlJTYn1uwYAEJCQnMnj3badmMjAwSEhLYu3ev/bmnn36ahIQEfvOb3zgt269fPxISEtiyZYv9OW9KyH3R+rjddtttTufLE0880WadP//5z+zatYvXXnutzWslJSUcOXKEQYMGeYy7fft2e3whAsHb6y6AMWPGcMkllwS5RUKIjiRc111d9dornNddENprr0CTay/3unySSAghuqOHHnrI6Rfd0qVLue6665yec/wlHShKqS71V7pQaX3cbr31VtavX29/XHHFFW3WSU9P55ZbbuGuu+6ivr6+zfa8jSuEEEII/8h1V+cj117uSd8qIUS3FhcXR2VlZVjiBtN1113HxRdfbP9+xowZXHjhhVxwwQX251yVwvpry5YtYes60vw+Oh7bW2+9lTlz5rTpSlxUVATgNJvlrFmzuOaaa7BYLE7LNv+VyXHZK6+8MpBNb3PcevbsyVFHHdXuenPnzuWZZ57hmWeecXo+PT2dlJQUfvrpJ4/rH3300QD89NNPMgW5EEKIoAvXdVdz7GDpjtddENprr0CTay/3JEkkhOjWNE0jPj4+3M0IuNTUVFJTU+3fx8bGkpGR4dUvP7O+/PJLNmzYwM033xy0GJ64eh+joqKIioryatnIyEiX4wy5WzZQ/DluCQkJ3Hnnndxzzz2ce+659ud1XefSSy/lX//6F3fffXebC9PKykpiYmIYMWIEQ4YM4a9//SuXXHJJm77xpaWlHaJvvBBCiK5BrrsCJ9zXXRDaa69Akmsvz6S7mRBCdBKVlZX2EliAXbt2sX79+oCWL3sbo66ujsLCQvbv38/atWt56KGHmD59OmeffbbL8lxhE4zjdu2115KcnMzrr7/u9PyDDz5Ibm4u48aN45VXXmHz5s1s376df/7zn4wcOZLKyko0TePFF19k27ZtTJ48mU8++YSdO3fy448/8uCDDzJ9+vRA7LYQQgjR6ch1V9cg116+k0oiIYToJFavXs0vfvEL+/dz584FYObMmQEbSNnbGJ9++inZ2dlERETQo0cPhg8fzhNPPMHMmTODMgtFVxGM4xYZGcn999/Pr371K6fnU1NTWb58OQ8//DAPPPAAe/bsoUePHgwbNowFCxaQnJwMwPHHH8/q1at58MEHueaaaygpKSE7O5uJEyfy+OOP+7vLQgghRKck111dg1x7+U5TnWHkJCGECIDa2lp27dpFXl6e0zSbQgjfyc+TEEKI9sjvCiECJ1Q/T5J2FEIIIYQQQgghhBCSJBJCCCGEEEIIIYQQkiQSQgghhBBCCCGEEEiSSAghhBBCCCGEEEIgSSIhhBBCCCGEEEIIgSSJhBDdkEzqKIT/5OdICCGEt+R3hhD+C9XPkSSJhBDdRmRkJADV1dVhbokQnV/zz1Hzz5UQQgjRmlx7CRE4obr2igjq1oUQogOxWCykpKRQVFQEQFxcHJqmhblVQnQuSimqq6spKioiJSUFi8US7iYJIYTooOTaSwj/hfraS1NS+yeE6EaUUhQWFlJaWhrupgjRqaWkpJCVlSUX+0IIITySay8hAiNU116SJBJCdEtWq5WGhoZwN0OITikyMlIqiIQQQvhErr2EMC+U116SJBJCCCGEEEIIIYQQMnC1EEIIIYQQQgghhJAkkRBCCCGEEEIIIYRAkkRCCCGEEEIIIYQQAkkSCSGEEEIIIYQQQggkSSSEEEIIIYQQQgghkCSREEIIIYQQQgghhECSREIIIYQQQgghhBACSRIJIYQQQgghhBBCCCRJJIQQQgghhBBCCCGQJJEQQgghhBBCCCGEQJJEQgghhBBCCCGEEAJJEgkhhBBCCCGEEEIIJEkkhBBCCCGEEEIIIYCIcDegOzMMgwMHDpCYmIimaeFujhBCCOE1pRQVFRXk5OSg6/I3J9HxyXWXEEKIzixU116SJAqjAwcOkJubG+5mCCGEEKbl5+fTu3fvcDdDiHbJdZcQQoiuINjXXpIkCoOnn36ap59+msbGRsD2JiclJYW5VUIIIYT3ysvLyc3NJTExMdxNEcIrzeeqXHcJIYTojEJ17aUppVRQIwi3ysvLSU5OpqysTC5WhBDi/9m787gY1/9/4K+ptCkVKVIoe5YihGTLvmffQ/ico0Mkx747lpCt7LIdkn099i1rhTZLe5RUIu1pmbl+f/Tr/hqFpmar3s/HYx6aa+77ut9Tt7mved/XQsoVuoaR8qLw5hyfz0dYWBids4QQQsolabW9aBIBQgghhBBSYTk4OODNmzfw8/OTdSiEEEKI3KMkESGEEEIIIYQQQgihJBEhhBBCCKm43N3dYWpqinbt2sk6FEIIIUTuUZKIEEIIqcBSU1Ph4+OD2NhYWYdCiEzQcDNCCCGSsG/fPuzduxfx8fGyDkWsKEkkA3RHixBCiLh9+/YNt27dgoeHh1D5H3/8gQ4dOsDT01NGkRFCCCGElG9PnjzBzZs3hcpWrlyJP/74A+/fv+fK0tLS8OnTJ2mHJ1aUJJIBuqNFCCGkLJ49e4Z//vkH169f58rS09PRu3dvTJs2DVlZWVx5s2bNYGBgIIswCZELdHOOEEJIWRw/fhxWVlb466+/wOfzuXJbW1v069cPLVq04Mr27dsHIyMjrFq1ShahigUliQghhBA5lZOTg7///huDBw9GTk4OV3716lUsXboU58+f58p0dXVhaWmJIUOGIC0tjStfunQp4uLi8Pfff0s1dkLkBd2cI4QQUhaDBg1CvXr1YG1tjczMTK7c3d0d//33HzQ0NLiy58+fIzc3F4aGhrIIVSyUZB0AIYQQQoDz589j27ZtsLa2xtq1awEAysrK2LNnD9LT0xEREYHmzZsDAKytrWFnZ4euXbty+/N4PDx79qxIvQoKdD+IEEIIIUQU2dnZUFNTAwBUq1YNwcHB0NTU/O1+J0+ehLOzM0xNTSUdosRQkogQQgiRIsYYhg0bBh8fHzx69AgmJiYACiaY9vb2hpLS/12aeTweli1bhqpVq6JmzZpcee/evdG7d2+px05IeeTu7g53d3ehIQKEEELIz7x+/Rp9+vSBm5sbhg4dCgAlShAVatu2rYQikw4eY4zJ4sCXLl0SeZ9evXpx2byKIC0tDVpaWkhNTUW1atVkHQ4hhBAxe/DgARYtWoS6devi5MmTXLmFhQVevnyJc+fOwdbWFgDw/v17PHz4EK1atUKrVq1kFXKJ0TWsfKF2F52zhBBCSmbWrFlwc3ODpaUlnjx5Ije9sqV1HZNZT6LCjFxJ8Xg8hIeHc3dcCSGEEHkyf/58XLlyBTt37kTPnj0BAEpKSnj69GmR5ec3b94MVVVVmJmZcWX16tVDvXr1pBozqTyo3UUIIYSUzNatW1G9enU4OjrKTYJImmT6jhMSEiAQCEr0UFdXl2WohBBCCAAgPDwc/fr1Q7du3YTKY2JiEBISgpcvX3Jl5ubmOHHiRJElU7t3746OHTvStY1IFbW7CCGEkOIlJCRwPyspKWHVqlWoXr26DCOSHZkliezs7ETqwjxhwoQK0zWYlmIlhJDywd3dHR06dICHhwdXpqmpievXr8Pb21tohYs5c+bg2rVrmDp1KldWtWpVjB07Fs2aNZNq3IT8qDK3uwghhJBf8fPzg6mpKf755x9ZhyIXZDYnEaGx8YQQIi+ysrKwdetWvHjxAqdPn4aioiIAYMmSJVi3bh1mzJiBvXv3ctsfPHgQzZs3R9u2bYUmmq5M6BpGyovvJ64OCwujc5YQQoiQ7du3Y86cOejQoQMePHgAZWVlWYdULGm1vShJJEPi/iP7+/vj69evaNasGWrXrg0AyMnJwYcPH6CmpgYDAwNuW8YYeDxemY9JCCHlzefPn/HgwQOoqamhf//+AAA+nw8dHR2kp6fD398f5ubmAICgoCC8ffsW7du3h7GxsQyjlj+UJCLlDZ2zhBBCfubYsWMYOnSoSKuYSZu0rmMyGW6WnZ2NuLi4IuWvX7+WQTQVx/Lly2FjY4OrV69yZWFhYWjYsCFat24ttO24ceOgqKgINzc3riw2NhYNGjSAhYWF0Laurq7o168fTp8+zZVlZmZi7ty5WLp0KQQCAVceGBiIy5cvIzw8nCtjjOHTp0/IzMwE5SQJIdIkEAjw6tUrpKenc2UXLlzAiBEj4OLiwpUpKipiwYIF2L59O2rVqsWVt2rVCqNHj6YEESnXqN0lOXl5ebIOgRBCiIjy8/Oxa9cu5OTkcGUTJ06U6wSRNEk9SXTmzBk0atQIAwYMQKtWreDj48O9NnHiRGmHU6HUrVsXLVq0QM2aNbkyPp8PDQ0NaGhoCG2bm5sLgUDADakACoZbREVFITo6WmjbwMBAXL9+He/fv+fKvn79im3btsHFxUVoxvd9+/Zh8ODB+Pfff7mytLQ06OvrQ0NDA7m5uVz5pk2b0KJFC2zbto0rEwgEsLe3x+zZs4Xm+ggJCcGNGzcQERFRit8MIaSy4PP5Qs+tra3RsmVL3L59myvr3LkzWrVqVSQhvmTJEsyePVsoSURIeUftLsk5ePAgTExMhH6nhBBC5N/o0aPh4OCAGTNmUCeGYkg9SbR27Vq8ePECAQEBOHToEOzt7XHixAkAoD9QGbm7uyM4OBhDhgzhyszNzZGeno7IyEihbQ8dOoSPHz8KNRDr1q2LJ0+e4MqVK0LbzpgxA4cPH0bfvn25MnV1dSxYsACOjo5C29atWxft27cXWsY5KysLAKCgoCA0vjMmJgavX7/Gly9fhLb18PDAzp07hYbDHTt2DH379sWOHTu4MsYYtLW1YWRkhE+fPnHl//33HxwdHXH+/Hmh2J48eYLg4GC660dIBRQZGYkOHTqgadOmQuUtWrSAurq60IoVTZs2RWBgILZs2SLtMAmROmp3Sc7jx4/x4cMHXL58WdahEEIIEcGff/4JHR0d9O/fn6ZgKYbUZ9vMy8uDvr4+AMDCwgLe3t6wtbVFREQE/YGkqFq1akXGMaqpqaFjx45FtrWysoKVlZVQWfXq1bFhw4Yi2y5YsAALFiwQKqtduzb4fD6ysrKE/sZz5syBra0tjIyMuDJFRUWsW7cOmZmZQquw1KxZE2ZmZjAxMeHKMjIykJqaitTUVKGeUo8fP8aOHTvAGIOtrS2AgoZwly5dwOfzERcXx83PtHv3bmzduhWjR4/GmjVruDqOHDkCLS0t9OzZs0gvLEKIbN28eRMnTpxA9+7dYWdnBwDQ19fH8+fPwefz8eHDBxgaGgIANmzYADc3N1SpUkWWIRMiM9Tukpy1a9eiSpUqWLlypaxDIYQQ8hMCgQBnzpyBsrIyhg4dCgDo2bMn3r17R/PT/YTUexLp6ekhKCiIe169enXcunULb9++FSonFYuCgkKRZEuDBg3Qo0cPNGrUiCtTU1PDokWLsHbt2iIJpYCAAMyZM4crU1dXR0REBPz8/IQSSt26dcOiRYvQu3dvriw7OxsNGjRAzZo1oa2tzZV/+PAB4eHhQvOVCAQCTJs2Dba2tkhJSeHK9+zZgyZNmmDVqlVC7+PEiRO4evUq12OKECI+jDG8fPlSaBiZv78/jhw5gkuXLnFlGhoauHDhAqKjo1GnTh2uXEdHhxJEpFKjdpfkGBgYYO/evdwKh4wxjBs3Drt378a3b99kHB0hhBAAOHz4MEaPHo05c+YITX1CCaKfk/rqZh8+fICSklKxcz48fvy4SI8VeWdra4v79+/DxsYGZ86cEWlfWmVD9uLi4hAdHQ09PT00btwYQMGQt3HjxiEhIQHe3t7cELmFCxdi48aNcHR05OZREggEUFZW5novFH453bdvH3bu3ImxY8di8eLF3PHOnj2L2rVro02bNlBVVZXumyWknGGMoXXr1ggMDMTDhw/RuXNnAAUrjp06dQo9e/ZEt27dZBtkJUbXsPKhorW7SsPd3R3u7u7g8/kICwuT2Dl74sQJjB8/HpqamoiJiRG6KUUIIUQ6oqKikJOTg2bNmgEo6CxgYWGBMWPGYP78+UKdC8obabW9pD7crHAIwI++ffuGKlWq4MqVK0KrZQHA4MGDpRFaqTg6OmLq1Kk4cuSIrEMhpVCnTh2hXgdAQQ+lCxcuFNl29uzZ6NevH/T09Liy7Oxs9O7dG4mJiULlkZGRePXqFT5//syVCQQCjB49Gnw+HzExMdwwu//++w83b95Er169MGDAADG/Q0LKh4yMDJw/fx4hISH4559/AAA8Hg8tW7ZEeHg4IiIiuCRRq1at0KpVK1mGS0i5UdHaXaXh4OAABwcHrnEtKUOHDsWOHTuQl5cnlCAaN24cDA0NMXfuXNSuXVtixyeEkMrOw8MD9vb26NmzJ27dugWgYKTKq1evhBZbIr8m9Z5Exbl+/TomTpwoNIFxIR6PV2S1Gnlz//59uLm5UU8iwomJiUFoaCgMDAzQvHlzAAVfggcNGoQPHz4gJCSEW1lu3rx5cHV1hZOTEzeRLp/Ph4mJCerUqYPLly+jRo0aAICEhATw+XzUrl2bPuhIuZebm8v11Pvw4QOMjIzA4/GQkJDAJV0TEhKgra1NPe/kEF3Dyq/y3u4qLVmcs4mJiVwvrvj4eO7nR48e4d27d+jUqZPQfIuEEEJK5sOHDzhz5gy6dOmCNm3aACjoRdS4cWN069YNly9fLte9hoojreuYXHzLnDVrFkaNGoX4+HgIBAKhR1kaKt7e3hg0aBAMDAzA4/GK7R3i7u6O+vXrQ1VVFZaWlvD19S3DOyGkQN26ddGrVy8uQQQUzJly7949hIeHcwkiAOjduzfmz5+PXr16cWUfP35ETEwM/Pz8hO5GbtmyBYaGhnB2dubKBAIBXF1dcf78eVq5jZQLly9fhqmpKWbOnMmVGRoaYty4cViyZInQtrVq1aIEESFiJql2FylKQ0MDnp6eWLp0qdCQv3379mHixInw9PTkyr5+/Yrp06dj7dq1QivP/djTixBCCLB8+XLMnTsXBw8e5MpMTEyQmJiI27dvV7gEkTRJfbhZcRITE+Hk5MStviEumZmZMDMzw9SpUzFs2LAir3t5ecHJyQl79uyBpaUltm3bhj59+iA0NJS7i21ubo78/Pwi+968eZNbIYuQsujTpw/69OkjVFa4UlNCQoJQQikjIwOKioowNjbmyj5+/Ih58+ZBUVFRaKLMf//9F4GBgRg2bFixq9YRIg1ZWVm4desWLCwsuGEvampqePv2LdLS0sAY4yapP378uCxDJaTSkFS7ixRVtWpVjBkzpkh506ZNhe5+A0B0dDQOHDgAfX19LF26lCu3s7PDjRs34OLigsmTJwMouJt87tw5GBkZwcbGRuLvgxBCZIUxhsOHD+PEiRM4evQoN2x3zJgxCA8PR/v27YW2LxyBQUpPLpJEI0aMwP3799GgQQOx1tuvXz/069fvp6+7urpi+vTpmDJlCoCC1auuXr0KDw8PLFy4EAAQEBAgtnhycnKQk5PDPU9LSxNb3aRiUVZWhoWFRZHy3bt3Y+fOnUKJy/z8fIwePRo5OTncCisAcObMGVy8eBF16tThkkRfv37FihUr0KZNG9jZ2dHyx0Tihg8fjuvXr2PLli1wcnICAHTp0gWenp7o27cvnYOEyICk2l3SUJYFQ+TJ4sWLhRa2AABdXV2sWrWqyHDy2NhYJCUlQUVFhSsLDw/HlClTUKtWLcTHx3PlCxcuxMuXL+Hk5IS+ffsCKBjaGxsbCyMjI26ILyGElBc8Hg/79+/H06dP4eXlxa123bt3b6HVrIn4yEWSyM3NDSNHjsTDhw/RsmXLIssVz549W+zHzM3NxYsXL7Bo0SKuTEFBAT179sTTp0/FfjwAWL9+fZHl0wkRlZKSklAyqH79+jh58mSR7caPHw9DQ0N07dqVK/P398fOnTthbGzM3Y0EgEOHDiE3Nxf9+/fnJtQmRBQpKSnYtWsXbt26hWvXrnFDxPr164e3b98KfblRVlYu9s46IUQ6ZNHuEpeKvGBI3bp1sXz58iLl58+fR2xsrNAk5IqKiujTp0+RFdSePXuGBw8eYOrUqVzZ69ev0aZNG9SuXRsfP37kys+cOYOvX7+iZ8+eQj2UCfmRQCDgkpd8Ph++vr7g8XiwsLDgPj++fv2KjIwM6OjoQENDQ5bhknIsOzsbhw8fxvnz5/Hff/9x33nmzJmDgQMHwtbWVsYRVhJMDhw4cIApKSkxDQ0NVq9ePVa/fn3uYWxsLJZjAGDnz5/nnsfFxTEA7MmTJ0LbzZ8/n7Vv377E9drY2DBdXV2mpqbG6tSpU6S+73379o2lpqZyj9jYWAaApaamivx+CCmN169fMycnJ7ZixQqh8hYtWjAA7PLly1xZREQE2759O/Px8ZFylKQ8ys7OZrVq1WIA2LVr17jy3NxcJhAIZBgZkZTU1FS6hpVT0mh3SdK9e/fY8OHDRd6vMpyzT548YYcPH2bv37/nym7cuMFUVVWZpaWl0LZdunRhAJinpydXFhwczNq1a8fs7e2Ftn38+DG7f/8++/Lli2TfAJGZlJSUIt9jVqxYwTQ1NdmyZcu4spycHAaAAWBJSUlc+bp16xgANmXKFKE6rKysWPfu3VlMTAxXFhUVxe7du8c+fPggoXdDyqu0tDSmq6vLALDTp0/LOhy5I63rmFz0JFqyZAlWrVqFhQsXlrsVm27fvl3ibVVUVKCiogJ3d3e4u7vT5JBE6kxNTbkV1AoxxmBra4s6deoIzY1w584dODo6olevXrh58yZXfuzYMRgYGKBjx45QV1eXWuxEfjDGcPv2bdy6dQsuLi4AAFVVVWzbtg2pqalCQyV/7KFACJE9SbW7vL29sWnTJrx48QLx8fE4f/48hg4dKrSNu7s7Nm3ahISEBJiZmWHnzp1F5pMgpdexY8ci8xD27t0bWVlZSE9PFyrv1q0bNDQ00LRpU64sPDwcfn5+RepdsGABHj16hFOnTmHkyJEAAF9fX0yYMAFmZmY4ffo0t+3x48fx6dMnDBgwAI0bNwZQME9oTEwMtLW1uflEiGx93zsoMTERBgYGEAgESElJgZaWFoCCHmvp6emIi4vj9qtSpQoaNWqE/Px8oWt84XNNTU2uLC8vD0+ePAFjTKhH8enTp7FgwQJMmDABx44d48qnTZsGLS0tLFy4EDVr1uTqUFJSouHpFZRAIMDTp09hZWUFANDU1MTGjRuRnp4utKgPkS65SBLl5uZi9OjRUk0Q6erqQlFREYmJiULl3y9VKikODg5wcHDglrAjRJZ4PB5Wr15dpNzAwACDBw/mPrSBgi7Gf/zxB7KysvD27VuuYZmcnAxlZWXqXlxJJCQkoH///sjPz8eIESO4L3ijR4+WcWSEVCw6Ojol/mKUnJxc4nol1e6iBUPkF4/HK7JccnFTIHTs2BGXLl0qMndRvXr18OnTJ6Ehb4mJiQgPDy8y5G337t14/Pgx6tatyyWJXrx4ga5du6Jx48YIDQ3lth0/fjyePXsGV1dXDBkyBAAQERGBRYsWwdDQEFu3buW29fLyQnR0NPr3749WrVoBKJjf8969e9DQ0BCawDsyMhJpaWkwMjKCrq4ugIIkxufPn6GsrIzq1atz27LvFlCoDC5evIiVK1eiY8eO2LVrF4CCBVPq16+P/Px8xMfHc99Ppk2bhlGjRqFOnTrc/jweD2FhYUXqXbZsGZYtWya0Gh+Px8OdO3eQkJAgNJmwmpoaGjdujEaNGnFlOTk53CpVhXPDAsDWrVuxYsUKzJw5U+hG5/Hjx6Gvr4/OnTvTKqjl1Ldv39CjRw88e/YMPj4+aNeuHQAIDZclMiLRfkolNGfOHPbPP/9I9Bj4YbgZY4y1b9+e/fXXX9xzPp/P6tSpw9avXy/RWNzc3FizZs1Y48aNK3y3Z1KxJCcns5EjR7KWLVuy/Px8rnzx4sVMRUWFbdiwQYbREUnJzMxk9+/fFyqbOXMmmz17NouNjZVRVETWKsPQHVk7fPgw99iyZQvT0dFhY8aMYdu3b2fbt29nY8aMYTo6OszV1VWkemXZ7nJwcOCe8/l8ZmBgIHK7i4abyYfk5GTm7e1dZIjS2rVr2dixY1lAQABXdufOHVa9enXWoUMHoW07d+7MALAzZ85wZQ8fPmQAWKNGjYS27devHwPAPDw8uDJ/f38GgNWuXVto2xEjRjAAbOfOnVxZWFgYA8CqVasmtK2dnR3j8Xhs06ZNXNnHjx+Zrq4uMzQ0FNp21apVrHnz5mzXrl1cWXp6OuvSpQvr3r07y83N5cqPHDnCRowYwY4dOyZUx4oVK5irqytLT0/nyvLy8iQyNPvSpUts1qxZLDw8nCu7ePEiA8CaNGkitK2s/19kZmaybdu2sfnz5wv9LhwcHBgAtmjRIq7s27dvxQ55O3r0KBsyZAg7evSoUN0ZGRmSfwOkVCZOnMg0NDTYiRMnZB1KuSBXw80KV6QpCVdX1xJvW4jP58PFxQU3btxAq1atigxPKE2dQMFy4REREdzz6OhoBAQEoHr16qhbty6cnJxgZ2eHtm3bon379ti2bRsyMzO51c4khXoSkfJKR0cHp06dKlIeEBCAnJwcoUmvv379Cg8PDwwdOrRcrqBDCsTFxcHc3BwZGRl4//49d7ff3d1dxpERUvHZ2dlxPw8fPhyrV6/GX3/9xZXNnj0bbm5uuH37NubOnVvieiXV7voVWSwYQqvKSpaOjg6sra2LlC9ZsqRIWY8ePfDly5ci5R4eHkhKSuJ6HAGAsbEx3NzcULVqVaFt+/TpA319fTRp0oQrq1KlCiwtLbneQt/HZmBgINR7Kj8/Hzwer8j5zufzwRgT6lmXl5eHz58/F+mhEhcXh9evX+Pz589cWU5ODry9vQEUDM8qFBAQgDNnzgi1gbKzs7keXN/3lnBxccG6deswe/ZsrFu3jiu/ePEiDA0Ni/1/+r2cnBwEBATg06dPGDRoEFfu6uqK+/fvw9TUFA0bNgQAdO3aFSdPnkSXLl2E6vixp5m0qaurw9HRsUi5q6sr5s2bJ/S3yMjIQN++fZGYmCjUQ8nX1xcXL16EqakpV5aXlwdtbW3o6ekhMDCQO1c+ffoEFRUV+i4mZX5+fmjevDk3ZcXmzZuxYcMG6ikqZ0qUJPL39xd6/vLlS+Tn53Mf0mFhYVBUVCx2ye6SCA4ORuvWrQEAr169EnqtLN0/nz9/ju7du3PPC5NddnZ2OHz4MEaPHo2kpCQsX74cCQkJMDc3x/Xr16Gvr1/qYxJSGV25cgWvX79GvXr1uLKrV6/C2dkZhw4dKvL/msi3nJwcbu4AAwMDNGjQAImJiYiKiuKSRIQQ6bpx4wY2btxYpLxv375CQzNKQlLtrl/5/Pkz+Hx+kTaWvr4+QkJCSlxPz549ERgYiMzMTBgaGuL06dNF5uApRKvKyr9GjRoJDTkCgDp16sDBwaHItsUlEJo3b45nz54VKd+3b1+RsmbNmkEgEBSZE3TXrl3YvHmzUFKqdu3aeP36dZFt582bhzFjxqB+/fpcmYaGBk6fPo38/HyhRNOwYcNgYmIiNN9jfn4+HBwckJycLJSUeffuHTIzM4USQZmZmdycXsnJydDR0QEA7NixA6dPn8a0adO4RPKHDx/QoUMHVK1aFSkpKdyKUGPHjoWpqSnMzMy4erW0tMrV8HBlZeUiq+/VqFED165dK7LtpEmTYGpqyn2+AQWdBPLz85GWliaUUNqwYQO2bt2KlStXYsWKFVw5n88XSvYR8dm+fTvmzZuHP/74A25ubgBA7Uo5VaIk0b1797ifXV1doampiSNHjnAfVl+/fsWUKVOKvZsgav3i1K1bNzDGfrnNX3/9JXRXThpo4mpS0fB4PLRo0UKorEaNGrCxsRH6XGCMoXPnzrCwsMCKFSuELtZE9pKSkuDk5ISnT5/i7du3qFKlCng8Hs6cOYNatWpxjU5CiPTVqFEDFy9exLx584TKL168KPJnqaTaXdIgyoIhixYtgpOTE/bv34/9+/eDz+cL9TAnldOPCQBNTU2hyZaBgh5K3/dGKdS4cWOhXk9AwcI0I0aMKLJt586d0blz5yLHKvxy/L0dO3bA2dlZaG7H1NRUdOjQQShBBAChoaF49OiRUPuqfv36qF+/PkxMTPDlyxcuGTtjxowix6rI2rVrx81rU6hx48b4+vUrYmNjhZLgsbGxACCUgIqLi0Pz5s3RrVs3nD17lpJFYmZqago+n4+UlBRKxsk5HvtdFuUHderUwc2bN9G8eXOh8levXqF37974+PFjietavnw5hgwZUuoeSOVd4XCz1NRUmXfxJERS2HcTQr548QJt27ZF1apVkZSUBDU1NQAFd3n09PSKdC0n0pWdnY369evj06dPuH79Ovr06SPrkIgco2uYdB0+fBjTpk1Dv379YGlpCQDw8fHB9evXsX//fkyePPm3dUiz3cXj8YRWN8vNzYW6ujrOnDkjtOKZnZ0dUlJScPHiRYnHROcsqQiCgoIQHh6Oxo0bo2XLlrIOp1xLSkqCqqoqlyQ8fvw4JkyYgHbt2sHX15fb7siRI6hZsyZ69OhBk2SLQCAQIC4uTmg6Cn9/f6GeXkQ00rqOibysRVpaGpKSkoqUJyUlFVla83c+fPiAfv36wdDQEH/++SeuXbuG3NxcUUMihMix7+/amJqa4tKlS9i4cSOXIAKA//3vf9DV1cXZs2dlEWKlxOfzcfbsWcyZM4crU1NTw969e+Hn50cJIkLkzOTJk/H48WNUq1YN586dw7lz51CtWjU8evSoRAkiQLbtLmVlZVhYWODOnTtcmUAgwJ07d346XExc3N3dYWpqWqSHASHlUatWrTB8+HBKEIlBzZo1hXqRjRkzBs+fP8emTZu4Mj6fD2dnZwwYMABPnjyRRZjlUmJiInr37g0rKyukpqZy5ZQgKh9E7kk0adIkPHz4EFu2bOGWPfbx8cH8+fNhbW2NI0eOiBSAQCDA48ePcfnyZVy8eBHx8fHo1asXhgwZgoEDBwotUVlRfD/cLCwsjO5okUotPz8fLVq0QGhoKMLCwri5CV68eAFvb28MHTq0yFh0UnYxMTEwMTEBn8+Hn58f2rZtK+uQSDlDvTLKJ0m2u75fMKR169ZwdXVF9+7duQVDvLy8YGdnh71793ILhpw6dQohISFSmQ+SzllCiKhSU1OxaNEiPHr0CC9evODmjTp+/Dhev36NP//8U6inDCmQkZEBc3NzfPz4EZcuXULPnj1lHVKFIK3rmMhJoqysLDg7O8PDwwN5eXkAACUlJdjb22PTpk1lHi7y9u1bruHy/PlzWFpaYvDgwRg7dizq1KlTprrlDTVWCCnAGMPbt2+Fxv/Pnj0bO3fuxJQpU+Dh4SHD6CqGlJQU+Pr6onfv3lyZo6MjqlWrhtmzZ6NmzZoyjI6UR3QNk77IyEgcOnQIUVFR2LZtG/T09HDt2jXUrVu3yDQAJSXOdtf9+/eFFgwpVLhgCAC4ublh06ZN3IIhO3bs4IbPSRqds4QQcWnbti1evHiB9evXi7x4QEWVnZ0tNFLg5cuX0NDQKDKPFyk9uU0SFcrMzERkZCQAoEGDBhKZSyQpKQmenp64c+cOrK2t4ezsLPZjyBI1Vgj5uWPHjsHDw4Pr4gsUrLoVGBjI9WIkJRMdHY1WrVqBz+fj/fv3lBAiYkHXMOl68OAB+vXrBysrK3h7e+Pt27cwMTHBhg0b8Pz5c5w5c6bMx6io7S7qwU0IESfGGM6ePYtDhw7h+PHj0NbWBgBERUUhMzOzUg4FvHfvHuzs7ODm5obBgwfLOpwKS+6TRBEREYiMjESXLl2gpqYmNDltWaWnp8PT0xMHDx7E8+fPK9wqYNRYIaR0li9fjrVr12LlypVYvny5rMMpNxhjaN++Pb59+4Zjx47B3Nxc1iGRCoCSRNLVsWNHjBw5Ek5OTtDU1ERgYCBMTEzg6+uLYcOG4cOHD6Wuu6K3uwrROUsIkaThw4fj/Pnz2LFjh9RXz5Y1Z2dnbNmyBZ06dcKjR4/ElhcgwuR24uovX77AxsYGjRs3Rv/+/REfHw8AsLe3L7Isq6i8vb1hZ2eH2rVrY/PmzejevTuePXtWpjrlkYODA968eQM/Pz9Zh0JIucEYw6dPn8AYK3ZZWiIsOTkZhfcAeDwerl69iqCgIEoQEVJOBQcHw9bWtki5np4ePn/+XKo6K0u7iyauJoRIWl5eHpSUlKCgoIAePXrIOhyp++eff7By5UrcuHGDEkQVgMhJorlz56JKlSqIiYmBuro6Vz569Ghcv35d5AASEhKwYcMGNGrUCCNHjkS1atWQk5ODCxcuYMOGDXRBJ4QAKEh07NmzBy9fvsSIESO48pCQEKFVEwjw8eNHWFhYYO7cuRAIBAAKvkjSRZuQ8ktbW5u7Mfc9f39/keYOqoztLro5RwiRtCpVqsDLywuRkZFCNzOPHz+O+/fvyy4wCWCMwd3dHVOmTOFuSKqoqGDFihXQ0NCQcXREHEROEt28eRMbN26EoaGhUHmjRo3w/v17keoaNGgQmjRpgqCgIGzbtg0fP37Ezp07RQ2JEFKJfL90ZnZ2NoYMGYLmzZvj5cuXMoxKvty9exfv3r3DlStXkJKSIutwCCFiMGbMGCxYsAAJCQng8XjcKmXOzs6YNGlSieqgdhchhEhWvXr1uJ8/fPiAP/74A927d8fdu3dlGJV4hYaGYs6cOTh8+DBu3rwp63CIBCiJukNmZqZQD6JCycnJUFFREamua9euYfbs2fjzzz+5Za8JIaSkPnz4AIFAAIFAAGNjY1mHIzcmTJgAZWVltG3btkzLWRNC5Me6devg4OAAIyMj8Pl8mJqags/nY9y4cVi6dGmJ6qis7a7v54IkhBBp0dDQwNixYxEeHo6uXbvKOhyxadq0KdatWwcVFRX06tVL1uEQCRC5J5G1tTWOHj3KPS+8m+Xi4lLssqe/8ujRI6Snp8PCwgKWlpZwc3Mr9bj68oTGxhMiHo0aNUJQUBCuX78OHR0drtzf31+GUclGfn4+cnNzueejRo2CiYmJDCMihIiTsrIy9u/fj8jISFy5cgX//vsvQkJCcOzYMSgqKpaojsra7qLhZoQQWdDW1sa+fftw/fp17nOaMVbu5n4TCATYsmULEhMTubL58+dj9uzZUFAQOZ1AygGRVzd79eoVbGxs0KZNG9y9exeDBw/G69evkZycjMePH6NBgwYiB5GZmQkvLy94eHjA19cXfD4frq6umDp1KjQ1NUWur7ygVTYIEb/79++je/fuGD58OE6ePAklJZE7TJY7jDHMmDEDsbGxOHPmDI0HJ1JB17Dyi9pddM4SQmRjw4YNWLRoEdauXYslS5bIOpwSmT17Nnbu3IkePXrg1q1blBiSIWldx0T+9tSiRQuEhYXBzc0NmpqayMjIwLBhw+Dg4IDatWuXKoiqVati6tSpmDp1KkJDQ3Hw4EFs2LABCxcuRK9evXDp0qVS1UsIqXxev34NJSUl6OrqVooEEQCEhYXhxIkT+PbtG54+fUpdfwmpgJycnIot5/F4UFVVRcOGDTFkyJASDTGldhchhMjGp0+fAAC6uroyjqTk/vzzT5w8eRITJ06kBFElIXJPImnh8/m4fPkyPDw8Kmxjhe5oESIZgYGBMDY25v5fpaamIjU1FXXr1pVxZJLj4+ODt2/fYvLkybIOhVQSdA2Tru7du+Ply5fg8/lo0qQJgIIEsaKiIpo2bYrQ0FDweDw8evRIaGWdkqrI7a7v5yQKCwujc5YQIlOPHz+GlZWVrMP4pa9fvwpN5ZCZmYmqVavKMCICSK/tJXKSKCgoqPiK/v+drLp164o8gXVlRQ1sQqRj+vTp8PLywv79+zF69GhZhyM2fD6/xHORECJudA2Trm3btuHhw4c4dOiQUAJ82rRp6Ny5M6ZPn45x48YhOzsbN27ckHG08onOWUKIvMnNzcWOHTswe/ZsKCsryzocMMawfft2rFmzBo8ePUKzZs1kHRL5jrSuYyL3FzM3N0fr1q3RunVrmJubc8/Nzc3RtGlTaGlpwc7ODt++fftlPUFBQRAIBCU+7uvXr5Gfny9quISQSu7bt2948+YN0tPTYWBgIOtwxObWrVto06YNYmJiZB0KIUQKNm3ahDVr1gg1CrW0tLBy5Uq4uLhAXV0dy5cvx4sXL4rdn9pdhBAif8aPH4/58+dj2rRpsg4FAJCTk4OTJ08iOTkZXl5esg6HyIjISaLz58+jUaNG2LdvHwIDAxEYGIh9+/ahSZMmOHHiBA4ePIi7d+/+djnW1q1b48uXLyU+bseOHSvMlyFa3YwQ6VFVVYW3tzfu3r0La2trrjw8PLzcLofM5/Ph6OiIoKAgbN68WdbhEEKkIDU1lZvL4ntJSUlIS0sDULCSzverHH6vMre7CCFEXtnb20NLSwvjxo2TdSgACtrN165dg4eHB1asWCHrcIiMiDyr6z///IPt27ejT58+XFnLli1haGiIZcuWwdfXF1WrVsW8efN++eWFMYZly5ZBXV29RMf9WaOnPHJwcICDgwPXXYwQIlmKioro3r079zw5ORnW1tYwNjbG2bNny10PI0VFRdy4cQPr16/Hpk2bZB0OIUQKhgwZgqlTp2LLli3cTSY/Pz84Oztj6NChAABfX180bty42P0rc7uLEELkVd++ffHu3Ttoa2vLLAaBQABfX1906NABAKCjo4MpU6bILB4ieyIniYKDg1GvXr0i5fXq1UNwcDCAgiFp8fHxv6ynS5cuCA0NLfFxO3bsCDU1NdGCJYSQYgQFBSErKwupqaklWglIXjDGwOPxAABGRkbYtWuXjCMihEjL3r17MXfuXIwZM4YbBqakpAQ7Ozts3boVANC0aVMcOHCg2P0rc7vr+4mrCSFE3nyfIEpJScG7d+9gbm4ulWMzxuDo6Ig9e/bg3LlzGDRokFSOS+SbyBNXt27dGmZmZti3bx83uVZeXh6mT5+OwMBA+Pv74/Hjx5gwYQKio6MlEnRFQRMoEiI7sbGxSElJQcuWLQEUXCSjo6NhYmIi48iKl5KSgqFDh2L9+vXo2LGjrMMhhK5hMpKRkYGoqCgAgImJCTQ0NGQcUflB5ywhRJ69e/cOffr0QWZmJoKCgqRyIzM/Px/jx4/H6dOnceLECYwZM0bixySlJ7cTV7u7u+PKlSswNDREz5490bNnTxgaGuLKlSvYvXs3ACAqKgozZ84Ue7CEECIuRkZGXIIIAE6fPo0mTZpg9erVMozq55YvX44HDx5g0qRJNJksIZWYhoYGWrVqhVatWlGCiBBCKpCaNWsCKFg1XFpzwikpKeHEiRO4d+8eJYgIR+ThZp06dUJ0dDSOHz+OsLAwAMDIkSMxbtw4aGpqAgAmTpwo3igJIUTC7t69i/z8fJFW/5Gm9evX4/Pnz1i4cCGUlET+6CaEVADPnz/HqVOnEBMTU2TOoHPnzskoKkIIIeJQtWpVXLx4Efr6+tDR0ZHosdLS0rieKIqKiujatatEj0fKF5GHmxHxoW7PhMiXq1evolevXtxQ2sDAQNy8eRMzZ85E1apVZRwdIfKFrmHSdfLkSUyaNAl9+vTBzZs30bt3b4SFhSExMRG2trY4dOiQrEOUe3TOEkJIwQIurVu3xoQJE7B69WooKirKOiRSQtK6jpX6dvSbN2+KvZM1ePDgMgdFCCGyMGDAAKHnK1euxIULFxAeHo59+/ZJPZ7ly5ejUaNG1DuTEIJ169Zh69atcHBwgKamJrZv3w5jY2P873//Q+3atWUdHiGEEDG7desWfH19sWTJErHWe+bMGcTExOD06dNYsGABJc1JESIniaKiomBra4vg4GDweDwUdkQqXHFH1JUj8vLy0LdvX+zZsweNGjUSNZxyiVbZIKR8GDp0KF6/fo25c+dyZenp6QDADa+VlOvXr2PNmjXg8Xho3bo1WrRoIdHjEULkW2RkJJfIVlZWRmZmJng8HubOnYsePXpg1apVJaqnMra7CCGkvHnz5g169+4NHo+HPn36oG3btmKre8aMGdDT04OhoSEliEixRJ642tHREcbGxvj06RPU1dXx+vVreHt7o23btrh//77IAVSpUgVBQUEi71eeOTg44M2bN/Dz85N1KISQX7Czs0NISAiaNWvGlbm4uMDY2BhHjx6V6LF79+6NuXPnYu3atZQgIoRAR0eHS1LXqVMHr169AlCw8mFWVlaJ66mM7S53d3eYmpqiXbt2sg6FEEJKxNTUFJMnT8bs2bPRsGFDsdc/dOhQsSaeSMUicpLo6dOnWL16NXR1daGgoAAFBQV07twZ69evx+zZs0sVxIQJE3Dw4MFS7UsIIZKkoPB/H5OMMVy/fh1fvnyR+KpCCgoK2LJlCxYtWiTR4xBCyocuXbrg1q1bAAoWDHF0dMT06dMxduxY2NjYiFRXZWt30c05Qkh55OHhgW3btkFbW1ss9V28eFGkmwqk8hJ5uBmfz+eGWejq6uLjx49o0qQJ6tWrh9DQ0FIFkZ+fDw8PD9y+fRsWFhZFJoh1dXUtVb2EECJOPB4PT58+xeXLlzFkyBCu/OLFi3j16hVmzZpVpm67vr6+uHLlClatWgUej8cN4yWEEDc3N3z79g0AsGTJElSpUgVPnjzB8OHDsXTpUpHqonYXIYTIP3G2A/38/DB06FDUq1cPQUFBNMyM/JLISaIWLVogMDAQxsbGsLS0hIuLC5SVlbFv3z6YmJiUKohXr16hTZs2AICwsDCh1+hLEiFEnigpKcHW1pZ7zufzsXjxYrx58wY8Hg+LFy8uVb0pKSkYMGAAPn/+jOrVq2POnDliipgQUt7l5+fjypUr6NOnD4CCnoYLFy4sdX3U7iKEkPLj3bt3+OeffzBq1Cj06tWrVHUkJSWhXr166NKlCyWIyG/xWOHM0yV048YNZGZmYtiwYYiIiMDAgQMRFhaGGjVqwMvLCz169JBUrBUOLcVKSPknEAjg5eWFnTt34tq1a9DS0gIAxMXFQUNDg3teEh4eHti/fz9u3rwp8YmxCSkruoZJl7q6Ot6+fYt69erJOpRyi85ZQkh5NGfOHGzfvh39+vXDf//9V+p6cnNzkZ2dLVLblMgXaV3HRE4SFSc5ORk6OjpluvuUkpKCgwcP4u3btwCA5s2bY+rUqRX6JKbGCiEV18iRI3H79m0cOHAAw4cPL/F+fD4fioqKEoyMEPGga5h0devWDXPnzhUa6loW5bHdFRsbi4kTJ+LTp09QUlLCsmXLMHLkyBLvT+csIaQ8ioiIwLx58+Do6EgdMio5uUwS5eXlQU1NDQEBAWJdbef58+fo06cP1NTU0L59ewAF4yazs7Nx8+ZNrkt0RUONFUIqpuzsbLRv3x6vXr1CcHDwTz8vs7KysG7dOixZsgRqampSjpKQsqFrmHSdOnUKixYtwty5c4udR6hVq1Ylrqu8trvi4+ORmJgIc3NzJCQkwMLCAmFhYUV+Fz9D5ywhpLIJCwtDfHw8unTpQsOJKwC5TBIBgImJCc6fPw8zMzOxBWFtbY2GDRti//79UFIqmCYpPz8f06ZNQ1RUFLy9vcV2LHGiO1qEkJ8RCAR4+vQprKysuDJXV1ekpqZizpw50NHRwahRo3D69GkMGjQIly5dkmG0hIiOrmHS9f1Ki4V4PB4YY+DxeODz+SWuq7y2u35kZmaGK1euwMjIqETb0zlLCKls7O3t4eHhgfnz58PFxUXW4ZAyktZ1rGiL4zeWLFmCxYsXIzk5WWxBPH/+HAsWLOAaKkDB5LB///03nj9/LrbjiJuSkhK2bduGN2/e4ObNm5gzZw4yMzNlHRYhRA4oKCgIJYhSU1OxZs0arF69mlvGetasWahduzb+/vtvWYVJCCknoqOjizyioqK4f0UhqXaXt7c3Bg0aBAMDA/B4PFy4cKHINu7u7qhfvz5UVVVhaWkJX1/fUh3rxYsX4PP5JU4QEUJIeZeUlAR3d3c8ffq0xPtoampCXV0dQ4cOlVxgpMIReXUzNzc3REREwMDAAPXq1SvSxffly5ciB1GtWjXExMSgadOmQuWxsbFyPXlr7dq1Ubt2bQBArVq1oKuri+Tk5BJ3eyaEVB6ampo4cOAAvLy8MGLECAAFd/MjIyNpqBkh5LfEOWG1pNpdmZmZMDMzw9SpUzFs2LAir3t5ecHJyQl79uyBpaUltm3bhj59+iA0NBR6enoAAHNzc+Tn5xfZ9+bNmzAwMABQMBfmpEmTsH///lLHSggh5c3q1avh5uaG8ePHo2PHjiXaZ9u2bVi1ahX1niQiETlJJIks5OjRo2Fvb4/NmzejU6dOAIDHjx9j/vz5GDt2bKnr9fb2xqZNm/DixQvEx8fj/PnzReJ3d3fHpk2bkJCQADMzM+zcuZMbny8KuqNFCPkVBQUFDB8+vMgk1pQgIoSU1LFjx7Bnzx5ER0fj6dOnqFevHrZt2wZjY2ORJrSWVLurX79+6Nev309fd3V1xfTp0zFlyhQAwJ49e3D16lV4eHhg4cKFAICAgIBfHiMnJwdDhw7FwoULudh/tW1OTg73PC0trYTvhBBC5M/48ePx9OlTdO7cWaT95HlBAiKfRE4SrVixQuxBbN68GTweD5MmTeLuHlWpUgV//vknNmzYUOp66Y4WIYQQQiqC3bt3Y/ny5ZgzZw7++ecfbg4ibW1tbNu2TaQkkaTaXb+Sm5uLFy9eYNGiRVyZgoICevbsWeKhE4wxTJ48GT169MDEiRN/u/369euxatWqUsdMCCHypEOHDiUeEpySkoKcnBzo6+tLOCpSEYk8cTVQcNKdOXMGkZGRmD9/PqpXr46XL19CX18fderUKXUwWVlZiIyMBAA0aNAA6urqpa7rRzwer0hPIktLS7Rr1w5ubm4ACiaaNTIywqxZs7g7Wr+Tk5ODXr16Yfr06b9tsBR3R8vIyIgmUCSEEFLu0CTA0mVqaop169Zh6NCh0NTURGBgIExMTPDq1St069YNnz9/FrlOaba7Pn78iDp16uDJkydCwyT+/vtvPHjwAD4+Pr+t89GjR+jSpYvQSm7Hjh1Dy5Yti92e2l2EkMpq69atcHZ2hqOjI1xdXWUdDhETabW9RO5JFBQUhJ49e0JLSwvv3r3D9OnTUb16dZw7dw4xMTE4evSoSPXl5eWhb9++2LNnDxo1avTTC7240R0tQgghhJQX0dHRaN26dZFyFRUVkRbNkFW7Sxw6d+4MgUBQ4u1VVFSgoqICd3d3uLu7i7QCHCGEyKv8/HwEBQWhTZs2P93mxYsXEAgEMDY2lmJkpKIQeXUzJycnTJ48GeHh4VBVVeXK+/fvX6olU6tUqYKgoCCR9yurz58/g8/nF+mCp6+vj4SEhBLV8fjxY3h5eeHChQswNzeHubk5goODf7r9okWLkJqayj1iY2PL9B4IIYQQUjkYGxsXO1/P9evX0axZsxLXI6t2l66uLhQVFZGYmChUnpiYiFq1akn02A4ODnjz5g38/PwkehxCCJG0rKws6Ovrw8LCAnFxcT/d7t9//8XHjx8xadIkKUZXMfn5+cHZ2Rm7du2qNDcbRO5J5Ofnh7179xYpr1OnTomTKz+aMGECDh48KLFx8JJCd7QIIYQQIg1OTk5wcHDAt2/fwBiDr68vPD09sX79ehw4cECkumTR7lJWVoaFhQXu3LnDDUETCAS4c+cO/vrrL4kem9pdhJCKQl1dHQ0bNkRoaCjevHnzy6leClfhJqW3e/duODg4oHCGnoCAAOzbt0/GUUmeyEkiFRWVYleHCAsLQ82aNUsVRH5+Pjw8PHD79m1YWFgUWUJeEuMoZX1Hy8HBgRtTSAghhBDyK9OmTYOamhqWLl2KrKwsjBs3DgYGBti+fTvGjBkjUl2SandlZGQgIiKCex4dHY2AgABUr14ddevWhZOTE+zs7NC2bVu0b98e27ZtQ2ZmJrfamaRQu4sQUpFcuXIFNWrUgIKCyIOCiAjc3Nwwa9YsAICFhQVevnyJ/fv3o1evXhg5cqSMo5Mskc+swYMHY/Xq1cjLywNQMDFhTEwMFixYUGRp55J69eoV2rRpA01NTYSFhcHf3597/G4p1NL6/o5WocI7Wt9PqCgJ7u7uMDU1Rbt27SR6HEIIIYRUHOPHj0d4eDgyMjKQkJCADx8+wN7eXuR6JNXuev78OVq3bs3NneTk5ITWrVtj+fLlAIDRo0dj8+bNWL58OczNzREQEIDr169LfPUdSbW73rx5AyMjI+zatUus9RJCyK/UrFnzlwmi0aNHw97eHlFRUVKMqmJ59uwZ5s6dCwBYsmQJ/Pz8sHTpUgAFCy58vyhCRSTy6mapqakYMWIEnj9/jvT0dBgYGCAhIQEdO3bEf//9V+RulCx9f0erdevWcHV1Rffu3bk7Wl5eXrCzs8PevXu5O1qnTp1CSEiIVJYLpJVhCCGElFd0DZOutWvXYvz48TQJaRmI+5wdPnw4zp07BwAoxWLBhBAidhkZGdDW1gafz8e7d+9Qr149WYdU7iQnJ8Pc3ByxsbEYPXo0PD09wePxkJWVhYYNGyI+Ph47duzgehlJk7TaXiL3JNLS0sKtW7dw+fJl7NixA3/99Rf+++8/PHjwoFQJory8PNjY2CA8PFzkfX9HXu9oEUIIIYSI4vTp02jYsCE6deqEXbt2lWrJe0Cy7a7KhoZ6EEJkZe3atejWrRt8fX2FypWUlHDu3Dls2rSJEkSlIBAIYGdnh9jYWDRs2BD79u0Dj8cDUDAf1IoVKwAA//zzD3Jzc2UZqkSJ3JMoNjYWRkZGYg2iZs2aePLkCRo1aiTWeuXV9xMohoWF0V1YQggh5Q71JJK+169f4/jx4zh58iQ+fPiAXr16Yfz48Rg6dCjU1dVLXA+1u8Rzzv7555/Ys2cPACApKQm6urplrpMQQkpi4MCBuHr1Ktzc3ODg4CDrcCqMzZs3Y/78+VBRUcHTp0+5ziaF8vLyULduXSQkJOD06dMYMWKEVOOT255E9evXR9euXbF//358/fpVLEEUrrJRWdBSrIQQQggRVfPmzbFu3TpERUXh3r17qF+/PubMmSPyghvU7hKP7+ekCA0NFWvdhBDyKzNnzsThw4cxYMAAWYdSYTx48AALFy4EAGzbtq1IgggAqlSpwi224OXlJdX4pEnk1c2eP3+OEydOYPXq1Zg1axb69u2LCRMmYNCgQVBRUSlVELJY3YwQQgghpLyqWrUq1NTUoKysjPT0dJH2pXaXeHx/s/Tt27ewsrKSYTSEkMqkf//+xZZfvnwZ+vr6MDMzK/V388ooNjYWI0eOBJ/Px7hx4/C///3vp9v269cP69evx6NHj8AY44ajVSQiJ4kK5/hxcXHB/fv3ceLECcyYMQMCgQDDhg2Dh4eHyEEUrrIBAGFhYUKvVcRf+vfdngkhhBBCSiI6OhonTpzAiRMnEBoaiq5du2LVqlUid3endpd4pKSkcD9LajVeQggpKYFAgNGjRyM7OxthYWGVZkhxWWVnZ2PYsGFISkqCubk59u/f/8trYbt27aCsrIyEhARERkaiYcOGUoxWOkSek6g4L1++hL29PYKCgijxIQKaz4EQQkh5Rdcw6erQoQP8/PzQqlUrjB8/HmPHjkWdOnVkHVa5Iu5z1tzcHIGBgQCAjh074smTJ2WukxBCSiokJARhYWHo0aMHNDQ0kJKSgqFDhyIqKgpRUVFQUhK5P0ilIxAIMGnSJBw/fhw1atTA8+fPUb9+/d/uZ2VlhSdPnuDYsWOYMGGC5AP9/+R2TqJCHz58gIuLC8zNzdG+fXtoaGjA3d291IE8fPgQEyZMQKdOnRAXFwcAOHbsGB49elTqOgkhhBBCKgIbGxsEBwfD398fzs7OZU4QUbur7H7sSUQ3Sgkh0tSrVy8MGTIEr169AgBoa2vj/v37iImJoQRRCTDGMHv2bBw/fhyKiorw8vIqUYIIKLhJAADBwcGSC1CGRE4S7d27F127dkX9+vVx9OhRjB49GpGRkXj48CH++OOPUgVx9uxZ9OnTB2pqanj58iU3EWBqairWrVtXqjoJIYQQQiqKf/75B6ampmKpq7K1u9zd3WFqaop27dqJtd7v5yTKzs6Gv7+/WOsnhJBfadOmDVq3bl2hl2KXFMYYFixYAHd3d/B4PBw5cgQ2NjYl3r9FixYAfp8kys7OLlOcsiLycDMjIyOMHTsW48ePh5mZmViCaN26NebOnYtJkyZBU1MTgYGBMDExgb+/P/r164eEhASxHEdeSGopVkIIIURaaLiZ9H348AGXLl1CTExMkS8Fokw2XdnaXYXEec7y+XzuTn2HDh3w7NkzbNy4EX///bc4QiWEECIheXl5mD59Oo4cOQIA2LNnzy8nqi7Oo0ePYG1tDUNDQ8TGxha7TW5uLiwsLNCpUyds3LgR2traZQ1dam0vkfuhxcTEiH1Sw9DQUHTp0qVIuZaWllBX3orCwcEBDg4O3B+ZEEIIIeRX7ty5g8GDB8PExAQhISFo0aIF3r17B8YYNwl1SVW2dpckpKamcj8PHz4cz549w507dyhJRAiRGQcHB7x48QJLly7FwIEDZR2OXPr06RPGjx+P27dvQ1FREXv27MG0adNErqd58+YACm7eZGRkQENDo8g2mzdvxqtXr5CYmIj169eXOXZpEnm4WWGCKCsrCyEhIQgKChJ6lEatWrUQERFRpPzRo0cwMTEpVZ2EEEIIIRXFokWL4OzsjODgYKiqquLs2bOIjY1F165dMXLkSJHqonZX2fH5fAwZMgS9e/dG3759ARTM81Q4dI8QQqQtICAAPj4++Pbtm6xDkUv37t2Dubk5bt++DTU1NVy4cKFUCSIA0NHR4XoGvXv3rsjrERERWLNmDQBg69atqF69emnDlgmRk0RJSUkYMGAANDU10bx5c7Ru3VroURrTp0+Ho6MjfHx8wOPx8PHjRxw/fhzOzs74888/S1UnIYQQQkhF8fbtW0yaNAkAoKSkhOzsbGhoaGD16tXYuHGjSHVRu6vsatasiQsXLuDGjRto3rw59PT0kJ2dDR8fH1mHRgipJIKCgmBjY4Nhw4YBAHbt2oVz587ByspKxpHJl0+fPmHy5Mno0aMH4uPj0axZM/j6+pa5t5WxsTEAIDo6WqicMYaZM2fi27dv6NmzJ8aNG1em48iCyMPN5syZg9TUVPj4+KBbt244f/48EhMTsXbtWmzZsqVUQSxcuBACgQA2NjbIyspCly5doKKiAmdnZ8yaNatUdcqz7+ckIoQQQgj5napVq3LzENWuXRuRkZFcd/fPnz+LVBe1u8SLx+PBxsYGnp6euHLlSrFD+QghRBLu3r0LXV1dAICZmZnY5gyuCCIiIrB9+3YcOnQImZmZAIAZM2bA1dUVVatWLXP9xsbG8Pf3L9KTKCgoCLdu3YKKigp2794t9ql6pEHkiatr166Nixcvon379qhWrRqeP3+Oxo0b49KlS3BxcSnT0qm5ubmIiIhARkYGTE1Nix3bV5HQpJ+EEELKK7qGSdfQoUMxYMAATJ8+Hc7Ozrh48SImT56Mc+fOQUdHB7dv3xa5Tmp3ic/Zs2cxYsQI1KtXD9HR0eXySwEhpHzJzMzEuXPnYGhoiO7du8s6HLmQm5uLK1eu4ODBg7h27RoKUx1t2rSBu7s7OnToILZjzZs3D66urpg7d67Q4hFeXl4YM2YMrKysypQbKY7cTlydmZkJPT09AAVj8ZKSktC4cWO0bNkSL1++LFMwysrKYlvelRBCCCGkonB1dUVGRgYAYNWqVcjIyICXlxcaNWok0spm36N2l/j0798fGhoaeP/+PXx8fMT6RYQQQopTtWpVTJw4EUDBkKqHDx+iTp06lerzh8/nIyAgAHfv3sXdu3fx8OFDrtcQUPDZPHfuXNjY2Ig9ef+z4WaFc/41aNBArMeTJpGTRE2aNEFoaCjq168PMzMz7N27F/Xr18eePXtQu3ZtScRICCGEEFKpfT+hdNWqVbFnzx4ZRkN+pKamhsGDB+PEiRPw8vKqVF/SSOXy9etX3Lt3DyoqKujWrZtYhu2Qsnvx4gVGjBgBc3Nz+Pv7yzociQsMDIS7uzvOnDmDr1+/Cr1Wq1Yt2NnZwd7eHo0aNZJYDIVJoh+Hm0VGRgKoZEkiR0dHxMfHAwBWrFiBvn374vjx41BWVsbhw4fFHR8hhBBCCPnOzJkzsXr1am4eCiIfxowZgxMnTsDT0xMbN26EsrKyrEMiRKz+/fdf/PHHH1xPDQMDA5w+fRqdOnWScWSV16tXr/DhwwekpqbCysoKjRs3lnVIEsPn83HmzBns3LkTjx8/5so1NTXRtWtX2NjYoEePHmjRogUUFERen0tkP+tJVBGSRCLPSfSjrKwshISEoG7dutRYERHN50AIIaS8omuY7FSrVg0BAQG0XL2IJH3O5uXloV69eoiPj4eXlxdGjRol9mMQIitHjx6FnZ0dAKBx48bIzMxEXFwctLS04OfnJ9EeG+Tnunfvjvv37+PkyZMYPXq0rMORmEuXLmHx4sV4/fo1gIJVPocNG4Y//vgD1tbWUFISue9LmWVmZnJz+SUnJ0NHRweMMdSqVQufPn3Cs2fPYGlpKdZjSqvtVaYU2+PHj6GoqIg2bdpQgkgE7u7uMDU1Rbt27WQdCiGEEELKmTLe3yMSUqVKFUyfPh0AsHv3bhlHQ4j4hIWF4c8//wRQsNL127dvERYWho4dOyI1NRUTJkyAQCCQcZSVU5MmTWBubg41NTVZhyIRjDHMmzcPQ4YMwevXr6GtrY0VK1bg/fv38PLyQvfu3WWSIAIKhn4XztVcOOTs3bt3+PTpE6pUqYJWrVrJJC5xKFOSqF+/foiLixNLIA8fPsSECRPQsWNHrs5jx46JfUZweeDg4IA3b97Az89P1qEQQgipBL59+4bAwECcPHkSqampsg6HyIHK1O6S5s25adOmQUFBAffv30dwcLDEj0eIpAkEAkyaNAlZWVno0aMHtmzZAgUFBairq+PUqVPQ1NSEr68vPD09ZR1qpbRnzx74+/tj8ODBsg5F7BhjcHZ25hZncHZ2RnR0NFauXAkDAwMZR1fgxyFnhcPg2rRpU64Td2VKEonrTtbZs2fRp08fqKmpwd/fHzk5OQCA1NRUrFu3TizHIIQQQiq6zMxMvHjxAseOHcOiRYswZMgQNGrUCFWrVoW5uTnGjh1b5pVIieylp6eXaahZZWt3SfPmnJGREYYPHw4AWL9+vcSPR4ikeXl5wcfHB9WqVcPhw4eF5noxNDTEggULAAAbNmygXo4yNGfOHLRv3x4XLlyQdShis3z5ci5BtH//fmzatAna2tqyDeoHdevWBQB8+PABAODt7Q0AsLKykllM4iD5GZ1KYO3atdizZw/279+PKlWqcOVWVlbUmCWEEEJ+kJaWBh8fHxw6dAjz58/HgAEDYGxsDA0NDbRt2xaTJk3Chg0bcOnSJUREREAgEEBbW7vcN1oqu8jISCxduhTjxo3Dp0+fAADXrl3j5mgoKWp3SdbixYsBFHy5DgsLk3E0hJRefn4+VqxYAQCYP38+jIyMimzj4OAADQ0NvHr1Cvfv35dyhKTQq1ev4OfnJ7T8e3m2f/9+rF27FgDg5uaGadOmyTii4unr6wMAEhMTwRjDtWvXAAC9evWSZVhlVqYBfHv37uV+MWURGhqKLl26FCnX0tJCSkpKmesnhBBCyqPk5GS8efOGe7x9+xZv3rzh7lgVp2bNmjA1NS3y0NfXB4/Hk2L0RJwePHiAfv36wcrKCt7e3li7di309PQQGBiIgwcP4syZMyWui9pdkmVubo4BAwbg6tWrWLlyJU6cOCHrkAgpFU9PT4SHh0NXVxeOjo7FbqOtrY2xY8di//798PT0RPfu3aUcZeV269YtrFu3DowxXLx4EW3atJF1SGX28OFDbg6slStXwsHBQcYR/dz3SaLClebU1dXRrVs32QZWRqVOEkVERKBGjRpcl0PGWKkbn7Vq1UJERATq168vVP7o0SNauYMQQkiFxhhDUlKSUDKo8JGYmPjT/QwMDIokgpo1a0YLSVRQCxcuxNq1a+Hk5ARNTU2uvEePHnBzcxOpLmp3Sd7q1avx33//wdPTE7NmzULHjh1lHRIhInN3dweAIp87PxozZgz279+PM2fOwM3NDcrKytIKsdJLS0vD/fv3YWVlVSHmJfr69SvGjx8PPp+PsWPHYvny5bIO6Ze+TxJFREQAAFq1agVVVVVZhlVmIieJvnz5gtGjR+Pu3bvg8XgIDw+HiYkJ7O3toaOjgy1btogcxPTp0+Ho6AgPDw/weDx8/PgRT58+hbOzM5YtWyZyfYQQQog8ysvLQ0hICAICAhAYGIjAwEAEBATg8+fPP92nbt26xSaD5G1cPpGs4ODgYnuk6Onp/fL8KQ61uySvTZs2mDx5Mg4dOoTZs2fj6dOnMluBh5DS8Pf3h4+PD6pUqQJ7e/tfbtu1a1fUqlULCQkJuHnzJgYOHCilKImlpSU8PT2LHQpY3jDGMGPGDMTGxqJhw4bYu3ev3PeALkwSJSQkcMPAxTHSStZEvlrNnTsXSkpKiImJQbNmzbjy0aNHw8nJqVRJooULF0IgEMDGxgZZWVno0qULVFRU4OzsjFmzZolcHyGEECJrycnJXCKoMBn05s0b5ObmFtmWx+PB2Ni4SDKoadOmv7x7SyoPbW1txMfHcyupFPL390edOnVEqqu8trtSUlLQs2dP5OfnIz8/H46OjtyS8/Jo3bp1OHv2LJ4/f45NmzZh0aJFsg6JkBLbu3cvAGDYsGHcMt8/o6ioiFGjRmHHjh04c+YMJYmkyNDQEAMHDsTVq1fx6NEjdO7cWdYhlZqXlxfOnDkDJSUlnDhxoly0f2rVqgWgoCdRYe/v3/1/KQ9EThLdvHkTN27cgKGhoVB5o0aN8P79+1IFwePxsGTJEsyfPx8RERHIyMiAqakpNDQ0SlWfvHN3d4e7uzv4fL6sQyGEEFJGAoEAkZGRQsmgwMBAxMbGFrt9tWrV0KpVK5ibm8PMzAxmZmZo3rw51NXVpRw5KU/GjBmDBQsW4PTp0+DxeBAIBHj8+DGcnZ0xadIkkeoqr+0uTU1NeHt7Q11dHZmZmWjRogWGDRuGGjVqyDq0YtWqVQs7duzA5MmTsWLFCvTs2RPt2rWTdViE/FZ6ejqOHz8OAPjjjz9KtM+gQYOwY8cO3L59u0zTkBDRRUZGYsyYMdDT0/vlMHV5lpmZifnz5wMoWNWsvHxWfj/crFIniTIzM4ttyCYnJ0NFRaVUQcTExMDIyAjKysowNTUt8lrh0nIVhYODAxwcHJCWlgYtLS1Zh0MIIaSEMjMzERwcLJQQCg4ORkZGRrHb169fXygZZG5ujvr161PjmYhs3bp1cHBwgJGREfh8PkxNTcHn8zFu3DgsXbpUpLrKa7tLUVGRa4Pm5OSAMSb3S25PmjQJFy9exPnz5zFkyBD4+fmJ3POrJPz8/HDmzBkkJCSgcePGsLe35+5wEyKqEydOICMjA02aNEHXrl1LtI+VlRVUVFQQFxeH0NBQNG3aVMJRkkKFK1w2bNhQxpGU3qZNm/DhwwfUr1+fSxaVB4VJotzcXISHhwOopEkia2trHD16FGvWrAEA7m6Wi4tLqWezNzY2Rnx8fJFf6JcvX2BsbEw9bgghhEjdx48f4e/vL9Q7KDw8vNgvpaqqqmjRooVQMqhVq1Z0I4CIjbKyMvbv34/ly5dzicnWrVujUaNGItclqXaXt7c3Nm3ahBcvXiA+Ph7nz5/H0KFDhbZxd3fHpk2bkJCQADMzM+zcuRPt27cv8TFSUlLQtWtXhIeHY9OmTXI/UTuPx8Phw4cRGhqKN2/eoHfv3rh7967Y5qx4//49HB0dcfHiRaHyzZs3w9PTE3379hXLcUjl4unpCQCwt7cv8U0NNTU1WFlZ4e7du7hz506FSRIxxiAQCKCgoCC3N3g2b94MAFi8eLGMIymd2NhYuLi4AChIFpWnSZ9VVVWhrKyM3NxcbuLqSjknkYuLC2xsbPD8+XPk5ubi77//xuvXr5GcnIzHjx+XKoifdUnMyMgoVycJIYSQ8ik/Px9BQUF48uQJHj9+jCdPniAmJqbYbWvVqsUlggqTQo0bN6ZJaYlUGBkZlXmCUkm1uzIzM2FmZoapU6di2LBhRV738vKCk5MT9uzZA0tLS2zbtg19+vRBaGgol7AyNzdHfn5+kX1v3rwJAwMDaGtrIzAwEImJiRg2bBhGjBgh9w3yatWq4fLly+jSpQvevHmDrl274vLly6VK8BVijOHYsWOYNWsW0tLSoKCggDFjxqB58+Y4e/YsXr58icGDB+P+/fvo1KmTGN8NqegSEhLg7e0NABg1apRI+/bs2RN3797F7du35XrZ8pJ48eIF/v77b3h7eyM/Px+6urpo3bo12rRpA2tra3Tt2lVuhui2atUKCgoKUFRUlHUopbJhwwZkZ2ejS5cuGD58uKzDEZmmpia+fPmC6OhoABWjJxGPlaKfbmpqKtzc3BAYGIiMjAy0adMGDg4OqF27tkj1ODk5AQC2b9+O6dOnCw1j4/P58PHxgaKiYqmTT/KucLhZamoqqlWrJutwCCGk0khJScGzZ8+4hJCPjw8yMzOFtlFQUECzZs2EkkFmZmZy/4VUWugaJl3Dhw9H+/btsWDBAqFyFxcX+Pn54fTp07+tQ5rtLh6PV6QnkaWlJdq1awc3NzcABfN5GRkZYdasWVi4cKHIx5g5cyZ69OiBESNGFPt6Tk4OcnJyuOdpaWkwMjKS2TkbERGB7t2748OHD9DS0sKuXbswZswYKCgoiFRPfHw8/vjjD1y6dAkA0KlTJxw4cIBbUCY3NxejR4/GhQsXUL9+fbx58wZqampifz+kYnJ3d8dff/2F9u3bw8fHR6R9fX19YWlpCW1tbXz58kXkc1tevHz5El26dCnSLvhelSpV0KlTJwwYMAATJkwQ+XswKZCcnAwjIyNkZWXhzp076NGjh6xDEln9+vWF5mYODg5GixYtJHIsabW9SnXbU0tLC0uWLCnzwf39/QEU3A0JDg6GsrIy95qysjLMzMzg7Oxc5uMQQgipvBhjiIyMFOol9Pr16yLDxrS0tNCxY0d06tQJVlZWaN++vdzcJSTE29sbK1euLFLer1+/Eq8sK8t2V25uLl68eCG0wpeCggJ69uyJp0+flqiOxMREqKurQ1NTE6mpqfD29saff/750+3Xr1+PVatWlTl2cWnYsCF8fX0xcuRIPH78GOPHj8eaNWuwYMECjBs3TujvUZz4+Hjs27cP27dvx9evX1GlShWsWrUKf//9t1APAmVlZRw9ehTNmzfHu3fv4OLighUrVkj67ZEKojDhLGovIgBo06YN1NXVkZKSgtDQUKGVsMuL9+/fY8CAAcjMzETXrl2xb98+VK9eHdHR0fD394efnx9u376Nd+/e4cGDB3jw4AEWLVoER0dHrFmzRu4XocjLy8OLFy8QEhICAKhduzYaN26MgIAAHDx4EL6+vqhatSpmzJgBBwcH/Pvvv3jy5AlUVFTQu3dvjBw5UqzJv/379yMrKwtmZmalnrpG1n5chU1eF1MQCSuF7Oxs5uPjwy5fvswuXrwo9CiNyZMns9TU1FLtW56lpqYyAJXyvRNCiKR8+/aNPX78mLm4uLChQ4cyPT09BqDIo2HDhmzSpEls7969LDg4mPH5fFmHXq7QNUy6VFVVWUhISJHyt2/fMlVVVZHqkka7CwA7f/489zwuLo4BYE+ePBHabv78+ax9+/YlqtPHx4eZmZmxVq1asZYtW7I9e/b8cvtv376x1NRUtnnzZtakSRPWsGFDuThnc3Nz2erVq5mWlhb3eVSnTh32v//9j3l6erKAgAAWFxfHUlJSWFhYGDtw4AAbNWoUU1JS4ra3sLBgQUFBvzyOl5cXA8BUVVVZTEyMlN4dKc8+f/7MFBQUGAAWHR1dqjo6d+7MALCjR4+KNzgpSE5OZs2aNWMAWMuWLVlKSkqx2wkEAhYeHs7c3d2ZlZUV9/+yZcuWLDExUcpR/15WVha7cOECmzRpEtPR0Sm2TVTSR48ePZiPjw9LS0src1zZ2dmsdu3aDAA7fPiwGN6pbHTs2FHod5SRkSGxY0mr7SVykujatWusZs2ajMfjFXkoKChIIsYKixrYhBBSdgkJCez8+fPM2dmZderUiSkrKxdp1CgrK7NOnToxZ2dndv78eZaQkCDrsMs9uoZJV7t27diqVauKlK9YsYK1adNGBhH9miSSRGUlb+dsamoqc3Fx4b4kleRhZWXFTpw4wfLy8n5bv0AgYF26dGEA2OzZs6Xwjkh5d/ToUQaAtWrVqtR1zJkzhwFgs2bNEmNk0jFy5EguaRsbG1vi/a5evcr09fUZANapUyeWk5MjwShLhs/nsxs3brARI0YwdXV1oc8RXV1dZmNjw/r06cOaNWvGlJSUWO3atdnChQuZn58f279/P6tWrRoDwAwNDdnatWvZ/PnzmZqamlA92trazMzMjC1btowlJyeLHOPu3bsZAGZkZCQXv7PS6t27N/c7UVRUZAKBQGLHktZ1TOThZrNmzcLIkSOxfPlysc3LsHr16l++vnz5crEcR9xSUlLQs2dP5OfnIz8/H46Ojpg+fbpMYomNjUVOTg6UlJSgqKgIJSUl7vHj8/I6PpgQQhhjeP36NTds7PHjx4iMjCyyXc2aNWFlZcUNHWvTpg0thEDKtWXLlmHYsGGIjIzk5my4c+cOPD09SzQf0fdk0e7S1dWFoqIiEhMThcoTExMlvlS7u7s73N3d5W613GrVqmH+/PmYPXs2rl27Bm9vb3h7eyMmJgZfvnyBQCAAALRv3x7t2rXD9OnTYWZmVuL6eTweli1bhl69euHAgQP4559/aAgt+aXLly8DAAYOHFjqOtq1awcA8PPzE2m/5ORk6OjoyGwFsUePHuH06dNQUFDAxYsXYWhoWOJ9+/fvjwcPHqBDhw548uQJNm7ciGXLlkkw2l+LjY3F+PHj8fDhQ66sXr16sLW1xbBhw9CpUyehIarsh8UM2rZti2HDhiEkJATm5ubcELrp06dj8eLFuHv3LpKTk5GSkoKUlBQEBgZi586dWLx4MWbNmlWi9lZeXh42btwIAJg/f/5vh9vKs+8/V6tVqya3q+CJQuSJq6tVqwZ/f380aNBAbEG0bt1a6HleXh6io6OhpKSEBg0a4OXLl2I7ljjx+Xzk5ORAXV0dmZmZaNGiBZ4/f17icYjinHjKxsYGd+/eLfH2P0sglfS5uro6qlatyv1b+Pj++a9eK3xeXmfhJ4RIT0ZGBm7fvo2rV6/iv//+w8ePH4ts07x5c6GkUIMGDSrERVqe0cTV0nf16lWsW7cOAQEBUFNTQ6tWrbBixQp07dpVpHqk0e762cTV7du3x86dOwEUTFxdt25d/PXXX6WauFpU5emcZYwhJycHysrKZbq5xxhDkyZNEB4ejsOHD8POzk6MUZKKJDc3FzVr1kRaWhqePn2KDh06lKqesLAwNGnSBKqqqkhLS0OVKlV+uX1mZiaGDBmCO3fuoGXLlrh27Rrq1KlTqmOXha2tLS5cuIBp06Zh//79parD09MT48aNg6qqKiIiImTyPh4+fAhbW1t8+fIFVatWhb29PSZNmoQ2bdqItV2Unp6O2NhYBAQEYP369Xj16hWAgjmORo0ahREjRqBjx47FfteLi4vDhg0b4ObmBj09Pbx7965cT64/efJkHDlyBEBBMu7du3cSO5bcTlw9YsQI3L9/X6xJosKJFL+XlpaGyZMnw9bWVmzHETdFRUUus5qTkwNWMHxPJrGoqalBU1OT69XE5/O5O1DFKdxO1lRUVH6ZUNLU1ISWllaxj2rVqgk9V1dXpy+FhFQQkZGRuHr1Kq5evYr79+8jNzeXe01NTQ0dOnTgkkIdOnSAjo6ODKMlRDoGDBiAAQMGlLkeSbW7MjIyEBERwT2Pjo5GQEAAqlevjrp168LJyQl2dnZo27Yt2rdvj23btiEzMxNTpkwp9TErKh6PJ5bejzweD5MmTcKyZctw9OhRShKRn3r48CHS0tKgp6eH9u3bl7qehg0bcl9iX79+DXNz859uy+fzMXbsWNy5cwdAwapQCxcuxLFjx0p9/NJISkriVgucO3duqesZM2YMdu3ahUePHmHjxo3YsWOHuEIskWPHjsHe3h55eXlo06YNTp06Jdbv7N/T1NSEqakpTE1NMXr0aBw7dgxLly5FXFwctm/fju3bt6Nhw4bw8PCAtbU1gILvnxMnTsTJkye5elxdXct1gggQnrhaS0tLhpGIj8g9ibKysjBy5EjUrFkTLVu2LJIdnj17ttiCCw4OxqBBg0qdjfP29samTZvw4sULxMfHF7mjBRR0Qd60aRMSEhJgZmaGnTt3ivTBmJKSgq5duyI8PBybNm2Cg4NDifeVdCZQIBCAz+dzSaPvE0jF/VzS7fLy8pCdnY3MzExkZmYiKyur2J9/9ZokkmmKioq/TCL9KslUvXp11KxZ87d3OwghkpGXl4dHjx7h6tWruHLlCkJDQ4VeNzY2xsCBAzFgwAB07dqVho7JgfLUK4OUTFnbXffv3y92dRo7OzscPnwYAODm5sa1u8zNzbFjxw5YWlqWIerf+364WVhYWKU7Z9+9ewdjY2PweDy8e/cOdevWlXVI5P/Lz8+Hj48PAgICkJiYiAYNGsDGxkakoU7iMmfOHGzfvh1TpkyBh4dHmerq2bMn7ty5g/3792PatGnFbsPn8zFlyhQcO3YMKioq2LBhA+bOnQsFBQVERkaifv36ZYpBFIcOHcLUqVPRunXrMvekvH37Nnr16gUNDQ3ExcVJ7bPmn3/+wdKlSwEAw4cPx9GjR6W+0lpOTg5u3LiBM2fO4NKlS0hNTYWamhoeP36M1q1bY/ny5VizZg2AgtFJf//9NxYvXlzub/IvWrQIGzZsAAB07txZaJifuMltTyJPT0/cvHkTqqqquH//vtAflcfjiTVJlJqaitTU1FLvn5mZCTMzM0ydOhXDhg0r8rqXlxecnJywZ88eWFpaYtu2bejTpw9CQ0Ohp6cHADA3Ny+2x83NmzdhYGAAbW1tBAYGIjExEcOGDcOIESPENldTWSkoKEBBQUHuEh+MMXz79q1EyaW0tDSkpqZy/xb3SEtLA5/PB5/PR3JyMpKTk0sdW40aNaCnpwd9ff1fPvT09OhLKiFl9OnTJ/z333+4evUqbt68ibS0NO41JSUldO7cmes50bRp03LfiCCkLPh8PrZu3YpTp04hJiZGqHcdgDJd+wqVtd3VrVu3394E+uuvv/DXX3+V+hil4eDgAAcHB65xXdnUr18fXbt2xYMHD3D69GnMmzdP1iFVem/fvsXmzZtx8eJFfPnyReg1RUVFzJ8/H2vWrIGSkshf1UrtypUrAIBBgwaVuS5zc3PcuXMHgYGBP93GyckJx44dg6KiIjw9PWFra4srV67gzp072LdvH9atW1fmOErq4sWLAIAhQ4aUuS4bGxs0bdoUISEhOH36NOzt7ctc5++4u7tzCaKFCxfin3/+kckctCoqKhg8eDAGDx6M9PR0jBgxAjdv3sSUKVOwd+9euLi4AACOHz+OsWPHVph23fc9iSrKDQiRP3mWLFmCVatWYeHChWI7+X7siscYQ3x8PI4dO4Z+/fqVut5+/fr9cn9XV1dMnz6d6+a8Z88eXL16FR4eHtzY+ICAgBIdS19fH2ZmZnj48CFGjBhR7DY5OTnIycnhnn//hagy4fF4UFNTg5qaWonnb/oVxhiysrJ+mUT63WvJycng8/n48uULvnz5grdv3/72uNWqVfttIqnwZ5ookpCC3o3+/v7cMDI/Pz+hL5Q1a9ZEv379MGDAAPTu3Rva2tqyC5YQObNq1SocOHAA8+bNw9KlS7FkyRK8e/cOFy5cEHmiaUm1u+SVvE5cLU0jRozAgwcPcP78eUoSyVBsbCxWrVqFQ4cOcdNC1KhRA506dYKBgQFevnwJPz8/bNiwAQkJCfDw8JDKF+mYmBhERkZCUVERPXv2LHN9rVq1AgAEBQUV+3pAQAA3N1lhgggAZs6ciTt37sDd3R2zZ8+W+KT2AJCdnY2bN28CEE+SiMfjYeLEiViyZAm8vLwkmiTKycmBq6srlixZAqDgOiEvCz5pamri6NGjaN68OQIDA7k5rnr06FGhEkRAxRxuBlGXQ9PR0WERERFiWFjt/9SvX1/oYWJiwiwtLdmiRYtYWlqaWI6BH5ZizcnJYYqKikJljDE2adIkNnjw4BLVmZCQwMWXkpLCmjdvzoKCgn66/YoVK4pdzlRelmKtzPh8PktKSmKvXr1id+7cYSdOnGBbt25lCxcuZFOmTGH9+/dnFhYWzNDQkFWpUqXES9UWPtTV1ZmxsTHr1KkTGz9+PFu+fDk7cuQIe/ToEYuPj5foUomEyFJaWho7d+4cs7e3L3aZ59atW7OlS5eyZ8+esfz8fFmHS0Qgb8uJV3QmJibsypUrjDHGNDQ0uLbY9u3b2dixY0WqSxrtLnlUmc/Z2NhYBoDxeDz27t07WYdT6Xz+/JnNmzePqaiocNe/oUOHsnv37rG8vDyhbU+ePMkUFBQYAHby5EmpxPfvv/8yAKxdu3ZiqS8gIIABYFpaWsW2cSdOnMgAsFGjRgmV5+fns7Zt2zIArGPHjuzDhw9iiedXLl26xACwunXriq09Hh4ezi2H/vXrV7HU+SNfX1/WvHlz7nz666+/5PL7xNOnT5m+vj4DwKytrdnnz59lHZLYeXh4cH+H//3vfxI9lrSuYyL3JLKzs4OXlxcWL14s6q4/FR0dLba6Surz58/g8/lFhobp6+sjJCSkRHW8f/8eM2bM4CasnjVrFlq2bPnT7RctWgQnJyfueVpaGoyMjEr3BohYKSgoQFdXF7q6umjevPkvt2WMISUlBYmJiUUenz59KlKWnZ2NrKwsREdHIzo6Gk+ePClSZ9WqVWFiYoIGDRoUedStW1fuhgwS8isRERFcb6EHDx4IDYupWrUqevXqhQEDBqB///4wMDCQYaSElB8JCQlcG0NDQ4MbFjZw4ECRl1qWRbuLyJahoSF69OiBu3fv4uDBg1i9erWsQ6oUMjMzsW3bNri4uHAjCLp06YL169ejU6dOxe4zevRovH37FqtWrcLff/+NYcOGSbwd6O3tzcUmDs2aNYOSkhJSU1MRExODevXqca+lpKTg1KlTACD0vQgoGGp3+PBhWFlZ4enTp+jUqRNevnwplpEHP1M41Gzw4MFi693SsGFDNGnSBKGhobh3757YF2Lavn07nJycIBAIoKenh/Xr12PKlCly2TunQ4cOePfuHT59+gQjIyO5jLGsvl885fteReWZyEkiPp8PFxcX3LhxA61atSryoeXq6lqien78UPiVktYpbe3bty/xcDSgYJymiooKdXsu53g8HnR0dKCjo4OmTZv+clvGGDIyMriEUVxcHKKiohAZGck9YmNjkZmZieDgYAQHBxepQ1FREfXq1Ss2gWRiYkJD2YjMMcbg6+uLU6dO4cqVKwgLCxN63cTERGjSaRUVFRlFSkj5ZWhoiPj4eNStWxcNGjTAzZs30aZNG/j5+ZXo/1RFaHeVFrW7CsyYMQN3797F5s2b0aZNGwwZMqRCfmGTBzk5Odi/fz/Wrl2LxMREAICZmRnWr1+Pvn37/vb3vmDBAuzatQsxMTG4cOECRo4c+dtjZmVlQVVVtVTTgYg7SaSsrIxmzZohODgYQUFBQkmi69evIycnB02bNi12saDmzZvj4cOHGDJkCKKjozFp0iRcvnxZInPs8Pl8XL58GYB4hpp9r3fv3ggNDcWNGzfEmiS6efMm5syZAwAYO3YsduzYAV1dXbHVLwmqqqoVesL8Hj16cD8X/n8v70ROEgUHB6N169YAgFevXgm9JsqFprjlV4sjqYuXrq4uFBUVi/whExMTJT7+tbJPoFiZ8Hg8aGpqQlNTEw0bNix2m5ycHLx7904ocVT4iIqKQk5ODqKiohAVFYVbt24V2V9fX79I8qhhw4Zo0aIFJZCIRGVnZ8PLywtubm548eIFV66kpARra2tu0ukmTZrQFxFCysjW1hZ37tyBpaUlZs2ahQkTJuDgwYOIiYkp0ZLNsm53yRK1uwqMHDkSBw8exK1bt2BrawtbW1scPXqU2gpilJOTAw8PD6xbtw4fPnwAUHCjZO3atRg9enSJEx1qamr43//+h7Vr18LDw+OXSaL09HTMmDEDJ0+ehJ6eHk6fPi1SsufTp0/cKIrOnTuXeL/fMTMzQ3BwMAIDA4Umwy5Myvyq507Lli1x/vx5dOjQAf/99x9cXFy4+WJ/JTo6GmfPnkXt2rUxatSo3/bAevDgAT59+gRtbW107dpVhHf3ezY2Nti5c6dYV7rKz8/nEv7/+9//sGfPHrHVTUqvWrVqWL9+PZYsWSKVicqlQqKD2eQIfpiTiDHG2rdvz/766y/uOZ/PZ3Xq1GHr16+XaCxubm6sWbNmrHHjxpV2bDwpGT6fz2JjY9n9+/fZwYMH2eLFi9no0aNZ27ZtmY6Ozi/nQVJQUGAtW7Zk06ZNY/v27WMBAQFFxr0TUhpRUVFs/vz5rHr16tz5pqKiwsaNG8dOnTrFUlJSZB0ikYLKPL+LPHjy5AnbsmULu3TpkqxDKTfonGUsPT2dLV68mCkrKzMArGXLliwqKkrWYZV7b9++ZU5OTqxGjRrcdbFOnTps165dLCcnp1R1hoSEMACsSpUqLDk5udhtBAIBs7GxEWr/aWpqsocPH5b4OGfOnOHOBXFycXFhANiIESO4sry8PK796u3t/ds6Dhw4wLVpHzx48MttL168yFRVVbnfg4WFBUtISPjlPvb29gwAmz59esnelAgSExO5WH41L1FKSgqbNWsWs7a2Zk5OTkX+1rm5uezq1avM3d2dzZ07lwFgOjo6Pz0niOx8+/ZN4seQ1nWsQieJ0tPTmb+/P/P392cAmKurK/P392fv379njBVMDKeiosIOHz7M3rx5w2bMmMG0tbV/+4EiLtRYIWWVnJzM/Pz82MmTJ9m6deuYvb0969atW7ETBOP/T6BtbW3N5s2bx7y8vNi7d+/kcpI7In/4fD67fv06GzhwIOPxeNw5VbduXbZ+/Xr26dMnWYdIpIyuYaS8oXP2/zx9+pTVqlWLAWC6urrs6NGj7OjRo1yS//3796xr167szJkzMo5Ufn379o0dPXqUWVtbC7W1DA0N2c6dO1l2dnaZj1E4MfHx48eLff348eNc++7WrVusa9euXFLl/v37JTrG7NmzGQA2c+bMMsf7vdu3bzMArF69elzZ/fv3GQBWo0aNEi1WIRAI2KRJkxgA1rx585/u8/1k32ZmZtxNrIYNG7Lo6Ohi98nOzmZaWloMQIl/V6Jq0KABA8CuX79e7Ot5eXmsY8eOQuePiYkJO3jwIFu+fDkbPny4UOKx8LFlyxaJxEvkn1wliWxtbblAbG1tf/kora9fv7LNmzcze3t7Zm9vz7Zs2VLmu9H37t0r9ouynZ0dt83OnTtZ3bp1mbKyMmvfvj179uxZmY4pCmqsEEmKi4tj58+fZ4sWLWI9evRgmpqaxf5/0NPTYwMHDmSrV69mN27coDsTRMjXr1/Z1q1bWcOGDYXOm169erGLFy/SimSVGF3DpC8kJIQ5ODiwHj16sB49ejAHBwcWEhJSqrok0e6SV9SDu3ixsbHMwsJC6LO9Xbt27Nu3b6x///5cGRGWnp7O3N3dmZGRkVDv7cGDB7PLly+Ltdf2/PnzGQA2ZcqUIq8JBALWpk0bBoCtXr2ai61nz54MAOvZs2eJjmFubi6RldRSU1O5xE1cXBxjjDEnJycGgE2aNKnE9Xz9+pXrfeTp6Vnk9Tt37nArD0+ePJnl5eWx8PBwVr9+fQaA1apVq9jvd2fPnmUAmJGREePz+aV/o78wduxYBoCtW7eu2Nd37NjBALBq1aoxV1dXLuYfH/r6+qxTp06Mx+OxSZMmsdzcXInES+SfXCWJJk+ezC2JOnny5F8+SsPPz49Vr16d1alTh0s2GRoasho1arAXL16Uqk55Ro0VIgt8Pp+9efOGHTp0iP3555/MwsKCKSkpFXsxatSoEZswYQLbsWMHe/bsmVS6TxL5EhgYyGbMmMHU1dW586JatWps9uzZpf5SSioWShJJ15kzZ5iSkhLr0KEDmzt3Lps7dy7r2LEjU1JSErm3R2VrdxWic7aozMxMNm3aNFa1alXus/7ff/9lGhoa3PPC7wDyLD8/v0jPaD6fz/777z92+PBhsdwAO3v2LGvZsqVQe6l27dpszZo1Eluq/caNG1zvpB/fX2BgIDfcOykpiSuPjo7mkjO/G0qYlpbG9Q4uTOSIk5mZGQPATp8+zQQCAXfD6fTp0yLVs3LlSgaAdezYUej3cO/ePe7cHTlypFCyJy4ujvt7GRoasoyMDKE6hw0bxgCwv//+u2xv8hc2bNjAALDRo0cXeS0/P58ZGxszAMzNzY0xxtjnz5+5NvqkSZOYq6sru3v3Lpd4pPY4kaskEWOMrVq1imVmZkokiM6dO3OZ30J5eXnMzs6OWVtbS+SY8oAaK0TWsrOz2ZMnT9i2bdvYuHHjuG6xPz6qVKnC2rVrxxwcHNiRI0dYSEiIxO66ENnJzc1lJ0+eLNJ1vkWLFmzPnj0sPT1d1iESOULXMOkyMTFhy5YtK1K+fPlyZmJiIlJd1O6ic7Y4S5Ys4XoTfX8NuHHjhqxD+6XExETWpEkToQSCp6enUELHxMSk1MOiAwMD2eDBg4V+Jw0aNGDu7u5iGVL2K5mZmdwNvcLpMgpt3ryZAWD9+/cvsl+3bt1KNCypcPiXkZGRWOMuNGfOHAaADRo0iPn6+jIATFlZWeTE48ePH7l5tM6dO8euXbvGhg0bxvUg6t27d7F/i9TUVFavXj0GgG3cuJEr//TpE1dfQEBAmd/nz/z3338MAGvWrFmR165fv84AsOrVq0vsOzapeOQuSaSgoMASExMlEoSqqip7+/ZtkfLXr18zNTU1iRxTHlBjhcijz58/s2vXrrFVq1ax/v37M11d3WITR1paWqxnz55s48aNLDY2VtZhkzKIi4tjK1asEJrLSlFRkY0cOZI9ePCA5q0ixaJrmHSpqamx8PDwIuVhYWEit5Wo3UXnbHECAgKKvd7v2bNH1qH90sSJE7lYQ0JCuMQHAKampsb1iB01ahQ7ePAga9u2LbO2tmYzZsxgW7duFfp/FRoayjZu3MjWr1/PNm7cyA3FAsCUlJTY4sWLWXx8vFSvi61bty62903hkMDiEkE7d+7keoZnZWX9tO5NmzYxAGWaMuRXQkNDud9fYY+l8ePHl6quv//+u9jzc9iwYb9M1h08eJABBXMjFQ6RnzVrFgPA2rZtK9G/ZVxcHDcc8ccYx48fzwAwBwcHiR2fVDxylyTi8XgSSxLp6ekVe5fi+vXrTE9PTyLHlCUabkbKE4FAwKKiopinpyebO3cus7KyElo9ovDC37NnT3b06FHqbVJOCAQC9uDBAzZq1CihYYe1atViy5cvl1jXeVJx0Bdu6erXrx/z8PAoUu7h4cF69+4tUl2Vrd1ViM7ZXxMIBL+dJDcrK4tdvHixTMOOz5w5w6ZNm8YuXLjAGGMsIyOD6508f/58pqenx5ycnH5ZR05ODnv69CnLz8/neooAYAcPHmRDhgzhhia9f/+e+fv7Cy24UNzj+3b5jw9lZWU2YsQI9ubNm1K/57L4448/GADm7OzMlQkEAm7S5eKGiKakpDADAwMGgG3btu2ndY8aNYoBP58zRxz++usv7nepp6fHYmJiSlVPZmYm16OrWrVqzNHRkQUGBv52v6ysLKatrc2AghXVwsLCuHbPnTt3ShVLSQkEAlatWjUGgL1+/Zorz8nJ4cqfPHki0RhIxSKXSSJJrV4za9YsZmhoyE6ePMliYmJYTEwM8/T0ZIaGhszR0VEix5QH1Fgh5VVubi57+fIlc3NzY126dBFqTFWtWpVNnDiR3bp1iyY1lkPp6elsz549ReZV6Ny5Mzt58mSpl+ollQ9dw6Rr9+7drGbNmszBwYEdO3aMHTt2jDk4ODA9PT22e/dudvHiRe7xO5Wt3UU350quMMHy/aNwUuTg4GAuIaOpqVnixV7u37/PLCwsWK1atbg5ar4ftqWoqMi6du3KAgMDhZI5P/Z2i4qKYlFRUSwrK4u1b9+eAeCWMC98TJkyhVvZ6vv4Fi1axPXoWLZsGTtw4ABbvnw569mzp9CNEh6Px/r06cNGjhzJhgwZwtzc3Njnz5/F9wsuhcJl4G1sbLiy6OhoBhRMB/Cz6/b27dsZAGZlZfXTuk1MTBgAduvWLbHHXSg/P5/9+++/bOfOnUJzJ5VWYmKiyHPzjBs3jgEF8w8VzkVU3DA9SSjsCXbp0iWurHDlNz09PZq+gYhELpNE2traTEdH55eP0sjJyWGzZ89mysrKTEFBgSkoKDAVFRU2Z86cCj1BFzWwSUURFRXFVq9ezRo1aiTUWDMwMGB///03e/XqlaxDrPRCQ0OZo6Mjd+cRKFgyd8aMGRIdj08qLrqGSRePxyvRQ0FB4bd1UbuLztmfcXd3564RnTp1YgDYggULGGOsyHx1Wlpav53o/M6dO0xFRUVoPwUFhWJ7LP34UFJSYq1bt2Zr1qxhM2bM4JIihb1finsU1quurl5kBajr16+z58+fF4nx06dP7MqVK+zu3bvs48eP4vtlisnjx48ZAFa3bl2u7MKFCwwoWO79Z2JiYrjEV3GjQT5//sz93ir6yraenp5FzkFptU1HjBjBALCtW7dyZYWr1pV20SdSeUnrOqYEEaxatQpaWlqi7FIiysrK2L59O9avX4/IyEgAQIMGDaCuri72YxFCxM/Y2BjLli3D0qVL4ePjg6NHj+LkyZP4+PEjXFxc4OLigjZt2mDixIkYO3Ys9PX1ZR1ypXHz5k1s2bIFN2/e5MoaNmwIBwcHTJ48Gdra2rILjhBSYgKBQGx1UbuL/MyMGTNQq1YtNGnSBJ6ennjy5AkyMzPx8uVLPHz4EMrKyvD398eMGTPw+PFj9O3bFy9fvoShoWGRup49e4bBgwcjJycHgwYNwrRp0xAREQEbGxs0a9YMLi4uePr0KUxMTODm5sbtt3LlSri6uiItLQ3+/v7w9/fnXsvLy8OpU6eKHEtJSQn5+fn48uULAKBt27aoUqWK0DZ9+vQp9j3XrFkTAwYMKNXvSxoaN24MAIiJiUF2djbU1NQQGBgIADA3N//pfkZGRmjevDlev37N/S2+9/z5cwAFbQIdHR3JBC8nhgwZAkNDQ3z48AEAMHXqVDRv3lwqx27QoAEAICIigit78uQJAKBbt25SiYEQkZU0myTJOYmysrKEZnV/9+4d27p1q9yvplBa1O2ZVAbfvn1j586dY0OHDuVWnwAKJkQeMGAAO3ny5C8nUyRlk5eXx5ycnIS60A8cOJBdv36dujYTsaBeGdLx5MkTdvnyZaGyI0eOsPr167OaNWuy6dOni9z7p7K1uwrROSuadevWcUO4CnsY9evXjzFW8LssHDrWoUOHIkOe4uPjWc2aNRkA1qtXr1+eo7m5uaxOnToMANPX12e5ubnsy5cv7O7du+zAgQOsSZMmTF9fn7m7u7MWLVpw17TC3kVAwRLj+K6nyNSpUyX6u5EmgUDAdHR0GAAWHBzMGPu/4VPfr9hVnKlTpzIAbPHixUVec3FxYUDBhN6VwY0bN1itWrWYsbGxVHuM7du3jwFgffv2ZYwVtI8Le9eFhYVJLQ5SMUjrOqZQ0mQSj8cTQ0qqeEOGDMHRo0cBACkpKbC0tMSWLVswZMgQ7N69W2LHlRUHBwe8efMGfn5+sg6FEIlRUVGBra0tzp8/j/j4eLi7u8PS0hJ8Ph9Xr17FmDFjUKtWLUyfPh0PHz4U613yyi4pKQm9e/eGq6srgILPnMjISFy+fBl9+vSBgkKJP/oJITK2evVqvH79mnseHBwMe3t79OzZEwsXLsTly5exfv16keqsbO0uUjpVq1YFAGRmZhbpuVKtWjWcO3cO2traePbsGaytrWFrawsHBwfk5ORg3rx5SEpKQqtWrXD+/HmoqKj89DhVqlTBvXv3sG3bNly/fh1VqlRB9erV0b17d9jb2yMkJAQJCQmYOXMmTp06hRkzZsDHxwczZszg6lizZo1QnfXr1xfvL0OGeDwe15soNDQUAPDu3TsABT25f8XS0hIA4OPjU+S1t2/fAgBMTU3FFapc6927N+Lj4xEZGYnatWtL7bj16tUDAHz8+BFAwWd4Tk4OdHV10bBhQ6nFQYgoSvxNgTEmsSBevnwJa2trAMCZM2egr6+P9+/f4+jRo9ixY4fEjksIkY4aNWpg5syZePbsGUJCQrB06VLUq1cPaWlpOHDgALp06YIGDRpg+fLlCA8Pl3W45Zqfnx8sLCxw7949aGho4Ny5c3Bzc/ttQ5IQIp8CAgJgY2PDPT958iQsLS2xf/9+ODk5YceOHcUOv/kVaneRkiguSWRmZsa9bmJign///RcA4OvriwsXLmDXrl2wtrbGiRMnAAAeHh5cPb/SqFEjODo6/nL4FAA0a9YMe/fuRbt27WBhYYFdu3bh/PnzaNSokdDw6YqUJAL+7/3ExsYCAKKjowGUPEnk5+dX5GZcSEgIAKBp06biDFXuSbLjQ3Fq1aoFAEhISAAArp1ramoq9VgIKakSJ4kEAgH09PQkEkRWVhY0NTUBFMyfMWzYMCgoKKBDhw54//69RI5JCJGNJk2aYM2aNYiKisL9+/dhb28PTU1NvHv3DmvWrEHjxo3RsWNH7N69G8nJybIOt1zx8PCAtbU1YmNj0aRJE/j6+sLW1lbWYRFCyuDr169C87g9ePAA/fr14563a9eO++JYUtTuIiXxfZLozZs3AICWLVsKbTNgwABcvnwZo0aN4ub1KewpP3r0aFhYWEg0xj///BNDhw4FABgYGHDlFS1JVNjzJSEhAdnZ2YiPjwfw+/fZvHlzqKurIy0tjUsKAQU3/wt7EjVr1kwyQRMA/5ckSkpKQn5+Ppckol5ERJ7JxZiDhg0b4sKFC4iNjcWNGzfQu3dvAMCnT59QrVo1GUcnfu7u7jA1NUW7du1kHQohMqOgoICuXbviwIEDSEhIgKenJ/r37w9FRUU8e/YMM2fORK1atTB8+HBcuHABubm5sg5ZbuXk5OCPP/6Avb09cnJyMGTIEPj6+lLDj5AKQF9fn+s1kJubi5cvX6JDhw7c6+np6UUm6P0daneRkihMEn358gXp6ekAgDp16hTZbuDAgfDy8sKVK1cwcuRIAICqqmqRIWCS9v3k2RUtSVSYaIiPj0dMTAwAQENDAzVq1PjlfkpKStx5/+zZM67806dPSElJERrKRiSjRo0aUFBQAGMMSUlJ3ATWlCQi8kwukkTLly+Hs7Mz6tevj/bt26Njx44ACu5utW7dWsbRiR/NSUSIMHV1dYwZMwZXr17Fhw8f4OrqCnNzc+Tl5eHcuXOwtbWFsbExHj16JOtQ5U5cXBy6deuGvXv3gsfjYe3atTh37lyF/KJHSGXUv39/LFy4EA8fPsSiRYugrq7ODRUDgKCgIG71nJKidhcpicLV7gp7l1WpUuW31xYPDw9cvHgRr169QqNGjSQe4/cWLFgAa2trzJ49u9jV1sqz73sSFf496tWrV6LhSoVJou9XiSvsRWRsbAxVVVVxh0u+o6ioyI3GSUhIoCQRKReUZB0AAIwYMQKdO3dGfHy80FhnGxsbGipBSCVTq1YtzJ07F3PnzkVwcDCOHTuGf//9Fx8/fkT37t2xY8cO/PHHHzSOG8DDhw8xcuRIJCYmQkdHBydOnEDfvn1lHRYhRIzWrFmDYcOGoWvXrtDQ0MCRI0egrKzMve7h4cH1BCopaneRkijsSZSWlgagYKn43117NTQ0iiy1Li09evRAjx49ZHJsSfu+J9GnT5+Eyn6ncGLqwsTQ9z9Tj2PpqFWrFhISEpCQkMD1DDUxMZFxVIT8nFwkiYCC/zy1atUCYwyMMfB4PLRv317WYRFCZKhly5ZwcXHBihUrYG9vDy8vL8ycORMvX76Em5vbL1dLqcgYY9i5cyfmzZuH/Px8bvUYanAQUvHo6urC29sbqamp0NDQgKKiotDrp0+fhoaGhsj1UruL/M6PE07XrFlTRpGQwp5E8fHxSExMBAChucp+pbgkUWWdtFpWChN6Hz9+RFJSEgBIdYU1QkQlF8PNAODgwYNo0aIFVFVVoaqqihYtWuDAgQOyDosQIgeqVq0KT09PuLi4QEFBAQcOHEC3bt245UQrk6ysLNjZ2cHR0RH5+fkYN24cnjx5QgkiQio4LS2tIgkiAKhevbpQz6KSonYX+R1KEsmPwiTD58+fERcXBwAlXlCoMBH08eNHpKSkAKCeRNJW+LcKDQ0Fn88HUHADgBB5JRdJouXLl8PR0RGDBg3C6dOncfr0aQwaNAhz587F8uXLZR0eIUQO8Hg8zJ8/H//99x+0tbXx7NkzWFhY4OnTp7IOTWqio6NhZWWFY8eOQVFREVu3bsW///5bouWFCSGkUHlvd2VlZaFevXpwdnaWdSgV2o/XFvpSKzs1atSAklLBAJDg4GAAJU8SaWlpcROOFyaHgoKCAAAtWrQQd6ikGFpaWgDAzUeko6NTquQ+IdIiF8PNdu/ejf3792Ps2LFc2eDBg9GqVSvMmjULq1evlmF04ufu7g53d3cuk0wIKbk+ffrg+fPnGDp0KF69eoWuXbvC3d0d06dPl3VoEnXz5k2MHTsWycnJ0NPTw6lTp9C1a1dZh0UIKYfKe7vrn3/+EVrhjUgG9SSSHwoKCtDX10dcXByX4CnpcDOgoMdQXFwc3r59CxMTEyQmJoLH41GSSEoKJ3wPDw8HINrfjhBZkIueRHl5eWjbtm2RcgsLC+Tn58sgIsmiVTYIKZsGDRrg6dOnGDFiBPLy8jBjxgz88ccfyM3NlXVoYscYw/r169G3b18kJyejffv2ePHiBSWICCGlVp7bXeHh4QgJCUG/fv1kHUqFV7VqVdStW5d7Tkki2Sqcw6Zw4uqS9iQC/m9eojdv3uD58+cAgEaNGlFPZCkp7ElUmCQS5W9HiCzIRZJo4sSJ2L17d5Hyffv2Yfz48TKIiBAi7zQ0NHDq1CmsW7cOPB4Pe/fuRY8ePZCQkCDr0MQmPT0dI0aMwOLFi8EYw7Rp0+Dt7V3hlvYlhEiXpNpd3t7eGDRoEAwMDMDj8XDhwoUi27i7u6N+/fpQVVWFpaUlfH19RTqGs7Mz1q9fX+oYScnxeDx4eXnB0NAQGhoasLGxkXVIldqPq5mJ0hulMEl08uRJTJw4EQDQpk0b8QVHfqmwJ1FOTg4AShIR+Sez4WZOTk7czzweDwcOHMDNmze57sM+Pj6IiYnBpEmTZBUiIUTO8Xg8LFq0CObm5hg7diweP34MCwsLnDt3DpaWlrIOr0xCQ0Nha2uLt2/fQllZGW5ubhV+SB0hRHKk0e7KzMyEmZkZpk6dimHDhhV53cvLC05OTtizZw8sLS2xbds29OnTB6GhodyXJnNz82J7M928eRN+fn5o3LgxGjdujCdPnpQ6TlJyHTp0QExMDAQCQbETpxPp+XE1LAMDgxLv27x5cwDgJr2uU6cOli1bJr7gyC8VJokK0XAzIu9kliTy9/cXem5hYQEAiIyMBFAwOZ6uri5ev34t9dgIIeVLv3794Ofnh6FDh+LNmzfo0qULdu/ejalTp8o6tFK5ePEiJk6ciPT0dNSpUwdnz54t90kvQohsSaPd1a9fv18OA3N1dcX06dMxZcoUAMCePXtw9epVeHh4YOHChQCAgICAn+7/7NkznDx5EqdPn0ZGRgby8vJQrVq1n062nZOTw925B4C0tLRSvCvC4/EoQSQHvu9JVKdOHZGSRFZWVli2bBkyMjLQvXt3dO/eHRoaGpIIkxSjcLhZIZoEnsg7mSWJ7t27J6tDE0IqoEaNGuHZs2ews7PD+fPnYW9vj5cvX2Lr1q2oUqWKrMMrET6fj5UrV2Lt2rUAgC5duuDUqVN0x4kQUmaybnfl5ubixYsXWLRoEVemoKCAnj17lniVyvXr13NDzQ4fPoxXr179cjW29evXY9WqVWULnBA58X1PIisrK/B4vBLvy+Px5H5C+orsx55EPz4nRN7Ixepmhd68eYOYmBihyWd5PB4GDRokw6gIIeWFpqYmzpw5g3Xr1mHZsmVwd3dHUFAQTp8+LfeJlq9fv2LcuHG4fv06AGDOnDlwcXEpNwkuQkj5I8121+fPn8Hn84t8Fuvr6yMkJETsxwOARYsWCQ2zS0tLg5GRkUSORYikFQ4ZA4BevXrJMBIiKkoSkfJGLpJEUVFRsLW1RXBwMHg8HhhjAMBlyGmpeEJISSkoKGDp0qUwMzPDhAkT8PDhQ7Rt2xbnzp1Du3btZB1esYKCgmBra4uoqCioqalh//79NGk/IURiKkK7a/Lkyb/dRkVFBSoqKnB3d4e7u3u5eF+E/Iy1tTXu3r2LzMxM9O3bV9bhEBH8ONyMkkRE3snF6maOjo4wNjbGp0+foK6ujtevX8Pb2xtt27bF/fv3ZR2e2Lm7u8PU1FRuv7ASUhEMGjQIvr6+aNKkCT58+ABra2scOXJE1mEV4enpiQ4dOiAqKgrGxsZ4+vQpJYgIIRIli3aXrq4uFBUVkZiYKFSemJhYZNUmcXNwcMCbN2/g5+cn0eMQIkk8Hg/du3fHwIEDoaQkF/f5SQn9mBTS1NSUUSSElIxcJImePn2K1atXQ1dXFwoKClBQUEDnzp2xfv16zJ49W9bhiR01VgiRjiZNmsDHxweDBg1CTk4OJk+eDEdHR+Tl5ck6NOTl5cHJyQnjxo1DdnY2+vTpg+fPn8PMzEzWoRFCKjhZtLuUlZVhYWGBO3fucGUCgQB37txBx44dJXLMQnRzjhAiSz8mhagnEZF3cpEk4vP53H8eXV1dfPz4EQBQr149hIaGyjI0Qkg5p6WlhQsXLmDFihUAgB07dqB3795ISkqSeiwCgQBv377FoUOHYGNjg61btwIAlixZgqtXr6J69epSj4kQUvlIqt2VkZGBgIAAboWy6OhoBAQEICYmBgDg5OSE/fv348iRI3j79i3+/PNPZGZmcqudSQrdnCOEyJKSkpLQanKUJCLyTi76KrZo0QKBgYEwNjaGpaUlXFxcoKysjH379sHExETW4RFCyjkFBQWsXLkS5ubmmDhxIu7fv4+2bdvi/PnzaNOmjcSOm5SUBB8fHzx79gw+Pj7w8/NDamoq97qmpiaOHDkCW1tbicVACCE/klS76/nz5+jevTv3vHDSaDs7Oxw+fBijR49GUlISli9fjoSEBJibm+P69esSX1iA5iQihMharVq1EBERAYCSRET+8VjhbIUydOPGDWRmZmLYsGGIiIjAwIEDERYWhho1asDLyws9evSQdYgSkZaWBi0tLaSmptKHBSFS8ubNGwwdOhTh4eFQVVXFgQMHxDIHUE5ODvz9/eHj48MlhqKjo4tsp66ujrZt28LS0hLTp09Ho0aNynxsQmSBrmHlF7W76JwlhEiXlZUVnjx5AgD48uUL9R4npSKt65hcJImKk5ycDB0dHW6ljYqIGiuEyEZKSgomTJiAq1evAii4271x48YSTwTJGENUVJRQL6GAgAChZaQLNWvWDJaWlujQoQMsLS3RokULmnCSVAh0DatYqN1FCCGS07dvX9y4cQMAkJubiypVqsg4IlIeSes6JrffVCi7SgiRFG1tbVy6dAkrVqzA2rVr4erqisDAQJw8eRK6urpFtk9JSYGvry/XS8jHxwefP38usl3NmjVhaWnJPdq1awdtbW0pvCNCCCmbitzuouFmhBBZ+/4LPSWIiLyT2yQRIYRIkoKCAtasWQNzc3PY2dnhzp07aNeuHU6fPg1FRUWhXkIhISFF9ldWVkbr1q25HkKWlpYwNjau0HfhCSGkPHJwcICDgwN3B5YQQqSNlr0n5QklicooKysLzZo1w8iRI7F582ZZh0MIEdHw4cPRpEkTDB06FJGRkT9dIrlBgwZCvYTMzc2hoqIi5WgJIYQQQkh5Q0kiUp5QkqiM/vnn/7V378FR1ecfxz+bhFy45EJidgkQoMrNJgYKDQRspUMGjAzW0mLLBBqwkxYJCNJaoCjQKRimto7ocGmZUWxrxdIRvBRoaQCRNiQQEiAiiCMIhYQgmAuXQiDf3x+d7I8loLmc3c2efb9mdoY95+ye53kmm/Pk4Zw9yzR8+HB/hwGgDVJSUrR3715lZ2dry5YtiomJUXp6uvssofT0dN11113+DhMA0ApcbgbA32bNmqUVK1bo0Ucf9XcowJdiSNQGx44d05EjRzR+/HiVl5f7OxwAbRAXF6fNmzfr/PnziouLU0hIiL9DAgBYgMvNAPjb3Xffrerqas4oQkCw7V9Bu3bt0vjx45WUlCSHw6FNmzY12WblypXq3bu3IiMjNWzYMBUXF7doHz/72c+Un59vUcQA2oP4+HgGRAAAALBUTEwMPSYCgm1/Si9duqS0tDStXLnytuvfeOMNzZ07V4sXL9b+/fuVlpamsWPHqqqqyr3NoEGDlJKS0uRx5swZvfXWW+rXr5/69evnq5QAAAAAAAC8xraXm2VlZSkrK+uO659//nnl5uZq2rRpkqQ1a9bob3/7m15++WXNnz9fklRWVnbH1+/Zs0fr16/Xhg0bdPHiRdXX1ys6OlqLFi2642uuXr2qq1evup/X1ta2MCsAAAC0BN9JBABA89n2TKIvcu3aNZWUlCgzM9O9LCQkRJmZmSosLGzWe+Tn5+vUqVM6ceKEfvOb3yg3N/cLB0SNr4mJiXE/evbs2aY8AAAA8MXy8vJ0+PBh7d2719+hAADQ7gXlkOizzz7TjRs35HQ6PZY7nU5VVlZ6bb8LFixQTU2N+3Hq1Cmv7QsAAAAAAKAlbHu5mS9NnTq1WdtFREQoIiLCfdrz9evXJXHZGQAg8DQeu4wxfo4EaJ7Gn1X6LgBAIPJV7xWUQ6KEhASFhobq7NmzHsvPnj0rl8vl9f033or1P//5j3r27MllZwCAgFVXV8dtxREQ6urqJIm+CwAQ0LzdewXlkCg8PFxDhgxRQUGBHnnkEUlSQ0ODCgoKNHPmTJ/FkZSUpFOnTqlLly5yOBzu5bW1terZs6dOnTql6Ohon8Xjb8GYNzkHR85ScOZNzvbO2Rijuro6JSUl+TsUoFnu1He1VjB93puLmniiHk1Rk6aoiSfq0VRjTU6ePCmHw+H13su2Q6KLFy/q448/dj8/fvy4ysrK1LVrVyUnJ2vu3LnKycnR0KFDlZ6erhdeeEGXLl1y3+3MF0JCQtSjR487ro+Ojg7KD0Yw5k3OwSMY8yZn++IMIgSSL+u7WitYPu8tQU08UY+mqElT1MQT9WgqJibGJzWx7ZBo3759+ta3vuV+PnfuXElSTk6O1q1bp+9///s6d+6cFi1apMrKSg0aNEhbt25t8mXWAAAAAAAAwcC2Q6JRo0Z96Rc6zZw506eXlwEAAAAAALRXIf4OAE1FRERo8eLFioiI8HcoPhWMeZNz8AjGvMkZgJ3xeW+KmniiHk1Rk6aoiSfq0ZSva+Iw3LsWAAAAAAAg6HEmEQAAAAAAABgSAQAAAAAAgCERAAAAAAAAxJAIAAAAAAAAYkjULq1cuVK9e/dWZGSkhg0bpuLiYn+HZJn8/Hx9/etfV5cuXZSYmKhHHnlER48e9djmv//9r/Ly8hQfH6/OnTvru9/9rs6ePeuniK23fPlyORwOzZkzx73MjjmfPn1akydPVnx8vKKiopSamqp9+/a51xtjtGjRInXr1k1RUVHKzMzUsWPH/Bhx2924cUPPPPOM+vTpo6ioKN1999361a9+pZvvDxDoee/atUvjx49XUlKSHA6HNm3a5LG+OflduHBB2dnZio6OVmxsrH70ox/p4sWLPsyi5b4o7/r6es2bN0+pqanq1KmTkpKS9MMf/lBnzpzxeI9AzBvA7dm5V7uZVX3byZMnNW7cOHXs2FGJiYl66qmndP36dV+m4jWt7evsVhMr+j67HCet6gcDuR6+6hcPHjyob3zjG4qMjFTPnj3161//2tuptZqveklLamLQrqxfv96Eh4ebl19+2XzwwQcmNzfXxMbGmrNnz/o7NEuMHTvWvPLKK6a8vNyUlZWZhx56yCQnJ5uLFy+6t5k+fbrp2bOnKSgoMPv27TPDhw83I0aM8GPU1ikuLja9e/c29913n5k9e7Z7ud1yvnDhgunVq5eZOnWqKSoqMp988on5+9//bj7++GP3NsuXLzcxMTFm06ZN5sCBA+bhhx82ffr0MVeuXPFj5G2zbNkyEx8fb959911z/Phxs2HDBtO5c2ezYsUK9zaBnvfmzZvNwoULzZtvvmkkmY0bN3qsb05+Dz74oElLSzN79uwx77//vrnnnnvMpEmTfJxJy3xR3tXV1SYzM9O88cYb5siRI6awsNCkp6ebIUOGeLxHIOYNoCm792o3s6Jvu379uklJSTGZmZmmtLTUbN682SQkJJgFCxb4IyVLtbavs1tNrOr77HKctKofDOR6+KJfrKmpMU6n02RnZ5vy8nLz+uuvm6ioKPO73/3OV2m2iC96SatqwpConUlPTzd5eXnu5zdu3DBJSUkmPz/fj1F5T1VVlZFk3nvvPWPM/z4gHTp0MBs2bHBv8+GHHxpJprCw0F9hWqKurs707dvXbNu2zTzwwAPuZsKOOc+bN8/cf//9d1zf0NBgXC6Xee6559zLqqurTUREhHn99dd9EaJXjBs3zjz22GMeyyZMmGCys7ONMfbL+9YDXHPyO3z4sJFk9u7d695my5YtxuFwmNOnT/ss9ra4XbNzq+LiYiPJfPrpp8YYe+QN4H+CrVe7WWv6ts2bN5uQkBBTWVnp3mb16tUmOjraXL161bcJWKgtfZ3damJF32en46QV/aCd6uGtfnHVqlUmLi7O4zMzb948079/fy9n1Hbe6iWtqgmXm7Uj165dU0lJiTIzM93LQkJClJmZqcLCQj9G5j01NTWSpK5du0qSSkpKVF9f71GDAQMGKDk5OeBrkJeXp3HjxnnkJtkz57fffltDhw7VxIkTlZiYqMGDB2vt2rXu9cePH1dlZaVHzjExMRo2bFjA5ixJI0aMUEFBgT766CNJ0oEDB7R7925lZWVJsm/ejZqTX2FhoWJjYzV06FD3NpmZmQoJCVFRUZHPY/aWmpoaORwOxcbGSgqevAG7C8Ze7Wat6dsKCwuVmpoqp9Pp3mbs2LGqra3VBx984MPordWWvs5uNbGi77PTcdKKftBO9biVVfkXFhbqm9/8psLDw93bjB07VkePHtXnn3/uo2y8pzW9pFU1CbMmBVjhs88+040bNzwOGJLkdDp15MgRP0XlPQ0NDZozZ45GjhyplJQUSVJlZaXCw8PdH4ZGTqdTlZWVfojSGuvXr9f+/fu1d+/eJuvsmPMnn3yi1atXa+7cufrFL36hvXv36oknnlB4eLhycnLced3uZz1Qc5ak+fPnq7a2VgMGDFBoaKhu3LihZcuWKTs7W5Jsm3ej5uRXWVmpxMREj/VhYWHq2rWrLWog/e+7KObNm6dJkyYpOjpaUnDkDQSDYOvVbtbavq2ysvK29WpcF4ja2tfZrSZW9H12Ok5a0Q/aqR63sir/yspK9enTp8l7NK6Li4vzSvy+0Npe0qqaMCSC3+Tl5am8vFy7d+/2dyhederUKc2ePVvbtm1TZGSkv8PxiYaGBg0dOlTPPvusJGnw4MEqLy/XmjVrlJOT4+fovOcvf/mLXnvtNf35z3/WV7/6VZWVlWnOnDlKSkqydd74f/X19Xr00UdljNHq1av9HQ4AWCZY+rYvE4x93ZcJ1r7vTugH0RbtoZfkcrN2JCEhQaGhoU3ufnD27Fm5XC4/ReUdM2fO1LvvvqsdO3aoR48e7uUul0vXrl1TdXW1x/aBXIOSkhJVVVXpa1/7msLCwhQWFqb33ntPL774osLCwuR0Om2Xc7du3XTvvfd6LBs4cKBOnjwpSe687Paz/tRTT2n+/Pn6wQ9+oNTUVE2ZMkVPPvmk8vPzJdk370bNyc/lcqmqqspj/fXr13XhwoWAr0HjQf3TTz/Vtm3b3P/zI9k7byCYBFOvdrO29G0ul+u29WpcF2is6OvsVhMr+j47HSet6AftVI9bWZW/3T5HUtt7SatqwpCoHQkPD9eQIUNUUFDgXtbQ0KCCggJlZGT4MTLrGGM0c+ZMbdy4Udu3b29yOtyQIUPUoUMHjxocPXpUJ0+eDNgajB49WocOHVJZWZn7MXToUGVnZ7v/bbecR44c2eQWuR999JF69eolSerTp49cLpdHzrW1tSoqKgrYnCXp8uXLCgnx/LUaGhqqhoYGSfbNu1Fz8svIyFB1dbVKSkrc22zfvl0NDQ0aNmyYz2O2SuNB/dixY/rnP/+p+Ph4j/V2zRsINsHQq93Mir4tIyNDhw4d8vjjpvGPn1sHC4HAir7ObjWxou+z03HSin7QTvW4lVX5Z2RkaNeuXaqvr3dvs23bNvXv3z8gLzWzope0rCYt+ppreN369etNRESEWbdunTl8+LD58Y9/bGJjYz3ufhDIHn/8cRMTE2N27txpKioq3I/Lly+7t5k+fbpJTk4227dvN/v27TMZGRkmIyPDj1Fb7+a7YBhjv5yLi4tNWFiYWbZsmTl27Jh57bXXTMeOHc2f/vQn9zbLly83sbGx5q233jIHDx403/72twPqVvC3k5OTY7p37+6+5embb75pEhISzM9//nP3NoGed11dnSktLTWlpaVGknn++edNaWmp+84LzcnvwQcfNIMHDzZFRUVm9+7dpm/fvu3+lq5flPe1a9fMww8/bHr06GHKyso8frfdfHeJQMwbQFN279VuZkXf1ni79zFjxpiysjKzdetWc9dddwXs7d5vp6V9nd1qYlXfZ5fjpFX9YCDXwxf9YnV1tXE6nWbKlCmmvLzcrF+/3nTs2LHFt3v3FV/0klbVhCFRO/TSSy+Z5ORkEx4ebtLT082ePXv8HZJlJN328corr7i3uXLlipkxY4aJi4szHTt2NN/5zndMRUWF/4L2glubCTvm/M4775iUlBQTERFhBgwYYH7/+997rG9oaDDPPPOMcTqdJiIiwowePdocPXrUT9Fao7a21syePdskJyebyMhI85WvfMUsXLjQ45d7oOe9Y8eO236Gc3JyjDHNy+/8+fNm0qRJpnPnziY6OtpMmzbN1NXV+SGb5vuivI8fP37H3207duxwv0cg5g3g9uzcq93Mqr7txIkTJisry0RFRZmEhATz05/+1NTX1/s4G+9pTV9nt5pY0ffZ5ThpVT8YyPXwVb944MABc//995uIiAjTvXt3s3z5cl+l2GK+6iWtqInDGGOaf94RAAAAAAAA7IjvJAIAAAAAAABDIgAAAAAAADAkAgAAAAAAgBgSAQAAAAAAQAyJAAAAAAAAIIZEAAAAAAAAEEMiAAAAAAAAiCERAAAAAAAAxJAIAAAAAAAAYkgEoB0xxkiSlixZ4vEcAAAA/kOPBgQPh+ETDqCdWLVqlcLCwnTs2DGFhoYqKytLDzzwgL/DAgAACGr0aEDw4EwiAO3GjBkzVFNToxdffFHjx49vVvMxatQoORwOORwOlZWVeT/IW0ydOtW9/02bNvl8/wAAAN7W0h6tNf0ZPRXQPjAkAtBurFmzRjExMXriiSf0zjvv6P3332/W63Jzc1VRUaGUlBQvR9jUihUrVFFR4fP9AgAAWO3JJ5/UhAkTmixvTY/W0v6MngpoH8L8HQAANPrJT34ih8OhJUuWaMmSJc2+3r1jx45yuVxeju72YmJiFBMT45d9AwAAWKm4uFjjxo1rsrw1PVpL+zN6KqB94EwiAD7z7LPPuk8jvvnxwgsvSJIcDoek//9SxMbnLTVq1CjNmjVLc+bMUVxcnJxOp9auXatLly5p2rRp6tKli+655x5t2bLFktcBAAAEsmvXrqlDhw7697//rYULF8rhcGj48OHu9Vb1aH/961+VmpqqqKgoxcfHKzMzU5cuXWpz/ACsw5AIgM/MmjVLFRUV7kdubq569eql733ve5bv69VXX1VCQoKKi4s1a9YsPf7445o4caJGjBih/fv3a8yYMZoyZYouX75syesAAAACVVhYmP71r39JksrKylRRUaGtW7dauo+KigpNmjRJjz32mD788EPt3LlTEyZM4E5pQDvDkAiAz3Tp0kUul0sul0srV67UP/7xD+3cuVM9evSwfF9paWl6+umn1bdvXy1YsECRkZFKSEhQbm6u+vbtq0WLFun8+fM6ePCgJa8DAAAIVCEhITpz5ozi4+OVlpYml8ul2NhYS/dRUVGh69eva8KECerdu7dSU1M1Y8YMde7c2dL9AGgbhkQAfG7RokX64x//qJ07d6p3795e2cd9993n/ndoaKji4+OVmprqXuZ0OiVJVVVVlrwOAAAgkJWWliotLc1r75+WlqbRo0crNTVVEydO1Nq1a/X55597bX8AWochEQCfWrx4sf7whz94dUAkSR06dPB47nA4PJY1Xkvf0NBgyesAAAACWVlZmVeHRKGhodq2bZu2bNmie++9Vy+99JL69++v48ePe22fAFqOIREAn1m8eLFeffVVrw+IAAAA0DKHDh3SoEGDvLoPh8OhkSNH6pe//KVKS0sVHh6ujRs3enWfAFomzN8BAAgOS5cu1erVq/X2228rMjJSlZWVkqS4uDhFRET4OToAAIDg1tDQoKNHj+rMmTPq1KmT5bejLyoqUkFBgcaMGaPExEQVFRXp3LlzGjhwoKX7AdA2nEkEwOuMMXruued07tw5ZWRkqFu3bu4HXwANAADgf0uXLtW6devUvXt3LV261PL3j46O1q5du/TQQw+pX79+evrpp/Xb3/5WWVlZlu8LQOtxJhEAr3M4HKqpqfHZ/nbu3Nlk2YkTJ5osu/WWq619HQAAQKCbPHmyJk+e7LX3HzhwoLZu3eq19wdgDc4kAhDwVq1apc6dO+vQoUM+3/f06dO5dSsAAMAtWtqf0VMB7YPD8F/iAALY6dOndeXKFUlScnKywsPDfbr/qqoq1dbWSpK6deumTp06+XT/AAAA7U1r+jN6KqB9YEgEAAAAAAAALjcDAAAAAAAAQyIAAAAAAACIIREAAAAAAADEkAgAAAAAAABiSAQAAAAAAAAxJAIAAAAAAIAYEgEAAAAAAEAMiQAAAAAAACCGRAAAAAAAABBDIgAAAAAAAIghEQAAAAAAACT9H+OERD61lnrqAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/docs/source/user_guide/installation/GNU-linux.rst b/docs/source/user_guide/installation/GNU-linux.rst index e66c3c2291..ca95bbe1b5 100644 --- a/docs/source/user_guide/installation/GNU-linux.rst +++ b/docs/source/user_guide/installation/GNU-linux.rst @@ -6,7 +6,7 @@ GNU-Linux & MacOS Prerequisites ------------- -To use and/or contribute to PyBaMM, you must have Python 3.8, 3.9, 3.10, or 3.11 installed. +To use PyBaMM, you must have Python 3.8, 3.9, 3.10, or 3.11 installed. .. tab:: Debian-based distributions (Debian, Ubuntu, Linux Mint) diff --git a/docs/source/user_guide/installation/index.rst b/docs/source/user_guide/installation/index.rst index 6338323e79..983f66842e 100644 --- a/docs/source/user_guide/installation/index.rst +++ b/docs/source/user_guide/installation/index.rst @@ -66,6 +66,7 @@ Package Minimum support `SciPy `__ 2.8.2 `CasADi `__ 3.6.0 `Xarray `__ 2023.04.0 +`Anytree `__ 2.4.3 ================================================================ ========================== .. _install.optional_dependencies: @@ -76,7 +77,7 @@ Optional Dependencies PyBaMM has a number of optional dependencies for different functionalities. If the optional dependency is not installed, PyBaMM will raise an ImportError when the method requiring that dependency is called. -If using pip, optional PyBaMM dependencies can be installed or managed in a file (e.g. requirements.txt or setup.py) +If you are using ``pip``, optional PyBaMM dependencies can be installed or managed in a file (e.g., setup.py, or pyproject.toml) as optional extras (e.g.,``pybamm[dev,plot]``). All optional dependencies can be installed with ``pybamm[all]``, and specific sets of dependencies are listed in the sections below. diff --git a/docs/source/user_guide/installation/install-from-docker.rst b/docs/source/user_guide/installation/install-from-docker.rst index 8024e68fb3..61f99817c7 100644 --- a/docs/source/user_guide/installation/install-from-docker.rst +++ b/docs/source/user_guide/installation/install-from-docker.rst @@ -3,12 +3,13 @@ Install from source (Docker) .. contents:: -This page describes the build and installation of PyBaMM from the source code, available on GitHub. Note that this is **not the recommended approach for most users** and should be reserved to people wanting to participate in the development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using pip or conda. +This page describes the build and installation of PyBaMM using a Dockerfile, available on GitHub. Note that this is **not the recommended approach for most users** and should be reserved to people wanting to participate in the development of PyBaMM, or people who really need to use bleeding-edge feature(s) not yet available in the latest released version. If you do not fall in the two previous categories, you would be better off installing PyBaMM using ``pip`` or ``conda``. Prerequisites ------------- + Before you begin, make sure you have Docker installed on your system. You can download and install Docker from the official `Docker website `_. -Ensure Docker installation by running : +Ensure Docker installation by running: .. code:: bash @@ -16,6 +17,7 @@ Ensure Docker installation by running : Pulling the Docker image ------------------------ + Use the following command to pull the PyBaMM Docker image from Docker Hub: .. tab:: No optional solver @@ -135,8 +137,8 @@ If you want to build the PyBaMM Docker image locally from the PyBaMM source code conda activate pybamm -Building Docker images with optional args ------------------------------------------ +Building Docker images with optional arguments +---------------------------------------------- When building the PyBaMM Docker images locally, you have the option to include specific solvers by using optional arguments. These solvers include: @@ -190,7 +192,7 @@ If you want to exit the Docker container's shell, you can simply type: exit -Using Git Inside a Running Docker Container +Using Git inside a running Docker container ------------------------------------------- .. note:: @@ -215,7 +217,7 @@ Using Git Inside a Running Docker Container git fetch --all -Using Visual Studio Code Inside a Running Docker Container +Using Visual Studio Code inside a running Docker container ---------------------------------------------------------- You can easily use Visual Studio Code inside a running Docker container by attaching it directly. This provides a seamless development environment within the container. Here's how: diff --git a/docs/source/user_guide/installation/install-from-source.rst b/docs/source/user_guide/installation/install-from-source.rst index fb448950bf..003c7f143a 100644 --- a/docs/source/user_guide/installation/install-from-source.rst +++ b/docs/source/user_guide/installation/install-from-source.rst @@ -105,8 +105,8 @@ Installing PyBaMM You should now have everything ready to build and install PyBaMM successfully. -Using Nox (recommended) -~~~~~~~~~~~~~~~~~~~~~~~ +Using ``Nox`` (recommended) +~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: bash @@ -167,7 +167,7 @@ Running the tests Using Nox (recommended) ~~~~~~~~~~~~~~~~~~~~~~~ -You can use Nox to run the unit tests and example notebooks in isolated virtual environments. +You can use ``Nox`` to run the unit tests and example notebooks in isolated virtual environments. The default command @@ -175,7 +175,7 @@ The default command nox -will run pre-commit, install ``Linux`` dependencies, and run the unit tests. +will run pre-commit, install ``Linux`` and ``macOS`` dependencies, and run the unit tests. This can take several minutes. To just run the unit tests, use @@ -261,9 +261,9 @@ Here are some additional useful commands you can run with ``Nox``: - ``nox -s docs --non-interactive``: Builds the documentation without serving it locally (using ``sphinx-build`` instead of ``sphinx-autobuild``). Troubleshooting -=============== +--------------- -**Problem:** I’ve made edits to source files in PyBaMM, but these are +**Problem:** I have made edits to source files in PyBaMM, but these are not being used when I run my Python script. **Solution:** Make sure you have installed PyBaMM using the ``-e`` flag, @@ -281,11 +281,11 @@ sure each command was successful. One possibility is that you have not set your ``LD_LIBRARY_PATH`` to point to the sundials library, type ``echo $LD_LIBRARY_PATH`` and make sure one of the directories printed out corresponds to where the -sundials libraries are located. +SUNDIALS libraries are located. Another common reason is that you forget to install a BLAS library such -as OpenBLAS before installing sundials. Check the cmake output when you -configured Sundials, it might say: +as OpenBLAS before installing SUNDIALS. Check the cmake output when you +configured SUNDIALS, it might say: :: @@ -294,5 +294,5 @@ configured Sundials, it might say: If this is the case, on a Debian or Ubuntu system you can install OpenBLAS using ``sudo apt-get install libopenblas-dev`` (or -``brew install openblas`` for Mac OS) and then re-install sundials using +``brew install openblas`` for Mac OS) and then re-install SUNDIALS using the instructions above. diff --git a/docs/source/user_guide/installation/windows.rst b/docs/source/user_guide/installation/windows.rst index 6ff48293bd..5b104e91bd 100644 --- a/docs/source/user_guide/installation/windows.rst +++ b/docs/source/user_guide/installation/windows.rst @@ -6,7 +6,7 @@ Windows Prerequisites ------------- -To use and/or contribute to PyBaMM, you must have Python 3.8, 3.9, 3.10, or 3.11 installed. +To use PyBaMM, you must have Python 3.8, 3.9, 3.10, or 3.11 installed. To install Python 3 download the installation files from `Python’s website `__. Make sure to @@ -27,7 +27,7 @@ install PyBaMM. You can find a reminder of how to navigate the terminal We recommend to install PyBaMM within a virtual environment, in order not to alter any distribution python files. -To install virtualenv type: +To install ``virtualenv``, type: .. code:: bash diff --git a/noxfile.py b/noxfile.py index 430ad59659..7a57ad5820 100644 --- a/noxfile.py +++ b/noxfile.py @@ -6,7 +6,7 @@ # Options to modify nox behaviour nox.options.reuse_existing_virtualenvs = True -if sys.platform == "linux": +if sys.platform != "win32": nox.options.sessions = ["pre-commit", "pybamm-requires", "unit"] else: nox.options.sessions = ["pre-commit", "unit"] @@ -15,9 +15,9 @@ homedir = os.getenv("HOME") PYBAMM_ENV = { "SUNDIALS_INST": f"{homedir}/.local", - "LD_LIBRARY_PATH": f"{homedir}/.local/lib:", + "LD_LIBRARY_PATH": f"{homedir}/.local/lib", } -VENV_DIR = Path('./venv').resolve() +VENV_DIR = Path("./venv").resolve() def set_environment_variables(env_dict, session): @@ -60,10 +60,10 @@ def run_coverage(session): """Run the coverage tests and generate an XML report.""" set_environment_variables(PYBAMM_ENV, session=session) session.install("coverage", silent=False) - session.install("-e", ".[all]", silent=False) if sys.platform != "win32": - session.install("-e", ".[odes]", silent=False) - session.install("-e", ".[jax]", silent=False) + session.install("-e", ".[all,odes,jax]", silent=False) + else: + session.install("-e", ".[all]", silent=False) session.run("coverage", "run", "--rcfile=.coveragerc", "run-tests.py", "--nosub") session.run("coverage", "combine") session.run("coverage", "xml") @@ -73,9 +73,10 @@ def run_coverage(session): def run_integration(session): """Run the integration tests.""" set_environment_variables(PYBAMM_ENV, session=session) - session.install("-e", ".[all]", silent=False) - if sys.platform == "linux": - session.install("-e", ".[odes]", silent=False) + if sys.platform != "win32": + session.install("-e", ".[all,odes,jax]", silent=False) + else: + session.install("-e", ".[all]", silent=False) session.run("python", "run-tests.py", "--integration") @@ -90,10 +91,10 @@ def run_doctests(session): def run_unit(session): """Run the unit tests.""" set_environment_variables(PYBAMM_ENV, session=session) - session.install("-e", ".[all]", silent=False) - if sys.platform == "linux": - session.install("-e", ".[odes]", silent=False) - session.install("-e", ".[jax]", silent=False) + if sys.platform != "win32": + session.install("-e", ".[all,odes,jax]", silent=False) + else: + session.install("-e", ".[all]", silent=False) session.run("python", "run-tests.py", "--unit") @@ -121,13 +122,25 @@ def set_dev(session): session.install("virtualenv", "cmake") session.run("virtualenv", os.fsdecode(VENV_DIR), silent=True) python = os.fsdecode(VENV_DIR.joinpath("bin/python")) + session.run( + python, + "-m", + "pip", + "install", + "--upgrade", + "pip", + "setuptools", + "wheel", + external=True, + ) if sys.platform == "linux": - session.run(python, - "-m", - "pip", - "install", - ".[all,dev,jax,odes]", - external=True, + session.run( + python, + "-m", + "pip", + "install", + ".[all,dev,jax,odes]", + external=True, ) else: session.run(python, "-m", "pip", "install", "-e", ".[all,dev]", external=True) @@ -137,10 +150,10 @@ def set_dev(session): def run_tests(session): """Run the unit tests and integration tests sequentially.""" set_environment_variables(PYBAMM_ENV, session=session) - session.install("-e", ".[all]", silent=False) - if sys.platform == "linux" or sys.platform == "darwin": - session.install("-e", ".[odes]", silent=False) - session.install("-e", ".[jax]", silent=False) + if sys.platform != "win32": + session.install("-e", ".[all,odes,jax]", silent=False) + else: + session.install("-e", ".[all]", silent=False) session.run("python", "run-tests.py", "--all") @@ -153,26 +166,26 @@ def build_docs(session): # Local development if session.interactive: session.run( - "sphinx-autobuild", - "-j", - "auto", - "--open-browser", - "-qT", - ".", - f"{envbindir}/../tmp/html", + "sphinx-autobuild", + "-j", + "auto", + "--open-browser", + "-qT", + ".", + f"{envbindir}/../tmp/html", ) # Runs in CI only, treating warnings as errors else: session.run( - "sphinx-build", - "-j", - "auto", - "-b", - "html", - "-W", - "--keep-going", - ".", - f"{envbindir}/../tmp/html", + "sphinx-build", + "-j", + "auto", + "-b", + "html", + "-W", + "--keep-going", + ".", + f"{envbindir}/../tmp/html", ) diff --git a/pybamm/__init__.py b/pybamm/__init__.py index 9aa1ca79a0..07d8a1c0ea 100644 --- a/pybamm/__init__.py +++ b/pybamm/__init__.py @@ -47,13 +47,13 @@ get_parameters_filepath, have_jax, install_jax, + have_optional_dependency, is_jax_compatible, get_git_commit_info, ) from .logger import logger, set_logging_level, get_new_logger from .settings import settings from .citations import Citations, citations, print_citations - # # Classes for the Expression Tree # diff --git a/pybamm/citations.py b/pybamm/citations.py index da619062e0..b72262989b 100644 --- a/pybamm/citations.py +++ b/pybamm/citations.py @@ -6,10 +6,8 @@ import pybamm import os import warnings -import pybtex from sys import _getframe -from pybtex.database import parse_file, parse_string, Entry -from pybtex.scanner import PybtexError +from pybamm.util import have_optional_dependency class Citations: @@ -76,6 +74,7 @@ def read_citations(self): """Reads the citations in `pybamm.CITATIONS.bib`. Other works can be cited by passing a BibTeX citation to :meth:`register`. """ + parse_file = have_optional_dependency("pybtex.database", "parse_file") citations_file = os.path.join(pybamm.root_dir(), "pybamm", "CITATIONS.bib") bib_data = parse_file(citations_file, bib_format="bibtex") for key, entry in bib_data.entries.items(): @@ -86,6 +85,7 @@ def _add_citation(self, key, entry): previous entry is overwritten """ + Entry = have_optional_dependency("pybtex.database", "Entry") # Check input types are correct if not isinstance(key, str) or not isinstance(entry, Entry): raise TypeError() @@ -151,6 +151,8 @@ def _parse_citation(self, key): key: str A BibTeX formatted citation """ + PybtexError = have_optional_dependency("pybtex.scanner", "PybtexError") + parse_string = have_optional_dependency("pybtex.database", "parse_string") try: # Parse string as a bibtex citation, and check that a citation was found bib_data = parse_string(key, bib_format="bibtex") @@ -217,6 +219,7 @@ def print(self, filename=None, output_format="text", verbose=False): """ # Parse citations that were not known keys at registration, but do not # fail if they cannot be parsed + pybtex = have_optional_dependency("pybtex") try: for key in self._unknown_citations: self._parse_citation(key) diff --git a/pybamm/experiment/experiment.py b/pybamm/experiment/experiment.py index d1c45015b6..9b02e3a20f 100644 --- a/pybamm/experiment/experiment.py +++ b/pybamm/experiment/experiment.py @@ -78,7 +78,7 @@ def __init__( self.operating_conditions_cycles = operating_conditions_cycles self.cycle_lengths = [len(cycle) for cycle in operating_conditions_cycles] - operating_conditions_steps_unprocessed = self._set_next_start_time( + self.operating_conditions_steps_unprocessed = self._set_next_start_time( [cond for cycle in operating_conditions_cycles for cond in cycle] ) @@ -89,7 +89,7 @@ def __init__( self.temperature = _convert_temperature_to_kelvin(temperature) processed_steps = {} - for step in operating_conditions_steps_unprocessed: + for step in self.operating_conditions_steps_unprocessed: if repr(step) in processed_steps: continue elif isinstance(step, str): @@ -106,7 +106,7 @@ def __init__( self.operating_conditions_steps = [ processed_steps[repr(step)] - for step in operating_conditions_steps_unprocessed + for step in self.operating_conditions_steps_unprocessed ] # Save the processed unique steps and the processed operating conditions diff --git a/pybamm/expression_tree/array.py b/pybamm/expression_tree/array.py index a9141041b3..2736886d95 100644 --- a/pybamm/expression_tree/array.py +++ b/pybamm/expression_tree/array.py @@ -2,10 +2,10 @@ # NumpyArray class # import numpy as np -import sympy from scipy.sparse import csr_matrix, issparse import pybamm +from pybamm.util import have_optional_dependency class Array(pybamm.Symbol): @@ -125,6 +125,7 @@ def is_constant(self): def to_equation(self): """Returns the value returned by the node when evaluated.""" + sympy = have_optional_dependency("sympy") entries_list = self.entries.tolist() return sympy.Array(entries_list) diff --git a/pybamm/expression_tree/binary_operators.py b/pybamm/expression_tree/binary_operators.py index 749384e9bc..bfb31596e6 100644 --- a/pybamm/expression_tree/binary_operators.py +++ b/pybamm/expression_tree/binary_operators.py @@ -4,22 +4,22 @@ import numbers import numpy as np -import sympy from scipy.sparse import csr_matrix, issparse import functools import pybamm +from pybamm.util import have_optional_dependency def _preprocess_binary(left, right): if isinstance(left, numbers.Number): left = pybamm.Scalar(left) - if isinstance(right, numbers.Number): - right = pybamm.Scalar(right) elif isinstance(left, np.ndarray): if left.ndim > 1: raise ValueError("left must be a 1D array") left = pybamm.Vector(left) + if isinstance(right, numbers.Number): + right = pybamm.Scalar(right) elif isinstance(right, np.ndarray): if right.ndim > 1: raise ValueError("right must be a 1D array") @@ -147,6 +147,7 @@ def _sympy_operator(self, left, right): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: @@ -323,6 +324,7 @@ def _binary_evaluate(self, left, right): def _sympy_operator(self, left, right): """Override :meth:`pybamm.BinaryOperator._sympy_operator`""" + sympy = have_optional_dependency("sympy") left = sympy.Matrix(left) right = sympy.Matrix(right) return left * right @@ -626,6 +628,7 @@ def _binary_new_copy(self, left, right): def _sympy_operator(self, left, right): """Override :meth:`pybamm.BinaryOperator._sympy_operator`""" + sympy = have_optional_dependency("sympy") return sympy.Min(left, right) @@ -662,6 +665,7 @@ def _binary_new_copy(self, left, right): def _sympy_operator(self, left, right): """Override :meth:`pybamm.BinaryOperator._sympy_operator`""" + sympy = have_optional_dependency("sympy") return sympy.Max(left, right) diff --git a/pybamm/expression_tree/broadcasts.py b/pybamm/expression_tree/broadcasts.py index 32cf2c002b..d30762ad70 100644 --- a/pybamm/expression_tree/broadcasts.py +++ b/pybamm/expression_tree/broadcasts.py @@ -546,8 +546,10 @@ def full_like(symbols, fill_value): return array_type(entries, domains=sum_symbol.domains) except NotImplementedError: - if sum_symbol.shape_for_testing == (1, 1) or sum_symbol.shape_for_testing == ( - 1, + if ( + sum_symbol.shape_for_testing == (1, 1) + or sum_symbol.shape_for_testing == (1,) + or sum_symbol.domain == [] ): return pybamm.Scalar(fill_value) if sum_symbol.evaluates_on_edges("primary"): diff --git a/pybamm/expression_tree/concatenations.py b/pybamm/expression_tree/concatenations.py index 2185a0fad6..1c82aff122 100644 --- a/pybamm/expression_tree/concatenations.py +++ b/pybamm/expression_tree/concatenations.py @@ -5,10 +5,10 @@ from collections import defaultdict import numpy as np -import sympy from scipy.sparse import issparse, vstack import pybamm +from pybamm.util import have_optional_dependency class Concatenation(pybamm.Symbol): @@ -135,6 +135,7 @@ def is_constant(self): def _sympy_operator(self, *children): """Apply appropriate SymPy operators.""" + sympy = have_optional_dependency("sympy") self.concat_latex = tuple(map(sympy.latex, children)) if self.print_name is not None: diff --git a/pybamm/expression_tree/functions.py b/pybamm/expression_tree/functions.py index 80c2848ad9..0c7e98b508 100644 --- a/pybamm/expression_tree/functions.py +++ b/pybamm/expression_tree/functions.py @@ -3,13 +3,11 @@ # import numbers -import autograd import numpy as np -import sympy from scipy import special import pybamm - +from pybamm.util import have_optional_dependency class Function(pybamm.Symbol): """ @@ -96,6 +94,7 @@ def _function_diff(self, children, idx): Derivative with respect to child number 'idx'. See :meth:`pybamm.Symbol._diff()`. """ + autograd = have_optional_dependency("autograd") # Store differentiated function, needed in case we want to convert to CasADi if self.derivative == "autograd": return Function( @@ -202,6 +201,7 @@ def _sympy_operator(self, child): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: @@ -250,6 +250,7 @@ def _function_new_copy(self, children): def _sympy_operator(self, child): """Apply appropriate SymPy operators.""" + sympy = have_optional_dependency("sympy") class_name = self.__class__.__name__.lower() sympy_function = getattr(sympy, class_name) return sympy_function(child) @@ -267,6 +268,7 @@ def _function_diff(self, children, idx): def _sympy_operator(self, child): """Override :meth:`pybamm.Function._sympy_operator`""" + sympy = have_optional_dependency("sympy") return sympy.asinh(child) @@ -287,6 +289,7 @@ def _function_diff(self, children, idx): def _sympy_operator(self, child): """Override :meth:`pybamm.Function._sympy_operator`""" + sympy = have_optional_dependency("sympy") return sympy.atan(child) diff --git a/pybamm/expression_tree/independent_variable.py b/pybamm/expression_tree/independent_variable.py index efeb73f8bc..2f30da9a5e 100644 --- a/pybamm/expression_tree/independent_variable.py +++ b/pybamm/expression_tree/independent_variable.py @@ -1,9 +1,8 @@ # # IndependentVariable class # -import sympy - import pybamm +from pybamm.util import have_optional_dependency KNOWN_COORD_SYS = ["cartesian", "cylindrical polar", "spherical polar"] @@ -44,6 +43,7 @@ def _jac(self, variable): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: @@ -77,6 +77,7 @@ def _evaluate_for_shape(self): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") return sympy.Symbol("t") diff --git a/pybamm/expression_tree/operations/latexify.py b/pybamm/expression_tree/operations/latexify.py index 67e0199656..9f2949069e 100644 --- a/pybamm/expression_tree/operations/latexify.py +++ b/pybamm/expression_tree/operations/latexify.py @@ -5,10 +5,9 @@ import re import warnings -import sympy - import pybamm from pybamm.expression_tree.printing.sympy_overrides import custom_print_func +from pybamm.util import have_optional_dependency def get_rng_min_max_name(rng, min_or_max): @@ -88,6 +87,7 @@ def _get_bcs_displays(self, var): Returns a list of boundary condition equations with ranges in front of the equations. """ + sympy = have_optional_dependency("sympy") bcs_eqn_list = [] bcs = self.model.boundary_conditions.get(var, None) @@ -118,6 +118,7 @@ def _get_bcs_displays(self, var): def _get_param_var(self, node): """Returns a list of parameters and a list of variables.""" + sympy = have_optional_dependency("sympy") param_list = [] var_list = [] dfs_nodes = [node] @@ -160,6 +161,7 @@ def _get_param_var(self, node): return param_list, var_list def latexify(self, output_variables=None): + sympy = have_optional_dependency("sympy") # Voltage is the default output variable if it exists if output_variables is None: if "Voltage [V]" in self.model.variables: diff --git a/pybamm/expression_tree/parameter.py b/pybamm/expression_tree/parameter.py index 10addae464..eebe77ad2f 100644 --- a/pybamm/expression_tree/parameter.py +++ b/pybamm/expression_tree/parameter.py @@ -5,9 +5,9 @@ import sys import numpy as np -import sympy import pybamm +from pybamm.util import have_optional_dependency class Parameter(pybamm.Symbol): @@ -44,6 +44,7 @@ def is_constant(self): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: @@ -217,6 +218,7 @@ def _evaluate_for_shape(self): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: diff --git a/pybamm/expression_tree/printing/sympy_overrides.py b/pybamm/expression_tree/printing/sympy_overrides.py index a96aa19729..1898822ea8 100644 --- a/pybamm/expression_tree/printing/sympy_overrides.py +++ b/pybamm/expression_tree/printing/sympy_overrides.py @@ -8,11 +8,9 @@ class CustomPrint(LatexPrinter): """Override SymPy methods to match PyBaMM's requirements""" - def _print_Derivative(self, expr): """Override :meth:`sympy.printing.latex.LatexPrinter._print_Derivative`""" eqn = super()._print_Derivative(expr) - if getattr(expr, "force_partial", False) and "partial" not in eqn: var1, var2 = re.findall(r"^\\frac{(\w+)}{(\w+) .+", eqn)[0] eqn = eqn.replace(var1, "\partial").replace(var2, "\partial") diff --git a/pybamm/expression_tree/scalar.py b/pybamm/expression_tree/scalar.py index 3149bf7bee..0209c02a8e 100644 --- a/pybamm/expression_tree/scalar.py +++ b/pybamm/expression_tree/scalar.py @@ -2,10 +2,9 @@ # Scalar class # import numpy as np -import sympy import pybamm - +from pybamm.util import have_optional_dependency class Scalar(pybamm.Symbol): """ @@ -70,6 +69,7 @@ def is_constant(self): def to_equation(self): """Returns the value returned by the node when evaluated.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: diff --git a/pybamm/expression_tree/symbol.py b/pybamm/expression_tree/symbol.py index 5d28884ed5..8f1608e7ba 100644 --- a/pybamm/expression_tree/symbol.py +++ b/pybamm/expression_tree/symbol.py @@ -3,14 +3,12 @@ # import numbers -import anytree import numpy as np -import sympy -from anytree.exporter import DotExporter from scipy.sparse import csr_matrix, issparse from functools import lru_cache, cached_property import pybamm +from pybamm.util import have_optional_dependency from pybamm.expression_tree.printing.print_name import prettify_print_name DOMAIN_LEVELS = ["primary", "secondary", "tertiary", "quaternary"] @@ -442,6 +440,7 @@ def render(self): # pragma: no cover """ Print out a visual representation of the tree (this node and its children) """ + anytree = have_optional_dependency("anytree") for pre, _, node in anytree.RenderTree(self): if isinstance(node, pybamm.Scalar) and node.name != str(node.value): print("{}{} = {}".format(pre, node.name, node.value)) @@ -460,6 +459,7 @@ def visualise(self, filename): filename to output, must end in ".png" """ + DotExporter = have_optional_dependency("anytree.exporter", "DotExporter") # check that filename ends in .png. if filename[-4:] != ".png": raise ValueError("filename should end in .png") @@ -479,6 +479,7 @@ def relabel_tree(self, symbol, counter): Finds all children of a symbol and assigns them a new id so that they can be visualised properly using the graphviz output """ + anytree = have_optional_dependency("anytree") name = symbol.name if name == "div": name = "∇⋅" @@ -522,6 +523,7 @@ def pre_order(self): a b """ + anytree = have_optional_dependency("anytree") return anytree.PreOrderIter(self) def __str__(self): @@ -984,4 +986,5 @@ def print_name(self, name): self._print_name = prettify_print_name(name) def to_equation(self): + sympy = have_optional_dependency("sympy") return sympy.Symbol(str(self.name)) diff --git a/pybamm/expression_tree/unary_operators.py b/pybamm/expression_tree/unary_operators.py index 7f9c45775c..81c3dc28c2 100644 --- a/pybamm/expression_tree/unary_operators.py +++ b/pybamm/expression_tree/unary_operators.py @@ -4,11 +4,9 @@ import numbers import numpy as np -import sympy from scipy.sparse import csr_matrix, issparse -from sympy.vector.operators import Divergence as sympy_Divergence -from sympy.vector.operators import Gradient as sympy_Gradient import pybamm +from pybamm.util import have_optional_dependency class UnaryOperator(pybamm.Symbol): @@ -83,6 +81,7 @@ def _sympy_operator(self, child): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: @@ -368,6 +367,7 @@ def _unary_new_copy(self, child): def _sympy_operator(self, child): """Override :meth:`pybamm.UnaryOperator._sympy_operator`""" + sympy_Gradient = have_optional_dependency("sympy.vector.operators", "Gradient") return sympy_Gradient(child) @@ -403,6 +403,7 @@ def _unary_new_copy(self, child): def _sympy_operator(self, child): """Override :meth:`pybamm.UnaryOperator._sympy_operator`""" + sympy_Divergence = have_optional_dependency("sympy.vector.operators", "Divergence") return sympy_Divergence(child) @@ -579,6 +580,7 @@ def _evaluates_on_edges(self, dimension): def _sympy_operator(self, child): """Override :meth:`pybamm.UnaryOperator._sympy_operator`""" + sympy = have_optional_dependency("sympy") return sympy.Integral(child, sympy.Symbol("xn")) @@ -889,6 +891,7 @@ def _unary_new_copy(self, child): def _sympy_operator(self, child): """Override :meth:`pybamm.UnaryOperator._sympy_operator`""" + sympy = have_optional_dependency("sympy") if ( self.child.domain[0] in ["negative particle", "positive particle"] and self.side == "right" diff --git a/pybamm/expression_tree/variable.py b/pybamm/expression_tree/variable.py index f9f7d94efc..0d1e1fd424 100644 --- a/pybamm/expression_tree/variable.py +++ b/pybamm/expression_tree/variable.py @@ -3,9 +3,9 @@ # import numpy as np -import sympy import numbers import pybamm +from pybamm.util import have_optional_dependency class VariableBase(pybamm.Symbol): @@ -124,6 +124,7 @@ def _evaluate_for_shape(self): def to_equation(self): """Convert the node and its subtree into a SymPy equation.""" + sympy = have_optional_dependency("sympy") if self.print_name is not None: return sympy.Symbol(self.print_name) else: diff --git a/pybamm/meshes/scikit_fem_submeshes.py b/pybamm/meshes/scikit_fem_submeshes.py index f25dce80b1..23c024dbbb 100644 --- a/pybamm/meshes/scikit_fem_submeshes.py +++ b/pybamm/meshes/scikit_fem_submeshes.py @@ -3,10 +3,10 @@ # import pybamm from .meshes import SubMesh - -import skfem import numpy as np +from pybamm.util import have_optional_dependency + class ScikitSubMesh2D(SubMesh): """ @@ -27,6 +27,7 @@ class ScikitSubMesh2D(SubMesh): """ def __init__(self, edges, coord_sys, tabs): + skfem = have_optional_dependency("skfem") self.edges = edges self.nodes = dict.fromkeys(["y", "z"]) for var in self.nodes.keys(): diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index 41192dbe1f..08890757b7 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -9,7 +9,7 @@ import numpy as np import pybamm -from pybamm.expression_tree.operations.latexify import Latexify +from pybamm.util import have_optional_dependency class BaseModel: @@ -1055,14 +1055,43 @@ def generate( C.generate() def latexify(self, filename=None, newline=True, output_variables=None): - # For docstring, see pybamm.expression_tree.operations.latexify.Latexify + """ + Converts all model equations in latex. + + Parameters + ---------- + filename: str (optional) + Accepted file formats - any image format, pdf and tex + Default is None, When None returns all model equations in latex + If not None, returns all model equations in given file format. + + newline: bool (optional) + Default is True, If True, returns every equation in a new line. + If False, returns the list of all the equations. + + Load model + >>> model = pybamm.lithium_ion.SPM() + + This will returns all model equations in png + >>> model.latexify("equations.png") + + This will return all the model equations in latex + >>> model.latexify() + + This will return the list of all the model equations + >>> model.latexify(newline=False) + + This will return first five model equations + >>> model.latexify(newline=False)[1:5] + """ + sympy = have_optional_dependency("sympy") + if sympy: + from pybamm.expression_tree.operations.latexify import Latexify + return Latexify(self, filename, newline).latexify( output_variables=output_variables ) - # Set :meth:`latexify` docstring from :class:`Latexify` - latexify.__doc__ = Latexify.__doc__ - def process_parameters_and_discretise(self, symbol, parameter_values, disc): """ Process parameters and discretise a symbol using supplied parameter values diff --git a/pybamm/models/full_battery_models/base_battery_model.py b/pybamm/models/full_battery_models/base_battery_model.py index 971bd1a880..ee3e0b5c6f 100644 --- a/pybamm/models/full_battery_models/base_battery_model.py +++ b/pybamm/models/full_battery_models/base_battery_model.py @@ -603,7 +603,7 @@ def __init__(self, extra_options): "current collectors in a half-cell configuration" ) - if options["particle phases"] != "1": + if options["particle phases"] not in ["1", ("1", "1")]: if not ( options["surface form"] != "false" and options["particle size"] == "single" diff --git a/pybamm/models/full_battery_models/lithium_ion/electrode_soh.py b/pybamm/models/full_battery_models/lithium_ion/electrode_soh.py index c6a445f316..d975de859c 100644 --- a/pybamm/models/full_battery_models/lithium_ion/electrode_soh.py +++ b/pybamm/models/full_battery_models/lithium_ion/electrode_soh.py @@ -410,10 +410,7 @@ def solve(self, inputs): # Calculate theoretical energy # TODO: energy calc for MSMR if self.options["open-circuit potential"] != "MSMR": - energy = pybamm.lithium_ion.electrode_soh.theoretical_energy_integral( - self.parameter_values, - sol_dict, - ) + energy = self.theoretical_energy_integral(sol_dict) sol_dict.update({"Maximum theoretical energy [W.h]": energy}) return sol_dict @@ -829,6 +826,27 @@ def get_min_max_ocps(self): sol = self.solve(inputs) return [sol["Un(x_0)"], sol["Un(x_100)"], sol["Up(y_100)"], sol["Up(y_0)"]] + def theoretical_energy_integral(self, inputs, points=1000): + x_0 = inputs["x_0"] + y_0 = inputs["y_0"] + x_100 = inputs["x_100"] + y_100 = inputs["y_100"] + Q_p = inputs["Q_p"] + x_vals = np.linspace(x_100, x_0, num=points) + y_vals = np.linspace(y_100, y_0, num=points) + # Calculate OCV at each stoichiometry + param = self.param + T = param.T_amb_av(0) + Vs = self.parameter_values.evaluate( + param.p.prim.U(y_vals, T) - param.n.prim.U(x_vals, T) + ).flatten() + # Calculate dQ + Q = Q_p * (y_0 - y_100) + dQ = Q / (points - 1) + # Integrate and convert to W-h + E = np.trapz(Vs, dx=dQ) + return E + def get_initial_stoichiometries( initial_value, @@ -972,7 +990,7 @@ def get_min_max_ocps( return esoh_solver.get_min_max_ocps() -def theoretical_energy_integral(parameter_values, inputs, points=100): +def theoretical_energy_integral(parameter_values, param, inputs, points=100): """ Calculate maximum energy possible from a cell given OCV, initial soc, and final soc given voltage limits, open-circuit potentials, etc defined by parameter_values @@ -991,30 +1009,8 @@ def theoretical_energy_integral(parameter_values, inputs, points=100): E The total energy of the cell in Wh """ - x_0 = inputs["x_0"] - y_0 = inputs["y_0"] - x_100 = inputs["x_100"] - y_100 = inputs["y_100"] - Q_p = inputs["Q_p"] - x_vals = np.linspace(x_100, x_0, num=points) - y_vals = np.linspace(y_100, y_0, num=points) - # Calculate OCV at each stoichiometry - param = pybamm.LithiumIonParameters() - y = pybamm.standard_spatial_vars.y - z = pybamm.standard_spatial_vars.z - T = pybamm.yz_average(param.T_amb(y, z, 0)) - Vs = np.empty(x_vals.shape) - for i in range(x_vals.size): - Vs[i] = ( - parameter_values.evaluate(param.p.prim.U(y_vals[i], T)).item() - - parameter_values.evaluate(param.n.prim.U(x_vals[i], T)).item() - ) - # Calculate dQ - Q = Q_p * (y_0 - y_100) - dQ = Q / (points - 1) - # Integrate and convert to W-h - E = np.trapz(Vs, dx=dQ) - return E + esoh_solver = ElectrodeSOHSolver(parameter_values, param) + return esoh_solver.theoretical_energy_integral(inputs, points=points) def calculate_theoretical_energy( @@ -1045,6 +1041,7 @@ def calculate_theoretical_energy( Q_p = parameter_values.evaluate(pybamm.LithiumIonParameters().p.prim.Q_init) E = theoretical_energy_integral( parameter_values, + pybamm.LithiumIonParameters(), {"x_100": x_100, "x_0": x_0, "y_100": y_100, "y_0": y_0, "Q_p": Q_p}, points=points, ) diff --git a/pybamm/models/submodels/interface/base_interface.py b/pybamm/models/submodels/interface/base_interface.py index 190130064f..b7e160ee2f 100644 --- a/pybamm/models/submodels/interface/base_interface.py +++ b/pybamm/models/submodels/interface/base_interface.py @@ -110,9 +110,10 @@ def _get_exchange_current_density(self, variables): c_e = c_e.orphans[0] T = T.orphans[0] # Get main reaction exchange-current density (may have empirical hysteresis) - if domain_options["exchange-current density"] == "single": + j0_option = getattr(domain_options, self.phase)["exchange-current density"] + if j0_option == "single": j0 = phase_param.j0(c_e, c_s_surf, T) - elif domain_options["exchange-current density"] == "current sigmoid": + elif j0_option == "current sigmoid": current = variables["Total current density [A.m-2]"] k = 100 if Domain == "Positive": diff --git a/pybamm/models/submodels/interface/lithium_plating/plating.py b/pybamm/models/submodels/interface/lithium_plating/plating.py index a1828dcaa2..9f4de08d2f 100644 --- a/pybamm/models/submodels/interface/lithium_plating/plating.py +++ b/pybamm/models/submodels/interface/lithium_plating/plating.py @@ -115,18 +115,26 @@ def set_rhs(self, variables): ] L_sei = variables[f"{Domain} total SEI thickness [m]"] - # In the partially reversible plating model, coupling term turns reversible - # lithium into dead lithium. In other plating models, it is zero. lithium_plating_option = getattr(self.options, domain)["lithium plating"] - if lithium_plating_option == "partially reversible": + if lithium_plating_option == "reversible": + # In the reversible plating model, there is no dead lithium + dc_plated_Li = -a_j_stripping / self.param.F + dc_dead_Li = pybamm.Scalar(0) + elif lithium_plating_option == "irreversible": + # In the irreversible plating model, all plated lithium is dead lithium + dc_plated_Li = pybamm.Scalar(0) + dc_dead_Li = -a_j_stripping / self.param.F + elif lithium_plating_option == "partially reversible": + # In the partially reversible plating model, the coupling term turns + # reversible lithium into dead lithium over time. dead_lithium_decay_rate = self.param.dead_lithium_decay_rate(L_sei) coupling_term = dead_lithium_decay_rate * c_plated_Li - else: - coupling_term = pybamm.Scalar(0) + dc_plated_Li = -a_j_stripping / self.param.F - coupling_term + dc_dead_Li = coupling_term self.rhs = { - c_plated_Li: -a_j_stripping / self.param.F - coupling_term, - c_dead_Li: coupling_term, + c_plated_Li: dc_plated_Li, + c_dead_Li: dc_dead_Li, } def set_initial_conditions(self, variables): diff --git a/pybamm/models/submodels/particle/base_particle.py b/pybamm/models/submodels/particle/base_particle.py index ad751c3911..dd5a94afc6 100644 --- a/pybamm/models/submodels/particle/base_particle.py +++ b/pybamm/models/submodels/particle/base_particle.py @@ -35,9 +35,10 @@ def _get_effective_diffusivity(self, c, T, current): domain_options = getattr(self.options, domain) # Get diffusivity (may have empirical hysteresis) - if domain_options["diffusivity"] == "single": + diffusivity_option = getattr(domain_options, self.phase)["diffusivity"] + if diffusivity_option == "single": D = phase_param.D(c, T) - elif domain_options["diffusivity"] == "current sigmoid": + elif diffusivity_option == "current sigmoid": k = 100 if Domain == "Positive": lithiation_current = current diff --git a/pybamm/models/submodels/thermal/lumped.py b/pybamm/models/submodels/thermal/lumped.py index 62c147755b..0f396a3f77 100644 --- a/pybamm/models/submodels/thermal/lumped.py +++ b/pybamm/models/submodels/thermal/lumped.py @@ -56,10 +56,9 @@ def set_rhs(self, variables): # Newton cooling, accounting for surface area to volume ratio cell_surface_area = self.param.A_cooling cell_volume = self.param.V_cell - total_cooling_coefficient = ( - -self.param.h_total * cell_surface_area / cell_volume + Q_cool_vol_av = ( + -self.param.h_total * (T_vol_av - T_amb) * cell_surface_area / cell_volume ) - Q_cool_vol_av = total_cooling_coefficient * (T_vol_av - T_amb) self.rhs = { T_vol_av: (Q_vol_av + Q_cool_vol_av) / self.param.rho_c_p_eff(T_vol_av) diff --git a/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_1D_current_collectors.py b/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_1D_current_collectors.py index a6555170fc..2611dbafdc 100644 --- a/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_1D_current_collectors.py +++ b/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_1D_current_collectors.py @@ -58,33 +58,29 @@ def set_rhs(self, variables): y = pybamm.standard_spatial_vars.y z = pybamm.standard_spatial_vars.z - # Account for surface area to volume ratio of pouch cell in surface and side - # cooling terms - cell_volume = self.param.L * self.param.L_y * self.param.L_z - + # Calculate cooling, accounting for surface area to volume ratio of pouch cell + edge_area = self.param.L_z * self.param.L yz_surface_area = self.param.L_y * self.param.L_z - yz_surface_cooling_coefficient = ( + cell_volume = self.param.L * self.param.L_y * self.param.L_z + Q_yz_surface = ( -(self.param.n.h_cc(y, z) + self.param.p.h_cc(y, z)) + * (T_av - T_amb) * yz_surface_area / cell_volume ) - - side_edge_area = self.param.L_z * self.param.L - side_edge_cooling_coefficient = ( + Q_edge = ( -(self.param.h_edge(0, z) + self.param.h_edge(self.param.L_y, z)) - * side_edge_area + * (T_av - T_amb) + * edge_area / cell_volume ) - - total_cooling_coefficient = ( - yz_surface_cooling_coefficient + side_edge_cooling_coefficient - ) + Q_cool_total = Q_yz_surface + Q_edge self.rhs = { T_av: ( pybamm.div(self.param.lambda_eff(T_av) * pybamm.grad(T_av)) + Q_av - + total_cooling_coefficient * (T_av - T_amb) + + Q_cool_total ) / self.param.rho_c_p_eff(T_av) } @@ -94,7 +90,7 @@ def set_boundary_conditions(self, variables): T_amb = variables["Ambient temperature [K]"] T_av = variables["X-averaged cell temperature [K]"] - # find tab locations (top vs bottom) + # Find tab locations (top vs bottom) L_y = param.L_y L_z = param.L_z neg_tab_z = param.n.centre_z_tab @@ -104,11 +100,10 @@ def set_boundary_conditions(self, variables): pos_tab_top_bool = pybamm.Equality(pos_tab_z, L_z) pos_tab_bottom_bool = pybamm.Equality(pos_tab_z, 0) - # calculate tab vs non-tab area on top and bottom + # Calculate tab vs non-tab area on top and bottom neg_tab_area = param.n.L_tab * param.n.L_cc pos_tab_area = param.p.L_tab * param.p.L_cc total_area = param.L * param.L_y - non_tab_top_area = ( total_area - neg_tab_area * neg_tab_top_bool @@ -120,18 +115,22 @@ def set_boundary_conditions(self, variables): - pos_tab_area * pos_tab_bottom_bool ) - # calculate effective cooling coefficients + # Calculate heat fluxes weighted by area # Note: can't do y-average of h_edge here since y isn't meshed. Evaluate at # midpoint. - top_cooling_coefficient = ( - param.n.h_tab * neg_tab_area * neg_tab_top_bool - + param.p.h_tab * pos_tab_area * pos_tab_top_bool - + param.h_edge(L_y / 2, L_z) * non_tab_top_area + q_tab_n = -param.n.h_tab * (T_av - T_amb) + q_tab_p = -param.p.h_tab * (T_av - T_amb) + q_edge_top = -param.h_edge(L_y / 2, L_z) * (T_av - T_amb) + q_edge_bottom = -param.h_edge(L_y / 2, 0) * (T_av - T_amb) + q_top = ( + q_tab_n * neg_tab_area * neg_tab_top_bool + + q_tab_p * pos_tab_area * pos_tab_top_bool + + q_edge_top * non_tab_top_area ) / total_area - bottom_cooling_coefficient = ( - param.n.h_tab * neg_tab_area * neg_tab_bottom_bool - + param.p.h_tab * pos_tab_area * pos_tab_bottom_bool - + param.h_edge(L_y / 2, 0) * non_tab_bottom_area + q_bottom = ( + q_tab_n * neg_tab_area * neg_tab_bottom_bool + + q_tab_p * pos_tab_area * pos_tab_bottom_bool + + q_edge_bottom * non_tab_bottom_area ) / total_area # just use left and right for clarity @@ -141,21 +140,14 @@ def set_boundary_conditions(self, variables): self.boundary_conditions = { T_av: { "left": ( - pybamm.boundary_value( - bottom_cooling_coefficient * (T_av - T_amb), - "left", - ) - / pybamm.boundary_value(lambda_eff, "left"), + pybamm.boundary_value(-q_bottom / lambda_eff, "left"), "Neumann", ), "right": ( - pybamm.boundary_value( - -top_cooling_coefficient * (T_av - T_amb), "right" - ) - / pybamm.boundary_value(lambda_eff, "right"), + pybamm.boundary_value(q_top / lambda_eff, "right"), "Neumann", ), - } + }, } def set_initial_conditions(self, variables): diff --git a/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_2D_current_collectors.py b/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_2D_current_collectors.py index eb8e1b7e49..a5c7c42b17 100644 --- a/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_2D_current_collectors.py +++ b/pybamm/models/submodels/thermal/pouch_cell/pouch_cell_2D_current_collectors.py @@ -58,20 +58,22 @@ def set_rhs(self, variables): y = pybamm.standard_spatial_vars.y z = pybamm.standard_spatial_vars.z + # Calculate cooling + Q_yz_surface_W_per_m2 = -(self.param.n.h_cc(y, z) + self.param.p.h_cc(y, z)) * ( + T_av - T_amb + ) + Q_edge_W_per_m2 = -self.param.h_edge(y, z) * (T_av - T_amb) + # Account for surface area to volume ratio of pouch cell in surface cooling # term - cell_volume = self.param.L * self.param.L_y * self.param.L_z - yz_surface_area = self.param.L_y * self.param.L_z - yz_surface_cooling_coefficient = ( - -(self.param.n.h_cc(y, z) + self.param.p.h_cc(y, z)) - * yz_surface_area - / cell_volume + cell_volume = self.param.L * self.param.L_y * self.param.L_z + Q_yz_surface = pybamm.source( + Q_yz_surface_W_per_m2 * yz_surface_area / cell_volume, T_av ) - # Edge cooling appears as a boundary term, so no need to account for surface # area to volume ratio - edge_cooling_coefficient = -self.param.h_edge(y, z) + Q_edge = pybamm.source(Q_edge_W_per_m2, T_av, boundary=True) # Governing equations contain: # - source term for y-z surface cooling @@ -88,10 +90,8 @@ def set_rhs(self, variables): T_av: ( self.param.lambda_eff(T_av) * pybamm.laplacian(T_av) + pybamm.source(Q_av, T_av) - + pybamm.source(yz_surface_cooling_coefficient * (T_av - T_amb), T_av) - + pybamm.source( - edge_cooling_coefficient * (T_av - T_amb), T_av, boundary=True - ) + + Q_yz_surface + + Q_edge ) / self.param.rho_c_p_eff(T_av) } @@ -102,24 +102,21 @@ def set_boundary_conditions(self, variables): y = pybamm.standard_spatial_vars.y z = pybamm.standard_spatial_vars.z + # Calculate heat fluxes + q_tab_n = -self.param.n.h_tab * (T_av - T_amb) + q_tab_p = -self.param.p.h_tab * (T_av - T_amb) + q_edge = -self.param.h_edge(y, z) * (T_av - T_amb) + # Subtract the edge cooling from the tab portion so as to not double count # Note: tab cooling is also only applied on the current collector hence - # the (l_cn / l) and (l_cp / l) prefactors. We also still have edge cooling + # the (l_cn / l) and (l_cp / l) prefactors. We still have edge cooling # in the region: x in (0, 1) - h_tab_n_corrected = (self.param.n.L_cc / self.param.L) * ( - self.param.n.h_tab - self.param.h_edge(y, z) - ) - h_tab_p_corrected = (self.param.p.L_cc / self.param.L) * ( - self.param.p.h_tab - self.param.h_edge(y, z) - ) - - negative_tab_bc = pybamm.boundary_value( - -h_tab_n_corrected * (T_av - T_amb) / self.param.n.lambda_cc(T_av), + negative_tab_bc = (self.param.n.L_cc / self.param.L) * pybamm.boundary_value( + (q_tab_n - q_edge) / self.param.n.lambda_cc(T_av), "negative tab", ) - positive_tab_bc = pybamm.boundary_value( - -h_tab_p_corrected * (T_av - T_amb) / self.param.p.lambda_cc(T_av), - "positive tab", + positive_tab_bc = (self.param.p.L_cc / self.param.L) * pybamm.boundary_value( + (q_tab_p - q_edge) / self.param.p.lambda_cc(T_av), "positive tab" ) self.boundary_conditions = { diff --git a/pybamm/parameters/lithium_ion_parameters.py b/pybamm/parameters/lithium_ion_parameters.py index 726e876aa0..c459a4ef1e 100644 --- a/pybamm/parameters/lithium_ion_parameters.py +++ b/pybamm/parameters/lithium_ion_parameters.py @@ -50,6 +50,7 @@ def _set_parameters(self): self.T_ref = self.therm.T_ref self.T_init = self.therm.T_init self.T_amb = self.therm.T_amb + self.T_amb_av = self.therm.T_amb_av self.h_edge = self.therm.h_edge self.h_total = self.therm.h_total self.rho_c_p_eff = self.therm.rho_c_p_eff diff --git a/pybamm/parameters/thermal_parameters.py b/pybamm/parameters/thermal_parameters.py index ea1dd12065..8e92ff8d34 100644 --- a/pybamm/parameters/thermal_parameters.py +++ b/pybamm/parameters/thermal_parameters.py @@ -51,6 +51,12 @@ def T_amb(self, y, z, t): }, ) + def T_amb_av(self, t): + """YZ-averaged ambient temperature [K]""" + y = pybamm.standard_spatial_vars.y + z = pybamm.standard_spatial_vars.z + return pybamm.yz_average(self.T_amb(y, z, t)) + def h_edge(self, y, z): """Cell edge heat transfer coefficient [W.m-2.K-1]""" inputs = { diff --git a/pybamm/plotting/plot.py b/pybamm/plotting/plot.py index 19aa9dc5e0..88c8dfe442 100644 --- a/pybamm/plotting/plot.py +++ b/pybamm/plotting/plot.py @@ -3,6 +3,7 @@ # import pybamm from .quick_plot import ax_min, ax_max +from pybamm.util import have_optional_dependency def plot(x, y, ax=None, testing=False, **kwargs): @@ -25,7 +26,7 @@ def plot(x, y, ax=None, testing=False, **kwargs): Keyword arguments, passed to plt.plot """ - import matplotlib.pyplot as plt + plt = have_optional_dependency("matplotlib.pyplot") if not isinstance(x, pybamm.Array): raise TypeError("x must be 'pybamm.Array'") diff --git a/pybamm/plotting/plot2D.py b/pybamm/plotting/plot2D.py index 80bb5d0ee2..d4f6d31e3a 100644 --- a/pybamm/plotting/plot2D.py +++ b/pybamm/plotting/plot2D.py @@ -3,6 +3,7 @@ # import pybamm from .quick_plot import ax_min, ax_max +from pybamm.util import have_optional_dependency def plot2D(x, y, z, ax=None, testing=False, **kwargs): @@ -25,7 +26,7 @@ def plot2D(x, y, z, ax=None, testing=False, **kwargs): Whether to actually make the plot (turned off for unit tests) """ - import matplotlib.pyplot as plt + plt = have_optional_dependency("matplotlib.pyplot") if not isinstance(x, pybamm.Array): raise TypeError("x must be 'pybamm.Array'") diff --git a/pybamm/plotting/plot_summary_variables.py b/pybamm/plotting/plot_summary_variables.py index 6fe71518db..e50f38fddf 100644 --- a/pybamm/plotting/plot_summary_variables.py +++ b/pybamm/plotting/plot_summary_variables.py @@ -3,6 +3,7 @@ # import numpy as np import pybamm +from pybamm.util import have_optional_dependency def plot_summary_variables( @@ -25,7 +26,7 @@ def plot_summary_variables( Keyword arguments, passed to plt.subplots. """ - import matplotlib.pyplot as plt + plt = have_optional_dependency("matplotlib.pyplot") if isinstance(solutions, pybamm.Solution): solutions = [solutions] diff --git a/pybamm/plotting/plot_voltage_components.py b/pybamm/plotting/plot_voltage_components.py index ad0e9a8b71..a681094bea 100644 --- a/pybamm/plotting/plot_voltage_components.py +++ b/pybamm/plotting/plot_voltage_components.py @@ -3,6 +3,8 @@ # import numpy as np +from pybamm.util import have_optional_dependency + def plot_voltage_components( solution, @@ -32,7 +34,7 @@ def plot_voltage_components( Keyword arguments, passed to ax.fill_between """ - import matplotlib.pyplot as plt + plt = have_optional_dependency("matplotlib.pyplot") # Set a default value for alpha, the opacity kwargs_fill = {"alpha": 0.6, **kwargs_fill} diff --git a/pybamm/plotting/quick_plot.py b/pybamm/plotting/quick_plot.py index 5e9c9ef941..ff657ee375 100644 --- a/pybamm/plotting/quick_plot.py +++ b/pybamm/plotting/quick_plot.py @@ -5,6 +5,7 @@ import numpy as np import pybamm from collections import defaultdict +from pybamm.util import have_optional_dependency class LoopList(list): @@ -46,7 +47,7 @@ def split_long_string(title, max_words=None): def close_plots(): """Close all open figures""" - import matplotlib.pyplot as plt + plt = have_optional_dependency("matplotlib.pyplot") plt.close("all") @@ -469,9 +470,10 @@ def plot(self, t, dynamic=False): Dimensional time (in 'time_units') at which to plot. """ - import matplotlib.pyplot as plt - import matplotlib.gridspec as gridspec - from matplotlib import cm, colors + plt = have_optional_dependency("matplotlib.pyplot") + gridspec = have_optional_dependency("matplotlib.gridspec") + cm = have_optional_dependency("matplotlib", "cm") + colors = have_optional_dependency("matplotlib", "colors") t_in_seconds = t * self.time_scaling_factor self.fig = plt.figure(figsize=self.figsize) @@ -668,8 +670,8 @@ def dynamic_plot(self, testing=False, step=None): continuous_update=False, ) else: - import matplotlib.pyplot as plt - from matplotlib.widgets import Slider + plt = have_optional_dependency("matplotlib.pyplot") + Slider = have_optional_dependency("matplotlib.widgets", "Slider") # create an initial plot at time self.min_t self.plot(self.min_t, dynamic=True) @@ -773,8 +775,8 @@ def create_gif(self, number_of_images=80, duration=0.1, output_filename="plot.gi Name of the generated GIF file. """ - import imageio.v2 as imageio - import matplotlib.pyplot as plt + imageio = have_optional_dependency("imageio.v2") + plt = have_optional_dependency("matplotlib.pyplot") # time stamps at which the images/plots will be created time_array = np.linspace(self.min_t, self.max_t, num=number_of_images) diff --git a/pybamm/simulation.py b/pybamm/simulation.py index 8fbcb387f1..f743f4fc0f 100644 --- a/pybamm/simulation.py +++ b/pybamm/simulation.py @@ -9,7 +9,7 @@ import sys from functools import lru_cache from datetime import timedelta -import tqdm +from pybamm.util import have_optional_dependency def is_notebook(): @@ -742,13 +742,18 @@ def solve( # Update _solution self._solution = current_solution - for cycle_num, cycle_length in enumerate( - # tqdm is the progress bar. - tqdm.tqdm( + # check if a user has tqdm installed + if showprogress: + tqdm = have_optional_dependency("tqdm") + cycle_lengths = tqdm.tqdm( self.experiment.cycle_lengths, - disable=(not showprogress), desc="Cycling", - ), + ) + else: + cycle_lengths = self.experiment.cycle_lengths + + for cycle_num, cycle_length in enumerate( + cycle_lengths, start=1, ): logs["cycle number"] = ( @@ -785,14 +790,19 @@ def solve( # human-intuitive op_conds = self.experiment.operating_conditions_steps[idx] + # Hacky patch to allow correct processing of end_time and next_starting time + # For efficiency purposes, op_conds treats identical steps as the same object + # regardless of the initial time. Should be refactored as part of #3176 + op_conds_unproc = self.experiment.operating_conditions_steps_unprocessed[idx] + start_time = current_solution.t[-1] # If step has an end time, dt must take that into account - if op_conds.end_time: + if getattr(op_conds_unproc, "end_time", None): dt = min( op_conds.duration, ( - op_conds.end_time + op_conds_unproc.end_time - ( initial_start_time + timedelta(seconds=float(start_time)) @@ -845,9 +855,9 @@ def solve( step_termination = step_solution.termination # Add a padding rest step if necessary - if op_conds.next_start_time is not None: + if getattr(op_conds_unproc, "next_start_time", None) is not None: rest_time = ( - op_conds.next_start_time + op_conds_unproc.next_start_time - ( initial_start_time + timedelta(seconds=float(step_solution.t[-1])) diff --git a/pybamm/spatial_methods/scikit_finite_element.py b/pybamm/spatial_methods/scikit_finite_element.py index 0f0a42bbcb..2d51e16c32 100644 --- a/pybamm/spatial_methods/scikit_finite_element.py +++ b/pybamm/spatial_methods/scikit_finite_element.py @@ -6,7 +6,8 @@ from scipy.sparse import csr_matrix, csc_matrix from scipy.sparse.linalg import inv import numpy as np -import skfem + +from pybamm.util import have_optional_dependency class ScikitFiniteElement(pybamm.SpatialMethod): @@ -87,6 +88,7 @@ def gradient(self, symbol, discretised_symbol, boundary_conditions): to the y-component of the gradient and the second column corresponds to the z component of the gradient. """ + skfem = have_optional_dependency("skfem") domain = symbol.domain[0] mesh = self.mesh[domain] @@ -142,6 +144,7 @@ def gradient_matrix(self, symbol, boundary_conditions): :class:`pybamm.Matrix` The (sparse) finite element gradient matrix for the domain """ + skfem = have_optional_dependency("skfem") # get primary domain mesh domain = symbol.domain[0] mesh = self.mesh[domain] @@ -187,6 +190,7 @@ def laplacian(self, symbol, discretised_symbol, boundary_conditions): Contains the result of acting the discretised gradient on the child discretised_symbol """ + skfem = have_optional_dependency("skfem") domain = symbol.domain[0] mesh = self.mesh[domain] @@ -258,6 +262,7 @@ def stiffness_matrix(self, symbol, boundary_conditions): :class:`pybamm.Matrix` The (sparse) finite element stiffness matrix for the domain """ + skfem = have_optional_dependency("skfem") # get primary domain mesh domain = symbol.domain[0] mesh = self.mesh[domain] @@ -320,6 +325,7 @@ def definite_integral_matrix(self, child, vector_type="row"): :class:`pybamm.Matrix` The finite element integral vector for the domain """ + skfem = have_optional_dependency("skfem") # get primary domain mesh domain = child.domain[0] mesh = self.mesh[domain] @@ -381,6 +387,7 @@ def boundary_integral_vector(self, domain, region): :class:`pybamm.Matrix` The finite element integral vector for the domain """ + skfem = have_optional_dependency("skfem") # get primary domain mesh mesh = self.mesh[domain[0]] @@ -498,6 +505,7 @@ def assemble_mass_form(self, symbol, boundary_conditions, region="interior"): :class:`pybamm.Matrix` The (sparse) mass matrix for the spatial method. """ + skfem = have_optional_dependency("skfem") # get primary domain mesh domain = symbol.domain[0] mesh = self.mesh[domain] diff --git a/pybamm/util.py b/pybamm/util.py index 562352bfac..af278d752a 100644 --- a/pybamm/util.py +++ b/pybamm/util.py @@ -6,6 +6,7 @@ # import argparse import importlib.util +import importlib.metadata import numbers import os import pathlib @@ -18,11 +19,10 @@ from warnings import warn import numpy as np -import importlib.metadata - import pybamm -# versions of jax and jaxlib compatible with PyBaMM +# Versions of jax and jaxlib compatible with PyBaMM. Note: these are also defined in +# in the extras dependencies in pyproject.toml, and therefore must be kept in sync. JAX_VERSION = "0.4" JAXLIB_VERSION = "0.4" @@ -345,3 +345,26 @@ def install_jax(arguments=None): # pragma: no cover f"jaxlib>={JAXLIB_VERSION}", ] ) + +# https://docs.pybamm.org/en/latest/source/user_guide/contributing.html#managing-optional-dependencies-and-their-imports +def have_optional_dependency(module_name, attribute=None): + err_msg = f"Optional dependency {module_name} is not available. See https://docs.pybamm.org/en/latest/source/user_guide/installation/index.html#optional-dependencies for more details." + try: + # Attempt to import the specified module + module = importlib.import_module(module_name) + + if attribute: + # If an attribute is specified, check if it's available + if hasattr(module, attribute): + imported_attribute = getattr(module, attribute) + return imported_attribute # Return the imported attribute + else: + # Raise an ModuleNotFoundError if the attribute is not available + raise ModuleNotFoundError(err_msg) # pragma: no cover + else: + # Return the entire module if no attribute is specified + return module + + except ModuleNotFoundError: + # Raise an ModuleNotFoundError if the module or attribute is not available + raise ModuleNotFoundError(err_msg) diff --git a/pybamm/version.py b/pybamm/version.py index c8d63f83e1..970be77f66 100644 --- a/pybamm/version.py +++ b/pybamm/version.py @@ -1 +1 @@ -__version__ = "23.9rc0" +__version__ = "23.9" diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000..4569c7c6c3 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,174 @@ +[build-system] +requires = [ + "setuptools>=64", + "wheel", + # On Windows, use the CasADi vcpkg registry and CMake bundled from MSVC + "casadi>=3.6.0; platform_system!='Windows'", + "cmake; platform_system!='Windows'", + ] +build-backend = "setuptools.build_meta" + +[project] +name = "pybamm" +version = "23.9" +license = { file = "LICENSE.txt" } +description = "Python Battery Mathematical Modelling" +authors = [{name = "The PyBaMM Team", email = "pybamm@pybamm.org"}] +maintainers = [{name = "The PyBaMM Team", email = "pybamm@pybamm.org"}] +requires-python = ">=3.8, <3.12" +readme = {file = "README.md", content-type = "text/markdown"} +classifiers = [ + "Development Status :: 5 - Production/Stable", + "Intended Audience :: Developers", + "Intended Audience :: Science/Research", + "License :: OSI Approved :: BSD License", + "Programming Language :: Python", + "Programming Language :: Python :: 3", + "Programming Language :: Python :: 3 :: Only", + "Programming Language :: Python :: 3.8", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Topic :: Scientific/Engineering", +] +dependencies = [ + "numpy>=1.23.5", + "scipy>=1.9.3", + "casadi>=3.6.3", + "xarray>=2022.6.0", + "anytree>=2.12.0", +] + +[project.urls] +Homepage = "https://pybamm.org" +Documentation = "https://docs.pybamm.org" +Repository = "https://github.com/pybamm-team/PyBaMM" +Releases = "https://github.com/pybamm-team/PyBaMM/releases" +Changelog = "https://github.com/pybamm-team/PyBaMM/blob/develop/CHANGELOG.md" + +[project.optional-dependencies] +# For the generation of documentation +docs = [ + "sphinx>=6", + "sphinx_rtd_theme>=0.5", + "pydata-sphinx-theme", + "sphinx_design", + "sphinx-copybutton", + "myst-parser", + "sphinx-inline-tabs", + "sphinxcontrib-bibtex", + "sphinx-autobuild", + "sphinx-last-updated-by-git", + "nbsphinx", + "ipykernel", + "ipywidgets", + "sphinx-gallery", + "sphinx-hoverxref", + "sphinx-docsearch", +] +# For example notebooks +examples = [ + "jupyter", +] +# Plotting functionality +plot = [ + "imageio>=2.32.0", + # Note: matplotlib is loaded for debug plots, but to ensure PyBaMM runs + # on systems without an attached display, it should never be imported + # outside of plot() methods. + "matplotlib>=3.6.0", +] +# For the Citations class +cite = [ + "pybtex>=0.24.0", +] +# To generate LaTeX strings +latexify = [ + "sympy>=1.12", +] +# Battery Parameter eXchange format +bpx = [ + "bpx", +] +# Low-overhead progress bars +tqdm = [ + "tqdm", +] +# Dependencies intended for use by developers +dev = [ + # For working with pre-commit hooks + "pre-commit", + # For code style checks: linting and auto-formatting + "ruff", + # For running testing sessions + "nox", + # For testing Jupyter notebooks + "pytest>=6", + "pytest-xdist", + "nbmake", +] +# Reading CSV files +pandas = [ + "pandas>=1.5.0", +] +# For the Jax solver. Note: these must be kept in sync with the versions defined in pybamm/util.py. +jax = [ + "jax>=0.4,<=0.5", + "jaxlib>=0.4,<=0.5", +] +# For the scikits.odes solver +odes = [ + "scikits.odes" +] +# Contains all optional dependencies, except for odes, jax, and dev dependencies +all = [ + "autograd>=1.6.2", + "scikit-fem>=8.1.0", + "pybamm[examples,plot,cite,latexify,bpx,tqdm,pandas]", +] + +[project.scripts] +pybamm_edit_parameter = "pybamm.parameters_cli:edit_parameter" +pybamm_add_parameter = "pybamm.parameters_cli:add_parameter" +pybamm_rm_parameter = "pybamm.parameters_cli:remove_parameter" +pybamm_install_odes = "pybamm.install_odes:main" +pybamm_install_jax = "pybamm.util:install_jax" + +[project.entry-points."pybamm_parameter_sets"] +Sulzer2019 = "pybamm.input.parameters.lead_acid.Sulzer2019:get_parameter_values" +Ai2020 = "pybamm.input.parameters.lithium_ion.Ai2020:get_parameter_values" +Chen2020 = "pybamm.input.parameters.lithium_ion.Chen2020:get_parameter_values" +Chen2020_composite = "pybamm.input.parameters.lithium_ion.Chen2020_composite:get_parameter_values" +Ecker2015 = "pybamm.input.parameters.lithium_ion.Ecker2015:get_parameter_values" +Ecker2015_graphite_halfcell = "pybamm.input.parameters.lithium_ion.Ecker2015_graphite_halfcell:get_parameter_values" +Marquis2019 = "pybamm.input.parameters.lithium_ion.Marquis2019:get_parameter_values" +Mohtat2020 = "pybamm.input.parameters.lithium_ion.Mohtat2020:get_parameter_values" +NCA_Kim2011 = "pybamm.input.parameters.lithium_ion.NCA_Kim2011:get_parameter_values" +OKane2022 = "pybamm.input.parameters.lithium_ion.OKane2022:get_parameter_values" +OKane2022_graphite_SiOx_halfcell = "pybamm.input.parameters.lithium_ion.OKane2022_graphite_SiOx_halfcell:get_parameter_values" +ORegan2022 = "pybamm.input.parameters.lithium_ion.ORegan2022:get_parameter_values" +Prada2013 = "pybamm.input.parameters.lithium_ion.Prada2013:get_parameter_values" +Ramadass2004 = "pybamm.input.parameters.lithium_ion.Ramadass2004:get_parameter_values" +Xu2019 = "pybamm.input.parameters.lithium_ion.Xu2019:get_parameter_values" +ECM_Example = "pybamm.input.parameters.ecm.example_set:get_parameter_values" +MSMR_Example = "pybamm.input.parameters.lithium_ion.MSMR_example_set:get_parameter_values" + +[tool.setuptools] +include-package-data = true + +# List of files to include as package data. These are mainly the parameter CSV files in +# the input/parameters/ subdirectories. Other files such as the CITATIONS file, relevant +# README.md files, and specific .txt files inside the pybamm/ directory are also included. +# These are specified to be included in the SDist through MANIFEST.in. +[tool.setuptools.package-data] +pybamm = [ + "*.txt", + "*.md", + "*.csv", + "*.py", + "pybamm/CITATIONS.bib", + "pybamm/plotting/mplstyle", +] + +[tool.setuptools.packages.find] +include = ["pybamm", "pybamm.*"] diff --git a/scripts/Dockerfile b/scripts/Dockerfile index 3cfbeaa11c..8def7ced9e 100644 --- a/scripts/Dockerfile +++ b/scripts/Dockerfile @@ -4,7 +4,7 @@ WORKDIR / # Install the necessary dependencies RUN apt-get update && apt-get -y upgrade -RUN apt-get install -y libopenblas-dev gcc gfortran graphviz git make g++ build-essential cmake +RUN apt-get install -y libopenblas-dev gcc gfortran graphviz git make g++ build-essential cmake pandoc texlive-latex-extra dvipng RUN rm -rf /var/lib/apt/lists/* RUN useradd -m -s /bin/bash pybamm @@ -21,45 +21,49 @@ ENV CMAKE_C_COMPILER=/usr/bin/gcc ENV CMAKE_CXX_COMPILER=/usr/bin/g++ ENV CMAKE_MAKE_PROGRAM=/usr/bin/make ENV SUNDIALS_INST=/home/pybamm/.local -ENV LD_LIBRARY_PATH=/home/pybamm/.local/lib: +ENV LD_LIBRARY_PATH=/home/pybamm/.local/lib + +RUN conda create -n pybamm python=3.11 +RUN conda init --all +SHELL ["conda", "run", "-n", "pybamm", "/bin/bash", "-c"] +RUN conda install -y pip ARG IDAKLU ARG ODES ARG JAX ARG ALL -RUN conda create -n pybamm python=3.9 -RUN conda init --all -SHELL ["conda", "run", "-n", "pybamm", "/bin/bash", "-c"] -RUN conda install -y pip +RUN pip install --upgrade --user pip setuptools wheel wget +RUN pip install cmake RUN if [ "$IDAKLU" = "true" ]; then \ - pip install --upgrade --user pip setuptools wheel wget && \ - pip install cmake==3.22 && \ python scripts/install_KLU_Sundials.py && \ + rm -rf pybind11 && \ git clone https://github.com/pybind/pybind11.git && \ - pip install --user -e ".[all,dev]"; \ + pip install --user -e ".[all,dev,docs]"; \ fi RUN if [ "$ODES" = "true" ]; then \ - pip install cmake==3.22 && \ - pip install --upgrade --user pip wget && \ python scripts/install_KLU_Sundials.py && \ - pip install --user -e ".[all,odes,dev]"; \ + pip install --user -e ".[all,dev,docs,odes]"; \ fi RUN if [ "$JAX" = "true" ]; then \ - pip install --user -e ".[jax,all,dev]";\ + pip install --user -e ".[all,dev,docs,jax]"; \ fi RUN if [ "$ALL" = "true" ]; then \ - pip install cmake==3.22 && \ - pip install --upgrade --user pip setuptools wheel wget && \ python scripts/install_KLU_Sundials.py && \ + rm -rf pybind11 && \ git clone https://github.com/pybind/pybind11.git && \ - pip install --user -e ".[all,dev,jax,odes]"; \ + pip install --user -e ".[all,dev,docs,jax,odes]"; \ fi -RUN pip install --user -e ".[all,dev]" +RUN if [ -z "$IDAKLU" ] \ + && [ -z "$ODES" ] \ + && [ -z "$JAX" ] \ + && [ -z "$ALL" ]; then \ + pip install --user -e ".[all,dev,docs]"; \ + fi ENTRYPOINT ["/bin/bash"] diff --git a/scripts/fix_casadi_rpath_mac.py b/scripts/fix_casadi_rpath_mac.py index 9b0a181391..23c8a32d59 100644 --- a/scripts/fix_casadi_rpath_mac.py +++ b/scripts/fix_casadi_rpath_mac.py @@ -1,8 +1,8 @@ """ -Removes the rpath from libcasadi.dylib in the casadi python install -and uses a fixed path +Removes the rpath from libcasadi.dylib and libcasadi.3.7.dylib in the casadi python +install and uses a fixed path -Used when building the wheels for macos +Used when building the wheels for macOS """ import casadi import os @@ -14,16 +14,32 @@ libcpp_name = "libc++.1.0.dylib" libcppabi_name = "libc++abi.dylib" libcasadi_name = "libcasadi.dylib" -install_name_tool_args = [ +libcasadi_37_name = "libcasadi.3.7.dylib" + +install_name_tool_args_for_libcasadi_name = [ "-change", os.path.join("@rpath", libcpp_name), os.path.join(casadi_dir, libcpp_name), os.path.join(casadi_dir, libcasadi_name), ] + +install_name_tool_args_for_libcasadi_37_name = [ + "-change", + os.path.join("@rpath", libcpp_name), + os.path.join(casadi_dir, libcpp_name), + os.path.join(casadi_dir, libcasadi_37_name), +] + subprocess.run(["otool"] + ["-L", os.path.join(casadi_dir, libcasadi_name)]) -print(" ".join(["install_name_tool"] + install_name_tool_args)) -subprocess.run(["install_name_tool"] + install_name_tool_args) + +print(" ".join(["install_name_tool"] + install_name_tool_args_for_libcasadi_name)) +subprocess.run(["install_name_tool"] + install_name_tool_args_for_libcasadi_name) + +print(" ".join(["install_name_tool"] + install_name_tool_args_for_libcasadi_37_name)) +subprocess.run(["install_name_tool"] + install_name_tool_args_for_libcasadi_37_name) + subprocess.run(["otool"] + ["-L", os.path.join(casadi_dir, libcasadi_name)]) + install_name_tool_args = [ "-change", os.path.join("@rpath", libcppabi_name), @@ -31,6 +47,25 @@ os.path.join(casadi_dir, libcpp_name), ] subprocess.run(["otool"] + ["-L", os.path.join(casadi_dir, libcpp_name)]) + print(" ".join(["install_name_tool"] + install_name_tool_args)) subprocess.run(["install_name_tool"] + install_name_tool_args) + subprocess.run(["otool"] + ["-L", os.path.join(casadi_dir, libcpp_name)]) + +# Copy libcasadi.3.7.dylib and libc++.1.0.dylib to LD_LIBRARY_PATH +# This is needed for the casadi python bindings to work while repairing the wheel + +subprocess.run( + ["cp", + os.path.join(casadi_dir, libcasadi_37_name), + os.path.join(os.getenv("HOME"),".local/lib") + ] +) + +subprocess.run( + ["cp", + os.path.join(casadi_dir, libcpp_name), + os.path.join(os.getenv("HOME"),".local/lib") + ] +) diff --git a/build_manylinux_wheels/install_sundials.sh b/scripts/install_sundials.sh similarity index 93% rename from build_manylinux_wheels/install_sundials.sh rename to scripts/install_sundials.sh index 3d14bde7c7..0fdd4cdc6a 100644 --- a/build_manylinux_wheels/install_sundials.sh +++ b/scripts/install_sundials.sh @@ -1,10 +1,10 @@ #!/bin/bash # This script installs both SuiteSparse -# (https://people.engr.tamu.edu/davis/suitesparse.html) and Sundials +# (https://people.engr.tamu.edu/davis/suitesparse.html) and SUNDIALS # (https://computing.llnl.gov/projects/sundials) from source. For each # two library: -# - Archive downloaded and source code extrated in current working +# - Archive downloaded and source code extracted in current working # directory. # - Library is built and installed. # diff --git a/scripts/replace-cmake/README.md b/scripts/replace-cmake/README.md deleted file mode 100644 index e578a96abb..0000000000 --- a/scripts/replace-cmake/README.md +++ /dev/null @@ -1 +0,0 @@ -A modified sundials cmake file which finds the KLU solvers correctly diff --git a/scripts/replace-cmake/sundials-3.1.1/CMakeLists.txt b/scripts/replace-cmake/sundials-3.1.1/CMakeLists.txt deleted file mode 100644 index 81f4267c22..0000000000 --- a/scripts/replace-cmake/sundials-3.1.1/CMakeLists.txt +++ /dev/null @@ -1,1597 +0,0 @@ -# --------------------------------------------------------------- -# Programmer: Radu Serban @ LLNL -# --------------------------------------------------------------- -# LLNS Copyright Start -# Copyright (c) 2014, Lawrence Livermore National Security -# This work was performed under the auspices of the U.S. Department -# of Energy by Lawrence Livermore National Laboratory in part under -# Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. -# Produced at the Lawrence Livermore National Laboratory. -# All rights reserved. -# For details, see the LICENSE file. -# LLNS Copyright End -# --------------------------------------------------------------- -# Top level CMakeLists.txt for SUNDIALS (for cmake build system) -# --------------------------------------------------------------- - -# --------------------------------------------------------------- -# Initial commands -# --------------------------------------------------------------- - -# Require a fairly recent cmake version -CMAKE_MINIMUM_REQUIRED(VERSION 2.8.1) - -# Set CMake policy to allow examples to build -if(COMMAND cmake_policy) - cmake_policy(SET CMP0003 NEW) -endif(COMMAND cmake_policy) - -# Project SUNDIALS (initially only C supported) -# sets PROJECT_SOURCE_DIR and PROJECT_BINARY_DIR variables -PROJECT(sundials C) - -# Set some variables with info on the SUNDIALS project -SET(PACKAGE_BUGREPORT "woodward6@llnl.gov") -SET(PACKAGE_NAME "SUNDIALS") -SET(PACKAGE_STRING "SUNDIALS 3.1.1") -SET(PACKAGE_TARNAME "sundials") - -# set SUNDIALS version numbers -# (use "" for the version label if none is needed) -SET(PACKAGE_VERSION_MAJOR "3") -SET(PACKAGE_VERSION_MINOR "1") -SET(PACKAGE_VERSION_PATCH "1") -SET(PACKAGE_VERSION_LABEL "") - -IF(PACKAGE_VERSION_LABEL) - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}-${PACKAGE_VERSION_LABEL}") -ELSE() - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}") -ENDIF() - -# -SET_PROPERTY(GLOBAL PROPERTY USE_FOLDERS ON) - -# Prohibit in-source build -IF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - MESSAGE(FATAL_ERROR "In-source build prohibited.") -ENDIF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - -# Hide some cache variables -MARK_AS_ADVANCED(EXECUTABLE_OUTPUT_PATH LIBRARY_OUTPUT_PATH) - -# Always show the C compiler and flags -MARK_AS_ADVANCED(CLEAR - CMAKE_C_COMPILER - CMAKE_C_FLAGS) - -# Specify the VERSION and SOVERSION for shared libraries - -SET(arkodelib_VERSION "2.1.1") -SET(arkodelib_SOVERSION "2") - -SET(cvodelib_VERSION "3.1.1") -SET(cvodelib_SOVERSION "3") - -SET(cvodeslib_VERSION "3.1.1") -SET(cvodeslib_SOVERSION "3") - -SET(idalib_VERSION "3.1.1") -SET(idalib_SOVERSION "3") - -SET(idaslib_VERSION "2.1.0") -SET(idaslib_SOVERSION "2") - -SET(kinsollib_VERSION "3.1.1") -SET(kinsollib_SOVERSION "3") - -SET(cpodeslib_VERSION "0.0.0") -SET(cpodeslib_SOVERSION "0") - -SET(nveclib_VERSION "3.1.1") -SET(nveclib_SOVERSION "3") - -SET(sunmatrixlib_VERSION "1.1.1") -SET(sunmatrixlib_SOVERSION "1") - -SET(sunlinsollib_VERSION "1.1.1") -SET(sunlinsollib_SOVERSION "1") - -# Specify the location of additional CMAKE modules -SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/config) - -# --------------------------------------------------------------- -# MACRO definitions -# --------------------------------------------------------------- -INCLUDE(SundialsCMakeMacros) - -# --------------------------------------------------------------- -# Check for deprecated SUNDIALS CMake options/variables -# --------------------------------------------------------------- -INCLUDE(SundialsDeprecated) - -# --------------------------------------------------------------- -# Which modules to build? -# --------------------------------------------------------------- - -# For each SUNDIALS solver available (i.e. for which we have the -# sources), give the user the option of enabling/disabling it. - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/arkode") - OPTION(BUILD_ARKODE "Build the ARKODE library" ON) -ELSE() - SET(BUILD_ARKODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvode") - OPTION(BUILD_CVODE "Build the CVODE library" ON) -ELSE() - SET(BUILD_CVODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvodes") - OPTION(BUILD_CVODES "Build the CVODES library" ON) -ELSE() - SET(BUILD_CVODES OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/ida") - OPTION(BUILD_IDA "Build the IDA library" ON) -ELSE() - SET(BUILD_IDA OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/idas") - OPTION(BUILD_IDAS "Build the IDAS library" ON) -ELSE() - SET(BUILD_IDAS OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/kinsol") - OPTION(BUILD_KINSOL "Build the KINSOL library" ON) -ELSE() - SET(BUILD_KINSOL OFF) -ENDIF() - -# CPODES is always OFF for now. (commented out for Release); ToDo: better way to do this? -#IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cpodes") -# OPTION(BUILD_CPODES "Build the CPODES library" OFF) -#ELSE() -# SET(BUILD_CPODES OFF) -#ENDIF() - -# --------------------------------------------------------------- -# xSDK specific options -# --------------------------------------------------------------- -INCLUDE(SundialsXSDK) - -# --------------------------------------------------------------- -# Build specific C flags -# --------------------------------------------------------------- - -# Hide all build type specific flags -MARK_AS_ADVANCED(FORCE - CMAKE_C_FLAGS_DEBUG - CMAKE_C_FLAGS_MINSIZEREL - CMAKE_C_FLAGS_RELEASE - CMAKE_C_FLAGS_RELWITHDEBINFO) - -# Only show flags for the current build type it is set -# NOTE: Build specific flags are appended those in CMAKE_C_FLAGS -IF(CMAKE_BUILD_TYPE) - IF(CMAKE_BUILD_TYPE MATCHES "Debug") - MESSAGE("Appending C debug flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_DEBUG) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "MinSizeRel") - MESSAGE("Appending C min size release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_MINSIZEREL) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "Release") - MESSAGE("Appending C release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELEASE) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "RelWithDebInfo") - MESSAGE("Appending C release with debug info flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELWITHDEBINFO) - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# Option to specify precision (realtype) -# --------------------------------------------------------------- - -SET(DOCSTR "single, double, or extended") -SHOW_VARIABLE(SUNDIALS_PRECISION STRING "${DOCSTR}" "double") - -# prepare substitution variable PRECISION_LEVEL for sundials_config.h -STRING(TOUPPER ${SUNDIALS_PRECISION} SUNDIALS_PRECISION) -SET(PRECISION_LEVEL "#define SUNDIALS_${SUNDIALS_PRECISION}_PRECISION 1") - -# prepare substitution variable FPRECISION_LEVEL for sundials_fconfig.h -IF(SUNDIALS_PRECISION MATCHES "SINGLE") - SET(FPRECISION_LEVEL "4") -ENDIF(SUNDIALS_PRECISION MATCHES "SINGLE") -IF(SUNDIALS_PRECISION MATCHES "DOUBLE") - SET(FPRECISION_LEVEL "8") -ENDIF(SUNDIALS_PRECISION MATCHES "DOUBLE") -IF(SUNDIALS_PRECISION MATCHES "EXTENDED") - SET(FPRECISION_LEVEL "16") -ENDIF(SUNDIALS_PRECISION MATCHES "EXTENDED") - -# --------------------------------------------------------------- -# Option to specify index type -# --------------------------------------------------------------- - -SET(DOCSTR "Signed 64-bit (int64_t) or signed 32-bit (int32_t) integer") -SHOW_VARIABLE(SUNDIALS_INDEX_TYPE STRING "${DOCSTR}" "int64_t") - -# prepare substitution variable INDEX_TYPE for sundials_config.h -STRING(TOUPPER ${SUNDIALS_INDEX_TYPE} SUNDIALS_INDEX_TYPE) -SET(INDEX_TYPE "#define SUNDIALS_${SUNDIALS_INDEX_TYPE} 1") - -# prepare substitution variable FINDEX_TYPE for sundials_fconfig.h -IF(SUNDIALS_INDEX_TYPE MATCHES "INT32_T") - SET(FINDEX_TYPE "4") -ENDIF(SUNDIALS_INDEX_TYPE MATCHES "INT32_T") -IF(SUNDIALS_INDEX_TYPE MATCHES "INT64_T") - SET(FINDEX_TYPE "8") -ENDIF(SUNDIALS_INDEX_TYPE MATCHES "INT64_T") - -# --------------------------------------------------------------- -# Enable Fortran interface? -# --------------------------------------------------------------- - -# Fortran interface is disabled by default -SET(DOCSTR "Enable Fortran-C support") -SHOW_VARIABLE(FCMIX_ENABLE BOOL "${DOCSTR}" OFF) - -# Check that at least one solver with a Fortran interface is built -IF(NOT BUILD_ARKODE AND NOT BUILD_CVODE AND NOT BUILD_IDA AND NOT BUILD_KINSOL) - IF(FCMIX_ENABLE) - PRINT_WARNING("Enabled packages do not support Fortran" "Disabling FCMIX") - FORCE_VARIABLE(FCMIX_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(FCMIX_ENABLE) -ENDIF() - -# --------------------------------------------------------------- -# Options to build static and/or shared libraries -# --------------------------------------------------------------- - -OPTION(BUILD_STATIC_LIBS "Build static libraries" ON) -OPTION(BUILD_SHARED_LIBS "Build shared libraries" ON) - -# Make sure we build at least one type of libraries -IF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - PRINT_WARNING("Both static and shared library generation were disabled" - "Building static libraries was re-enabled") - FORCE_VARIABLE(BUILD_STATIC_LIBS BOOL "Build static libraries" ON) -ENDIF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - -# --------------------------------------------------------------- -# Option to use the generic math libraries (UNIX only) -# --------------------------------------------------------------- - -IF(UNIX) - OPTION(USE_GENERIC_MATH "Use generic (std-c) math libraries" ON) - IF(USE_GENERIC_MATH) - # executables will be linked against -lm - SET(EXTRA_LINK_LIBS -lm) - # prepare substitution variable for sundials_config.h - SET(SUNDIALS_USE_GENERIC_MATH TRUE) - ENDIF(USE_GENERIC_MATH) -ENDIF(UNIX) - -## clock-monotonic, see if we need to link with rt -include(CheckSymbolExists) -set(CMAKE_REQUIRED_LIBRARIES_SAVE ${CMAKE_REQUIRED_LIBRARIES}) -set(CMAKE_REQUIRED_LIBRARIES rt) -CHECK_SYMBOL_EXISTS(_POSIX_TIMERS "unistd.h;time.h" SUNDIALS_POSIX_TIMERS) -set(CMAKE_REQUIRED_LIBRARIES ${CMAKE_REQUIRED_LIBRARIES_SAVE}) -if(SUNDIALS_POSIX_TIMERS) - find_library(SUNDIALS_RT_LIBRARY NAMES rt) - mark_as_advanced(SUNDIALS_RT_LIBRARY) - if(SUNDIALS_RT_LIBRARY) - # sundials_config.h symbol - SET(SUNDIALS_HAVE_POSIX_TIMERS TRUE) - set(EXTRA_LINK_LIBS ${EXTRA_LINK_LIBS} ${SUNDIALS_RT_LIBRARY}) - endif() -endif() - - -# =============================================================== -# Options for Parallelism -# =============================================================== - -# --------------------------------------------------------------- -# Enable MPI support? -# --------------------------------------------------------------- -OPTION(MPI_ENABLE "Enable MPI support" OFF) - -# --------------------------------------------------------------- -# Enable OpenMP support? -# --------------------------------------------------------------- -OPTION(OPENMP_ENABLE "Enable OpenMP support" OFF) - -# --------------------------------------------------------------- -# Enable Pthread support? -# --------------------------------------------------------------- -OPTION(PTHREAD_ENABLE "Enable Pthreads support" OFF) - -# ------------------------------------------------------------- -# Enable CUDA support? -# ------------------------------------------------------------- -OPTION(CUDA_ENABLE "Enable CUDA support" OFF) - -# ------------------------------------------------------------- -# Enable RAJA support? -# ------------------------------------------------------------- -OPTION(RAJA_ENABLE "Enable RAJA support" OFF) - - -# =============================================================== -# Options for external packages -# =============================================================== - -# --------------------------------------------------------------- -# Enable BLAS support? -# --------------------------------------------------------------- -OPTION(BLAS_ENABLE "Enable BLAS support" OFF) - -# --------------------------------------------------------------- -# Enable LAPACK/BLAS support? -# --------------------------------------------------------------- -OPTION(LAPACK_ENABLE "Enable Lapack support" OFF) - -# LAPACK does not support extended precision -IF(LAPACK_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling LAPACK") - FORCE_VARIABLE(LAPACK_ENABLE BOOL "LAPACK is disabled" OFF) -ENDIF() - -# LAPACK does not support 64-bit integer index types -IF(LAPACK_ENABLE AND SUNDIALS_INDEX_TYPE MATCHES "INT64_T") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_INDEX_TYPE} integers" - "Disabling LAPACK") - SET(LAPACK_ENABLE OFF CACHE BOOL "LAPACK is disabled" FORCE) -ENDIF() - -# --------------------------------------------------------------- -# Enable SuperLU_MT support? -# --------------------------------------------------------------- -OPTION(SUPERLUMT_ENABLE "Enable SUPERLUMT support" OFF) - -# SuperLU_MT does not support extended precision -IF(SUPERLUMT_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("SuperLU_MT is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling SuperLU_MT") - FORCE_VARIABLE(SUPERLUMT_ENABLE BOOL "SuperLU_MT is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable KLU support? -# --------------------------------------------------------------- -OPTION(KLU_ENABLE "Enable KLU support" OFF) - -# KLU does not support single or extended precision -IF(KLU_ENABLE AND - (SUNDIALS_PRECISION MATCHES "SINGLE" OR SUNDIALS_PRECISION MATCHES "EXTENDED")) - PRINT_WARNING("KLU is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling KLU") - FORCE_VARIABLE(KLU_ENABLE BOOL "KLU is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable hypre Vector support? -# --------------------------------------------------------------- -OPTION(HYPRE_ENABLE "Enable hypre support" OFF) - -# Using hypre requres building with MPI enabled -IF(HYPRE_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling hypre" - "Set MPI_ENABLE to ON to use parhyp") - FORCE_VARIABLE(HYPRE_ENABLE BOOL "Enable hypre support" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable PETSc support? -# --------------------------------------------------------------- -OPTION(PETSC_ENABLE "Enable PETSc support" OFF) - -# Using PETSc requires building with MPI enabled -IF(PETSC_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling PETSc" - "Set MPI_ENABLE to ON to use PETSc") - FORCE_VARIABLE(PETSC_ENABLE BOOL "Enable PETSc support" OFF) -ENDIF() - - -# =============================================================== -# Options for examples -# =============================================================== - -# --------------------------------------------------------------- -# Enable examples? -# --------------------------------------------------------------- - -# Enable C examples (on by default) -OPTION(EXAMPLES_ENABLE_C "Build SUNDIALS C examples" ON) - -# F77 examples (on by default) are an option only if the Fortran -# interface is enabled -SET(DOCSTR "Build SUNDIALS Fortran examples") -IF(FCMIX_ENABLE) - OPTION(EXAMPLES_ENABLE_F77 "${DOCSTR}" ON) - # Fortran examples do not support single or extended precision - IF(SUNDIALS_PRECISION MATCHES "EXTENDED" OR SUNDIALS_PRECISION MATCHES "SINGLE") - PRINT_WARNING("F77 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "Fortran examples are disabled" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F77) - PRINT_WARNING("EXAMPLES_ENABLE_F77 is ON but FCMIX is OFF" - "Disabling EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F77) -ENDIF() - -# C++ examples (off by default) are an option only if ARKode is enabled -SET(DOCSTR "Build ARKode C++ examples") -IF(BUILD_ARKODE) - SHOW_VARIABLE(EXAMPLES_ENABLE_CXX BOOL "${DOCSTR}" OFF) -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_CXX) - PRINT_WARNING("EXAMPLES_ENABLE_CXX is ON but BUILD_ARKODE is OFF" - "Disabling EXAMPLES_ENABLE_CXX") - FORCE_VARIABLE(EXAMPLES_ENABLE_CXX BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_CXX) -ENDIF() - -# F90 examples (off by default) are an option only if ARKode is -# built and the Fortran interface is enabled -SET(DOCSTR "Build ARKode F90 examples") -IF(FCMIX_ENABLE AND BUILD_ARKODE) - SHOW_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - # Fortran90 examples do not support single or extended precision - # NOTE: This check can be removed after Fortran configure file is integrated into examples - IF(SUNDIALS_PRECISION MATCHES "EXTENDED" OR SUNDIALS_PRECISION MATCHES "SINGLE") - PRINT_WARNING("F90 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "Fortran90 examples are disabled" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F90) - PRINT_WARNING("EXAMPLES_ENABLE_F90 is ON but FCMIX or BUILD_ARKODE is OFF" - "Disabling EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F90) -ENDIF() - -# CUDA examples (off by default) -SET(DOCSTR "Build SUNDIALS CUDA examples") -IF(CUDA_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_CUDA BOOL "${DOCSTR}" OFF) -ELSE() - IF(EXAMPLES_ENABLE_CUDA) - PRINT_WARNING("EXAMPLES_ENABLE_CUDA is ON but CUDA_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_CUDA") - FORCE_VARIABLE(EXAMPLES_ENABLE_CUDA BOOL "${DOCSTR}" OFF) - ENDIF() -ENDIF() - -# RAJA examples (off by default) -SET(DOCSTR "Build SUNDIALS RAJA examples") -IF(RAJA_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_RAJA BOOL "${DOCSTR}" OFF) -ELSE() - IF(EXAMPLES_ENABLE_RAJA) - PRINT_WARNING("EXAMPLES_ENABLE_RAJA is ON but RAJA_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_RAJA") - FORCE_VARIABLE(EXAMPLES_ENABLE_RAJA BOOL "${DOCSTR}" OFF) - ENDIF() -ENDIF() - -# If any of the above examples are enabled set EXAMPLES_ENABLED to TRUE -IF(EXAMPLES_ENABLE_C OR - EXAMPLES_ENABLE_F77 OR - EXAMPLES_ENABLE_CXX OR - EXAMPLES_ENABLE_F90 OR - EXAMPLES_ENABLE_CUDA OR - EXAMPLES_ENABLE_RAJA) - SET(EXAMPLES_ENABLED TRUE) -ELSE() - SET(EXAMPLES_ENABLED FALSE) -ENDIF() - -# --------------------------------------------------------------- -# Install examples? -# --------------------------------------------------------------- - -IF(EXAMPLES_ENABLED) - - # If examples are enabled, set different options - - # The examples will be linked with the library corresponding to the build type. - # Whenever building shared libraries, use them to link the examples. - IF(BUILD_SHARED_LIBS) - SET(LINK_LIBRARY_TYPE "shared") - ELSE(BUILD_SHARED_LIBS) - SET(LINK_LIBRARY_TYPE "static") - ENDIF(BUILD_SHARED_LIBS) - - # Enable installing examples by default - SHOW_VARIABLE(EXAMPLES_INSTALL BOOL "Install example files" ON) - - # If examples are to be exported, check where we should install them. - IF(EXAMPLES_INSTALL) - - SHOW_VARIABLE(EXAMPLES_INSTALL_PATH PATH - "Output directory for installing example files" "${CMAKE_INSTALL_PREFIX}/examples") - - IF(NOT EXAMPLES_INSTALL_PATH) - PRINT_WARNING("The example installation path is empty" - "Example installation path was reset to its default value") - SET(EXAMPLES_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/examples" CACHE STRING - "Output directory for installing example files" FORCE) - ENDIF(NOT EXAMPLES_INSTALL_PATH) - - # create test_install target and directory for running smoke tests after - # installation - ADD_CUSTOM_TARGET(test_install) - - SET(TEST_INSTALL_DIR ${PROJECT_BINARY_DIR}/Testing_Install) - - IF(NOT EXISTS ${TEST_INSTALL_DIR}) - FILE(MAKE_DIRECTORY ${TEST_INSTALL_DIR}) - ENDIF() - - - ELSE(EXAMPLES_INSTALL) - - HIDE_VARIABLE(EXAMPLES_INSTALL_PATH) - - ENDIF(EXAMPLES_INSTALL) - -ELSE(EXAMPLES_ENABLED) - - # If examples are disabled, hide all options related to - # building and installing the SUNDIALS examples - - HIDE_VARIABLE(EXAMPLES_INSTALL) - HIDE_VARIABLE(EXAMPLES_INSTALL_PATH) - -ENDIF(EXAMPLES_ENABLED) - -# --------------------------------------------------------------- -# Include development examples in regression tests? -# --------------------------------------------------------------- -OPTION(SUNDIALS_DEVTESTS "Include development tests in make test" OFF) -MARK_AS_ADVANCED(FORCE SUNDIALS_DEVTESTS) - -# =============================================================== -# Add any other necessary compiler flags & definitions -# =============================================================== - -IF(APPLE) - SET(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "${CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS} -undefined dynamic_lookup") -ENDIF(APPLE) - -# --------------------------------------------------------------- -# A Fortran compiler is needed if: -# (a) FCMIX is enabled -# (b) BLAS is enabled (for the name-mangling scheme) -# (c) LAPACK is enabled (for the name-mangling scheme) -# --------------------------------------------------------------- - -IF(FCMIX_ENABLE OR BLAS_ENABLE OR LAPACK_ENABLE) - INCLUDE(SundialsFortran) - IF(NOT F77_FOUND AND FCMIX_ENABLE) - PRINT_WARNING("Fortran compiler not functional" - "FCMIX support will not be provided") - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# A Fortran90 compiler is needed if: -# (a) F90 ARKODE examples are enabled -# --------------------------------------------------------------- - -IF(EXAMPLES_ENABLE_F90) - INCLUDE(SundialsFortran90) - IF(NOT F90_FOUND) - PRINT_WARNING("Fortran90 compiler not functional" - "F90 support will not be provided") - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# A C++ compiler is needed if: -# (a) C++ ARKODE examples are enabled -# (b) CUDA is enabled -# (c) RAJA is enabled -# --------------------------------------------------------------- - -IF(EXAMPLES_ENABLE_CXX OR CUDA_ENABLE OR RAJA_ENABLE) - INCLUDE(SundialsCXX) - IF(NOT CXX_FOUND) - PRINT_WARNING("C++ compiler not functional" - "C++ support will not be provided") - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# Check if we need an alternate way of specifying the Fortran -# name-mangling scheme if we were unable to infer it using a -# compiler. -# Ask the user to specify the case and number of appended underscores -# corresponding to the Fortran name-mangling scheme of symbol names -# that do not themselves contain underscores (recall that this is all -# we really need for the interfaces to LAPACK). -# Note: the default scheme is lower case - one underscore -# --------------------------------------------------------------- - -IF(BLAS_ENABLE OR LAPACK_ENABLE AND NOT F77SCHEME_FOUND) - # Specify the case for the Fortran name-mangling scheme - SHOW_VARIABLE(SUNDIALS_F77_FUNC_CASE STRING - "case of Fortran function names (lower/upper)" - "lower") - # Specify the number of appended underscores for the Fortran name-mangling scheme - SHOW_VARIABLE(SUNDIALS_F77_FUNC_UNDERSCORES STRING - "number of underscores appended to Fortran function names" - "one") - # Based on the given case and number of underscores, - # set the C preprocessor macro definition - IF(${SUNDIALS_F77_FUNC_CASE} MATCHES "lower") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "none") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "mysub") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "none") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "one") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "mysub_") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "one") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "two") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "mysub__") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "two") - ELSE(${SUNDIALS_F77_FUNC_CASE} MATCHES "lower") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "none") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "MYSUB") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "none") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "one") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "MYSUB_") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "one") - IF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "two") - SET(CMAKE_Fortran_SCHEME_NO_UNDERSCORES "MYSUB__") - ENDIF(${SUNDIALS_F77_FUNC_UNDERSCORES} MATCHES "two") - ENDIF(${SUNDIALS_F77_FUNC_CASE} MATCHES "lower") - # Since the SUNDIALS codes never use symbol names containing - # underscores, set a default scheme (probably wrong) for symbols - # with underscores. - SET(CMAKE_Fortran_SCHEME_WITH_UNDERSCORES "my_sub_") - # We now "have" a scheme. - SET(F77SCHEME_FOUND TRUE) -ENDIF(BLAS_ENABLE OR LAPACK_ENABLE AND NOT F77SCHEME_FOUND) - -# --------------------------------------------------------------- -# If we have a name-mangling scheme (either automatically -# inferred or provided by the user), set the SUNDIALS -# compiler preprocessor macro definitions. -# --------------------------------------------------------------- - -SET(F77_MANGLE_MACRO1 "") -SET(F77_MANGLE_MACRO2 "") - -IF(F77SCHEME_FOUND) - # Symbols WITHOUT underscores - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub_") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## _") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub_") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub__") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## __") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "mysub__") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB_") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## _") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB_") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB__") - SET(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## __") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MYSUB__") - # Symbols with underscores - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub_") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## _") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub_") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub__") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## __") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "my_sub__") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB_") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## _") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB_") - IF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB__") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## __") - ENDIF(${CMAKE_Fortran_SCHEME_NO_UNDERSCORES} MATCHES "MY_SUB__") -ENDIF(F77SCHEME_FOUND) - -# --------------------------------------------------------------- -# Decide how to compile MPI codes. -# --------------------------------------------------------------- - -IF(MPI_ENABLE) - # show command to run MPI codes (defaults to mpirun) - SHOW_VARIABLE(MPI_RUN_COMMAND STRING "MPI run command" "mpirun") - - INCLUDE(SundialsMPIC) - IF(MPIC_FOUND) - IF(CXX_FOUND AND EXAMPLES_ENABLE_CXX) - INCLUDE(SundialsMPICXX) - ENDIF() - IF(F77_FOUND AND EXAMPLES_ENABLE_F77) - INCLUDE(SundialsMPIF) - ENDIF() - IF(F90_FOUND AND EXAMPLES_ENABLE_F90) - INCLUDE(SundialsMPIF90) - ENDIF() - ELSE() - PRINT_WARNING("MPI not functional" - "Parallel support will not be provided") - ENDIF() - - IF(MPIC_MPI2) - SET(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 1") - ELSE() - SET(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 0") - ENDIF() - -ELSE() - - HIDE_VARIABLE(MPI_INCLUDE_PATH) - HIDE_VARIABLE(MPI_LIBRARIES) - HIDE_VARIABLE(MPI_EXTRA_LIBRARIES) - HIDE_VARIABLE(MPI_MPICC) - HIDE_VARIABLE(MPI_MPICXX) - HIDE_VARIABLE(MPI_MPIF77) - HIDE_VARIABLE(MPI_MPIF90) - -ENDIF(MPI_ENABLE) - -# --------------------------------------------------------------- -# If using MPI with C++, disable C++ extensions (for known wrappers) -# --------------------------------------------------------------- - -# IF(MPICXX_FOUND) -# set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DMPICH_SKIP_MPICXX -DOMPI_SKIP_MPICXX -DLAM_BUILDING") -# ENDIF(MPICXX_FOUND) - -# ------------------------------------------------------------- -# Find OpenMP -# ------------------------------------------------------------- - -IF(OPENMP_ENABLE) - FIND_PACKAGE(OpenMP) - IF(NOT OPENMP_FOUND) - message(STATUS "Disabling OpenMP support, could not determine compiler flags") - ENDIF(NOT OPENMP_FOUND) -ENDIF(OPENMP_ENABLE) - -# ------------------------------------------------------------- -# Find PThreads -# ------------------------------------------------------------- - -IF(PTHREAD_ENABLE) - FIND_PACKAGE(Threads) - IF(CMAKE_USE_PTHREADS_INIT) - message(STATUS "Using Pthreads") - SET(PTHREADS_FOUND TRUE) - # SGS - ELSE() - message(STATUS "Disabling Pthreads support, could not determine compiler flags") - endif() -ENDIF(PTHREAD_ENABLE) - -# ------------------------------------------------------------- -# Find CUDA -# ------------------------------------------------------------- - -# disable CUDA if a working C++ compiler is not found -IF(CUDA_ENABLE AND (NOT CXX_FOUND)) - PRINT_WARNING("C++ compiler required for CUDA support" "Disabling CUDA") - FORCE_VARIABLE(CUDA_ENABLE BOOL "CUDA disabled" OFF) -ENDIF() - -if(CUDA_ENABLE) - find_package(CUDA) - - if (CUDA_FOUND) - #message("CUDA found!") - set(CUDA_NVCC_FLAGS "-lineinfo") - else() - message(STATUS "Disabling CUDA support, could not find CUDA.") - endif() -endif(CUDA_ENABLE) - -# ------------------------------------------------------------- -# Find RAJA -# ------------------------------------------------------------- - -# disable RAJA if CUDA is not enabled/working -IF(RAJA_ENABLE AND (NOT CUDA_FOUND)) - PRINT_WARNING("CUDA is required for RAJA support" "Please enable CUDA and RAJA") - FORCE_VARIABLE(RAJA_ENABLE BOOL "RAJA disabled" OFF) -ENDIF() - -# Check if C++11 compiler is available -IF(RAJA_ENABLE) - include(CheckCXXCompilerFlag) - CHECK_CXX_COMPILER_FLAG("-std=c++11" COMPILER_SUPPORTS_CXX11) - - IF(COMPILER_SUPPORTS_CXX11) - set(CMAKE_CXX_STANDARD 11) - ELSE() - PRINT_WARNING("C++11 compliant compiler required for RAJA support" "Disabling RAJA") - FORCE_VARIABLE(RAJA_ENABLE BOOL "RAJA disabled" OFF) - ENDIF() -ENDIF() - -if(RAJA_ENABLE) - # Look for CMake configuration file in RAJA installation - find_package(RAJA CONFIGS) - if (RAJA_FOUND) - #message("RAJA found!") - include_directories(${RAJA_INCLUDE_DIR}) - set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} ${RAJA_NVCC_FLAGS}) - else() - PRINT_WARNING("RAJA configuration not found" "Please set RAJA_DIR to provide path to RAJA CMake configuration file.") - endif() -endif(RAJA_ENABLE) - -# =============================================================== -# Find (and test) external packages -# =============================================================== - -# --------------------------------------------------------------- -# Find (and test) the BLAS libraries -# --------------------------------------------------------------- - -# If BLAS is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(BLAS_ENABLE) - - # find BLAS - INCLUDE(SundialsBlas) - - # show after include so FindBlas can locate BLAS_LIBRARIES if necessary - SHOW_VARIABLE(BLAS_LIBRARIES STRING "Blas libraries" "${BLAS_LIBRARIES}") - - IF(BLAS_LIBRARIES AND NOT BLAS_FOUND) - PRINT_WARNING("BLAS not functional" - "BLAS support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS TRUE) - ENDIF() - -ELSE() - - IF(NOT LAPACK_ENABLE) - HIDE_VARIABLE(SUNDIALS_F77_FUNC_CASE) - HIDE_VARIABLE(SUNDIALS_F77_FUNC_UNDERSCORES) - ENDIF() - HIDE_VARIABLE(BLAS_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the Lapack libraries -# --------------------------------------------------------------- - -# If LAPACK is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(LAPACK_ENABLE) - - # find LAPACK and BLAS Libraries - INCLUDE(SundialsLapack) - - # show after include so FindLapack can locate LAPCK_LIBRARIES if necessary - SHOW_VARIABLE(LAPACK_LIBRARIES STRING "Lapack and Blas libraries" "${LAPACK_LIBRARIES}") - - IF(LAPACK_LIBRARIES AND NOT LAPACK_FOUND) - PRINT_WARNING("LAPACK not functional" - "Blas/Lapack support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS_LAPACK TRUE) - ENDIF() - -ELSE() - - IF(NOT BLAS_ENABLE) - HIDE_VARIABLE(SUNDIALS_F77_FUNC_CASE) - HIDE_VARIABLE(SUNDIALS_F77_FUNC_UNDERSCORES) - ENDIF() - HIDE_VARIABLE(LAPACK_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the SUPERLUMT libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for SuperLU_MT integer type - -# If SUPERLUMT is needed, first try to find the appropriate -# libraries to link against them. - -IF(SUPERLUMT_ENABLE) - - # Show SuperLU_MT options and set default thread type (Pthreads) - SHOW_VARIABLE(SUPERLUMT_THREAD_TYPE STRING "SUPERLUMT threading type: OpenMP or Pthread" "Pthread") - SHOW_VARIABLE(SUPERLUMT_INCLUDE_DIR PATH "SUPERLUMT include directory" "${SUPERLUMT_INCLUDE_DIR}") - SHOW_VARIABLE(SUPERLUMT_LIBRARY_DIR PATH "SUPERLUMT library directory" "${SUPERLUMT_LIBRARY_DIR}") - - INCLUDE(SundialsSuperLUMT) - - IF(SUPERLUMT_FOUND) - # sundials_config.h symbols - SET(SUNDIALS_SUPERLUMT TRUE) - SET(SUNDIALS_SUPERLUMT_THREAD_TYPE ${SUPERLUMT_THREAD_TYPE}) - INCLUDE_DIRECTORIES(${SUPERLUMT_INCLUDE_DIR}) - ENDIF() - - IF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - PRINT_WARNING("SUPERLUMT not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - -ELSE() - - HIDE_VARIABLE(SUPERLUMT_THREAD_TYPE) - HIDE_VARIABLE(SUPERLUMT_LIBRARY_DIR) - HIDE_VARIABLE(SUPERLUMT_INCLUDE_DIR) - SET (SUPERLUMT_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the KLU libraries -# --------------------------------------------------------------- - -# If KLU is requested, first try to find the appropriate libraries to -# link against them. - -IF(KLU_ENABLE) - - SHOW_VARIABLE(KLU_INCLUDE_DIR PATH "KLU include directory" - "${KLU_INCLUDE_DIR}") - SHOW_VARIABLE(KLU_LIBRARY_DIR PATH - "Klu library directory" "${KLU_LIBRARY_DIR}") - - set(KLU_FOUND TRUE) - get_filename_component(PYBAMM_DIR ${PROJECT_SOURCE_DIR} DIRECTORY) - set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${PYBAMM_DIR}) # use FindSuiteSparse.cmake that is in PyBaMM root - set(SuiteSparse_ROOT ${PYBAMM_DIR}/SuiteSparse-5.6.0) - find_package(SuiteSparse OPTIONAL_COMPONENTS KLU AMD COLAMD BTF) - include_directories(${SuiteSparse_INCLUDE_DIRS}) - set(KLU_LIBRARIES ${SuiteSparse_LIBRARIES}) - - IF(KLU_LIBRARIES AND NOT KLU_FOUND) - PRINT_WARNING("KLU not functional - support will not be provided" - "Double check spelling of include path and specified libraries (search is case sensitive)") - ENDIF(KLU_LIBRARIES AND NOT KLU_FOUND) - -ELSE() - - HIDE_VARIABLE(KLU_LIBRARY_DIR) - HIDE_VARIABLE(KLU_INCLUDE_DIR) - SET (KLU_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF(KLU_ENABLE) - -# --------------------------------------------------------------- -# Find (and test) the hypre libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for hypre precision and integer type - -IF(HYPRE_ENABLE) - SHOW_VARIABLE(HYPRE_INCLUDE_DIR PATH "HYPRE include directory" - "${HYPRE_INCLUDE_DIR}") - SHOW_VARIABLE(HYPRE_LIBRARY_DIR PATH - "HYPRE library directory" "${HYPRE_LIBRARY_DIR}") - - INCLUDE(SundialsHypre) - - IF(HYPRE_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_HYPRE TRUE) - INCLUDE_DIRECTORIES(${HYPRE_INCLUDE_DIR}) - ENDIF(HYPRE_FOUND) - - IF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - PRINT_WARNING("HYPRE not functional - support will not be provided" - "Found hypre library, test code does not work") - ENDIF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - -ELSE() - - HIDE_VARIABLE(HYPRE_INCLUDE_DIR) - HIDE_VARIABLE(HYPRE_LIBRARY_DIR) - SET (HYPRE_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the PETSc libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for PETSc precision and integer type - -IF(PETSC_ENABLE) - SHOW_VARIABLE(PETSC_INCLUDE_DIR PATH "PETSc include directory" - "${PETSC_INCLUDE_DIR}") - SHOW_VARIABLE(PETSC_LIBRARY_DIR PATH - "PETSc library directory" "${PETSC_LIBRARY_DIR}") - - INCLUDE(SundialsPETSc) - - IF(PETSC_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_PETSC TRUE) - INCLUDE_DIRECTORIES(${PETSC_INCLUDE_DIR}) - ENDIF(PETSC_FOUND) - - IF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - PRINT_WARNING("PETSC not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - -ELSE() - - HIDE_VARIABLE(PETSC_LIBRARY_DIR) - HIDE_VARIABLE(PETSC_INCLUDE_DIR) - SET (PETSC_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - - -# =============================================================== -# Add source and configuration files -# =============================================================== - -# --------------------------------------------------------------- -# Configure the header file sundials_config.h -# --------------------------------------------------------------- - -# All required substitution variables should be available at this point. -# Generate the header file and place it in the binary dir. -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_config.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - ) -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_fconfig.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - ) - -# Add the include directory in the source tree and the one in -# the binary tree (for the header file sundials_config.h) -INCLUDE_DIRECTORIES(${PROJECT_SOURCE_DIR}/include ${PROJECT_BINARY_DIR}/include) - -# --------------------------------------------------------------- -# Add selected modules to the build system -# --------------------------------------------------------------- - -# Shared components - -ADD_SUBDIRECTORY(src/sundials) -ADD_SUBDIRECTORY(src/nvec_ser) -ADD_SUBDIRECTORY(src/sunmat_dense) -ADD_SUBDIRECTORY(src/sunmat_band) -ADD_SUBDIRECTORY(src/sunmat_sparse) -ADD_SUBDIRECTORY(src/sunlinsol_band) -ADD_SUBDIRECTORY(src/sunlinsol_dense) -IF(KLU_FOUND) - ADD_SUBDIRECTORY(src/sunlinsol_klu) -ENDIF(KLU_FOUND) -IF(SUPERLUMT_FOUND) - ADD_SUBDIRECTORY(src/sunlinsol_superlumt) -ENDIF(SUPERLUMT_FOUND) -IF(LAPACK_FOUND) - ADD_SUBDIRECTORY(src/sunlinsol_lapackband) - ADD_SUBDIRECTORY(src/sunlinsol_lapackdense) -ENDIF(LAPACK_FOUND) -ADD_SUBDIRECTORY(src/sunlinsol_spgmr) -ADD_SUBDIRECTORY(src/sunlinsol_spfgmr) -ADD_SUBDIRECTORY(src/sunlinsol_spbcgs) -ADD_SUBDIRECTORY(src/sunlinsol_sptfqmr) -ADD_SUBDIRECTORY(src/sunlinsol_pcg) -IF(MPIC_FOUND) - ADD_SUBDIRECTORY(src/nvec_par) -ENDIF(MPIC_FOUND) - -IF(HYPRE_FOUND) - ADD_SUBDIRECTORY(src/nvec_parhyp) -ENDIF(HYPRE_FOUND) - -IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(src/nvec_openmp) -ENDIF(OPENMP_FOUND) - -IF(PTHREADS_FOUND) - ADD_SUBDIRECTORY(src/nvec_pthreads) -ENDIF(PTHREADS_FOUND) - -IF(PETSC_FOUND) - ADD_SUBDIRECTORY(src/nvec_petsc) -ENDIF(PETSC_FOUND) - -IF(CUDA_FOUND) - ADD_SUBDIRECTORY(src/nvec_cuda) -ENDIF(CUDA_FOUND) - -IF(RAJA_FOUND) - ADD_SUBDIRECTORY(src/nvec_raja) -ENDIF(RAJA_FOUND) - -# ARKODE library - -IF(BUILD_ARKODE) - ADD_SUBDIRECTORY(src/arkode) - IF(FCMIX_ENABLE AND F77_FOUND) - ADD_SUBDIRECTORY(src/arkode/fcmix) - ENDIF(FCMIX_ENABLE AND F77_FOUND) -ENDIF(BUILD_ARKODE) - -# CVODE library - -IF(BUILD_CVODE) - ADD_SUBDIRECTORY(src/cvode) - IF(FCMIX_ENABLE AND F77_FOUND) - ADD_SUBDIRECTORY(src/cvode/fcmix) - ENDIF(FCMIX_ENABLE AND F77_FOUND) -ENDIF(BUILD_CVODE) - -# CVODES library - -IF(BUILD_CVODES) - ADD_SUBDIRECTORY(src/cvodes) -ENDIF(BUILD_CVODES) - -# IDA library - -IF(BUILD_IDA) - ADD_SUBDIRECTORY(src/ida) - IF(FCMIX_ENABLE AND F77_FOUND) - ADD_SUBDIRECTORY(src/ida/fcmix) - ENDIF(FCMIX_ENABLE AND F77_FOUND) -ENDIF(BUILD_IDA) - -# IDAS library - -IF(BUILD_IDAS) - ADD_SUBDIRECTORY(src/idas) -ENDIF(BUILD_IDAS) - -# KINSOL library - -IF(BUILD_KINSOL) - ADD_SUBDIRECTORY(src/kinsol) - IF(FCMIX_ENABLE AND F77_FOUND) - ADD_SUBDIRECTORY(src/kinsol/fcmix) - ENDIF(FCMIX_ENABLE AND F77_FOUND) -ENDIF(BUILD_KINSOL) - -# CPODES library - -IF(BUILD_CPODES) - ADD_SUBDIRECTORY(src/cpodes) -ENDIF(BUILD_CPODES) - -# --------------------------------------------------------------- -# Include the subdirectories corresponding to various examples -# --------------------------------------------------------------- - -# If building and installing the examples is enabled, include -# the subdirectories for those examples that will be built. -# Also, if we will generate exported example Makefiles, set -# variables needed in generating them from templates. - -# For now, TestRunner is not being distributed. -# So: -# - Don't show TESTRUNNER variable -# - Don't enable testing if TestRunner if not found. -# - There will be no 'make test' target - -INCLUDE(SundialsAddTest) -HIDE_VARIABLE(TESTRUNNER) - -IF(EXAMPLES_ENABLED) - - # enable regression testing with 'make test' - IF(TESTRUNNER) - ENABLE_TESTING() - ENDIF() - - # set variables used in generating CMake and Makefiles for examples - IF(EXAMPLES_INSTALL) - - SET(SHELL "sh") - SET(prefix "${CMAKE_INSTALL_PREFIX}") - SET(exec_prefix "${CMAKE_INSTALL_PREFIX}") - SET(includedir "${prefix}/include") - SET(libdir "${exec_prefix}/lib") - SET(CPP "${CMAKE_C_COMPILER}") - SET(CPPFLAGS "${CMAKE_C_FLAGS_RELEASE}") - SET(CC "${CMAKE_C_COMPILER}") - SET(CFLAGS "${CMAKE_C_FLAGS_RELEASE}") - SET(LDFLAGS "${CMAKE_EXE_LINKER_FLAGS_RELEASE}") - LIST2STRING(EXTRA_LINK_LIBS LIBS) - - IF(CXX_FOUND) - SET(CXX "${CMAKE_CXX_COMPILER}") - SET(CXX_LNKR "${CMAKE_CXX_COMPILER}") - SET(CXXFLAGS "${CMAKE_CXX_FLAGS_RELEASE}") - SET(CXX_LDFLAGS "${CMAKE_CXX_FLAGS_RELEASE}") - LIST2STRING(EXTRA_LINK_LIBS CXX_LIBS) - ENDIF(CXX_FOUND) - - IF(F77_FOUND) - SET(F77 "${CMAKE_Fortran_COMPILER}") - SET(F77_LNKR "${CMAKE_Fortran_COMPILER}") - SET(FFLAGS "${CMAKE_Fortran_FLAGS_RELEASE}") - SET(F77_LDFLAGS "${CMAKE_Fortran_FLAGS_RELEASE}") - LIST2STRING(EXTRA_LINK_LIBS F77_LIBS) - ENDIF(F77_FOUND) - - IF(F90_FOUND) - SET(F90 "${CMAKE_Fortran_COMPILER}") - SET(F90_LNKR "${CMAKE_Fortran_COMPILER}") - SET(F90FLAGS "${CMAKE_Fortran_FLAGS_RELEASE}") - SET(F90_LDFLAGS "${CMAKE_Fortran_FLAGS_RELEASE}") - LIST2STRING(EXTRA_LINK_LIBS F90_LIBS) - ENDIF(F90_FOUND) - - IF(SUPERLUMT_FOUND) - LIST2STRING(SUPERLUMT_LIBRARIES SUPERLUMT_LIBS) - SET(SUPERLUMT_LIBS "${SUPERLUMT_LINKER_FLAGS} ${SUPERLUMT_LIBS}") - ENDIF(SUPERLUMT_FOUND) - - IF(KLU_FOUND) - LIST2STRING(KLU_LIBRARIES KLU_LIBS) - SET(KLU_LIBS "${KLU_LINKER_FLAGS} ${KLU_LIBS}") - ENDIF(KLU_FOUND) - - IF(BLAS_FOUND) - LIST2STRING(BLAS_LIBRARIES BLAS_LIBS) - ENDIF(BLAS_FOUND) - - IF(LAPACK_FOUND) - LIST2STRING(LAPACK_LIBRARIES LAPACK_LIBS) - ENDIF(LAPACK_FOUND) - - IF(MPIC_FOUND) - IF(MPI_MPICC) - SET(MPICC "${MPI_MPICC}") - SET(MPI_INC_DIR ".") - SET(MPI_LIB_DIR ".") - SET(MPI_LIBS "") - SET(MPI_FLAGS "") - ELSE(MPI_MPICC) - SET(MPICC "${CMAKE_C_COMPILER}") - SET(MPI_INC_DIR "${MPI_INCLUDE_PATH}") - SET(MPI_LIB_DIR ".") - LIST2STRING(MPI_LIBRARIES MPI_LIBS) - ENDIF(MPI_MPICC) - SET(HYPRE_INC_DIR "${HYPRE_INCLUDE_DIR}") - SET(HYPRE_LIB_DIR "${HYPRE_LIBRARY_DIR}") - SET(HYPRE_LIBS "${HYPRE_LIBRARIES}") - ENDIF(MPIC_FOUND) - - IF(MPICXX_FOUND) - IF(MPI_MPICXX) - SET(MPICXX "${MPI_MPICXX}") - ELSE(MPI_MPICXX) - SET(MPICXX "${CMAKE_CXX_COMPILER}") - LIST2STRING(MPI_LIBRARIES MPI_LIBS) - ENDIF(MPI_MPICXX) - ENDIF(MPICXX_FOUND) - - IF(MPIF_FOUND) - IF(MPI_MPIF77) - SET(MPIF77 "${MPI_MPIF77}") - SET(MPIF77_LNKR "${MPI_MPIF77}") - ELSE(MPI_MPIF77) - SET(MPIF77 "${CMAKE_Fortran_COMPILER}") - SET(MPIF77_LNKR "${CMAKE_Fortran_COMPILER}") - SET(MPI_INC_DIR "${MPI_INCLUDE_PATH}") - SET(MPI_LIB_DIR ".") - LIST2STRING(MPI_LIBRARIES MPI_LIBS) - ENDIF(MPI_MPIF77) - ENDIF(MPIF_FOUND) - - IF(MPIF90_FOUND) - IF(MPI_MPIF90) - SET(MPIF90 "${MPI_MPIF90}") - SET(MPIF90_LNKR "${MPI_MPIF90}") - ELSE(MPI_MPIF90) - SET(MPIF90 "${CMAKE_Fortran_COMPILER}") - SET(MPIF90_LNKR "${CMAKE_Fortran_COMPILER}") - LIST2STRING(MPI_LIBRARIES MPI_LIBS) - ENDIF(MPI_MPIF90) - ENDIF(MPIF90_FOUND) - - ENDIF(EXAMPLES_INSTALL) - - # add ARKode examples - IF(BUILD_ARKODE) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/arkode/C_serial) - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/arkode/C_openmp) - ENDIF() - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/arkode/C_parallel) - ENDIF() - IF(HYPRE_ENABLE AND HYPRE_FOUND) - ADD_SUBDIRECTORY(examples/arkode/C_parhyp) - ENDIF() - ENDIF() - # C++ examples - IF(EXAMPLES_ENABLE_CXX) - IF(CXX_FOUND) - ADD_SUBDIRECTORY(examples/arkode/CXX_serial) - ENDIF() - IF(MPICXX_FOUND) - ADD_SUBDIRECTORY(examples/arkode/CXX_parallel) - ENDIF() - ENDIF() - # F77 examples - IF(EXAMPLES_ENABLE_F77) - IF(F77_FOUND) - ADD_SUBDIRECTORY(examples/arkode/F77_serial) - ENDIF() - IF(MPIF_FOUND) - ADD_SUBDIRECTORY(examples/arkode/F77_parallel) - ENDIF() - ENDIF() - # F90 examples - IF(EXAMPLES_ENABLE_F90) - IF(F90_FOUND) - ADD_SUBDIRECTORY(examples/arkode/F90_serial) - ENDIF() - IF(MPIF90_FOUND) - ADD_SUBDIRECTORY(examples/arkode/F90_parallel) - ENDIF() - ENDIF() - ENDIF(BUILD_ARKODE) - - # add CVODE examples - IF(BUILD_CVODE) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/cvode/serial) - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/cvode/C_openmp) - ENDIF() - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/cvode/parallel) - ENDIF() - IF(HYPRE_ENABLE AND HYPRE_FOUND) - ADD_SUBDIRECTORY(examples/cvode/parhyp) - ENDIF() - ENDIF() - # Fortran examples - IF(EXAMPLES_ENABLE_F77) - IF(F77_FOUND) - ADD_SUBDIRECTORY(examples/cvode/fcmix_serial) - ENDIF() - IF(MPIF_FOUND) - ADD_SUBDIRECTORY(examples/cvode/fcmix_parallel) - ENDIF() - ENDIF() - # cuda examples - IF(EXAMPLES_ENABLE_CUDA) - IF(CUDA_ENABLE AND CUDA_FOUND) - ADD_SUBDIRECTORY(examples/cvode/cuda) - ENDIF() - ENDIF(EXAMPLES_ENABLE_CUDA) - # raja examples - IF(EXAMPLES_ENABLE_RAJA) - IF(RAJA_ENABLE AND RAJA_FOUND) - ADD_SUBDIRECTORY(examples/cvode/raja) - ENDIF() - ENDIF(EXAMPLES_ENABLE_RAJA) - ENDIF(BUILD_CVODE) - - # add CVODES Examples - IF(BUILD_CVODES) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/cvodes/serial) - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/cvodes/parallel) - ENDIF() - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/cvodes/C_openmp) - ENDIF() - ENDIF() - ENDIF(BUILD_CVODES) - - # add IDA examples - IF(BUILD_IDA) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/ida/serial) - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/ida/C_openmp) - ENDIF() - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/ida/parallel) - ENDIF() - IF(PETSC_FOUND) - ADD_SUBDIRECTORY(examples/ida/petsc) - ENDIF() - ENDIF() - # Fortran examples - IF(EXAMPLES_ENABLE_F77) - IF(F77_FOUND) - ADD_SUBDIRECTORY(examples/ida/fcmix_serial) - ENDIF() - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/ida/fcmix_openmp) - ENDIF() - IF(PTHREADS_FOUND) - ADD_SUBDIRECTORY(examples/ida/fcmix_pthreads) - ENDIF() - IF(MPIF_FOUND) - ADD_SUBDIRECTORY(examples/ida/fcmix_parallel) - ENDIF() - ENDIF() - ENDIF(BUILD_IDA) - - # add IDAS examples - IF(BUILD_IDAS) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/idas/serial) - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/idas/C_openmp) - ENDIF() - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/idas/parallel) - ENDIF() - ENDIF() - ENDIF(BUILD_IDAS) - - # add KINSOL examples - IF(BUILD_KINSOL) - # C examples - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/kinsol/serial) - IF(OPENMP_FOUND) - # the only example here need special handling from testrunner (not yet implemented) - ADD_SUBDIRECTORY(examples/kinsol/C_openmp) - ENDIF() - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/kinsol/parallel) - ENDIF() - ENDIF() - # Fortran examples - IF(EXAMPLES_ENABLE_F77) - IF(F77_FOUND) - ADD_SUBDIRECTORY(examples/kinsol/fcmix_serial) - ENDIF() - IF(MPIF_FOUND) - ADD_SUBDIRECTORY(examples/kinsol/fcmix_parallel) - ENDIF() - ENDIF() - ENDIF(BUILD_KINSOL) - - # add CPODES examples - IF(BUILD_CPODES) - IF(EXAMPLES_ENABLE_C) - ADD_SUBDIRECTORY(examples/cpodes/serial) - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/cpodes/parallel) - ENDIF() - ENDIF() - ENDIF(BUILD_CPODES) - - # Always add the nvector serial examples - ADD_SUBDIRECTORY(examples/nvector/serial) - - # # Always add the serial sunmatrix dense/band/sparse examples - ADD_SUBDIRECTORY(examples/sunmatrix/dense) - ADD_SUBDIRECTORY(examples/sunmatrix/band) - ADD_SUBDIRECTORY(examples/sunmatrix/sparse) - - # # Always add the serial sunlinearsolver dense/band/spils examples - ADD_SUBDIRECTORY(examples/sunlinsol/band) - ADD_SUBDIRECTORY(examples/sunlinsol/dense) - IF(KLU_FOUND) - ADD_SUBDIRECTORY(examples/sunlinsol/klu) - ENDIF(KLU_FOUND) - IF(SUPERLUMT_FOUND) - ADD_SUBDIRECTORY(examples/sunlinsol/superlumt) - ENDIF(SUPERLUMT_FOUND) - IF(LAPACK_FOUND) - ADD_SUBDIRECTORY(examples/sunlinsol/lapackband) - ADD_SUBDIRECTORY(examples/sunlinsol/lapackdense) - ENDIF(LAPACK_FOUND) - ADD_SUBDIRECTORY(examples/sunlinsol/spgmr/serial) - ADD_SUBDIRECTORY(examples/sunlinsol/spfgmr/serial) - ADD_SUBDIRECTORY(examples/sunlinsol/spbcgs/serial) - ADD_SUBDIRECTORY(examples/sunlinsol/sptfqmr/serial) - ADD_SUBDIRECTORY(examples/sunlinsol/pcg/serial) - - IF(MPIC_FOUND) - ADD_SUBDIRECTORY(examples/nvector/parallel) - ADD_SUBDIRECTORY(examples/sunlinsol/spgmr/parallel) - ADD_SUBDIRECTORY(examples/sunlinsol/spfgmr/parallel) - ADD_SUBDIRECTORY(examples/sunlinsol/spbcgs/parallel) - ADD_SUBDIRECTORY(examples/sunlinsol/sptfqmr/parallel) - #ADD_SUBDIRECTORY(examples/sunlinsol/pcg/parallel) - ENDIF(MPIC_FOUND) - - IF(HYPRE_FOUND) - ADD_SUBDIRECTORY(examples/nvector/parhyp) - ENDIF() - - IF(PTHREADS_FOUND) - ADD_SUBDIRECTORY(examples/nvector/pthreads) - ENDIF() - - IF(OPENMP_FOUND) - ADD_SUBDIRECTORY(examples/nvector/C_openmp) - ENDIF() - - IF(PETSC_FOUND) - ADD_SUBDIRECTORY(examples/nvector/petsc) - ENDIF() - - IF(CUDA_FOUND) - ADD_SUBDIRECTORY(examples/nvector/cuda) - ENDIF(CUDA_FOUND) - - IF(RAJA_FOUND) - ADD_SUBDIRECTORY(examples/nvector/raja) - ENDIF(RAJA_FOUND) - -ENDIF(EXAMPLES_ENABLED) - -# --------------------------------------------------------------- -# Install configuration header files and license file -# --------------------------------------------------------------- - -# install configured header file -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - DESTINATION include/sundials - ) - -# install configured header file for Fortran 90 -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - DESTINATION include/sundials - ) - -# install license file -INSTALL( - FILES ${PROJECT_SOURCE_DIR}/LICENSE - DESTINATION .) diff --git a/scripts/replace-cmake/sundials-4.1.0/CMakeLists.txt b/scripts/replace-cmake/sundials-4.1.0/CMakeLists.txt deleted file mode 100644 index fc8acbddc9..0000000000 --- a/scripts/replace-cmake/sundials-4.1.0/CMakeLists.txt +++ /dev/null @@ -1,1151 +0,0 @@ -# --------------------------------------------------------------- -# Programmer: Radu Serban, David J. Gardner, Cody J. Balos, -# and Slaven Peles @ LLNL -# --------------------------------------------------------------- -# SUNDIALS Copyright Start -# Copyright (c) 2002-2019, Lawrence Livermore National Security -# and Southern Methodist University. -# All rights reserved. -# -# See the top-level LICENSE and NOTICE files for details. -# -# SPDX-License-Identifier: BSD-3-Clause -# SUNDIALS Copyright End -# --------------------------------------------------------------- -# Top level CMakeLists.txt for SUNDIALS (for cmake build system) -# --------------------------------------------------------------- - -# --------------------------------------------------------------- -# Initial commands -# --------------------------------------------------------------- - -# Require a fairly recent cmake version -cmake_minimum_required(VERSION 3.1.3) - -# Libraries linked via full path no longer produce linker search paths -# Allows examples to build -if(COMMAND cmake_policy) - cmake_policy(SET CMP0003 NEW) -endif(COMMAND cmake_policy) - -# MACOSX_RPATH is enabled by default -# Fixes dynamic loading on OSX -if(POLICY CMP0042) - cmake_policy(SET CMP0042 NEW) # Added in CMake 3.0 -else() - if(APPLE) - set(CMAKE_MACOSX_RPATH 1) - endif() -endif() - -# Project SUNDIALS (initially only C supported) -# sets PROJECT_SOURCE_DIR and PROJECT_BINARY_DIR variables -PROJECT(sundials C) - -# Set some variables with info on the SUNDIALS project -SET(PACKAGE_BUGREPORT "woodward6@llnl.gov") -SET(PACKAGE_NAME "SUNDIALS") -SET(PACKAGE_STRING "SUNDIALS 4.1.0") -SET(PACKAGE_TARNAME "sundials") - -# set SUNDIALS version numbers -# (use "" for the version label if none is needed) -SET(PACKAGE_VERSION_MAJOR "4") -SET(PACKAGE_VERSION_MINOR "1") -SET(PACKAGE_VERSION_PATCH "0") -SET(PACKAGE_VERSION_LABEL "") - -IF(PACKAGE_VERSION_LABEL) - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}-${PACKAGE_VERSION_LABEL}") -ELSE() - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}") -ENDIF() - -SET_PROPERTY(GLOBAL PROPERTY USE_FOLDERS ON) - -# Prohibit in-source build -IF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - MESSAGE(FATAL_ERROR "In-source build prohibited.") -ENDIF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - -# Hide some cache variables -MARK_AS_ADVANCED(EXECUTABLE_OUTPUT_PATH LIBRARY_OUTPUT_PATH) - -# Always show the C compiler and flags -MARK_AS_ADVANCED(CLEAR - CMAKE_C_COMPILER - CMAKE_C_FLAGS) - -# Specify the VERSION and SOVERSION for shared libraries - -SET(arkodelib_VERSION "3.1.0") -SET(arkodelib_SOVERSION "3") - -SET(cvodelib_VERSION "4.1.0") -SET(cvodelib_SOVERSION "4") - -SET(cvodeslib_VERSION "4.1.0") -SET(cvodeslib_SOVERSION "4") - -SET(idalib_VERSION "4.1.0") -SET(idalib_SOVERSION "4") - -SET(idaslib_VERSION "3.1.0") -SET(idaslib_SOVERSION "3") - -SET(kinsollib_VERSION "4.1.0") -SET(kinsollib_SOVERSION "4") - -SET(cpodeslib_VERSION "0.0.0") -SET(cpodeslib_SOVERSION "0") - -SET(nveclib_VERSION "4.1.0") -SET(nveclib_SOVERSION "4") - -SET(sunmatrixlib_VERSION "2.1.0") -SET(sunmatrixlib_SOVERSION "2") - -SET(sunlinsollib_VERSION "2.1.0") -SET(sunlinsollib_SOVERSION "2") - -SET(sunnonlinsollib_VERSION "1.1.0") -SET(sunnonlinsollib_SOVERSION "1") - -# Specify the location of additional CMAKE modules -SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/config) - -# Get correct build paths automatically, but expose CMAKE_INSTALL_LIBDIR -# as a regular cache variable so that a user can more easily see what -# the library dir was set to be by GNUInstallDirs. -INCLUDE(GNUInstallDirs) -MARK_AS_ADVANCED(CLEAR CMAKE_INSTALL_LIBDIR) - -# --------------------------------------------------------------- -# Which modules to build? -# --------------------------------------------------------------- - -# For each SUNDIALS solver available (i.e. for which we have the -# sources), give the user the option of enabling/disabling it. - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/arkode") - OPTION(BUILD_ARKODE "Build the ARKODE library" ON) -ELSE() - SET(BUILD_ARKODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvode") - OPTION(BUILD_CVODE "Build the CVODE library" ON) -ELSE() - SET(BUILD_CVODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvodes") - OPTION(BUILD_CVODES "Build the CVODES library" ON) -ELSE() - SET(BUILD_CVODES OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/ida") - OPTION(BUILD_IDA "Build the IDA library" ON) -ELSE() - SET(BUILD_IDA OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/idas") - OPTION(BUILD_IDAS "Build the IDAS library" ON) -ELSE() - SET(BUILD_IDAS OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/kinsol") - OPTION(BUILD_KINSOL "Build the KINSOL library" ON) -ELSE() - SET(BUILD_KINSOL OFF) -ENDIF() - -# CPODES is always OFF for now. (commented out for Release); ToDo: better way to do this? -#IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cpodes") -# OPTION(BUILD_CPODES "Build the CPODES library" OFF) -#ELSE() -# SET(BUILD_CPODES OFF) -#ENDIF() - -# --------------------------------------------------------------- -# MACRO definitions -# --------------------------------------------------------------- -INCLUDE(CMakeParseArguments) # can be removed when CMake 3.5+ is required -INCLUDE(SundialsCMakeMacros) -INCLUDE(SundialsAddF2003InterfaceLibrary) -INCLUDE(SundialsAddTest) -INCLUDE(SundialsAddTestInstall) - -# --------------------------------------------------------------- -# Check for deprecated SUNDIALS CMake options/variables -# --------------------------------------------------------------- -INCLUDE(SundialsDeprecated) - -# --------------------------------------------------------------- -# xSDK specific options -# --------------------------------------------------------------- -INCLUDE(SundialsXSDK) - -# --------------------------------------------------------------- -# Build specific C flags -# --------------------------------------------------------------- - -# Hide all build type specific flags -MARK_AS_ADVANCED(FORCE - CMAKE_C_FLAGS_DEBUG - CMAKE_C_FLAGS_MINSIZEREL - CMAKE_C_FLAGS_RELEASE - CMAKE_C_FLAGS_RELWITHDEBINFO) - -# Only show flags for the current build type if it is set -# NOTE: Build specific flags are appended those in CMAKE_C_FLAGS -IF(CMAKE_BUILD_TYPE) - IF(CMAKE_BUILD_TYPE MATCHES "Debug") - MESSAGE("Appending C debug flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_DEBUG) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "MinSizeRel") - MESSAGE("Appending C min size release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_MINSIZEREL) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "Release") - MESSAGE("Appending C release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELEASE) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "RelWithDebInfo") - MESSAGE("Appending C release with debug info flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELWITHDEBINFO) - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# Option to specify precision (realtype) -# --------------------------------------------------------------- - -SET(DOCSTR "single, double, or extended") -SHOW_VARIABLE(SUNDIALS_PRECISION STRING "${DOCSTR}" "double") - -# prepare substitution variable PRECISION_LEVEL for sundials_config.h -STRING(TOUPPER ${SUNDIALS_PRECISION} SUNDIALS_PRECISION) -SET(PRECISION_LEVEL "#define SUNDIALS_${SUNDIALS_PRECISION}_PRECISION 1") - -# prepare substitution variable FPRECISION_LEVEL for sundials_fconfig.h -IF(SUNDIALS_PRECISION MATCHES "SINGLE") - SET(FPRECISION_LEVEL "4") -ENDIF(SUNDIALS_PRECISION MATCHES "SINGLE") -IF(SUNDIALS_PRECISION MATCHES "DOUBLE") - SET(FPRECISION_LEVEL "8") -ENDIF(SUNDIALS_PRECISION MATCHES "DOUBLE") -IF(SUNDIALS_PRECISION MATCHES "EXTENDED") - SET(FPRECISION_LEVEL "16") -ENDIF(SUNDIALS_PRECISION MATCHES "EXTENDED") - -# --------------------------------------------------------------- -# Option to specify index type -# --------------------------------------------------------------- - -SET(DOCSTR "Signed 64-bit (64) or signed 32-bit (32) integer") -SHOW_VARIABLE(SUNDIALS_INDEX_SIZE STRING "${DOCSTR}" "64") -SET(DOCSTR "Integer type to use for indices in SUNDIALS") -SHOW_VARIABLE(SUNDIALS_INDEX_TYPE STRING "${DOCSTR}" "") -MARK_AS_ADVANCED(SUNDIALS_INDEX_TYPE) -include(SundialsIndexSize) - -# --------------------------------------------------------------- -# Enable Fortran interface? -# --------------------------------------------------------------- - -# Fortran interface is disabled by default -SET(DOCSTR "Enable Fortran 77 interfaces") -OPTION(F77_INTERFACE_ENABLE "${DOCSTR}" OFF) - -# Check that at least one solver with a Fortran 77 interface is built -IF(NOT BUILD_ARKODE AND NOT BUILD_CVODE AND NOT BUILD_IDA AND NOT BUILD_KINSOL) - IF(F77_INTERFACE_ENABLE) - PRINT_WARNING("Enabled packages do not support Fortran 77 interface" "Disabling F77 interface") - FORCE_VARIABLE(F77_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(F77_INTERFACE_ENABLE) -ENDIF() - -# Fortran 2003 interface is disabled by default -SET(DOCSTR "Enable Fortran 2003 interfaces") -OPTION(F2003_INTERFACE_ENABLE "${DOCSTR}" OFF) - -# Check that at least one solver with a Fortran 2003 interface is built -IF(NOT BUILD_CVODE) - IF(F2003_INTERFACE_ENABLE) - PRINT_WARNING("Enabled packages do not support Fortran 2003 interface" "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(F2003_INTERFACE_ENABLE) -ENDIF() - -IF(F2003_INTERFACE_ENABLE) - # F2003 interface only supports double precision - IF(NOT (SUNDIALS_PRECISION MATCHES "DOUBLE")) - PRINT_WARNING("F2003 interface is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - - # F2003 interface only supports 64-bit indices - IF(NOT (SUNDIALS_INDEX_SIZE MATCHES "64")) - PRINT_WARNING("F2003 interface is not compatible with ${SUNDIALS_INDEX_SIZE}-bit indicies" - "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - - # Put all F2003 modules into one build directory - SET(CMAKE_Fortran_MODULE_DIRECTORY "${CMAKE_BINARY_DIR}/fortran") - - # Allow a user to set where the Fortran modules will be installed - SET(DOCSTR "Directory where Fortran module files are installed") - SHOW_VARIABLE(Fortran_INSTALL_MODDIR DIRECTORY "${DOCSTR}" "fortran") -ENDIF() - -# --------------------------------------------------------------- -# Options to build static and/or shared libraries -# --------------------------------------------------------------- - -OPTION(BUILD_STATIC_LIBS "Build static libraries" ON) -OPTION(BUILD_SHARED_LIBS "Build shared libraries" ON) - -# Make sure we build at least one type of libraries -IF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - PRINT_WARNING("Both static and shared library generation were disabled" - "Building static libraries was re-enabled") - FORCE_VARIABLE(BUILD_STATIC_LIBS BOOL "Build static libraries" ON) -ENDIF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - -# --------------------------------------------------------------- -# Option to use the generic math libraries (UNIX only) -# --------------------------------------------------------------- - -IF(UNIX) - OPTION(USE_GENERIC_MATH "Use generic (std-c) math libraries" ON) - IF(USE_GENERIC_MATH) - # executables will be linked against -lm - SET(EXTRA_LINK_LIBS -lm) - # prepare substitution variable for sundials_config.h - SET(SUNDIALS_USE_GENERIC_MATH TRUE) - ENDIF(USE_GENERIC_MATH) -ENDIF(UNIX) - -# --------------------------------------------------------------- -# Check for POSIX timers -# --------------------------------------------------------------- -INCLUDE(SundialsPOSIXTimers) - -# =============================================================== -# Options for Parallelism -# =============================================================== - -# --------------------------------------------------------------- -# Enable MPI support? -# --------------------------------------------------------------- -OPTION(MPI_ENABLE "Enable MPI support" OFF) - -# --------------------------------------------------------------- -# Enable OpenMP support? -# --------------------------------------------------------------- -OPTION(OPENMP_ENABLE "Enable OpenMP support" OFF) - -# provide OPENMP_DEVICE_ENABLE option -OPTION(OPENMP_DEVICE_ENABLE "Enable OpenMP device offloading support" OFF) - -# Advanced option to skip OpenMP device offloading support check. -# This is needed for a specific compiler that doesn't correctly -# report its OpenMP spec date (with CMake >= 3.9). -OPTION(SKIP_OPENMP_DEVICE_CHECK "Skip the OpenMP device offloading support check" OFF) -MARK_AS_ADVANCED(FORCE SKIP_OPENMP_DEVICE_CHECK) - -# --------------------------------------------------------------- -# Enable Pthread support? -# --------------------------------------------------------------- -OPTION(PTHREAD_ENABLE "Enable Pthreads support" OFF) - -# ------------------------------------------------------------- -# Enable CUDA support? -# ------------------------------------------------------------- -OPTION(CUDA_ENABLE "Enable CUDA support" OFF) - -# ------------------------------------------------------------- -# Enable RAJA support? -# ------------------------------------------------------------- -OPTION(RAJA_ENABLE "Enable RAJA support" OFF) - - -# =============================================================== -# Options for external packages -# =============================================================== - -# --------------------------------------------------------------- -# Enable BLAS support? -# --------------------------------------------------------------- -OPTION(BLAS_ENABLE "Enable BLAS support" OFF) - -# --------------------------------------------------------------- -# Enable LAPACK/BLAS support? -# --------------------------------------------------------------- -OPTION(LAPACK_ENABLE "Enable Lapack support" OFF) - -# LAPACK does not support extended precision -IF(LAPACK_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling LAPACK") - FORCE_VARIABLE(LAPACK_ENABLE BOOL "LAPACK is disabled" OFF) -ENDIF() - -# LAPACK does not support 64-bit integer index types -IF(LAPACK_ENABLE AND SUNDIALS_INDEX_SIZE MATCHES "64") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_INDEX_SIZE} integers" - "Disabling LAPACK") - SET(LAPACK_ENABLE OFF CACHE BOOL "LAPACK is disabled" FORCE) -ENDIF() - -# --------------------------------------------------------------- -# Enable SuperLU_MT support? -# --------------------------------------------------------------- -OPTION(SUPERLUMT_ENABLE "Enable SUPERLUMT support" OFF) - -# SuperLU_MT does not support extended precision -IF(SUPERLUMT_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("SuperLU_MT is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling SuperLU_MT") - FORCE_VARIABLE(SUPERLUMT_ENABLE BOOL "SuperLU_MT is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable KLU support? -# --------------------------------------------------------------- -OPTION(KLU_ENABLE "Enable KLU support" OFF) - -# KLU does not support single or extended precision -IF(KLU_ENABLE AND - (SUNDIALS_PRECISION MATCHES "SINGLE" OR SUNDIALS_PRECISION MATCHES "EXTENDED")) - PRINT_WARNING("KLU is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling KLU") - FORCE_VARIABLE(KLU_ENABLE BOOL "KLU is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable hypre Vector support? -# --------------------------------------------------------------- -OPTION(HYPRE_ENABLE "Enable hypre support" OFF) - -# Using hypre requres building with MPI enabled -IF(HYPRE_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling hypre" - "Set MPI_ENABLE to ON to use parhyp") - FORCE_VARIABLE(HYPRE_ENABLE BOOL "Enable hypre support" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable PETSc support? -# --------------------------------------------------------------- -OPTION(PETSC_ENABLE "Enable PETSc support" OFF) - -# Using PETSc requires building with MPI enabled -IF(PETSC_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling PETSc" - "Set MPI_ENABLE to ON to use PETSc") - FORCE_VARIABLE(PETSC_ENABLE BOOL "Enable PETSc support" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable Trilinos support? -# --------------------------------------------------------------- -OPTION(Trilinos_ENABLE "Enable Trilinos support" OFF) - - -# =============================================================== -# Options for examples -# =============================================================== - -# --------------------------------------------------------------- -# Enable examples? -# --------------------------------------------------------------- - -# Enable C examples (on by default) -OPTION(EXAMPLES_ENABLE_C "Build SUNDIALS C examples" ON) - -# C++ examples (off by default, unless Trilinos is enabled) -SET(DOCSTR "Build C++ examples") -OPTION(EXAMPLES_ENABLE_CXX "${DOCSTR}" ${Trilinos_ENABLE}) - -# F77 examples (on by default) are an option only if the Fortran -# interface is enabled -SET(DOCSTR "Build SUNDIALS Fortran examples") -IF(F77_INTERFACE_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" ON) - # Fortran 77 examples do not support single or extended precision - IF(EXAMPLES_ENABLE_F77 AND (SUNDIALS_PRECISION MATCHES "EXTENDED" OR SUNDIALS_PRECISION MATCHES "SINGLE")) - PRINT_WARNING("F77 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F77) - PRINT_WARNING("EXAMPLES_ENABLE_F77 is ON but F77_INTERFACE_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F77) -ENDIF() - -# F90 examples (on by default) are an option only if a Fortran interface is enabled. -SET(DOCSTR "Build SUNDIALS F90 examples") -IF(F77_INTERFACE_ENABLE OR F2003_INTERFACE_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" ON) - # Fortran 90 examples do not support extended precision - IF(EXAMPLES_ENABLE_F90 AND (SUNDIALS_PRECISION MATCHES "EXTENDED")) - PRINT_WARNING("F90 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F90) - PRINT_WARNING("EXAMPLES_ENABLE_F90 is ON but both F77 and F2003 interfaces are OFF" - "Disabling EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F90) -ENDIF() - -# CUDA examples (off by default) -SET(DOCSTR "Build SUNDIALS CUDA examples") -IF(CUDA_ENABLE) - OPTION(EXAMPLES_ENABLE_CUDA "${DOCSTR}" OFF) -ELSE() - IF(EXAMPLES_ENABLE_CUDA) - PRINT_WARNING("EXAMPLES_ENABLE_CUDA is ON but CUDA_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_CUDA") - FORCE_VARIABLE(EXAMPLES_ENABLE_CUDA BOOL "${DOCSTR}" OFF) - ENDIF() -ENDIF() - -# If any of the above examples are enabled set EXAMPLES_ENABLED to TRUE -IF(EXAMPLES_ENABLE_C OR - EXAMPLES_ENABLE_F77 OR - EXAMPLES_ENABLE_CXX OR - EXAMPLES_ENABLE_F90 OR - EXAMPLES_ENABLE_CUDA) - SET(EXAMPLES_ENABLED TRUE) -ELSE() - SET(EXAMPLES_ENABLED FALSE) -ENDIF() - -# --------------------------------------------------------------- -# Install examples? -# --------------------------------------------------------------- - -# Enable installing examples by default -SET(DOCSTR "Install SUNDIALS examples") -IF(EXAMPLES_ENABLED) - OPTION(EXAMPLES_INSTALL "${DOCSTR}" ON) -ELSE() - FORCE_VARIABLE(EXAMPLES_INSTALL BOOL "${DOCSTR}" OFF) - HIDE_VARIABLE(EXAMPLES_INSTALL) -ENDIF() - -# If examples are to be exported, check where we should install them. -IF(EXAMPLES_INSTALL) - - SHOW_VARIABLE(EXAMPLES_INSTALL_PATH PATH - "Output directory for installing example files" - "${CMAKE_INSTALL_PREFIX}/examples") - - IF(NOT EXAMPLES_INSTALL_PATH) - PRINT_WARNING("The example installation path is empty" - "Example installation path was reset to its default value") - SET(EXAMPLES_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/examples" CACHE STRING - "Output directory for installing example files" FORCE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(EXAMPLES_INSTALL_PATH) - -ENDIF() - - -# ============================================================================== -# Advanced (hidden) options -# ============================================================================== - -# ------------------------------------------------------------------------------ -# Manually specify the Fortran name-mangling scheme -# -# The build system tries to infer the Fortran name-mangling scheme using a -# Fortran compiler and defaults to using lower case and one underscore if the -# scheme can not be determined. If a working Fortran compiler is not available -# or the user needs to override the inferred or default scheme, the following -# options specify the case and number of appended underscores corresponding to -# the Fortran name-mangling scheme of symbol names that do not themselves -# contain underscores. This is all we really need for the FCMIX and LAPACK -# interfaces. A working Fortran compiler is only necessary for building Fortran -# example programs. -# ------------------------------------------------------------------------------ - -# The case to use in the name-mangling scheme -show_variable(SUNDIALS_F77_FUNC_CASE STRING - "case of Fortran function names (lower/upper)" - "") - -# The number of underscores of appended in the name-mangling scheme -show_variable(SUNDIALS_F77_FUNC_UNDERSCORES STRING - "number of underscores appended to Fortran function names (none/one/two)" - "") - -# Hide the name-mangling varibales as advanced options -mark_as_advanced(FORCE SUNDIALS_F77_FUNC_CASE) -mark_as_advanced(FORCE SUNDIALS_F77_FUNC_UNDERSCORES) - -# If used, both case and underscores must be set -if((NOT SUNDIALS_F77_FUNC_CASE) AND SUNDIALS_F77_FUNC_UNDERSCORES) - message(FATAL_ERROR - "If SUNDIALS_F77_FUNC_UNDERSCORES is set, SUNDIALS_F77_FUNC_CASE must also be set.") -endif() - -if(SUNDIALS_F77_FUNC_CASE AND (NOT SUNDIALS_F77_FUNC_UNDERSCORES)) - message(FATAL_ERROR - "If SUNDIALS_F77_FUNC_CASE is set, SUNDIALS_F77_FUNC_UNDERSCORES must also be set.") -endif() - -# ------------------------------------------------------------------------------ -# Include development examples in regression tests? -# -# NOTE: Development examples are currently used for internal testing and may -# produce erroneous failures when run on different systems as the pass/fail -# status is determined by comparing the output against a saved output file. -# ------------------------------------------------------------------------------ -OPTION(SUNDIALS_DEVTESTS "Include development tests in make test" OFF) -MARK_AS_ADVANCED(FORCE SUNDIALS_DEVTESTS) - -# =============================================================== -# Add any platform specifc settings -# =============================================================== - -IF(APPLE) - SET(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "${CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS} -undefined dynamic_lookup") -ENDIF(APPLE) - -# =============================================================== -# Fortran and C++ settings -# =============================================================== - -# --------------------------------------------------------------- -# A Fortran compiler is needed to: -# (a) Determine the name-mangling scheme if FCMIX, BLAS, or -# LAPACK are enabled -# (b) Compile example programs if F77 or F90 examples are enabled -# --------------------------------------------------------------- - -# Do we need a Fortran name-mangling scheme? -if(F77_INTERFACE_ENABLE OR BLAS_ENABLE OR LAPACK_ENABLE) - set(NEED_FORTRAN_NAME_MANGLING TRUE) -endif() - -# Did the user provide a name-mangling scheme? -if(SUNDIALS_F77_FUNC_CASE AND SUNDIALS_F77_FUNC_UNDERSCORES) - - STRING(TOUPPER ${SUNDIALS_F77_FUNC_CASE} SUNDIALS_F77_FUNC_CASE) - STRING(TOUPPER ${SUNDIALS_F77_FUNC_UNDERSCORES} SUNDIALS_F77_FUNC_UNDERSCORES) - - # Based on the given case and number of underscores, set the C preprocessor - # macro definitions. Since SUNDIALS never uses symbols names containing - # underscores we set the name-mangling schemes to be the same. In general, - # names of symbols with and without underscore may be mangled differently - # (e.g. g77 mangles mysub to mysub_ and my_sub to my_sub__) - if(SUNDIALS_F77_FUNC_CASE MATCHES "LOWER") - if(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "NONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "ONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## _") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## _") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "TWO") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## __") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## __") - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_UNDERSCORES option.") - endif() - elseif(SUNDIALS_F77_FUNC_CASE MATCHES "UPPER") - if(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "NONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "ONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## _") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## _") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "TWO") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## __") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## __") - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_UNDERSCORES option.") - endif() - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_CASE option.") - endif() - - # name-mangling scheme has been manually set - set(NEED_FORTRAN_NAME_MANGLING FALSE) - -endif() - -# Do we need a Fortran compiler? -if(F2003_INTERFACE_ENABLE OR EXAMPLES_ENABLE_F77 OR EXAMPLES_ENABLE_F90 OR NEED_FORTRAN_NAME_MANGLING) - include(SundialsFortran) -endif() - -# Ensure that F90 compiler is found if F90 examples are enabled -if (EXAMPLES_ENABLE_F90 AND (NOT F90_FOUND)) - PRINT_WARNING("Compiler with F90 support not found" "Disabling F90 Examples") - SET(DOCSTR "Build F90 examples") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 "${DOCSTR}" OFF) -endif() - -# Ensure that F90 compiler found if F2003 interface is enabled -if (F2003_INTERFACE_ENABLE AND (NOT F90_FOUND)) - PRINT_WARNING("Compiler with F90 support not found" "Disabling F2003 Interface") - SET(DOCSTR "Enable Fortran 2003 interfaces") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) -endif() - -# F2003 interface requires ISO_C_BINDING -IF(F2003_INTERFACE_ENABLE AND (NOT Fortran_COMPILER_SUPPORTS_ISOCBINDING)) - PRINT_WARNING("Fortran compiler does not provide ISO_C_BINDING support" - "Disabling F2003 interface") - SET(DOCSTR "Enable Fortran 2003 interfaces") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) -ENDIF() - - -# --------------------------------------------------------------- -# A C++ compiler is needed if: -# (a) C++ examples are enabled -# (b) CUDA is enabled -# (c) RAJA is enabled -# (d) Trilinos is enabled -# --------------------------------------------------------------- - -if(EXAMPLES_ENABLE_CXX OR CUDA_ENABLE OR RAJA_ENABLE OR Trilinos_ENABLE) - include(SundialsCXX) -endif() - -# --------------------------------------------------------------- -# Setup CUDA. Since CUDA is its own language we do this -# separate from the TPLs. -# --------------------------------------------------------------- - -if(CUDA_ENABLE) - find_package(CUDA) - if (CUDA_FOUND) - set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} -lineinfo") - else() - message(STATUS "Disabling CUDA support, could not find CUDA.") - set(CUDA_ENABLE OFF) - endif() -endif(CUDA_ENABLE) - -# --------------------------------------------------------------- -# Now that all languages are setup, we can configure them more. -# --------------------------------------------------------------- - -# C++11 is needed if: -# (a) CUDA is enabled -# C++11 should not be enabled if -# (a) RAJA is enabled (they provide a std flag) -if (CXX_FOUND AND CUDA_ENABLE AND CUDA_FOUND AND (NOT RAJA_ENABLE)) - USE_CXX_STD(11) -endif() - -# --------------------------------------------------------------- -# Decide how to compile MPI codes. We must check for MPI if -# MPI is enabled or if Trilinos is enabled because the Trilinos -# examples may need MPI without us turning on the MPI SUNDIALS -# components. -# --------------------------------------------------------------- - -if(MPI_ENABLE OR Trilinos_ENABLE) - include(SundialsMPI) -endif() - -if(MPI_ENABLE) - if(NOT MPI_C_FOUND) - print_warning("MPI not functional" "Parallel support will not be provided") - else() - set(IS_MPI_ENABLED "#ifndef SUNDIALS_MPI_ENABLED\n#define SUNDIALS_MPI_ENABLED 1\n#endif") - endif() -endif() - -# always define FMPI_COMM_F2C in sundials_fconfig.h file -if(MPIC_MPI2) - set(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 1") - set(FMPI_COMM_F2C ".true.") -else() - set(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 0") - set(FMPI_COMM_F2C ".false.") -endif() - -# ------------------------------------------------------------- -# Find OpenMP -# ------------------------------------------------------------- - -if(OPENMP_ENABLE OR OPENMP_DEVICE_ENABLE) - - include(SundialsOpenMP) - - # turn off OPENMP_ENABLE and OPENMP_DEVICE_ENABLE if OpenMP is not found - if(NOT OPENMP_FOUND) - print_warning("Could not determine OpenMP compiler flags" "Disabling OpenMP support") - force_variable(OPENMP_ENABLE BOOL "Enable OpenMP support" OFF) - force_variable(OPENMP_DEVICE_ENABLE BOOL "Enable OpenMP device offloading support" OFF) - endif() - - # turn off OPENMP_DEVICE_ENABLE if offloading is not supported - if(OPENMP_DEVICE_ENABLE AND (NOT OPENMP_SUPPORTS_DEVICE_OFFLOADING)) - print_warning("OpenMP found does not support device offloading" - "Disabling OpenMP device offloading support") - force_variable(OPENMP_DEVICE_ENABLE BOOL "Enable OpenMP device offloading support" OFF) - endif() - -endif() - -# ------------------------------------------------------------- -# Find PThreads -# ------------------------------------------------------------- - -IF(PTHREAD_ENABLE) - FIND_PACKAGE(Threads) - IF(CMAKE_USE_PTHREADS_INIT) - message(STATUS "Using Pthreads") - SET(PTHREADS_FOUND TRUE) - # SGS - ELSE() - message(STATUS "Disabling Pthreads support, could not determine compiler flags") - endif() -ENDIF(PTHREAD_ENABLE) - -# ------------------------------------------------------------- -# Find RAJA -# ------------------------------------------------------------- - -# disable RAJA if CUDA is not enabled/working -if(RAJA_ENABLE AND (NOT CUDA_FOUND)) - PRINT_WARNING("CUDA is required for RAJA support" "Please enable CUDA and RAJA") - FORCE_VARIABLE(RAJA_ENABLE BOOL "RAJA disabled" OFF) -endif() - -if(RAJA_ENABLE) - # Look for CMake configuration file in RAJA installation - find_package(RAJA) - if (RAJA_FOUND) - include_directories(${RAJA_INCLUDE_DIR}) - set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} ${RAJA_NVCC_FLAGS}) - else() - PRINT_WARNING("RAJA configuration not found" - "Please set RAJA_DIR to provide path to RAJA CMake configuration file.") - endif() -endif(RAJA_ENABLE) - -# =============================================================== -# Find (and test) external packages -# =============================================================== - -# --------------------------------------------------------------- -# Find (and test) the BLAS libraries -# --------------------------------------------------------------- - -# If BLAS is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(BLAS_ENABLE) - - # find BLAS - INCLUDE(SundialsBlas) - - # show after include so FindBlas can locate BLAS_LIBRARIES if necessary - SHOW_VARIABLE(BLAS_LIBRARIES STRING "Blas libraries" "${BLAS_LIBRARIES}") - - IF(BLAS_LIBRARIES AND NOT BLAS_FOUND) - PRINT_WARNING("BLAS not functional" - "BLAS support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS TRUE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(BLAS_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the Lapack libraries -# --------------------------------------------------------------- - -# If LAPACK is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(LAPACK_ENABLE) - - # find LAPACK and BLAS Libraries - INCLUDE(SundialsLapack) - - # show after include so FindLapack can locate LAPCK_LIBRARIES if necessary - SHOW_VARIABLE(LAPACK_LIBRARIES STRING "Lapack and Blas libraries" "${LAPACK_LIBRARIES}") - - IF(LAPACK_LIBRARIES AND NOT LAPACK_FOUND) - PRINT_WARNING("LAPACK not functional" - "Blas/Lapack support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS_LAPACK TRUE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(LAPACK_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the SUPERLUMT libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for SuperLU_MT integer type - -# If SUPERLUMT is needed, first try to find the appropriate -# libraries to link against them. - -IF(SUPERLUMT_ENABLE) - - # Show SuperLU_MT options and set default thread type (Pthreads) - SHOW_VARIABLE(SUPERLUMT_THREAD_TYPE STRING "SUPERLUMT threading type: OpenMP or Pthread" "Pthread") - SHOW_VARIABLE(SUPERLUMT_INCLUDE_DIR PATH "SUPERLUMT include directory" "${SUPERLUMT_INCLUDE_DIR}") - SHOW_VARIABLE(SUPERLUMT_LIBRARY_DIR PATH "SUPERLUMT library directory" "${SUPERLUMT_LIBRARY_DIR}") - - INCLUDE(SundialsSuperLUMT) - - IF(SUPERLUMT_FOUND) - # sundials_config.h symbols - SET(SUNDIALS_SUPERLUMT TRUE) - SET(SUNDIALS_SUPERLUMT_THREAD_TYPE ${SUPERLUMT_THREAD_TYPE}) - INCLUDE_DIRECTORIES(${SUPERLUMT_INCLUDE_DIR}) - ENDIF() - - IF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - PRINT_WARNING("SUPERLUMT not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - -ELSE() - - HIDE_VARIABLE(SUPERLUMT_THREAD_TYPE) - HIDE_VARIABLE(SUPERLUMT_LIBRARY_DIR) - HIDE_VARIABLE(SUPERLUMT_INCLUDE_DIR) - SET (SUPERLUMT_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the KLU libraries -# --------------------------------------------------------------- - -# If KLU is requested, first try to find the appropriate libraries to -# link against them. - -IF(KLU_ENABLE) - - SHOW_VARIABLE(KLU_INCLUDE_DIR PATH "KLU include directory" - "${KLU_INCLUDE_DIR}") - SHOW_VARIABLE(KLU_LIBRARY_DIR PATH - "Klu library directory" "${KLU_LIBRARY_DIR}") - - set(KLU_FOUND TRUE) - get_filename_component(PYBAMM_DIR ${PROJECT_SOURCE_DIR} DIRECTORY) - set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${PYBAMM_DIR}) # use FindSuiteSparse.cmake that is in PyBaMM root - set(SuiteSparse_ROOT ${PYBAMM_DIR}/SuiteSparse-5.6.0) - find_package(SuiteSparse OPTIONAL_COMPONENTS KLU AMD COLAMD BTF) - include_directories(${SuiteSparse_INCLUDE_DIRS}) - set(KLU_LIBRARIES ${SuiteSparse_LIBRARIES}) - - - IF(KLU_LIBRARIES AND NOT KLU_FOUND) - PRINT_WARNING("KLU not functional - support will not be provided" - "Double check spelling of include path and specified libraries (search is case sensitive)") - ENDIF(KLU_LIBRARIES AND NOT KLU_FOUND) - -ELSE() - - HIDE_VARIABLE(KLU_LIBRARY_DIR) - HIDE_VARIABLE(KLU_INCLUDE_DIR) - SET (KLU_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF(KLU_ENABLE) - -# --------------------------------------------------------------- -# Find (and test) the hypre libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for hypre precision and integer type - -IF(HYPRE_ENABLE) - SHOW_VARIABLE(HYPRE_INCLUDE_DIR PATH "HYPRE include directory" - "${HYPRE_INCLUDE_DIR}") - SHOW_VARIABLE(HYPRE_LIBRARY_DIR PATH - "HYPRE library directory" "${HYPRE_LIBRARY_DIR}") - - INCLUDE(SundialsHypre) - - IF(HYPRE_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_HYPRE TRUE) - INCLUDE_DIRECTORIES(${HYPRE_INCLUDE_DIR}) - ENDIF(HYPRE_FOUND) - - IF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - PRINT_WARNING("HYPRE not functional - support will not be provided" - "Found hypre library, test code does not work") - ENDIF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - -ELSE() - - HIDE_VARIABLE(HYPRE_INCLUDE_DIR) - HIDE_VARIABLE(HYPRE_LIBRARY_DIR) - SET (HYPRE_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the PETSc libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for PETSc precision and integer type - -IF(PETSC_ENABLE) - SHOW_VARIABLE(PETSC_INCLUDE_DIR PATH "PETSc include directory" - "${PETSC_INCLUDE_DIR}") - SHOW_VARIABLE(PETSC_LIBRARY_DIR PATH - "PETSc library directory" "${PETSC_LIBRARY_DIR}") - - INCLUDE(SundialsPETSc) - - IF(PETSC_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_PETSC TRUE) - INCLUDE_DIRECTORIES(${PETSC_INCLUDE_DIR}) - ENDIF(PETSC_FOUND) - - IF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - PRINT_WARNING("PETSC not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - -ELSE() - - HIDE_VARIABLE(PETSC_LIBRARY_DIR) - HIDE_VARIABLE(PETSC_INCLUDE_DIR) - SET (PETSC_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# ------------------------------------------------------------- -# Find Trilinos -# ------------------------------------------------------------- - -if(Trilinos_ENABLE) - include(SundialsTrilinos) - if(NOT Trilinos_FUNCTIONAL) - PRINT_WARNING("Trilinos not functional" "Verify the path to Trilinos and check the Trilinos installation") - endif() -endif(Trilinos_ENABLE) - - -# =============================================================== -# At this point all the configuration options are set. -# =============================================================== - -# --------------------------------------------------------------- -# Configure the header file sundials_config.h -# --------------------------------------------------------------- - -# All required substitution variables should be available at this point. -# Generate the header file and place it in the binary dir. -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_config.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - ) -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_fconfig.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - ) - -# Add the include directory in the source tree and the one in -# the binary tree (for the header file sundials_config.h) -INCLUDE_DIRECTORIES(${PROJECT_SOURCE_DIR}/include ${PROJECT_BINARY_DIR}/include) - -# --------------------------------------------------------------- -# Enable testing and add source and example files to the build. -# --------------------------------------------------------------- - -# Enable testing -IF(EXAMPLES_ENABLED) - INCLUDE(SundialsTesting) -ENDIF() - -# Add selected packages and modules to the build -ADD_SUBDIRECTORY(src) - -# Add selected examples to the build -IF(EXAMPLES_ENABLED) - ADD_SUBDIRECTORY(examples) -ENDIF() - -# --------------------------------------------------------------- -# Install configuration header files and license file -# --------------------------------------------------------------- - -# install configured header file -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - DESTINATION include/sundials - ) - -# install configured header file for Fortran 90 -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - DESTINATION include/sundials - ) - -# install shared Fortran 2003 modules -IF(F2003_INTERFACE_ENABLE) - # While the .mod files get generated for static and shared - # libraries, they are identical. So only install one set - # of the .mod files. - IF(BUILD_STATIC_LIBS) - INSTALL( - DIRECTORY ${CMAKE_Fortran_MODULE_DIRECTORY}_STATIC/ - DESTINATION ${Fortran_INSTALL_MODDIR} - ) - ELSE() - INSTALL( - DIRECTORY ${CMAKE_Fortran_MODULE_DIRECTORY}_SHARED/ - DESTINATION ${Fortran_INSTALL_MODDIR} - ) - ENDIF() -ENDIF() - -# install license and notice files -INSTALL( - FILES ${PROJECT_SOURCE_DIR}/LICENSE - DESTINATION include/sundials - ) -INSTALL( - FILES ${PROJECT_SOURCE_DIR}/NOTICE - DESTINATION include/sundials - ) diff --git a/scripts/replace-cmake/sundials-5.0.0/CMakeLists.txt b/scripts/replace-cmake/sundials-5.0.0/CMakeLists.txt deleted file mode 100644 index fc8acbddc9..0000000000 --- a/scripts/replace-cmake/sundials-5.0.0/CMakeLists.txt +++ /dev/null @@ -1,1151 +0,0 @@ -# --------------------------------------------------------------- -# Programmer: Radu Serban, David J. Gardner, Cody J. Balos, -# and Slaven Peles @ LLNL -# --------------------------------------------------------------- -# SUNDIALS Copyright Start -# Copyright (c) 2002-2019, Lawrence Livermore National Security -# and Southern Methodist University. -# All rights reserved. -# -# See the top-level LICENSE and NOTICE files for details. -# -# SPDX-License-Identifier: BSD-3-Clause -# SUNDIALS Copyright End -# --------------------------------------------------------------- -# Top level CMakeLists.txt for SUNDIALS (for cmake build system) -# --------------------------------------------------------------- - -# --------------------------------------------------------------- -# Initial commands -# --------------------------------------------------------------- - -# Require a fairly recent cmake version -cmake_minimum_required(VERSION 3.1.3) - -# Libraries linked via full path no longer produce linker search paths -# Allows examples to build -if(COMMAND cmake_policy) - cmake_policy(SET CMP0003 NEW) -endif(COMMAND cmake_policy) - -# MACOSX_RPATH is enabled by default -# Fixes dynamic loading on OSX -if(POLICY CMP0042) - cmake_policy(SET CMP0042 NEW) # Added in CMake 3.0 -else() - if(APPLE) - set(CMAKE_MACOSX_RPATH 1) - endif() -endif() - -# Project SUNDIALS (initially only C supported) -# sets PROJECT_SOURCE_DIR and PROJECT_BINARY_DIR variables -PROJECT(sundials C) - -# Set some variables with info on the SUNDIALS project -SET(PACKAGE_BUGREPORT "woodward6@llnl.gov") -SET(PACKAGE_NAME "SUNDIALS") -SET(PACKAGE_STRING "SUNDIALS 4.1.0") -SET(PACKAGE_TARNAME "sundials") - -# set SUNDIALS version numbers -# (use "" for the version label if none is needed) -SET(PACKAGE_VERSION_MAJOR "4") -SET(PACKAGE_VERSION_MINOR "1") -SET(PACKAGE_VERSION_PATCH "0") -SET(PACKAGE_VERSION_LABEL "") - -IF(PACKAGE_VERSION_LABEL) - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}-${PACKAGE_VERSION_LABEL}") -ELSE() - SET(PACKAGE_VERSION "${PACKAGE_VERSION_MAJOR}.${PACKAGE_VERSION_MINOR}.${PACKAGE_VERSION_PATCH}") -ENDIF() - -SET_PROPERTY(GLOBAL PROPERTY USE_FOLDERS ON) - -# Prohibit in-source build -IF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - MESSAGE(FATAL_ERROR "In-source build prohibited.") -ENDIF("${CMAKE_SOURCE_DIR}" STREQUAL "${CMAKE_BINARY_DIR}") - -# Hide some cache variables -MARK_AS_ADVANCED(EXECUTABLE_OUTPUT_PATH LIBRARY_OUTPUT_PATH) - -# Always show the C compiler and flags -MARK_AS_ADVANCED(CLEAR - CMAKE_C_COMPILER - CMAKE_C_FLAGS) - -# Specify the VERSION and SOVERSION for shared libraries - -SET(arkodelib_VERSION "3.1.0") -SET(arkodelib_SOVERSION "3") - -SET(cvodelib_VERSION "4.1.0") -SET(cvodelib_SOVERSION "4") - -SET(cvodeslib_VERSION "4.1.0") -SET(cvodeslib_SOVERSION "4") - -SET(idalib_VERSION "4.1.0") -SET(idalib_SOVERSION "4") - -SET(idaslib_VERSION "3.1.0") -SET(idaslib_SOVERSION "3") - -SET(kinsollib_VERSION "4.1.0") -SET(kinsollib_SOVERSION "4") - -SET(cpodeslib_VERSION "0.0.0") -SET(cpodeslib_SOVERSION "0") - -SET(nveclib_VERSION "4.1.0") -SET(nveclib_SOVERSION "4") - -SET(sunmatrixlib_VERSION "2.1.0") -SET(sunmatrixlib_SOVERSION "2") - -SET(sunlinsollib_VERSION "2.1.0") -SET(sunlinsollib_SOVERSION "2") - -SET(sunnonlinsollib_VERSION "1.1.0") -SET(sunnonlinsollib_SOVERSION "1") - -# Specify the location of additional CMAKE modules -SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/config) - -# Get correct build paths automatically, but expose CMAKE_INSTALL_LIBDIR -# as a regular cache variable so that a user can more easily see what -# the library dir was set to be by GNUInstallDirs. -INCLUDE(GNUInstallDirs) -MARK_AS_ADVANCED(CLEAR CMAKE_INSTALL_LIBDIR) - -# --------------------------------------------------------------- -# Which modules to build? -# --------------------------------------------------------------- - -# For each SUNDIALS solver available (i.e. for which we have the -# sources), give the user the option of enabling/disabling it. - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/arkode") - OPTION(BUILD_ARKODE "Build the ARKODE library" ON) -ELSE() - SET(BUILD_ARKODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvode") - OPTION(BUILD_CVODE "Build the CVODE library" ON) -ELSE() - SET(BUILD_CVODE OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cvodes") - OPTION(BUILD_CVODES "Build the CVODES library" ON) -ELSE() - SET(BUILD_CVODES OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/ida") - OPTION(BUILD_IDA "Build the IDA library" ON) -ELSE() - SET(BUILD_IDA OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/idas") - OPTION(BUILD_IDAS "Build the IDAS library" ON) -ELSE() - SET(BUILD_IDAS OFF) -ENDIF() - -IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/kinsol") - OPTION(BUILD_KINSOL "Build the KINSOL library" ON) -ELSE() - SET(BUILD_KINSOL OFF) -ENDIF() - -# CPODES is always OFF for now. (commented out for Release); ToDo: better way to do this? -#IF(IS_DIRECTORY "${sundials_SOURCE_DIR}/src/cpodes") -# OPTION(BUILD_CPODES "Build the CPODES library" OFF) -#ELSE() -# SET(BUILD_CPODES OFF) -#ENDIF() - -# --------------------------------------------------------------- -# MACRO definitions -# --------------------------------------------------------------- -INCLUDE(CMakeParseArguments) # can be removed when CMake 3.5+ is required -INCLUDE(SundialsCMakeMacros) -INCLUDE(SundialsAddF2003InterfaceLibrary) -INCLUDE(SundialsAddTest) -INCLUDE(SundialsAddTestInstall) - -# --------------------------------------------------------------- -# Check for deprecated SUNDIALS CMake options/variables -# --------------------------------------------------------------- -INCLUDE(SundialsDeprecated) - -# --------------------------------------------------------------- -# xSDK specific options -# --------------------------------------------------------------- -INCLUDE(SundialsXSDK) - -# --------------------------------------------------------------- -# Build specific C flags -# --------------------------------------------------------------- - -# Hide all build type specific flags -MARK_AS_ADVANCED(FORCE - CMAKE_C_FLAGS_DEBUG - CMAKE_C_FLAGS_MINSIZEREL - CMAKE_C_FLAGS_RELEASE - CMAKE_C_FLAGS_RELWITHDEBINFO) - -# Only show flags for the current build type if it is set -# NOTE: Build specific flags are appended those in CMAKE_C_FLAGS -IF(CMAKE_BUILD_TYPE) - IF(CMAKE_BUILD_TYPE MATCHES "Debug") - MESSAGE("Appending C debug flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_DEBUG) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "MinSizeRel") - MESSAGE("Appending C min size release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_MINSIZEREL) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "Release") - MESSAGE("Appending C release flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELEASE) - ELSEIF(CMAKE_BUILD_TYPE MATCHES "RelWithDebInfo") - MESSAGE("Appending C release with debug info flags") - MARK_AS_ADVANCED(CLEAR CMAKE_C_FLAGS_RELWITHDEBINFO) - ENDIF() -ENDIF() - -# --------------------------------------------------------------- -# Option to specify precision (realtype) -# --------------------------------------------------------------- - -SET(DOCSTR "single, double, or extended") -SHOW_VARIABLE(SUNDIALS_PRECISION STRING "${DOCSTR}" "double") - -# prepare substitution variable PRECISION_LEVEL for sundials_config.h -STRING(TOUPPER ${SUNDIALS_PRECISION} SUNDIALS_PRECISION) -SET(PRECISION_LEVEL "#define SUNDIALS_${SUNDIALS_PRECISION}_PRECISION 1") - -# prepare substitution variable FPRECISION_LEVEL for sundials_fconfig.h -IF(SUNDIALS_PRECISION MATCHES "SINGLE") - SET(FPRECISION_LEVEL "4") -ENDIF(SUNDIALS_PRECISION MATCHES "SINGLE") -IF(SUNDIALS_PRECISION MATCHES "DOUBLE") - SET(FPRECISION_LEVEL "8") -ENDIF(SUNDIALS_PRECISION MATCHES "DOUBLE") -IF(SUNDIALS_PRECISION MATCHES "EXTENDED") - SET(FPRECISION_LEVEL "16") -ENDIF(SUNDIALS_PRECISION MATCHES "EXTENDED") - -# --------------------------------------------------------------- -# Option to specify index type -# --------------------------------------------------------------- - -SET(DOCSTR "Signed 64-bit (64) or signed 32-bit (32) integer") -SHOW_VARIABLE(SUNDIALS_INDEX_SIZE STRING "${DOCSTR}" "64") -SET(DOCSTR "Integer type to use for indices in SUNDIALS") -SHOW_VARIABLE(SUNDIALS_INDEX_TYPE STRING "${DOCSTR}" "") -MARK_AS_ADVANCED(SUNDIALS_INDEX_TYPE) -include(SundialsIndexSize) - -# --------------------------------------------------------------- -# Enable Fortran interface? -# --------------------------------------------------------------- - -# Fortran interface is disabled by default -SET(DOCSTR "Enable Fortran 77 interfaces") -OPTION(F77_INTERFACE_ENABLE "${DOCSTR}" OFF) - -# Check that at least one solver with a Fortran 77 interface is built -IF(NOT BUILD_ARKODE AND NOT BUILD_CVODE AND NOT BUILD_IDA AND NOT BUILD_KINSOL) - IF(F77_INTERFACE_ENABLE) - PRINT_WARNING("Enabled packages do not support Fortran 77 interface" "Disabling F77 interface") - FORCE_VARIABLE(F77_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(F77_INTERFACE_ENABLE) -ENDIF() - -# Fortran 2003 interface is disabled by default -SET(DOCSTR "Enable Fortran 2003 interfaces") -OPTION(F2003_INTERFACE_ENABLE "${DOCSTR}" OFF) - -# Check that at least one solver with a Fortran 2003 interface is built -IF(NOT BUILD_CVODE) - IF(F2003_INTERFACE_ENABLE) - PRINT_WARNING("Enabled packages do not support Fortran 2003 interface" "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(F2003_INTERFACE_ENABLE) -ENDIF() - -IF(F2003_INTERFACE_ENABLE) - # F2003 interface only supports double precision - IF(NOT (SUNDIALS_PRECISION MATCHES "DOUBLE")) - PRINT_WARNING("F2003 interface is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - - # F2003 interface only supports 64-bit indices - IF(NOT (SUNDIALS_INDEX_SIZE MATCHES "64")) - PRINT_WARNING("F2003 interface is not compatible with ${SUNDIALS_INDEX_SIZE}-bit indicies" - "Disabling F2003 interface") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) - ENDIF() - - # Put all F2003 modules into one build directory - SET(CMAKE_Fortran_MODULE_DIRECTORY "${CMAKE_BINARY_DIR}/fortran") - - # Allow a user to set where the Fortran modules will be installed - SET(DOCSTR "Directory where Fortran module files are installed") - SHOW_VARIABLE(Fortran_INSTALL_MODDIR DIRECTORY "${DOCSTR}" "fortran") -ENDIF() - -# --------------------------------------------------------------- -# Options to build static and/or shared libraries -# --------------------------------------------------------------- - -OPTION(BUILD_STATIC_LIBS "Build static libraries" ON) -OPTION(BUILD_SHARED_LIBS "Build shared libraries" ON) - -# Make sure we build at least one type of libraries -IF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - PRINT_WARNING("Both static and shared library generation were disabled" - "Building static libraries was re-enabled") - FORCE_VARIABLE(BUILD_STATIC_LIBS BOOL "Build static libraries" ON) -ENDIF(NOT BUILD_STATIC_LIBS AND NOT BUILD_SHARED_LIBS) - -# --------------------------------------------------------------- -# Option to use the generic math libraries (UNIX only) -# --------------------------------------------------------------- - -IF(UNIX) - OPTION(USE_GENERIC_MATH "Use generic (std-c) math libraries" ON) - IF(USE_GENERIC_MATH) - # executables will be linked against -lm - SET(EXTRA_LINK_LIBS -lm) - # prepare substitution variable for sundials_config.h - SET(SUNDIALS_USE_GENERIC_MATH TRUE) - ENDIF(USE_GENERIC_MATH) -ENDIF(UNIX) - -# --------------------------------------------------------------- -# Check for POSIX timers -# --------------------------------------------------------------- -INCLUDE(SundialsPOSIXTimers) - -# =============================================================== -# Options for Parallelism -# =============================================================== - -# --------------------------------------------------------------- -# Enable MPI support? -# --------------------------------------------------------------- -OPTION(MPI_ENABLE "Enable MPI support" OFF) - -# --------------------------------------------------------------- -# Enable OpenMP support? -# --------------------------------------------------------------- -OPTION(OPENMP_ENABLE "Enable OpenMP support" OFF) - -# provide OPENMP_DEVICE_ENABLE option -OPTION(OPENMP_DEVICE_ENABLE "Enable OpenMP device offloading support" OFF) - -# Advanced option to skip OpenMP device offloading support check. -# This is needed for a specific compiler that doesn't correctly -# report its OpenMP spec date (with CMake >= 3.9). -OPTION(SKIP_OPENMP_DEVICE_CHECK "Skip the OpenMP device offloading support check" OFF) -MARK_AS_ADVANCED(FORCE SKIP_OPENMP_DEVICE_CHECK) - -# --------------------------------------------------------------- -# Enable Pthread support? -# --------------------------------------------------------------- -OPTION(PTHREAD_ENABLE "Enable Pthreads support" OFF) - -# ------------------------------------------------------------- -# Enable CUDA support? -# ------------------------------------------------------------- -OPTION(CUDA_ENABLE "Enable CUDA support" OFF) - -# ------------------------------------------------------------- -# Enable RAJA support? -# ------------------------------------------------------------- -OPTION(RAJA_ENABLE "Enable RAJA support" OFF) - - -# =============================================================== -# Options for external packages -# =============================================================== - -# --------------------------------------------------------------- -# Enable BLAS support? -# --------------------------------------------------------------- -OPTION(BLAS_ENABLE "Enable BLAS support" OFF) - -# --------------------------------------------------------------- -# Enable LAPACK/BLAS support? -# --------------------------------------------------------------- -OPTION(LAPACK_ENABLE "Enable Lapack support" OFF) - -# LAPACK does not support extended precision -IF(LAPACK_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling LAPACK") - FORCE_VARIABLE(LAPACK_ENABLE BOOL "LAPACK is disabled" OFF) -ENDIF() - -# LAPACK does not support 64-bit integer index types -IF(LAPACK_ENABLE AND SUNDIALS_INDEX_SIZE MATCHES "64") - PRINT_WARNING("LAPACK is not compatible with ${SUNDIALS_INDEX_SIZE} integers" - "Disabling LAPACK") - SET(LAPACK_ENABLE OFF CACHE BOOL "LAPACK is disabled" FORCE) -ENDIF() - -# --------------------------------------------------------------- -# Enable SuperLU_MT support? -# --------------------------------------------------------------- -OPTION(SUPERLUMT_ENABLE "Enable SUPERLUMT support" OFF) - -# SuperLU_MT does not support extended precision -IF(SUPERLUMT_ENABLE AND SUNDIALS_PRECISION MATCHES "EXTENDED") - PRINT_WARNING("SuperLU_MT is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling SuperLU_MT") - FORCE_VARIABLE(SUPERLUMT_ENABLE BOOL "SuperLU_MT is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable KLU support? -# --------------------------------------------------------------- -OPTION(KLU_ENABLE "Enable KLU support" OFF) - -# KLU does not support single or extended precision -IF(KLU_ENABLE AND - (SUNDIALS_PRECISION MATCHES "SINGLE" OR SUNDIALS_PRECISION MATCHES "EXTENDED")) - PRINT_WARNING("KLU is not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling KLU") - FORCE_VARIABLE(KLU_ENABLE BOOL "KLU is disabled" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable hypre Vector support? -# --------------------------------------------------------------- -OPTION(HYPRE_ENABLE "Enable hypre support" OFF) - -# Using hypre requres building with MPI enabled -IF(HYPRE_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling hypre" - "Set MPI_ENABLE to ON to use parhyp") - FORCE_VARIABLE(HYPRE_ENABLE BOOL "Enable hypre support" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable PETSc support? -# --------------------------------------------------------------- -OPTION(PETSC_ENABLE "Enable PETSc support" OFF) - -# Using PETSc requires building with MPI enabled -IF(PETSC_ENABLE AND NOT MPI_ENABLE) - PRINT_WARNING("MPI not enabled - Disabling PETSc" - "Set MPI_ENABLE to ON to use PETSc") - FORCE_VARIABLE(PETSC_ENABLE BOOL "Enable PETSc support" OFF) -ENDIF() - -# --------------------------------------------------------------- -# Enable Trilinos support? -# --------------------------------------------------------------- -OPTION(Trilinos_ENABLE "Enable Trilinos support" OFF) - - -# =============================================================== -# Options for examples -# =============================================================== - -# --------------------------------------------------------------- -# Enable examples? -# --------------------------------------------------------------- - -# Enable C examples (on by default) -OPTION(EXAMPLES_ENABLE_C "Build SUNDIALS C examples" ON) - -# C++ examples (off by default, unless Trilinos is enabled) -SET(DOCSTR "Build C++ examples") -OPTION(EXAMPLES_ENABLE_CXX "${DOCSTR}" ${Trilinos_ENABLE}) - -# F77 examples (on by default) are an option only if the Fortran -# interface is enabled -SET(DOCSTR "Build SUNDIALS Fortran examples") -IF(F77_INTERFACE_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" ON) - # Fortran 77 examples do not support single or extended precision - IF(EXAMPLES_ENABLE_F77 AND (SUNDIALS_PRECISION MATCHES "EXTENDED" OR SUNDIALS_PRECISION MATCHES "SINGLE")) - PRINT_WARNING("F77 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F77) - PRINT_WARNING("EXAMPLES_ENABLE_F77 is ON but F77_INTERFACE_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_F77") - FORCE_VARIABLE(EXAMPLES_ENABLE_F77 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F77) -ENDIF() - -# F90 examples (on by default) are an option only if a Fortran interface is enabled. -SET(DOCSTR "Build SUNDIALS F90 examples") -IF(F77_INTERFACE_ENABLE OR F2003_INTERFACE_ENABLE) - SHOW_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" ON) - # Fortran 90 examples do not support extended precision - IF(EXAMPLES_ENABLE_F90 AND (SUNDIALS_PRECISION MATCHES "EXTENDED")) - PRINT_WARNING("F90 examples are not compatible with ${SUNDIALS_PRECISION} precision" - "Disabling EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - ENDIF() -ELSE() - # set back to OFF (in case was ON) - IF(EXAMPLES_ENABLE_F90) - PRINT_WARNING("EXAMPLES_ENABLE_F90 is ON but both F77 and F2003 interfaces are OFF" - "Disabling EXAMPLES_ENABLE_F90") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 BOOL "${DOCSTR}" OFF) - ENDIF() - HIDE_VARIABLE(EXAMPLES_ENABLE_F90) -ENDIF() - -# CUDA examples (off by default) -SET(DOCSTR "Build SUNDIALS CUDA examples") -IF(CUDA_ENABLE) - OPTION(EXAMPLES_ENABLE_CUDA "${DOCSTR}" OFF) -ELSE() - IF(EXAMPLES_ENABLE_CUDA) - PRINT_WARNING("EXAMPLES_ENABLE_CUDA is ON but CUDA_ENABLE is OFF" - "Disabling EXAMPLES_ENABLE_CUDA") - FORCE_VARIABLE(EXAMPLES_ENABLE_CUDA BOOL "${DOCSTR}" OFF) - ENDIF() -ENDIF() - -# If any of the above examples are enabled set EXAMPLES_ENABLED to TRUE -IF(EXAMPLES_ENABLE_C OR - EXAMPLES_ENABLE_F77 OR - EXAMPLES_ENABLE_CXX OR - EXAMPLES_ENABLE_F90 OR - EXAMPLES_ENABLE_CUDA) - SET(EXAMPLES_ENABLED TRUE) -ELSE() - SET(EXAMPLES_ENABLED FALSE) -ENDIF() - -# --------------------------------------------------------------- -# Install examples? -# --------------------------------------------------------------- - -# Enable installing examples by default -SET(DOCSTR "Install SUNDIALS examples") -IF(EXAMPLES_ENABLED) - OPTION(EXAMPLES_INSTALL "${DOCSTR}" ON) -ELSE() - FORCE_VARIABLE(EXAMPLES_INSTALL BOOL "${DOCSTR}" OFF) - HIDE_VARIABLE(EXAMPLES_INSTALL) -ENDIF() - -# If examples are to be exported, check where we should install them. -IF(EXAMPLES_INSTALL) - - SHOW_VARIABLE(EXAMPLES_INSTALL_PATH PATH - "Output directory for installing example files" - "${CMAKE_INSTALL_PREFIX}/examples") - - IF(NOT EXAMPLES_INSTALL_PATH) - PRINT_WARNING("The example installation path is empty" - "Example installation path was reset to its default value") - SET(EXAMPLES_INSTALL_PATH "${CMAKE_INSTALL_PREFIX}/examples" CACHE STRING - "Output directory for installing example files" FORCE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(EXAMPLES_INSTALL_PATH) - -ENDIF() - - -# ============================================================================== -# Advanced (hidden) options -# ============================================================================== - -# ------------------------------------------------------------------------------ -# Manually specify the Fortran name-mangling scheme -# -# The build system tries to infer the Fortran name-mangling scheme using a -# Fortran compiler and defaults to using lower case and one underscore if the -# scheme can not be determined. If a working Fortran compiler is not available -# or the user needs to override the inferred or default scheme, the following -# options specify the case and number of appended underscores corresponding to -# the Fortran name-mangling scheme of symbol names that do not themselves -# contain underscores. This is all we really need for the FCMIX and LAPACK -# interfaces. A working Fortran compiler is only necessary for building Fortran -# example programs. -# ------------------------------------------------------------------------------ - -# The case to use in the name-mangling scheme -show_variable(SUNDIALS_F77_FUNC_CASE STRING - "case of Fortran function names (lower/upper)" - "") - -# The number of underscores of appended in the name-mangling scheme -show_variable(SUNDIALS_F77_FUNC_UNDERSCORES STRING - "number of underscores appended to Fortran function names (none/one/two)" - "") - -# Hide the name-mangling varibales as advanced options -mark_as_advanced(FORCE SUNDIALS_F77_FUNC_CASE) -mark_as_advanced(FORCE SUNDIALS_F77_FUNC_UNDERSCORES) - -# If used, both case and underscores must be set -if((NOT SUNDIALS_F77_FUNC_CASE) AND SUNDIALS_F77_FUNC_UNDERSCORES) - message(FATAL_ERROR - "If SUNDIALS_F77_FUNC_UNDERSCORES is set, SUNDIALS_F77_FUNC_CASE must also be set.") -endif() - -if(SUNDIALS_F77_FUNC_CASE AND (NOT SUNDIALS_F77_FUNC_UNDERSCORES)) - message(FATAL_ERROR - "If SUNDIALS_F77_FUNC_CASE is set, SUNDIALS_F77_FUNC_UNDERSCORES must also be set.") -endif() - -# ------------------------------------------------------------------------------ -# Include development examples in regression tests? -# -# NOTE: Development examples are currently used for internal testing and may -# produce erroneous failures when run on different systems as the pass/fail -# status is determined by comparing the output against a saved output file. -# ------------------------------------------------------------------------------ -OPTION(SUNDIALS_DEVTESTS "Include development tests in make test" OFF) -MARK_AS_ADVANCED(FORCE SUNDIALS_DEVTESTS) - -# =============================================================== -# Add any platform specifc settings -# =============================================================== - -IF(APPLE) - SET(CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS "${CMAKE_SHARED_LIBRARY_CREATE_C_FLAGS} -undefined dynamic_lookup") -ENDIF(APPLE) - -# =============================================================== -# Fortran and C++ settings -# =============================================================== - -# --------------------------------------------------------------- -# A Fortran compiler is needed to: -# (a) Determine the name-mangling scheme if FCMIX, BLAS, or -# LAPACK are enabled -# (b) Compile example programs if F77 or F90 examples are enabled -# --------------------------------------------------------------- - -# Do we need a Fortran name-mangling scheme? -if(F77_INTERFACE_ENABLE OR BLAS_ENABLE OR LAPACK_ENABLE) - set(NEED_FORTRAN_NAME_MANGLING TRUE) -endif() - -# Did the user provide a name-mangling scheme? -if(SUNDIALS_F77_FUNC_CASE AND SUNDIALS_F77_FUNC_UNDERSCORES) - - STRING(TOUPPER ${SUNDIALS_F77_FUNC_CASE} SUNDIALS_F77_FUNC_CASE) - STRING(TOUPPER ${SUNDIALS_F77_FUNC_UNDERSCORES} SUNDIALS_F77_FUNC_UNDERSCORES) - - # Based on the given case and number of underscores, set the C preprocessor - # macro definitions. Since SUNDIALS never uses symbols names containing - # underscores we set the name-mangling schemes to be the same. In general, - # names of symbols with and without underscore may be mangled differently - # (e.g. g77 mangles mysub to mysub_ and my_sub to my_sub__) - if(SUNDIALS_F77_FUNC_CASE MATCHES "LOWER") - if(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "NONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "ONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## _") - SET(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## _") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "TWO") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) name ## __") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) name ## __") - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_UNDERSCORES option.") - endif() - elseif(SUNDIALS_F77_FUNC_CASE MATCHES "UPPER") - if(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "NONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "ONE") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## _") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## _") - elseif(SUNDIALS_F77_FUNC_UNDERSCORES MATCHES "TWO") - set(F77_MANGLE_MACRO1 "#define SUNDIALS_F77_FUNC(name,NAME) NAME ## __") - set(F77_MANGLE_MACRO2 "#define SUNDIALS_F77_FUNC_(name,NAME) NAME ## __") - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_UNDERSCORES option.") - endif() - else() - message(FATAL_ERROR "Invalid SUNDIALS_F77_FUNC_CASE option.") - endif() - - # name-mangling scheme has been manually set - set(NEED_FORTRAN_NAME_MANGLING FALSE) - -endif() - -# Do we need a Fortran compiler? -if(F2003_INTERFACE_ENABLE OR EXAMPLES_ENABLE_F77 OR EXAMPLES_ENABLE_F90 OR NEED_FORTRAN_NAME_MANGLING) - include(SundialsFortran) -endif() - -# Ensure that F90 compiler is found if F90 examples are enabled -if (EXAMPLES_ENABLE_F90 AND (NOT F90_FOUND)) - PRINT_WARNING("Compiler with F90 support not found" "Disabling F90 Examples") - SET(DOCSTR "Build F90 examples") - FORCE_VARIABLE(EXAMPLES_ENABLE_F90 "${DOCSTR}" OFF) -endif() - -# Ensure that F90 compiler found if F2003 interface is enabled -if (F2003_INTERFACE_ENABLE AND (NOT F90_FOUND)) - PRINT_WARNING("Compiler with F90 support not found" "Disabling F2003 Interface") - SET(DOCSTR "Enable Fortran 2003 interfaces") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) -endif() - -# F2003 interface requires ISO_C_BINDING -IF(F2003_INTERFACE_ENABLE AND (NOT Fortran_COMPILER_SUPPORTS_ISOCBINDING)) - PRINT_WARNING("Fortran compiler does not provide ISO_C_BINDING support" - "Disabling F2003 interface") - SET(DOCSTR "Enable Fortran 2003 interfaces") - FORCE_VARIABLE(F2003_INTERFACE_ENABLE BOOL "${DOCSTR}" OFF) -ENDIF() - - -# --------------------------------------------------------------- -# A C++ compiler is needed if: -# (a) C++ examples are enabled -# (b) CUDA is enabled -# (c) RAJA is enabled -# (d) Trilinos is enabled -# --------------------------------------------------------------- - -if(EXAMPLES_ENABLE_CXX OR CUDA_ENABLE OR RAJA_ENABLE OR Trilinos_ENABLE) - include(SundialsCXX) -endif() - -# --------------------------------------------------------------- -# Setup CUDA. Since CUDA is its own language we do this -# separate from the TPLs. -# --------------------------------------------------------------- - -if(CUDA_ENABLE) - find_package(CUDA) - if (CUDA_FOUND) - set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} -lineinfo") - else() - message(STATUS "Disabling CUDA support, could not find CUDA.") - set(CUDA_ENABLE OFF) - endif() -endif(CUDA_ENABLE) - -# --------------------------------------------------------------- -# Now that all languages are setup, we can configure them more. -# --------------------------------------------------------------- - -# C++11 is needed if: -# (a) CUDA is enabled -# C++11 should not be enabled if -# (a) RAJA is enabled (they provide a std flag) -if (CXX_FOUND AND CUDA_ENABLE AND CUDA_FOUND AND (NOT RAJA_ENABLE)) - USE_CXX_STD(11) -endif() - -# --------------------------------------------------------------- -# Decide how to compile MPI codes. We must check for MPI if -# MPI is enabled or if Trilinos is enabled because the Trilinos -# examples may need MPI without us turning on the MPI SUNDIALS -# components. -# --------------------------------------------------------------- - -if(MPI_ENABLE OR Trilinos_ENABLE) - include(SundialsMPI) -endif() - -if(MPI_ENABLE) - if(NOT MPI_C_FOUND) - print_warning("MPI not functional" "Parallel support will not be provided") - else() - set(IS_MPI_ENABLED "#ifndef SUNDIALS_MPI_ENABLED\n#define SUNDIALS_MPI_ENABLED 1\n#endif") - endif() -endif() - -# always define FMPI_COMM_F2C in sundials_fconfig.h file -if(MPIC_MPI2) - set(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 1") - set(FMPI_COMM_F2C ".true.") -else() - set(F77_MPI_COMM_F2C "#define SUNDIALS_MPI_COMM_F2C 0") - set(FMPI_COMM_F2C ".false.") -endif() - -# ------------------------------------------------------------- -# Find OpenMP -# ------------------------------------------------------------- - -if(OPENMP_ENABLE OR OPENMP_DEVICE_ENABLE) - - include(SundialsOpenMP) - - # turn off OPENMP_ENABLE and OPENMP_DEVICE_ENABLE if OpenMP is not found - if(NOT OPENMP_FOUND) - print_warning("Could not determine OpenMP compiler flags" "Disabling OpenMP support") - force_variable(OPENMP_ENABLE BOOL "Enable OpenMP support" OFF) - force_variable(OPENMP_DEVICE_ENABLE BOOL "Enable OpenMP device offloading support" OFF) - endif() - - # turn off OPENMP_DEVICE_ENABLE if offloading is not supported - if(OPENMP_DEVICE_ENABLE AND (NOT OPENMP_SUPPORTS_DEVICE_OFFLOADING)) - print_warning("OpenMP found does not support device offloading" - "Disabling OpenMP device offloading support") - force_variable(OPENMP_DEVICE_ENABLE BOOL "Enable OpenMP device offloading support" OFF) - endif() - -endif() - -# ------------------------------------------------------------- -# Find PThreads -# ------------------------------------------------------------- - -IF(PTHREAD_ENABLE) - FIND_PACKAGE(Threads) - IF(CMAKE_USE_PTHREADS_INIT) - message(STATUS "Using Pthreads") - SET(PTHREADS_FOUND TRUE) - # SGS - ELSE() - message(STATUS "Disabling Pthreads support, could not determine compiler flags") - endif() -ENDIF(PTHREAD_ENABLE) - -# ------------------------------------------------------------- -# Find RAJA -# ------------------------------------------------------------- - -# disable RAJA if CUDA is not enabled/working -if(RAJA_ENABLE AND (NOT CUDA_FOUND)) - PRINT_WARNING("CUDA is required for RAJA support" "Please enable CUDA and RAJA") - FORCE_VARIABLE(RAJA_ENABLE BOOL "RAJA disabled" OFF) -endif() - -if(RAJA_ENABLE) - # Look for CMake configuration file in RAJA installation - find_package(RAJA) - if (RAJA_FOUND) - include_directories(${RAJA_INCLUDE_DIR}) - set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} ${RAJA_NVCC_FLAGS}) - else() - PRINT_WARNING("RAJA configuration not found" - "Please set RAJA_DIR to provide path to RAJA CMake configuration file.") - endif() -endif(RAJA_ENABLE) - -# =============================================================== -# Find (and test) external packages -# =============================================================== - -# --------------------------------------------------------------- -# Find (and test) the BLAS libraries -# --------------------------------------------------------------- - -# If BLAS is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(BLAS_ENABLE) - - # find BLAS - INCLUDE(SundialsBlas) - - # show after include so FindBlas can locate BLAS_LIBRARIES if necessary - SHOW_VARIABLE(BLAS_LIBRARIES STRING "Blas libraries" "${BLAS_LIBRARIES}") - - IF(BLAS_LIBRARIES AND NOT BLAS_FOUND) - PRINT_WARNING("BLAS not functional" - "BLAS support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS TRUE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(BLAS_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the Lapack libraries -# --------------------------------------------------------------- - -# If LAPACK is needed, first try to find the appropriate -# libraries and linker flags needed to link against them. - -IF(LAPACK_ENABLE) - - # find LAPACK and BLAS Libraries - INCLUDE(SundialsLapack) - - # show after include so FindLapack can locate LAPCK_LIBRARIES if necessary - SHOW_VARIABLE(LAPACK_LIBRARIES STRING "Lapack and Blas libraries" "${LAPACK_LIBRARIES}") - - IF(LAPACK_LIBRARIES AND NOT LAPACK_FOUND) - PRINT_WARNING("LAPACK not functional" - "Blas/Lapack support will not be provided") - ELSE() - #set sundials_config.h symbol via sundials_config.in - SET(SUNDIALS_BLAS_LAPACK TRUE) - ENDIF() - -ELSE() - - HIDE_VARIABLE(LAPACK_LIBRARIES) - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the SUPERLUMT libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for SuperLU_MT integer type - -# If SUPERLUMT is needed, first try to find the appropriate -# libraries to link against them. - -IF(SUPERLUMT_ENABLE) - - # Show SuperLU_MT options and set default thread type (Pthreads) - SHOW_VARIABLE(SUPERLUMT_THREAD_TYPE STRING "SUPERLUMT threading type: OpenMP or Pthread" "Pthread") - SHOW_VARIABLE(SUPERLUMT_INCLUDE_DIR PATH "SUPERLUMT include directory" "${SUPERLUMT_INCLUDE_DIR}") - SHOW_VARIABLE(SUPERLUMT_LIBRARY_DIR PATH "SUPERLUMT library directory" "${SUPERLUMT_LIBRARY_DIR}") - - INCLUDE(SundialsSuperLUMT) - - IF(SUPERLUMT_FOUND) - # sundials_config.h symbols - SET(SUNDIALS_SUPERLUMT TRUE) - SET(SUNDIALS_SUPERLUMT_THREAD_TYPE ${SUPERLUMT_THREAD_TYPE}) - INCLUDE_DIRECTORIES(${SUPERLUMT_INCLUDE_DIR}) - ENDIF() - - IF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - PRINT_WARNING("SUPERLUMT not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(SUPERLUMT_LIBRARIES AND NOT SUPERLUMT_FOUND) - -ELSE() - - HIDE_VARIABLE(SUPERLUMT_THREAD_TYPE) - HIDE_VARIABLE(SUPERLUMT_LIBRARY_DIR) - HIDE_VARIABLE(SUPERLUMT_INCLUDE_DIR) - SET (SUPERLUMT_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the KLU libraries -# --------------------------------------------------------------- - -# If KLU is requested, first try to find the appropriate libraries to -# link against them. - -IF(KLU_ENABLE) - - SHOW_VARIABLE(KLU_INCLUDE_DIR PATH "KLU include directory" - "${KLU_INCLUDE_DIR}") - SHOW_VARIABLE(KLU_LIBRARY_DIR PATH - "Klu library directory" "${KLU_LIBRARY_DIR}") - - set(KLU_FOUND TRUE) - get_filename_component(PYBAMM_DIR ${PROJECT_SOURCE_DIR} DIRECTORY) - set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${PYBAMM_DIR}) # use FindSuiteSparse.cmake that is in PyBaMM root - set(SuiteSparse_ROOT ${PYBAMM_DIR}/SuiteSparse-5.6.0) - find_package(SuiteSparse OPTIONAL_COMPONENTS KLU AMD COLAMD BTF) - include_directories(${SuiteSparse_INCLUDE_DIRS}) - set(KLU_LIBRARIES ${SuiteSparse_LIBRARIES}) - - - IF(KLU_LIBRARIES AND NOT KLU_FOUND) - PRINT_WARNING("KLU not functional - support will not be provided" - "Double check spelling of include path and specified libraries (search is case sensitive)") - ENDIF(KLU_LIBRARIES AND NOT KLU_FOUND) - -ELSE() - - HIDE_VARIABLE(KLU_LIBRARY_DIR) - HIDE_VARIABLE(KLU_INCLUDE_DIR) - SET (KLU_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF(KLU_ENABLE) - -# --------------------------------------------------------------- -# Find (and test) the hypre libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for hypre precision and integer type - -IF(HYPRE_ENABLE) - SHOW_VARIABLE(HYPRE_INCLUDE_DIR PATH "HYPRE include directory" - "${HYPRE_INCLUDE_DIR}") - SHOW_VARIABLE(HYPRE_LIBRARY_DIR PATH - "HYPRE library directory" "${HYPRE_LIBRARY_DIR}") - - INCLUDE(SundialsHypre) - - IF(HYPRE_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_HYPRE TRUE) - INCLUDE_DIRECTORIES(${HYPRE_INCLUDE_DIR}) - ENDIF(HYPRE_FOUND) - - IF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - PRINT_WARNING("HYPRE not functional - support will not be provided" - "Found hypre library, test code does not work") - ENDIF(HYPRE_LIBRARIES AND NOT HYPRE_FOUND) - -ELSE() - - HIDE_VARIABLE(HYPRE_INCLUDE_DIR) - HIDE_VARIABLE(HYPRE_LIBRARY_DIR) - SET (HYPRE_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# --------------------------------------------------------------- -# Find (and test) the PETSc libraries -# --------------------------------------------------------------- - -# >>>>>>> NOTE: Need to add check for PETSc precision and integer type - -IF(PETSC_ENABLE) - SHOW_VARIABLE(PETSC_INCLUDE_DIR PATH "PETSc include directory" - "${PETSC_INCLUDE_DIR}") - SHOW_VARIABLE(PETSC_LIBRARY_DIR PATH - "PETSc library directory" "${PETSC_LIBRARY_DIR}") - - INCLUDE(SundialsPETSc) - - IF(PETSC_FOUND) - # sundials_config.h symbol - SET(SUNDIALS_PETSC TRUE) - INCLUDE_DIRECTORIES(${PETSC_INCLUDE_DIR}) - ENDIF(PETSC_FOUND) - - IF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - PRINT_WARNING("PETSC not functional - support will not be provided" - "Double check spelling specified libraries (search is case sensitive)") - ENDIF(PETSC_LIBRARIES AND NOT PETSC_FOUND) - -ELSE() - - HIDE_VARIABLE(PETSC_LIBRARY_DIR) - HIDE_VARIABLE(PETSC_INCLUDE_DIR) - SET (PETSC_DISABLED TRUE CACHE INTERNAL "GUI - return when first set") - -ENDIF() - -# ------------------------------------------------------------- -# Find Trilinos -# ------------------------------------------------------------- - -if(Trilinos_ENABLE) - include(SundialsTrilinos) - if(NOT Trilinos_FUNCTIONAL) - PRINT_WARNING("Trilinos not functional" "Verify the path to Trilinos and check the Trilinos installation") - endif() -endif(Trilinos_ENABLE) - - -# =============================================================== -# At this point all the configuration options are set. -# =============================================================== - -# --------------------------------------------------------------- -# Configure the header file sundials_config.h -# --------------------------------------------------------------- - -# All required substitution variables should be available at this point. -# Generate the header file and place it in the binary dir. -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_config.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - ) -CONFIGURE_FILE( - ${PROJECT_SOURCE_DIR}/include/sundials/sundials_fconfig.in - ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - ) - -# Add the include directory in the source tree and the one in -# the binary tree (for the header file sundials_config.h) -INCLUDE_DIRECTORIES(${PROJECT_SOURCE_DIR}/include ${PROJECT_BINARY_DIR}/include) - -# --------------------------------------------------------------- -# Enable testing and add source and example files to the build. -# --------------------------------------------------------------- - -# Enable testing -IF(EXAMPLES_ENABLED) - INCLUDE(SundialsTesting) -ENDIF() - -# Add selected packages and modules to the build -ADD_SUBDIRECTORY(src) - -# Add selected examples to the build -IF(EXAMPLES_ENABLED) - ADD_SUBDIRECTORY(examples) -ENDIF() - -# --------------------------------------------------------------- -# Install configuration header files and license file -# --------------------------------------------------------------- - -# install configured header file -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_config.h - DESTINATION include/sundials - ) - -# install configured header file for Fortran 90 -INSTALL( - FILES ${PROJECT_BINARY_DIR}/include/sundials/sundials_fconfig.h - DESTINATION include/sundials - ) - -# install shared Fortran 2003 modules -IF(F2003_INTERFACE_ENABLE) - # While the .mod files get generated for static and shared - # libraries, they are identical. So only install one set - # of the .mod files. - IF(BUILD_STATIC_LIBS) - INSTALL( - DIRECTORY ${CMAKE_Fortran_MODULE_DIRECTORY}_STATIC/ - DESTINATION ${Fortran_INSTALL_MODDIR} - ) - ELSE() - INSTALL( - DIRECTORY ${CMAKE_Fortran_MODULE_DIRECTORY}_SHARED/ - DESTINATION ${Fortran_INSTALL_MODDIR} - ) - ENDIF() -ENDIF() - -# install license and notice files -INSTALL( - FILES ${PROJECT_SOURCE_DIR}/LICENSE - DESTINATION include/sundials - ) -INSTALL( - FILES ${PROJECT_SOURCE_DIR}/NOTICE - DESTINATION include/sundials - ) diff --git a/scripts/update_version.py b/scripts/update_version.py index fb9b15dd31..8a2d832e59 100644 --- a/scripts/update_version.py +++ b/scripts/update_version.py @@ -30,6 +30,16 @@ def update_version(): file.seek(0) file.write(replace_version) + # pyproject.toml + with open(os.path.join(pybamm.root_dir(), "pyproject.toml"), "r+") as file: + output = file.read() + replace_version = re.sub( + '(?<=version = ")(.+)(?=")', release_version, output + ) + file.truncate(0) + file.seek(0) + file.write(replace_version) + # CITATION.cff with open(os.path.join(pybamm.root_dir(), "CITATION.cff"), "r+") as file: output = file.read() @@ -38,7 +48,7 @@ def update_version(): file.seek(0) file.write(replace_version) - # docs/source/_static/versions.json for readthedocs build + # docs/_static/versions.json for readthedocs build if "rc" not in release_version: with open( os.path.join(pybamm.root_dir(), "docs", "_static", "versions.json"), diff --git a/setup.py b/setup.py index f6fd37f75c..9cfc4df4ff 100644 --- a/setup.py +++ b/setup.py @@ -1,5 +1,5 @@ import os -import glob +import sys import logging import subprocess from pathlib import Path @@ -7,18 +7,180 @@ import wheel.bdist_wheel as orig try: - from setuptools import setup, find_packages, Extension + from setuptools import setup, Extension from setuptools.command.install import install + from setuptools.command.build_ext import build_ext except ImportError: - from distutils.core import setup, find_packages + from distutils.core import setup from distutils.command.install import install + from distutils.command.build_ext import build_ext -import CMakeBuild default_lib_dir = ( "" if system() == "Windows" else os.path.join(os.getenv("HOME"), ".local") ) +# ---------- set environment variables for vcpkg on Windows ---------------------------- + +def set_vcpkg_environment_variables(): + if not os.getenv("VCPKG_ROOT_DIR"): + raise EnvironmentError("Environment variable 'VCPKG_ROOT_DIR' is undefined.") + if not os.getenv("VCPKG_DEFAULT_TRIPLET"): + raise EnvironmentError( + "Environment variable 'VCPKG_DEFAULT_TRIPLET' is undefined." + ) + if not os.getenv("VCPKG_FEATURE_FLAGS"): + raise EnvironmentError( + "Environment variable 'VCPKG_FEATURE_FLAGS' is undefined." + ) + return ( + os.getenv("VCPKG_ROOT_DIR"), + os.getenv("VCPKG_DEFAULT_TRIPLET"), + os.getenv("VCPKG_FEATURE_FLAGS"), + ) + +# ---------- CMakeBuild class (custom build_ext for IDAKLU target) --------------------- + +class CMakeBuild(build_ext): + user_options = build_ext.user_options + [ + ("suitesparse-root=", None, "suitesparse source location"), + ("sundials-root=", None, "sundials source location"), + ] + + def initialize_options(self): + build_ext.initialize_options(self) + self.suitesparse_root = None + self.sundials_root = None + + def finalize_options(self): + build_ext.finalize_options(self) + # Determine the calling command to get the + # undefined options from. + # If build_ext was called directly then this + # doesn't matter. + try: + self.get_finalized_command("install", create=0) + calling_cmd = "install" + except AttributeError: + calling_cmd = "bdist_wheel" + self.set_undefined_options( + calling_cmd, + ("suitesparse_root", "suitesparse_root"), + ("sundials_root", "sundials_root"), + ) + if not self.suitesparse_root: + self.suitesparse_root = os.path.join(default_lib_dir) + if not self.sundials_root: + self.sundials_root = os.path.join(default_lib_dir) + + def get_build_directory(self): + # distutils outputs object files in directory self.build_temp + # (typically build/temp.*). This is our CMake build directory. + # On Windows, distutils is too smart and appends "Release" or + # "Debug" to self.build_temp. So in this case we want the + # build directory to be the parent directory. + if system() == "Windows": + return Path(self.build_temp).parents[0] + return self.build_temp + + def run(self): + if not self.extensions: + return + + if system() == "Windows": + use_python_casadi = False + else: + use_python_casadi = True + + build_type = os.getenv("PYBAMM_CPP_BUILD_TYPE", "RELEASE") + cmake_args = [ + "-DCMAKE_BUILD_TYPE={}".format(build_type), + "-DPYTHON_EXECUTABLE={}".format(sys.executable), + "-DUSE_PYTHON_CASADI={}".format("TRUE" if use_python_casadi else "FALSE"), + ] + if self.suitesparse_root: + cmake_args.append( + "-DSuiteSparse_ROOT={}".format(os.path.abspath(self.suitesparse_root)) + ) + if self.sundials_root: + cmake_args.append( + "-DSUNDIALS_ROOT={}".format(os.path.abspath(self.sundials_root)) + ) + + build_dir = self.get_build_directory() + if not os.path.exists(build_dir): + os.makedirs(build_dir) + + # The CMakeError.log file is generated by cmake is the configure step + # encounters error. In the following the existence of this file is used + # to determine whether or not the cmake configure step went smoothly. + # So must make sure this file does not remain from a previous failed build. + if os.path.isfile(os.path.join(build_dir, "CMakeError.log")): + os.remove(os.path.join(build_dir, "CMakeError.log")) + +# ---------- configuration for vcpkg on Windows ---------------------------------------- + + build_env = os.environ + if os.getenv("PYBAMM_USE_VCPKG"): + ( + vcpkg_root_dir, + vcpkg_default_triplet, + vcpkg_feature_flags, + ) = set_vcpkg_environment_variables() + build_env["vcpkg_root_dir"] = vcpkg_root_dir + build_env["vcpkg_default_triplet"] = vcpkg_default_triplet + build_env["vcpkg_feature_flags"] = vcpkg_feature_flags + +# ---------- Run CMake and build IDAKLU module ----------------------------------------- + + cmake_list_dir = os.path.abspath(os.path.dirname(__file__)) + print("-" * 10, "Running CMake for IDAKLU solver", "-" * 40) + subprocess.run( + ["cmake", cmake_list_dir] + cmake_args, cwd=build_dir, env=build_env + , check=True) + + if os.path.isfile(os.path.join(build_dir, "CMakeError.log")): + msg = ( + "cmake configuration steps encountered errors, and the IDAKLU module" + " could not be built. Make sure dependencies are correctly " + "installed. See " + "https://docs.pybamm.org/en/latest/source/user_guide/installation/install-from-source.html" # noqa: E501 + ) + raise RuntimeError(msg) + else: + print("-" * 10, "Building IDAKLU module", "-" * 40) + subprocess.run( + ["cmake", "--build", ".", "--config", "Release"], + cwd=build_dir, + env=build_env, + check=True, + ) + + # Move from build temp to final position + for ext in self.extensions: + self.move_output(ext) + + def move_output(self, ext): + # Copy built module to dist/ directory + build_temp = Path(self.build_temp).resolve() + # Get destination location + # self.get_ext_fullpath(ext.name) --> + # build/lib.linux-x86_64-3.5/idaklu.cpython-37m-x86_64-linux-gnu.so + # using resolve() with python < 3.6 will result in a FileNotFoundError + # since the location does not yet exists. + dest_path = Path(self.get_ext_fullpath(ext.name)).resolve() + source_path = build_temp / os.path.basename(self.get_ext_filename(ext.name)) + dest_directory = dest_path.parents[0] + dest_directory.mkdir(parents=True, exist_ok=True) + self.copy_file(source_path, dest_path) + + +# ---------- end of CMake steps -------------------------------------------------------- + + +# ---------- configure setup logger ---------------------------------------------------- + + log_format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" logger = logging.getLogger("PyBaMM setup") @@ -60,6 +222,9 @@ def run(self): install.run(self) +# ---------- Custom class for building wheels ------------------------------------------ + + class bdist_wheel(orig.bdist_wheel): """A custom install command to add 2 build options""" @@ -89,8 +254,7 @@ def compile_KLU(): # Return True if: # - Not running on Windows AND # - CMake is found AND - # - The pybind11 and casadi-headers directories are found - # in the PyBaMM project directory + # - The pybind11/ directory is found in the PyBaMM project directory CMakeFound = True PyBind11Found = True windows = (not system()) or system() == "Windows" @@ -120,35 +284,9 @@ def compile_KLU(): return CMakeFound and PyBind11Found - -# Build the list of package data files to be included in the PyBaMM package. -# These are mainly the parameter files located in the input/parameters/ subdirectories. -pybamm_data = [] -for file_ext in ["*.csv", "*.py", "*.md", "*.txt"]: - # Get all the files ending in file_ext in pybamm/input dir. - # list_of_files = [ - # 'pybamm/input/drive_cycles/car_current.csv', - # 'pybamm/input/drive_cycles/US06.csv', - # ... - list_of_files = glob.glob("pybamm/input/**/" + file_ext, recursive=True) - - # Add these files to pybamm_data. - # The path must be relative to the package dir (pybamm/), so - # must process the content of list_of_files to take out the top - # pybamm/ dir, i.e.: - # ['input/drive_cycles/car_current.csv', - # 'input/drive_cycles/US06.csv', - # ... - pybamm_data.extend( - [os.path.join(*Path(filename).parts[1:]) for filename in list_of_files] - ) -pybamm_data.append("./CITATIONS.bib") -pybamm_data.append("./plotting/pybamm.mplstyle") -pybamm_data.append("../CMakeBuild.py") - idaklu_ext = Extension( - "pybamm.solvers.idaklu", - [ + name="pybamm.solvers.idaklu", + sources=[ "pybamm/solvers/c_solvers/idaklu.cpp" "pybamm/solvers/c_solvers/idaklu.hpp" "pybamm/solvers/c_solvers/idaklu_casadi.cpp" @@ -161,154 +299,15 @@ def compile_KLU(): ) ext_modules = [idaklu_ext] if compile_KLU() else [] -# Defines __version__ -root = os.path.abspath(os.path.dirname(__file__)) -with open(os.path.join(root, "pybamm", "version.py")) as f: - exec(f.read()) - -# Load text for description and license -with open("README.md", encoding="utf-8") as f: - readme = f.read() - +# Project metadata was moved to pyproject.toml (which is read by pip). However, custom +# build commands and setuptools extension modules are still defined here. setup( - name="pybamm", - version=__version__, # noqa: F821 - description="Python Battery Mathematical Modelling.", - long_description=readme, - long_description_content_type="text/markdown", - url="https://github.com/pybamm-team/PyBaMM", - packages=find_packages(include=("pybamm", "pybamm.*")), + # silence "Package would be ignored" warnings + include_package_data=True, ext_modules=ext_modules, cmdclass={ - "build_ext": CMakeBuild.CMakeBuild, + "build_ext": CMakeBuild, "bdist_wheel": bdist_wheel, "install": CustomInstall, }, - package_data={"pybamm": pybamm_data}, - # Python version - python_requires=">=3.8,<3.12", - classifiers=[ - "Development Status :: 5 - Production/Stable", - "Intended Audience :: Developers", - "Intended Audience :: Science/Research", - "License :: OSI Approved :: BSD License", - "Programming Language :: Python", - "Programming Language :: Python :: 3", - "Programming Language :: Python :: 3 :: Only", - "Programming Language :: Python :: 3.8", - "Programming Language :: Python :: 3.9", - "Programming Language :: Python :: 3.10", - "Programming Language :: Python :: 3.11", - "Topic :: Scientific/Engineering", - ], - # List of dependencies - install_requires=[ - "numpy>=1.16", - "scipy>=1.3", - "casadi>=3.6.0", - "xarray", - ], - extras_require={ - "docs": [ - "sphinx", - "pydata-sphinx-theme", - "sphinx_design", - "sphinx-copybutton", - "myst-parser", - "sphinx-inline-tabs", - "sphinxcontrib-bibtex", - "sphinx-autobuild", - "sphinx-last-updated-by-git", - "nbsphinx", - "ipykernel", - "ipywidgets", - "sphinx-gallery", - "sphinx-hoverxref", - "sphinx-docsearch", - ], # For doc generation - "examples": [ - "jupyter", # For example notebooks - ], - "plot": [ - "imageio>=2.9.0", - # Note: Matplotlib is loaded for debug plots, but to ensure pybamm runs - # on systems without an attached display, it should never be imported - # outside of plot() methods. - # Should not be imported - "matplotlib>=2.0", - ], - "cite": [ - "pybtex>=0.24.0", - ], - "latexify": [ - "sympy>=1.8", - ], - "bpx": [ - "bpx", - ], - "tqdm": [ - "tqdm", - ], - "dev": [ - # For working with pre-commit hooks - "pre-commit", - # For code style checks: linting and auto-formatting - "ruff", - # For running testing sessions - "nox", - # For testing Jupyter notebooks - "pytest>=6", - "pytest-xdist", - "nbmake", - ], - "pandas": [ - "pandas>=0.24", - ], - "jax": [ - "jax==0.4.8", - "jaxlib==0.4.7", - ], - "odes": ["scikits.odes"], - "all": [ - "anytree>=2.4.3", - "autograd>=1.2", - "pandas>=0.24", - "scikit-fem>=0.2.0", - "imageio>=2.9.0", - "pybtex>=0.24.0", - "sympy>=1.8", - "bpx", - "tqdm", - "matplotlib>=2.0", - "jupyter", - ], - }, - entry_points={ - "console_scripts": [ - "pybamm_edit_parameter = pybamm.parameters_cli:edit_parameter", - "pybamm_add_parameter = pybamm.parameters_cli:add_parameter", - "pybamm_rm_parameter = pybamm.parameters_cli:remove_parameter", - "pybamm_install_odes = pybamm.install_odes:main", - "pybamm_install_jax = pybamm.util:install_jax", - ], - "pybamm_parameter_sets": [ - "Sulzer2019 = pybamm.input.parameters.lead_acid.Sulzer2019:get_parameter_values", # noqa: E501 - "Ai2020 = pybamm.input.parameters.lithium_ion.Ai2020:get_parameter_values", # noqa: E501 - "Chen2020 = pybamm.input.parameters.lithium_ion.Chen2020:get_parameter_values", # noqa: E501 - "Chen2020_composite = pybamm.input.parameters.lithium_ion.Chen2020_composite:get_parameter_values", # noqa: E501 - "Ecker2015 = pybamm.input.parameters.lithium_ion.Ecker2015:get_parameter_values", # noqa: E501 - "Ecker2015_graphite_halfcell = pybamm.input.parameters.lithium_ion.Ecker2015_graphite_halfcell:get_parameter_values", # noqa: E501 - "Marquis2019 = pybamm.input.parameters.lithium_ion.Marquis2019:get_parameter_values", # noqa: E501 - "Mohtat2020 = pybamm.input.parameters.lithium_ion.Mohtat2020:get_parameter_values", # noqa: E501 - "NCA_Kim2011 = pybamm.input.parameters.lithium_ion.NCA_Kim2011:get_parameter_values", # noqa: E501 - "OKane2022 = pybamm.input.parameters.lithium_ion.OKane2022:get_parameter_values", # noqa: E501 - "OKane2022_graphite_SiOx_halfcell = pybamm.input.parameters.lithium_ion.OKane2022_graphite_SiOx_halfcell:get_parameter_values", # noqa: E501 - "ORegan2022 = pybamm.input.parameters.lithium_ion.ORegan2022:get_parameter_values", # noqa: E501 - "Prada2013 = pybamm.input.parameters.lithium_ion.Prada2013:get_parameter_values", # noqa: E501 - "Ramadass2004 = pybamm.input.parameters.lithium_ion.Ramadass2004:get_parameter_values", # noqa: E501 - "Xu2019 = pybamm.input.parameters.lithium_ion.Xu2019:get_parameter_values", # noqa: E501 - "ECM_Example = pybamm.input.parameters.ecm.example_set:get_parameter_values", # noqa: E501 - "MSMR_Example = pybamm.input.parameters.lithium_ion.MSMR_example_set:get_parameter_values", # noqa: E501 - ], - }, ) diff --git a/tests/unit/test_experiments/test_experiment.py b/tests/unit/test_experiments/test_experiment.py index 23548be433..ec1a1cbeae 100644 --- a/tests/unit/test_experiments/test_experiment.py +++ b/tests/unit/test_experiments/test_experiment.py @@ -183,41 +183,49 @@ def test_no_initial_start_time(self): ) def test_set_next_start_time(self): - # Defined dummy experiment to access _set_next_start_time - experiment = pybamm.Experiment(["Rest for 1 hour"]) raw_op = [ pybamm.step._Step( "current", 1, duration=3600, start_time=datetime(2023, 1, 1, 8, 0) ), + pybamm.step._Step("voltage", 2.5, duration=3600, start_time=None), pybamm.step._Step( "current", 1, duration=3600, start_time=datetime(2023, 1, 1, 12, 0) ), pybamm.step._Step("current", 1, duration=3600, start_time=None), + pybamm.step._Step("voltage", 2.5, duration=3600, start_time=None), pybamm.step._Step( "current", 1, duration=3600, start_time=datetime(2023, 1, 1, 15, 0) ), ] + experiment = pybamm.Experiment(raw_op) processed_op = experiment._set_next_start_time(raw_op) expected_next = [ + None, datetime(2023, 1, 1, 12, 0), None, + None, datetime(2023, 1, 1, 15, 0), None, ] expected_end = [ datetime(2023, 1, 1, 12, 0), + datetime(2023, 1, 1, 12, 0), + datetime(2023, 1, 1, 15, 0), datetime(2023, 1, 1, 15, 0), datetime(2023, 1, 1, 15, 0), None, ] + # Test method directly for next, end, op in zip(expected_next, expected_end, processed_op): # useful form for debugging self.assertEqual(op.next_start_time, next) self.assertEqual(op.end_time, end) + # TODO: once #3176 is completed, the test should pass for + # operating_conditions_steps (or equivalent) as well if __name__ == "__main__": print("Add -v for more debug output") diff --git a/tests/unit/test_expression_tree/test_binary_operators.py b/tests/unit/test_expression_tree/test_binary_operators.py index 6acd7c41b0..225f8e93c9 100644 --- a/tests/unit/test_expression_tree/test_binary_operators.py +++ b/tests/unit/test_expression_tree/test_binary_operators.py @@ -5,10 +5,10 @@ import unittest import numpy as np -import sympy from scipy.sparse import coo_matrix import pybamm +from pybamm.util import have_optional_dependency class TestBinaryOperators(TestCase): @@ -746,6 +746,7 @@ def test_inner_simplifications(self): self.assertEqual(pybamm.inner(a3, a3).evaluate(), 9) def test_to_equation(self): + sympy = have_optional_dependency("sympy") # Test print_name pybamm.Addition.print_name = "test" self.assertEqual(pybamm.Addition(1, 2).to_equation(), sympy.Symbol("test")) diff --git a/tests/unit/test_expression_tree/test_concatenations.py b/tests/unit/test_expression_tree/test_concatenations.py index df5add0f98..4b07b09fea 100644 --- a/tests/unit/test_expression_tree/test_concatenations.py +++ b/tests/unit/test_expression_tree/test_concatenations.py @@ -5,9 +5,9 @@ from tests import TestCase import numpy as np -import sympy import pybamm +from pybamm.util import have_optional_dependency from tests import get_discretisation_for_testing, get_mesh_for_testing @@ -370,6 +370,7 @@ def test_numpy_concatenation(self): ) def test_to_equation(self): + sympy = have_optional_dependency("sympy") a = pybamm.Symbol("a", domain="test a") b = pybamm.Symbol("b", domain="test b") func_symbol = sympy.Symbol(r"\begin{cases}a\\b\end{cases}") diff --git a/tests/unit/test_expression_tree/test_functions.py b/tests/unit/test_expression_tree/test_functions.py index ac5410d9e1..6d22571a01 100644 --- a/tests/unit/test_expression_tree/test_functions.py +++ b/tests/unit/test_expression_tree/test_functions.py @@ -5,10 +5,10 @@ import unittest import numpy as np -import sympy from scipy import special import pybamm +from pybamm.util import have_optional_dependency def test_function(arg): @@ -120,6 +120,7 @@ def test_function_unnamed(self): self.assertEqual(fun.name, "function (cos)") def test_to_equation(self): + sympy = have_optional_dependency("sympy") a = pybamm.Symbol("a", domain="test") # Test print_name diff --git a/tests/unit/test_expression_tree/test_independent_variable.py b/tests/unit/test_expression_tree/test_independent_variable.py index 95141f0f03..b748a6fbe9 100644 --- a/tests/unit/test_expression_tree/test_independent_variable.py +++ b/tests/unit/test_expression_tree/test_independent_variable.py @@ -4,9 +4,9 @@ from tests import TestCase import unittest -import sympy import pybamm +from pybamm.util import have_optional_dependency class TestIndependentVariable(TestCase): @@ -64,6 +64,7 @@ def test_spatial_variable_edge(self): self.assertTrue(x.evaluates_on_edges("primary")) def test_to_equation(self): + sympy = have_optional_dependency("sympy") # Test print_name func = pybamm.IndependentVariable("a") func.print_name = "test" diff --git a/tests/unit/test_expression_tree/test_operations/test_latexify.py b/tests/unit/test_expression_tree/test_operations/test_latexify.py index be7cc21115..7e0703534e 100644 --- a/tests/unit/test_expression_tree/test_operations/test_latexify.py +++ b/tests/unit/test_expression_tree/test_operations/test_latexify.py @@ -8,7 +8,6 @@ import uuid import pybamm -from pybamm.expression_tree.operations.latexify import Latexify class TestLatexify(TestCase): @@ -19,9 +18,6 @@ def test_latexify(self): model_spme = pybamm.lithium_ion.SPMe() func_spme = str(model_spme.latexify()) - # Test docstring - self.assertEqual(pybamm.BaseModel.latexify.__doc__, Latexify.__doc__) - # Test model name self.assertIn("Single Particle Model with electrolyte Equations", func_spme) diff --git a/tests/unit/test_expression_tree/test_parameter.py b/tests/unit/test_expression_tree/test_parameter.py index f67ee2dd62..d9a756b45d 100644 --- a/tests/unit/test_expression_tree/test_parameter.py +++ b/tests/unit/test_expression_tree/test_parameter.py @@ -5,9 +5,8 @@ import numbers import unittest -import sympy - import pybamm +from pybamm.util import have_optional_dependency class TestParameter(TestCase): @@ -21,6 +20,7 @@ def test_evaluate_for_shape(self): self.assertIsInstance(a.evaluate_for_shape(), numbers.Number) def test_to_equation(self): + sympy = have_optional_dependency("sympy") func = pybamm.Parameter("test_string") func1 = pybamm.Parameter("test_name") @@ -98,6 +98,7 @@ def _myfun(x): self.assertEqual(_myfun(x).print_name, None) def test_function_parameter_to_equation(self): + sympy = have_optional_dependency("sympy") func = pybamm.FunctionParameter("test", {"x": pybamm.Scalar(1)}) func1 = pybamm.FunctionParameter("func", {"var": pybamm.Variable("var")}) diff --git a/tests/unit/test_expression_tree/test_printing/test_sympy_overrides.py b/tests/unit/test_expression_tree/test_printing/test_sympy_overrides.py index b5ae229ae5..de3ff08c43 100644 --- a/tests/unit/test_expression_tree/test_printing/test_sympy_overrides.py +++ b/tests/unit/test_expression_tree/test_printing/test_sympy_overrides.py @@ -4,14 +4,14 @@ from tests import TestCase import unittest -import sympy - import pybamm from pybamm.expression_tree.printing.sympy_overrides import custom_print_func +from pybamm.util import have_optional_dependency class TestCustomPrint(TestCase): def test_print_Derivative(self): + sympy = have_optional_dependency("sympy") # Test force_partial der1 = sympy.Derivative("y", "x") der1.force_partial = True diff --git a/tests/unit/test_expression_tree/test_symbol.py b/tests/unit/test_expression_tree/test_symbol.py index 3f91633fbe..3eb7adae47 100644 --- a/tests/unit/test_expression_tree/test_symbol.py +++ b/tests/unit/test_expression_tree/test_symbol.py @@ -8,10 +8,10 @@ import numpy as np from scipy.sparse import csr_matrix, coo_matrix -import sympy import pybamm from pybamm.expression_tree.binary_operators import _Heaviside +from pybamm.util import have_optional_dependency class TestSymbol(TestCase): @@ -484,6 +484,7 @@ def test_test_shape(self): (y1 + y2).test_shape() def test_to_equation(self): + sympy = have_optional_dependency("sympy") self.assertEqual(pybamm.Symbol("test").to_equation(), sympy.Symbol("test")) def test_numpy_array_ufunc(self): diff --git a/tests/unit/test_expression_tree/test_unary_operators.py b/tests/unit/test_expression_tree/test_unary_operators.py index b0513c974b..fc845cb574 100644 --- a/tests/unit/test_expression_tree/test_unary_operators.py +++ b/tests/unit/test_expression_tree/test_unary_operators.py @@ -5,12 +5,10 @@ from tests import TestCase import numpy as np -import sympy from scipy.sparse import diags -from sympy.vector.operators import Divergence as sympy_Divergence -from sympy.vector.operators import Gradient as sympy_Gradient import pybamm +from pybamm.util import have_optional_dependency class TestUnaryOperators(TestCase): @@ -613,6 +611,11 @@ def test_not_constant(self): self.assertFalse((2 * a).is_constant()) def test_to_equation(self): + + sympy = have_optional_dependency("sympy") + sympy_Divergence = have_optional_dependency("sympy.vector.operators", "Divergence") + sympy_Gradient = have_optional_dependency("sympy.vector.operators", "Gradient") + a = pybamm.Symbol("a", domain="negative particle") b = pybamm.Symbol("b", domain="current collector") c = pybamm.Symbol("c", domain="test") diff --git a/tests/unit/test_expression_tree/test_variable.py b/tests/unit/test_expression_tree/test_variable.py index be791903e2..583008f882 100644 --- a/tests/unit/test_expression_tree/test_variable.py +++ b/tests/unit/test_expression_tree/test_variable.py @@ -5,9 +5,9 @@ import unittest import numpy as np -import sympy import pybamm +from pybamm.util import have_optional_dependency class TestVariable(TestCase): @@ -55,6 +55,7 @@ def test_variable_bounds(self): pybamm.Variable("var", bounds=(1, 1)) def test_to_equation(self): + sympy = have_optional_dependency("sympy") # Test print_name func = pybamm.Variable("test_string") func.print_name = "test" diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py index 6815698588..f4e3c3cceb 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/base_lithium_ion_tests.py @@ -389,3 +389,22 @@ def test_well_posed_current_sigmoid_diffusivity(self): def test_well_posed_psd(self): options = {"particle size": "distribution", "surface form": "algebraic"} self.check_well_posedness(options) + + def test_well_posed_composite_kinetic_hysteresis(self): + options = { + "particle phases": ("2", "1"), + "exchange-current density": ( + ("current sigmoid", "single"), + "current sigmoid", + ), + "open-circuit potential": (("current sigmoid", "single"), "single"), + } + self.check_well_posedness(options) + + def test_well_posed_composite_diffusion_hysteresis(self): + options = { + "particle phases": ("2", "1"), + "diffusivity": (("current sigmoid", "current sigmoid"), "current sigmoid"), + "open-circuit potential": (("current sigmoid", "single"), "single"), + } + self.check_well_posedness(options) diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_electrode_soh.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_electrode_soh.py index 628017d5d8..e5e79a6ae4 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_electrode_soh.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_electrode_soh.py @@ -40,9 +40,7 @@ def test_known_solution(self): k: sol_split[k].data[0] for k in ["x_0", "y_0", "x_100", "y_100", "Q_p"] } - energy = pybamm.lithium_ion.electrode_soh.theoretical_energy_integral( - parameter_values, inputs - ) + energy = esoh_solver.theoretical_energy_integral(inputs) self.assertAlmostEqual(sol[key], energy, places=5) # should still work with old inputs diff --git a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_newman_tobias.py b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_newman_tobias.py index be7d2499c6..4d65804156 100644 --- a/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_newman_tobias.py +++ b/tests/unit/test_models/test_full_battery_models/test_lithium_ion/test_newman_tobias.py @@ -22,6 +22,12 @@ def test_well_posed_particle_phases(self): def test_well_posed_particle_phases_sei(self): pass # skip this test + def test_well_posed_composite_kinetic_hysteresis(self): + pass # skip this test + + def test_well_posed_composite_diffusion_hysteresis(self): + pass # skip this test + if __name__ == "__main__": print("Add -v for more debug output") diff --git a/tests/unit/test_util.py b/tests/unit/test_util.py index c5060e65a6..730e4cc08d 100644 --- a/tests/unit/test_util.py +++ b/tests/unit/test_util.py @@ -10,7 +10,9 @@ import unittest from unittest.mock import patch from io import StringIO +from tempfile import TemporaryDirectory +anytree = sys.modules['anytree'] class TestUtil(TestCase): """ @@ -29,6 +31,7 @@ def test_rmse(self): pybamm.rmse(np.ones(5), np.zeros(3)) def test_is_constant_and_can_evaluate(self): + sys.modules['anytree'] = anytree symbol = pybamm.PrimaryBroadcast(0, "negative electrode") self.assertEqual(False, pybamm.is_constant_and_can_evaluate(symbol)) symbol = pybamm.StateVector(slice(0, 1)) @@ -88,6 +91,25 @@ def test_git_commit_info(self): self.assertIsInstance(git_commit_info, str) self.assertEqual(git_commit_info[:2], "v2") + def test_have_optional_dependency(self): + with self.assertRaisesRegex(ModuleNotFoundError, "Optional dependency pybtex is not available."): + pybtex = sys.modules['pybtex'] + sys.modules['pybtex'] = None + pybamm.print_citations() + with self.assertRaisesRegex(ModuleNotFoundError, "Optional dependency anytree is not available."): + with TemporaryDirectory() as dir_name: + sys.modules['anytree'] = None + test_stub = os.path.join(dir_name, "test_visualize") + test_name = f"{test_stub}.png" + c = pybamm.Variable("c", "negative electrode") + d = pybamm.Variable("d", "negative electrode") + sym = pybamm.div(c * pybamm.grad(c)) + (c / d + c - d) ** 5 + sym.visualise(test_name) + + sys.modules['pybtex'] = pybtex + pybamm.util.have_optional_dependency("pybtex") + pybamm.print_citations() + class TestSearch(TestCase): def test_url_gets_to_stdout(self): diff --git a/vcpkg.json b/vcpkg.json index 6877dfa094..f62c18ddd2 100644 --- a/vcpkg.json +++ b/vcpkg.json @@ -1,6 +1,6 @@ { "name": "pybamm", - "version-string": "23.9rc0", + "version-string": "23.9", "dependencies": [ "casadi", {