diff --git a/CHANGELOG.md b/CHANGELOG.md index 82f07dea29..a9ae714b62 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -8,6 +8,9 @@ - Added a new unary operator, `EvaluateAt`, that evaluates a spatial variable at a given position ([#3573](https://github.com/pybamm-team/PyBaMM/pull/3573)) - Added a method, `insert_reference_electrode`, to `pybamm.lithium_ion.BaseModel` that insert a reference electrode to measure the electrolyte potential at a given position in space and adds new variables that mimic a 3E cell setup. ([#3573](https://github.com/pybamm-team/PyBaMM/pull/3573)) - Serialisation added so models can be written to/read from JSON ([#3397](https://github.com/pybamm-team/PyBaMM/pull/3397)) +- Added a `get_parameter_info` method for models and modified "print_parameter_info" functionality to extract all parameters and their type in a tabular and readable format ([#3584](https://github.com/pybamm-team/PyBaMM/pull/3584)) +- Mechanical parameters are now a function of stoichiometry and temperature ([#3576](https://github.com/pybamm-team/PyBaMM/pull/3576)) + ## Bug fixes diff --git a/docs/source/examples/notebooks/parameterization/parameterization.ipynb b/docs/source/examples/notebooks/parameterization/parameterization.ipynb index 3ec04e9654..50be5e8ed9 100644 --- a/docs/source/examples/notebooks/parameterization/parameterization.ipynb +++ b/docs/source/examples/notebooks/parameterization/parameterization.ipynb @@ -29,13 +29,18 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.822760400Z", + "start_time": "2023-12-10T12:14:16.732217100Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "zsh:1: no matches found: pybamm[plot,cite]\n", + "/bin/bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8)\r\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } @@ -60,7 +65,12 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.832156400Z", + "start_time": "2023-12-10T12:14:18.822760400Z" + } + }, "outputs": [], "source": [ "c = pybamm.Variable(\"Concentration [mol.m-3]\", domain=\"negative particle\")\n", @@ -83,7 +93,12 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.841423200Z", + "start_time": "2023-12-10T12:14:18.827008900Z" + } + }, "outputs": [], "source": [ "model = pybamm.BaseModel()\n", @@ -119,7 +134,12 @@ { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.843095800Z", + "start_time": "2023-12-10T12:14:18.841423200Z" + } + }, "outputs": [], "source": [ "r = pybamm.SpatialVariable(\"r\", domain=[\"negative particle\"], coord_sys=\"spherical polar\")\n", @@ -145,16 +165,22 @@ { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.852037800Z", + "start_time": "2023-12-10T12:14:18.845139Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Initial concentration [mol.m-3] (Parameter)\n", - "Interfacial current density [A.m-2] (InputParameter)\n", - "Diffusion coefficient [m2.s-1] (FunctionParameter with input(s) 'Concentration [mol.m-3]')\n", - "\n", + "| Parameter | Type of parameter |\n", + "| =================================== | ========================================================== |\n", + "| Initial concentration [mol.m-3] | Parameter |\n", + "| Interfacial current density [A.m-2] | InputParameter |\n", + "| Diffusion coefficient [m2.s-1] | FunctionParameter with inputs(s) 'Concentration [mol.m-3]' |\n", "Particle radius [m] (Parameter)\n" ] } @@ -185,7 +211,12 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.854076300Z", + "start_time": "2023-12-10T12:14:18.849343800Z" + } + }, "outputs": [], "source": [ "def D_fun(c):\n", @@ -210,19 +241,16 @@ { "cell_type": "code", "execution_count": 7, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.889781200Z", + "start_time": "2023-12-10T12:14:18.853120600Z" + } + }, "outputs": [ { "data": { - "text/plain": [ - "{'Boltzmann constant [J.K-1]': 1.380649e-23,\n", - " 'Diffusion coefficient [m2.s-1]': ,\n", - " 'Electron charge [C]': 1.602176634e-19,\n", - " 'Faraday constant [C.mol-1]': 96485.33212,\n", - " 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n", - " 'Initial concentration [mol.m-3]': 2.5,\n", - " 'Particle radius [m]': 2}" - ] + "text/plain": "{'Boltzmann constant [J.K-1]': 1.380649e-23,\n 'Diffusion coefficient [m2.s-1]': ,\n 'Electron charge [C]': 1.602176634e-19,\n 'Faraday constant [C.mol-1]': 96485.33212,\n 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n 'Initial concentration [mol.m-3]': 2.5,\n 'Particle radius [m]': 2}" }, "execution_count": 7, "metadata": {}, @@ -248,19 +276,16 @@ { "cell_type": "code", "execution_count": 8, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.890819200Z", + "start_time": "2023-12-10T12:14:18.859679800Z" + } + }, "outputs": [ { "data": { - "text/plain": [ - "{'Boltzmann constant [J.K-1]': 1.380649e-23,\n", - " 'Diffusion coefficient [m2.s-1]': ,\n", - " 'Electron charge [C]': 1.602176634e-19,\n", - " 'Faraday constant [C.mol-1]': 96485.33212,\n", - " 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n", - " 'Initial concentration [mol.m-3]': 1.5,\n", - " 'Particle radius [m]': 2}" - ] + "text/plain": "{'Boltzmann constant [J.K-1]': 1.380649e-23,\n 'Diffusion coefficient [m2.s-1]': ,\n 'Electron charge [C]': 1.602176634e-19,\n 'Faraday constant [C.mol-1]': 96485.33212,\n 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n 'Initial concentration [mol.m-3]': 1.5,\n 'Particle radius [m]': 2}" }, "execution_count": 8, "metadata": {}, @@ -294,16 +319,16 @@ "cell_type": "code", "execution_count": 9, "metadata": { - "scrolled": true + "scrolled": true, + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.891821400Z", + "start_time": "2023-12-10T12:14:18.864911Z" + } }, "outputs": [ { "data": { - "text/plain": [ - "[Parameter(-0x6a2dafa7592b0120, Initial concentration [mol.m-3], children=[], domains={}),\n", - " InputParameter(0x217db8be7d80d00, Interfacial current density [A.m-2], children=[], domains={}),\n", - " FunctionParameter(-0x1834ea6ea33ab3ac, Diffusion coefficient [m2.s-1], children=['Concentration [mol.m-3]'], domains={'primary': ['negative particle']})]" - ] + "text/plain": "[Parameter(-0x60748912cbf94f86, Initial concentration [mol.m-3], children=[], domains={}),\n InputParameter(0x650425db234f99f4, Interfacial current density [A.m-2], children=[], domains={}),\n FunctionParameter(-0x302b1e5afcbfd4d9, Diffusion coefficient [m2.s-1], children=['Concentration [mol.m-3]'], domains={'primary': ['negative particle']})]" }, "execution_count": 9, "metadata": {}, @@ -326,7 +351,12 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.891821400Z", + "start_time": "2023-12-10T12:14:18.868969800Z" + } + }, "outputs": [], "source": [ "param.process_model(model)\n", @@ -344,7 +374,12 @@ { "cell_type": "code", "execution_count": 11, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:18.951625100Z", + "start_time": "2023-12-10T12:14:18.875173500Z" + } + }, "outputs": [], "source": [ "submesh_types = {\"negative particle\": pybamm.Uniform1DSubMesh}\n", @@ -367,14 +402,17 @@ { "cell_type": "code", "execution_count": 12, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.168402100Z", + "start_time": "2023-12-10T12:14:18.890819200Z" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQgAAAGFCAYAAACxAR57AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbTUlEQVR4nOzdd1yV9fvH8dc5bJSlgjhQxIVbxEVu5es2LTWz4Wxr7n5plpottaGWlQ3LtmWZaZqGe5HiwI04UHGgIgIuDuv8/kBPkSNA4DDez8fjPIz7fO7PuY631eV139fnYzCbzWZERERERERERESkWDJaOwARERERERERERGxHhUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRURERKTAiIyMpGfPnpQpUwZXV1datmzJ2rVrM40ZMWIEgYGBODg40LBhw9vOs3LlSpo3b46Liwuenp707t2b48ePW94fNGgQBoPhlledOnXuGp/ZbOadd96hRo0aODg4UKFCBd544417/doiIiIiVqUCoYiIiIgUGN27dyc1NZU1a9awY8cOGjRoQPfu3YmJick0bsiQIfTr1++2c0RFRdGzZ0/at29PeHg4K1euJDY2lgcffNAyZvbs2Zw9e9byio6OplSpUvTt2/eu8Y0cOZLPP/+cd955h4iICJYsWULTpk3v/YuLiIiIWJHBbDabrR1EcZSens6ZM2dwcXHBYDBYOxwREREpIsxmM5cvX6Z8+fIYjYXrXnBsbCyenp5s2LCBVq1aAXD58mVcXV0JCQkhODg40/gpU6awePFiwsPDMx3/+eef6d+/PyaTyfJ7sHTpUnr27InJZMLOzu6Wz168eDEPPvggUVFRVK5c+bbxHTx4kPr167Nv3z5q1qyZ4++pPFBERETySk5zQds8jEnu4syZM/j4+Fg7DBERESmioqOjqVixorXDyJbSpUtTs2ZNvv76axo1aoSDgwOffPIJXl5eBAYGZnmewMBAjEYjX375JYMGDeLKlSt88803BAcH37Y4CDBv3jyCg4PvWByEjCKjn58fv//+O507d8ZsNhMcHMyMGTMoVarUHc8zmUyYTCbLz6dPn6Z27dpZ/j4iIiIi2ZXdXFAFQitxcXEBMi6Yq6urlaMRERGRoiIxMREfHx9LrlGYGAwGVq1aRa9evXBxccFoNOLl5cWKFSvw8PDI8jxVqlThzz//5KGHHuLpp58mLS2NoKAgli9fftvxZ86c4Y8//uD777+/67zHjh3jxIkTLFy4kK+//pq0tDRGjx5Nnz59WLNmzR3Pe+utt3j11VdvOa48UERERHJbTnNBFQit5GY7iaurqxJDERERyXUFqXV1/PjxTJ8+/a5jDh48SM2aNRk2bBheXl5s3LgRJycnPv/8c3r06EFYWBjlypXL0ufFxMTw5JNPMnDgQPr378/ly5eZNGkSffr0ISQk5Jbfm6+++gp3d3d69ep113nT09MxmUx8/fXX1KhRA8h48jAwMJBDhw7dse14woQJjBkzxvLzzcRdeaCIiIjklezmgioQioiIiEieGjt2LIMGDbrrGD8/P9asWcPvv//OpUuXLIWzjz76iJCQEL766ivGjx+fpc/78MMPcXNzY8aMGZZj3377LT4+PmzdupXmzZtbjpvNZr744gsef/xx7O3t7zpvuXLlsLW1tRQHAWrVqgXAyZMn71ggdHBwwMHBIUuxi4iIiFiDCoQiIiIikqc8PT3x9PT8z3HXrl0DuGVBbaPRSHp6epY/79q1a7fMYWNjA3DLPOvXr+fIkSMMHTr0P+dt0aIFqampHD16lKpVqwIQGRkJcNe1C0VEREQKusK1tZ2IiIiIFFlBQUF4eHgwcOBAdu/eTWRkJC+88AJRUVF069bNMu7IkSOEh4cTExPD9evXCQ8PJzw8nOTkZAC6detGWFgYU6dO5fDhw+zcuZPBgwdTuXJlAgICMn3mvHnzaNasGXXr1r0lnjlz5tChQwfLz8HBwTRq1IghQ4awa9cuduzYwdNPP83//ve/TE8VioiIiBQ2eoJQRERERAqEMmXKsGLFCiZOnEj79u1JSUmhTp06/PbbbzRo0MAy7oknnmD9+vWWn28W/aKiovD19aV9+/Z8//33zJgxgxkzZuDs7ExQUBArVqzAycnJcl5CQgK//PILs2fPvm08sbGxHD161PKz0Whk6dKlPP/887Ru3ZoSJUrQpUsX3n333dz+rRAREblnZrOZ1NRU0tLSrB2K5CIbGxtsbW1zfb1pg9lsNufqjJIliYmJuLm5kZCQoMWpRUREJNcoxyj4dI1ERCSvJScnc/bsWcvyHVK0ODs7U65cuduun5zTPENPEIqIiIiIiIiIFBHp6elERUVhY2ND+fLlsbe3z/WnzcQ6zGYzycnJXLhwgaioKKpXr37Luss5pQKhiIiIiIiIiEgRkZycTHp6Oj4+Pjg7O1s7HMllTk5O2NnZceLECZKTk3F0dMyVebVJiYiIiIiIiIhIEZNbT5ZJwZMX11Z/Wu7Bhx9+iK+vL46OjjRr1oxt27ZZOyQREREREREREZFsUYEwh3788UfGjBnD5MmT2blzJw0aNKBTp06cP3/e2qEBYEpNIz1d+8+IiIiIiIiIiMjdaQ3CHHrvvfd48sknGTx4MABz585l2bJlfPHFF4wfP/6W8SaTCZPJZPk5MTExT+N7Z+Uhtp+4xGs961K3gluefpaIiIiIFBxz1hxm1cHzuDrZ4eJoi6ujLa6OGf/s4miHq5MtLg433nP6+7iLgy1GoxaxFxERyQ1Tpkzh1VdfBWDmzJmMGjXqP89p27Yt69evB2DXrl00bNgwDyPMTAXCHEhOTmbHjh1MmDDBcsxoNBIcHExoaOhtz3nrrbcsfzDy2uWkFH7afoqE6yncP2cTjzarzLiONXFztsuXzxcRERER6zl64Srh0fHZPs9ggJL2trcUDl1vFhD/cfxmwbFUCXvKuztRuoR2yBQRkXvXtm1bGjZsyKxZs3J0/v79+5k0aRI7duzgxIkTdyzMffjhh7z99tvExMTQoEEDPvjgA5o2bWp5PykpibFjx7JgwQJMJhOdOnXio48+omzZspYxJ0+e5Nlnn2Xt2rWULFmSgQMH8tZbb2Fr+3eprU6dOqxatQpXV9csxb9o0SKOHj2aKZb8ogJhDsTGxpKWlpbpDwZA2bJliYiIuO05EyZMYMyYMZafExMT8fHxyZP4XBztWDmqNW8uP8iS3Wf45q8TLNt7lvGd/ekTWFF3hkVERESKsKda+9G5rjeXk1JJvJ7C5aRULielkJh0859T//HPKSReTyU5LR2zGS6bUrlsSuVMQlK2PtPB1kgFdycqeDhRwd2J8u5OmX72dnPEzkarG4mISN66du0afn5+9O3bl9GjR992zM0l4+bOnUuzZs2YNWsWnTp14tChQ3h5eQEwevRoli1bxsKFC3Fzc2P48OE8+OCDbN68GYC0tDS6deuGt7c3W7Zs4ezZswwYMAA7OzvefPNNy2fZ2tri7e2d5fhLlSqV5x2nd6ICYT5xcHDAwcEh3z7P282R9/sH8HBTHyb/tp/D56/wf7/s4Yewk2o7FhERESnCapVzpVa5rD2pcFNSStptC4eXb/yc+I9f/3k89oqJ85dNmFLTORZ7lWOxV287v9EAZV0dMxUOy7s7UfEfRcQSDvqriYhIXjGbzVxPSbPKZzvZ2WTpKfNBgwaxfv161q9fz+zZswGIiorC19c3y5/VpEkTmjRpAnDb5d/gv5eMS0hIYN68eXz//fe0b98egC+//JJatWrx119/0bx5c/78808OHDjAqlWrKFu2LA0bNuS1117jxRdfZMqUKdjb29/2s81mM6+++ipffPEF586do3Tp0vTp04f3338/y98xr+j/wjlQpkwZbGxsOHfuXKbj586dy1ZlOD/cV7UMy0e2Yv7m48xaFcmuk/H0mLOJx9R2LCIiIiI3ONrZ4Ghng6dL9m9om1LTiElI4vSl65yOv/G6dJ0zCTd+jU8iOS2dswlJnE1IYseJS7edx83JLtNTh/8sJFYpUwI3J+WtIiI5dT0ljdqTVlrlsw9M7YSz/X+Xn2bPnk1kZCR169Zl6tSpAHh6elKyZMm7nvfYY48xd+7cLMWSlSXjduzYQUpKCsHBwZYx/v7+VKpUidDQUJo3b05oaCj16tXL1FnaqVMnnn32Wfbv309AQMBtP/+XX35h5syZLFiwgDp16hATE8Pu3buzFHteU4EwB+zt7QkMDGT16tX06tULgPT0dFavXs3w4cOtG9xt2NkYebK1H/c3LM8by9R2LCIiIiK5x8HWhsqlS1C5dInbvp+ebib2qslSQDxzo4CYUUxM4vSlayQmpZJwPYWE6ykcOHv71qoK7k74e7vgX84Ff29XapVzwbd0CWzVuiwiUiS4ublhb2+Ps7NzpoevwsPD73peVtf3g6wtGRcTE4O9vT3u7u63jImJibGMud0cN9+7k5MnT+Lt7U1wcDB2dnZUqlTJKusN3o4KhDk0ZswYBg4cSOPGjWnatCmzZs3i6tWrlkdUC6Kyrhltx/2bVmLSb/ssbcffbzvJ673UdiwiIiIiuc9oNODl4oiXiyMBlTxuO+ZyUgpn4pM4HX/tRvEw6caTiNc4dek65y+bLE8nro44bznP3tZIjbIl8fd2xd/bhVrlMn4tXTL/lvYRESkMnOxsODC1k9U++15Uq1YtlyKxvr59+zJr1iz8/Pzo3LkzXbt2pUePHpk2NrEW60dQSPXr148LFy4wadIkYmJiaNiwIStWrLilglwQBVUtzfKRrfhqy3FmhkQSHp3Rdvxos0qM61gTd+fb98qLiIiIiOQFF0c7anrbUdPb5bbvJ1xP4VDMZSJiEjl4NuPXQzGXuZacxr7Tiew7nfmpQ08Xh0wFQ39vV6p5lcTeVk8bikjxZDAYstTmWxDlZotxVpaM8/b2Jjk5mfj4+ExPEf57zLZt226Z4+Z7d+Lj48OhQ4dYtWoVISEhPPfcc7z99tusX78eOzvrLqVROP90FBDDhw8vkC3FWWFnY+SJVn70aFCeN5cf5LfwM3z710mW743hxc416Rvoo7ZjERERESkQ3JzsaFqlFE2rlLIcS083E33pmqVgGHHj1xNx17hw2cSFyyY2Ho61jLc1GqjmVfJGm/LfTxx6uThkafF8ERHJe/b29qSlZd5MJTdbjLOyZFxgYCB2dnasXr2a3r17A3Do0CFOnjxJUFAQAEFBQbzxxhucP3/esvNxSEgIrq6u1K5d+64xODk50aNHD3r06MGwYcPw9/dn7969NGrUKMvfIy+oQFjMlXV1ZPbDATzcpBKTl+wj8twVXvxlLz9si+a1nnWpV1FtxyIiIiJS8BiNBsvah53r/v20xlVTKpHnLhMRc5mIs4kcvPFrYlJqxrGYyxB+xjLew9kuo0W5nAsBlTxo6lsKbzdHa3wlEZFiz9fXl61bt3L8+HFKlixJqVKlstVinJyczIEDByz/fPr0acLDwylZsqRlnv9aMs7NzY2hQ4cyZswYSpUqhaurK88//zxBQUE0b94cgI4dO1K7dm0ef/xxZsyYQUxMDC+//DLDhg3DweHOy1zMnz+ftLQ0mjVrhrOzM99++y1OTk5Urlw5p79luUYFQgEy2o6XjchoO5616jDh0fHc/+EmHmlaiRc6qe1YRERERAqHEg62BFTyyLTeodls5mxC0j9alDOKhsdir3LpWgqhxy4SeuwiX24+DkClUs408S1F0yoeNK1SGt/SznrKUEQkH4wbN46BAwdSu3Ztrl+/TlRUFL6+vlk+/8yZM5l2EH7nnXd45513aNOmDevWrQOytmTczJkzMRqN9O7dG5PJRKdOnfjoo48s79vY2PD777/z7LPPEhQURIkSJRg4cKBl9+U7cXd3Z9q0aYwZM4a0tDTq1avH0qVLKV26dJa/Y14xmM1ms7WDKI4SExNxc3MjISEhW4/D5odziUmWtmPIuKv6Ymd/HmqstmMREZGCriDnGJJB16jgSEpJ48j5K0TEXGbf6QS2n4jjwJlE0v/1N6QyJR0yioW+pWhSpRT+3q7YKC8WkQIqKSmJqKgoqlSpgqOjnoi2lilTprB48eL/bJH+t+PHj1OlShV27dpFw4YNbzvmbtc4p3mGniCUW9xsO+7ftBKTf9vPoXOXGb9oLz+ERfO62o5FREREpIhwtLOhbgU36lZwo09gRSBjR+UdJy4RdjyObVFx7I5OIPaKieV7Y1i+NwYAF0dbGlf2oEmVUjT1LUW9im442N7bLp0iIlL07N27l5IlSzJjxgyee+65/xzfpUsXNmzYkA+R3UpPEFpJYblznJKWztehJ5gZEskVUyoGA2o7FhERKcAKS45RnOkaFS5JKWnsOZVA2PE4tkbFsfPEJa6YUjONcbA10tDHnWZVMp4wbFTJgxIOehZDRKxDTxAWDHFxccTFxQHg6emJm9t/P2x1+vRprl+/DkClSpWwt7993SUvniBUgdBKCltieD4xibf+iODXXaeBjLbj/+vsTz+1HYuIiBQohS3HKI50jQq31LR0ImIuszUqjrCoOMKOx3HxanKmMTZGA3XLu9LkRktyE99SlCqhm+sikj9UICz6VCAsQgprYrj12EUm3Wg7Bmjg485rPetQv6K7dQMTERERoPDmGMWJrlHRYjabOXrhKmHHMwqGW6PiOB1//ZZx1b1K0qRKKZpVKUXr6p54qGAoInlEBcKiTwXCIqQwJ4a3azvu37QSL3SsqURHRETEygpzjlFc6BoVfWfir1taksOi4jh8/kqm940GaFy5FO1reRFcy4uqniW1S7KI5JqbxSNfX1+cnJysHY7kgevXr1s2M1GBsJArConhv9uO3W/sdqy2YxEREespCjlGUadrVPzEXU22PGG46UgsETGXM71fubQz7f29CK5Vlia+pbC3NVopUhEpCtLS0oiMjMTLy4vSpUtbOxzJAxcvXuT8+fPUqFEDG5vMm2SpQFjIFKXEcFtUHJN+22dJdBpUdGNqz7o08HG3bmAiIiLFUFHKMYoqXSM5dekaayLOs+rgef46epHktHTLey4OtrSu6UkHfy/a1fRSh46I5MjZs2eJj4/Hy8sLZ2dnPaVcRJjNZq5du8b58+dxd3enXLlyt4xRgbCQKWqJYeo/2o4v32g7friJDy908teCzCIiIvmoqOUYRZGukfzTFVMqmw7HsvrgOdYeOk/slb83PDEaILCyBx1qlaWDvxfVvNSKLCJZYzabiYmJIT4+3tqhSB5wd3fH29v7tv9PUIGwkCmqieH5y0lMWx7Bon+0Hb/QqSYPN6mEjdqORURE8lxRzTGKEl0juZP0dDO7T8Wz+uB5Vh08d0srcqVSznSo5UUH/7I0raJWZBH5b2lpaaSkpFg7DMlFdnZ2t7QV/5MKhIVMUU8Mw47H8criv9uO699oO26otmMREZE8VdRzjKJA10iy6tSla6y90YocertW5BqedKjlRduaXuraERERQAXCQqc4JIapael8+9cJ3v3z77bjfo19+L/OajsWERHJK8UhxyjsdI0kJ66aUtl4OJY1EedYE3FrK3KjSjdakWt5UV2tyCIixZYKhIVMcUoML1w2Me2PCH7ZeQoAN6eMtuP+TdV2LCIiktuKU45RWOkayb262Yp8c6OTg2cTM73vU8qJjrW96dWwAnUruKpYKCJSjKhAWMgUx8Rw+/E4XvltvyWBqVfBjak96xBQycPKkYmIiBQdxTHHKGx0jSS3nY6/zpqD51gdcZ4tRy+SnPp3K3JVzxI8EFCBng0r4FPK2YpRiohIflCBsJApromhpe04JJLLSalAxm7HajsWERHJHcU1xyhMdI0kL91sRf59zxlCDpzD9I9iYRNfD3oFVKBbvXK4Oyv3FhEpilQgLGSKe2J44bKJ6Ssi+HnH323H4zrV5BG1HYuIiNyT4p5jFAa6RpJfLielsGJfDIvDT7Pl6EVu/s3PzsZAu5pePNioAm1reuFod+fdMEVEpHBRgbCQUWKYYceJOF5ZvJ8DN9qO61ZwZWrPujRS27GIiEiOKMco+HSNxBpiEpJYsvs0v+46k2nNQldHW7rVL0evhhVo4lsKo27Wi4gUajnNM4x5GJPIfwqsXIolw1vw6v11cHG0Zd/pRB78aAv/9/NuLl4xWTs8ERERyWeRkZH07NmTMmXK4OrqSsuWLVm7dm2mMSNGjCAwMBAHBwcaNmx423lWrlxJ8+bNcXFxwdPTk969e3P8+HHL+4MGDcJgMNzyqlOnzl3j+695RQoqbzdHnmpdlT9GtmLFqFY83cYPb1dHEpNS+WFbNP0+/YtWM9YyY0UEh89dtna4IiKSz1QgFKuztTEy8D5f1o5rS9/AigD8tP0U7d5Zxzehx0lL10OuIiIixUX37t1JTU1lzZo17NixgwYNGtC9e3diYmIyjRsyZAj9+vW77RxRUVH07NmT9u3bEx4ezsqVK4mNjeXBBx+0jJk9ezZnz561vKKjoylVqhR9+/a9Y2xZmVekMPD3dmVCl1psGd+e759sxkONK+LiYMvp+Ot8tO4o/5u5gW7vb+Tzjcc4n5hk7XBFRCQfqMXYStRacmc7TlzilcX7MrUdv3p/XQIrq+1YRETkvxTmHCM2NhZPT082bNhAq1atALh8+TKurq6EhIQQHBycafyUKVNYvHgx4eHhmY7//PPP9O/fH5PJhNGYcT986dKl9OzZE5PJhJ2d3S2fvXjxYh588EGioqKoXLnybePLyby3U5ivkRRdSSlprD54nl93nWbdofOk3rhJbzRAi2pl6NWwAp3qelPSwdbKkYqIyN2oxViKjMDKHix9viWv9ayD6422494fb+GFhbuJVduxiIhIkVW6dGlq1qzJ119/zdWrV0lNTeWTTz7By8uLwMDALM8TGBiI0Wjkyy+/JC0tjYSEBL755huCg4PvWMSbN28ewcHBdywO5nReAJPJRGJiYqaXSEHjaGdDt/rl+HxgY7ZNDOa1Xhk36NPNsPFwLGMX7qbx6yGM+GEXayPOk5KW/t+TiohIoaEnCK1Ed46zJvaKiRkrIvhpe8Zux66OtozrVJNHm1XWbsciIiK3UdhzjFOnTtGrVy927tyJ0WjEy8uLZcuWERAQcMvYOz1BCLB+/XoeeughLl68SFpaGkFBQSxfvhx3d/dbxp45c4ZKlSrx/fff89BDD901vuzM+884X3311VuOF9ZrJMXLiYtX+S38DIt3neZY7FXL8dIl7OnRoDx9G1ekTnk3K0YoIiL/pCcIpUgqU9KBGX0a8Muz91GnvCuJSalM+m0/98/ZxI4Tl6wdnoiIiGTB+PHjb7shyD9fERERmM1mhg0bhpeXFxs3bmTbtm306tWLHj16cPbs2Sx/XkxMDE8++SQDBw4kLCyM9evXY29vT58+fbjdvfGvvvoKd3d3evXqlavz3jRhwgQSEhIsr+jo6Cx/FxFrq1y6BCM6VGf12Db8NqwFg+7zpXQJey5eTWb+luN0e38TvT/ewm/hp0lO1VOFIiKFlZ4gtJLCfnffGtLSzXy/7SRvr4ggMSkVgD6BFRnfxZ8yJR2sHJ2IiEjBUBBzjAsXLnDx4sW7jvHz82Pjxo107NiRS5cuZYq9evXqDB06lPHjx2c6505PEL7yyiusWLGCsLAwy7FTp07h4+NDaGgozZs3txw3m83UqFGD7t27M3PmzLvGmJ1576YgXiOR7EhJS2fTkVh+3nGKlftiLOsVlinpQP+mPjzSrBLl3JysHKWISPGU0zxDK8xKoWFjNPB488p0revNjBWH+HF7dEZSsj+GcR1r8mizStja6KFYERGRgsbT0xNPT8//HHft2jUAywYgNxmNRtLTs/5k0rVr126Zw8bGBuCWedavX8+RI0cYOnRors4rUpTZ2RhpV9OLdjW9OJ+YxA/bovlu6wnOXzbxwZojfLTuKB1rl+XxoMoE+ZXGYNDSQCIiBZ2qKVLolC7pwPQ+9Vn03H3UreDK5aRUJi/ZT485m9l+PM7a4YmIiEgOBQUF4eHhwcCBA9m9ezeRkZG88MILREVF0a1bN8u4I0eOEB4eTkxMDNevXyc8PJzw8HCSk5MB6NatG2FhYUydOpXDhw+zc+dOBg8eTOXKlW9Zy3DevHk0a9aMunXr3hLPnDlz6NChg+Xn7MwrUlx4uToyMrg6m8e358NHGtGsSinS0s38sS+GRz7bSseZG/gm9DhXTKnWDlVERO4iSy3Ge/bsyfbEtWvXxtZWDyjeiVpLcsfNtuN3Vh4i4XoKAL0bZbQde7qo7VhERIqfwp5jbN++nYkTJ7J9+3ZSUlKoU6cOkyZNokuXLpYxbdu2Zf369becGxUVha+vLwALFixgxowZREZG4uzsTFBQENOnT8ff398yPiEhgXLlyjF79myefPLJW+abMmUK8+fP5/jx45ZjWZn3vxT2ayTyXw7FXObr0OP8uus015LTACjpYEvvRhV4PKgy1bxcrByhiEjRldM8I0sFQqPRiMFguOviy/8eHxkZiZ+fX5YDKW6UGOauuKvJzFgRwYKwjEW/XRxtGfu/GjzWvLLajkVEpFhRjlHw6RpJcZGYlMIvO07xTeiJTDsgt6hWmseb+xJcy0u5uohILsvzAuG2bduytHaM2Wymbt267NmzRwXCu1BimDd2nbzEpN/2s/d0AgD+3i681qsuTXxLWTkyERGR/KEco+DTNZLiJj3dzOajsXwdeoLVB89xY08Tyrs58mjzyvRr4qNNB0VEckmeFgjbtWvHr7/+iru7e5Ym7dq1K/PmzaNcuXJZDqS4UWKYd9LSzSwIO8mMFX+3HT/YqAITutRS27GIiBR5yjEKPl0jKc5OXbrGd1tP8mNYNHFXM9YNtbcx0rWeNwPu8yXAx12bmoiI3IM8LRBK7lNimPfiribz9sqMtmOzGVwcbBnTsQaPq+1YRESKMOUYBZ+ukQgkpaSxbM9Zvv7rBLuj4y3H61ZwZUCQL/c3KI+jnY31AhQRKaRUICxklBjmn/DoeCb9to89p/5uO57asy5Nq6jtWEREih7lGAWfrpFIZruj4/k69ARL95whOTUdAHdnOx5q7MNjzSpTqbSzlSMUESk88qVAGBISwqZNm2jTpg3t27dnw4YNvPXWW5hMJh5//HEGDx6co+CLIyWG+Sst3cyPYdHMWBlB/LUbbccBFRjf1R8vF0crRyciIpJ7lGMUfLpGIrcXdzWZH8Oi+favE5yOvw6AwQDtanrxVGs/mlUppfZjEZH/kOcFwm+//ZbBgwdTv359IiMj+eCDDxg9ejR9+vQhPT2db7/9lu+++44+ffrk+EsUJ0oMrePS1WRmrDzEgrCTlrbj0f+rwYAgtR2LiEjRoByj4NM1Erm7tHQzayPO81XocTYejrUcb1zZg2HtqtG2pqcKhSIid5DnBcKAgAAGDx7MiBEjWL16NT169OCNN95g9OjRALz77rv8+uuvbNq0KWffoJhRYmhdu2+0He9W27GIiBQxyjEKPl0jkaw7duEK8zZFsXDHKUv7cZ3yrgxrV41OdbyxMapQKCLyT3leICxZsiR79+6lSpUqANjb27N9+3bq168PQEREBC1btiQ2NvZu08gNSgytLz3dzI/bo5m+4u+24wcCKjChiz9ermo7FhGRwkk5RsGnaySSfecTk/hs4zG+23qSa8lpAFT1LMGzbavRs2F57NQNJCIC5DzPyPJ/Re3s7EhOTrb87ODgQMmSJTP9fP369Sx/cF7w9fXFYDBkek2bNi3TmD179tCqVSscHR3x8fFhxowZt8yzcOFC/P39cXR0pF69eixfvjzT+2azmUmTJlGuXDmcnJwIDg7m8OHDefrdJPcZjQb6N63E2rFteaRZJQwG+HXXadq/u555m6JITUu3dogiIiIiIgJ4uToysVttNr/YnhEdquPqaMvRC1cZt3A37d5Zxzd/nSApJc3aYYqIFFpZLhBWq1aNiIgIy8+nT5+2PE0IcPToUSpWrJi70eXA1KlTOXv2rOX1/PPPW95LTEykY8eOVK5cmR07dvD2228zZcoUPv30U8uYLVu20L9/f4YOHcquXbvo1asXvXr1Yt++fZYxM2bM4P3332fu3Lls3bqVEiVK0KlTJ5KSkvL1u0ru8Chhz5sP1OO3YS1oUNGNK6ZUXvv9AN3e38TWYxetHZ6IiIiIiNzgUcKeMf+rwebx7Xmxsz9lStpz6tJ1Xlm8j1Yz1vLphqNcNaVaO0wRkUInyy3Gv/76K6VLl6Z169a3fX/atGlcvXqV1157LVcDzA5fX19GjRrFqFGjbvv+xx9/zMSJE4mJicHe3h6A8ePHs3jxYkvxs1+/fly9epXff//dcl7z5s1p2LAhc+fOxWw2U758ecaOHcu4ceMASEhIoGzZssyfP5+HH344S7GqtaRgSk8389ONtuNLN9qOezUsz0tda6ntWERECgXlGAWfrpFI7klKSePHsGg+WX+UMwkZD2y4O9sx+L4qDLyvMu7O9laOUEQkf+X5GoSFga+vL0lJSaSkpFCpUiUeeeQRRo8eja2tLQADBgwgMTGRxYsXW85Zu3Yt7du3Jy4uDg8PDypVqsSYMWMyFRknT57M4sWL2b17N8eOHaNq1ars2rWLhg0bWsa0adOGhg0bMnv27NvGZjKZMJlMlp8TExPx8fFRYlhAxV9L5u2Vh/h+W8ZuxyUdbBkVXJ2B9/lqfRMRESnQVHwq+HSNRHJfcmo6i3ed5uP1R4mKvQpACXsbHguqzBMt/fB0cbByhCIi+SPP1yC8nWnTphEfH38vU+SqESNGsGDBAtauXcvTTz/Nm2++yf/93/9Z3o+JiaFs2bKZzrn5c0xMzF3H/PP9f553uzG389Zbb+Hm5mZ5+fj45PBbSn5wd7bnjZttxz7uXDGl8vqyg3R7fyN/qe1YRERERKRAsbc18lATH1aNacMH/QPw93bhanIan6w/Rsvpa5j02z5Ox1t3zXwRkYLsngqEb775JnFxcbkVy22NHz/+lo1H/v262R48ZswY2rZtS/369XnmmWd49913+eCDDzI9uWctEyZMICEhwfKKjo62dkiSBfUruvPrs/cxvXc9PJztiDx3hYc//YuRC3ZxLlFrToqIiIiIFCQ2RgM9GpTnj5GtmDewMQGV3DGlpvN16AnazFjLCwt3c+zCFWuHKSJS4Njey8n50Z08duxYBg0adNcxfn5+tz3erFkzUlNTOX78ODVr1sTb25tz585lGnPzZ29vb8uvtxvzz/dvHitXrlymMf9sOf43BwcHHBz0WHthZDQa6NekEp3qePPOn4f4butJfgs/w6oD5xgVXINBLdR2LCIiIiJSkBgMBjrUKkt7fy9Cj17kw3VH2HzkIgt3nOLnnafoWq8cw9pWo3Z5tfmLiMA9PkGYHzw9PfH397/r6+aGI/8WHh6O0WjEy8sLgKCgIDZs2EBKSoplTEhICDVr1sTDw8MyZvXq1ZnmCQkJISgoCIAqVarg7e2daUxiYiJbt261jJGiyd3Zntd71WPJsJY09HHnanIabyw/SNfZGwk9qrZjEREREZGCxmAwcF+1Mnz3RHMWPXcfwbW8MJth2Z6zdH1/I0Pmh7HjxCVrhykiYnX3tElJdHQ05cuXx8bGJjdjypHQ0FC2bt1Ku3btcHFxITQ0lNGjR9OlSxe++uorIGO34Zo1a9KxY0defPFF9u3bx5AhQ5g5cyZPPfUUAFu2bKFNmzZMmzaNbt26sWDBAt5880127txJ3bp1AZg+fTrTpk3jq6++okqVKrzyyivs2bOHAwcO4OiYtZ1utTh14ZaebubnHaeYtiKCuKvJANzfoDwTu9WirHY7FhERK1KOUfDpGolY18GziXy07ijL9pwh/cbfhoP8SjO8fTVaVCtj3eBERO6RVXYxvnLlCunp6ZmOWSvJ2blzJ8899xwRERGYTCaqVKnC448/zpgxYzK19u7Zs4dhw4YRFhZGmTJleP7553nxxRczzbVw4UJefvlljh8/TvXq1ZkxYwZdu3a1vG82m5k8eTKffvop8fHxtGzZko8++ogaNWpkOV4lhkVD/LVk3v0zkm+3nsBsztgpTW3HIiJiTcoxCj5dI5GCISr2KnPXHWXRrlOkpGX8tbhltTK82NmfehXdrBydiEjO5FuBMCoqiuHDh7Nu3TqSkv7epMFsNmMwGEhLS8vOdMWWEsOiZd/pBF75bR+7TsYDUN2rJK/2rMN9VXUHUkRE8pdyjIJP10ikYDkTf51P1h/lh23RJKdlPADTo0F5xnWsQeXSJawcnYhI9uRbgbBFixaYzWZGjhxJ2bJlMRgMmd5v06ZNdqYrtpQYFj3p6WZ+3nmK6X9EcPFG23GPBuWZ2LUW3m5qOxYRkfyhHKPg0zUSKZii464xMySSX8NPYzaDrdHAo80q8XyH6pQpqQ0nRaRwyLcCYcmSJdmxYwc1a9bMdpDyNyWGRVfCtRTeDTnEt3+dIP1G2/HI4OoMblFFbcciIpLnlGMUfLpGIgXbgTOJzFgZwbpDF4CMfP7J1n480cqPkg62Vo5OROTucppnZLta0aRJE6Kjo7N7mkix4eZsx9SedVkyvCWNKmXsdvzm8gi6zN7IliOx1g5PRERERETuonZ5V+YPbsr3TzajQUU3rianMWvVYdq+vZavQ4+TnJr+35OIiBQy2X6C8OjRozzzzDM89thj1K1bFzs7u0zv169fP1cDLKp057h4SE8388vOU0z7R9tx9/rlmNitFuXcnKwcnYiIFEXKMQo+XSORwsNsNrN8bwxvr4zg+MVrAFQu7cy4jjXpVq8cRqPhP2YQEclf+dZi/Ndff/HII49w/PjxvycxGLRJSTYpMSxeEq6n8N6fh/jmRtuxs70NIzpUZ0iLKtjbqu1YRERyj3KMgk/XSKTwSUlLZ0FYNLNXHSb2igmAehXcGN/FnxbVtDGhiBQc+VYgrF27NrVq1eL//u//brtJSeXKlbMzXbGlxLB42n8mgUm/7WfHiUsAVPUswdSedZVUiIhIrlGOUfDpGokUXldNqczbFMUn649yNTnj4ZjWNTx5sXNN6pR3s3J0IiL5WCAsUaIEu3fvplq1atkOUv6mxLD4Sk83s2jXad5aftDSdtytfjleVtuxiIjkAuUYBZ+ukUjhd/GKiQ/WHOG7rSdIScv4K3WvhuUZ27EmPqWcrRydiBRn+VYg7NGjB4MGDaJ3797ZDlL+psRQEq6nMDMkkq9Dj1vajp9vX52hLdV2LCIiOXcvOUapUqWyNd5gMLBz5051kGST8kCRouPkxWu8G3KI38LPAGBnY+Cx5pUZ3q4apUs6WDk6ESmO8q1A+Omnn/L6668zZMgQ6tWrd8smJffff392piu2lBjKTQfOJDLpt31sv9F27OdZgqn316VldbUdi4hI9t1LjmE0Gpk1axZubv/dJmc2m3nuuefYt28ffn5+OQ23WFIeKFL07DudwPQVEWw8HAtASQdbnm7tx9BWVXC2t7VydCJSnORbgdBovPOTTdqkJOuUGMo/mc1mFu08zVt/HCT2yo2243oZux2Xd1fbsYiIZN29FghjYmLw8vLK0ngXFxd2796tAmE2KQ8UKbo2HY5l+ooI9p5OAMDTxYGRHarTr4kPdjbqEhKRvJdvBULJHUoM5Xb+3XbsZJex27HajkVEJKuUYxR8ukYiRVt6uplle8/y9spDnIy7BoBfmRKM61STLnW9b9noU0QkN6lAWMgoMZS7OXAmkclL9hF2/O+241fvr0Or6p5WjkxERAo65RgFn66RSPGQnJrOgrCTzF512LI5YQMfd17q4k8zv9JWjk5EiiqrFwi3b9/OtWvXaN26dW5MV+QpMZT/Yjab+XXXad5cHkHsFRMAXep683L32lRQ27GIiNxBbuQYFy9eZM+ePTRo0IBSpUoRGxvLvHnzMJlM9O3bl1q1auVy1MWL8kCR4uWKKZXPNx7j0w3HuJacsSRXz4blealrLcq6Olo5OhEpaqxeIKxVqxaRkZFagzCLlBhKViUm3Ww7PkFauhknOxuGt6/GE62q4GBrY+3wRESkgLnXHGPbtm107NiRxMRE3N3dCQkJoW/fvtja2pKens6ZM2fYtGkTjRo1yoPoiwflgSLF04XLJmatiuT7bScxm6GEvQ2jgmswqIWv1icUkVyT0zwj1/4rtHr1ao4dO5Zb04nIDa6OdkzuUYffn29JE18Prqek8fbKQ3SZtZENkResHZ6IiBQxEydOpG/fviQkJPDSSy/Rq1cvOnToQGRkJEeOHOHhhx/mtddey7PPj4yMpGfPnpQpUwZXV1datmzJ2rVrM40ZMWIEgYGBODg40LBhw9vOs3LlSpo3b46Liwuenp707t2b48ePZxrz3Xff0aBBA5ydnSlXrhxDhgzh4sWLd43v5MmTdOvWDWdnZ7y8vHjhhRdITU29l68sIsWEp4sDbzxQj6XDWxJQyZ2ryWm8sfwgXWdvJPTo3f/bIyKS13KtQFi+fHkqV66cW9OJyL/UKufKT08HMbNfAzxdHDgWe5UBX2zjmW92cDr+urXDExGRImLHjh2MGTMGFxcXRo4cyZkzZ3jyySct7w8fPpywsLA8+/zu3buTmprKmjVr2LFjBw0aNKB79+7ExMRkGjdkyBD69et32zmioqLo2bMn7du3Jzw8nJUrVxIbG8uDDz5oGbN582YGDBjA0KFD2b9/PwsXLmTbtm2Zvuu/paWl0a1bN5KTk9myZQtfffUV8+fPZ9KkSbnz5UWkWKhbwY1fnrmPGX3qU6qEPYfPX6H/Z38x4oddnEtMsnZ4IlJMZanFODExMcsTqk0ia9RaIvficlIKs1YdZv6W46Slm3G0M/J8++pqOxYRkXvOMUqWLMm+ffvw9fUFwMXFhd27d+Pn5wdkPEFXs2ZNrl/P/ZtTsbGxeHp6smHDBlq1agXA5cuXcXV1JSQkhODg4Ezjp0yZwuLFiwkPD890/Oeff6Z///6YTCaMxoz74UuXLqVnz56YTCbs7Ox45513+Pjjjzl69KjlvA8++IDp06dz6tSp28b3xx9/0L17d86cOUPZsmUBmDt3Li+++CIXLlzA3t4+S99TeaCI3JRwLYV3Qw7x7V8nSL/RdjwyuDqDW1RR27GI5Eiethi7u7vj4eFx19fNMSKS91wc7Xile22WjWhJ0yqlSEpJ5+2Vh+g8ayPr1XYsIiL3wMfHJ9OyMQsWLKBcuXKWn8+ePUuZMmXy5LNLly5NzZo1+frrr7l69Sqpqal88skneHl5ERgYmOV5AgMDMRqNfPnll6SlpZGQkMA333xDcHAwdnZ2AAQFBREdHc3y5csxm82cO3eOn3/+ma5du95x3tDQUOrVq2cpDgJ06tSJxMRE9u/ff8fzTCYTiYmJmV4iIgBuznZM7VmXJcNb0uhG2/GbyyPoOnsjW47GWjs8ESlGbLMy6N/rvohIweDv7cqPTzXnt/AzvLH8IFGxVxn4xTY61/HmlR7a7VhERLLv4Ycf5vz585afu3Xrlun9JUuW0LRp0zz5bIPBwKpVq+jVqxcuLi4YjUa8vLxYsWJFtm5EV6lShT///JOHHnqIp59+mrS0NIKCgli+fLllTIsWLfjuu+/o168fSUlJpKam0qNHDz788MM7zhsTE5OpOAhYfv53C/Q/vfXWW7z66qtZjl9Eip+6Fdz4+Zn7+HnnKab/EcHh81d45LOt9GhQnolda+Htpt2ORSRv5douxpI9ai2R3Ha7tuPh7arxZGs/tR2LiBQjeZ1jXLt2DRsbGxwcHLJ8zvjx45k+ffpdxxw8eJCaNWvSq1cvUlJSmDhxIk5OTnz++ecsWbKEsLCwTE8ywp1bjGNiYmjdujW9evWif//+XL58mUmTJmFra0tISAgGg4EDBw4QHBzM6NGj6dSpE2fPnuWFF16gSZMmzJs377YxPvXUU5w4cYKVK1dm+v0oUaIEy5cvp0uXLrc9z2QyYTKZLD8nJibi4+OjPFBEbut2bccjOmS0Hdvbqu1YRO4up7lgjgqE8fHxzJs3j4MHDwJQp04dhgwZgpubW3anKrZUIJS8cijmMpN+28fWqDgAfEs7M+X+OrSt6WXlyEREJD/kRY6xefNmGjdunK2i4D9duHDhP3cH9vPzY+PGjXTs2JFLly5lir169eoMHTqU8ePHZzrnTgXCV155hRUrVmTaTOXUqVP4+PgQGhpK8+bNefzxx0lKSmLhwoWWMZs2baJVq1acOXPmlmIkwKRJk1iyZEmmz4uKisLPz4+dO3cSEBCQld8O5YEikiX7zyQw6bf97DhxCYCqniWY2rMuLarlzTIPIlI05OkahP+0fft2qlatysyZM4mLiyMuLo733nuPqlWrsnPnzuxOJyK5rKa3Cwueas7shxvi5eLA8YvXGPRlGE99vZ3ouGvWDk9ERAqhLl26cPr06Ryf7+npib+//11f9vb2XLuW8f+pmxuL3GQ0GklPT8/y5127du2WOWxsMp6mvznP3cbc6f55UFAQe/fuzdSCHRISgqurK7Vr185yfCIiWVGnvBsLnw7i7T71KV3CnqMXrvLo51sZ9v1Ozibk/kZRIlK8ZbtAOHr0aO6//36OHz/OokWLWLRoEVFRUXTv3p1Ro0blQYgikl0Gg4GeDSuwemwbnmhZBRujgT8PnON/M9fzwerDJKWkWTtEEREpRPJrRZqgoCA8PDwYOHAgu3fvJjIykhdeeIGoqKhMayEeOXKE8PBwYmJiuH79OuHh4YSHh5OcnAxkrJsYFhbG1KlTOXz4MDt37mTw4MFUrlzZ8pRfjx49WLRoER9//DHHjh1j8+bNjBgxgqZNm1K+fHkAfv31V/z9/S2f27FjR2rXrs3jjz/O7t27WblyJS+//DLDhg3L8dOVIiJ3YzQa6NvYhzXj2jIwqDJGAyzbc5YO765n7vqjJKdm/eaJiMjdZLvF2MnJiV27dmVKlgAOHDhA48aNLXd+5e7UWiL5KfJcRtvxX8f+bjuefH8d2qntWESkyMmLHMPFxYXdu3fj5+eXK/Pdzfbt25k4cSLbt28nJSWFOnXqMGnSpEzr+7Vt25b169ffcm5UVBS+vr5Axu7LM2bMIDIyEmdnZ4KCgpg+fXqmHPaDDz5g7ty5REVF4e7uTvv27Zk+fToVKlQAYP78+QwePDhTgfTEiRM8++yzrFu3jhIlSjBw4ECmTZuGrW2W9v4DlAeKSM6p7VhE/ku+rUFYtmxZvvnmGzp27Jjp+MqVKxkwYADnzp3LznTFlhJDyW9ms5mle87y+u8HOH85Y6H0/9Uuy6TutfEp5Wzl6EREJLfkRY7x/fff07NnT0qUKJEr8xV3ygNF5F6kp5tZtOs0by0/yMWrN56crleOl7vXopybk5WjExFry7c1CPv168fQoUP58ccfiY6OJjo6mgULFvDEE0/Qv3//7E4nIvnEYDBwf4PyrBnXlqda+2FrNBBy4BzB763nfbUdi4jIXTzyyCMqDoqIFBBGo4E+gRVZM64tg+7zzWg73pvRdvzxOrUdi0jOZPsJwuTkZF544QXmzp1LamoqAHZ2djz77LNMmzZN669kke4ci7UdPneZSb/tJ/RYxq6SlUs7M6VHHdr5q+1YRKQwy60cIykpiQ8++IC1a9dy/vz5WzYJ0eZ0Oac8UERy0/4zCUz+bT/bb7Qd+3mW4NX769CquqeVIxMRa8i3FuObrl27xtGjRwGoWrUqzs5qUcwOJYZSENxsO35j2QHOJWa0HQfXKsvkHmo7FhEprHIrx3j00Uf5888/6dOnD2XLlsVgMGR6f/LkyfcaarGlPFBEcpvZbGbRztO89cdBYq9ktB3f36A8U+6vQ6kS9laOTkTyU74XCOXeKDGUguSKKZUPVh9m3qYoUtPNONgaea5tNZ5u44ejnY21wxMRkWzIrRzDzc2N5cuX06JFi1yMTkB5oIjknYTrKcwMieTr0OOkm6F0CXum9qxLt/rlrB2aiOSTfCsQqt0kdygxlILo8LnLTF6yny1HM9qOK5VyZsr9tWnvX9bKkYmISFblVo5Ru3ZtFixYQP369XMxOgHlgSKS93ZHx/PCz7uJPHcFgC51vZnasy6eLloSTKSoy7cCodpNcocSQymozGYzv+85y+uZ2o69mNyjjtqORUQKgdzKMf744w/ef/995s6dS+XKlXMxQlEeKCL5wZSaxpw1R/ho3VHS0s24O9sxpUcdejYsf8vf40Wk6Mi3AqHaTXKHEkMp6G7Xdvxs26o806aq2o5FRAqw3MoxLly4wEMPPcSGDRtwdnbGzs4u0/txcXH3GmqxpTxQRPLTvtMJ/N/PezhwNhHIuPn/xgP1KOvqaOXIRCQv5DTPsM3uB1WoUAEXF5fsniYihUxJB1smdK1F38YVmbxkP5uPXGTWqsP8svMUU3rUoUMttR2LiBRl/fv35/Tp07z55pu37RoREZHCoW4FN34b3oKP1x3lgzWHWXXwPNui1vNK99r0Cayo/76LCJCDJwjVbpI7dOdYChOz2czyvTG89vsBYhKTAOjgn9F2XKm02o5FRAqS3MoxnJ2dCQ0NpUGDBrkYnYDyQBGxnkMxl3nh593sOZUAQJsanrz1YD3KuztZOTIRyS05zTOM2f2gxo0bk5SUhJ+fHy4uLpQqVSrTS0SKHoPBQLf65Vg9tg3PtKmKrdHA6ojzBM9cz8yQSJJS0qwdooiI5DJ/f3+uX79u7TBERCQX1fR2YdGz9/FiZ3/sbY2sj7xAx5kb+H7rSbL57JCIFDHZfoIwODiYkydPMnTo0Nu2mwwcODBXAyyqdOdYCrMj568wZcl+Nh2JBcCnlBOTu9chuLbajkVErC23cow///yTV199lTfeeIN69erdsgah8pecUx4oIgXBkfNX+L+fd7PzZDwA91UtzfTe9bUxoUghl2+blKjdJHcoMZTCzmw288e+jLbjswkZbcft/b2Y3KM2lUuXsHJ0IiLFV27lGEZjRqPJv28Gm81mDAYDaWl6ejynlAeKSEGRlm7my81RvPPnIZJS0nG2t+HFzv483rwyRqPWJhQpjPJtkxK1m4gIZPyFsWu9crSp4cmctUf4fOMx1kScZ9ORWJ5pU5Xn2mq3YxGRwmzt2rXWDkFERPKYjdHAE638CK5Vlv/7ZQ/bouKYvGQ/y/acZXqf+lQpoxv/IsVFtp8gVLtJ7tCdYylqjl7IaDveeDij7biihxOTutfmf7W186WISH5SjlHw6RqJSEGUnm7m260nmPZHBNeS03C0MzKuY00Gt6iCjZ4mFCk08m2Tks6dOxMaGkqHDh3w8vLCw8MDDw8P3N3d8fDwyO50WfbGG29w33334ezsjLu7+23HnDx5km7duuHs7IyXlxcvvPACqampmcasW7eORo0a4eDgQLVq1Zg/f/4t83z44Yf4+vri6OhIs2bN2LZtW6b3k5KSGDZsGKVLl6ZkyZL07t2bc+fO5dZXFSmUqnqW5OshTfno0UaUd3Pk1KXrPPXNDobMD+N47FVrhyciIiIiIndhNBoYEOTLylGtaVGtNEkp6by+7CB9527hyPkr1g5PRPJYtluMrdVukpycTN++fQkKCmLevHm3vJ+Wlka3bt3w9vZmy5YtnD17lgEDBmBnZ8ebb74JQFRUFN26deOZZ57hu+++Y/Xq1TzxxBOUK1eOTp06AfDjjz8yZswY5s6dS7NmzZg1axadOnXi0KFDeHl5ATB69GiWLVvGwoULcXNzY/jw4Tz44INs3rw5/35DRAqgm23HbWt6MmfNET7beIy1hy6w+cgGnmnjx7Ntq+Fkr7ZjEZHCrFatWkRGRmoNQhGRIsqnlDPfDm3GgrBo3lh2kJ0n4+n6/kZGBVfnqVZ+2Npk+zkjESkEst1ibG3z589n1KhRxMfHZzr+xx9/0L17d86cOUPZshk7qc6dO5cXX3yRCxcuYG9vz4svvsiyZcvYt2+f5byHH36Y+Ph4VqxYAUCzZs1o0qQJc+bMASA9PR0fHx+ef/55xo8fT0JCAp6ennz//ff06dMHgIiICGrVqkVoaCjNmzfP0vdQa4kUB/9uO67g7sTkHmo7FhHJS3mdYyxevJiEhAQGDhyY63MXF8oDRaSwOBN/nQmL9rI+8gIA9Su6MaNPffy99d8ukYIqT1uM9+zZQ3p6epYn3b9//y2tvXktNDSUevXqWYqDAJ06dSIxMZH9+/dbxgQHB2c6r1OnToSGhgIZTynu2LEj0xij0UhwcLBlzI4dO0hJSck0xt/fn0qVKlnG3I7JZCIxMTHTS6Sou9l2PPexjLbj0/EZbceD1XYsIlJo9erVS8VBEZFiory7E/MHN+Gdvg1wdbRlz6kEenywidmrDpOSlvUagYgUfFkqEAYEBHDx4sUsTxoUFMTJkydzHFROxMTEZCoOApafY2Ji7jomMTGR69evExsbS1pa2m3H/HMOe3v7W9ZB/OeY23nrrbdwc3OzvHx8fHL0PUUKG4PBQOe65Vg1tg3D2lXF3sbIukMX6DhzA+/+eYjryWpRExEREREpqAwGA30CKxIypg3BtcqSkmZm5qpI7p+zmX2nE6wdnojkkiytQWg2m3nllVdwdnbO0qTJyclZGjd+/HimT59+1zEHDx7E398/S/MVZBMmTGDMmDGWnxMTE1UklGLF2d6WFzr507tRRaYsPcCGyAt8sOYIi3aeZlKP2nRU27GIiNUFBARk+b/FO3fuzONoRESkICnr6shnAwJZsvsMU5bs5+DZRHp9uJlRwdV5tm017XQsUshlqUDYunVrDh06lOVJg4KCcHJy+s9xY8eOZdCgQXcd4+fnl6XP9Pb2vmW34Zs7C3t7e1t+/fduw+fOncPV1RUnJydsbGywsbG57Zh/zpGcnEx8fHympwj/OeZ2HBwccHBwyNJ3ESnK/DxL8tXgJqzcf47Xfj/A6fjrPP3NDtrU8GTK/XWoUqaEtUMUESm2evXqZe0QRESkADMYDPRsWIH7qpZh8pJ9LN8bwzt/RrLxcCwz+zWkvPt/1wFEpGDKUoFw3bp1efLhnp6eeHp65spcQUFBvPHGG5w/f96y23BISAiurq7Url3bMmb58uWZzgsJCSEoKAgAe3t7AgMDWb16tSVBTk9PZ/Xq1QwfPhyAwMBA7OzsWL16Nb179wbg0KFDnDx50jKPiNxdRtuxN21qePLh2iN8uuEY6yMv0GnmBp5sXYVh7arhbJ/tTdZFROQeTZ482dohiIhIIeDp4sCHjzTK6Ab6bR9bo+LoMnsj03vXo3PdctYOT0RyoNDsYnzy5Eni4uJYsmQJb7/9Nhs3bgSgWrVqlCxZkrS0NBo2bEj58uWZMWMGMTExPP744zzxxBO8+eabAERFRVG3bl2GDRvGkCFDWLNmDSNGjGDZsmV06tQJgB9//JGBAwfyySef0LRpU2bNmsVPP/1ERESEZW3CZ599luXLlzN//nxcXV15/vnnAdiyZUuWv492rxP5W1TsVaYs2W/ZHa2CuxOvdK9FpzreajsWEcmm3M4xduzYwcGDBwGoU6cOAQEB9zxncac8UESKkuOxVxmxYBd7TmWsR9i/qQ+vdK+tG/4iVpLTPKPQFAgHDRrEV199dcvxtWvX0rZtWwBOnDjBs88+y7p16yhRogQDBw5k2rRp2Nr+/R+mdevWMXr0aA4cOEDFihV55ZVXbmlznjNnDm+//TYxMTE0bNiQ999/n2bNmlneT0pKYuzYsfzwww+YTCY6derERx99dNcW439TYiiSmdls5s8D55i6NKPtGKB1DU+m9KiNn2dJK0cnIlJ45FaOcf78eR5++GHWrVtnWVYlPj6edu3asWDBglzrAimOlAeKSFGTnJrOzFWRzF1/FLMZ/DxL8P7DAdSt4Gbt0ESKnSJfICxqlBiK3N715DQ+WneET9YfIzktHXsbo9qORUSyIbdyjH79+nHs2DG+/vpratWqBcCBAwcYOHAg1apV44cffsitkIsd5YEiUlRtORLL6J/COZdowt7GyP91rsmQFlUwagMTkXyjAmEho8RQ5O6iYq/y6tL9rDuU0XZc3s2RV7rXpnNdtR2LiNxNbuUYbm5urFq1iiZNmmQ6vm3bNjp27Eh8fPw9Rlp8KQ8UkaLs0tVkXvxlD38eyNj8s3UNT97pWx8vF0crRyZSPOQ0zzDmYUwiIjlWpUwJvhzUhE8fD6SCuxNnEpJ49rudDPhiG8cuXLF2eCIiRV56ejp2dna3HLezsyM9Pd0KEYmISGHgUcKeTx4P5I0H6uJoZ2RD5AW6zNrI2ojz1g5NRO4iR08QHj58mLVr13L+/PlbEsRJkyblWnBFme4ci2Td9eQ0Pl53hLkbjpGcmo6djYEnW/kxvL3ajkVE/i23coyePXsSHx/PDz/8QPny5QE4ffo0jz76KB4eHvz666+5FXKxozxQRIqLw+cu8/wPu4iIuQzAoPt8Gd/FH0c7GytHJlJ05VuL8Weffcazzz5LmTJl8PbO3OpnMBjYuXNndqYrtpQYimTf8Rttx2vVdiwicke5lWNER0dz//33s3//fnx8fCzH6taty5IlS6hYsWJuhVzsKA8UkeIkKSWNGSsO8cXmKAD8vV14v38ANcq6WDkykaIp3wqElStX5rnnnuPFF1/MdpDyNyWGIjljNptZdfA8ry7dz6lLGbsdt6pehin316GqdjsWEcnVHMNsNrNq1SoiIiIAqFWrFsHBwbkRZrGmPFBEiqO1h87zwsLdxF5JxsHWyMvda/NYs0q60S+Sy/KtQOjq6kp4eDh+fn7ZDlL+psRQ5N4kpaTx0bqjzF1/1NJ2PLSlH8+3r0YJB7Udi0jxpRyj4NM1EpHi6sJlE+MW7mZ9ZEZHUHCtsszoU59SJeytHJlI0ZFvBcKhQ4fSpEkTnnnmmWwHKX9TYiiSO05cvMqrSw+w5saix+XcHHm5W2261lPbsYgUT7mZY4SFhd1x3en33nvvnuYuzpQHikhxlp5u5sstx5n+RwTJael4uTgws19DWlQrY+3QRIqEnOYZ2X7Mplq1arzyyiv89ddf1KtX75bd7UaMGJHdKUVEcqxy6RJ8MagJqw6cY8qNtuNh3++kZbWMtuNqXmo7FhHJiTfffJOXX36ZmjVrUrZs2VvWnRYREckJo9HA0JZVaO5XihE/7OLohas8Nm8rT7euypj/1cDe1mjtEEWKpWw/QVilSpU7T2YwcOzYsXsOqjjQnWOR3JeUksbH647y8T/ajoe0rMKI9tXVdiwixUZu5Rhly5Zl+vTpDBo0KPeCy4LIyEheeOEFNm/eTHJyMvXr1+e1116jXbt2ljEjRoxg8+bN7Nu3j1q1ahEeHn7LPCtXrmTy5Mns378fR0dHWrduzbvvvouvr69lzHfffceMGTM4fPgwbm5udOnShbfffpvSpUvfNrbdu3czbdo0Nm3aRGxsLL6+vjzzzDOMHDkyW99ReaCISIbryWm8tuwA3289CUD9im7MfjiAKmVKWDkykcIrp3lGtkvzUVFRd3ypOCgi1uRoZ8Po/9UgZHRrOvh7kZJm5pP1x+jw7np+33OGbN4PEREp1oxGIy1atMj3z+3evTupqamsWbOGHTt20KBBA7p3705MTEymcUOGDKFfv363nSMqKoqePXvSvn17wsPDWblyJbGxsTz44IOWMZs3b2bAgAEMHTqU/fv3s3DhQrZt28aTTz55x9h27NiBl5cX3377Lfv372fixIlMmDCBOXPm5M6XFxEpZpzsbXjzgXrMfSwQd2c79pxKoNv7G1m4PVq5u0g+y/YThP9081S1mWSf7hyL5L3VBzPajqPjMnY7blGtNK/eX4dqXi5WjkxEJO/kVo4xY8YMzpw5w6xZs3IvuP8QGxuLp6cnGzZsoFWrVgBcvnwZV1dXQkJCbtlBecqUKSxevPiWJwh//vln+vfvj8lkwmjMuB++dOlSevbsiclkws7OjnfeeYePP/6Yo0ePWs774IMPmD59OqdOncpyzMOGDePgwYOsWbMmy+coDxQRudXZhOuM/jGcv47FAdC9fjneeKAebk52/3GmiPxTvj1BCPD1119Tr149nJyccHJyon79+nzzzTc5mUpEJM90qFWWkNFtGBVcHQdbI5uPXKTzrI289cdBrppSrR2eiEiBNm7cOA4dOkTVqlXp0aMHDz74YKZXXihdujQ1a9bk66+/5urVq6SmpvLJJ5/g5eVFYGBglucJDAzEaDTy5ZdfkpaWRkJCAt988w3BwcGW9bODgoKIjo5m+fLlmM1mzp07x88//0zXrl2zFXNCQgKlSpW66xiTyURiYmKml4iIZFbOzYnvnmjO/3Wuia3RwO97ztJ19kbCjsdZOzSRYiHbBcL33nuPZ599lq5du/LTTz/x008/0blzZ5555hlmzpyZFzGKiOSYo50No4JrEDK6DcG1vEhN/7vteOlutR2LiNzJiBEjWLt2LTVq1KB06dK4ublleuUFg8HAqlWr2LVrFy4uLjg6OvLee++xYsUKPDw8sjxPlSpV+PPPP3nppZdwcHDA3d2dU6dO8dNPP1nGtGjRgu+++45+/fphb2+Pt7c3bm5ufPjhh1n+nC1btvDjjz/y1FNP3XXcW2+9len3zsfHJ8ufISJSnNgYDTzXtho/P3sflUs7czr+Ov0+CWVmSCRp6crbRfJSjjYpefXVVxkwYECm41999RVTpkwhKioqVwMsqtRaImIdayLOMWXJAU7GXQPgvqoZbcfVy6rtWESKhtzKMVxcXFiwYAHdunW755jGjx/P9OnT7zrm4MGD1KxZk169epGSksLEiRNxcnLi888/Z8mSJYSFhVGuXLlM59ypxTgmJobWrVvTq1cv+vfvz+XLl5k0aRK2traEhIRgMBg4cOAAwcHBjB49mk6dOnH27FleeOEFmjRpwrx58/7zO+3bt4927doxcuRIXn755buONZlMmEwmy8+JiYn4+PgoDxQRuYsrplQm/baPRTtPA9CqehlmPxxAqRL2Vo5MpGDLaS6Y7QKho6Mj+/bto1q1apmOHz58mHr16pGUlJSd6YotFQhFrCcpJY1P1h/jo3VHMKWmY2u8sdtxh+qU1G7HIlLI5VaOUblyZVauXIm/v/89x3ThwgUuXrx41zF+fn5s3LiRjh07cunSpUyxV69enaFDhzJ+/PhM59ypQPjKK6+wYsUKwsLCLMdOnTqFj48PoaGhNG/enMcff5ykpCQWLlxoGbNp0yZatWrFmTNnbilG/tOBAwdo164dTzzxBG+88UZWfgsyUR4oIpJ1v+46xUuL9nE9JY0K7k589GgjGvi4WzsskQIr39YgrFatWqb2jJt+/PFHqlevnt3pRETynaOdDSODq7NqTBuCa5UlNd3MpxuO0eHddSxR27GICJBRfJs8eTLXrl2757k8PT3x9/e/68ve3t7yWTc3FrnJaDSSnp6e5c+7du3aLXPY2NgAWOa525i7/X9g//79tGvXjoEDB+aoOCgiItnzQEBFfh12H743Wo77zg3l+60nlbOL5LJsP0H4yy+/0K9fP4KDg2nRogUAmzdvZvXq1fz000888MADeRJoUaM7xyIFx7/bjoP8SvNqzzrUUNuxiBRCuZVjBAQEcPToUcxmM76+vpbNPW7auXPnvYZ6i9jYWPz9/WnTpg2TJk3CycmJzz77jNmzZxMWFkaDBg0AOHLkCFeuXGHu3LmsXbuWH3/8EYDatWtjb2/PmjVrCA4OZsqUKZYW45deeomIiAgOHjyIk5MT8+fP58knn+T999+3tBiPGjUKo9HI1q1bAfj111+ZMGECERERQEZbcfv27enUqRNvv/22JW4bGxs8PT2z/D2VB4qIZF9iUgpjf9pNyIFzAPQNrMhrveriaGdj5chECpZ8azEG2LFjBzNnzuTgwYMA1KpVi7FjxxIQEJDdqYotJYYiBUtSShqfbjjGh2v/bjse3MKXkcE11HYsIoVKbuUYr7766l3fnzx5co7nvpvt27czceJEtm/fTkpKCnXq1GHSpEl06dLFMqZt27asX7/+lnOjoqLw9fUFYMGCBcyYMYPIyEicnZ0JCgpi+vTpmVqmP/jgA+bOnUtUVBTu7u60b9+e6dOnU6FCBQDmz5/P4MGDLU+pTJky5ba/L5UrV+b48eNZ/o7KA0VEciY93czcDUd5Z+Uh0s1Qp7wrHz8aSKXSztYOTaTAyNcCodw7JYYiBVN03DVe+/0Af964M1nW1YGXutbi/gblMRgMVo5OROS/Kcco+HSNRETuzeYjsYz4YRcXrybj5mTHrH4NaefvZe2wRAqEPF2DMDExMdM/3+0lIlKY+ZRy5tMBjflycBMql3bmXKKJkQvC6f/ZX0Seu2zt8EREREREir0W1cqw9PmWNPRxJ+F6CkO+CuO9kEjS0vX8k0hOZalA6OHhwfnz5wFwd3fHw8PjltfN4yIiRUG7ml6sHNWasf+rgaOdkb+OxdF19kZe//0Al5NSrB2eiEieKFWqFLGxsVkeX6lSJU6cOJGHEYmIiNxeeXcnfny6OY83r4zZDO+vPsyQ+WFcupps7dBECqUsLay1Zs0aSpUqBcDatWvzNCARkYLC0c6G5ztUp1dABUvb8eeboliy+wwTu6ntWESKnvj4eP744w/c3NyyNP7ixYukpaXlcVQiIiK352Brw2u96hJQyZ2Xft3L+sgLdP9gE3MfC6Rexaz9v0xEMmR7DcKTJ0/i4+Nzy1+KzWYz0dHRVKpUKVcDLKq09oxI4bPu0HmmLNnP8YsZux03q1KKqT3rUtNbux2LSMFxLzmG0Zil5pJMjhw5gp+fX7bPK86UB4qI5L6DZxN55tsdnLh4DXtbI6/1rEO/JqpPSPGTb5uU2NjYcPbsWby8Mi8AevHiRby8vHQXOYuUGIoUTqbUND7bcIw5a4+QlJKOjdHAoPt8GRVcHRdHO2uHJyKiHKMQ0DUSEckbCddTGPtTOKsOZiyR1q+xD6/2rIOjnY2VIxPJP3m6Sck/mc3m27bUXblyBUdHx+xOJyJSqDjY2jC8fXVWjWlDpzplSUs3M29TFO3fXc/iXafRxvAiIiIiItbh5mTHp4835oVONTEa4Mft0fSdG0p03DVrhyZS4GX5CcIxY8YAMHv2bJ588kmcnZ0t76WlpbF161ZsbGzYvHlz3kRaxOjOsUjRsD7yAlOW7Ccq9ioATauUYmrPOvh7699rEbEO5RgFn66RiEje23Q4lhELdhF3NRl3Zztm9WtI25pe/32iSCGX5y3G7dq1A2D9+vUEBQVhb29vec/e3h5fX1/GjRtH9erVsxl68aTEUKToMKWm8fnGKD5Yc9jSdjwwyJdR/6uOq9qORSSfKcco+HSNRETyx+n46zz37Q52n0rAYIBRHWrwfPtqGI3aaFCKrnxbg3Dw4MHMnj1bycw9UmIoUvScjr/O678f4I99MQCUKenAxG7+9GpYQbsdi0i+UY5R8OkaiYjkH1NqGq8uPcD3W08C0K6mJ7P6BeDmrBv5UjTlW4FQcocSQ5Gia8ONtuNjN9uOfUvxas861Cqnf9dFJO8pxyj4dI1ERPLfzztOMfHXvZhS0/Ep5cTHjwZSt4KbtcMSyXX5WiDcvn07P/30EydPniQ5OTnTe4sWLcrudMWSEkORou1m2/GcNUe4npKGjdHAgKDKjP5fDbUdi0ieys0cIz09nSNHjnD+/HnS09Mzvde6det7mrs4Ux4oImId+88k8Oy3OzkZdw0HWyOv96pL38Y+1g5LJFfl2y7GCxYs4L777uPgwYP8+uuvpKSksH//ftasWYObm6rvIiKQsdvxsHbVWDW2DV3reZOWbubLzcdp/856Fu08pd2ORaTA++uvv6hWrRq1atWidevWtG3b1vK6uTa1iIhIYVKnvBtLh7ekvb8XptR0Xvh5DxMW7cWUmmbt0ESsLtsFwjfffJOZM2eydOlS7O3tmT17NhERETz00ENUqlQpL2IUESm0Krg78dGjgXwztCl+ZUoQe8XEmJ9289AnoRw4k2jt8ERE7uiZZ56hcePG7Nu3j7i4OC5dumR5xcXFWTs8ERGRHHFztuPzAY0Z+78aGAzww7aTPDQ3lNPx160dmohVZbvFuESJEuzfvx9fX19Kly7NunXrqFevHgcPHqR9+/acPXs2r2ItUtRaIlL8mFLTmLcpig9WZ7QdGw0wIMiX0f+rgZuT2o5FJHfkVo5RokQJdu/eTbVq1XIxOgHlgSIiBcX6yAuMXLCL+GspeDjb8UH/RrSsXsbaYYnck3xrMfbw8ODy5csAVKhQgX379gEQHx/PtWvXsjudiEix4WBrw3Ntq7F6bBu61StHuhnmbzlOh3fX8csOtR2LSMHSrFkzjhw5Yu0wRERE8kybGp78/nxL6ld049K1FAZ+uY2vQ49bOywRq7DN7gmtW7cmJCSEevXq0bdvX0aOHMmaNWsICQmhQ4cOeRGjiEiRUt7diQ8fbUT/w7FMWrKPYxeuMnbhbn7YdpKpPetSu7yeJhER63v++ecZO3YsMTEx1KtXDzu7zE86169f30qRiYiI5J6KHs789HQQE3/dxy87TzHpt/0cPneFyT1qY2uT7WeqRAqtbLcYx8XFkZSURPny5UlPT2fGjBls2bKF6tWr8/LLL+Ph4ZFXsRYpai0REYDk1HS+2BzF+6sPcy1Zbccicu9yK8cwGm/9S5HBYMBsNmMwGEhL04LuOaU8UESk4DGbzXyy4RjTV0RgNkOr6mWY80gj5eRS6OQ0z8hWgTA1NZXvv/+eTp06UbZs2RwFKhmUGIrIP51NuM7ryw6ybE/GOq5lStozvkstHgyogNFosHJ0IlKY5FaOceLEibu+X7ly5RzPXdwpDxQRKbhW7o9h1IJwrqekUdWzBPMGNsG3TAlrhyWSZflSIARwdnbm4MGDSgrvkRJDEbmdTYdjmbxkH0cvXAUgsLIHU3vWoU55NytHJiKFhXKMgk/XSESkYNt/JoEnvtrO2YQk3J3tmPtYIM39Sls7LJEsybdNSpo2bUp4eHh2TxMRkSxoWb0Mf4xszYQu/jjb27DjxCV6fLCJyb/tI+F6irXDE5Fi5ujRozz//PMEBwcTHBzMiBEjOHr0qLXDEhERyVN1yrvx27AWNPBxJ/5aCo/P28qPYSetHZZInsp2gfC5555jzJgxzJkzh9DQUPbs2ZPplVfeeOMN7rvvPpydnXF3d7/tGIPBcMtrwYIFmcasW7eORo0a4eDgQLVq1Zg/f/4t83z44Yf4+vri6OhIs2bN2LZtW6b3k5KSGDZsGKVLl6ZkyZL07t2bc+fO5dZXFZFizt7WyNNtqrJ6bBu618/Y7fir0BO0f2cdP22PJj1dux2LSN5buXIltWvXZtu2bdSvX5/69euzdetW6tSpQ0hIiLXDExERyVNero78+FRzejQoT0qamRd/2csbyw6Qplxciqhstxhba8HqyZMn4+7uzqlTp5g3bx7x8fG3jePLL7+kc+fOlmPu7u44OjoCEBUVRd26dXnmmWd44oknWL16NaNGjWLZsmV06tQJgB9//JEBAwYwd+5cmjVrxqxZs1i4cCGHDh3Cy8sLgGeffZZly5Yxf/583NzcGD58OEajkc2bN2f5+6i1RESyavORWCYv2c+R81cAaFTJnak961K3gtqOReRWuZVjBAQE0KlTJ6ZNm5bp+Pjx4/nzzz/ZuXPnvYZabCkPFBEpPMxmM7NXH2bWqsMAdPD3Ynb/AEo62Fo5MpHby7c1CK29YPX8+fMZNWrUHQuEv/76K7169brtuS+++CLLli1j3759lmMPP/ww8fHxrFixAoBmzZrRpEkT5syZA0B6ejo+Pj48//zzjB8/noSEBDw9Pfn+++/p06cPABEREdSqVYvQ0FCaN29+2882mUyYTCbLz4mJifj4+CgxFJEsSU5N58vNUcz+x27HjzWvzNj/1cTNWTuricjfcqv45OjoyN69e6levXqm45GRkdSvX5+kpKR7DbXYUoFQRKTwWbr7DOMW7saUmo6/twufD2xMRQ9na4clcot8W4PwxIkTVKhQgcqVK2d6VahQ4T+Lh/lh2LBhlClThqZNm/LFF1/wz/pnaGgowcHBmcZ36tSJ0NBQAJKTk9mxY0emMUajkeDgYMuYHTt2kJKSkmmMv78/lSpVsoy5nbfeegs3NzfLy8fHJ1e+r4gUDzfbjteMbUuPBuVJN8PXoSdo/67ajkUkb3h6et523enw8HBLV4WIiEhx0aNBeX58OghPFwciYi7T68PN7DhxydphieSabBcI27VrR1xc3C3HExISaNeuXa4ElVNTp07lp59+IiQkhN69e/Pcc8/xwQcfWN6PiYmhbNmymc4pW7YsiYmJXL9+ndjYWNLS0m47JiYmxjKHvb39Lesg/nPM7UyYMIGEhATLKzo6+h6/rYgUR95ujnzQP4Dvn2xGNa+SXLyazP/9vIfec7ew73SCtcMTkSLkySef5KmnnmL69Ols3LiRjRs3Mm3aNJ5++mmefPJJa4cnIiKS7xr6uPPbsBbULudK7JVk+n/2F4t3nbZ2WCK5IttN8zfXGvy3ixcvUqJEiWzNNX78eKZPn37XMQcPHsTf3z9L873yyiuWfw4ICODq1au8/fbbjBgxIltx5QUHBwccHBysHYaIFBH3VS3DHyNbMX/zcWatimTXyXh6zNnEY80qM66j2o5F5N698soruLi48O677zJhwgQAypcvz5QpUwpEbiUiImIN5d2dWPhMEKN/DOfPA+cY9WM4R85fYcz/amA03lorESksslwgfPDBB4GMdf4GDRqUqdiVlpbGnj17uO+++7L14WPHjmXQoEF3HePn55etOf+pWbNmvPbaa5hMJhwcHPD29r5lt+Fz587h6uqKk5MTNjY22NjY3HaMt7c3AN7e3iQnJxMfH5/pKcJ/jhERyQ92NkaebO1HjwbleXP5QZbsPsM3f51g2d6zjO/sT5/AikpSRCTHDAYDo0ePZvTo0Vy+fBkAFxcXK0clIiJifSUcbJn7WCBv/3mIj9cdZc7aIxyLvcK7fRviZG9j7fBEciTLBUI3t4zdMs1mMy4uLjg5OVnes7e3p3nz5tluN/H09MTT0zNb52RHeHg4Hh4elmJmUFAQy5cvzzQmJCSEoKAgION7BAYGsnr1astGJ+np6axevZrhw4cDEBgYiJ2dHatXr6Z3794AHDp0iJMnT1rmERHJT95ujrzfP4D+TSsx6bd9HD5/hf/7ZQ/fbzvJ672027GI3DsVBkVERDIzGg282Nmfqp4lmbBoD8v3xhAdF8pnAxrj7eZo7fBEsi3LBcIvv/wSAF9fX8aNG5ftduJ7dfLkSeLi4jh58iRpaWmWRbOrVatGyZIlWbp0KefOnaN58+Y4OjoSEhLCm2++ybhx4yxzPPPMM8yZM4f/+7//Y8iQIaxZs4affvqJZcuWWcaMGTOGgQMH0rhxY5o2bcqsWbO4evUqgwcPBjIKpUOHDmXMmDGUKlUKV1dXnn/+eYKCgu64g7GISH4Iqlqa5SNb8dWW48wMiSQ8OqPt+NFmlRjXsSbuzvbWDlFECrhGjRqxevVqPDw8CAgIuO2yMjft3LkzHyMTEREpmPoEVqRyaWee/mYHe08n0PPDTXw+oAn1KuomvRQu2V6DcPLkyXkRx3+aNGkSX331leXngIAAANauXUvbtm2xs7Pjww8/ZPTo0ZjNZqpVq8Z7772X6anGKlWqsGzZMkaPHs3s2bOpWLEin3/+OZ06dbKM6devHxcuXGDSpEnExMTQsGFDVqxYkWnjkpkzZ2I0Gunduzcmk4lOnTrx0Ucf5cPvgojI3dnZGHmi1d9tx7+Fn+Hbv06ybM9ZXuzsz0ONfdR2LCJ31LNnT0vnRc+ePe9aIBQREZEMTXxLsfi5Fgz9KozD56/Q95MtvPdQQ7rWK2ft0ESyzGA2m83ZOeHcuXOMGzeO1atXc/78ef59elpaWq4GWFQlJibi5uZGQkICrq6u1g5HRIqo0KMXmbxkH5HnrgAZO6+91rOu7miKFGHKMQo+XSMRkaIpMSmF57/fxfrICwCM61iDYe2q6Yab5Kuc5hnZLhB26dKFkydPMnz4cMqVK3fLH/SePXtmZ7piS4mhiOSXlLR0vtpynFmrDnPFlIrBAI80rcQLndR2LFIU5VaO4efnR1hYGKVLl850PD4+nkaNGnHs2LF7DbXYUh4oIlJ0paal88byg3y5+TgAvRqWZ1rv+jjaafMSyR/5ViB0cXFh48aNNGzYMLsxyj8oMRSR/HY+MYk3lx9kcfgZADyc7fi/zv70U9uxSJGSWzmG0WgkJiYGLy+vTMfPnTuHj48PycnJ9xpqsaU8UESk6Ptu6wkm/baftHQzjSq588njjfF0cbB2WFIM5DTPMGb3g3x8fG5pKxYRkYLPy9WRWQ8HsOCp5tQs68KlaylMWLSXBz7ewp5T8dYOT0QKiCVLlrBkyRIAVq5cafl5yZIl/Prrr7z22mtUqVIlzz4/MjKSnj17UqZMGVxdXWnZsiVr167NNGbEiBEEBgbi4OBwx5vWK1eupHnz5ri4uODp6Unv3r05fvx4pjHfffcdDRo0wNnZmXLlyjFkyBAuXryYpTgvXrxIxYoVMRgMxMfH5+CbiohIUfZos8p8PaQpro627DwZT68PN3PwbKK1wxK5o2w/Qfjnn3/y7rvv8sknn+Dr65tHYRV9unMsItaUkpbO16EnmBkSaWk77t+0Ei90rIlHCbUdixRm95pjGI0Z948NBsMtN4Xt7Ozw9fXl3XffpXv37rkS77/VqFGD6tWr89Zbb+Hk5MSsWbOYP38+R48exdvbG8goENasWZOtW7eyZ88ewsPDM80RFRVFrVq1GDNmDEOHDiUhIYHRo0dz+fJly+7LmzdvpnXr1sycOZMePXpw+vRpnnnmGWrUqMGiRYv+M85evXqRnJzMH3/8waVLl3B3d8/yd1QeKCJSfBy9cIUnvtpOVOxVStjbMPvhAIJrl/3vE0VyKN9ajD08PLh27Rqpqak4OztjZ2eX6f24uLjsTFdsKTEUkYLgfGISb/0Rwa+7TgPg7mzHi2o7FinUcivHqFKlCmFhYZQpUyYXo7u72NhYPD092bBhA61atQLg8uXLuLq6EhISQnBwcKbxU6ZMYfHixbcUCH/++Wf69++PyWSyFDyXLl1Kz549MZlM2NnZ8c477/Dxxx9z9OhRy3kffPAB06dP59SpU3eN8+OPP+bHH39k0qRJdOjQQQVCERG5q/hryTz33U62HL2IwQCTutdmcIu8expfirec5hm22f2gWbNmZfcUEREpoLxcHZnZryEPN/Fh8pL9RMRcZsKivSzYdpKpPevSwMfd2iGKiJVERUXl+2eWLl2amjVr8vXXX9OoUSMcHBz45JNP8PLyIjAwMMvzBAYGYjQa+fLLLxk0aBBXrlzhm2++ITg42HJzOygoiJdeeonly5fTpUsXzp8/z88//0zXrl3vOveBAweYOnUqW7duzfJGLSaTCZPJZPk5MVEtZiIixYm7sz1fDWnKpN/288O2k7y69ADnEk282LmmdjiWAiPbBcKBAwfmRRwiImJFzfxK8/vzLS1tx7tPJdDro8083MSHFzr5U0ptxyLF0tWrV1m/fj0nT568ZVOSESNG5PrnGQwGVq1aRa9evXBxccFoNOLl5cWKFSvw8PDI8jxVqlThzz//5KGHHuLpp58mLS2NoKAgli9fbhnTokULvvvuO/r160dSUhKpqan06NGDDz/88I7zmkwm+vfvz9tvv02lSpWyXCB86623ePXVV7Mcv4iIFD12NkbefKAuFT2ceHvlIeauP8r5y0lM710fO5tsbw8hkuty9Kfw6NGjvPzyy/Tv35/z588D8Mcff7B///5cDU5ERPKPrY2RIS2rsHpcGx4MqIDZDD9si6b9u+v4busJ0tK1QZVIcbJr1y6qVatG//79GT58OK+//jqjRo3ipZdeynZHyfjx4zEYDHd9RUREYDabGTZsGF5eXmzcuJFt27bRq1cvevTowdmzZ7P8eTExMTz55JMMHDiQsLAw1q9fj729PX369LGsq3jgwAFGjhzJpEmT2LFjBytWrOD48eM888wzd5x3woQJ1KpVi8ceeyxb33/ChAkkJCRYXtHR0dk6X0REigaDwcCwdtWY0ac+NkYDi3ae5omvtnPVlGrt0ESyvwbh+vXr6dKlCy1atGDDhg0cPHgQPz8/pk2bxvbt2/n555/zKtYiRWvPiEhBty0qjkm/7SMi5jIA9Su6MbVnXRqq7VikQMutHKNt27bUqFGDuXPn4ubmxu7du7Gzs+Oxxx5j5MiRPPjgg1me68KFC/+5O7Cfnx8bN26kY8eOXLp0KVPs1atXZ+jQoYwfPz7TOXdag/CVV15hxYoVhIWFWY6dOnUKHx8fQkNDad68OY8//jhJSUksXLjQMmbTpk20atWKM2fOUK5cuVtibNiwIXv37rW0g5nNZtLT07GxsWHixIlZfkpQeaCIiKyJOMdz3+0kKSWdBhXd+GJQE0qXdLB2WFIE5NsahOPHj+f1119nzJgxuLi4WI63b9+eOXPmZHc6EREpoJpWKcXvz7fkm79O8N6fkew5lcADH22mX2Mf/q+z2o5Firrw8HA++eQTjEYjNjY2mEwm/Pz8mDFjBgMHDsxWgdDT0xNPT8//HHft2jXg752UbzIajaSnp2f5865du3bLHDY2NgCWea5du4atre1tx9zp/vkvv/zC9evXLT+HhYUxZMgQNm7cSNWqVbMcn4iISHv/svzwZHOGzA9j96kEen+8ha+HNKNSaWdrhybFVLZbjPfu3csDDzxwy3EvLy9iY2NzJSgRESkYbG2MDG5xo+24UUbb8YKwaNq9s45v/1LbsUhRZmdnZymyeXl5cfLkSQDc3NzyrEU2KCgIDw8PBg4cyO7du4mMjOSFF14gKiqKbt26WcYdOXKE8PBwYmJiuH79OuHh4YSHh1vWSezWrRthYWFMnTqVw4cPs3PnTgYPHkzlypUJCAgAoEePHixatIiPP/6YY8eOsXnzZkaMGEHTpk0pX748AL/++iv+/v6Wz61atSp169a1vKpUydiBslatWnh5eeXJ74mIiBRdAZU8+PnZ+6jg7sTxi9d48OMt7DudYO2wpJjKdoHQ3d39tmvA7Nq1iwoVKuRKUCIiUrB4uTjy3kMNWfhMEP7eLiRcT+Hlxfvo9eFmdp28ZO3wRCQPBAQEWFp027Rpw6RJk/juu+8YNWoUdevWzZPPLFOmDCtWrODKlSu0b9+exo0bs2nTJn777TcaNGhgGffEE08QEBDAJ598QmRkJAEBAQQEBHDmzBkgo7Pl+++/Z/HixQQEBNC5c2ccHBxYsWIFTk5OAAwaNIj33nuPOXPmULduXfr27UvNmjVZtGiR5XMSEhI4dOhQnnxXERERgKqeJVn03H3UKudK7BUT/T4JZdNhPXwl+S/baxCOGzeOrVu3snDhQmrUqMHOnTs5d+4cAwYMYMCAAUyePDmvYi1StPaMiBRWqWnpfPvXCd4NieRyUsaCyg83UduxSEGRWznG9u3buXz5Mu3ateP8+fMMGDCALVu2UL16db744otMBTvJHuWBIiLyb4lJKTz99Q5Cj13EzsbAO30b0LOhHsKS7MtpnpHtAmFycjLDhg1j/vz5pKWlYWtrS1paGo888gjz58+3rN0id6fEUEQKuwuXTUz7I4Jfdp4CwM3JjnGdavJI00rYGA1Wjk6k+MqNHMNsNhMdHY2XlxeOjo65HKEoDxQRkdsxpaYx5qfdLNuT0bX5crdaPNHKz8pRSWGTbwXCm6Kjo9m7dy9XrlwhICCA6tWr52SaYkuJoYgUFduPx/HKb/s5eDYRgLoVXJnasy6NKnlYOTKR4ik3coz09HQcHR3Zv3+/crw8oDxQRETuJD3dzNTfDzB/y3EAnmrtx/jO/hh1A16yKN92Mb7Jx8cHHx+fnJ4uIiJFRGPfUiwd3oLvtp7knT8Pse90Ig9+tIWHGlfkxc7+lC7pYO0QRSSbjEYj1atX5+LFiyoQioiI5COj0cDkHrXxdnNk2h8RfLrhGOcTk5jRpwH2ttneRkIky7L9p6t3795Mnz79luMzZsygb9++uRKUiIgULrY2Rgbe58vacW3pE1gRgJ+2n6LdO+v4JvS4djsWKYSmTZvGCy+8wL59+6wdioiISLFiMBh4pk1V3u3bABujgcXhZxj6VRhXTKnWDk2KsGy3GHt6erJmzRrq1auX6fjevXsJDg7m3LlzuRpgUaXWEhEpynaciOOVxfs5cKPtuE75jLbjwMpqOxbJa7mVY3h4eHDt2jVSU1Oxt7e37P57U1xc3L2GWmwpDxQRkaxae+g8z327k+spadSr4MYXg5rg6aIOHbmzfGsxvnLlCvb2t+5SaWdnR2JiYnanExGRIiiwcimWPt+S77ae4O2Vh9h/JpHeH2+hb2BFXuziTxm1HYsUeDNnzsRg0HpHIiIi1tSuphc/PNWcIfPD2Hs6gT5zt/D1kKZULl3C2qFJEZPtJwibNm1K9+7dmTRpUqbjU6ZMYenSpezYsSNXAyyqdOdYRIqL2Csmpv8RwcIdGbsduzraMq5TTR5tVlm7HYvkAeUYBZ+ukYiIZFdU7FUGfLGV6LjrlClpz5eDmlKvopu1w5ICKN92MV66dCkPPvggjzzyCO3btwdg9erV/PDDDyxcuJBevXplK/DiSomhiBQ3O05cYtJv+9h/JuNp89rlXHmtVx0CK5eycmQiRUtu5Rg2NjacPXsWLy+vTMcvXryIl5cXaWlp9xpqsaU8UEREcuL85SQGfxnG/jOJONvbMPexQFrX8LR2WFLA5DTPyPYmJT169GDx4sUcOXKE5557jrFjx3Lq1ClWrVql4qCIiNxRYGUPlgxvyWs96+DqaMuBs4n0/jiUcQt3E3vFZO3wRORf7nQP2WQy3Xa5GREREclbXi6OLHiqOS2qleZachpD5ofx665T1g5LiohsP0EouUN3jkWkOLt4xcT0FRH8tD0joXFxtGVcx5o82qwStjbZvnclIv9wrznG+++/D8Do0aN57bXXKFmypOW9tLQ0NmzYwPHjx9m1a1euxVzcKA8UEZF7kZyazriFu1my+wwAL3X158lWflo7WIB8bDG+KTk5mfPnz5Oenp7peKVKlXIyXbGjxFBEBHaezGg73nc6o+24VjlXXutZh8a+ajsWyal7zTGqVKkCwIkTJ6hYsSI2NjaW9+zt7fH19WXq1Kk0a9Ys12IubpQHiojIvUpPN/PG8oPM2xQFwNCWVZjYtRZGrfFd7OVbgfDw4cMMGTKELVu2ZDpuNpsxGAxajyaLlBiKiGRISzfz/baTvLPyEAnXUwDo3agi47v44+mi3Y5Fsiu3cox27dqxaNEiPDw8cjE6AeWBIiKSez7bcIw3lh8E4P4G5Xm7b30cbG3+4ywpyvKtQNiiRQtsbW0ZP3485cqVu+UR1gYNGmRnumJLiaGISGYXr5iYseIQP26PBjLajsf+rwaPNa+stmORbFCOUfDpGomISG5avOs04xbuJjXdTItqpZn7WCAujnbWDkusJN8KhCVKlGDHjh34+/tnO0j5mxJDEZHb+3fbsb+3C6/1qksTtR2LZElu5RhpaWnMnz+f1atX33ZZmTVr1txrqMWW8kAREcltGyIv8Oy3O7ianEbtcq7MH9IELxdHa4clVpBvuxjXrl2b2NjY7J4mIiKSJY0qefDbsJa83qsubk52RMRcpu/cUMb8FM6Fy9rtWCS/jBw5kpEjR5KWlkbdunVp0KBBppeIiIgUHK1reLLgqSDKlLTnwNlEen+8hRMXr1o7LClEsv0E4Zo1a3j55Zd58803qVevHnZ2mR9b1V3QrNGdYxGR/xZ3NZm3V0awICwasxlcHGwZ07EGj6vtWOSOcivHKFOmDF9//TVdu3bNxegElAeKiEjeOXHxKgO+2MaJi9co6+rAd080p5pXSWuHJfko31qMjcaMv5D9e+1BbVKSPUoMRUSyLjw6nkm/7WPPqQQgo+14as+6NK2itmORf8utHKN8+fKsW7eOGjVq5GJ0AsoDRUQkb52/nMRjn28l8twVSpew55uhzahdXv+/KS7yrUC4fv36u77fpk2b7ExXbCkxFBHJnrR0MwvCTvL2ykPEX8vY7fjBgAqM7+qv9VVE/iG3cox3332XY8eOMWfOnFtuDMu9UR4oIiJ5Le5qMgO+2Mq+04m4Odnx1ZCmNPRxt3ZYkg/yrUAouUOJoYhIztyu7Xj0/2owIEhtxyKQeznGAw88wNq1aylVqhR16tS5ZVmZRYsW3WuoxZbyQBERyQ8J11MY/OU2dp6Mp6SDLV8MaqIOnGIgXwuE8fHxzJs3j4MHDwJQp04dhgwZgpubW3anKraUGIqI3Jvd0fG88q+241fvr0Mzv9JWjkzEunIrxxg8ePBd3//yyy9zPHdxpzxQRETyy1VTKkO/CuOvY3E42hn5fEATWlYvY+2wJA/lW4Fw+/btdOrUCScnJ5o2bQpAWFgY169f588//6RRo0bZi7yYUmIoInLv0tLN/BgWzYyVEZa24wcCKjChiz9ermo7luJJOUbBp2skIiL5KSkljae/2cH6yAvY2xr5+NFGdKhV1tphSR7JtwJhq1atqFatGp999hm2trYApKam8sQTT3Ds2DE2bNiQvciLKSWGIiK559LVZGasPMSCsJOYzVDyRtvxQLUdSzGUmzlGamoq69at4+jRozzyyCO4uLhw5swZXF1dKVlSOyLmlPJAERHJb6bUNEb8sIuV+89hazQw++EAutUvZ+2wJA/kW4HQycmJXbt24e/vn+n4gQMHaNy4MdeuXcvOdMWWEkMRkdy3+8Zux7tvtB3XLOvC1J5qO5biJbdyjBMnTtC5c2dOnjyJyWQiMjISPz8/Ro4ciclkYu7cubkYdfGiPFBERKwhJS2dsT/tZsnuMxgN8HafBvQOrGjtsCSX5TTPyPZjFa6urpw8efKW49HR0bi4uGR3OhERkVzTwMedX59rwbQH6+HhbMehc5fp9+lfjFqwi/OJSdYOT6RQGTlyJI0bN+bSpUs4OTlZjj/wwAOsXr3aipGJiIhITtjZGJnZryH9GvuQboaxC3fz3dYT1g5LCohsFwj79evH0KFD+fHHH4mOjiY6OpoFCxbwxBNP0L9//7yIUUREJMuMRgMPN63EmrFtebRZJQwGWBx+hvbvrufzjcdISUu3dogihcLGjRt5+eWXsbe3z3Tc19eX06dPWykqERERuRc2RgNvPViPQff5AjDx1318vvGYdYOSAiHbBcJ33nmHBx98kAEDBuDr64uvry+DBg2iT58+TJ8+PS9i5Pjx4wwdOpQqVarg5ORE1apVmTx5MsnJyZnG7dmzh1atWuHo6IiPjw8zZsy4Za6FCxfi7++Po6Mj9erVY/ny5ZneN5vNTJo0iXLlyuHk5ERwcDCHDx/ONCYuLo5HH30UV1dX3N3dGTp0KFeuXMn9Ly4iIjnmUcKeNx6ox2/DWtDAx50rplReX3aQbu9v5K9jF60dnkiBl56eTlpa2i3HT506pa4RERGRQsxoNDC5R22eaVMVgNeXHWTOmsP/cZYUddkuENrb2zN79mwuXbpEeHg44eHhxMXFMXPmTBwcHPIiRiIiIkhPT+eTTz5h//79zJw5k7lz5/LSSy9ZxiQmJtKxY0cqV67Mjh07ePvtt5kyZQqffvqpZcyWLVvo378/Q4cOZdeuXfTq1YtevXqxb98+y5gZM2bw/vvvM3fuXLZu3UqJEiXo1KkTSUl/t6Y9+uij7N+/n5CQEH7//Xc2bNjAU089lSffXURE7k39iu78+ux9lrbjyHNXePjTvxi5YBfn1HYsckcdO3Zk1qxZlp8NBgNXrlxh8uTJdO3a1XqBiYiIyD0zGAy82LkmY/5XA4B3/oxkxooIsrlNhRQh2d6kJCEhgbS0NEqVKpXpeFxcHLa2tvm20PLbb7/Nxx9/zLFjGY/Cfvzxx0ycOJGYmBhLK8z48eNZvHgxERERQEZ79NWrV/n9998t8zRv3pyGDRsyd+5czGYz5cuXZ+zYsYwbNw7I+L5ly5Zl/vz5PPzwwxw8eJDatWsTFhZG48aNAVixYgVdu3bl1KlTlC9fPkvxa3FqEZH8F38tmXf+PMR3WzN2Oy5hb8Oo4BoMauGLnXY7liIit3KMU6dO0alTJ8xmM4cPH6Zx48YcPnyYMmXKsGHDBry8vHIx6uJFeaCIiBQkn204xhvLDwIw6D5fJveojcFgsHJUklP5tknJww8/zIIFC245/tNPP/Hwww9nd7ocS0hIyFSkDA0NpXXr1pnWyenUqROHDh3i0qVLljHBwcGZ5unUqROhoaEAREVFERMTk2mMm5sbzZo1s4wJDQ3F3d3dUhwECA4Oxmg0snXr1jvGazKZSExMzPQSEZH85e5sz+u96rFkWEsa+rhzNTmNN5YfpOvsjYQeVduxyD9VrFiR3bt3M3HiREaPHk1AQADTpk1j165dKg6KiIgUIU+29uO1nnUAmL/lOC/9upe0dD1JWNxku0C4detW2rVrd8vxtm3b3rVAlpuOHDnCBx98wNNPP205FhMTQ9myZTONu/lzTEzMXcf88/1/nnenMf9Oim1tbSlVqpRlzO289dZbuLm5WV4+Pj5Z/r4iIpK76lV0Y9Gz9zG9dz1KlbDn8Pkr9P/sL0b8oLZjkX+ytbXl0UcfZcaMGXz00Uc88cQTmXY0FhERkaLh8SBf3u5TH6MBftgWzdifwknV5n7FSrYLhCaTidTU1FuOp6SkcP369WzNNX78eAwGw11fN9uDbzp9+jSdO3emb9++PPnkk9kN32omTJhAQkKC5RUdHW3tkEREijWj0UC/JpVYM7YNjzevjMEAS3afof076/hsg3Y7Fnnrrbf44osvbjn+xRdf5NnGdCIiImI9fRv7MPvhAGyNBhaHn+H5H3aRnKqcuLjIdoGwadOmmTb+uGnu3LkEBgZma66xY8dy8ODBu778/Pws48+cOUO7du247777bonB29ubc+fOZTp282dvb++7jvnn+/88705jzp8/n+n91NRU4uLiLGNux8HBAVdX10wvERGxPndne17rVZelw1sSUClz2/GWo7HWDk/Eaj755BP8/f1vOV6nTh3mzp1rhYhEREQkr/VoUJ6PHwvE3sbIH/tiePqb7SSlpFk7LMkHttk94fXXXyc4OJjdu3fToUMHAFavXk1YWBh//vlntuby9PTE09MzS2NPnz5Nu3btCAwM5Msvv8RozFzbDAoKYuLEiaSkpGBnZwdASEgINWvWxMPDwzJm9erVjBo1ynJeSEgIQUFBAFSpUgVvb29Wr15Nw4YNgYzFHbdu3cqzzz5rmSM+Pp4dO3ZYCqJr1qwhPT2dZs2aZev7i4hIwVG3ghu/PHMfP+88xbQ/Ijh8/gqPfLaVHg3KM7FrLbzdHK0doki+iomJoVy5crcc9/T05OzZs1aISERERPLD/2qX5fOBjXnqm+2sPXSBIfPD+GxAY0o4ZLuEJIVItp8gbNGiBaGhofj4+PDTTz+xdOlSqlWrxp49e2jVqlVexMjp06dp27YtlSpV4p133uHChQvExMRkWvPvkUcewd7enqFDh7J//35+/PFHZs+ezZgxYyxjRo4cyYoVK3j33XeJiIhgypQpbN++neHDhwMZ23yPGjWK119/nSVLlrB3714GDBhA+fLl6dWrFwC1atWic+fOPPnkk2zbto3NmzczfPhwHn744SzvYCwiIgWT0WjgocY+rB3blgFBlTEaYOnuM3R4dx2fbjiqtmMpVnx8fNi8efMtxzdv3pynOU9kZCQ9e/akTJkyuLq60rJlS9auXZtpzIgRIwgMDMTBwcFyU/ffVq5cSfPmzXFxccHT05PevXtz/PjxTGO+++47GjRogLOzM+XKlWPIkCFcvPjfGxbNnz+f+vXr4+joiJeXF8OGDcvp1xURESmQWtfw5KvBTSlhb8OWoxcZ8MU2EpNSrB2W5CVzIfDll1+agdu+/mn37t3mli1bmh0cHMwVKlQwT5s27Za5fvrpJ3ONGjXM9vb25jp16piXLVuW6f309HTzK6+8Yi5btqzZwcHB3KFDB/OhQ4cyjbl48aK5f//+5pIlS5pdXV3NgwcPNl++fDlb3ykhIcEMmBMSErJ1noiI5J+9p+LND3y4yVz5xd/NlV/83dzh3XXmzYcvWDsskbvKrRxj+vTp5tKlS5u/+OIL8/Hjx83Hjx83z5s3z1y6dGnzm2++mUvR3qp69ermrl27mnfv3m2OjIw0P/fcc2ZnZ2fz2bNnLWOef/5585w5c8yPP/64uUGDBrfMcezYMbODg4N5woQJ5iNHjph37Nhhbt26tTkgIMAyZtOmTWaj0WiePXu2+dixY+aNGzea69SpY37ggQfuGt+7775rLl++vPm7774zHzlyxLx7927zb7/9lq3vqDxQREQKi50n4sz1Jq8wV37xd3P39zea466YrB2S/Iec5hkGs9msvautIDExETc3NxISErQeoYhIAZaebuaXG23HF68mA9C9fjkmdqtFOTft5ioFT27lGGazmfHjx/P++++TnJzxZ9/R0ZEXX3yRSZMm5Va4mcTGxuLp6cmGDRssnSmXL1/G1dWVkJAQgoODM42fMmUKixcvJjw8PNPxn3/+mf79+2MymSzL0ixdupSePXtiMpmws7PjnXfe4eOPP+bo0aOW8z744AOmT5/OqVOnbhvfpUuXqFChAkuXLrUstZMTygNFRKQw2X8mgcfnbSPuajI1y7rw7RPN8HRxsHZYcgc5zTOy3WIsIiL/3959h0V1tG0Av5fei3QiIihSLIgNsRcU7LxvYotR7JrYo0ZNomLMFzVREzXGLmhiiRp7wYZdBEVRQUFQ7IAF6dLn+4OwbzaAAgIL7P27rr10z5mdfWYY2DmzZ2ZIkSgpSdC/hRUCpneC99/Tjg/fikXXZeew9tx97uxGNZZEIsGSJUvw8uVLXLlyBTdv3kRCQkKFDQ4CgJGREezt7bF161akpaUhJycH69atg6mpaak2w2vevDmUlJTg6+uL3NxcJCUl4ffff4e7u7t0rWo3Nzc8efIER48ehRAC8fHx2LNnD3r27FlsvidPnkReXh6ePXsGR0dH1K5dGwMGDMCTJ0/eGU9mZiaSk5NlHkRERNVFQ0t9/Dm2NUx11REZn4KB6wIRm/RW3mFROeMAIRERUQnoa6liQb9GODSpHZpbGyI9KxeLj0Wgx4rzuBTN3Y6p5tLR0UHLli3RqFEjqKtX7N0CEokEp06dwo0bN6CrqwsNDQ0sX74c/v7+0k3nSsLGxgYnTpzA119/DXV1dRgYGODp06fYtWuXNE3btm2xbds2DBw4EGpqajA3N4e+vj5Wr15dbL4PHjxAXl4efvjhB/zyyy/Ys2cPEhIS0K1bN+ldlkVZtGgR9PX1pQ8rK6sSl4WIiKgqsDPTxa5xbvjIQBMPXqVhwLpAPElIl3dYVI44QEhERFQKDS31sXucG376pAmMtNVw/2UahmwMwoTt1/lNKtUoaWlpmDt3Ltq0aYP69evD1tZW5lEas2fPhkQieecjIiICQghMmDABpqamuHDhAoKDg+Hl5YU+ffqUaufkuLg4jBkzBt7e3rh69SrOnTsHNTU1fPLJJyhYXefOnTuYMmUK5s2bh5CQEPj7++Phw4cYP358sfnm5eUhOzsbK1euhIeHB1q3bo0dO3YgKiqq0EYq/zRnzhwkJSVJH++745CIiKgqqmusjT/HtYa1kRaeJLxF/7WBuP8yVd5hUTkp8x7V0dHRuH//Pjp06ABNTU0IISCRSMozNiIioiqpYNpx94bm+PnkPWwNfIgjt2JxJuIFJnWxw6h2NlBT4XdwVL2NHj0a586dw9ChQ2FhYfFB/bzp06dj+PDh70xja2uLgIAAHD58GG/evJGumfPbb7/h5MmT2LJlC2bPnl2i91u9ejX09fXx448/So/98ccfsLKyQlBQEFq3bo1Fixahbdu2mDlzJgCgSZMm0NbWRvv27fH999/DwsKiUL4Fx5ycnKTHTExMYGxsjMePHxcbj7q6eoXffUlERFQZahtqYdc4NwzZGIToF6kYuO4Kdo5tjfqmOvIOjT5QqQcIX79+jYEDByIgIAASiQRRUVGwtbXFqFGjYGhoiGXLllVEnERERFWOvqYqfPo2RP8WtTH/QDiuPXqDJf4R2B3yBN/1bYR2dsbyDpGozI4dO4YjR46gbdu2H5yXiYkJTExM3psuPT1/qlLBxiIFlJSUkJdX8vU+09PTC+WhrKwMANJ80tPToaKiUmSa4vbwK6iLyMhI1K5dGwCQkJCAV69ewdrausTxERERVWdmehr4c2xrfLYpGHdjk/Hphiv4c5wbbIy15R0afYBS394wbdo0qKio4PHjx9DS0pIeHzhwIPz9/cs1OCIiouqgoaU+do93w7L+zjDWUcODl2n4bFMQJmy7jueJnHZM1ZOhoSFq1apVqe/p5uYGQ0NDeHt74+bNm7h37x5mzpyJmJgY9OrVS5ouOjoaoaGhiIuLw9u3bxEaGorQ0FDpOoC9evXC1atX8d133yEqKgrXr1/HiBEjYG1tDRcXFwBAnz59sHfvXqxZswYPHjzApUuXMHnyZLRq1QqWlpYAgH379sHBwUH6vg0aNEC/fv0wZcoUXL58GWFhYfD29oaDgwM6d+5ciTVFREQkX0Y66tg22hX2Zrp4kZKJweuv4NHrNHmHRR+g1AOEJ06cwJIlS6Tfmhaws7PDo0ePyi0wIiKi6kQikeDj5rVxenonDG9TF0oS4Mjt/N2Ofzsbzd2OqdpZuHAh5s2bJ72rrzIYGxvD398fqamp6NKlC1q0aIGLFy/iwIEDcHZ2lqYbPXo0XFxcsG7dOty7dw8uLi5wcXHB8+fPAQBdunTB9u3bsX//fri4uMDT0xPq6urw9/eHpqYmAGD48OFYvnw5fv31VzRq1Aj9+/eHvb099u7dK32fpKQkREZGysS4detWuLq6olevXujYsSNUVVXh7+8v3R2ZiIhIUdTSVsO2Ma6ob6qDuOQMfLohiBuXVGMSUdwcimLo6uri+vXrsLOzg66uLm7evAlbW1tcu3YNHh4eeP36dUXFWqMkJydDX18fSUlJ0jV2iIio5rjzPBnzD4bh6sM3AABbY2349G2IDg3eP82S6EOUVx/DxcUF9+/fhxACdevWLTQAdv369Q8NVWGxH0hERDXJi5QMDFp/BQ9epqG2oSb+/Hu3Y5KPsvYzSr0GYfv27bF161YsXLgQQP4dE3l5efjxxx85tYKIiOhvTpZ62DXODftuPMMPRyPw4FUahm0ORo9G5vi2txM7TVTleXl5yTsEIiIiqgZMdTWwY0xrDFwXiIev0zF4/RX8Oa41LPTZ361OSn0HYVhYGLp27YpmzZohICAAffv2RXh4OBISEnDp0iXUq1evomKtUfjNMRGR4kjOyMbPJ+9hy+WHyBOApqoyJnapj9HtbaCuoizv8KiGYR+j6uPPiIiIaqLniW8xcH0gniS8hY2xNnaObQ0zPQ15h6VwytrPKPUAIZC/Hsuvv/6KmzdvIjU1Fc2aNcOECRNgYWFR2qwUFjuGRESK525sMuYd4LRjqljl3ccICQnB3bt3AQANGzaUbvJBZcd+IBER1VRP36Rj4LoreJb4FvVMtLFjbGuY6nKQsDJV6gAhfTh2DImIFJMQAvtDn+H/jkTgVWomAMCzoTnm9uG0Yyof5dXHePHiBQYNGoSzZ8/CwMAAAJCYmIjOnTtj586dMDHhwHZZsR9IREQ12ZOEdAxcF4jnSRmwM9XBjrGtYayjLu+wFEZZ+xml3sXY19cXu3fvLnR89+7d2LJlS2mzIyIiUigSiQT/camNgBkdMbKtDZSVJPAPj0PXZWex+kw0MnNy5R0iEQBg0qRJSElJkS4lk5CQgLCwMCQnJ2Py5MnyDo+IiIiqKKtaWtg+pjXM9NQR9SIVn20MQkJalrzDovco9QDhokWLYGxsXOi4qakpfvjhh3IJioiIqKbT01DFvD5OODK5HVrVrYWM7Dz8dDwSnr9cwLl7L+UdHhH8/f3x22+/wdHRUXrMyckJq1evxrFjx+QYGREREVV1dY21sWNMa5joqiMiLgWfbQxCYjoHCauyUg8QPn78GDY2NoWOW1tb4/Hjx+USFBERkaJwMNfDn+Na45eBTWGiq46YV2nw3hyMcb9fw9M36fIOjxRYXl4eVFVVCx1XVVVFXl6eHCIiIiKi6sTWRAc7xrSGsY4a7sQmY+imYCS9zZZ3WFSMUg8Qmpqa4tatW4WO37x5E0ZGRuUSFBERkSKRSCTwcvkIAdM7YlS7/GnHx8Pj4b78HH4NiOK0Y5KLLl26YMqUKXj+/Ln02LNnzzBt2jR07dpVjpERERFRdVHfVAfbx7RGLW013H6WhGGbg5GcwUHCqqjUA4SDBw/G5MmTcebMGeTm5iI3NxcBAQGYMmUKBg0aVBExEhERKQRdDVXM7e2Eo5Pbo5VN/rTjpSfuwePn8zgb+ULe4ZGC+fXXX5GcnIy6deuiXr16qFevHmxsbJCcnIxVq1bJOzwiIiKqJhqY6WLbaFcYaKni5pNEDN8cjNTMHHmHRf9S6l2Ms7KyMHToUOzevRsqKioA8qegDBs2DGvXroWamlqFBFrTcPc6IiJ6FyEEDt58ju+P3MXLlPzdjrs7mWFubydY1dKSc3RUlZVnH0MIgVOnTiEiIgIA4OjoCHd39/IIU6GxH0hERIoo7FkSPt1wBckZOWhZ1xB+I1pBW11F3mHVOGXtZ5R6gLDAvXv3cPPmTWhqaqJx48awtrYuSzYKix1DIiIqiZSMbKw4FQXfyw+RmyegoaqECZ3qY0wHW2ioKss7PKqC2Meo+vgzIiIiRXXraSKGbAxCSkYOWtvWgu/wVtBUY5+2PJW1n1HqKcYFGjRogP79+6N3794cHCQiIqoguhqq+Pbvaceuf087XnbyHjx+OY8znHZMFSAgIABOTk5ITk4udC4pKQkNGzbEhQsX5BAZERERVXdNahtg68hW0FFXwZUHCRi99SoysrnedlVQpjsInz59ioMHD+Lx48fIypLdpnr58uXlFlxNxm+OiYiotAqmHf/fkbt48fe0425OZpjHacf0Dx/ax+jbty86d+6MadOmFXl+5cqVOHPmDPbt2/ehoSos9gOJiEjRhTxKwLBNwUjLykWHBiZYP7Q5Z8eUk0qbYnz69Gn07dsXtra2iIiIQKNGjfDw4UMIIdCsWTMEBASUOnhFxI4hERGVVUpGNlaejsLmS/nTjtVVlDChc32M5bRjwof3MaytreHv7w9HR8ciz0dERKB79+54/Pjxh4aqsNgPJCIiAoJjEuC9ORhvs3PR2d4Ea4c2h7oK+7IfqtKmGM+ZMwczZszA7du3oaGhgb/++gtPnjxBx44d0b9//9JmR0RERKWkq6GKb3o54diU9mhtWwuZOXlY/ve044CIeHmHR9VcfHw8VFVViz2voqKCly9fVmJEREREVBO1sqmFzcNbQkNVCWciX2LCthvIysmTd1gKq9QDhHfv3sWwYcMA5HcQ3759Cx0dHXz33XdYsmRJuQdIRERERWtgposdY1pj5WAXmOmp49HrdIz0u4bRW67hSUK6vMOjauqjjz5CWFhYsedv3boFCwuLSoyIiIiIaiq3ekbYOKwl1FWUcOpuPCbvuIHsXA4SykOpBwi1tbWl6w5aWFjg/v370nOvXr0qv8iIiIjovSQSCfo6W+L09E4Y28EWKkoSnLobD/fl57DiVBQXfaZS69mzJ+bOnYuMjIxC596+fYv58+ejd+/ecoiMiIiIaqJ2dsZYP6wF1JSV4B8eh6k7Q5HDQcJKV+o1CL28vNCrVy+MGTMGM2bMwIEDBzB8+HDs3bsXhoaGOHXqVEXFWqNw7RkiIqoIUfEpmHcgHIEPXgMA6tTSgk9fJ3RxMJNzZFRZPrSPER8fj2bNmkFZWRkTJ06Evb09gPy1B1evXo3c3Fxcv34dZmZsU2XFfiAREVFhARHxGPd7CLJzBfo1tcTyAU2hrCSRd1jVTqVtUvLgwQOkpqaiSZMmSEtLw/Tp03H58mXY2dlh+fLlsLa2LnXwiogdQyIiqihCCBy+FYvvj9xBfHL+bsfujqaY17sh6hhxt+Oarjz6GI8ePcLnn3+O48ePo6CrKJFI4OHhgdWrV8PGxqY8Q1Y47AcSEREV7eSdeHz+Rwhy8gT+2+wj/PSJMwcJS6lCBwhXrlyJsWPHQkNDA48fP4aVlRUkEv6APgQ7hkREVNFSM3Ow6nQUNl2MQU6egJqKEr7oVA/jO9bjbsc1WHn2Md68eYPo6GgIIWBnZwdDQ8NyilKxsR9IRERUvGO3YzFxxw3k5gkMaFEbi//bBEocJCyxCh0gVFFRwfPnz2FqagplZWXExsbC1NT0gwJWdOwYEhFRZYl+kT/t+PL9/GnHVrU04dOnIbo6copoTcQ+RtXHnxEREdG7Hb71HJN33ECeAAa3qoP/82rEQcISKms/Q6UkiSwtLfHXX3+hZ8+eEELg6dOnRS5cDQB16tQp8ZsTERFRxatvqotto11x5HYsvj98F08S3mLUlmvo6mCK+X047ZiIiIiIqpbeTSyRmycw7c9Q7Ah+DHUVJczv48TZrBWoRHcQrl+/HpMmTUJOTk6xaYQQkEgkyM3lboklwW+OiYhIHtIyc7AyIAqbLvxv2vHnHevh806cdlxTsI9R9fFnREREVDJ/hTzFjD03IQQwpasdpnVrIO+QqrwK36QkJSUFjx49QpMmTXDq1CkYGRkVmc7Z2bnEb67I2DEkIiJ5in6RCp+D4bgY/QpA/rTj+b0bwt2J046rO/Yxqj7+jIiIiEpua+BDzDsQDgCY38cJI9pys7R3qdApxgCgq6sLR0dH+Pr6wtHRERYWFmUKlIiIiOSvvqkOfh/VCkdvx+H7I3fwJOEtRm+9hi4OppjfxwnWRtryDpGIiIiICMPc6iIxPRvLT97DgkN3oK+piv82qy3vsGocpdIkVlZWxrhx44pdf5CIiIiqD4lEgl5NLHDqy44Y37EeVJUlCIh4gW4/n8fyk/eQkc1lQ4iIiIhI/iZ1qY+Rf985OHPPLZy6Ey/niGqeUg0QAkCjRo3w4MGDioiFiIiI5EBbXQWzezjg2JQOaFffGFk5eVh5Ogruy8/hRHgcSrgaCRERERFRhZBIJPi2lyM+blYbuXkCX2y/jisPXss7rBql1AOE33//PWbMmIHDhw8jNjYWycnJMg8iIiKqngqmHf82pBks9DXw9M1bjP09BCP9ruLhqzR5h0dERERECkxJSYIlHzeGu6MZsnLyMHrLNYQ9S5J3WDVGiTcpKaCk9L8xxX9uL81djEuHi1MTEVFVlp6Vg1UB0dh44QGycwXUlJUwvqMtPu9UH5pq3O24KmMfo+rjz4iIiKjsMrJzMdw3GFceJMBIWw27xruhnomOvMOqMip8F+MC586de+f5jh07liY7hcWOIRERVQf3X+bvdnwhKn+3448MNDG/jxO6OZnJfFFIVQf7GFUff0ZEREQfJiUjG59uCMLtZ0mw1NfAns/bwNJAU95hVQmVNkBI5YMdQyIiqi6EEPAPi8PCw3fwPCl/o7JO9ibw6dMQdY2523FVwz5G1cefERER0Yd7nZqJ/usC8eBlGuqZaGPXODcY6ajLOyy5K2s/o9RrEJ4/f/6dj4rw8OFDjBo1CjY2NtDU1ES9evUwf/58ZGVlyaSRSCSFHleuXJHJa/fu3XBwcICGhgYaN26Mo0ePypwXQmDevHmwsLCApqYm3N3dERUVJZMmISEBQ4YMgZ6eHgwMDDBq1CikpqZWSNmJiIjkTSKRoEdjC5ya3hETOufvdnw28iW6/3wey05E4m0WlxchIiIiosplpKOO30e5wlJfA/dfpmG471WkZGTLO6xqS6W0L+jUqVOhY/+cYlQRaxBGREQgLy8P69atQ/369REWFoYxY8YgLS0NS5culUl76tQpNGzYUPrcyMhI+v/Lly9j8ODBWLRoEXr37o3t27fDy8sL169fR6NGjQAAP/74I1auXIktW7bAxsYGc+fOhYeHB+7cuQMNDQ0AwJAhQxAbG4uTJ08iOzsbI0aMwNixY7F9+/ZyLzsREVFVoaWmgpkeDvi4WW3M/3va8aqAaOy9/gzz+jihO6cdExEREVEl+shAE7+PdkX/tYG4/SwJY7eGwHdES2iocs3s0ir1HYRv3ryRebx48QL+/v5o2bIlTpw4URExwtPTE76+vujevTtsbW3Rt29fzJgxA3v37i2U1sjICObm5tKHqqqq9NyKFSvg6emJmTNnwtHREQsXLkSzZs3w66+/Asi/e/CXX37Bt99+i379+qFJkybYunUrnj9/jv379wMA7t69C39/f2zcuBGurq5o164dVq1ahZ07d+L58+cVUn4iIqKqxNZEB1tHtsLaz5rhIwNNPEt8i3G/h2C471XEcLdj+kD37t1Dv379YGxsDD09PbRr1w5nzpyRSTN58mQ0b94c6urqaNq0aZH5HD9+HK1bt4auri5MTEzw8ccf4+HDhzJptm3bBmdnZ2hpacHCwgIjR47E69ev3xnf1atX0bVrVxgYGMDQ0BAeHh64efPmhxSZiIiIPkA9Ex1sGdEKOuoqCHzwGpN23EBObp68w6p2Sj1AqK+vL/MwNjZGt27dsGTJEnz11VcVEWORkpKSUKtWrULH+/btC1NTU7Rr1w4HDx6UORcYGAh3d3eZYx4eHggMDAQAxMTEIC4uTiaNvr4+XF1dpWkCAwNhYGCAFi1aSNO4u7tDSUkJQUFBxcabmZmJ5ORkmQcREVF1JZFI4NnIAie/7IAJnetBTVkJ5+69hMfP5/HT8QikZ+XIO0Sqpnr37o2cnBwEBAQgJCQEzs7O6N27N+Li4mTSjRw5EgMHDiwyj5iYGPTr1w9dunRBaGgojh8/jlevXuG///2vNM2lS5cwbNgwjBo1CuHh4di9ezeCg4MxZsyYYmNLTU2Fp6cn6tSpg6CgIFy8eBG6urrw8PBAdjanNBEREclL49r62OjdAmoqSjh5Jx6z/rqNvDxuuVEapR4gLI6ZmRkiIyPLK7t3io6OxqpVqzBu3DjpMR0dHSxbtgy7d+/GkSNH0K5dO3h5eckMEsbFxcHMzKxQ3AUdzoJ/35fG1NRU5ryKigpq1apVqOP6T4sWLZIZWLWysipDyYmIiKqWgmnHx6d1QIcGJsjKzcPqM/fRbfl5+IfFgnuhUWm8evUKUVFRmD17Npo0aQI7OzssXrwY6enpCAsLk6ZbuXIlJkyYAFtb2yLzCQkJQW5uLr7//nvUq1cPzZo1w4wZMxAaGiodyAsMDETdunUxefJk2NjYoF27dhg3bhyCg4OLjS8iIgIJCQn47rvvYG9vj4YNG2L+/PmIj4/Ho0ePyrcyiIiIqFRa2xph9afNoKwkwV/Xn+L/jt5lX7QUSj1AeOvWLZnHzZs34e/vj/Hjxxc7xaM4s2fPLnJjkX8+IiIiZF7z7NkzeHp6on///jLf8BobG+PLL7+Eq6srWrZsicWLF+Ozzz7DTz/9VNoiVog5c+YgKSlJ+njy5Im8QyIiIio3Nsba2DKiJdZ+1lw67Xj8H9fh7XsVD15yIy8qGSMjI9jb22Pr1q1IS0tDTk4O1q1bB1NTUzRv3rzE+TRv3hxKSkrw9fVFbm4ukpKS8Pvvv8Pd3V26/IybmxuePHmCo0ePQgiB+Ph47NmzBz179iw2X3t7exgZGWHTpk3IysrC27dvsWnTJjg6OqJu3brFvo4zSYiIiCpHNycz/PhxEwDAposxWH0mWs4RVR+l3qSkadOmkEgkhUZhW7dujc2bN5cqr+nTp2P48OHvTPPPb4afP3+Ozp07o02bNli/fv1783d1dcXJkyelz83NzREfHy+TJj4+Hubm5tLzBccsLCxk0hQMfpqbm+PFixcyeeTk5CAhIUH6+qKoq6tDXZ3bbRMRUc2VP+3YHB0bmGD1mWisP/8A5++9hOcvFzCmgw0mdK4PLbVSdz1IgUgkEpw6dQpeXl7Q1dWFkpISTE1N4e/vD0NDwxLnY2NjgxMnTmDAgAEYN24ccnNz4ebmhqNHj0rTtG3bFtu2bcPAgQORkZGBnJwc9OnTB6tXry42X11dXZw9exZeXl5YuHAhAMDOzg7Hjx+HikrxbXvRokVYsGBBieMnIiKisvu4eW0kvc3Gd4fvYOmJe9DXUsPQ1tbyDqvKK/UdhDExMXjw4AFiYmIQExODR48eIT09HZcvX4aDg0Op8jIxMYGDg8M7H2pqagDy7xzs1KkTmjdvDl9fXygpvT/00NBQmYE+Nzc3nD59WibNyZMn4ebmBiC/M2lubi6TJjk5GUFBQdI0bm5uSExMREhIiDRNQEAA8vLy4OrqWqryExER1USaasqY4WGP49M6oJP9/6Yduy87h2O3Oe1YEZV01ogQAhMmTICpqSkuXLiA4OBgeHl5oU+fPoiNjS3x+8XFxWHMmDHw9vbG1atXce7cOaipqeGTTz6Rtr87d+5gypQpmDdvHkJCQuDv74+HDx9i/Pjxxeb79u1bjBo1Cm3btsWVK1dw6dIlNGrUCL169cLbt2+LfR1nkhAREVWuke1sMLmrHQBg3oEwHAh9JueIqj6JqAa99ILBQWtra2zZsgXKyv/brrrgrr0tW7ZATU0NLi4uAIC9e/di7ty52LhxI0aMGAEAuHz5Mjp27IjFixejV69e2LlzJ3744Qdcv34djRo1AgAsWbIEixcvxpYtW2BjY4O5c+fi1q1buHPnDjQ0NAAAPXr0QHx8PNauXYvs7GyMGDECLVq0wPbt20tcpuTkZOjr6yMpKQl6enrlUk9ERERVjRACJ+/EY8GhO3iWmD+A0t7OGAv6NoStiY6co6uZqmIf4+XLl+/dHdjW1hYXLlxA9+7d8ebNG5nY7ezsMGrUKMyePVvmNT4+Pti/fz9CQ0Nljs+dOxf+/v64evWq9NjTp09hZWWFwMBAtG7dGkOHDkVGRgZ2794tTXPx4kW0b98ez58/l/mSucCmTZvw9ddfIzY2VvpldVZWFgwNDbFp0yYMGjSoRPVRFX9GRERENY0QAj4Hw7El8BFUlCTYMKwFOjuYvv+F1VxZ+xklnucTGBiI169fo3fv3tJjW7duxfz585GWlgYvLy+sWrWqQqbRnjx5EtHR0YiOjkbt2rVlzv1zfHPhwoV49OgRVFRU4ODggD///BOffPKJ9HybNm2wfft2fPvtt/j6669hZ2eH/fv3SwcHAeCrr75CWloaxo4di8TERLRr1w7+/v7SwUEA2LZtGyZOnIiuXbtCSUkJH3/8MVauXFnu5SYiIqruJBIJujc0R3s7E6w5G4215x7gQtQrePxyHmPa22JiF047VgQmJiYwMTF5b7r09HQAKDRTRElJCXl5eSV+v/T09EJ5FHzBXJBPenp6oWnBBWmK+/68IF+JRCITm0QiKVV8REREVPEkEgnm92mIxLfZOBD6HJ9vC8Hvo1zRsm4teYdWJZX4DsIePXqgU6dOmDVrFgDg9u3baNasGYYPHw5HR0f89NNPGDduHHx8fCoy3hqD3xwTEZEievgqDT6HwnE28iUAwFJfA9/2dkKPRuYygy5UdtW5j/Hq1Ss4ODigY8eOmDdvHjQ1NbFhwwasWLECV69ehbOzMwAgOjoaqampWLt2Lc6cOYM///wTAODk5AQ1NTUEBATA3d0dPj4+GDx4MFJSUvD1118jIiICd+/ehaamJvz8/DBmzBisXLkSHh4eiI2NxdSpU6GkpISgoCAAwL59+zBnzhzppnkRERFo2rQpRo4ciUmTJiEvLw+LFy/GoUOHcPfu3SLvOixKdf4ZERERVTfZuXkY93sIAiJeQFdDBX+OdYOTZc39/C1rP6PEaxCGhoaia9eu0uc7d+6Eq6srNmzYgC+//BIrV67Erl27Shc1ERERKZS6xtrwHd4S64c2R21DTTxPysAX265j6KZgRL/gbseKztjYGP7+/khNTUWXLl3QokULXLx4EQcOHJAODgLA6NGj4eLignXr1uHevXtwcXGBi4sLnj9/DgDo0qULtm/fjv3798PFxQWenp5QV1eHv78/NDU1AQDDhw/H8uXL8euvv6JRo0bo378/7O3tsXfvXun7JCUlITIyUvrcwcEBhw4dwq1bt+Dm5iadjuzv71/iwUEiIiKqXKrKSlj9aTO0rGuIlIwcDNscjIev0uQdVpVT4jsINTQ0EBUVBSsrKwBAu3bt0KNHD3zzzTcAgIcPH6Jx48ZISUmpuGhrEH5zTEREii4jOxe/nb2PtefuIysnD6rKEoxqZ4tJXepDW53TjsuKfYyqjz8jIiKiypf0NhuD1l/B3dhk1DbUxJ7xbWCur/H+F1YzFX4HoZmZGWJiYgDkL8Z8/fp1tG7dWno+JSUFqqqqpQiZiIiIFJmGqjK+7NYAJ6d1QGd7E2TnCqw9dx/uy8/hyC3udkxERERE5UdfUxVbR7ZCXSMtPH3zFkM3BeFNWpa8w6oySjxA2LNnT8yePRsXLlzAnDlzoKWlhfbt20vP37p1C/Xq1auQIImIiKjmsjbSxubhLbFhWAvUNtREbFIGJmzntGMiIiIiKl8muur4fZQrzPU0EPUiFSP8riItM0feYVUJJR4gXLhwIVRUVNCxY0ds2LABGzZsgJqamvT85s2b0b179woJkoiIiGo2iUSCbk5mOPVlR0zuagc1FSVcjH6FHivOY9Gxu+y4EREREVG5sKqlhd9HtYKBlipCnyRi3O8hyMzJlXdYclfiNQgLJCUlQUdHB8rKyjLHExISoKOjIzNoSMXj2jNERETFe/Q6Dd8duoPTES8AAOZ6Gvi2tyN6NbbgbsfvwT5G1cefERERkfyFPknEpxuuID0rFz0amePXT5tBWan69zMrfA3CAvr6+oUGBwGgVq1aHBwkIiKicmFtpI1Nw1ti47AWsKqlibjkDEzcfgOfbQpC9AtuiEZEREREH6aplQE2DGsBNWUlHAuLw9d7byv0GtilHiAkIiIiqizuTmY4Oa0jprrnTzu+FP0anr9cwKKjd5HKacdERERE9AHa1jfGysFNoSQB/rz2BEtPRMo7JLnhACERERFVaRqqypjq3gCnpnWEu6MpcvIE1p1/gK7LzuLQzecK/U0vEREREX0Yz0YWWPTfxgCA1WfuY3vQYzlHJB8cICQiIqJqoY6RFjZ6t8Qm7xaoU0sL8cmZmLTjBoZsDEJUPKcdExEREVHZDGxZB1O62gEA5h4Iw5m/18FWJBwgJCIiomqlq6MZTkzrgGnuDaCuooTL91+jx4oL+IHTjomIiIiojKa626F/89rIzROYsP06bj9NkndIlYoDhERERFTtaKgqY4q7HU592RHujmbIyRNY//e044OcdkxEREREpSSRSPDDfxujvZ0x0rNyMcLvKp4kpMs7rErDAUIiIiKqtqxqaWGjdwtsHv6/aceTd9zApxuCcI/TjomIiIioFFSVlfDbkGZwtNDDq9RMePsGIzE9S95hVQoOEBIREVG118Uhf9rxl93ypx0HPniNnisu4P+O3OG0YyIiIiIqMV0NVfgObwkLfQ08eJmGMVuvISM7V95hVTgOEBIREVGNoKGqjMld86cdd3PKn3a84UIMui47iwOhzzjtmIiIiIhKxFxfA34jWkFXQwVXH77B9N03kZdXs/uSHCAkIiKiGsWqlhY2DGsB3+EtYW2UP+14ys5QDN5whdOOiYiIiKhE7M11sW5oc6gqS3DkViwW+0fIO6QKxQFCIiIiqpE6O5ji+NQOmN6tATRUlXDlQQJ6rLiA7w/fQUpGtrzDIyIiIqIqrk09Y/z0iTMAYP35B9hy+aF8A6pAHCAkIiKiGktDVRmTutrh5LSO6O5khtw8gY0XY9B12TlOOyYiIiKi9/Jy+QgzPewBAD6HwnE8PE7OEVUMDhASERFRjWdVSwvrh7WA74iWqGukhRcp+dOOB62/gsg4TjsmIiIiouJ90akePnWtAyGAyTtu4PrjN/IOqdxxgJCIiIgURmd7U/hP7YAZ3fOnHQfFJKDnygtYyGnHRERERFQMiUSC7/o2RBcHU2Tm5GH0lmt4+CpN3mGVKw4QEhERkULRUFXGxC75ux17NMyfdrzpYgy6LDuH/Tc47ZiIiIiIClNRVsKqwS5o/JE+EtKyMNw3GK9TM+UdVrnhACEREREppNqGWlg3tAX8/p52/DIlE1P/DMXA9VcQEZcs7/CIiIiIqIrRVlfBpuEtUNtQEw9fp2P01mt4m5Ur77DKBQcIiYiISKF1sjfF8WkdMNPDHhqqSgiOSUCvlRfx3aE7SOa0YyIiIiL6B1NdDfiNaAV9TVXceJyIKTtvIDev+s9A4QAhERERKTx1FWVM6Fwfp77sCM+G5sjNE9h8KQZdlp7DvhtPOe2YiIiIiKTqm+pgo3cLqKko4cSdeCw8fKfa9xc5QEhERET0t9qGWlg7tDm2jGwFG2NtvErNxLQ/b2Lguiu4G8tpx0RERESUr2XdWvh5QFNIJIDf5YfYeCFG3iF9EA4QEhEREf1LxwYm8J/aHjM97KGpqozghwnoveoiFhwK57RjIiIiIgIA9GpigW96OgIA/u/oXRy+9VzOEZUdBwiJiIiIiiCddjy9I3o0yp927HvpIbosPYe91zntmIiIiIiAUe1sMLxNXQDAl3/eRHBMgnwDKiMOEBIRERG9w0cGmljzWXNsHdkKtn9PO/5y100MWBeIO8857ZiIiIhIkUkkEszt7QSPhmbIys3DmK3XEP0iVd5hlRoHCImIiIhKoEMDExyb2h5feeZPO7768A16r7oAn4PhSHrLacdEREREikpZSYIVg1zgUscASW+zMdw3GC9SMuQdVqlwgJCIiIiohNRVlPFFp/o4Pb0jejY2R57IX5S667Kz+CuE046JiIiIFJWGqjI2DmuBukZaePrmLUb5XUNaZo68wyoxDhASERERlZKlgSZ+G9Icv49qBVsTbbxKzcL03TfRfy2nHRMREREpKiMddfiNaIVa2mq4/SwJE7dfR05unrzDKhEOEBIRERGVUXs7E/hP6YBZng7QVFXGtUecdkxERESkyOoaa2OTdwtoqCrhTORLzD0QXi1mmXCAkIiIiOgDqKko4fNO9XB6ekf0amwhM+14T8hT5OVV/Q4hEREREZUflzqGWDnIBRIJsCP4MX47e1/eIb0XBwiJiIiIyoGlgSZWD2mGP0a5ot7f045n7L6J/usCEf48Sd7hEREREVEl6t7QHD59GgIAfjoeiX03nso5onfjACERERFROWpnZ4xjUzpgdg8HaKkpI+TRG/RZdRHzD4Rx2jERERGRAvFuUxdjO9gCAL7acwuXo1/JOaLicYCQiIiIqJypqShhfMe/px03yZ92vCXwEbosPYtd155w2vE73Lt3D/369YOxsTH09PTQrl07nDlzRibN5MmT0bx5c6irq6Np06ZF5nP8+HG0bt0aurq6MDExwccff4yHDx/KpFm9ejUcHR2hqakJe3t7bN269b3xPX78GL169YKWlhZMTU0xc+ZM5ORUnx0KiYiIqHLN9nRA7yYWyM4VGPd7CCLjUuQdUpE4QEhERERUQSz0NbH602bYNtoV9U118DotC1/tuYVP1l5GXFKGvMOrknr37o2cnBwEBAQgJCQEzs7O6N27N+Li4mTSjRw5EgMHDiwyj5iYGPTr1w9dunRBaGgojh8/jlevXuG///2vNM2aNWswZ84c+Pj4IDw8HAsWLMCECRNw6NChYmPLzc1Fr169kJWVhcuXL2PLli3w8/PDvHnzyqfwREREVOMoKUmwtL8zWtnUQkpmDob7BlfJfqBEVIetVGqg5ORk6OvrIykpCXp6evIOh4iIiCpYVk4efC/FYMXpKJjra8B/SgeoqZT/d7XVuY/x6tUrmJiY4Pz582jfvj0AICUlBXp6ejh58iTc3d1l0vv4+GD//v0IDQ2VOb5nzx4MHjwYmZmZUFLKr+NDhw6hX79+yMzMhKqqKtq0aYO2bdvip59+kr5u+vTpCAoKwsWLF4uM79ixY+jduzeeP38OMzMzAMDatWsxa9YsvHz5EmpqaiUqZ3X+GREREVHZJKZn4eM1lxGfnInNw1uilU2tCnmfsvYzeAchERERUSVQU1HCuI71EDC9E1YOcqmQwcHqzsjISDrVNy0tDTk5OVi3bh1MTU3RvHnzEufTvHlzKCkpwdfXF7m5uUhKSsLvv/8Od3d3qKqqAgAyMzOhoaEh8zpNTU0EBwcjO7votSIDAwPRuHFj6eAgAHh4eCA5ORnh4eHFxpOZmYnk5GSZBxERESkWAy01+I1ohV3j3CpscPBDVJuead++fVGnTh1oaGjAwsICQ4cOxfPnz2XS3Lp1C+3bt4eGhgasrKzw448/Fspn9+7dcHBwgIaGBho3boyjR4/KnBdCYN68ebCwsICmpibc3d0RFRUlkyYhIQFDhgyBnp4eDAwMMGrUKKSmppZ/oYmIiKjGMdfXQKOP9OUdRpUkkUhw6tQp3LhxA7q6utDQ0MDy5cvh7+8PQ0PDEudjY2ODEydO4Ouvv4a6ujoMDAzw9OlT7Nq1S5rGw8MDGzduREhICIQQuHbtGjZu3Ijs7Gy8elX0AuJxcXEyg4MApM//PQX6nxYtWgR9fX3pw8rKqsRlISIioprDqpYWnCyr5uyBajNA2LlzZ+zatQuRkZH466+/cP/+fXzyySfS88nJyejevTusra0REhKCn376CT4+Pli/fr00zeXLlzF48GCMGjUKN27cgJeXF7y8vBAWFiZN8+OPP2LlypVYu3YtgoKCoK2tDQ8PD2Rk/G9++JAhQxAeHo6TJ0/i8OHDOH/+PMaOHVs5FUFERERUzcyePRsSieSdj4iICAghMGHCBJiamuLChQsIDg6Gl5cX+vTpg9jY2BK/X1xcHMaMGQNvb29cvXoV586dg5qaGj755BMUrK4zd+5c9OjRA61bt4aqqir69esHb29vAJBOSy4vc+bMQVJSkvTx5MmTcs2fiIiI6ENV2zUIDx48CC8vL+k6MmvWrME333yDuLg46fovs2fPxv79+xEREQEAGDhwINLS0nD48GFpPq1bt0bTpk2xdu1aCCFgaWmJ6dOnY8aMGQCApKQkmJmZwc/PD4MGDcLdu3fh5OSEq1evokWLFgAAf39/9OzZE0+fPoWlpWWR8WZmZiIzM1P6PDk5GVZWVlx7hoiIiMpVVVzf7uXLl3j9+vU709ja2uLChQvo3r073rx5IxO7nZ0dRo0ahdmzZ8u8prg1COfOnQt/f39cvXpVeuzp06ewsrJCYGAgWrduLT2enZ2N+Ph4WFhYYP369Zg1axYSExOLHCScN28eDh48KPN+MTExsLW1xfXr1+Hi4lKS6qiSPyMiIiKqGRRqDcKEhARs27YNbdq0ka4jExgYiA4dOsgsDu3h4YHIyEi8efNGmubfi1t7eHggMDAQQH4HLy4uTiaNvr4+XF1dpWkCAwNhYGAgHRwEAHd3dygpKSEoKKjYmDm1hIiIiBSViYkJHBwc3vlQU1NDeno6gMJ38CkpKSEvL6/E75eenl4oD2VlZQAolI+qqipq164NZWVl7Ny5E7179y72DkI3Nzfcvn0bL168kB47efIk9PT04OTkVOL4iIiIiKqaajVAOGvWLGhra8PIyAiPHz/GgQMHpOdKsiZMcWn+ef6frysujampqcx5FRUV1KpV651rz3BqCREREdG7ubm5wdDQEN7e3rh58ybu3buHmTNnIiYmBr169ZKmi46ORmhoKOLi4vD27VuEhoYiNDQUWVlZAIBevXrh6tWr+O677xAVFYXr169jxIgRsLa2lt7ld+/ePfzxxx+IiopCcHAwBg0ahLCwMPzwww/S99m3bx8cHBykz7t37w4nJycMHToUN2/exPHjx/Htt99iwoQJUFdXr6RaIiIiIip/ch0gLOl6NAVmzpyJGzdu4MSJE1BWVsawYcNQXWZIq6urQ09PT+ZBRERERP9jbGwMf39/pKamokuXLmjRogUuXryIAwcOwNnZWZpu9OjRcHFxwbp163Dv3j24uLjAxcVFuoFdly5dsH37duzfvx8uLi7w9PSEuro6/P39oampCQDIzc3FsmXL4OzsjG7duiEjIwOXL19G3bp1pe+TlJSEyMhI6XNlZWUcPnwYysrKcHNzw2effYZhw4bhu+++q5wKIiIiIqogKvJ88+nTp2P48OHvTGNrayv9v7GxMYyNjdGgQQM4OjrCysoKV65cgZubG8zNzREfHy/z2oLn5ubm0n+LSvPP8wXHLCwsZNI0bdpUmuaf00oAICcnBwkJCdLXExEREVHZtGjRAsePH39nmrNnz743n0GDBmHQoEHFnnd0dMSNGzfemcfw4cML9VWtra1x9OjR974/ERERUXUi1zsIS7oeTVEK1o8p2PjDzc0N58+fR3Z2tjTNyZMnYW9vD0NDQ2ma06dPy+Rz8uRJuLm5AQBsbGxgbm4ukyY5ORlBQUHSNG5ubkhMTERISIg0TUBAAPLy8uDq6vqhVUJERERERERERFSpqsUahEFBQfj1118RGhqKR48eISAgAIMHD0a9evWkA3effvop1NTUMGrUKISHh+PPP//EihUr8OWXX0rzmTJlCvz9/bFs2TJERETAx8cH165dw8SJEwEAEokEU6dOxffff4+DBw/i9u3bGDZsGCwtLeHl5QUg/9tmT09PjBkzBsHBwbh06RImTpyIQYMGFbuDMRERERERERERUVVVLQYItbS0sHfvXnTt2hX29vYYNWoUmjRpgnPnzkkXhNbX18eJEycQExOD5s2bY/r06Zg3bx7Gjh0rzadNmzbYvn071q9fD2dnZ+zZswf79+9Ho0aNpGm++uorTJo0CWPHjkXLli2RmpoKf39/aGhoSNNs27YNDg4O6Nq1K3r27Il27dph/fr1lVchRERERERERERE5UQiqssuHzVMcnIy9PX1kZSUxA1LiIiIqNywj1H18WdEREREFaWs/YxqcQchERERERERERERVQy57mKsyApu3ExOTpZzJERERFSTFPQtOEmk6mI/kIiIiCpKWfuCHCCUk5SUFACAlZWVnCMhIiKimiglJQX6+vryDoOKwH4gERERVbTS9gW5BqGc5OXl4fnz59DV1YVEIin3/JOTk2FlZYUnT55wbRuwPv6N9SGL9SGL9SGL9fE/rAtZVbU+hBBISUmBpaUllJS4mkxVVNp+YFVta5WF5Wf5Fbn8AOuA5Vfs8gOsg9KWv6x9Qd5BKCdKSkqoXbt2hb+Pnp6eQv4CFYf1IYv1IYv1IYv1IYv18T+sC1lVsT5452DVVtZ+YFVsa5WJ5Wf5Fbn8AOuA5Vfs8gOsg9KUvyx9QX6tTEREREREREREpMA4QEhERERERERERKTAOEBYQ6mrq2P+/PlQV1eXdyhVAutDFutDFutDFutDFuvjf1gXslgfVFkUva2x/Cy/IpcfYB2w/IpdfoB1UFnl5yYlRERERERERERECox3EBIRERERERERESkwDhASEREREREREREpMA4QEhERERERERERKTAOEBIRERERERERESkwDhDWUKtXr0bdunWhoaEBV1dXBAcHyzukcufj4wOJRCLzcHBwkJ7PyMjAhAkTYGRkBB0dHXz88ceIj4+XyePx48fo1asXtLS0YGpqipkzZyInJ6eyi1Im58+fR58+fWBpaQmJRIL9+/fLnBdCYN68ebCwsICmpibc3d0RFRUlkyYhIQFDhgyBnp4eDAwMMGrUKKSmpsqkuXXrFtq3bw8NDQ1YWVnhxx9/rOiilcn76mP48OGF2ounp6dMmppSH4sWLULLli2hq6sLU1NTeHl5ITIyUiZNef1+nD17Fs2aNYO6ujrq168PPz+/ii5eqZWkPjp16lSofYwfP14mTU2pjzVr1qBJkybQ09ODnp4e3NzccOzYMel5RWobwPvrQ5HaBlWe0vbTdu/eDQcHB2hoaKBx48Y4evSozPmSfOZXJaUp/4YNG9C+fXsYGhrC0NAQ7u7uhdKX5DO+qilNHfj5+RUqn4aGhkyamtwGivo7LJFI0KtXL2ma6tQG3tdnLUpJPkOqy/Vfacu/d+9edOvWDSYmJtLP6ePHj8uked91YVVT2jo4e/Zskb8DcXFxMulqahso6vdbIpGgYcOG0jTVqQ2U5NqkKJXSFxBU4+zcuVOoqamJzZs3i/DwcDFmzBhhYGAg4uPj5R1auZo/f75o2LChiI2NlT5evnwpPT9+/HhhZWUlTp8+La5duyZat24t2rRpIz2fk5MjGjVqJNzd3cWNGzfE0aNHhbGxsZgzZ448ilNqR48eFd98843Yu3evACD27dsnc37x4sVCX19f7N+/X9y8eVP07dtX2NjYiLdv30rTeHp6CmdnZ3HlyhVx4cIFUb9+fTF48GDp+aSkJGFmZiaGDBkiwsLCxI4dO4SmpqZYt25dZRWzxN5XH97e3sLT01OmvSQkJMikqSn14eHhIXx9fUVYWJgIDQ0VPXv2FHXq1BGpqanSNOXx+/HgwQOhpaUlvvzyS3Hnzh2xatUqoaysLPz9/Su1vO9Tkvro2LGjGDNmjEz7SEpKkp6vSfVx8OBBceTIEXHv3j0RGRkpvv76a6GqqirCwsKEEIrVNoR4f30oUtugylHaftqlS5eEsrKy+PHHH8WdO3fEt99+K1RVVcXt27elaUrymV9VlLb8n376qVi9erW4ceOGuHv3rhg+fLjQ19cXT58+laYpyWd8VVLaOvD19RV6enoy5YuLi5NJU5PbwOvXr2XKHhYWJpSVlYWvr680TXVqA+/rs/5bST5DqtP1X2nLP2XKFLFkyRIRHBws7t27J+bMmSNUVVXF9evXpWned11Y1ZS2Ds6cOSMAiMjISJky5ubmStPU5DaQmJgoU+4nT56IWrVqifnz50vTVKc2UJJrk3+rrL4ABwhroFatWokJEyZIn+fm5gpLS0uxaNEiOUZV/ubPny+cnZ2LPJeYmChUVVXF7t27pcfu3r0rAIjAwEAhRP4fJiUlJZkO1po1a4Senp7IzMys0NjL27//sObl5Qlzc3Px008/SY8lJiYKdXV1sWPHDiGEEHfu3BEAxNWrV6Vpjh07JiQSiXj27JkQQojffvtNGBoaytTHrFmzhL29fQWX6MMUN0DYr1+/Yl9Tk+vjxYsXAoA4d+6cEKL8fj+++uor0bBhQ5n3GjhwoPDw8KjoIn2Qf9eHEPmDQFOmTCn2NTW5PoQQwtDQUGzcuFHh20aBgvoQgm2Dyl9p+2kDBgwQvXr1kjnm6uoqxo0bJ4Qo2Wd+VfKh/dScnByhq6srtmzZIj32vs/4qqa0deDr6yv09fWLzU/R2sDPP/8sdHV1ZS6mq1sbKFCSwZGSfIZU1+u/kpS/KE5OTmLBggXS5++6LqzqSjNA+ObNm2LTKFIb2Ldvn5BIJOLhw4fSY9W5DRR1bfJvldUX4BTjGiYrKwshISFwd3eXHlNSUoK7uzsCAwPlGFnFiIqKgqWlJWxtbTFkyBA8fvwYABASEoLs7GyZenBwcECdOnWk9RAYGIjGjRvDzMxMmsbDwwPJyckIDw+v3IKUs5iYGMTFxcmUX19fH66urjLlNzAwQIsWLaRp3N3doaSkhKCgIGmaDh06QE1NTZrGw8MDkZGRePPmTSWVpvycPXsWpqamsLe3x+eff47Xr19Lz9Xk+khKSgIA1KpVC0D5/X4EBgbK5FGQpqr/rfl3fRTYtm0bjI2N0ahRI8yZMwfp6enSczW1PnJzc7Fz506kpaXBzc1N4dvGv+ujgCK2DaoYZemnva/9lOQzv6ooj35qeno6srOzC/0Nf9dnfFVS1jpITU2FtbU1rKys0K9fP5m+qqK1gU2bNmHQoEHQ1taWOV5d2kBpve9vgKJd/+Xl5SElJaXQ34DirgtrkqZNm8LCwgLdunXDpUuXpMcVrQ1s2rQJ7u7usLa2ljleXdtAcdcm/1RZfQGV0gROVd+rV6+Qm5src6ECAGZmZoiIiJBTVBXD1dUVfn5+sLe3R2xsLBYsWID27dsjLCwMcXFxUFNTg4GBgcxrzMzMpGs1xMXFFVlPBeeqs4L4iyrfP8tvamoqc15FRQW1atWSSWNjY1Moj4JzhoaGFRJ/RfD09MR///tf2NjY4P79+/j666/Ro0cPBAYGQllZucbWR15eHqZOnYq2bduiUaNGAFBuvx/FpUlOTsbbt2+hqalZEUX6IEXVBwB8+umnsLa2hqWlJW7duoVZs2YhMjISe/fuBVDz6uP27dtwc3NDRkYGdHR0sG/fPjg5OSE0NFQh20Zx9QEoXtugilWWflpx7eef7avgWHFpqory6KfOmjULlpaWMhdB7/uMr0rKUgf29vbYvHkzmjRpgqSkJCxduhRt2rRBeHg4ateurVBtIDg4GGFhYdi0aZPM8erUBkrrfZ8hb968UZjrPwBYunQpUlNTMWDAAOmxd10X6urqyjHa8mFhYYG1a9eiRYsWyMzMxMaNG9GpUycEBQWhWbNmCjUG8Pz5cxw7dgzbt2+XOV5d20Bx1yb/Vll9AQ4QUrXVo0cP6f+bNGkCV1dXWFtbY9euXbzYokIGDRok/X/jxo3RpEkT1KtXD2fPnkXXrl3lGFnFmjBhAsLCwnDx4kV5h1IlFFcfY8eOlf6/cePGsLCwQNeuXXH//n3Uq1evssOscPb29ggNDUVSUhL27NkDb29vnDt3Tt5hyU1x9eHk5KRwbYOoKlu8eDF27tyJs2fPymzSUdM/493c3GTuam7Tpg0cHR2xbt06LFy4UI6RVb5NmzahcePGaNWqlczxmt4GKN/27duxYMECHDhwQOaL/XddF44aNUoeoZYre3t72NvbS5+3adMG9+/fx88//4zff/9djpFVvi1btsDAwABeXl4yx6trG6hq12qcYlzDGBsbQ1lZudCOk/Hx8TA3N5dTVJXDwMAADRo0QHR0NMzNzZGVlYXExESZNP+sB3Nz8yLrqeBcdVYQ/7vagbm5OV68eCFzPicnBwkJCQpRR7a2tjA2NkZ0dDSAmlkfEydOxOHDh3HmzBnUrl1bery8fj+KS6Onp1clB+mLq4+iuLq6AoBM+6hJ9aGmpob69eujefPmWLRoEZydnbFixQqFbRvF1UdRanrboIpVln5ace3nn+2r4FhJ85SXD+mnLl26FIsXL8aJEyfQpEmTd6b992d8VVIefXVVVVW4uLjI/B0qyKOseVaWDyl/Wloadu7cWaKL/arcBkrrfZ8hinL9t3PnTowePRq7du0qNNXy3/55XVhTtWrVSlo+RWkDQghs3rwZQ4cOlVnyqSjVoQ2U5tqksvoCHCCsYdTU1NC8eXOcPn1aeiwvLw+nT5+W+eaxJkpNTcX9+/dhYWGB5s2bQ1VVVaYeIiMj8fjxY2k9uLm54fbt2zKDQidPnoSenp50all1ZWNjA3Nzc5nyJycnIygoSKb8iYmJCAkJkaYJCAhAXl6e9ALYzc0N58+fR3Z2tjTNyZMnYW9vXyWn05bG06dP8fr1a1hYWACoWfUhhMDEiROxb98+BAQEFJoWXV6/H25ubjJ5FKSpan9r3lcfRQkNDQUAmfZRU+qjKHl5ecjMzFS4tlGcgvooiqK1DSpfZemnva/9lOQzv6ooaz/1xx9/xMKFC+Hv7y+zVnBx/v0ZX5WUR189NzcXt2/flpZPEdoAAOzevRuZmZn47LPP3vs+VbkNlNb7/gYowvXfjh07MGLECOzYsQO9evV6b/p/XhfWVKGhodLyKUIbAIBz584hOjq6RF8SVOU2UJZrk0rrC5RicxWqJnbu3CnU1dWFn5+fuHPnjhg7dqwwMDCQ2WGxJpg+fbo4e/asiImJEZcuXRLu7u7C2NhYvHjxQgghxPjx40WdOnVEQECAuHbtmnBzcxNubm7S1+fk5IhGjRqJ7t27i9DQUOHv7y9MTEzEnDlz5FWkUklJSRE3btwQN27cEADE8uXLxY0bN8SjR4+EEPnbnBsYGIgDBw6IW7duiX79+hXa5tzT01O4uLiIoKAgcfHiRWFnZycGDx4sPZ+YmCjMzMzE0KFDRVhYmNi5c6fQ0tIS69atq/Tyvs+76iMlJUXMmDFDBAYGipiYGHHq1CnRrFkzYWdnJzIyMqR51JT6+Pzzz4W+vr44e/asiI2NlT7S09Olacrj9+PBgwdCS0tLzJw5U9y9e1esXr1aKCsrC39//0ot7/u8rz6io6PFd999J65duyZiYmLEgQMHhK2trejQoYM0j5pUH7Nnzxbnzp0TMTEx4tatW2L27NlCIpGIEydOCCEUq20I8e76ULS2QZXjff20oUOHitmzZ0vTX7p0SaioqIilS5eKu3fvivnz5wtVVVVx+/ZtaZqSfOZXFaUt/+LFi4WamprYs2ePzN/wlJQUIYQo8Wd8VVLaOliwYIE4fvy4uH//vggJCRGDBg0SGhoaIjw8XJqmJreBAu3atRMDBw4sdLy6tYH39eFnz54thg4dKk1fks+Q6nT9V9ryb9u2TaioqIjVq1fL/A1ITEyUpnnfdWFVU9o6+Pnnn8X+/ftFVFSUuH37tpgyZYpQUlISp06dkqapyW2gwGeffSZcXV2LzLM6tYGSXKvJqy/AAcIaatWqVaJOnTpCTU1NtGrVSly5ckXeIZW7gQMHCgsLC6GmpiY++ugjMXDgQBEdHS09//btW/HFF18IQ0NDoaWlJf7zn/+I2NhYmTwePnwoevToITQ1NYWxsbGYPn26yM7OruyilEnBdvf/fnh7ewsh8rc6nzt3rjAzMxPq6uqia9euIjIyUiaP169fi8GDBwsdHR2hp6cnRowYIe1wF7h586Zo166dUFdXFx999JFYvHhxZRWxVN5VH+np6aJ79+7CxMREqKqqCmtrazFmzJhCH5g1pT6KqgcAwtfXV5qmvH4/zpw5I5o2bSrU1NSEra2tzHtUFe+rj8ePH4sOHTqIWrVqCXV1dVG/fn0xc+ZMkZSUJJNPTamPkSNHCmtra6GmpiZMTExE165dpYODQihW2xDi3fWhaG2DKs+7+mkdO3aUfpYX2LVrl2jQoIFQU1MTDRs2FEeOHJE5X5LP/KqkNOW3trYu8m/4/PnzhRCixJ/xVU1p6mDq1KnStGZmZqJnz57i+vXrMvnV5DYghBARERECgMznVYHq1gbe14f39vYWHTt2LPSa932GVJfrv9KWv2PHju9ML8T7rwurmtLWwZIlS0S9evWEhoaGqFWrlujUqZMICAgolG9NbQNC5N+ooampKdavX19kntWpDZTkWk1efQHJ3wESERERERERERGRAuIahERERERERERERAqMA4REREREREREREQKjAOERERERERERERECowDhERERERERERERAqMA4REREREREREREQKjAOERERERERERERECowDhERERERERERERAqMA4REREREREREREQKjAOEREQVZPjw4fDy8qr09/Xz84NEIoFEIsHUqVNL9Jrhw4dLX7N///4KjY+IiIioPD18+BASiQShoaElSi+vPlpxfHx80LRpU+nzio7Px8dH2u/75ZdfPjivf8ZeVRWU18DAQN6hEOH8+fPo06cPLC0ty3z9JYTA0qVL0aBBA6irq+Ojjz7C//3f/31QXBwgJCIqg4JORnEPHx8frFixAn5+fnKJT09PD7GxsVi4cGGJ0q9YsQKxsbEVHBUREREpin9++aimpob69evju+++Q05Ozgfn++/BMysrK8TGxqJRo0YflHdVURl9yIYNGyI2NhZjx479oHxmzJiB06dPl1NUFSc2NvaDB0OJyktaWhqcnZ2xevXqMucxZcoUbNy4EUuXLkVERAQOHjyIVq1afVBcKh/0aiIiBfXPwbQ///wT8+bNQ2RkpPSYjo4OdHR05BEagPwBTHNz8xKn19fXh76+fgVGRERERIrG09MTvr6+yMzMxNGjRzFhwgSoqqpizpw5pc4rNzcXEomkyHPKysql6vdUhKysLKipqZVLXpXRJ1NRUSmXOvvQPm92djZUVVU/OI73MTc3Z1+XqowePXqgR48exZ7PzMzEN998gx07diAxMRGNGjXCkiVL0KlTJwDA3bt3sWbNGoSFhcHe3h4AYGNj88Fx8Q5CIqIyMDc3lz709fWlA3IFDx0dnULfcHfq1AmTJk3C1KlTYWhoCDMzM2zYsAFpaWkYMWIEdHV1Ub9+fRw7dkzmvcLCwtCjRw/o6OjAzMwMQ4cOxatXr0od82+//QY7OztoaGjAzMwMn3zyyYdWAxEREVGx1NXVYW5uDmtra3z++edwd3fHwYMHAQDLly9H48aNoa2tDSsrK3zxxRdITU2VvtbPzw8GBgY4ePAgnJycoK6ujpEjR2LLli04cOCA9O7Es2fPFjnFODw8HL1794aenh50dXXRvn173L9/v8g48/LysGjRItjY2EBTUxPOzs7Ys2fPO8tWt25dLFy4EMOGDYOenp70TrxZs2ahQYMG0NLSgq2tLebOnYvs7GyZ1y5evBhmZmbQ1dXFqFGjkJGRIXP+333IunXrFrr7rWnTpvDx8QGQP9XQx8cHderUgbq6OiwtLTF58uR3xl8UiUSCdevWoXfv3tDS0oKjoyMCAwMRHR2NTp06QVtbG23atJGpx6KmGG/evBkNGzaEuro6LCwsMHHiRJn3WLNmDfr27QttbW3plMg1a9agXr16UFNTg729PX7//fdCsW3cuBH/+c9/oKWlBTs7O2lbAoA3b95gyJAhMDExgaamJuzs7ODr61vqOiCqCiZOnIjAwEDs3LkTt27dQv/+/eHp6YmoqCgAwKFDh2Bra4vDhw/DxsYGdevWxejRo5GQkPBB78sBQiKiSrRlyxYYGxsjODgYkyZNwueff47+/fujTZs2uH79Orp3746hQ4ciPT0dAJCYmIguXbrAxcUF165dg7+/P+Lj4zFgwIBSve+1a9cwefJkfPfdd4iMjIS/vz86dOhQEUUkIiIiKpKmpiaysrIAAEpKSli5ciXCw8OxZcsWBAQE4KuvvpJJn56ejiVLlmDjxo0IDw/HypUrMWDAAHh6eiI2NhaxsbFo06ZNofd59uwZOnToAHV1dQQEBCAkJAQjR44sdnrzokWLsHXrVqxduxbh4eGYNm0aPvvsM5w7d+6d5Vm6dCmcnZ1x48YNzJ07FwCgq6sLPz8/3LlzBytWrMCGDRvw888/S1+za9cu+Pj44IcffsC1a9dgYWGB3377rVT1+G9//fUXfv75Z6xbtw5RUVHYv38/GjduXKa8CgY9Q0ND4eDggE8//RTjxo3DnDlzcO3aNQghZAb8/m3NmjWYMGECxo4di9u3b+PgwYOoX7++TBofHx/85z//we3btzFy5Ejs27cPU6ZMwfTp0xEWFoZx48ZhxIgROHPmjMzrFixYgAEDBuDWrVvo2bMnhgwZIh0QmTt3Lu7cuYNjx45J764yNjYuUx0QydPjx4/h6+uL3bt3o3379qhXrx5mzJiBdu3aSQe9Hzx4gEePHmH37t3YunUr/Pz8EBIS8uE3gAgiIvogvr6+Ql9fv9Bxb29v0a9fP+nzjh07inbt2kmf5+TkCG1tbTF06FDpsdjYWAFABAYGCiGEWLhwoejevbtMvk+ePBEARGRkZInj+euvv4Senp5ITk5+Z1kAiH379r0zDREREdH7/LMflJeXJ06ePCnU1dXFjBkziky/e/duYWRkJH3u6+srAIjQ0NBi8y0QExMjAIgbN24IIYSYM2eOsLGxEVlZWe+NLSMjQ2hpaYnLly/LpBk1apQYPHhwseWztrYWXl5exZ4v8NNPP4nmzZtLn7u5uYkvvvhCJo2rq6twdnYuMr6C9/r5559lXuPs7Czmz58vhBBi2bJlokGDBsWW99/mz58v834FAIhvv/1W+jwwMFAAEJs2bZIe27Fjh9DQ0Cg2L0tLS/HNN98U+94AxNSpU2WOtWnTRowZM0bmWP/+/UXPnj2LjS01NVUAEMeOHRNCCNGnTx8xYsSIYt9XiOL77ETy9O/rr8OHDwsAQltbW+ahoqIiBgwYIIQQYsyYMYWuB0NCQgQAERERUeZYuAYhEVElatKkifT/ysrKMDIykvmG18zMDADw4sULAMDNmzdx5syZItd2uX//Pho0aFCi9+3WrRusra1ha2sLT09PeHp6SqdoEBEREVWEw4cPQ0dHB9nZ2cjLy8Onn34qnRZ76tQpLFq0CBEREUhOTkZOTg4yMjKQnp4u7Z+oqanJ9J1KKjQ0FO3bty/R2nbR0dFIT09Ht27dZI5nZWXBxcXlna9t0aJFoWN//vknVq5cifv37yM1NRU5OTnQ09OTnr979y7Gjx8v8xo3N7dCd8uVRv/+/fHLL79I+3k9e/ZEnz59oKJS+sv9f9Z3Qb/0333VjIwMJCcny5QLyO+/Pn/+HF27dn3ne/y73u7evVtos5S2bdtixYoVxcamra0NPT09aZ/5888/x8cffyydkePl5VXk3aVEVV1qaiqUlZUREhICZWVlmXMF14QWFhZQUVGRuRZ0dHQEkH8HYsG6hKXFKcZERJXo3x1ViUQic6xg8e28vDwA+R8Qffr0QWhoqMwjKiqqVFOEdXV1cf36dezYsQMWFhaYN28enJ2dkZiY+OGFIiIiIipC586dpf2Wt2/fYsuWLdDW1sbDhw/Ru3dvNGnSBH/99RdCQkKku3kWTEEG8qckF7cxybtoamqWOG3BuodHjhyR6WvduXPnvesQamtryzwPDAzEkCFD0LNnTxw+fBg3btzAN998I1OmslBSUkL+jUb/8891Da2srBAZGYnffvsNmpqa+OKLL9ChQ4dCax+WRFH90nf1Vf+ppPX+73orS2wFsRTE0aNHDzx69AjTpk2TDlLOmDGjTO9DJE8uLi7Izc3FixcvUL9+fZlHwcZCbdu2RU5Ojsx6oPfu3QMAWFtbl/m9OUBIRFSFNWvWDOHh4ahbt26hD4jSdq5UVFTg7u6OH3/8Ebdu3cLDhw8REBBQQZETERGRotPW1kb9+vVRp04dmbvZQkJCkJeXh2XLlqF169Zo0KABnj9/XqI81dTUkJub+840TZo0wYULF0o0QFawAcrjx48L9bWsrKxKFFOBy5cvw9raGt988w1atGgBOzs7PHr0SCaNo6MjgoKCZI5duXLlnfmamJggNjZW+jw5ORkxMTEyaTQ1NdGnTx+sXLkSZ8+eRWBgIG7fvl2q+D+Urq4u6tati9OnT5fqdY6Ojrh06ZLMsUuXLsHJyalU+ZiYmMDb2xt//PEHfvnlF6xfv75UryeqLKmpqdIvIwAgJiYGoaGhePz4MRo0aIAhQ4Zg2LBh2Lt3L2JiYhAcHIxFixbhyJEjAAB3d3c0a9YMI0eOxI0bNxASEoJx48ahW7duJZ5hVhROMSYiqsImTJiADRs2YPDgwfjqq69Qq1YtREdHY+fOndi4cWOh286Lc/jwYTx48AAdOnSAoaEhjh49iry8vDLffk5ERERUVvXr10d2djZWrVqFPn364NKlS1i7dm2JXlu3bl0cP34ckZGRMDIygr6+fqE0EydOxKpVqzBo0CDMmTMH+vr6uHLlClq1alWo76Orq4sZM2Zg2rRpyMvLQ7t27ZCUlIRLly5BT08P3t7eJS6XnZ0dHj9+jJ07d6Jly5Y4cuQI9u3bJ5NmypQpGD58OFq0aIG2bdti27ZtCA8Ph62tbbH5dunSBX5+fujTpw8MDAwwb948mT6gn58fcnNz4erqCi0tLfzxxx/Q1NT8oDuJysrHxwfjx4+HqakpevTogZSUFFy6dAmTJk0q9jUzZ87EgAED4OLiAnd3dxw6dAh79+7FqVOnSvy+8+bNQ/PmzdGwYUNkZmbi8OHD0imXRFXNtWvX0LlzZ+nzL7/8EgDg7e0NPz8/+Pr64vvvv8f06dPx7NkzGBsbo3Xr1ujduzeA/LuKDx06hEmTJqFDhw7Q1tZGjx49sGzZsg+KiwOERERVmKWlJS5duoRZs2ahe/fuyMzMhLW1NTw9PaGkVPKbwA0MDLB37174+PggIyMDdnZ22LFjBxo2bFiB0RMREREV5uzsjOXLl2PJkiWYM2cOOnTogEWLFmHYsGHvfe2YMWNw9uxZtGjRAqmpqThz5gzq1q0rk8bIyAgBAQGYOXMmOnbsCGVlZTRt2hRt27YtMs+FCxfCxMQEixYtwoMHD2BgYIBmzZrh66+/LlW5+vbti2nTpmHixInIzMxEr169MHfuXOm6iwAwcOBA3L9/H1999RUyMjLw8ccf4/PPP8fx48eLzXfOnDmIiYlB7969oa+vj4ULF8rcQWhgYIDFixfjyy+/RG5uLho3boxDhw7ByMioVPGXB29vb2RkZODnn3/GjBkzYGxs/N6dVb28vLBixQosXboUU6ZMgY2NDXx9fdGpU6cSv6+amhrmzJmDhw8fQlNTE+3bt8fOnTs/sDREFaNTp06Flg34J1VVVSxYsAALFiwoNo2lpSX++uuvco1LIt4VFRERVTt+fn6YOnVqmdYXlEgk2LdvH7y8vMo9LiIiIiKSPx8fH+zfv186vVFRfEgfmUgRcA1CIqIaKCkpCTo6Opg1a1aJ0o8fP77InZKJiIiIqOa5ffs2dHR08Ntvv8k7lEqho6NTaPdoIpLFOwiJiGqYlJQUxMfHA8ifcmJsbPze17x48QLJyckAAAsLizLvLkdEREREVVtCQgISEhIA5G/sUdQ6jjVNdHQ0AEBZWRk2NjZyjoaoauIAIRERERERERERkQLjFGMiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBcYBQiIiIiIiIiIiIgXGAUIiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBcYBQiIiIiIiIiIiIgXGAUIiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBfb/gKUQ75nKPVwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQgAAAGFCAYAAACxAR57AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbTUlEQVR4nOzdd1yV9fvH8dc5bJSlgjhQxIVbxEVu5es2LTWz4Wxr7n5plpottaGWlQ3LtmWZaZqGe5HiwI04UHGgIgIuDuv8/kBPkSNA4DDez8fjPIz7fO7PuY631eV139fnYzCbzWZERERERERERESkWDJaOwARERERERERERGxHhUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRUREREREREREijEVCEVERERERERERIoxFQhFRERERERERESKMRUIRURERKTAiIyMpGfPnpQpUwZXV1datmzJ2rVrM40ZMWIEgYGBODg40LBhw9vOs3LlSpo3b46Liwuenp707t2b48ePW94fNGgQBoPhlledOnXuGp/ZbOadd96hRo0aODg4UKFCBd544417/doiIiIiVqUCoYiIiIgUGN27dyc1NZU1a9awY8cOGjRoQPfu3YmJick0bsiQIfTr1++2c0RFRdGzZ0/at29PeHg4K1euJDY2lgcffNAyZvbs2Zw9e9byio6OplSpUvTt2/eu8Y0cOZLPP/+cd955h4iICJYsWULTpk3v/YuLiIiIWJHBbDabrR1EcZSens6ZM2dwcXHBYDBYOxwREREpIsxmM5cvX6Z8+fIYjYXrXnBsbCyenp5s2LCBVq1aAXD58mVcXV0JCQkhODg40/gpU6awePFiwsPDMx3/+eef6d+/PyaTyfJ7sHTpUnr27InJZMLOzu6Wz168eDEPPvggUVFRVK5c+bbxHTx4kPr167Nv3z5q1qyZ4++pPFBERETySk5zQds8jEnu4syZM/j4+Fg7DBERESmioqOjqVixorXDyJbSpUtTs2ZNvv76axo1aoSDgwOffPIJXl5eBAYGZnmewMBAjEYjX375JYMGDeLKlSt88803BAcH37Y4CDBv3jyCg4PvWByEjCKjn58fv//+O507d8ZsNhMcHMyMGTMoVarUHc8zmUyYTCbLz6dPn6Z27dpZ/j4iIiIi2ZXdXFAFQitxcXEBMi6Yq6urlaMRERGRoiIxMREfHx9LrlGYGAwGVq1aRa9evXBxccFoNOLl5cWKFSvw8PDI8jxVqlThzz//5KGHHuLpp58mLS2NoKAgli9fftvxZ86c4Y8//uD777+/67zHjh3jxIkTLFy4kK+//pq0tDRGjx5Nnz59WLNmzR3Pe+utt3j11VdvOa48UERERHJbTnNBFQit5GY7iaurqxJDERERyXUFqXV1/PjxTJ8+/a5jDh48SM2aNRk2bBheXl5s3LgRJycnPv/8c3r06EFYWBjlypXL0ufFxMTw5JNPMnDgQPr378/ly5eZNGkSffr0ISQk5Jbfm6+++gp3d3d69ep113nT09MxmUx8/fXX1KhRA8h48jAwMJBDhw7dse14woQJjBkzxvLzzcRdeaCIiIjklezmgioQioiIiEieGjt2LIMGDbrrGD8/P9asWcPvv//OpUuXLIWzjz76iJCQEL766ivGjx+fpc/78MMPcXNzY8aMGZZj3377LT4+PmzdupXmzZtbjpvNZr744gsef/xx7O3t7zpvuXLlsLW1tRQHAWrVqgXAyZMn71ggdHBwwMHBIUuxi4iIiFiDCoQiIiIikqc8PT3x9PT8z3HXrl0DuGVBbaPRSHp6epY/79q1a7fMYWNjA3DLPOvXr+fIkSMMHTr0P+dt0aIFqampHD16lKpVqwIQGRkJcNe1C0VEREQKusK1tZ2IiIiIFFlBQUF4eHgwcOBAdu/eTWRkJC+88AJRUVF069bNMu7IkSOEh4cTExPD9evXCQ8PJzw8nOTkZAC6detGWFgYU6dO5fDhw+zcuZPBgwdTuXJlAgICMn3mvHnzaNasGXXr1r0lnjlz5tChQwfLz8HBwTRq1IghQ4awa9cuduzYwdNPP83//ve/TE8VioiIiBQ2eoJQRERERAqEMmXKsGLFCiZOnEj79u1JSUmhTp06/PbbbzRo0MAy7oknnmD9+vWWn28W/aKiovD19aV9+/Z8//33zJgxgxkzZuDs7ExQUBArVqzAycnJcl5CQgK//PILs2fPvm08sbGxHD161PKz0Whk6dKlPP/887Ru3ZoSJUrQpUsX3n333dz+rRAREblnZrOZ1NRU0tLSrB2K5CIbGxtsbW1zfb1pg9lsNufqjJIliYmJuLm5kZCQoMWpRUREJNcoxyj4dI1ERCSvJScnc/bsWcvyHVK0ODs7U65cuduun5zTPENPEIqIiIiIiIiIFBHp6elERUVhY2ND+fLlsbe3z/WnzcQ6zGYzycnJXLhwgaioKKpXr37Luss5pQKhiIiIiIiIiEgRkZycTHp6Oj4+Pjg7O1s7HMllTk5O2NnZceLECZKTk3F0dMyVebVJiYiIiIiIiIhIEZNbT5ZJwZMX11Z/Wu7Bhx9+iK+vL46OjjRr1oxt27ZZOyQREREREREREZFsUYEwh3788UfGjBnD5MmT2blzJw0aNKBTp06cP3/e2qEBYEpNIz1d+8+IiIiIiIiIiMjdaQ3CHHrvvfd48sknGTx4MABz585l2bJlfPHFF4wfP/6W8SaTCZPJZPk5MTExT+N7Z+Uhtp+4xGs961K3gluefpaIiIiIFBxz1hxm1cHzuDrZ4eJoi6ujLa6OGf/s4miHq5MtLg433nP6+7iLgy1GoxaxFxERyQ1Tpkzh1VdfBWDmzJmMGjXqP89p27Yt69evB2DXrl00bNgwDyPMTAXCHEhOTmbHjh1MmDDBcsxoNBIcHExoaOhtz3nrrbcsfzDy2uWkFH7afoqE6yncP2cTjzarzLiONXFztsuXzxcRERER6zl64Srh0fHZPs9ggJL2trcUDl1vFhD/cfxmwbFUCXvKuztRuoR2yBQRkXvXtm1bGjZsyKxZs3J0/v79+5k0aRI7duzgxIkTdyzMffjhh7z99tvExMTQoEEDPvjgA5o2bWp5PykpibFjx7JgwQJMJhOdOnXio48+omzZspYxJ0+e5Nlnn2Xt2rWULFmSgQMH8tZbb2Fr+3eprU6dOqxatQpXV9csxb9o0SKOHj2aKZb8ogJhDsTGxpKWlpbpDwZA2bJliYiIuO05EyZMYMyYMZafExMT8fHxyZP4XBztWDmqNW8uP8iS3Wf45q8TLNt7lvGd/ekTWFF3hkVERESKsKda+9G5rjeXk1JJvJ7C5aRULielkJh0859T//HPKSReTyU5LR2zGS6bUrlsSuVMQlK2PtPB1kgFdycqeDhRwd2J8u5OmX72dnPEzkarG4mISN66du0afn5+9O3bl9GjR992zM0l4+bOnUuzZs2YNWsWnTp14tChQ3h5eQEwevRoli1bxsKFC3Fzc2P48OE8+OCDbN68GYC0tDS6deuGt7c3W7Zs4ezZswwYMAA7OzvefPNNy2fZ2tri7e2d5fhLlSqV5x2nd6ICYT5xcHDAwcEh3z7P282R9/sH8HBTHyb/tp/D56/wf7/s4Yewk2o7FhERESnCapVzpVa5rD2pcFNSStptC4eXb/yc+I9f/3k89oqJ85dNmFLTORZ7lWOxV287v9EAZV0dMxUOy7s7UfEfRcQSDvqriYhIXjGbzVxPSbPKZzvZ2WTpKfNBgwaxfv161q9fz+zZswGIiorC19c3y5/VpEkTmjRpAnDb5d/gv5eMS0hIYN68eXz//fe0b98egC+//JJatWrx119/0bx5c/78808OHDjAqlWrKFu2LA0bNuS1117jxRdfZMqUKdjb29/2s81mM6+++ipffPEF586do3Tp0vTp04f3338/y98xr+j/wjlQpkwZbGxsOHfuXKbj586dy1ZlOD/cV7UMy0e2Yv7m48xaFcmuk/H0mLOJx9R2LCIiIiI3ONrZ4Ghng6dL9m9om1LTiElI4vSl65yOv/G6dJ0zCTd+jU8iOS2dswlJnE1IYseJS7edx83JLtNTh/8sJFYpUwI3J+WtIiI5dT0ljdqTVlrlsw9M7YSz/X+Xn2bPnk1kZCR169Zl6tSpAHh6elKyZMm7nvfYY48xd+7cLMWSlSXjduzYQUpKCsHBwZYx/v7+VKpUidDQUJo3b05oaCj16tXL1FnaqVMnnn32Wfbv309AQMBtP/+XX35h5syZLFiwgDp16hATE8Pu3buzFHteU4EwB+zt7QkMDGT16tX06tULgPT0dFavXs3w4cOtG9xt2NkYebK1H/c3LM8by9R2LCIiIiK5x8HWhsqlS1C5dInbvp+ebib2qslSQDxzo4CYUUxM4vSlayQmpZJwPYWE6ykcOHv71qoK7k74e7vgX84Ff29XapVzwbd0CWzVuiwiUiS4ublhb2+Ps7NzpoevwsPD73peVtf3g6wtGRcTE4O9vT3u7u63jImJibGMud0cN9+7k5MnT+Lt7U1wcDB2dnZUqlTJKusN3o4KhDk0ZswYBg4cSOPGjWnatCmzZs3i6tWrlkdUC6Kyrhltx/2bVmLSb/ssbcffbzvJ673UdiwiIiIiuc9oNODl4oiXiyMBlTxuO+ZyUgpn4pM4HX/tRvEw6caTiNc4dek65y+bLE8nro44bznP3tZIjbIl8fd2xd/bhVrlMn4tXTL/lvYRESkMnOxsODC1k9U++15Uq1YtlyKxvr59+zJr1iz8/Pzo3LkzXbt2pUePHpk2NrEW60dQSPXr148LFy4wadIkYmJiaNiwIStWrLilglwQBVUtzfKRrfhqy3FmhkQSHp3Rdvxos0qM61gTd+fb98qLiIiIiOQFF0c7anrbUdPb5bbvJ1xP4VDMZSJiEjl4NuPXQzGXuZacxr7Tiew7nfmpQ08Xh0wFQ39vV6p5lcTeVk8bikjxZDAYstTmWxDlZotxVpaM8/b2Jjk5mfj4+ExPEf57zLZt226Z4+Z7d+Lj48OhQ4dYtWoVISEhPPfcc7z99tusX78eOzvrLqVROP90FBDDhw8vkC3FWWFnY+SJVn70aFCeN5cf5LfwM3z710mW743hxc416Rvoo7ZjERERESkQ3JzsaFqlFE2rlLIcS083E33pmqVgGHHj1xNx17hw2cSFyyY2Ho61jLc1GqjmVfJGm/LfTxx6uThkafF8ERHJe/b29qSlZd5MJTdbjLOyZFxgYCB2dnasXr2a3r17A3Do0CFOnjxJUFAQAEFBQbzxxhucP3/esvNxSEgIrq6u1K5d+64xODk50aNHD3r06MGwYcPw9/dn7969NGrUKMvfIy+oQFjMlXV1ZPbDATzcpBKTl+wj8twVXvxlLz9si+a1nnWpV1FtxyIiIiJS8BiNBsvah53r/v20xlVTKpHnLhMRc5mIs4kcvPFrYlJqxrGYyxB+xjLew9kuo0W5nAsBlTxo6lsKbzdHa3wlEZFiz9fXl61bt3L8+HFKlixJqVKlstVinJyczIEDByz/fPr0acLDwylZsqRlnv9aMs7NzY2hQ4cyZswYSpUqhaurK88//zxBQUE0b94cgI4dO1K7dm0ef/xxZsyYQUxMDC+//DLDhg3DweHOy1zMnz+ftLQ0mjVrhrOzM99++y1OTk5Urlw5p79luUYFQgEy2o6XjchoO5616jDh0fHc/+EmHmlaiRc6qe1YRERERAqHEg62BFTyyLTeodls5mxC0j9alDOKhsdir3LpWgqhxy4SeuwiX24+DkClUs408S1F0yoeNK1SGt/SznrKUEQkH4wbN46BAwdSu3Ztrl+/TlRUFL6+vlk+/8yZM5l2EH7nnXd45513aNOmDevWrQOytmTczJkzMRqN9O7dG5PJRKdOnfjoo48s79vY2PD777/z7LPPEhQURIkSJRg4cKBl9+U7cXd3Z9q0aYwZM4a0tDTq1avH0qVLKV26dJa/Y14xmM1ms7WDKI4SExNxc3MjISEhW4/D5odziUmWtmPIuKv6Ymd/HmqstmMREZGCriDnGJJB16jgSEpJ48j5K0TEXGbf6QS2n4jjwJlE0v/1N6QyJR0yioW+pWhSpRT+3q7YKC8WkQIqKSmJqKgoqlSpgqOjnoi2lilTprB48eL/bJH+t+PHj1OlShV27dpFw4YNbzvmbtc4p3mGniCUW9xsO+7ftBKTf9vPoXOXGb9oLz+ERfO62o5FREREpIhwtLOhbgU36lZwo09gRSBjR+UdJy4RdjyObVFx7I5OIPaKieV7Y1i+NwYAF0dbGlf2oEmVUjT1LUW9im442N7bLp0iIlL07N27l5IlSzJjxgyee+65/xzfpUsXNmzYkA+R3UpPEFpJYblznJKWztehJ5gZEskVUyoGA2o7FhERKcAKS45RnOkaFS5JKWnsOZVA2PE4tkbFsfPEJa6YUjONcbA10tDHnWZVMp4wbFTJgxIOehZDRKxDTxAWDHFxccTFxQHg6emJm9t/P2x1+vRprl+/DkClSpWwt7993SUvniBUgdBKCltieD4xibf+iODXXaeBjLbj/+vsTz+1HYuIiBQohS3HKI50jQq31LR0ImIuszUqjrCoOMKOx3HxanKmMTZGA3XLu9LkRktyE99SlCqhm+sikj9UICz6VCAsQgprYrj12EUm3Wg7Bmjg485rPetQv6K7dQMTERERoPDmGMWJrlHRYjabOXrhKmHHMwqGW6PiOB1//ZZx1b1K0qRKKZpVKUXr6p54qGAoInlEBcKiTwXCIqQwJ4a3azvu37QSL3SsqURHRETEygpzjlFc6BoVfWfir1taksOi4jh8/kqm940GaFy5FO1reRFcy4uqniW1S7KI5JqbxSNfX1+cnJysHY7kgevXr1s2M1GBsJArConhv9uO3W/sdqy2YxEREespCjlGUadrVPzEXU22PGG46UgsETGXM71fubQz7f29CK5Vlia+pbC3NVopUhEpCtLS0oiMjMTLy4vSpUtbOxzJAxcvXuT8+fPUqFEDG5vMm2SpQFjIFKXEcFtUHJN+22dJdBpUdGNqz7o08HG3bmAiIiLFUFHKMYoqXSM5dekaayLOs+rgef46epHktHTLey4OtrSu6UkHfy/a1fRSh46I5MjZs2eJj4/Hy8sLZ2dnPaVcRJjNZq5du8b58+dxd3enXLlyt4xRgbCQKWqJYeo/2o4v32g7friJDy908teCzCIiIvmoqOUYRZGukfzTFVMqmw7HsvrgOdYeOk/slb83PDEaILCyBx1qlaWDvxfVvNSKLCJZYzabiYmJIT4+3tqhSB5wd3fH29v7tv9PUIGwkCmqieH5y0lMWx7Bon+0Hb/QqSYPN6mEjdqORURE8lxRzTGKEl0juZP0dDO7T8Wz+uB5Vh08d0srcqVSznSo5UUH/7I0raJWZBH5b2lpaaSkpFg7DMlFdnZ2t7QV/5MKhIVMUU8Mw47H8criv9uO699oO26otmMREZE8VdRzjKJA10iy6tSla6y90YocertW5BqedKjlRduaXuraERERQAXCQqc4JIapael8+9cJ3v3z77bjfo19+L/OajsWERHJK8UhxyjsdI0kJ66aUtl4OJY1EedYE3FrK3KjSjdakWt5UV2tyCIixZYKhIVMcUoML1w2Me2PCH7ZeQoAN6eMtuP+TdV2LCIiktuKU45RWOkayb262Yp8c6OTg2cTM73vU8qJjrW96dWwAnUruKpYKCJSjKhAWMgUx8Rw+/E4XvltvyWBqVfBjak96xBQycPKkYmIiBQdxTHHKGx0jSS3nY6/zpqD51gdcZ4tRy+SnPp3K3JVzxI8EFCBng0r4FPK2YpRiohIflCBsJApromhpe04JJLLSalAxm7HajsWERHJHcU1xyhMdI0kL91sRf59zxlCDpzD9I9iYRNfD3oFVKBbvXK4Oyv3FhEpilQgLGSKe2J44bKJ6Ssi+HnH323H4zrV5BG1HYuIiNyT4p5jFAa6RpJfLielsGJfDIvDT7Pl6EVu/s3PzsZAu5pePNioAm1reuFod+fdMEVEpHBRgbCQUWKYYceJOF5ZvJ8DN9qO61ZwZWrPujRS27GIiEiOKMco+HSNxBpiEpJYsvs0v+46k2nNQldHW7rVL0evhhVo4lsKo27Wi4gUajnNM4x5GJPIfwqsXIolw1vw6v11cHG0Zd/pRB78aAv/9/NuLl4xWTs8ERERyWeRkZH07NmTMmXK4OrqSsuWLVm7dm2mMSNGjCAwMBAHBwcaNmx423lWrlxJ8+bNcXFxwdPTk969e3P8+HHL+4MGDcJgMNzyqlOnzl3j+695RQoqbzdHnmpdlT9GtmLFqFY83cYPb1dHEpNS+WFbNP0+/YtWM9YyY0UEh89dtna4IiKSz1QgFKuztTEy8D5f1o5rS9/AigD8tP0U7d5Zxzehx0lL10OuIiIixUX37t1JTU1lzZo17NixgwYNGtC9e3diYmIyjRsyZAj9+vW77RxRUVH07NmT9u3bEx4ezsqVK4mNjeXBBx+0jJk9ezZnz561vKKjoylVqhR9+/a9Y2xZmVekMPD3dmVCl1psGd+e759sxkONK+LiYMvp+Ot8tO4o/5u5gW7vb+Tzjcc4n5hk7XBFRCQfqMXYStRacmc7TlzilcX7MrUdv3p/XQIrq+1YRETkvxTmHCM2NhZPT082bNhAq1atALh8+TKurq6EhIQQHBycafyUKVNYvHgx4eHhmY7//PPP9O/fH5PJhNGYcT986dKl9OzZE5PJhJ2d3S2fvXjxYh588EGioqKoXLnybePLyby3U5ivkRRdSSlprD54nl93nWbdofOk3rhJbzRAi2pl6NWwAp3qelPSwdbKkYqIyN2oxViKjMDKHix9viWv9ayD6422494fb+GFhbuJVduxiIhIkVW6dGlq1qzJ119/zdWrV0lNTeWTTz7By8uLwMDALM8TGBiI0Wjkyy+/JC0tjYSEBL755huCg4PvWMSbN28ewcHBdywO5nReAJPJRGJiYqaXSEHjaGdDt/rl+HxgY7ZNDOa1Xhk36NPNsPFwLGMX7qbx6yGM+GEXayPOk5KW/t+TiohIoaEnCK1Ed46zJvaKiRkrIvhpe8Zux66OtozrVJNHm1XWbsciIiK3UdhzjFOnTtGrVy927tyJ0WjEy8uLZcuWERAQcMvYOz1BCLB+/XoeeughLl68SFpaGkFBQSxfvhx3d/dbxp45c4ZKlSrx/fff89BDD901vuzM+884X3311VuOF9ZrJMXLiYtX+S38DIt3neZY7FXL8dIl7OnRoDx9G1ekTnk3K0YoIiL/pCcIpUgqU9KBGX0a8Muz91GnvCuJSalM+m0/98/ZxI4Tl6wdnoiIiGTB+PHjb7shyD9fERERmM1mhg0bhpeXFxs3bmTbtm306tWLHj16cPbs2Sx/XkxMDE8++SQDBw4kLCyM9evXY29vT58+fbjdvfGvvvoKd3d3evXqlavz3jRhwgQSEhIsr+jo6Cx/FxFrq1y6BCM6VGf12Db8NqwFg+7zpXQJey5eTWb+luN0e38TvT/ewm/hp0lO1VOFIiKFlZ4gtJLCfnffGtLSzXy/7SRvr4ggMSkVgD6BFRnfxZ8yJR2sHJ2IiEjBUBBzjAsXLnDx4sW7jvHz82Pjxo107NiRS5cuZYq9evXqDB06lPHjx2c6505PEL7yyiusWLGCsLAwy7FTp07h4+NDaGgozZs3txw3m83UqFGD7t27M3PmzLvGmJ1576YgXiOR7EhJS2fTkVh+3nGKlftiLOsVlinpQP+mPjzSrBLl3JysHKWISPGU0zxDK8xKoWFjNPB488p0revNjBWH+HF7dEZSsj+GcR1r8mizStja6KFYERGRgsbT0xNPT8//HHft2jUAywYgNxmNRtLTs/5k0rVr126Zw8bGBuCWedavX8+RI0cYOnRors4rUpTZ2RhpV9OLdjW9OJ+YxA/bovlu6wnOXzbxwZojfLTuKB1rl+XxoMoE+ZXGYNDSQCIiBZ2qKVLolC7pwPQ+9Vn03H3UreDK5aRUJi/ZT485m9l+PM7a4YmIiEgOBQUF4eHhwcCBA9m9ezeRkZG88MILREVF0a1bN8u4I0eOEB4eTkxMDNevXyc8PJzw8HCSk5MB6NatG2FhYUydOpXDhw+zc+dOBg8eTOXKlW9Zy3DevHk0a9aMunXr3hLPnDlz6NChg+Xn7MwrUlx4uToyMrg6m8e358NHGtGsSinS0s38sS+GRz7bSseZG/gm9DhXTKnWDlVERO4iSy3Ge/bsyfbEtWvXxtZWDyjeiVpLcsfNtuN3Vh4i4XoKAL0bZbQde7qo7VhERIqfwp5jbN++nYkTJ7J9+3ZSUlKoU6cOkyZNokuXLpYxbdu2Zf369becGxUVha+vLwALFixgxowZREZG4uzsTFBQENOnT8ff398yPiEhgXLlyjF79myefPLJW+abMmUK8+fP5/jx45ZjWZn3vxT2ayTyXw7FXObr0OP8uus015LTACjpYEvvRhV4PKgy1bxcrByhiEjRldM8I0sFQqPRiMFguOviy/8eHxkZiZ+fX5YDKW6UGOauuKvJzFgRwYKwjEW/XRxtGfu/GjzWvLLajkVEpFhRjlHw6RpJcZGYlMIvO07xTeiJTDsgt6hWmseb+xJcy0u5uohILsvzAuG2bduytHaM2Wymbt267NmzRwXCu1BimDd2nbzEpN/2s/d0AgD+3i681qsuTXxLWTkyERGR/KEco+DTNZLiJj3dzOajsXwdeoLVB89xY08Tyrs58mjzyvRr4qNNB0VEckmeFgjbtWvHr7/+iru7e5Ym7dq1K/PmzaNcuXJZDqS4UWKYd9LSzSwIO8mMFX+3HT/YqAITutRS27GIiBR5yjEKPl0jKc5OXbrGd1tP8mNYNHFXM9YNtbcx0rWeNwPu8yXAx12bmoiI3IM8LRBK7lNimPfiribz9sqMtmOzGVwcbBnTsQaPq+1YRESKMOUYBZ+ukQgkpaSxbM9Zvv7rBLuj4y3H61ZwZUCQL/c3KI+jnY31AhQRKaRUICxklBjmn/DoeCb9to89p/5uO57asy5Nq6jtWEREih7lGAWfrpFIZruj4/k69ARL95whOTUdAHdnOx5q7MNjzSpTqbSzlSMUESk88qVAGBISwqZNm2jTpg3t27dnw4YNvPXWW5hMJh5//HEGDx6co+CLIyWG+Sst3cyPYdHMWBlB/LUbbccBFRjf1R8vF0crRyciIpJ7lGMUfLpGIrcXdzWZH8Oi+favE5yOvw6AwQDtanrxVGs/mlUppfZjEZH/kOcFwm+//ZbBgwdTv359IiMj+eCDDxg9ejR9+vQhPT2db7/9lu+++44+ffrk+EsUJ0oMrePS1WRmrDzEgrCTlrbj0f+rwYAgtR2LiEjRoByj4NM1Erm7tHQzayPO81XocTYejrUcb1zZg2HtqtG2pqcKhSIid5DnBcKAgAAGDx7MiBEjWL16NT169OCNN95g9OjRALz77rv8+uuvbNq0KWffoJhRYmhdu2+0He9W27GIiBQxyjEKPl0jkaw7duEK8zZFsXDHKUv7cZ3yrgxrV41OdbyxMapQKCLyT3leICxZsiR79+6lSpUqANjb27N9+3bq168PQEREBC1btiQ2NvZu08gNSgytLz3dzI/bo5m+4u+24wcCKjChiz9ermo7FhGRwkk5RsGnaySSfecTk/hs4zG+23qSa8lpAFT1LMGzbavRs2F57NQNJCIC5DzPyPJ/Re3s7EhOTrb87ODgQMmSJTP9fP369Sx/cF7w9fXFYDBkek2bNi3TmD179tCqVSscHR3x8fFhxowZt8yzcOFC/P39cXR0pF69eixfvjzT+2azmUmTJlGuXDmcnJwIDg7m8OHDefrdJPcZjQb6N63E2rFteaRZJQwG+HXXadq/u555m6JITUu3dogiIiIiIgJ4uToysVttNr/YnhEdquPqaMvRC1cZt3A37d5Zxzd/nSApJc3aYYqIFFpZLhBWq1aNiIgIy8+nT5+2PE0IcPToUSpWrJi70eXA1KlTOXv2rOX1/PPPW95LTEykY8eOVK5cmR07dvD2228zZcoUPv30U8uYLVu20L9/f4YOHcquXbvo1asXvXr1Yt++fZYxM2bM4P3332fu3Lls3bqVEiVK0KlTJ5KSkvL1u0ru8Chhz5sP1OO3YS1oUNGNK6ZUXvv9AN3e38TWYxetHZ6IiIiIiNzgUcKeMf+rwebx7Xmxsz9lStpz6tJ1Xlm8j1Yz1vLphqNcNaVaO0wRkUInyy3Gv/76K6VLl6Z169a3fX/atGlcvXqV1157LVcDzA5fX19GjRrFqFGjbvv+xx9/zMSJE4mJicHe3h6A8ePHs3jxYkvxs1+/fly9epXff//dcl7z5s1p2LAhc+fOxWw2U758ecaOHcu4ceMASEhIoGzZssyfP5+HH344S7GqtaRgSk8389ONtuNLN9qOezUsz0tda6ntWERECgXlGAWfrpFI7klKSePHsGg+WX+UMwkZD2y4O9sx+L4qDLyvMu7O9laOUEQkf+X5GoSFga+vL0lJSaSkpFCpUiUeeeQRRo8eja2tLQADBgwgMTGRxYsXW85Zu3Yt7du3Jy4uDg8PDypVqsSYMWMyFRknT57M4sWL2b17N8eOHaNq1ars2rWLhg0bWsa0adOGhg0bMnv27NvGZjKZMJlMlp8TExPx8fFRYlhAxV9L5u2Vh/h+W8ZuxyUdbBkVXJ2B9/lqfRMRESnQVHwq+HSNRHJfcmo6i3ed5uP1R4mKvQpACXsbHguqzBMt/fB0cbByhCIi+SPP1yC8nWnTphEfH38vU+SqESNGsGDBAtauXcvTTz/Nm2++yf/93/9Z3o+JiaFs2bKZzrn5c0xMzF3H/PP9f553uzG389Zbb+Hm5mZ5+fj45PBbSn5wd7bnjZttxz7uXDGl8vqyg3R7fyN/qe1YRERERKRAsbc18lATH1aNacMH/QPw93bhanIan6w/Rsvpa5j02z5Ox1t3zXwRkYLsngqEb775JnFxcbkVy22NHz/+lo1H/v262R48ZswY2rZtS/369XnmmWd49913+eCDDzI9uWctEyZMICEhwfKKjo62dkiSBfUruvPrs/cxvXc9PJztiDx3hYc//YuRC3ZxLlFrToqIiIiIFCQ2RgM9GpTnj5GtmDewMQGV3DGlpvN16AnazFjLCwt3c+zCFWuHKSJS4Njey8n50Z08duxYBg0adNcxfn5+tz3erFkzUlNTOX78ODVr1sTb25tz585lGnPzZ29vb8uvtxvzz/dvHitXrlymMf9sOf43BwcHHBz0WHthZDQa6NekEp3qePPOn4f4butJfgs/w6oD5xgVXINBLdR2LCIiIiJSkBgMBjrUKkt7fy9Cj17kw3VH2HzkIgt3nOLnnafoWq8cw9pWo3Z5tfmLiMA9PkGYHzw9PfH397/r6+aGI/8WHh6O0WjEy8sLgKCgIDZs2EBKSoplTEhICDVr1sTDw8MyZvXq1ZnmCQkJISgoCIAqVarg7e2daUxiYiJbt261jJGiyd3Zntd71WPJsJY09HHnanIabyw/SNfZGwk9qrZjEREREZGCxmAwcF+1Mnz3RHMWPXcfwbW8MJth2Z6zdH1/I0Pmh7HjxCVrhykiYnX3tElJdHQ05cuXx8bGJjdjypHQ0FC2bt1Ku3btcHFxITQ0lNGjR9OlSxe++uorIGO34Zo1a9KxY0defPFF9u3bx5AhQ5g5cyZPPfUUAFu2bKFNmzZMmzaNbt26sWDBAt5880127txJ3bp1AZg+fTrTpk3jq6++okqVKrzyyivs2bOHAwcO4OiYtZ1utTh14ZaebubnHaeYtiKCuKvJANzfoDwTu9WirHY7FhERK1KOUfDpGolY18GziXy07ijL9pwh/cbfhoP8SjO8fTVaVCtj3eBERO6RVXYxvnLlCunp6ZmOWSvJ2blzJ8899xwRERGYTCaqVKnC448/zpgxYzK19u7Zs4dhw4YRFhZGmTJleP7553nxxRczzbVw4UJefvlljh8/TvXq1ZkxYwZdu3a1vG82m5k8eTKffvop8fHxtGzZko8++ogaNWpkOV4lhkVD/LVk3v0zkm+3nsBsztgpTW3HIiJiTcoxCj5dI5GCISr2KnPXHWXRrlOkpGX8tbhltTK82NmfehXdrBydiEjO5FuBMCoqiuHDh7Nu3TqSkv7epMFsNmMwGEhLS8vOdMWWEsOiZd/pBF75bR+7TsYDUN2rJK/2rMN9VXUHUkRE8pdyjIJP10ikYDkTf51P1h/lh23RJKdlPADTo0F5xnWsQeXSJawcnYhI9uRbgbBFixaYzWZGjhxJ2bJlMRgMmd5v06ZNdqYrtpQYFj3p6WZ+3nmK6X9EcPFG23GPBuWZ2LUW3m5qOxYRkfyhHKPg0zUSKZii464xMySSX8NPYzaDrdHAo80q8XyH6pQpqQ0nRaRwyLcCYcmSJdmxYwc1a9bMdpDyNyWGRVfCtRTeDTnEt3+dIP1G2/HI4OoMblFFbcciIpLnlGMUfLpGIgXbgTOJzFgZwbpDF4CMfP7J1n480cqPkg62Vo5OROTucppnZLta0aRJE6Kjo7N7mkix4eZsx9SedVkyvCWNKmXsdvzm8gi6zN7IliOx1g5PRERERETuonZ5V+YPbsr3TzajQUU3rianMWvVYdq+vZavQ4+TnJr+35OIiBQy2X6C8OjRozzzzDM89thj1K1bFzs7u0zv169fP1cDLKp057h4SE8388vOU0z7R9tx9/rlmNitFuXcnKwcnYiIFEXKMQo+XSORwsNsNrN8bwxvr4zg+MVrAFQu7cy4jjXpVq8cRqPhP2YQEclf+dZi/Ndff/HII49w/PjxvycxGLRJSTYpMSxeEq6n8N6fh/jmRtuxs70NIzpUZ0iLKtjbqu1YRERyj3KMgk/XSKTwSUlLZ0FYNLNXHSb2igmAehXcGN/FnxbVtDGhiBQc+VYgrF27NrVq1eL//u//brtJSeXKlbMzXbGlxLB42n8mgUm/7WfHiUsAVPUswdSedZVUiIhIrlGOUfDpGokUXldNqczbFMUn649yNTnj4ZjWNTx5sXNN6pR3s3J0IiL5WCAsUaIEu3fvplq1atkOUv6mxLD4Sk83s2jXad5aftDSdtytfjleVtuxiIjkAuUYBZ+ukUjhd/GKiQ/WHOG7rSdIScv4K3WvhuUZ27EmPqWcrRydiBRn+VYg7NGjB4MGDaJ3797ZDlL+psRQEq6nMDMkkq9Dj1vajp9vX52hLdV2LCIiOXcvOUapUqWyNd5gMLBz5051kGST8kCRouPkxWu8G3KI38LPAGBnY+Cx5pUZ3q4apUs6WDk6ESmO8q1A+Omnn/L6668zZMgQ6tWrd8smJffff392piu2lBjKTQfOJDLpt31sv9F27OdZgqn316VldbUdi4hI9t1LjmE0Gpk1axZubv/dJmc2m3nuuefYt28ffn5+OQ23WFIeKFL07DudwPQVEWw8HAtASQdbnm7tx9BWVXC2t7VydCJSnORbgdBovPOTTdqkJOuUGMo/mc1mFu08zVt/HCT2yo2243oZux2Xd1fbsYiIZN29FghjYmLw8vLK0ngXFxd2796tAmE2KQ8UKbo2HY5l+ooI9p5OAMDTxYGRHarTr4kPdjbqEhKRvJdvBULJHUoM5Xb+3XbsZJex27HajkVEJKuUYxR8ukYiRVt6uplle8/y9spDnIy7BoBfmRKM61STLnW9b9noU0QkN6lAWMgoMZS7OXAmkclL9hF2/O+241fvr0Or6p5WjkxERAo65RgFn66RSPGQnJrOgrCTzF512LI5YQMfd17q4k8zv9JWjk5EiiqrFwi3b9/OtWvXaN26dW5MV+QpMZT/Yjab+XXXad5cHkHsFRMAXep683L32lRQ27GIiNxBbuQYFy9eZM+ePTRo0IBSpUoRGxvLvHnzMJlM9O3bl1q1auVy1MWL8kCR4uWKKZXPNx7j0w3HuJacsSRXz4blealrLcq6Olo5OhEpaqxeIKxVqxaRkZFagzCLlBhKViUm3Ww7PkFauhknOxuGt6/GE62q4GBrY+3wRESkgLnXHGPbtm107NiRxMRE3N3dCQkJoW/fvtja2pKens6ZM2fYtGkTjRo1yoPoiwflgSLF04XLJmatiuT7bScxm6GEvQ2jgmswqIWv1icUkVyT0zwj1/4rtHr1ao4dO5Zb04nIDa6OdkzuUYffn29JE18Prqek8fbKQ3SZtZENkResHZ6IiBQxEydOpG/fviQkJPDSSy/Rq1cvOnToQGRkJEeOHOHhhx/mtddey7PPj4yMpGfPnpQpUwZXV1datmzJ2rVrM40ZMWIEgYGBODg40LBhw9vOs3LlSpo3b46Liwuenp707t2b48ePZxrz3Xff0aBBA5ydnSlXrhxDhgzh4sWLd43v5MmTdOvWDWdnZ7y8vHjhhRdITU29l68sIsWEp4sDbzxQj6XDWxJQyZ2ryWm8sfwgXWdvJPTo3f/bIyKS13KtQFi+fHkqV66cW9OJyL/UKufKT08HMbNfAzxdHDgWe5UBX2zjmW92cDr+urXDExGRImLHjh2MGTMGFxcXRo4cyZkzZ3jyySct7w8fPpywsLA8+/zu3buTmprKmjVr2LFjBw0aNKB79+7ExMRkGjdkyBD69et32zmioqLo2bMn7du3Jzw8nJUrVxIbG8uDDz5oGbN582YGDBjA0KFD2b9/PwsXLmTbtm2Zvuu/paWl0a1bN5KTk9myZQtfffUV8+fPZ9KkSbnz5UWkWKhbwY1fnrmPGX3qU6qEPYfPX6H/Z38x4oddnEtMsnZ4IlJMZanFODExMcsTqk0ia9RaIvficlIKs1YdZv6W46Slm3G0M/J8++pqOxYRkXvOMUqWLMm+ffvw9fUFwMXFhd27d+Pn5wdkPEFXs2ZNrl/P/ZtTsbGxeHp6smHDBlq1agXA5cuXcXV1JSQkhODg4Ezjp0yZwuLFiwkPD890/Oeff6Z///6YTCaMxoz74UuXLqVnz56YTCbs7Ox45513+Pjjjzl69KjlvA8++IDp06dz6tSp28b3xx9/0L17d86cOUPZsmUBmDt3Li+++CIXLlzA3t4+S99TeaCI3JRwLYV3Qw7x7V8nSL/RdjwyuDqDW1RR27GI5Eiethi7u7vj4eFx19fNMSKS91wc7Xile22WjWhJ0yqlSEpJ5+2Vh+g8ayPr1XYsIiL3wMfHJ9OyMQsWLKBcuXKWn8+ePUuZMmXy5LNLly5NzZo1+frrr7l69Sqpqal88skneHl5ERgYmOV5AgMDMRqNfPnll6SlpZGQkMA333xDcHAwdnZ2AAQFBREdHc3y5csxm82cO3eOn3/+ma5du95x3tDQUOrVq2cpDgJ06tSJxMRE9u/ff8fzTCYTiYmJmV4iIgBuznZM7VmXJcNb0uhG2/GbyyPoOnsjW47GWjs8ESlGbLMy6N/rvohIweDv7cqPTzXnt/AzvLH8IFGxVxn4xTY61/HmlR7a7VhERLLv4Ycf5vz585afu3Xrlun9JUuW0LRp0zz5bIPBwKpVq+jVqxcuLi4YjUa8vLxYsWJFtm5EV6lShT///JOHHnqIp59+mrS0NIKCgli+fLllTIsWLfjuu+/o168fSUlJpKam0qNHDz788MM7zhsTE5OpOAhYfv53C/Q/vfXWW7z66qtZjl9Eip+6Fdz4+Zn7+HnnKab/EcHh81d45LOt9GhQnolda+Htpt2ORSRv5douxpI9ai2R3Ha7tuPh7arxZGs/tR2LiBQjeZ1jXLt2DRsbGxwcHLJ8zvjx45k+ffpdxxw8eJCaNWvSq1cvUlJSmDhxIk5OTnz++ecsWbKEsLCwTE8ywp1bjGNiYmjdujW9evWif//+XL58mUmTJmFra0tISAgGg4EDBw4QHBzM6NGj6dSpE2fPnuWFF16gSZMmzJs377YxPvXUU5w4cYKVK1dm+v0oUaIEy5cvp0uXLrc9z2QyYTKZLD8nJibi4+OjPFBEbut2bccjOmS0Hdvbqu1YRO4up7lgjgqE8fHxzJs3j4MHDwJQp04dhgwZgpubW3anKrZUIJS8cijmMpN+28fWqDgAfEs7M+X+OrSt6WXlyEREJD/kRY6xefNmGjdunK2i4D9duHDhP3cH9vPzY+PGjXTs2JFLly5lir169eoMHTqU8ePHZzrnTgXCV155hRUrVmTaTOXUqVP4+PgQGhpK8+bNefzxx0lKSmLhwoWWMZs2baJVq1acOXPmlmIkwKRJk1iyZEmmz4uKisLPz4+dO3cSEBCQld8O5YEikiX7zyQw6bf97DhxCYCqniWY2rMuLarlzTIPIlI05OkahP+0fft2qlatysyZM4mLiyMuLo733nuPqlWrsnPnzuxOJyK5rKa3Cwueas7shxvi5eLA8YvXGPRlGE99vZ3ouGvWDk9ERAqhLl26cPr06Ryf7+npib+//11f9vb2XLuW8f+pmxuL3GQ0GklPT8/y5127du2WOWxsMp6mvznP3cbc6f55UFAQe/fuzdSCHRISgqurK7Vr185yfCIiWVGnvBsLnw7i7T71KV3CnqMXrvLo51sZ9v1Ozibk/kZRIlK8ZbtAOHr0aO6//36OHz/OokWLWLRoEVFRUXTv3p1Ro0blQYgikl0Gg4GeDSuwemwbnmhZBRujgT8PnON/M9fzwerDJKWkWTtEEREpRPJrRZqgoCA8PDwYOHAgu3fvJjIykhdeeIGoqKhMayEeOXKE8PBwYmJiuH79OuHh4YSHh5OcnAxkrJsYFhbG1KlTOXz4MDt37mTw4MFUrlzZ8pRfjx49WLRoER9//DHHjh1j8+bNjBgxgqZNm1K+fHkAfv31V/z9/S2f27FjR2rXrs3jjz/O7t27WblyJS+//DLDhg3L8dOVIiJ3YzQa6NvYhzXj2jIwqDJGAyzbc5YO765n7vqjJKdm/eaJiMjdZLvF2MnJiV27dmVKlgAOHDhA48aNLXd+5e7UWiL5KfJcRtvxX8f+bjuefH8d2qntWESkyMmLHMPFxYXdu3fj5+eXK/Pdzfbt25k4cSLbt28nJSWFOnXqMGnSpEzr+7Vt25b169ffcm5UVBS+vr5Axu7LM2bMIDIyEmdnZ4KCgpg+fXqmHPaDDz5g7ty5REVF4e7uTvv27Zk+fToVKlQAYP78+QwePDhTgfTEiRM8++yzrFu3jhIlSjBw4ECmTZuGrW2W9v4DlAeKSM6p7VhE/ku+rUFYtmxZvvnmGzp27Jjp+MqVKxkwYADnzp3LznTFlhJDyW9ms5mle87y+u8HOH85Y6H0/9Uuy6TutfEp5Wzl6EREJLfkRY7x/fff07NnT0qUKJEr8xV3ygNF5F6kp5tZtOs0by0/yMWrN56crleOl7vXopybk5WjExFry7c1CPv168fQoUP58ccfiY6OJjo6mgULFvDEE0/Qv3//7E4nIvnEYDBwf4PyrBnXlqda+2FrNBBy4BzB763nfbUdi4jIXTzyyCMqDoqIFBBGo4E+gRVZM64tg+7zzWg73pvRdvzxOrUdi0jOZPsJwuTkZF544QXmzp1LamoqAHZ2djz77LNMmzZN669kke4ci7UdPneZSb/tJ/RYxq6SlUs7M6VHHdr5q+1YRKQwy60cIykpiQ8++IC1a9dy/vz5WzYJ0eZ0Oac8UERy0/4zCUz+bT/bb7Qd+3mW4NX769CquqeVIxMRa8i3FuObrl27xtGjRwGoWrUqzs5qUcwOJYZSENxsO35j2QHOJWa0HQfXKsvkHmo7FhEprHIrx3j00Uf5888/6dOnD2XLlsVgMGR6f/LkyfcaarGlPFBEcpvZbGbRztO89cdBYq9ktB3f36A8U+6vQ6kS9laOTkTyU74XCOXeKDGUguSKKZUPVh9m3qYoUtPNONgaea5tNZ5u44ejnY21wxMRkWzIrRzDzc2N5cuX06JFi1yMTkB5oIjknYTrKcwMieTr0OOkm6F0CXum9qxLt/rlrB2aiOSTfCsQqt0kdygxlILo8LnLTF6yny1HM9qOK5VyZsr9tWnvX9bKkYmISFblVo5Ru3ZtFixYQP369XMxOgHlgSKS93ZHx/PCz7uJPHcFgC51vZnasy6eLloSTKSoy7cCodpNcocSQymozGYzv+85y+uZ2o69mNyjjtqORUQKgdzKMf744w/ef/995s6dS+XKlXMxQlEeKCL5wZSaxpw1R/ho3VHS0s24O9sxpUcdejYsf8vf40Wk6Mi3AqHaTXKHEkMp6G7Xdvxs26o806aq2o5FRAqw3MoxLly4wEMPPcSGDRtwdnbGzs4u0/txcXH3GmqxpTxQRPLTvtMJ/N/PezhwNhHIuPn/xgP1KOvqaOXIRCQv5DTPsM3uB1WoUAEXF5fsniYihUxJB1smdK1F38YVmbxkP5uPXGTWqsP8svMUU3rUoUMttR2LiBRl/fv35/Tp07z55pu37RoREZHCoW4FN34b3oKP1x3lgzWHWXXwPNui1vNK99r0Cayo/76LCJCDJwjVbpI7dOdYChOz2czyvTG89vsBYhKTAOjgn9F2XKm02o5FRAqS3MoxnJ2dCQ0NpUGDBrkYnYDyQBGxnkMxl3nh593sOZUAQJsanrz1YD3KuztZOTIRyS05zTOM2f2gxo0bk5SUhJ+fHy4uLpQqVSrTS0SKHoPBQLf65Vg9tg3PtKmKrdHA6ojzBM9cz8yQSJJS0qwdooiI5DJ/f3+uX79u7TBERCQX1fR2YdGz9/FiZ3/sbY2sj7xAx5kb+H7rSbL57JCIFDHZfoIwODiYkydPMnTo0Nu2mwwcODBXAyyqdOdYCrMj568wZcl+Nh2JBcCnlBOTu9chuLbajkVErC23cow///yTV199lTfeeIN69erdsgah8pecUx4oIgXBkfNX+L+fd7PzZDwA91UtzfTe9bUxoUghl2+blKjdJHcoMZTCzmw288e+jLbjswkZbcft/b2Y3KM2lUuXsHJ0IiLFV27lGEZjRqPJv28Gm81mDAYDaWl6ejynlAeKSEGRlm7my81RvPPnIZJS0nG2t+HFzv483rwyRqPWJhQpjPJtkxK1m4gIZPyFsWu9crSp4cmctUf4fOMx1kScZ9ORWJ5pU5Xn2mq3YxGRwmzt2rXWDkFERPKYjdHAE638CK5Vlv/7ZQ/bouKYvGQ/y/acZXqf+lQpoxv/IsVFtp8gVLtJ7tCdYylqjl7IaDveeDij7biihxOTutfmf7W186WISH5SjlHw6RqJSEGUnm7m260nmPZHBNeS03C0MzKuY00Gt6iCjZ4mFCk08m2Tks6dOxMaGkqHDh3w8vLCw8MDDw8P3N3d8fDwyO50WfbGG29w33334ezsjLu7+23HnDx5km7duuHs7IyXlxcvvPACqampmcasW7eORo0a4eDgQLVq1Zg/f/4t83z44Yf4+vri6OhIs2bN2LZtW6b3k5KSGDZsGKVLl6ZkyZL07t2bc+fO5dZXFSmUqnqW5OshTfno0UaUd3Pk1KXrPPXNDobMD+N47FVrhyciIiIiIndhNBoYEOTLylGtaVGtNEkp6by+7CB9527hyPkr1g5PRPJYtluMrdVukpycTN++fQkKCmLevHm3vJ+Wlka3bt3w9vZmy5YtnD17lgEDBmBnZ8ebb74JQFRUFN26deOZZ57hu+++Y/Xq1TzxxBOUK1eOTp06AfDjjz8yZswY5s6dS7NmzZg1axadOnXi0KFDeHl5ATB69GiWLVvGwoULcXNzY/jw4Tz44INs3rw5/35DRAqgm23HbWt6MmfNET7beIy1hy6w+cgGnmnjx7Ntq+Fkr7ZjEZHCrFatWkRGRmoNQhGRIsqnlDPfDm3GgrBo3lh2kJ0n4+n6/kZGBVfnqVZ+2Npk+zkjESkEst1ibG3z589n1KhRxMfHZzr+xx9/0L17d86cOUPZshk7qc6dO5cXX3yRCxcuYG9vz4svvsiyZcvYt2+f5byHH36Y+Ph4VqxYAUCzZs1o0qQJc+bMASA9PR0fHx+ef/55xo8fT0JCAp6ennz//ff06dMHgIiICGrVqkVoaCjNmzfP0vdQa4kUB/9uO67g7sTkHmo7FhHJS3mdYyxevJiEhAQGDhyY63MXF8oDRaSwOBN/nQmL9rI+8gIA9Su6MaNPffy99d8ukYIqT1uM9+zZQ3p6epYn3b9//y2tvXktNDSUevXqWYqDAJ06dSIxMZH9+/dbxgQHB2c6r1OnToSGhgIZTynu2LEj0xij0UhwcLBlzI4dO0hJSck0xt/fn0qVKlnG3I7JZCIxMTHTS6Sou9l2PPexjLbj0/EZbceD1XYsIlJo9erVS8VBEZFiory7E/MHN+Gdvg1wdbRlz6kEenywidmrDpOSlvUagYgUfFkqEAYEBHDx4sUsTxoUFMTJkydzHFROxMTEZCoOApafY2Ji7jomMTGR69evExsbS1pa2m3H/HMOe3v7W9ZB/OeY23nrrbdwc3OzvHx8fHL0PUUKG4PBQOe65Vg1tg3D2lXF3sbIukMX6DhzA+/+eYjryWpRExEREREpqAwGA30CKxIypg3BtcqSkmZm5qpI7p+zmX2nE6wdnojkkiytQWg2m3nllVdwdnbO0qTJyclZGjd+/HimT59+1zEHDx7E398/S/MVZBMmTGDMmDGWnxMTE1UklGLF2d6WFzr507tRRaYsPcCGyAt8sOYIi3aeZlKP2nRU27GIiNUFBARk+b/FO3fuzONoRESkICnr6shnAwJZsvsMU5bs5+DZRHp9uJlRwdV5tm017XQsUshlqUDYunVrDh06lOVJg4KCcHJy+s9xY8eOZdCgQXcd4+fnl6XP9Pb2vmW34Zs7C3t7e1t+/fduw+fOncPV1RUnJydsbGywsbG57Zh/zpGcnEx8fHympwj/OeZ2HBwccHBwyNJ3ESnK/DxL8tXgJqzcf47Xfj/A6fjrPP3NDtrU8GTK/XWoUqaEtUMUESm2evXqZe0QRESkADMYDPRsWIH7qpZh8pJ9LN8bwzt/RrLxcCwz+zWkvPt/1wFEpGDKUoFw3bp1efLhnp6eeHp65spcQUFBvPHGG5w/f96y23BISAiurq7Url3bMmb58uWZzgsJCSEoKAgAe3t7AgMDWb16tSVBTk9PZ/Xq1QwfPhyAwMBA7OzsWL16Nb179wbg0KFDnDx50jKPiNxdRtuxN21qePLh2iN8uuEY6yMv0GnmBp5sXYVh7arhbJ/tTdZFROQeTZ482dohiIhIIeDp4sCHjzTK6Ab6bR9bo+LoMnsj03vXo3PdctYOT0RyoNDsYnzy5Eni4uJYsmQJb7/9Nhs3bgSgWrVqlCxZkrS0NBo2bEj58uWZMWMGMTExPP744zzxxBO8+eabAERFRVG3bl2GDRvGkCFDWLNmDSNGjGDZsmV06tQJgB9//JGBAwfyySef0LRpU2bNmsVPP/1ERESEZW3CZ599luXLlzN//nxcXV15/vnnAdiyZUuWv492rxP5W1TsVaYs2W/ZHa2CuxOvdK9FpzreajsWEcmm3M4xduzYwcGDBwGoU6cOAQEB9zxncac8UESKkuOxVxmxYBd7TmWsR9i/qQ+vdK+tG/4iVpLTPKPQFAgHDRrEV199dcvxtWvX0rZtWwBOnDjBs88+y7p16yhRogQDBw5k2rRp2Nr+/R+mdevWMXr0aA4cOEDFihV55ZVXbmlznjNnDm+//TYxMTE0bNiQ999/n2bNmlneT0pKYuzYsfzwww+YTCY6derERx99dNcW439TYiiSmdls5s8D55i6NKPtGKB1DU+m9KiNn2dJK0cnIlJ45FaOcf78eR5++GHWrVtnWVYlPj6edu3asWDBglzrAimOlAeKSFGTnJrOzFWRzF1/FLMZ/DxL8P7DAdSt4Gbt0ESKnSJfICxqlBiK3N715DQ+WneET9YfIzktHXsbo9qORUSyIbdyjH79+nHs2DG+/vpratWqBcCBAwcYOHAg1apV44cffsitkIsd5YEiUlRtORLL6J/COZdowt7GyP91rsmQFlUwagMTkXyjAmEho8RQ5O6iYq/y6tL9rDuU0XZc3s2RV7rXpnNdtR2LiNxNbuUYbm5urFq1iiZNmmQ6vm3bNjp27Eh8fPw9Rlp8KQ8UkaLs0tVkXvxlD38eyNj8s3UNT97pWx8vF0crRyZSPOQ0zzDmYUwiIjlWpUwJvhzUhE8fD6SCuxNnEpJ49rudDPhiG8cuXLF2eCIiRV56ejp2dna3HLezsyM9Pd0KEYmISGHgUcKeTx4P5I0H6uJoZ2RD5AW6zNrI2ojz1g5NRO4iR08QHj58mLVr13L+/PlbEsRJkyblWnBFme4ci2Td9eQ0Pl53hLkbjpGcmo6djYEnW/kxvL3ajkVE/i23coyePXsSHx/PDz/8QPny5QE4ffo0jz76KB4eHvz666+5FXKxozxQRIqLw+cu8/wPu4iIuQzAoPt8Gd/FH0c7GytHJlJ05VuL8Weffcazzz5LmTJl8PbO3OpnMBjYuXNndqYrtpQYimTf8Rttx2vVdiwicke5lWNER0dz//33s3//fnx8fCzH6taty5IlS6hYsWJuhVzsKA8UkeIkKSWNGSsO8cXmKAD8vV14v38ANcq6WDkykaIp3wqElStX5rnnnuPFF1/MdpDyNyWGIjljNptZdfA8ry7dz6lLGbsdt6pehin316GqdjsWEcnVHMNsNrNq1SoiIiIAqFWrFsHBwbkRZrGmPFBEiqO1h87zwsLdxF5JxsHWyMvda/NYs0q60S+Sy/KtQOjq6kp4eDh+fn7ZDlL+psRQ5N4kpaTx0bqjzF1/1NJ2PLSlH8+3r0YJB7Udi0jxpRyj4NM1EpHi6sJlE+MW7mZ9ZEZHUHCtsszoU59SJeytHJlI0ZFvBcKhQ4fSpEkTnnnmmWwHKX9TYiiSO05cvMqrSw+w5saix+XcHHm5W2261lPbsYgUT7mZY4SFhd1x3en33nvvnuYuzpQHikhxlp5u5sstx5n+RwTJael4uTgws19DWlQrY+3QRIqEnOYZ2X7Mplq1arzyyiv89ddf1KtX75bd7UaMGJHdKUVEcqxy6RJ8MagJqw6cY8qNtuNh3++kZbWMtuNqXmo7FhHJiTfffJOXX36ZmjVrUrZs2VvWnRYREckJo9HA0JZVaO5XihE/7OLohas8Nm8rT7euypj/1cDe1mjtEEWKpWw/QVilSpU7T2YwcOzYsXsOqjjQnWOR3JeUksbH647y8T/ajoe0rMKI9tXVdiwixUZu5Rhly5Zl+vTpDBo0KPeCy4LIyEheeOEFNm/eTHJyMvXr1+e1116jXbt2ljEjRoxg8+bN7Nu3j1q1ahEeHn7LPCtXrmTy5Mns378fR0dHWrduzbvvvouvr69lzHfffceMGTM4fPgwbm5udOnShbfffpvSpUvfNrbdu3czbdo0Nm3aRGxsLL6+vjzzzDOMHDkyW99ReaCISIbryWm8tuwA3289CUD9im7MfjiAKmVKWDkykcIrp3lGtkvzUVFRd3ypOCgi1uRoZ8Po/9UgZHRrOvh7kZJm5pP1x+jw7np+33OGbN4PEREp1oxGIy1atMj3z+3evTupqamsWbOGHTt20KBBA7p3705MTEymcUOGDKFfv363nSMqKoqePXvSvn17wsPDWblyJbGxsTz44IOWMZs3b2bAgAEMHTqU/fv3s3DhQrZt28aTTz55x9h27NiBl5cX3377Lfv372fixIlMmDCBOXPm5M6XFxEpZpzsbXjzgXrMfSwQd2c79pxKoNv7G1m4PVq5u0g+y/YThP9081S1mWSf7hyL5L3VBzPajqPjMnY7blGtNK/eX4dqXi5WjkxEJO/kVo4xY8YMzpw5w6xZs3IvuP8QGxuLp6cnGzZsoFWrVgBcvnwZV1dXQkJCbtlBecqUKSxevPiWJwh//vln+vfvj8lkwmjMuB++dOlSevbsiclkws7OjnfeeYePP/6Yo0ePWs774IMPmD59OqdOncpyzMOGDePgwYOsWbMmy+coDxQRudXZhOuM/jGcv47FAdC9fjneeKAebk52/3GmiPxTvj1BCPD1119Tr149nJyccHJyon79+nzzzTc5mUpEJM90qFWWkNFtGBVcHQdbI5uPXKTzrI289cdBrppSrR2eiEiBNm7cOA4dOkTVqlXp0aMHDz74YKZXXihdujQ1a9bk66+/5urVq6SmpvLJJ5/g5eVFYGBglucJDAzEaDTy5ZdfkpaWRkJCAt988w3BwcGW9bODgoKIjo5m+fLlmM1mzp07x88//0zXrl2zFXNCQgKlSpW66xiTyURiYmKml4iIZFbOzYnvnmjO/3Wuia3RwO97ztJ19kbCjsdZOzSRYiHbBcL33nuPZ599lq5du/LTTz/x008/0blzZ5555hlmzpyZFzGKiOSYo50No4JrEDK6DcG1vEhN/7vteOlutR2LiNzJiBEjWLt2LTVq1KB06dK4ublleuUFg8HAqlWr2LVrFy4uLjg6OvLee++xYsUKPDw8sjxPlSpV+PPPP3nppZdwcHDA3d2dU6dO8dNPP1nGtGjRgu+++45+/fphb2+Pt7c3bm5ufPjhh1n+nC1btvDjjz/y1FNP3XXcW2+9len3zsfHJ8ufISJSnNgYDTzXtho/P3sflUs7czr+Ov0+CWVmSCRp6crbRfJSjjYpefXVVxkwYECm41999RVTpkwhKioqVwMsqtRaImIdayLOMWXJAU7GXQPgvqoZbcfVy6rtWESKhtzKMVxcXFiwYAHdunW755jGjx/P9OnT7zrm4MGD1KxZk169epGSksLEiRNxcnLi888/Z8mSJYSFhVGuXLlM59ypxTgmJobWrVvTq1cv+vfvz+XLl5k0aRK2traEhIRgMBg4cOAAwcHBjB49mk6dOnH27FleeOEFmjRpwrx58/7zO+3bt4927doxcuRIXn755buONZlMmEwmy8+JiYn4+PgoDxQRuYsrplQm/baPRTtPA9CqehlmPxxAqRL2Vo5MpGDLaS6Y7QKho6Mj+/bto1q1apmOHz58mHr16pGUlJSd6YotFQhFrCcpJY1P1h/jo3VHMKWmY2u8sdtxh+qU1G7HIlLI5VaOUblyZVauXIm/v/89x3ThwgUuXrx41zF+fn5s3LiRjh07cunSpUyxV69enaFDhzJ+/PhM59ypQPjKK6+wYsUKwsLCLMdOnTqFj48PoaGhNG/enMcff5ykpCQWLlxoGbNp0yZatWrFmTNnbilG/tOBAwdo164dTzzxBG+88UZWfgsyUR4oIpJ1v+46xUuL9nE9JY0K7k589GgjGvi4WzsskQIr39YgrFatWqb2jJt+/PFHqlevnt3pRETynaOdDSODq7NqTBuCa5UlNd3MpxuO0eHddSxR27GICJBRfJs8eTLXrl2757k8PT3x9/e/68ve3t7yWTc3FrnJaDSSnp6e5c+7du3aLXPY2NgAWOa525i7/X9g//79tGvXjoEDB+aoOCgiItnzQEBFfh12H743Wo77zg3l+60nlbOL5LJsP0H4yy+/0K9fP4KDg2nRogUAmzdvZvXq1fz000888MADeRJoUaM7xyIFx7/bjoP8SvNqzzrUUNuxiBRCuZVjBAQEcPToUcxmM76+vpbNPW7auXPnvYZ6i9jYWPz9/WnTpg2TJk3CycmJzz77jNmzZxMWFkaDBg0AOHLkCFeuXGHu3LmsXbuWH3/8EYDatWtjb2/PmjVrCA4OZsqUKZYW45deeomIiAgOHjyIk5MT8+fP58knn+T999+3tBiPGjUKo9HI1q1bAfj111+ZMGECERERQEZbcfv27enUqRNvv/22JW4bGxs8PT2z/D2VB4qIZF9iUgpjf9pNyIFzAPQNrMhrveriaGdj5chECpZ8azEG2LFjBzNnzuTgwYMA1KpVi7FjxxIQEJDdqYotJYYiBUtSShqfbjjGh2v/bjse3MKXkcE11HYsIoVKbuUYr7766l3fnzx5co7nvpvt27czceJEtm/fTkpKCnXq1GHSpEl06dLFMqZt27asX7/+lnOjoqLw9fUFYMGCBcyYMYPIyEicnZ0JCgpi+vTpmVqmP/jgA+bOnUtUVBTu7u60b9+e6dOnU6FCBQDmz5/P4MGDLU+pTJky5ba/L5UrV+b48eNZ/o7KA0VEciY93czcDUd5Z+Uh0s1Qp7wrHz8aSKXSztYOTaTAyNcCodw7JYYiBVN03DVe+/0Af964M1nW1YGXutbi/gblMRgMVo5OROS/Kcco+HSNRETuzeYjsYz4YRcXrybj5mTHrH4NaefvZe2wRAqEPF2DMDExMdM/3+0lIlKY+ZRy5tMBjflycBMql3bmXKKJkQvC6f/ZX0Seu2zt8EREREREir0W1cqw9PmWNPRxJ+F6CkO+CuO9kEjS0vX8k0hOZalA6OHhwfnz5wFwd3fHw8PjltfN4yIiRUG7ml6sHNWasf+rgaOdkb+OxdF19kZe//0Al5NSrB2eiEieKFWqFLGxsVkeX6lSJU6cOJGHEYmIiNxeeXcnfny6OY83r4zZDO+vPsyQ+WFcupps7dBECqUsLay1Zs0aSpUqBcDatWvzNCARkYLC0c6G5ztUp1dABUvb8eeboliy+wwTu6ntWESKnvj4eP744w/c3NyyNP7ixYukpaXlcVQiIiK352Brw2u96hJQyZ2Xft3L+sgLdP9gE3MfC6Rexaz9v0xEMmR7DcKTJ0/i4+Nzy1+KzWYz0dHRVKpUKVcDLKq09oxI4bPu0HmmLNnP8YsZux03q1KKqT3rUtNbux2LSMFxLzmG0Zil5pJMjhw5gp+fX7bPK86UB4qI5L6DZxN55tsdnLh4DXtbI6/1rEO/JqpPSPGTb5uU2NjYcPbsWby8Mi8AevHiRby8vHQXOYuUGIoUTqbUND7bcIw5a4+QlJKOjdHAoPt8GRVcHRdHO2uHJyKiHKMQ0DUSEckbCddTGPtTOKsOZiyR1q+xD6/2rIOjnY2VIxPJP3m6Sck/mc3m27bUXblyBUdHx+xOJyJSqDjY2jC8fXVWjWlDpzplSUs3M29TFO3fXc/iXafRxvAiIiIiItbh5mTHp4835oVONTEa4Mft0fSdG0p03DVrhyZS4GX5CcIxY8YAMHv2bJ588kmcnZ0t76WlpbF161ZsbGzYvHlz3kRaxOjOsUjRsD7yAlOW7Ccq9ioATauUYmrPOvh7699rEbEO5RgFn66RiEje23Q4lhELdhF3NRl3Zztm9WtI25pe/32iSCGX5y3G7dq1A2D9+vUEBQVhb29vec/e3h5fX1/GjRtH9erVsxl68aTEUKToMKWm8fnGKD5Yc9jSdjwwyJdR/6uOq9qORSSfKcco+HSNRETyx+n46zz37Q52n0rAYIBRHWrwfPtqGI3aaFCKrnxbg3Dw4MHMnj1bycw9UmIoUvScjr/O678f4I99MQCUKenAxG7+9GpYQbsdi0i+UY5R8OkaiYjkH1NqGq8uPcD3W08C0K6mJ7P6BeDmrBv5UjTlW4FQcocSQ5Gia8ONtuNjN9uOfUvxas861Cqnf9dFJO8pxyj4dI1ERPLfzztOMfHXvZhS0/Ep5cTHjwZSt4KbtcMSyXX5WiDcvn07P/30EydPniQ5OTnTe4sWLcrudMWSEkORou1m2/GcNUe4npKGjdHAgKDKjP5fDbUdi0ieys0cIz09nSNHjnD+/HnS09Mzvde6det7mrs4Ux4oImId+88k8Oy3OzkZdw0HWyOv96pL38Y+1g5LJFfl2y7GCxYs4L777uPgwYP8+uuvpKSksH//ftasWYObm6rvIiKQsdvxsHbVWDW2DV3reZOWbubLzcdp/856Fu08pd2ORaTA++uvv6hWrRq1atWidevWtG3b1vK6uTa1iIhIYVKnvBtLh7ekvb8XptR0Xvh5DxMW7cWUmmbt0ESsLtsFwjfffJOZM2eydOlS7O3tmT17NhERETz00ENUqlQpL2IUESm0Krg78dGjgXwztCl+ZUoQe8XEmJ9289AnoRw4k2jt8ERE7uiZZ56hcePG7Nu3j7i4OC5dumR5xcXFWTs8ERGRHHFztuPzAY0Z+78aGAzww7aTPDQ3lNPx160dmohVZbvFuESJEuzfvx9fX19Kly7NunXrqFevHgcPHqR9+/acPXs2r2ItUtRaIlL8mFLTmLcpig9WZ7QdGw0wIMiX0f+rgZuT2o5FJHfkVo5RokQJdu/eTbVq1XIxOgHlgSIiBcX6yAuMXLCL+GspeDjb8UH/RrSsXsbaYYnck3xrMfbw8ODy5csAVKhQgX379gEQHx/PtWvXsjudiEix4WBrw3Ntq7F6bBu61StHuhnmbzlOh3fX8csOtR2LSMHSrFkzjhw5Yu0wRERE8kybGp78/nxL6ld049K1FAZ+uY2vQ49bOywRq7DN7gmtW7cmJCSEevXq0bdvX0aOHMmaNWsICQmhQ4cOeRGjiEiRUt7diQ8fbUT/w7FMWrKPYxeuMnbhbn7YdpKpPetSu7yeJhER63v++ecZO3YsMTEx1KtXDzu7zE86169f30qRiYiI5J6KHs789HQQE3/dxy87TzHpt/0cPneFyT1qY2uT7WeqRAqtbLcYx8XFkZSURPny5UlPT2fGjBls2bKF6tWr8/LLL+Ph4ZFXsRYpai0REYDk1HS+2BzF+6sPcy1Zbccicu9yK8cwGm/9S5HBYMBsNmMwGEhL04LuOaU8UESk4DGbzXyy4RjTV0RgNkOr6mWY80gj5eRS6OQ0z8hWgTA1NZXvv/+eTp06UbZs2RwFKhmUGIrIP51NuM7ryw6ybE/GOq5lStozvkstHgyogNFosHJ0IlKY5FaOceLEibu+X7ly5RzPXdwpDxQRKbhW7o9h1IJwrqekUdWzBPMGNsG3TAlrhyWSZflSIARwdnbm4MGDSgrvkRJDEbmdTYdjmbxkH0cvXAUgsLIHU3vWoU55NytHJiKFhXKMgk/XSESkYNt/JoEnvtrO2YQk3J3tmPtYIM39Sls7LJEsybdNSpo2bUp4eHh2TxMRkSxoWb0Mf4xszYQu/jjb27DjxCV6fLCJyb/tI+F6irXDE5Fi5ujRozz//PMEBwcTHBzMiBEjOHr0qLXDEhERyVN1yrvx27AWNPBxJ/5aCo/P28qPYSetHZZInsp2gfC5555jzJgxzJkzh9DQUPbs2ZPplVfeeOMN7rvvPpydnXF3d7/tGIPBcMtrwYIFmcasW7eORo0a4eDgQLVq1Zg/f/4t83z44Yf4+vri6OhIs2bN2LZtW6b3k5KSGDZsGKVLl6ZkyZL07t2bc+fO5dZXFZFizt7WyNNtqrJ6bBu618/Y7fir0BO0f2cdP22PJj1dux2LSN5buXIltWvXZtu2bdSvX5/69euzdetW6tSpQ0hIiLXDExERyVNero78+FRzejQoT0qamRd/2csbyw6Qplxciqhstxhba8HqyZMn4+7uzqlTp5g3bx7x8fG3jePLL7+kc+fOlmPu7u44OjoCEBUVRd26dXnmmWd44oknWL16NaNGjWLZsmV06tQJgB9//JEBAwYwd+5cmjVrxqxZs1i4cCGHDh3Cy8sLgGeffZZly5Yxf/583NzcGD58OEajkc2bN2f5+6i1RESyavORWCYv2c+R81cAaFTJnak961K3gtqOReRWuZVjBAQE0KlTJ6ZNm5bp+Pjx4/nzzz/ZuXPnvYZabCkPFBEpPMxmM7NXH2bWqsMAdPD3Ynb/AEo62Fo5MpHby7c1CK29YPX8+fMZNWrUHQuEv/76K7169brtuS+++CLLli1j3759lmMPP/ww8fHxrFixAoBmzZrRpEkT5syZA0B6ejo+Pj48//zzjB8/noSEBDw9Pfn+++/p06cPABEREdSqVYvQ0FCaN29+2882mUyYTCbLz4mJifj4+CgxFJEsSU5N58vNUcz+x27HjzWvzNj/1cTNWTuricjfcqv45OjoyN69e6levXqm45GRkdSvX5+kpKR7DbXYUoFQRKTwWbr7DOMW7saUmo6/twufD2xMRQ9na4clcot8W4PwxIkTVKhQgcqVK2d6VahQ4T+Lh/lh2LBhlClThqZNm/LFF1/wz/pnaGgowcHBmcZ36tSJ0NBQAJKTk9mxY0emMUajkeDgYMuYHTt2kJKSkmmMv78/lSpVsoy5nbfeegs3NzfLy8fHJ1e+r4gUDzfbjteMbUuPBuVJN8PXoSdo/67ajkUkb3h6et523enw8HBLV4WIiEhx0aNBeX58OghPFwciYi7T68PN7DhxydphieSabBcI27VrR1xc3C3HExISaNeuXa4ElVNTp07lp59+IiQkhN69e/Pcc8/xwQcfWN6PiYmhbNmymc4pW7YsiYmJXL9+ndjYWNLS0m47JiYmxjKHvb39Lesg/nPM7UyYMIGEhATLKzo6+h6/rYgUR95ujnzQP4Dvn2xGNa+SXLyazP/9vIfec7ew73SCtcMTkSLkySef5KmnnmL69Ols3LiRjRs3Mm3aNJ5++mmefPJJa4cnIiKS7xr6uPPbsBbULudK7JVk+n/2F4t3nbZ2WCK5IttN8zfXGvy3ixcvUqJEiWzNNX78eKZPn37XMQcPHsTf3z9L873yyiuWfw4ICODq1au8/fbbjBgxIltx5QUHBwccHBysHYaIFBH3VS3DHyNbMX/zcWatimTXyXh6zNnEY80qM66j2o5F5N698soruLi48O677zJhwgQAypcvz5QpUwpEbiUiImIN5d2dWPhMEKN/DOfPA+cY9WM4R85fYcz/amA03lorESksslwgfPDBB4GMdf4GDRqUqdiVlpbGnj17uO+++7L14WPHjmXQoEF3HePn55etOf+pWbNmvPbaa5hMJhwcHPD29r5lt+Fz587h6uqKk5MTNjY22NjY3HaMt7c3AN7e3iQnJxMfH5/pKcJ/jhERyQ92NkaebO1HjwbleXP5QZbsPsM3f51g2d6zjO/sT5/AikpSRCTHDAYDo0ePZvTo0Vy+fBkAFxcXK0clIiJifSUcbJn7WCBv/3mIj9cdZc7aIxyLvcK7fRviZG9j7fBEciTLBUI3t4zdMs1mMy4uLjg5OVnes7e3p3nz5tluN/H09MTT0zNb52RHeHg4Hh4elmJmUFAQy5cvzzQmJCSEoKAgION7BAYGsnr1astGJ+np6axevZrhw4cDEBgYiJ2dHatXr6Z3794AHDp0iJMnT1rmERHJT95ujrzfP4D+TSsx6bd9HD5/hf/7ZQ/fbzvJ672027GI3DsVBkVERDIzGg282Nmfqp4lmbBoD8v3xhAdF8pnAxrj7eZo7fBEsi3LBcIvv/wSAF9fX8aNG5ftduJ7dfLkSeLi4jh58iRpaWmWRbOrVatGyZIlWbp0KefOnaN58+Y4OjoSEhLCm2++ybhx4yxzPPPMM8yZM4f/+7//Y8iQIaxZs4affvqJZcuWWcaMGTOGgQMH0rhxY5o2bcqsWbO4evUqgwcPBjIKpUOHDmXMmDGUKlUKV1dXnn/+eYKCgu64g7GISH4Iqlqa5SNb8dWW48wMiSQ8OqPt+NFmlRjXsSbuzvbWDlFECrhGjRqxevVqPDw8CAgIuO2yMjft3LkzHyMTEREpmPoEVqRyaWee/mYHe08n0PPDTXw+oAn1KuomvRQu2V6DcPLkyXkRx3+aNGkSX331leXngIAAANauXUvbtm2xs7Pjww8/ZPTo0ZjNZqpVq8Z7772X6anGKlWqsGzZMkaPHs3s2bOpWLEin3/+OZ06dbKM6devHxcuXGDSpEnExMTQsGFDVqxYkWnjkpkzZ2I0Gunduzcmk4lOnTrx0Ucf5cPvgojI3dnZGHmi1d9tx7+Fn+Hbv06ybM9ZXuzsz0ONfdR2LCJ31LNnT0vnRc+ePe9aIBQREZEMTXxLsfi5Fgz9KozD56/Q95MtvPdQQ7rWK2ft0ESyzGA2m83ZOeHcuXOMGzeO1atXc/78ef59elpaWq4GWFQlJibi5uZGQkICrq6u1g5HRIqo0KMXmbxkH5HnrgAZO6+91rOu7miKFGHKMQo+XSMRkaIpMSmF57/fxfrICwCM61iDYe2q6Yab5Kuc5hnZLhB26dKFkydPMnz4cMqVK3fLH/SePXtmZ7piS4mhiOSXlLR0vtpynFmrDnPFlIrBAI80rcQLndR2LFIU5VaO4efnR1hYGKVLl850PD4+nkaNGnHs2LF7DbXYUh4oIlJ0paal88byg3y5+TgAvRqWZ1rv+jjaafMSyR/5ViB0cXFh48aNNGzYMLsxyj8oMRSR/HY+MYk3lx9kcfgZADyc7fi/zv70U9uxSJGSWzmG0WgkJiYGLy+vTMfPnTuHj48PycnJ9xpqsaU8UESk6Ptu6wkm/baftHQzjSq588njjfF0cbB2WFIM5DTPMGb3g3x8fG5pKxYRkYLPy9WRWQ8HsOCp5tQs68KlaylMWLSXBz7ewp5T8dYOT0QKiCVLlrBkyRIAVq5cafl5yZIl/Prrr7z22mtUqVIlzz4/MjKSnj17UqZMGVxdXWnZsiVr167NNGbEiBEEBgbi4OBwx5vWK1eupHnz5ri4uODp6Unv3r05fvx4pjHfffcdDRo0wNnZmXLlyjFkyBAuXryYpTgvXrxIxYoVMRgMxMfH5+CbiohIUfZos8p8PaQpro627DwZT68PN3PwbKK1wxK5o2w/Qfjnn3/y7rvv8sknn+Dr65tHYRV9unMsItaUkpbO16EnmBkSaWk77t+0Ei90rIlHCbUdixRm95pjGI0Z948NBsMtN4Xt7Ozw9fXl3XffpXv37rkS77/VqFGD6tWr89Zbb+Hk5MSsWbOYP38+R48exdvbG8goENasWZOtW7eyZ88ewsPDM80RFRVFrVq1GDNmDEOHDiUhIYHRo0dz+fJly+7LmzdvpnXr1sycOZMePXpw+vRpnnnmGWrUqMGiRYv+M85evXqRnJzMH3/8waVLl3B3d8/yd1QeKCJSfBy9cIUnvtpOVOxVStjbMPvhAIJrl/3vE0VyKN9ajD08PLh27Rqpqak4OztjZ2eX6f24uLjsTFdsKTEUkYLgfGISb/0Rwa+7TgPg7mzHi2o7FinUcivHqFKlCmFhYZQpUyYXo7u72NhYPD092bBhA61atQLg8uXLuLq6EhISQnBwcKbxU6ZMYfHixbcUCH/++Wf69++PyWSyFDyXLl1Kz549MZlM2NnZ8c477/Dxxx9z9OhRy3kffPAB06dP59SpU3eN8+OPP+bHH39k0qRJdOjQQQVCERG5q/hryTz33U62HL2IwQCTutdmcIu8expfirec5hm22f2gWbNmZfcUEREpoLxcHZnZryEPN/Fh8pL9RMRcZsKivSzYdpKpPevSwMfd2iGKiJVERUXl+2eWLl2amjVr8vXXX9OoUSMcHBz45JNP8PLyIjAwMMvzBAYGYjQa+fLLLxk0aBBXrlzhm2++ITg42HJzOygoiJdeeonly5fTpUsXzp8/z88//0zXrl3vOveBAweYOnUqW7duzfJGLSaTCZPJZPk5MVEtZiIixYm7sz1fDWnKpN/288O2k7y69ADnEk282LmmdjiWAiPbBcKBAwfmRRwiImJFzfxK8/vzLS1tx7tPJdDro8083MSHFzr5U0ptxyLF0tWrV1m/fj0nT568ZVOSESNG5PrnGQwGVq1aRa9evXBxccFoNOLl5cWKFSvw8PDI8jxVqlThzz//5KGHHuLpp58mLS2NoKAgli9fbhnTokULvvvuO/r160dSUhKpqan06NGDDz/88I7zmkwm+vfvz9tvv02lSpWyXCB86623ePXVV7Mcv4iIFD12NkbefKAuFT2ceHvlIeauP8r5y0lM710fO5tsbw8hkuty9Kfw6NGjvPzyy/Tv35/z588D8Mcff7B///5cDU5ERPKPrY2RIS2rsHpcGx4MqIDZDD9si6b9u+v4busJ0tK1QZVIcbJr1y6qVatG//79GT58OK+//jqjRo3ipZdeynZHyfjx4zEYDHd9RUREYDabGTZsGF5eXmzcuJFt27bRq1cvevTowdmzZ7P8eTExMTz55JMMHDiQsLAw1q9fj729PX369LGsq3jgwAFGjhzJpEmT2LFjBytWrOD48eM888wzd5x3woQJ1KpVi8ceeyxb33/ChAkkJCRYXtHR0dk6X0REigaDwcCwdtWY0ac+NkYDi3ae5omvtnPVlGrt0ESyvwbh+vXr6dKlCy1atGDDhg0cPHgQPz8/pk2bxvbt2/n555/zKtYiRWvPiEhBty0qjkm/7SMi5jIA9Su6MbVnXRqq7VikQMutHKNt27bUqFGDuXPn4ubmxu7du7Gzs+Oxxx5j5MiRPPjgg1me68KFC/+5O7Cfnx8bN26kY8eOXLp0KVPs1atXZ+jQoYwfPz7TOXdag/CVV15hxYoVhIWFWY6dOnUKHx8fQkNDad68OY8//jhJSUksXLjQMmbTpk20atWKM2fOUK5cuVtibNiwIXv37rW0g5nNZtLT07GxsWHixIlZfkpQeaCIiKyJOMdz3+0kKSWdBhXd+GJQE0qXdLB2WFIE5NsahOPHj+f1119nzJgxuLi4WI63b9+eOXPmZHc6EREpoJpWKcXvz7fkm79O8N6fkew5lcADH22mX2Mf/q+z2o5Firrw8HA++eQTjEYjNjY2mEwm/Pz8mDFjBgMHDsxWgdDT0xNPT8//HHft2jXg752UbzIajaSnp2f5865du3bLHDY2NgCWea5du4atre1tx9zp/vkvv/zC9evXLT+HhYUxZMgQNm7cSNWqVbMcn4iISHv/svzwZHOGzA9j96kEen+8ha+HNKNSaWdrhybFVLZbjPfu3csDDzxwy3EvLy9iY2NzJSgRESkYbG2MDG5xo+24UUbb8YKwaNq9s45v/1LbsUhRZmdnZymyeXl5cfLkSQDc3NzyrEU2KCgIDw8PBg4cyO7du4mMjOSFF14gKiqKbt26WcYdOXKE8PBwYmJiuH79OuHh4YSHh1vWSezWrRthYWFMnTqVw4cPs3PnTgYPHkzlypUJCAgAoEePHixatIiPP/6YY8eOsXnzZkaMGEHTpk0pX748AL/++iv+/v6Wz61atSp169a1vKpUydiBslatWnh5eeXJ74mIiBRdAZU8+PnZ+6jg7sTxi9d48OMt7DudYO2wpJjKdoHQ3d39tmvA7Nq1iwoVKuRKUCIiUrB4uTjy3kMNWfhMEP7eLiRcT+Hlxfvo9eFmdp28ZO3wRCQPBAQEWFp027Rpw6RJk/juu+8YNWoUdevWzZPPLFOmDCtWrODKlSu0b9+exo0bs2nTJn777TcaNGhgGffEE08QEBDAJ598QmRkJAEBAQQEBHDmzBkgo7Pl+++/Z/HixQQEBNC5c2ccHBxYsWIFTk5OAAwaNIj33nuPOXPmULduXfr27UvNmjVZtGiR5XMSEhI4dOhQnnxXERERgKqeJVn03H3UKudK7BUT/T4JZdNhPXwl+S/baxCOGzeOrVu3snDhQmrUqMHOnTs5d+4cAwYMYMCAAUyePDmvYi1StPaMiBRWqWnpfPvXCd4NieRyUsaCyg83UduxSEGRWznG9u3buXz5Mu3ateP8+fMMGDCALVu2UL16db744otMBTvJHuWBIiLyb4lJKTz99Q5Cj13EzsbAO30b0LOhHsKS7MtpnpHtAmFycjLDhg1j/vz5pKWlYWtrS1paGo888gjz58+3rN0id6fEUEQKuwuXTUz7I4Jfdp4CwM3JjnGdavJI00rYGA1Wjk6k+MqNHMNsNhMdHY2XlxeOjo65HKEoDxQRkdsxpaYx5qfdLNuT0bX5crdaPNHKz8pRSWGTbwXCm6Kjo9m7dy9XrlwhICCA6tWr52SaYkuJoYgUFduPx/HKb/s5eDYRgLoVXJnasy6NKnlYOTKR4ik3coz09HQcHR3Zv3+/crw8oDxQRETuJD3dzNTfDzB/y3EAnmrtx/jO/hh1A16yKN92Mb7Jx8cHHx+fnJ4uIiJFRGPfUiwd3oLvtp7knT8Pse90Ig9+tIWHGlfkxc7+lC7pYO0QRSSbjEYj1atX5+LFiyoQioiI5COj0cDkHrXxdnNk2h8RfLrhGOcTk5jRpwH2ttneRkIky7L9p6t3795Mnz79luMzZsygb9++uRKUiIgULrY2Rgbe58vacW3pE1gRgJ+2n6LdO+v4JvS4djsWKYSmTZvGCy+8wL59+6wdioiISLFiMBh4pk1V3u3bABujgcXhZxj6VRhXTKnWDk2KsGy3GHt6erJmzRrq1auX6fjevXsJDg7m3LlzuRpgUaXWEhEpynaciOOVxfs5cKPtuE75jLbjwMpqOxbJa7mVY3h4eHDt2jVSU1Oxt7e37P57U1xc3L2GWmwpDxQRkaxae+g8z327k+spadSr4MYXg5rg6aIOHbmzfGsxvnLlCvb2t+5SaWdnR2JiYnanExGRIiiwcimWPt+S77ae4O2Vh9h/JpHeH2+hb2BFXuziTxm1HYsUeDNnzsRg0HpHIiIi1tSuphc/PNWcIfPD2Hs6gT5zt/D1kKZULl3C2qFJEZPtJwibNm1K9+7dmTRpUqbjU6ZMYenSpezYsSNXAyyqdOdYRIqL2Csmpv8RwcIdGbsduzraMq5TTR5tVlm7HYvkAeUYBZ+ukYiIZFdU7FUGfLGV6LjrlClpz5eDmlKvopu1w5ICKN92MV66dCkPPvggjzzyCO3btwdg9erV/PDDDyxcuJBevXplK/DiSomhiBQ3O05cYtJv+9h/JuNp89rlXHmtVx0CK5eycmQiRUtu5Rg2NjacPXsWLy+vTMcvXryIl5cXaWlp9xpqsaU8UEREcuL85SQGfxnG/jOJONvbMPexQFrX8LR2WFLA5DTPyPYmJT169GDx4sUcOXKE5557jrFjx3Lq1ClWrVql4qCIiNxRYGUPlgxvyWs96+DqaMuBs4n0/jiUcQt3E3vFZO3wRORf7nQP2WQy3Xa5GREREclbXi6OLHiqOS2qleZachpD5ofx665T1g5LiohsP0EouUN3jkWkOLt4xcT0FRH8tD0joXFxtGVcx5o82qwStjbZvnclIv9wrznG+++/D8Do0aN57bXXKFmypOW9tLQ0NmzYwPHjx9m1a1euxVzcKA8UEZF7kZyazriFu1my+wwAL3X158lWflo7WIB8bDG+KTk5mfPnz5Oenp7peKVKlXIyXbGjxFBEBHaezGg73nc6o+24VjlXXutZh8a+ajsWyal7zTGqVKkCwIkTJ6hYsSI2NjaW9+zt7fH19WXq1Kk0a9Ys12IubpQHiojIvUpPN/PG8oPM2xQFwNCWVZjYtRZGrfFd7OVbgfDw4cMMGTKELVu2ZDpuNpsxGAxajyaLlBiKiGRISzfz/baTvLPyEAnXUwDo3agi47v44+mi3Y5Fsiu3cox27dqxaNEiPDw8cjE6AeWBIiKSez7bcIw3lh8E4P4G5Xm7b30cbG3+4ywpyvKtQNiiRQtsbW0ZP3485cqVu+UR1gYNGmRnumJLiaGISGYXr5iYseIQP26PBjLajsf+rwaPNa+stmORbFCOUfDpGomISG5avOs04xbuJjXdTItqpZn7WCAujnbWDkusJN8KhCVKlGDHjh34+/tnO0j5mxJDEZHb+3fbsb+3C6/1qksTtR2LZElu5RhpaWnMnz+f1atX33ZZmTVr1txrqMWW8kAREcltGyIv8Oy3O7ianEbtcq7MH9IELxdHa4clVpBvuxjXrl2b2NjY7J4mIiKSJY0qefDbsJa83qsubk52RMRcpu/cUMb8FM6Fy9rtWCS/jBw5kpEjR5KWlkbdunVp0KBBppeIiIgUHK1reLLgqSDKlLTnwNlEen+8hRMXr1o7LClEsv0E4Zo1a3j55Zd58803qVevHnZ2mR9b1V3QrNGdYxGR/xZ3NZm3V0awICwasxlcHGwZ07EGj6vtWOSOcivHKFOmDF9//TVdu3bNxegElAeKiEjeOXHxKgO+2MaJi9co6+rAd080p5pXSWuHJfko31qMjcaMv5D9e+1BbVKSPUoMRUSyLjw6nkm/7WPPqQQgo+14as+6NK2itmORf8utHKN8+fKsW7eOGjVq5GJ0AsoDRUQkb52/nMRjn28l8twVSpew55uhzahdXv+/KS7yrUC4fv36u77fpk2b7ExXbCkxFBHJnrR0MwvCTvL2ykPEX8vY7fjBgAqM7+qv9VVE/iG3cox3332XY8eOMWfOnFtuDMu9UR4oIiJ5Le5qMgO+2Mq+04m4Odnx1ZCmNPRxt3ZYkg/yrUAouUOJoYhIztyu7Xj0/2owIEhtxyKQeznGAw88wNq1aylVqhR16tS5ZVmZRYsW3WuoxZbyQBERyQ8J11MY/OU2dp6Mp6SDLV8MaqIOnGIgXwuE8fHxzJs3j4MHDwJQp04dhgwZgpubW3anKraUGIqI3Jvd0fG88q+241fvr0Mzv9JWjkzEunIrxxg8ePBd3//yyy9zPHdxpzxQRETyy1VTKkO/CuOvY3E42hn5fEATWlYvY+2wJA/lW4Fw+/btdOrUCScnJ5o2bQpAWFgY169f588//6RRo0bZi7yYUmIoInLv0tLN/BgWzYyVEZa24wcCKjChiz9ermo7luJJOUbBp2skIiL5KSkljae/2cH6yAvY2xr5+NFGdKhV1tphSR7JtwJhq1atqFatGp999hm2trYApKam8sQTT3Ds2DE2bNiQvciLKSWGIiK559LVZGasPMSCsJOYzVDyRtvxQLUdSzGUmzlGamoq69at4+jRozzyyCO4uLhw5swZXF1dKVlSOyLmlPJAERHJb6bUNEb8sIuV+89hazQw++EAutUvZ+2wJA/kW4HQycmJXbt24e/vn+n4gQMHaNy4MdeuXcvOdMWWEkMRkdy3+8Zux7tvtB3XLOvC1J5qO5biJbdyjBMnTtC5c2dOnjyJyWQiMjISPz8/Ro4ciclkYu7cubkYdfGiPFBERKwhJS2dsT/tZsnuMxgN8HafBvQOrGjtsCSX5TTPyPZjFa6urpw8efKW49HR0bi4uGR3OhERkVzTwMedX59rwbQH6+HhbMehc5fp9+lfjFqwi/OJSdYOT6RQGTlyJI0bN+bSpUs4OTlZjj/wwAOsXr3aipGJiIhITtjZGJnZryH9GvuQboaxC3fz3dYT1g5LCohsFwj79evH0KFD+fHHH4mOjiY6OpoFCxbwxBNP0L9//7yIUUREJMuMRgMPN63EmrFtebRZJQwGWBx+hvbvrufzjcdISUu3dogihcLGjRt5+eWXsbe3z3Tc19eX06dPWykqERERuRc2RgNvPViPQff5AjDx1318vvGYdYOSAiHbBcJ33nmHBx98kAEDBuDr64uvry+DBg2iT58+TJ8+PS9i5Pjx4wwdOpQqVarg5ORE1apVmTx5MsnJyZnG7dmzh1atWuHo6IiPjw8zZsy4Za6FCxfi7++Po6Mj9erVY/ny5ZneN5vNTJo0iXLlyuHk5ERwcDCHDx/ONCYuLo5HH30UV1dX3N3dGTp0KFeuXMn9Ly4iIjnmUcKeNx6ox2/DWtDAx50rplReX3aQbu9v5K9jF60dnkiBl56eTlpa2i3HT506pa4RERGRQsxoNDC5R22eaVMVgNeXHWTOmsP/cZYUddkuENrb2zN79mwuXbpEeHg44eHhxMXFMXPmTBwcHPIiRiIiIkhPT+eTTz5h//79zJw5k7lz5/LSSy9ZxiQmJtKxY0cqV67Mjh07ePvtt5kyZQqffvqpZcyWLVvo378/Q4cOZdeuXfTq1YtevXqxb98+y5gZM2bw/vvvM3fuXLZu3UqJEiXo1KkTSUl/t6Y9+uij7N+/n5CQEH7//Xc2bNjAU089lSffXURE7k39iu78+ux9lrbjyHNXePjTvxi5YBfn1HYsckcdO3Zk1qxZlp8NBgNXrlxh8uTJdO3a1XqBiYiIyD0zGAy82LkmY/5XA4B3/oxkxooIsrlNhRQh2d6kJCEhgbS0NEqVKpXpeFxcHLa2tvm20PLbb7/Nxx9/zLFjGY/Cfvzxx0ycOJGYmBhLK8z48eNZvHgxERERQEZ79NWrV/n9998t8zRv3pyGDRsyd+5czGYz5cuXZ+zYsYwbNw7I+L5ly5Zl/vz5PPzwwxw8eJDatWsTFhZG48aNAVixYgVdu3bl1KlTlC9fPkvxa3FqEZH8F38tmXf+PMR3WzN2Oy5hb8Oo4BoMauGLnXY7liIit3KMU6dO0alTJ8xmM4cPH6Zx48YcPnyYMmXKsGHDBry8vHIx6uJFeaCIiBQkn204xhvLDwIw6D5fJveojcFgsHJUklP5tknJww8/zIIFC245/tNPP/Hwww9nd7ocS0hIyFSkDA0NpXXr1pnWyenUqROHDh3i0qVLljHBwcGZ5unUqROhoaEAREVFERMTk2mMm5sbzZo1s4wJDQ3F3d3dUhwECA4Oxmg0snXr1jvGazKZSExMzPQSEZH85e5sz+u96rFkWEsa+rhzNTmNN5YfpOvsjYQeVduxyD9VrFiR3bt3M3HiREaPHk1AQADTpk1j165dKg6KiIgUIU+29uO1nnUAmL/lOC/9upe0dD1JWNxku0C4detW2rVrd8vxtm3b3rVAlpuOHDnCBx98wNNPP205FhMTQ9myZTONu/lzTEzMXcf88/1/nnenMf9Oim1tbSlVqpRlzO289dZbuLm5WV4+Pj5Z/r4iIpK76lV0Y9Gz9zG9dz1KlbDn8Pkr9P/sL0b8oLZjkX+ytbXl0UcfZcaMGXz00Uc88cQTmXY0FhERkaLh8SBf3u5TH6MBftgWzdifwknV5n7FSrYLhCaTidTU1FuOp6SkcP369WzNNX78eAwGw11fN9uDbzp9+jSdO3emb9++PPnkk9kN32omTJhAQkKC5RUdHW3tkEREijWj0UC/JpVYM7YNjzevjMEAS3afof076/hsg3Y7Fnnrrbf44osvbjn+xRdf5NnGdCIiImI9fRv7MPvhAGyNBhaHn+H5H3aRnKqcuLjIdoGwadOmmTb+uGnu3LkEBgZma66xY8dy8ODBu778/Pws48+cOUO7du247777bonB29ubc+fOZTp282dvb++7jvnn+/88705jzp8/n+n91NRU4uLiLGNux8HBAVdX10wvERGxPndne17rVZelw1sSUClz2/GWo7HWDk/Eaj755BP8/f1vOV6nTh3mzp1rhYhEREQkr/VoUJ6PHwvE3sbIH/tiePqb7SSlpFk7LMkHttk94fXXXyc4OJjdu3fToUMHAFavXk1YWBh//vlntuby9PTE09MzS2NPnz5Nu3btCAwM5Msvv8RozFzbDAoKYuLEiaSkpGBnZwdASEgINWvWxMPDwzJm9erVjBo1ynJeSEgIQUFBAFSpUgVvb29Wr15Nw4YNgYzFHbdu3cqzzz5rmSM+Pp4dO3ZYCqJr1qwhPT2dZs2aZev7i4hIwVG3ghu/PHMfP+88xbQ/Ijh8/gqPfLaVHg3KM7FrLbzdHK0doki+iomJoVy5crcc9/T05OzZs1aISERERPLD/2qX5fOBjXnqm+2sPXSBIfPD+GxAY0o4ZLuEJIVItp8gbNGiBaGhofj4+PDTTz+xdOlSqlWrxp49e2jVqlVexMjp06dp27YtlSpV4p133uHChQvExMRkWvPvkUcewd7enqFDh7J//35+/PFHZs+ezZgxYyxjRo4cyYoVK3j33XeJiIhgypQpbN++neHDhwMZ23yPGjWK119/nSVLlrB3714GDBhA+fLl6dWrFwC1atWic+fOPPnkk2zbto3NmzczfPhwHn744SzvYCwiIgWT0WjgocY+rB3blgFBlTEaYOnuM3R4dx2fbjiqtmMpVnx8fNi8efMtxzdv3pynOU9kZCQ9e/akTJkyuLq60rJlS9auXZtpzIgRIwgMDMTBwcFyU/ffVq5cSfPmzXFxccHT05PevXtz/PjxTGO+++47GjRogLOzM+XKlWPIkCFcvPjfGxbNnz+f+vXr4+joiJeXF8OGDcvp1xURESmQWtfw5KvBTSlhb8OWoxcZ8MU2EpNSrB2W5CVzIfDll1+agdu+/mn37t3mli1bmh0cHMwVKlQwT5s27Za5fvrpJ3ONGjXM9vb25jp16piXLVuW6f309HTzK6+8Yi5btqzZwcHB3KFDB/OhQ4cyjbl48aK5f//+5pIlS5pdXV3NgwcPNl++fDlb3ykhIcEMmBMSErJ1noiI5J+9p+LND3y4yVz5xd/NlV/83dzh3XXmzYcvWDsskbvKrRxj+vTp5tKlS5u/+OIL8/Hjx83Hjx83z5s3z1y6dGnzm2++mUvR3qp69ermrl27mnfv3m2OjIw0P/fcc2ZnZ2fz2bNnLWOef/5585w5c8yPP/64uUGDBrfMcezYMbODg4N5woQJ5iNHjph37Nhhbt26tTkgIMAyZtOmTWaj0WiePXu2+dixY+aNGzea69SpY37ggQfuGt+7775rLl++vPm7774zHzlyxLx7927zb7/9lq3vqDxQREQKi50n4sz1Jq8wV37xd3P39zea466YrB2S/Iec5hkGs9msvautIDExETc3NxISErQeoYhIAZaebuaXG23HF68mA9C9fjkmdqtFOTft5ioFT27lGGazmfHjx/P++++TnJzxZ9/R0ZEXX3yRSZMm5Va4mcTGxuLp6cmGDRssnSmXL1/G1dWVkJAQgoODM42fMmUKixcvJjw8PNPxn3/+mf79+2MymSzL0ixdupSePXtiMpmws7PjnXfe4eOPP+bo0aOW8z744AOmT5/OqVOnbhvfpUuXqFChAkuXLrUstZMTygNFRKQw2X8mgcfnbSPuajI1y7rw7RPN8HRxsHZYcgc5zTOy3WIsIiL/3959h0V1tG0Av5fei3QiIihSLIgNsRcU7LxvYotR7JrYo0ZNomLMFzVREzXGLmhiiRp7wYZdBEVRQUFQ7IAF6dLn+4OwbzaAAgIL7P27rr10z5mdfWYY2DmzZ2ZIkSgpSdC/hRUCpneC99/Tjg/fikXXZeew9tx97uxGNZZEIsGSJUvw8uVLXLlyBTdv3kRCQkKFDQ4CgJGREezt7bF161akpaUhJycH69atg6mpaak2w2vevDmUlJTg6+uL3NxcJCUl4ffff4e7u7t0rWo3Nzc8efIER48ehRAC8fHx2LNnD3r27FlsvidPnkReXh6ePXsGR0dH1K5dGwMGDMCTJ0/eGU9mZiaSk5NlHkRERNVFQ0t9/Dm2NUx11REZn4KB6wIRm/RW3mFROeMAIRERUQnoa6liQb9GODSpHZpbGyI9KxeLj0Wgx4rzuBTN3Y6p5tLR0UHLli3RqFEjqKtX7N0CEokEp06dwo0bN6CrqwsNDQ0sX74c/v7+0k3nSsLGxgYnTpzA119/DXV1dRgYGODp06fYtWuXNE3btm2xbds2DBw4EGpqajA3N4e+vj5Wr15dbL4PHjxAXl4efvjhB/zyyy/Ys2cPEhIS0K1bN+ldlkVZtGgR9PX1pQ8rK6sSl4WIiKgqsDPTxa5xbvjIQBMPXqVhwLpAPElIl3dYVI44QEhERFQKDS31sXucG376pAmMtNVw/2UahmwMwoTt1/lNKtUoaWlpmDt3Ltq0aYP69evD1tZW5lEas2fPhkQieecjIiICQghMmDABpqamuHDhAoKDg+Hl5YU+ffqUaufkuLg4jBkzBt7e3rh69SrOnTsHNTU1fPLJJyhYXefOnTuYMmUK5s2bh5CQEPj7++Phw4cYP358sfnm5eUhOzsbK1euhIeHB1q3bo0dO3YgKiqq0EYq/zRnzhwkJSVJH++745CIiKgqqmusjT/HtYa1kRaeJLxF/7WBuP8yVd5hUTkp8x7V0dHRuH//Pjp06ABNTU0IISCRSMozNiIioiqpYNpx94bm+PnkPWwNfIgjt2JxJuIFJnWxw6h2NlBT4XdwVL2NHj0a586dw9ChQ2FhYfFB/bzp06dj+PDh70xja2uLgIAAHD58GG/evJGumfPbb7/h5MmT2LJlC2bPnl2i91u9ejX09fXx448/So/98ccfsLKyQlBQEFq3bo1Fixahbdu2mDlzJgCgSZMm0NbWRvv27fH999/DwsKiUL4Fx5ycnKTHTExMYGxsjMePHxcbj7q6eoXffUlERFQZahtqYdc4NwzZGIToF6kYuO4Kdo5tjfqmOvIOjT5QqQcIX79+jYEDByIgIAASiQRRUVGwtbXFqFGjYGhoiGXLllVEnERERFWOvqYqfPo2RP8WtTH/QDiuPXqDJf4R2B3yBN/1bYR2dsbyDpGozI4dO4YjR46gbdu2H5yXiYkJTExM3psuPT1/qlLBxiIFlJSUkJdX8vU+09PTC+WhrKwMANJ80tPToaKiUmSa4vbwK6iLyMhI1K5dGwCQkJCAV69ewdrausTxERERVWdmehr4c2xrfLYpGHdjk/Hphiv4c5wbbIy15R0afYBS394wbdo0qKio4PHjx9DS0pIeHzhwIPz9/cs1OCIiouqgoaU+do93w7L+zjDWUcODl2n4bFMQJmy7jueJnHZM1ZOhoSFq1apVqe/p5uYGQ0NDeHt74+bNm7h37x5mzpyJmJgY9OrVS5ouOjoaoaGhiIuLw9u3bxEaGorQ0FDpOoC9evXC1atX8d133yEqKgrXr1/HiBEjYG1tDRcXFwBAnz59sHfvXqxZswYPHjzApUuXMHnyZLRq1QqWlpYAgH379sHBwUH6vg0aNEC/fv0wZcoUXL58GWFhYfD29oaDgwM6d+5ciTVFREQkX0Y66tg22hX2Zrp4kZKJweuv4NHrNHmHRR+g1AOEJ06cwJIlS6Tfmhaws7PDo0ePyi0wIiKi6kQikeDj5rVxenonDG9TF0oS4Mjt/N2Ofzsbzd2OqdpZuHAh5s2bJ72rrzIYGxvD398fqamp6NKlC1q0aIGLFy/iwIEDcHZ2lqYbPXo0XFxcsG7dOty7dw8uLi5wcXHB8+fPAQBdunTB9u3bsX//fri4uMDT0xPq6urw9/eHpqYmAGD48OFYvnw5fv31VzRq1Aj9+/eHvb099u7dK32fpKQkREZGysS4detWuLq6olevXujYsSNUVVXh7+8v3R2ZiIhIUdTSVsO2Ma6ob6qDuOQMfLohiBuXVGMSUdwcimLo6uri+vXrsLOzg66uLm7evAlbW1tcu3YNHh4eeP36dUXFWqMkJydDX18fSUlJ0jV2iIio5rjzPBnzD4bh6sM3AABbY2349G2IDg3eP82S6EOUVx/DxcUF9+/fhxACdevWLTQAdv369Q8NVWGxH0hERDXJi5QMDFp/BQ9epqG2oSb+/Hu3Y5KPsvYzSr0GYfv27bF161YsXLgQQP4dE3l5efjxxx85tYKIiOhvTpZ62DXODftuPMMPRyPw4FUahm0ORo9G5vi2txM7TVTleXl5yTsEIiIiqgZMdTWwY0xrDFwXiIev0zF4/RX8Oa41LPTZ361OSn0HYVhYGLp27YpmzZohICAAffv2RXh4OBISEnDp0iXUq1evomKtUfjNMRGR4kjOyMbPJ+9hy+WHyBOApqoyJnapj9HtbaCuoizv8KiGYR+j6uPPiIiIaqLniW8xcH0gniS8hY2xNnaObQ0zPQ15h6VwytrPKPUAIZC/Hsuvv/6KmzdvIjU1Fc2aNcOECRNgYWFR2qwUFjuGRESK525sMuYd4LRjqljl3ccICQnB3bt3AQANGzaUbvJBZcd+IBER1VRP36Rj4LoreJb4FvVMtLFjbGuY6nKQsDJV6gAhfTh2DImIFJMQAvtDn+H/jkTgVWomAMCzoTnm9uG0Yyof5dXHePHiBQYNGoSzZ8/CwMAAAJCYmIjOnTtj586dMDHhwHZZsR9IREQ12ZOEdAxcF4jnSRmwM9XBjrGtYayjLu+wFEZZ+xml3sXY19cXu3fvLnR89+7d2LJlS2mzIyIiUigSiQT/camNgBkdMbKtDZSVJPAPj0PXZWex+kw0MnNy5R0iEQBg0qRJSElJkS4lk5CQgLCwMCQnJ2Py5MnyDo+IiIiqKKtaWtg+pjXM9NQR9SIVn20MQkJalrzDovco9QDhokWLYGxsXOi4qakpfvjhh3IJioiIqKbT01DFvD5OODK5HVrVrYWM7Dz8dDwSnr9cwLl7L+UdHhH8/f3x22+/wdHRUXrMyckJq1evxrFjx+QYGREREVV1dY21sWNMa5joqiMiLgWfbQxCYjoHCauyUg8QPn78GDY2NoWOW1tb4/Hjx+USFBERkaJwMNfDn+Na45eBTWGiq46YV2nw3hyMcb9fw9M36fIOjxRYXl4eVFVVCx1XVVVFXl6eHCIiIiKi6sTWRAc7xrSGsY4a7sQmY+imYCS9zZZ3WFSMUg8Qmpqa4tatW4WO37x5E0ZGRuUSFBERkSKRSCTwcvkIAdM7YlS7/GnHx8Pj4b78HH4NiOK0Y5KLLl26YMqUKXj+/Ln02LNnzzBt2jR07dpVjpERERFRdVHfVAfbx7RGLW013H6WhGGbg5GcwUHCqqjUA4SDBw/G5MmTcebMGeTm5iI3NxcBAQGYMmUKBg0aVBExEhERKQRdDVXM7e2Eo5Pbo5VN/rTjpSfuwePn8zgb+ULe4ZGC+fXXX5GcnIy6deuiXr16qFevHmxsbJCcnIxVq1bJOzwiIiKqJhqY6WLbaFcYaKni5pNEDN8cjNTMHHmHRf9S6l2Ms7KyMHToUOzevRsqKioA8qegDBs2DGvXroWamlqFBFrTcPc6IiJ6FyEEDt58ju+P3MXLlPzdjrs7mWFubydY1dKSc3RUlZVnH0MIgVOnTiEiIgIA4OjoCHd39/IIU6GxH0hERIoo7FkSPt1wBckZOWhZ1xB+I1pBW11F3mHVOGXtZ5R6gLDAvXv3cPPmTWhqaqJx48awtrYuSzYKix1DIiIqiZSMbKw4FQXfyw+RmyegoaqECZ3qY0wHW2ioKss7PKqC2Meo+vgzIiIiRXXraSKGbAxCSkYOWtvWgu/wVtBUY5+2PJW1n1HqKcYFGjRogP79+6N3794cHCQiIqoguhqq+Pbvaceuf087XnbyHjx+OY8znHZMFSAgIABOTk5ITk4udC4pKQkNGzbEhQsX5BAZERERVXdNahtg68hW0FFXwZUHCRi99SoysrnedlVQpjsInz59ioMHD+Lx48fIypLdpnr58uXlFlxNxm+OiYiotAqmHf/fkbt48fe0425OZpjHacf0Dx/ax+jbty86d+6MadOmFXl+5cqVOHPmDPbt2/ehoSos9gOJiEjRhTxKwLBNwUjLykWHBiZYP7Q5Z8eUk0qbYnz69Gn07dsXtra2iIiIQKNGjfDw4UMIIdCsWTMEBASUOnhFxI4hERGVVUpGNlaejsLmS/nTjtVVlDChc32M5bRjwof3MaytreHv7w9HR8ciz0dERKB79+54/Pjxh4aqsNgPJCIiAoJjEuC9ORhvs3PR2d4Ea4c2h7oK+7IfqtKmGM+ZMwczZszA7du3oaGhgb/++gtPnjxBx44d0b9//9JmR0RERKWkq6GKb3o54diU9mhtWwuZOXlY/ve044CIeHmHR9VcfHw8VFVViz2voqKCly9fVmJEREREVBO1sqmFzcNbQkNVCWciX2LCthvIysmTd1gKq9QDhHfv3sWwYcMA5HcQ3759Cx0dHXz33XdYsmRJuQdIRERERWtgposdY1pj5WAXmOmp49HrdIz0u4bRW67hSUK6vMOjauqjjz5CWFhYsedv3boFCwuLSoyIiIiIaiq3ekbYOKwl1FWUcOpuPCbvuIHsXA4SykOpBwi1tbWl6w5aWFjg/v370nOvXr0qv8iIiIjovSQSCfo6W+L09E4Y28EWKkoSnLobD/fl57DiVBQXfaZS69mzJ+bOnYuMjIxC596+fYv58+ejd+/ecoiMiIiIaqJ2dsZYP6wF1JSV4B8eh6k7Q5HDQcJKV+o1CL28vNCrVy+MGTMGM2bMwIEDBzB8+HDs3bsXhoaGOHXqVEXFWqNw7RkiIqoIUfEpmHcgHIEPXgMA6tTSgk9fJ3RxMJNzZFRZPrSPER8fj2bNmkFZWRkTJ06Evb09gPy1B1evXo3c3Fxcv34dZmZsU2XFfiAREVFhARHxGPd7CLJzBfo1tcTyAU2hrCSRd1jVTqVtUvLgwQOkpqaiSZMmSEtLw/Tp03H58mXY2dlh+fLlsLa2LnXwiogdQyIiqihCCBy+FYvvj9xBfHL+bsfujqaY17sh6hhxt+Oarjz6GI8ePcLnn3+O48ePo6CrKJFI4OHhgdWrV8PGxqY8Q1Y47AcSEREV7eSdeHz+Rwhy8gT+2+wj/PSJMwcJS6lCBwhXrlyJsWPHQkNDA48fP4aVlRUkEv6APgQ7hkREVNFSM3Ow6nQUNl2MQU6egJqKEr7oVA/jO9bjbsc1WHn2Md68eYPo6GgIIWBnZwdDQ8NyilKxsR9IRERUvGO3YzFxxw3k5gkMaFEbi//bBEocJCyxCh0gVFFRwfPnz2FqagplZWXExsbC1NT0gwJWdOwYEhFRZYl+kT/t+PL9/GnHVrU04dOnIbo6copoTcQ+RtXHnxEREdG7Hb71HJN33ECeAAa3qoP/82rEQcISKms/Q6UkiSwtLfHXX3+hZ8+eEELg6dOnRS5cDQB16tQp8ZsTERFRxatvqotto11x5HYsvj98F08S3mLUlmvo6mCK+X047ZiIiIiIqpbeTSyRmycw7c9Q7Ah+DHUVJczv48TZrBWoRHcQrl+/HpMmTUJOTk6xaYQQkEgkyM3lboklwW+OiYhIHtIyc7AyIAqbLvxv2vHnHevh806cdlxTsI9R9fFnREREVDJ/hTzFjD03IQQwpasdpnVrIO+QqrwK36QkJSUFjx49QpMmTXDq1CkYGRkVmc7Z2bnEb67I2DEkIiJ5in6RCp+D4bgY/QpA/rTj+b0bwt2J046rO/Yxqj7+jIiIiEpua+BDzDsQDgCY38cJI9pys7R3qdApxgCgq6sLR0dH+Pr6wtHRERYWFmUKlIiIiOSvvqkOfh/VCkdvx+H7I3fwJOEtRm+9hi4OppjfxwnWRtryDpGIiIiICMPc6iIxPRvLT97DgkN3oK+piv82qy3vsGocpdIkVlZWxrhx44pdf5CIiIiqD4lEgl5NLHDqy44Y37EeVJUlCIh4gW4/n8fyk/eQkc1lQ4iIiIhI/iZ1qY+Rf985OHPPLZy6Ey/niGqeUg0QAkCjRo3w4MGDioiFiIiI5EBbXQWzezjg2JQOaFffGFk5eVh5Ogruy8/hRHgcSrgaCRERERFRhZBIJPi2lyM+blYbuXkCX2y/jisPXss7rBql1AOE33//PWbMmIHDhw8jNjYWycnJMg8iIiKqngqmHf82pBks9DXw9M1bjP09BCP9ruLhqzR5h0dERERECkxJSYIlHzeGu6MZsnLyMHrLNYQ9S5J3WDVGiTcpKaCk9L8xxX9uL81djEuHi1MTEVFVlp6Vg1UB0dh44QGycwXUlJUwvqMtPu9UH5pq3O24KmMfo+rjz4iIiKjsMrJzMdw3GFceJMBIWw27xruhnomOvMOqMip8F+MC586de+f5jh07liY7hcWOIRERVQf3X+bvdnwhKn+3448MNDG/jxO6OZnJfFFIVQf7GFUff0ZEREQfJiUjG59uCMLtZ0mw1NfAns/bwNJAU95hVQmVNkBI5YMdQyIiqi6EEPAPi8PCw3fwPCl/o7JO9ibw6dMQdY2523FVwz5G1cefERER0Yd7nZqJ/usC8eBlGuqZaGPXODcY6ajLOyy5K2s/o9RrEJ4/f/6dj4rw8OFDjBo1CjY2NtDU1ES9evUwf/58ZGVlyaSRSCSFHleuXJHJa/fu3XBwcICGhgYaN26Mo0ePypwXQmDevHmwsLCApqYm3N3dERUVJZMmISEBQ4YMgZ6eHgwMDDBq1CikpqZWSNmJiIjkTSKRoEdjC5ya3hETOufvdnw28iW6/3wey05E4m0WlxchIiIiosplpKOO30e5wlJfA/dfpmG471WkZGTLO6xqS6W0L+jUqVOhY/+cYlQRaxBGREQgLy8P69atQ/369REWFoYxY8YgLS0NS5culUl76tQpNGzYUPrcyMhI+v/Lly9j8ODBWLRoEXr37o3t27fDy8sL169fR6NGjQAAP/74I1auXIktW7bAxsYGc+fOhYeHB+7cuQMNDQ0AwJAhQxAbG4uTJ08iOzsbI0aMwNixY7F9+/ZyLzsREVFVoaWmgpkeDvi4WW3M/3va8aqAaOy9/gzz+jihO6cdExEREVEl+shAE7+PdkX/tYG4/SwJY7eGwHdES2iocs3s0ir1HYRv3ryRebx48QL+/v5o2bIlTpw4URExwtPTE76+vujevTtsbW3Rt29fzJgxA3v37i2U1sjICObm5tKHqqqq9NyKFSvg6emJmTNnwtHREQsXLkSzZs3w66+/Asi/e/CXX37Bt99+i379+qFJkybYunUrnj9/jv379wMA7t69C39/f2zcuBGurq5o164dVq1ahZ07d+L58+cVUn4iIqKqxNZEB1tHtsLaz5rhIwNNPEt8i3G/h2C471XEcLdj+kD37t1Dv379YGxsDD09PbRr1w5nzpyRSTN58mQ0b94c6urqaNq0aZH5HD9+HK1bt4auri5MTEzw8ccf4+HDhzJptm3bBmdnZ2hpacHCwgIjR47E69ev3xnf1atX0bVrVxgYGMDQ0BAeHh64efPmhxSZiIiIPkA9Ex1sGdEKOuoqCHzwGpN23EBObp68w6p2Sj1AqK+vL/MwNjZGt27dsGTJEnz11VcVEWORkpKSUKtWrULH+/btC1NTU7Rr1w4HDx6UORcYGAh3d3eZYx4eHggMDAQAxMTEIC4uTiaNvr4+XF1dpWkCAwNhYGCAFi1aSNO4u7tDSUkJQUFBxcabmZmJ5ORkmQcREVF1JZFI4NnIAie/7IAJnetBTVkJ5+69hMfP5/HT8QikZ+XIO0Sqpnr37o2cnBwEBAQgJCQEzs7O6N27N+Li4mTSjRw5EgMHDiwyj5iYGPTr1w9dunRBaGgojh8/jlevXuG///2vNM2lS5cwbNgwjBo1CuHh4di9ezeCg4MxZsyYYmNLTU2Fp6cn6tSpg6CgIFy8eBG6urrw8PBAdjanNBEREclL49r62OjdAmoqSjh5Jx6z/rqNvDxuuVEapR4gLI6ZmRkiIyPLK7t3io6OxqpVqzBu3DjpMR0dHSxbtgy7d+/GkSNH0K5dO3h5eckMEsbFxcHMzKxQ3AUdzoJ/35fG1NRU5ryKigpq1apVqOP6T4sWLZIZWLWysipDyYmIiKqWgmnHx6d1QIcGJsjKzcPqM/fRbfl5+IfFgnuhUWm8evUKUVFRmD17Npo0aQI7OzssXrwY6enpCAsLk6ZbuXIlJkyYAFtb2yLzCQkJQW5uLr7//nvUq1cPzZo1w4wZMxAaGiodyAsMDETdunUxefJk2NjYoF27dhg3bhyCg4OLjS8iIgIJCQn47rvvYG9vj4YNG2L+/PmIj4/Ho0ePyrcyiIiIqFRa2xph9afNoKwkwV/Xn+L/jt5lX7QUSj1AeOvWLZnHzZs34e/vj/Hjxxc7xaM4s2fPLnJjkX8+IiIiZF7z7NkzeHp6on///jLf8BobG+PLL7+Eq6srWrZsicWLF+Ozzz7DTz/9VNoiVog5c+YgKSlJ+njy5Im8QyIiIio3Nsba2DKiJdZ+1lw67Xj8H9fh7XsVD15yIy8qGSMjI9jb22Pr1q1IS0tDTk4O1q1bB1NTUzRv3rzE+TRv3hxKSkrw9fVFbm4ukpKS8Pvvv8Pd3V26/IybmxuePHmCo0ePQgiB+Ph47NmzBz179iw2X3t7exgZGWHTpk3IysrC27dvsWnTJjg6OqJu3brFvo4zSYiIiCpHNycz/PhxEwDAposxWH0mWs4RVR+l3qSkadOmkEgkhUZhW7dujc2bN5cqr+nTp2P48OHvTPPPb4afP3+Ozp07o02bNli/fv1783d1dcXJkyelz83NzREfHy+TJj4+Hubm5tLzBccsLCxk0hQMfpqbm+PFixcyeeTk5CAhIUH6+qKoq6tDXZ3bbRMRUc2VP+3YHB0bmGD1mWisP/8A5++9hOcvFzCmgw0mdK4PLbVSdz1IgUgkEpw6dQpeXl7Q1dWFkpISTE1N4e/vD0NDwxLnY2NjgxMnTmDAgAEYN24ccnNz4ebmhqNHj0rTtG3bFtu2bcPAgQORkZGBnJwc9OnTB6tXry42X11dXZw9exZeXl5YuHAhAMDOzg7Hjx+HikrxbXvRokVYsGBBieMnIiKisvu4eW0kvc3Gd4fvYOmJe9DXUsPQ1tbyDqvKK/UdhDExMXjw4AFiYmIQExODR48eIT09HZcvX4aDg0Op8jIxMYGDg8M7H2pqagDy7xzs1KkTmjdvDl9fXygpvT/00NBQmYE+Nzc3nD59WibNyZMn4ebmBiC/M2lubi6TJjk5GUFBQdI0bm5uSExMREhIiDRNQEAA8vLy4OrqWqryExER1USaasqY4WGP49M6oJP9/6Yduy87h2O3Oe1YEZV01ogQAhMmTICpqSkuXLiA4OBgeHl5oU+fPoiNjS3x+8XFxWHMmDHw9vbG1atXce7cOaipqeGTTz6Rtr87d+5gypQpmDdvHkJCQuDv74+HDx9i/Pjxxeb79u1bjBo1Cm3btsWVK1dw6dIlNGrUCL169cLbt2+LfR1nkhAREVWuke1sMLmrHQBg3oEwHAh9JueIqj6JqAa99ILBQWtra2zZsgXKyv/brrrgrr0tW7ZATU0NLi4uAIC9e/di7ty52LhxI0aMGAEAuHz5Mjp27IjFixejV69e2LlzJ3744Qdcv34djRo1AgAsWbIEixcvxpYtW2BjY4O5c+fi1q1buHPnDjQ0NAAAPXr0QHx8PNauXYvs7GyMGDECLVq0wPbt20tcpuTkZOjr6yMpKQl6enrlUk9ERERVjRACJ+/EY8GhO3iWmD+A0t7OGAv6NoStiY6co6uZqmIf4+XLl+/dHdjW1hYXLlxA9+7d8ebNG5nY7ezsMGrUKMyePVvmNT4+Pti/fz9CQ0Nljs+dOxf+/v64evWq9NjTp09hZWWFwMBAtG7dGkOHDkVGRgZ2794tTXPx4kW0b98ez58/l/mSucCmTZvw9ddfIzY2VvpldVZWFgwNDbFp0yYMGjSoRPVRFX9GRERENY0QAj4Hw7El8BFUlCTYMKwFOjuYvv+F1VxZ+xklnucTGBiI169fo3fv3tJjW7duxfz585GWlgYvLy+sWrWqQqbRnjx5EtHR0YiOjkbt2rVlzv1zfHPhwoV49OgRVFRU4ODggD///BOffPKJ9HybNm2wfft2fPvtt/j6669hZ2eH/fv3SwcHAeCrr75CWloaxo4di8TERLRr1w7+/v7SwUEA2LZtGyZOnIiuXbtCSUkJH3/8MVauXFnu5SYiIqruJBIJujc0R3s7E6w5G4215x7gQtQrePxyHmPa22JiF047VgQmJiYwMTF5b7r09HQAKDRTRElJCXl5eSV+v/T09EJ5FHzBXJBPenp6oWnBBWmK+/68IF+JRCITm0QiKVV8REREVPEkEgnm92mIxLfZOBD6HJ9vC8Hvo1zRsm4teYdWJZX4DsIePXqgU6dOmDVrFgDg9u3baNasGYYPHw5HR0f89NNPGDduHHx8fCoy3hqD3xwTEZEievgqDT6HwnE28iUAwFJfA9/2dkKPRuYygy5UdtW5j/Hq1Ss4ODigY8eOmDdvHjQ1NbFhwwasWLECV69ehbOzMwAgOjoaqampWLt2Lc6cOYM///wTAODk5AQ1NTUEBATA3d0dPj4+GDx4MFJSUvD1118jIiICd+/ehaamJvz8/DBmzBisXLkSHh4eiI2NxdSpU6GkpISgoCAAwL59+zBnzhzppnkRERFo2rQpRo4ciUmTJiEvLw+LFy/GoUOHcPfu3SLvOixKdf4ZERERVTfZuXkY93sIAiJeQFdDBX+OdYOTZc39/C1rP6PEaxCGhoaia9eu0uc7d+6Eq6srNmzYgC+//BIrV67Erl27Shc1ERERKZS6xtrwHd4S64c2R21DTTxPysAX265j6KZgRL/gbseKztjYGP7+/khNTUWXLl3QokULXLx4EQcOHJAODgLA6NGj4eLignXr1uHevXtwcXGBi4sLnj9/DgDo0qULtm/fjv3798PFxQWenp5QV1eHv78/NDU1AQDDhw/H8uXL8euvv6JRo0bo378/7O3tsXfvXun7JCUlITIyUvrcwcEBhw4dwq1bt+Dm5iadjuzv71/iwUEiIiKqXKrKSlj9aTO0rGuIlIwcDNscjIev0uQdVpVT4jsINTQ0EBUVBSsrKwBAu3bt0KNHD3zzzTcAgIcPH6Jx48ZISUmpuGhrEH5zTEREii4jOxe/nb2PtefuIysnD6rKEoxqZ4tJXepDW53TjsuKfYyqjz8jIiKiypf0NhuD1l/B3dhk1DbUxJ7xbWCur/H+F1YzFX4HoZmZGWJiYgDkL8Z8/fp1tG7dWno+JSUFqqqqpQiZiIiIFJmGqjK+7NYAJ6d1QGd7E2TnCqw9dx/uy8/hyC3udkxERERE5UdfUxVbR7ZCXSMtPH3zFkM3BeFNWpa8w6oySjxA2LNnT8yePRsXLlzAnDlzoKWlhfbt20vP37p1C/Xq1auQIImIiKjmsjbSxubhLbFhWAvUNtREbFIGJmzntGMiIiIiKl8muur4fZQrzPU0EPUiFSP8riItM0feYVUJJR4gXLhwIVRUVNCxY0ds2LABGzZsgJqamvT85s2b0b179woJkoiIiGo2iUSCbk5mOPVlR0zuagc1FSVcjH6FHivOY9Gxu+y4EREREVG5sKqlhd9HtYKBlipCnyRi3O8hyMzJlXdYclfiNQgLJCUlQUdHB8rKyjLHExISoKOjIzNoSMXj2jNERETFe/Q6Dd8duoPTES8AAOZ6Gvi2tyN6NbbgbsfvwT5G1cefERERkfyFPknEpxuuID0rFz0amePXT5tBWan69zMrfA3CAvr6+oUGBwGgVq1aHBwkIiKicmFtpI1Nw1ti47AWsKqlibjkDEzcfgOfbQpC9AtuiEZEREREH6aplQE2DGsBNWUlHAuLw9d7byv0GtilHiAkIiIiqizuTmY4Oa0jprrnTzu+FP0anr9cwKKjd5HKacdERERE9AHa1jfGysFNoSQB/rz2BEtPRMo7JLnhACERERFVaRqqypjq3gCnpnWEu6MpcvIE1p1/gK7LzuLQzecK/U0vEREREX0Yz0YWWPTfxgCA1WfuY3vQYzlHJB8cICQiIqJqoY6RFjZ6t8Qm7xaoU0sL8cmZmLTjBoZsDEJUPKcdExEREVHZDGxZB1O62gEA5h4Iw5m/18FWJBwgJCIiomqlq6MZTkzrgGnuDaCuooTL91+jx4oL+IHTjomIiIiojKa626F/89rIzROYsP06bj9NkndIlYoDhERERFTtaKgqY4q7HU592RHujmbIyRNY//e044OcdkxEREREpSSRSPDDfxujvZ0x0rNyMcLvKp4kpMs7rErDAUIiIiKqtqxqaWGjdwtsHv6/aceTd9zApxuCcI/TjomIiIioFFSVlfDbkGZwtNDDq9RMePsGIzE9S95hVQoOEBIREVG118Uhf9rxl93ypx0HPniNnisu4P+O3OG0YyIiIiIqMV0NVfgObwkLfQ08eJmGMVuvISM7V95hVTgOEBIREVGNoKGqjMld86cdd3PKn3a84UIMui47iwOhzzjtmIiIiIhKxFxfA34jWkFXQwVXH77B9N03kZdXs/uSHCAkIiKiGsWqlhY2DGsB3+EtYW2UP+14ys5QDN5whdOOiYiIiKhE7M11sW5oc6gqS3DkViwW+0fIO6QKxQFCIiIiqpE6O5ji+NQOmN6tATRUlXDlQQJ6rLiA7w/fQUpGtrzDIyIiIqIqrk09Y/z0iTMAYP35B9hy+aF8A6pAHCAkIiKiGktDVRmTutrh5LSO6O5khtw8gY0XY9B12TlOOyYiIiKi9/Jy+QgzPewBAD6HwnE8PE7OEVUMDhASERFRjWdVSwvrh7WA74iWqGukhRcp+dOOB62/gsg4TjsmIiIiouJ90akePnWtAyGAyTtu4PrjN/IOqdxxgJCIiIgURmd7U/hP7YAZ3fOnHQfFJKDnygtYyGnHRERERFQMiUSC7/o2RBcHU2Tm5GH0lmt4+CpN3mGVKw4QEhERkULRUFXGxC75ux17NMyfdrzpYgy6LDuH/Tc47ZiIiIiIClNRVsKqwS5o/JE+EtKyMNw3GK9TM+UdVrnhACEREREppNqGWlg3tAX8/p52/DIlE1P/DMXA9VcQEZcs7/CIiIiIqIrRVlfBpuEtUNtQEw9fp2P01mt4m5Ur77DKBQcIiYiISKF1sjfF8WkdMNPDHhqqSgiOSUCvlRfx3aE7SOa0YyIiIiL6B1NdDfiNaAV9TVXceJyIKTtvIDev+s9A4QAhERERKTx1FWVM6Fwfp77sCM+G5sjNE9h8KQZdlp7DvhtPOe2YiIiIiKTqm+pgo3cLqKko4cSdeCw8fKfa9xc5QEhERET0t9qGWlg7tDm2jGwFG2NtvErNxLQ/b2Lguiu4G8tpx0RERESUr2XdWvh5QFNIJIDf5YfYeCFG3iF9EA4QEhEREf1LxwYm8J/aHjM97KGpqozghwnoveoiFhwK57RjIiIiIgIA9GpigW96OgIA/u/oXRy+9VzOEZUdBwiJiIiIiiCddjy9I3o0yp927HvpIbosPYe91zntmIiIiIiAUe1sMLxNXQDAl3/eRHBMgnwDKiMOEBIRERG9w0cGmljzWXNsHdkKtn9PO/5y100MWBeIO8857ZiIiIhIkUkkEszt7QSPhmbIys3DmK3XEP0iVd5hlRoHCImIiIhKoEMDExyb2h5feeZPO7768A16r7oAn4PhSHrLacdEREREikpZSYIVg1zgUscASW+zMdw3GC9SMuQdVqlwgJCIiIiohNRVlPFFp/o4Pb0jejY2R57IX5S667Kz+CuE046JiIiIFJWGqjI2DmuBukZaePrmLUb5XUNaZo68wyoxDhASERERlZKlgSZ+G9Icv49qBVsTbbxKzcL03TfRfy2nHRMREREpKiMddfiNaIVa2mq4/SwJE7dfR05unrzDKhEOEBIRERGVUXs7E/hP6YBZng7QVFXGtUecdkxERESkyOoaa2OTdwtoqCrhTORLzD0QXi1mmXCAkIiIiOgDqKko4fNO9XB6ekf0amwhM+14T8hT5OVV/Q4hEREREZUflzqGWDnIBRIJsCP4MX47e1/eIb0XBwiJiIiIyoGlgSZWD2mGP0a5ot7f045n7L6J/usCEf48Sd7hEREREVEl6t7QHD59GgIAfjoeiX03nso5onfjACERERFROWpnZ4xjUzpgdg8HaKkpI+TRG/RZdRHzD4Rx2jERERGRAvFuUxdjO9gCAL7acwuXo1/JOaLicYCQiIiIqJypqShhfMe/px03yZ92vCXwEbosPYtd155w2vE73Lt3D/369YOxsTH09PTQrl07nDlzRibN5MmT0bx5c6irq6Np06ZF5nP8+HG0bt0aurq6MDExwccff4yHDx/KpFm9ejUcHR2hqakJe3t7bN269b3xPX78GL169YKWlhZMTU0xc+ZM5ORUnx0KiYiIqHLN9nRA7yYWyM4VGPd7CCLjUuQdUpE4QEhERERUQSz0NbH602bYNtoV9U118DotC1/tuYVP1l5GXFKGvMOrknr37o2cnBwEBAQgJCQEzs7O6N27N+Li4mTSjRw5EgMHDiwyj5iYGPTr1w9dunRBaGgojh8/jlevXuG///2vNM2aNWswZ84c+Pj4IDw8HAsWLMCECRNw6NChYmPLzc1Fr169kJWVhcuXL2PLli3w8/PDvHnzyqfwREREVOMoKUmwtL8zWtnUQkpmDob7BlfJfqBEVIetVGqg5ORk6OvrIykpCXp6evIOh4iIiCpYVk4efC/FYMXpKJjra8B/SgeoqZT/d7XVuY/x6tUrmJiY4Pz582jfvj0AICUlBXp6ejh58iTc3d1l0vv4+GD//v0IDQ2VOb5nzx4MHjwYmZmZUFLKr+NDhw6hX79+yMzMhKqqKtq0aYO2bdvip59+kr5u+vTpCAoKwsWLF4uM79ixY+jduzeeP38OMzMzAMDatWsxa9YsvHz5EmpqaiUqZ3X+GREREVHZJKZn4eM1lxGfnInNw1uilU2tCnmfsvYzeAchERERUSVQU1HCuI71EDC9E1YOcqmQwcHqzsjISDrVNy0tDTk5OVi3bh1MTU3RvHnzEufTvHlzKCkpwdfXF7m5uUhKSsLvv/8Od3d3qKqqAgAyMzOhoaEh8zpNTU0EBwcjO7votSIDAwPRuHFj6eAgAHh4eCA5ORnh4eHFxpOZmYnk5GSZBxERESkWAy01+I1ohV3j3CpscPBDVJuead++fVGnTh1oaGjAwsICQ4cOxfPnz2XS3Lp1C+3bt4eGhgasrKzw448/Fspn9+7dcHBwgIaGBho3boyjR4/KnBdCYN68ebCwsICmpibc3d0RFRUlkyYhIQFDhgyBnp4eDAwMMGrUKKSmppZ/oYmIiKjGMdfXQKOP9OUdRpUkkUhw6tQp3LhxA7q6utDQ0MDy5cvh7+8PQ0PDEudjY2ODEydO4Ouvv4a6ujoMDAzw9OlT7Nq1S5rGw8MDGzduREhICIQQuHbtGjZu3Ijs7Gy8elX0AuJxcXEyg4MApM//PQX6nxYtWgR9fX3pw8rKqsRlISIioprDqpYWnCyr5uyBajNA2LlzZ+zatQuRkZH466+/cP/+fXzyySfS88nJyejevTusra0REhKCn376CT4+Pli/fr00zeXLlzF48GCMGjUKN27cgJeXF7y8vBAWFiZN8+OPP2LlypVYu3YtgoKCoK2tDQ8PD2Rk/G9++JAhQxAeHo6TJ0/i8OHDOH/+PMaOHVs5FUFERERUzcyePRsSieSdj4iICAghMGHCBJiamuLChQsIDg6Gl5cX+vTpg9jY2BK/X1xcHMaMGQNvb29cvXoV586dg5qaGj755BMUrK4zd+5c9OjRA61bt4aqqir69esHb29vAJBOSy4vc+bMQVJSkvTx5MmTcs2fiIiI6ENV2zUIDx48CC8vL+k6MmvWrME333yDuLg46fovs2fPxv79+xEREQEAGDhwINLS0nD48GFpPq1bt0bTpk2xdu1aCCFgaWmJ6dOnY8aMGQCApKQkmJmZwc/PD4MGDcLdu3fh5OSEq1evokWLFgAAf39/9OzZE0+fPoWlpWWR8WZmZiIzM1P6PDk5GVZWVlx7hoiIiMpVVVzf7uXLl3j9+vU709ja2uLChQvo3r073rx5IxO7nZ0dRo0ahdmzZ8u8prg1COfOnQt/f39cvXpVeuzp06ewsrJCYGAgWrduLT2enZ2N+Ph4WFhYYP369Zg1axYSExOLHCScN28eDh48KPN+MTExsLW1xfXr1+Hi4lKS6qiSPyMiIiKqGRRqDcKEhARs27YNbdq0ka4jExgYiA4dOsgsDu3h4YHIyEi8efNGmubfi1t7eHggMDAQQH4HLy4uTiaNvr4+XF1dpWkCAwNhYGAgHRwEAHd3dygpKSEoKKjYmDm1hIiIiBSViYkJHBwc3vlQU1NDeno6gMJ38CkpKSEvL6/E75eenl4oD2VlZQAolI+qqipq164NZWVl7Ny5E7179y72DkI3Nzfcvn0bL168kB47efIk9PT04OTkVOL4iIiIiKqaajVAOGvWLGhra8PIyAiPHz/GgQMHpOdKsiZMcWn+ef6frysujampqcx5FRUV1KpV651rz3BqCREREdG7ubm5wdDQEN7e3rh58ybu3buHmTNnIiYmBr169ZKmi46ORmhoKOLi4vD27VuEhoYiNDQUWVlZAIBevXrh6tWr+O677xAVFYXr169jxIgRsLa2lt7ld+/ePfzxxx+IiopCcHAwBg0ahLCwMPzwww/S99m3bx8cHBykz7t37w4nJycMHToUN2/exPHjx/Htt99iwoQJUFdXr6RaIiIiIip/ch0gLOl6NAVmzpyJGzdu4MSJE1BWVsawYcNQXWZIq6urQ09PT+ZBRERERP9jbGwMf39/pKamokuXLmjRogUuXryIAwcOwNnZWZpu9OjRcHFxwbp163Dv3j24uLjAxcVFuoFdly5dsH37duzfvx8uLi7w9PSEuro6/P39oampCQDIzc3FsmXL4OzsjG7duiEjIwOXL19G3bp1pe+TlJSEyMhI6XNlZWUcPnwYysrKcHNzw2effYZhw4bhu+++q5wKIiIiIqogKvJ88+nTp2P48OHvTGNrayv9v7GxMYyNjdGgQQM4OjrCysoKV65cgZubG8zNzREfHy/z2oLn5ubm0n+LSvPP8wXHLCwsZNI0bdpUmuaf00oAICcnBwkJCdLXExEREVHZtGjRAsePH39nmrNnz743n0GDBmHQoEHFnnd0dMSNGzfemcfw4cML9VWtra1x9OjR974/ERERUXUi1zsIS7oeTVEK1o8p2PjDzc0N58+fR3Z2tjTNyZMnYW9vD0NDQ2ma06dPy+Rz8uRJuLm5AQBsbGxgbm4ukyY5ORlBQUHSNG5ubkhMTERISIg0TUBAAPLy8uDq6vqhVUJERERERERERFSpqsUahEFBQfj1118RGhqKR48eISAgAIMHD0a9evWkA3effvop1NTUMGrUKISHh+PPP//EihUr8OWXX0rzmTJlCvz9/bFs2TJERETAx8cH165dw8SJEwEAEokEU6dOxffff4+DBw/i9u3bGDZsGCwtLeHl5QUg/9tmT09PjBkzBsHBwbh06RImTpyIQYMGFbuDMRERERERERERUVVVLQYItbS0sHfvXnTt2hX29vYYNWoUmjRpgnPnzkkXhNbX18eJEycQExOD5s2bY/r06Zg3bx7Gjh0rzadNmzbYvn071q9fD2dnZ+zZswf79+9Ho0aNpGm++uorTJo0CWPHjkXLli2RmpoKf39/aGhoSNNs27YNDg4O6Nq1K3r27Il27dph/fr1lVchRERERERERERE5UQiqssuHzVMcnIy9PX1kZSUxA1LiIiIqNywj1H18WdEREREFaWs/YxqcQchERERERERERERVQy57mKsyApu3ExOTpZzJERERFSTFPQtOEmk6mI/kIiIiCpKWfuCHCCUk5SUFACAlZWVnCMhIiKimiglJQX6+vryDoOKwH4gERERVbTS9gW5BqGc5OXl4fnz59DV1YVEIin3/JOTk2FlZYUnT55wbRuwPv6N9SGL9SGL9SGL9fE/rAtZVbU+hBBISUmBpaUllJS4mkxVVNp+YFVta5WF5Wf5Fbn8AOuA5Vfs8gOsg9KWv6x9Qd5BKCdKSkqoXbt2hb+Pnp6eQv4CFYf1IYv1IYv1IYv1IYv18T+sC1lVsT5452DVVtZ+YFVsa5WJ5Wf5Fbn8AOuA5Vfs8gOsg9KUvyx9QX6tTEREREREREREpMA4QEhERERERERERKTAOEBYQ6mrq2P+/PlQV1eXdyhVAutDFutDFutDFutDFuvjf1gXslgfVFkUva2x/Cy/IpcfYB2w/IpdfoB1UFnl5yYlRERERERERERECox3EBIRERERERERESkwDhASEREREREREREpMA4QEhERERERERERKTAOEBIRERERERERESkwDhDWUKtXr0bdunWhoaEBV1dXBAcHyzukcufj4wOJRCLzcHBwkJ7PyMjAhAkTYGRkBB0dHXz88ceIj4+XyePx48fo1asXtLS0YGpqipkzZyInJ6eyi1Im58+fR58+fWBpaQmJRIL9+/fLnBdCYN68ebCwsICmpibc3d0RFRUlkyYhIQFDhgyBnp4eDAwMMGrUKKSmpsqkuXXrFtq3bw8NDQ1YWVnhxx9/rOiilcn76mP48OGF2ounp6dMmppSH4sWLULLli2hq6sLU1NTeHl5ITIyUiZNef1+nD17Fs2aNYO6ujrq168PPz+/ii5eqZWkPjp16lSofYwfP14mTU2pjzVr1qBJkybQ09ODnp4e3NzccOzYMel5RWobwPvrQ5HaBlWe0vbTdu/eDQcHB2hoaKBx48Y4evSozPmSfOZXJaUp/4YNG9C+fXsYGhrC0NAQ7u7uhdKX5DO+qilNHfj5+RUqn4aGhkyamtwGivo7LJFI0KtXL2ma6tQG3tdnLUpJPkOqy/Vfacu/d+9edOvWDSYmJtLP6ePHj8uked91YVVT2jo4e/Zskb8DcXFxMulqahso6vdbIpGgYcOG0jTVqQ2U5NqkKJXSFxBU4+zcuVOoqamJzZs3i/DwcDFmzBhhYGAg4uPj5R1auZo/f75o2LChiI2NlT5evnwpPT9+/HhhZWUlTp8+La5duyZat24t2rRpIz2fk5MjGjVqJNzd3cWNGzfE0aNHhbGxsZgzZ448ilNqR48eFd98843Yu3evACD27dsnc37x4sVCX19f7N+/X9y8eVP07dtX2NjYiLdv30rTeHp6CmdnZ3HlyhVx4cIFUb9+fTF48GDp+aSkJGFmZiaGDBkiwsLCxI4dO4SmpqZYt25dZRWzxN5XH97e3sLT01OmvSQkJMikqSn14eHhIXx9fUVYWJgIDQ0VPXv2FHXq1BGpqanSNOXx+/HgwQOhpaUlvvzyS3Hnzh2xatUqoaysLPz9/Su1vO9Tkvro2LGjGDNmjEz7SEpKkp6vSfVx8OBBceTIEXHv3j0RGRkpvv76a6GqqirCwsKEEIrVNoR4f30oUtugylHaftqlS5eEsrKy+PHHH8WdO3fEt99+K1RVVcXt27elaUrymV9VlLb8n376qVi9erW4ceOGuHv3rhg+fLjQ19cXT58+laYpyWd8VVLaOvD19RV6enoy5YuLi5NJU5PbwOvXr2XKHhYWJpSVlYWvr680TXVqA+/rs/5bST5DqtP1X2nLP2XKFLFkyRIRHBws7t27J+bMmSNUVVXF9evXpWned11Y1ZS2Ds6cOSMAiMjISJky5ubmStPU5DaQmJgoU+4nT56IWrVqifnz50vTVKc2UJJrk3+rrL4ABwhroFatWokJEyZIn+fm5gpLS0uxaNEiOUZV/ubPny+cnZ2LPJeYmChUVVXF7t27pcfu3r0rAIjAwEAhRP4fJiUlJZkO1po1a4Senp7IzMys0NjL27//sObl5Qlzc3Px008/SY8lJiYKdXV1sWPHDiGEEHfu3BEAxNWrV6Vpjh07JiQSiXj27JkQQojffvtNGBoaytTHrFmzhL29fQWX6MMUN0DYr1+/Yl9Tk+vjxYsXAoA4d+6cEKL8fj+++uor0bBhQ5n3GjhwoPDw8KjoIn2Qf9eHEPmDQFOmTCn2NTW5PoQQwtDQUGzcuFHh20aBgvoQgm2Dyl9p+2kDBgwQvXr1kjnm6uoqxo0bJ4Qo2Wd+VfKh/dScnByhq6srtmzZIj32vs/4qqa0deDr6yv09fWLzU/R2sDPP/8sdHV1ZS6mq1sbKFCSwZGSfIZU1+u/kpS/KE5OTmLBggXS5++6LqzqSjNA+ObNm2LTKFIb2Ldvn5BIJOLhw4fSY9W5DRR1bfJvldUX4BTjGiYrKwshISFwd3eXHlNSUoK7uzsCAwPlGFnFiIqKgqWlJWxtbTFkyBA8fvwYABASEoLs7GyZenBwcECdOnWk9RAYGIjGjRvDzMxMmsbDwwPJyckIDw+v3IKUs5iYGMTFxcmUX19fH66urjLlNzAwQIsWLaRp3N3doaSkhKCgIGmaDh06QE1NTZrGw8MDkZGRePPmTSWVpvycPXsWpqamsLe3x+eff47Xr19Lz9Xk+khKSgIA1KpVC0D5/X4EBgbK5FGQpqr/rfl3fRTYtm0bjI2N0ahRI8yZMwfp6enSczW1PnJzc7Fz506kpaXBzc1N4dvGv+ujgCK2DaoYZemnva/9lOQzv6ooj35qeno6srOzC/0Nf9dnfFVS1jpITU2FtbU1rKys0K9fP5m+qqK1gU2bNmHQoEHQ1taWOV5d2kBpve9vgKJd/+Xl5SElJaXQ34DirgtrkqZNm8LCwgLdunXDpUuXpMcVrQ1s2rQJ7u7usLa2ljleXdtAcdcm/1RZfQGV0gROVd+rV6+Qm5src6ECAGZmZoiIiJBTVBXD1dUVfn5+sLe3R2xsLBYsWID27dsjLCwMcXFxUFNTg4GBgcxrzMzMpGs1xMXFFVlPBeeqs4L4iyrfP8tvamoqc15FRQW1atWSSWNjY1Moj4JzhoaGFRJ/RfD09MR///tf2NjY4P79+/j666/Ro0cPBAYGQllZucbWR15eHqZOnYq2bduiUaNGAFBuvx/FpUlOTsbbt2+hqalZEUX6IEXVBwB8+umnsLa2hqWlJW7duoVZs2YhMjISe/fuBVDz6uP27dtwc3NDRkYGdHR0sG/fPjg5OSE0NFQh20Zx9QEoXtugilWWflpx7eef7avgWHFpqory6KfOmjULlpaWMhdB7/uMr0rKUgf29vbYvHkzmjRpgqSkJCxduhRt2rRBeHg4ateurVBtIDg4GGFhYdi0aZPM8erUBkrrfZ8hb968UZjrPwBYunQpUlNTMWDAAOmxd10X6urqyjHa8mFhYYG1a9eiRYsWyMzMxMaNG9GpUycEBQWhWbNmCjUG8Pz5cxw7dgzbt2+XOV5d20Bx1yb/Vll9AQ4QUrXVo0cP6f+bNGkCV1dXWFtbY9euXbzYokIGDRok/X/jxo3RpEkT1KtXD2fPnkXXrl3lGFnFmjBhAsLCwnDx4kV5h1IlFFcfY8eOlf6/cePGsLCwQNeuXXH//n3Uq1evssOscPb29ggNDUVSUhL27NkDb29vnDt3Tt5hyU1x9eHk5KRwbYOoKlu8eDF27tyJs2fPymzSUdM/493c3GTuam7Tpg0cHR2xbt06LFy4UI6RVb5NmzahcePGaNWqlczxmt4GKN/27duxYMECHDhwQOaL/XddF44aNUoeoZYre3t72NvbS5+3adMG9+/fx88//4zff/9djpFVvi1btsDAwABeXl4yx6trG6hq12qcYlzDGBsbQ1lZudCOk/Hx8TA3N5dTVJXDwMAADRo0QHR0NMzNzZGVlYXExESZNP+sB3Nz8yLrqeBcdVYQ/7vagbm5OV68eCFzPicnBwkJCQpRR7a2tjA2NkZ0dDSAmlkfEydOxOHDh3HmzBnUrl1bery8fj+KS6Onp1clB+mLq4+iuLq6AoBM+6hJ9aGmpob69eujefPmWLRoEZydnbFixQqFbRvF1UdRanrboIpVln5ace3nn+2r4FhJ85SXD+mnLl26FIsXL8aJEyfQpEmTd6b992d8VVIefXVVVVW4uLjI/B0qyKOseVaWDyl/Wloadu7cWaKL/arcBkrrfZ8hinL9t3PnTowePRq7du0qNNXy3/55XVhTtWrVSlo+RWkDQghs3rwZQ4cOlVnyqSjVoQ2U5tqksvoCHCCsYdTU1NC8eXOcPn1aeiwvLw+nT5+W+eaxJkpNTcX9+/dhYWGB5s2bQ1VVVaYeIiMj8fjxY2k9uLm54fbt2zKDQidPnoSenp50all1ZWNjA3Nzc5nyJycnIygoSKb8iYmJCAkJkaYJCAhAXl6e9ALYzc0N58+fR3Z2tjTNyZMnYW9vXyWn05bG06dP8fr1a1hYWACoWfUhhMDEiROxb98+BAQEFJoWXV6/H25ubjJ5FKSpan9r3lcfRQkNDQUAmfZRU+qjKHl5ecjMzFS4tlGcgvooiqK1DSpfZemnva/9lOQzv6ooaz/1xx9/xMKFC+Hv7y+zVnBx/v0ZX5WUR189NzcXt2/flpZPEdoAAOzevRuZmZn47LPP3vs+VbkNlNb7/gYowvXfjh07MGLECOzYsQO9evV6b/p/XhfWVKGhodLyKUIbAIBz584hOjq6RF8SVOU2UJZrk0rrC5RicxWqJnbu3CnU1dWFn5+fuHPnjhg7dqwwMDCQ2WGxJpg+fbo4e/asiImJEZcuXRLu7u7C2NhYvHjxQgghxPjx40WdOnVEQECAuHbtmnBzcxNubm7S1+fk5IhGjRqJ7t27i9DQUOHv7y9MTEzEnDlz5FWkUklJSRE3btwQN27cEADE8uXLxY0bN8SjR4+EEPnbnBsYGIgDBw6IW7duiX79+hXa5tzT01O4uLiIoKAgcfHiRWFnZycGDx4sPZ+YmCjMzMzE0KFDRVhYmNi5c6fQ0tIS69atq/Tyvs+76iMlJUXMmDFDBAYGipiYGHHq1CnRrFkzYWdnJzIyMqR51JT6+Pzzz4W+vr44e/asiI2NlT7S09Olacrj9+PBgwdCS0tLzJw5U9y9e1esXr1aKCsrC39//0ot7/u8rz6io6PFd999J65duyZiYmLEgQMHhK2trejQoYM0j5pUH7Nnzxbnzp0TMTEx4tatW2L27NlCIpGIEydOCCEUq20I8e76ULS2QZXjff20oUOHitmzZ0vTX7p0SaioqIilS5eKu3fvivnz5wtVVVVx+/ZtaZqSfOZXFaUt/+LFi4WamprYs2ePzN/wlJQUIYQo8Wd8VVLaOliwYIE4fvy4uH//vggJCRGDBg0SGhoaIjw8XJqmJreBAu3atRMDBw4sdLy6tYH39eFnz54thg4dKk1fks+Q6nT9V9ryb9u2TaioqIjVq1fL/A1ITEyUpnnfdWFVU9o6+Pnnn8X+/ftFVFSUuH37tpgyZYpQUlISp06dkqapyW2gwGeffSZcXV2LzLM6tYGSXKvJqy/AAcIaatWqVaJOnTpCTU1NtGrVSly5ckXeIZW7gQMHCgsLC6GmpiY++ugjMXDgQBEdHS09//btW/HFF18IQ0NDoaWlJf7zn/+I2NhYmTwePnwoevToITQ1NYWxsbGYPn26yM7OruyilEnBdvf/fnh7ewsh8rc6nzt3rjAzMxPq6uqia9euIjIyUiaP169fi8GDBwsdHR2hp6cnRowYIe1wF7h586Zo166dUFdXFx999JFYvHhxZRWxVN5VH+np6aJ79+7CxMREqKqqCmtrazFmzJhCH5g1pT6KqgcAwtfXV5qmvH4/zpw5I5o2bSrU1NSEra2tzHtUFe+rj8ePH4sOHTqIWrVqCXV1dVG/fn0xc+ZMkZSUJJNPTamPkSNHCmtra6GmpiZMTExE165dpYODQihW2xDi3fWhaG2DKs+7+mkdO3aUfpYX2LVrl2jQoIFQU1MTDRs2FEeOHJE5X5LP/KqkNOW3trYu8m/4/PnzhRCixJ/xVU1p6mDq1KnStGZmZqJnz57i+vXrMvnV5DYghBARERECgMznVYHq1gbe14f39vYWHTt2LPSa932GVJfrv9KWv2PHju9ML8T7rwurmtLWwZIlS0S9evWEhoaGqFWrlujUqZMICAgolG9NbQNC5N+ooampKdavX19kntWpDZTkWk1efQHJ3wESERERERERERGRAuIahERERERERERERAqMA4REREREREREREQKjAOERERERERERERECowDhERERERERERERAqMA4REREREREREREQKjAOERERERERERERECowDhERERERERERERAqMA4REREREREREREQKjAOEREQVZPjw4fDy8qr09/Xz84NEIoFEIsHUqVNL9Jrhw4dLX7N///4KjY+IiIioPD18+BASiQShoaElSi+vPlpxfHx80LRpU+nzio7Px8dH2u/75ZdfPjivf8ZeVRWU18DAQN6hEOH8+fPo06cPLC0ty3z9JYTA0qVL0aBBA6irq+Ojjz7C//3f/31QXBwgJCIqg4JORnEPHx8frFixAn5+fnKJT09PD7GxsVi4cGGJ0q9YsQKxsbEVHBUREREpin9++aimpob69evju+++Q05Ozgfn++/BMysrK8TGxqJRo0YflHdVURl9yIYNGyI2NhZjx479oHxmzJiB06dPl1NUFSc2NvaDB0OJyktaWhqcnZ2xevXqMucxZcoUbNy4EUuXLkVERAQOHjyIVq1afVBcKh/0aiIiBfXPwbQ///wT8+bNQ2RkpPSYjo4OdHR05BEagPwBTHNz8xKn19fXh76+fgVGRERERIrG09MTvr6+yMzMxNGjRzFhwgSoqqpizpw5pc4rNzcXEomkyHPKysql6vdUhKysLKipqZVLXpXRJ1NRUSmXOvvQPm92djZUVVU/OI73MTc3Z1+XqowePXqgR48exZ7PzMzEN998gx07diAxMRGNGjXCkiVL0KlTJwDA3bt3sWbNGoSFhcHe3h4AYGNj88Fx8Q5CIqIyMDc3lz709fWlA3IFDx0dnULfcHfq1AmTJk3C1KlTYWhoCDMzM2zYsAFpaWkYMWIEdHV1Ub9+fRw7dkzmvcLCwtCjRw/o6OjAzMwMQ4cOxatXr0od82+//QY7OztoaGjAzMwMn3zyyYdWAxEREVGx1NXVYW5uDmtra3z++edwd3fHwYMHAQDLly9H48aNoa2tDSsrK3zxxRdITU2VvtbPzw8GBgY4ePAgnJycoK6ujpEjR2LLli04cOCA9O7Es2fPFjnFODw8HL1794aenh50dXXRvn173L9/v8g48/LysGjRItjY2EBTUxPOzs7Ys2fPO8tWt25dLFy4EMOGDYOenp70TrxZs2ahQYMG0NLSgq2tLebOnYvs7GyZ1y5evBhmZmbQ1dXFqFGjkJGRIXP+333IunXrFrr7rWnTpvDx8QGQP9XQx8cHderUgbq6OiwtLTF58uR3xl8UiUSCdevWoXfv3tDS0oKjoyMCAwMRHR2NTp06QVtbG23atJGpx6KmGG/evBkNGzaEuro6LCwsMHHiRJn3WLNmDfr27QttbW3plMg1a9agXr16UFNTg729PX7//fdCsW3cuBH/+c9/oKWlBTs7O2lbAoA3b95gyJAhMDExgaamJuzs7ODr61vqOiCqCiZOnIjAwEDs3LkTt27dQv/+/eHp6YmoqCgAwKFDh2Bra4vDhw/DxsYGdevWxejRo5GQkPBB78sBQiKiSrRlyxYYGxsjODgYkyZNwueff47+/fujTZs2uH79Orp3746hQ4ciPT0dAJCYmIguXbrAxcUF165dg7+/P+Lj4zFgwIBSve+1a9cwefJkfPfdd4iMjIS/vz86dOhQEUUkIiIiKpKmpiaysrIAAEpKSli5ciXCw8OxZcsWBAQE4KuvvpJJn56ejiVLlmDjxo0IDw/HypUrMWDAAHh6eiI2NhaxsbFo06ZNofd59uwZOnToAHV1dQQEBCAkJAQjR44sdnrzokWLsHXrVqxduxbh4eGYNm0aPvvsM5w7d+6d5Vm6dCmcnZ1x48YNzJ07FwCgq6sLPz8/3LlzBytWrMCGDRvw888/S1+za9cu+Pj44IcffsC1a9dgYWGB3377rVT1+G9//fUXfv75Z6xbtw5RUVHYv38/GjduXKa8CgY9Q0ND4eDggE8//RTjxo3DnDlzcO3aNQghZAb8/m3NmjWYMGECxo4di9u3b+PgwYOoX7++TBofHx/85z//we3btzFy5Ejs27cPU6ZMwfTp0xEWFoZx48ZhxIgROHPmjMzrFixYgAEDBuDWrVvo2bMnhgwZIh0QmTt3Lu7cuYNjx45J764yNjYuUx0QydPjx4/h6+uL3bt3o3379qhXrx5mzJiBdu3aSQe9Hzx4gEePHmH37t3YunUr/Pz8EBIS8uE3gAgiIvogvr6+Ql9fv9Bxb29v0a9fP+nzjh07inbt2kmf5+TkCG1tbTF06FDpsdjYWAFABAYGCiGEWLhwoejevbtMvk+ePBEARGRkZInj+euvv4Senp5ITk5+Z1kAiH379r0zDREREdH7/LMflJeXJ06ePCnU1dXFjBkziky/e/duYWRkJH3u6+srAIjQ0NBi8y0QExMjAIgbN24IIYSYM2eOsLGxEVlZWe+NLSMjQ2hpaYnLly/LpBk1apQYPHhwseWztrYWXl5exZ4v8NNPP4nmzZtLn7u5uYkvvvhCJo2rq6twdnYuMr6C9/r5559lXuPs7Czmz58vhBBi2bJlokGDBsWW99/mz58v834FAIhvv/1W+jwwMFAAEJs2bZIe27Fjh9DQ0Cg2L0tLS/HNN98U+94AxNSpU2WOtWnTRowZM0bmWP/+/UXPnj2LjS01NVUAEMeOHRNCCNGnTx8xYsSIYt9XiOL77ETy9O/rr8OHDwsAQltbW+ahoqIiBgwYIIQQYsyYMYWuB0NCQgQAERERUeZYuAYhEVElatKkifT/ysrKMDIykvmG18zMDADw4sULAMDNmzdx5syZItd2uX//Pho0aFCi9+3WrRusra1ha2sLT09PeHp6SqdoEBEREVWEw4cPQ0dHB9nZ2cjLy8Onn34qnRZ76tQpLFq0CBEREUhOTkZOTg4yMjKQnp4u7Z+oqanJ9J1KKjQ0FO3bty/R2nbR0dFIT09Ht27dZI5nZWXBxcXlna9t0aJFoWN//vknVq5cifv37yM1NRU5OTnQ09OTnr979y7Gjx8v8xo3N7dCd8uVRv/+/fHLL79I+3k9e/ZEnz59oKJS+sv9f9Z3Qb/0333VjIwMJCcny5QLyO+/Pn/+HF27dn3ne/y73u7evVtos5S2bdtixYoVxcamra0NPT09aZ/5888/x8cffyydkePl5VXk3aVEVV1qaiqUlZUREhICZWVlmXMF14QWFhZQUVGRuRZ0dHQEkH8HYsG6hKXFKcZERJXo3x1ViUQic6xg8e28vDwA+R8Qffr0QWhoqMwjKiqqVFOEdXV1cf36dezYsQMWFhaYN28enJ2dkZiY+OGFIiIiIipC586dpf2Wt2/fYsuWLdDW1sbDhw/Ru3dvNGnSBH/99RdCQkKku3kWTEEG8qckF7cxybtoamqWOG3BuodHjhyR6WvduXPnvesQamtryzwPDAzEkCFD0LNnTxw+fBg3btzAN998I1OmslBSUkL+jUb/8891Da2srBAZGYnffvsNmpqa+OKLL9ChQ4dCax+WRFH90nf1Vf+ppPX+73orS2wFsRTE0aNHDzx69AjTpk2TDlLOmDGjTO9DJE8uLi7Izc3FixcvUL9+fZlHwcZCbdu2RU5Ojsx6oPfu3QMAWFtbl/m9OUBIRFSFNWvWDOHh4ahbt26hD4jSdq5UVFTg7u6OH3/8Ebdu3cLDhw8REBBQQZETERGRotPW1kb9+vVRp04dmbvZQkJCkJeXh2XLlqF169Zo0KABnj9/XqI81dTUkJub+840TZo0wYULF0o0QFawAcrjx48L9bWsrKxKFFOBy5cvw9raGt988w1atGgBOzs7PHr0SCaNo6MjgoKCZI5duXLlnfmamJggNjZW+jw5ORkxMTEyaTQ1NdGnTx+sXLkSZ8+eRWBgIG7fvl2q+D+Urq4u6tati9OnT5fqdY6Ojrh06ZLMsUuXLsHJyalU+ZiYmMDb2xt//PEHfvnlF6xfv75UryeqLKmpqdIvIwAgJiYGoaGhePz4MRo0aIAhQ4Zg2LBh2Lt3L2JiYhAcHIxFixbhyJEjAAB3d3c0a9YMI0eOxI0bNxASEoJx48ahW7duJZ5hVhROMSYiqsImTJiADRs2YPDgwfjqq69Qq1YtREdHY+fOndi4cWOh286Lc/jwYTx48AAdOnSAoaEhjh49iry8vDLffk5ERERUVvXr10d2djZWrVqFPn364NKlS1i7dm2JXlu3bl0cP34ckZGRMDIygr6+fqE0EydOxKpVqzBo0CDMmTMH+vr6uHLlClq1alWo76Orq4sZM2Zg2rRpyMvLQ7t27ZCUlIRLly5BT08P3t7eJS6XnZ0dHj9+jJ07d6Jly5Y4cuQI9u3bJ5NmypQpGD58OFq0aIG2bdti27ZtCA8Ph62tbbH5dunSBX5+fujTpw8MDAwwb948mT6gn58fcnNz4erqCi0tLfzxxx/Q1NT8oDuJysrHxwfjx4+HqakpevTogZSUFFy6dAmTJk0q9jUzZ87EgAED4OLiAnd3dxw6dAh79+7FqVOnSvy+8+bNQ/PmzdGwYUNkZmbi8OHD0imXRFXNtWvX0LlzZ+nzL7/8EgDg7e0NPz8/+Pr64vvvv8f06dPx7NkzGBsbo3Xr1ujduzeA/LuKDx06hEmTJqFDhw7Q1tZGjx49sGzZsg+KiwOERERVmKWlJS5duoRZs2ahe/fuyMzMhLW1NTw9PaGkVPKbwA0MDLB37174+PggIyMDdnZ22LFjBxo2bFiB0RMREREV5uzsjOXLl2PJkiWYM2cOOnTogEWLFmHYsGHvfe2YMWNw9uxZtGjRAqmpqThz5gzq1q0rk8bIyAgBAQGYOXMmOnbsCGVlZTRt2hRt27YtMs+FCxfCxMQEixYtwoMHD2BgYIBmzZrh66+/LlW5+vbti2nTpmHixInIzMxEr169MHfuXOm6iwAwcOBA3L9/H1999RUyMjLw8ccf4/PPP8fx48eLzXfOnDmIiYlB7969oa+vj4ULF8rcQWhgYIDFixfjyy+/RG5uLho3boxDhw7ByMioVPGXB29vb2RkZODnn3/GjBkzYGxs/N6dVb28vLBixQosXboUU6ZMgY2NDXx9fdGpU6cSv6+amhrmzJmDhw8fQlNTE+3bt8fOnTs/sDREFaNTp06Flg34J1VVVSxYsAALFiwoNo2lpSX++uuvco1LIt4VFRERVTt+fn6YOnVqmdYXlEgk2LdvH7y8vMo9LiIiIiKSPx8fH+zfv186vVFRfEgfmUgRcA1CIqIaKCkpCTo6Opg1a1aJ0o8fP77InZKJiIiIqOa5ffs2dHR08Ntvv8k7lEqho6NTaPdoIpLFOwiJiGqYlJQUxMfHA8ifcmJsbPze17x48QLJyckAAAsLizLvLkdEREREVVtCQgISEhIA5G/sUdQ6jjVNdHQ0AEBZWRk2NjZyjoaoauIAIRERERERERERkQLjFGMiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBcYBQiIiIiIiIiIiIgXGAUIiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBcYBQiIiIiIiIiIiIgXGAUIiIiIiIiIiIiIFxgFCIiIiIiIiIiIiBfb/gKUQ75nKPVwAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" @@ -424,7 +462,12 @@ { "cell_type": "code", "execution_count": 13, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.267027300Z", + "start_time": "2023-12-10T12:14:19.197131800Z" + } + }, "outputs": [], "source": [ "spm = pybamm.lithium_ion.SPM()" @@ -437,59 +480,65 @@ "source": [ "## Finding the parameters in a model\n", "\n", - "We can print the `parameters` of a model by using the `get_parameters_info` function." + "We can print the `parameters` of a model by using the `print_parameter_info` function." ] }, { "cell_type": "code", "execution_count": 14, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.268048600Z", + "start_time": "2023-12-10T12:14:19.202421100Z" + } + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Negative electrode Bruggeman coefficient (electrolyte) (Parameter)\n", - "Positive electrode Bruggeman coefficient (electrode) (Parameter)\n", - "Lower voltage cut-off [V] (Parameter)\n", - "Faraday constant [C.mol-1] (Parameter)\n", - "Ideal gas constant [J.K-1.mol-1] (Parameter)\n", - "Electrode width [m] (Parameter)\n", - "Positive electrode thickness [m] (Parameter)\n", - "Separator Bruggeman coefficient (electrolyte) (Parameter)\n", - "Positive electrode Bruggeman coefficient (electrolyte) (Parameter)\n", - "Upper voltage cut-off [V] (Parameter)\n", - "Number of electrodes connected in parallel to make a cell (Parameter)\n", - "Maximum concentration in negative electrode [mol.m-3] (Parameter)\n", - "Nominal cell capacity [A.h] (Parameter)\n", - "Reference temperature [K] (Parameter)\n", - "Maximum concentration in positive electrode [mol.m-3] (Parameter)\n", - "Separator thickness [m] (Parameter)\n", - "Initial concentration in electrolyte [mol.m-3] (Parameter)\n", - "Negative electrode Bruggeman coefficient (electrode) (Parameter)\n", - "Electrode height [m] (Parameter)\n", - "Number of cells connected in series to make a battery (Parameter)\n", - "Negative electrode thickness [m] (Parameter)\n", - "Ambient temperature [K] (FunctionParameter with input(s) 'Distance across electrode width [m]', 'Distance across electrode height [m]', 'Time [s]')\n", - "Positive electrode OCP entropic change [V.K-1] (FunctionParameter with input(s) 'Positive particle stoichiometry', 'Maximum positive particle surface concentration [mol.m-3]')\n", - "Positive electrode active material volume fraction (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Negative electrode OCP [V] (FunctionParameter with input(s) 'Negative particle stoichiometry')\n", - "Negative electrode OCP entropic change [V.K-1] (FunctionParameter with input(s) 'Negative particle stoichiometry', 'Maximum negative particle surface concentration [mol.m-3]')\n", - "Negative particle radius [m] (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Initial concentration in positive electrode [mol.m-3] (FunctionParameter with input(s) 'Radial distance (r) [m]', 'Through-cell distance (x) [m]')\n", - "Positive particle radius [m] (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Negative electrode porosity (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Negative electrode exchange-current density [A.m-2] (FunctionParameter with input(s) 'Electrolyte concentration [mol.m-3]', 'Negative particle surface concentration [mol.m-3]', 'Maximum negative particle surface concentration [mol.m-3]', 'Temperature [K]')\n", - "Positive electrode OCP [V] (FunctionParameter with input(s) 'Positive particle stoichiometry')\n", - "Positive electrode diffusivity [m2.s-1] (FunctionParameter with input(s) 'Positive particle stoichiometry', 'Temperature [K]')\n", - "Positive electrode porosity (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Initial concentration in negative electrode [mol.m-3] (FunctionParameter with input(s) 'Radial distance (r) [m]', 'Through-cell distance (x) [m]')\n", - "Negative electrode diffusivity [m2.s-1] (FunctionParameter with input(s) 'Negative particle stoichiometry', 'Temperature [K]')\n", - "Negative electrode active material volume fraction (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Separator porosity (FunctionParameter with input(s) 'Through-cell distance (x) [m]')\n", - "Current function [A] (FunctionParameter with input(s) 'Time[s]')\n", - "Positive electrode exchange-current density [A.m-2] (FunctionParameter with input(s) 'Electrolyte concentration [mol.m-3]', 'Positive particle surface concentration [mol.m-3]', 'Maximum positive particle surface concentration [mol.m-3]', 'Temperature [K]')\n", - "\n" + "| Parameter | Type of parameter |\n", + "| ========================================================= | =========================================================================================================================================================================================================== |\n", + "| Positive electrode Bruggeman coefficient (electrolyte) | Parameter |\n", + "| Electrode width [m] | Parameter |\n", + "| Positive electrode thickness [m] | Parameter |\n", + "| Negative electrode Bruggeman coefficient (electrolyte) | Parameter |\n", + "| Negative electrode Bruggeman coefficient (electrode) | Parameter |\n", + "| Initial concentration in electrolyte [mol.m-3] | Parameter |\n", + "| Number of cells connected in series to make a battery | Parameter |\n", + "| Lower voltage cut-off [V] | Parameter |\n", + "| Ideal gas constant [J.K-1.mol-1] | Parameter |\n", + "| Separator Bruggeman coefficient (electrolyte) | Parameter |\n", + "| Upper voltage cut-off [V] | Parameter |\n", + "| Positive electrode Bruggeman coefficient (electrode) | Parameter |\n", + "| Separator thickness [m] | Parameter |\n", + "| Maximum concentration in negative electrode [mol.m-3] | Parameter |\n", + "| Faraday constant [C.mol-1] | Parameter |\n", + "| Reference temperature [K] | Parameter |\n", + "| Electrode height [m] | Parameter |\n", + "| Nominal cell capacity [A.h] | Parameter |\n", + "| Maximum concentration in positive electrode [mol.m-3] | Parameter |\n", + "| Number of electrodes connected in parallel to make a cell | Parameter |\n", + "| Negative electrode thickness [m] | Parameter |\n", + "| Separator porosity | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Negative electrode active material volume fraction | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Negative electrode OCP [V] | FunctionParameter with inputs(s) 'Negative particle stoichiometry' |\n", + "| Positive electrode porosity | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Negative particle radius [m] | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Positive electrode exchange-current density [A.m-2] | FunctionParameter with inputs(s) 'Electrolyte concentration [mol.m-3]', 'Positive particle surface concentration [mol.m-3]', 'Maximum positive particle surface concentration [mol.m-3]', 'Temperature [K]' |\n", + "| Positive particle radius [m] | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Positive electrode OCP [V] | FunctionParameter with inputs(s) 'Positive particle stoichiometry' |\n", + "| Negative electrode exchange-current density [A.m-2] | FunctionParameter with inputs(s) 'Electrolyte concentration [mol.m-3]', 'Negative particle surface concentration [mol.m-3]', 'Maximum negative particle surface concentration [mol.m-3]', 'Temperature [K]' |\n", + "| Negative electrode OCP entropic change [V.K-1] | FunctionParameter with inputs(s) 'Negative particle stoichiometry', 'Maximum negative particle surface concentration [mol.m-3]' |\n", + "| Current function [A] | FunctionParameter with inputs(s) 'Time[s]' |\n", + "| Initial concentration in positive electrode [mol.m-3] | FunctionParameter with inputs(s) 'Radial distance (r) [m]', 'Through-cell distance (x) [m]' |\n", + "| Initial concentration in negative electrode [mol.m-3] | FunctionParameter with inputs(s) 'Radial distance (r) [m]', 'Through-cell distance (x) [m]' |\n", + "| Positive electrode OCP entropic change [V.K-1] | FunctionParameter with inputs(s) 'Positive particle stoichiometry', 'Maximum positive particle surface concentration [mol.m-3]' |\n", + "| Positive electrode diffusivity [m2.s-1] | FunctionParameter with inputs(s) 'Positive particle stoichiometry', 'Temperature [K]' |\n", + "| Negative electrode porosity | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Positive electrode active material volume fraction | FunctionParameter with inputs(s) 'Through-cell distance (x) [m]' |\n", + "| Negative electrode diffusivity [m2.s-1] | FunctionParameter with inputs(s) 'Negative particle stoichiometry', 'Temperature [K]' |\n", + "| Ambient temperature [K] | FunctionParameter with inputs(s) 'Distance across electrode width [m]', 'Distance across electrode height [m]', 'Time [s]' |\n" ] } ], @@ -517,53 +566,16 @@ "cell_type": "code", "execution_count": 15, "metadata": { - "scrolled": true + "scrolled": true, + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.401195400Z", + "start_time": "2023-12-10T12:14:19.232194200Z" + } }, "outputs": [ { "data": { - "text/plain": [ - "{'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n", - " 'Faraday constant [C.mol-1]': 96485.33212,\n", - " 'Negative electrode thickness [m]': 0.0001,\n", - " 'Separator thickness [m]': 2.5e-05,\n", - " 'Positive electrode thickness [m]': 0.0001,\n", - " 'Electrode height [m]': 0.137,\n", - " 'Electrode width [m]': 0.207,\n", - " 'Nominal cell capacity [A.h]': 0.680616,\n", - " 'Current function [A]': 0.680616,\n", - " 'Maximum concentration in negative electrode [mol.m-3]': 24983.2619938437,\n", - " 'Negative electrode diffusivity [m2.s-1]': ,\n", - " 'Negative electrode OCP [V]': ,\n", - " 'Negative electrode porosity': 0.3,\n", - " 'Negative electrode active material volume fraction': 0.6,\n", - " 'Negative particle radius [m]': 1e-05,\n", - " 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Negative electrode exchange-current density [A.m-2]': ,\n", - " 'Negative electrode OCP entropic change [V.K-1]': ,\n", - " 'Maximum concentration in positive electrode [mol.m-3]': 51217.9257309275,\n", - " 'Positive electrode diffusivity [m2.s-1]': ,\n", - " 'Positive electrode OCP [V]': ,\n", - " 'Positive electrode porosity': 0.3,\n", - " 'Positive electrode active material volume fraction': 0.5,\n", - " 'Positive particle radius [m]': 1e-05,\n", - " 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Positive electrode exchange-current density [A.m-2]': ,\n", - " 'Positive electrode OCP entropic change [V.K-1]': ,\n", - " 'Separator porosity': 1.0,\n", - " 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n", - " 'Reference temperature [K]': 298.15,\n", - " 'Ambient temperature [K]': 298.15,\n", - " 'Number of electrodes connected in parallel to make a cell': 1.0,\n", - " 'Number of cells connected in series to make a battery': 1.0,\n", - " 'Lower voltage cut-off [V]': 3.105,\n", - " 'Upper voltage cut-off [V]': 4.1,\n", - " 'Initial concentration in negative electrode [mol.m-3]': 19986.609595075,\n", - " 'Initial concentration in positive electrode [mol.m-3]': 30730.7554385565}" - ] + "text/plain": "{'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n 'Faraday constant [C.mol-1]': 96485.33212,\n 'Negative electrode thickness [m]': 0.0001,\n 'Separator thickness [m]': 2.5e-05,\n 'Positive electrode thickness [m]': 0.0001,\n 'Electrode height [m]': 0.137,\n 'Electrode width [m]': 0.207,\n 'Nominal cell capacity [A.h]': 0.680616,\n 'Current function [A]': 0.680616,\n 'Maximum concentration in negative electrode [mol.m-3]': 24983.2619938437,\n 'Negative electrode diffusivity [m2.s-1]': ,\n 'Negative electrode OCP [V]': ,\n 'Negative electrode porosity': 0.3,\n 'Negative electrode active material volume fraction': 0.6,\n 'Negative particle radius [m]': 1e-05,\n 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n 'Negative electrode exchange-current density [A.m-2]': ,\n 'Negative electrode OCP entropic change [V.K-1]': ,\n 'Maximum concentration in positive electrode [mol.m-3]': 51217.9257309275,\n 'Positive electrode diffusivity [m2.s-1]': ,\n 'Positive electrode OCP [V]': ,\n 'Positive electrode porosity': 0.3,\n 'Positive electrode active material volume fraction': 0.5,\n 'Positive particle radius [m]': 1e-05,\n 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n 'Positive electrode exchange-current density [A.m-2]': ,\n 'Positive electrode OCP entropic change [V.K-1]': ,\n 'Separator porosity': 1.0,\n 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n 'Reference temperature [K]': 298.15,\n 'Ambient temperature [K]': 298.15,\n 'Number of electrodes connected in parallel to make a cell': 1.0,\n 'Number of cells connected in series to make a battery': 1.0,\n 'Lower voltage cut-off [V]': 3.105,\n 'Upper voltage cut-off [V]': 4.1,\n 'Initial concentration in negative electrode [mol.m-3]': 19986.609595075,\n 'Initial concentration in positive electrode [mol.m-3]': 30730.7554385565}" }, "execution_count": 15, "metadata": {}, @@ -571,7 +583,7 @@ } ], "source": [ - "{k: v for k,v in spm.default_parameter_values.items() if k in spm._parameter_info}" + "{k: v for k,v in spm.default_parameter_values.items() if k in spm.get_parameter_info()}" ] }, { @@ -585,251 +597,16 @@ { "cell_type": "code", "execution_count": 16, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.460184100Z", + "start_time": "2023-12-10T12:14:19.418960800Z" + } + }, "outputs": [ { "data": { - "text/plain": [ - "{'Ambient temperature [K]': 298.15,\n", - " 'Boltzmann constant [J.K-1]': 1.380649e-23,\n", - " 'Current function [A]': 5.0,\n", - " 'Electrode height [m]': 0.065,\n", - " 'Electrode width [m]': 1.58,\n", - " 'Electron charge [C]': 1.602176634e-19,\n", - " 'Faraday constant [C.mol-1]': 96485.33212,\n", - " 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n", - " 'Initial concentration in electrolyte [mol.m-3]': 1000,\n", - " 'Initial concentration in negative electrode [mol.m-3]': 29866.0,\n", - " 'Initial concentration in positive electrode [mol.m-3]': 17038.0,\n", - " 'Initial temperature [K]': 298.15,\n", - " 'Lower voltage cut-off [V]': 2.5,\n", - " 'Maximum concentration in negative electrode [mol.m-3]': 33133.0,\n", - " 'Maximum concentration in positive electrode [mol.m-3]': 63104.0,\n", - " 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Negative electrode OCP [V]': ('graphite_LGM50_ocp_Chen2020',\n", - " ([array([0. , 0.03129623, 0.03499902, 0.0387018 , 0.04240458,\n", - " 0.04610736, 0.04981015, 0.05351292, 0.05721568, 0.06091845,\n", - " 0.06462122, 0.06832399, 0.07202675, 0.07572951, 0.07943227,\n", - " 0.08313503, 0.08683779, 0.09054054, 0.09424331, 0.09794607,\n", - " 0.10164883, 0.10535158, 0.10905434, 0.1127571 , 0.11645985,\n", - " 0.12016261, 0.12386536, 0.12756811, 0.13127086, 0.13497362,\n", - " 0.13867638, 0.14237913, 0.14608189, 0.14978465, 0.15348741,\n", - " 0.15719018, 0.16089294, 0.1645957 , 0.16829847, 0.17200122,\n", - " 0.17570399, 0.17940674, 0.1831095 , 0.18681229, 0.19051504,\n", - " 0.1942178 , 0.19792056, 0.20162334, 0.2053261 , 0.20902886,\n", - " 0.21273164, 0.2164344 , 0.22013716, 0.22383993, 0.2275427 ,\n", - " 0.23124547, 0.23494825, 0.23865101, 0.24235377, 0.24605653,\n", - " 0.2497593 , 0.25346208, 0.25716486, 0.26086762, 0.26457039,\n", - " 0.26827314, 0.2719759 , 0.27567867, 0.27938144, 0.28308421,\n", - " 0.28678698, 0.29048974, 0.29419251, 0.29789529, 0.30159806,\n", - " 0.30530083, 0.30900361, 0.31270637, 0.31640913, 0.32011189,\n", - " 0.32381466, 0.32751744, 0.33122021, 0.33492297, 0.33862575,\n", - " 0.34232853, 0.34603131, 0.34973408, 0.35343685, 0.35713963,\n", - " 0.36084241, 0.36454517, 0.36824795, 0.37195071, 0.37565348,\n", - " 0.37935626, 0.38305904, 0.38676182, 0.3904646 , 0.39416737,\n", - " 0.39787015, 0.40157291, 0.40527567, 0.40897844, 0.41268121,\n", - " 0.41638398, 0.42008676, 0.42378953, 0.4274923 , 0.43119506,\n", - " 0.43489784, 0.43860061, 0.44230338, 0.44600615, 0.44970893,\n", - " 0.45341168, 0.45711444, 0.46081719, 0.46451994, 0.46822269,\n", - " 0.47192545, 0.47562821, 0.47933098, 0.48303375, 0.48673651,\n", - " 0.49043926, 0.49414203, 0.49784482, 0.50154759, 0.50525036,\n", - " 0.50895311, 0.51265586, 0.51635861, 0.52006139, 0.52376415,\n", - " 0.52746692, 0.53116969, 0.53487245, 0.53857521, 0.54227797,\n", - " 0.54598074, 0.5496835 , 0.55338627, 0.55708902, 0.56079178,\n", - " 0.56449454, 0.5681973 , 0.57190006, 0.57560282, 0.57930558,\n", - " 0.58300835, 0.58671112, 0.59041389, 0.59411664, 0.59781941,\n", - " 0.60152218, 0.60522496, 0.60892772, 0.61263048, 0.61633325,\n", - " 0.62003603, 0.6237388 , 0.62744156, 0.63114433, 0.63484711,\n", - " 0.63854988, 0.64225265, 0.64595543, 0.64965823, 0.653361 ,\n", - " 0.65706377, 0.66076656, 0.66446934, 0.66817212, 0.67187489,\n", - " 0.67557767, 0.67928044, 0.68298322, 0.686686 , 0.69038878,\n", - " 0.69409156, 0.69779433, 0.70149709, 0.70519988, 0.70890264,\n", - " 0.7126054 , 0.71630818, 0.72001095, 0.72371371, 0.72741648,\n", - " 0.73111925, 0.73482204, 0.7385248 , 0.74222757, 0.74593034,\n", - " 0.74963312, 0.75333589, 0.75703868, 0.76074146, 0.76444422,\n", - " 0.76814698, 0.77184976, 0.77555253, 0.77925531, 0.78295807,\n", - " 0.78666085, 0.79036364, 0.79406641, 0.79776918, 0.80147197,\n", - " 0.80517474, 0.80887751, 0.81258028, 0.81628304, 0.81998581,\n", - " 0.82368858, 0.82739136, 0.83109411, 0.83479688, 0.83849965,\n", - " 0.84220242, 0.84590519, 0.84960797, 0.85331075, 0.85701353,\n", - " 0.86071631, 0.86441907, 0.86812186, 0.87182464, 0.87552742,\n", - " 0.87923019, 0.88293296, 0.88663573, 0.89033849, 0.89404126,\n", - " 0.89774404, 0.9014468 , 1. ])],\n", - " array([1.81772748, 1.0828807 , 0.99593794, 0.90023398, 0.79649431,\n", - " 0.73354429, 0.66664314, 0.64137149, 0.59813869, 0.5670836 ,\n", - " 0.54746181, 0.53068399, 0.51304734, 0.49394092, 0.47926274,\n", - " 0.46065259, 0.45992726, 0.43801501, 0.42438665, 0.41150269,\n", - " 0.40033659, 0.38957134, 0.37756538, 0.36292541, 0.34357086,\n", - " 0.3406314 , 0.32299468, 0.31379458, 0.30795386, 0.29207319,\n", - " 0.28697687, 0.27405477, 0.2670497 , 0.25857493, 0.25265783,\n", - " 0.24826777, 0.2414345 , 0.23362778, 0.22956218, 0.22370236,\n", - " 0.22181271, 0.22089651, 0.2194268 , 0.21830064, 0.21845333,\n", - " 0.21753715, 0.21719357, 0.21635373, 0.21667822, 0.21738444,\n", - " 0.21469313, 0.21541846, 0.21465495, 0.2135479 , 0.21392964,\n", - " 0.21074206, 0.20873788, 0.20465319, 0.20205732, 0.19774358,\n", - " 0.19444147, 0.19190285, 0.18850531, 0.18581399, 0.18327537,\n", - " 0.18157659, 0.17814088, 0.17529686, 0.1719375 , 0.16934161,\n", - " 0.16756649, 0.16609676, 0.16414985, 0.16260378, 0.16224113,\n", - " 0.160027 , 0.15827096, 0.1588054 , 0.15552238, 0.15580869,\n", - " 0.15220118, 0.1511132 , 0.14987253, 0.14874637, 0.14678037,\n", - " 0.14620776, 0.14555879, 0.14389819, 0.14359279, 0.14242846,\n", - " 0.14038612, 0.13882096, 0.13954628, 0.13946992, 0.13780934,\n", - " 0.13973714, 0.13698858, 0.13523254, 0.13441178, 0.1352898 ,\n", - " 0.13507985, 0.13647321, 0.13601512, 0.13435452, 0.1334765 ,\n", - " 0.1348317 , 0.13275118, 0.13286571, 0.13263667, 0.13456447,\n", - " 0.13471718, 0.13395369, 0.13448814, 0.1334765 , 0.13298023,\n", - " 0.13259849, 0.13338107, 0.13309476, 0.13275118, 0.13443087,\n", - " 0.13315202, 0.132713 , 0.1330184 , 0.13278936, 0.13225491,\n", - " 0.13317111, 0.13263667, 0.13187316, 0.13265574, 0.13250305,\n", - " 0.13324745, 0.13204496, 0.13242669, 0.13233127, 0.13198769,\n", - " 0.13254122, 0.13145325, 0.13298023, 0.13168229, 0.1313578 ,\n", - " 0.13235036, 0.13120511, 0.13089971, 0.13109058, 0.13082336,\n", - " 0.13011713, 0.129869 , 0.12992626, 0.12942998, 0.12796026,\n", - " 0.12862831, 0.12656689, 0.12734947, 0.12509716, 0.12110791,\n", - " 0.11839751, 0.11244226, 0.11307214, 0.1092165 , 0.10683058,\n", - " 0.10433014, 0.10530359, 0.10056993, 0.09950104, 0.09854668,\n", - " 0.09921473, 0.09541635, 0.09980643, 0.0986612 , 0.09560722,\n", - " 0.09755413, 0.09612258, 0.09430929, 0.09661885, 0.09366032,\n", - " 0.09522548, 0.09535909, 0.09316404, 0.09450016, 0.0930877 ,\n", - " 0.09343126, 0.0932404 , 0.09350762, 0.09339309, 0.09291591,\n", - " 0.09303043, 0.0926296 , 0.0932404 , 0.09261052, 0.09249599,\n", - " 0.09240055, 0.09253416, 0.09209515, 0.09234329, 0.09366032,\n", - " 0.09333583, 0.09322131, 0.09264868, 0.09253416, 0.09243873,\n", - " 0.09230512, 0.09310678, 0.09165615, 0.09159888, 0.09207606,\n", - " 0.09175158, 0.09177067, 0.09236237, 0.09241964, 0.09320222,\n", - " 0.09199972, 0.09167523, 0.09322131, 0.09190428, 0.09167523,\n", - " 0.09285865, 0.09180884, 0.09150345, 0.09186611, 0.0920188 ,\n", - " 0.09320222, 0.09131257, 0.09117896, 0.09133166, 0.09089265,\n", - " 0.09058725, 0.09051091, 0.09033912, 0.09041547, 0.0911217 ,\n", - " 0.0894611 , 0.08999555, 0.08921297, 0.08881213, 0.08797229,\n", - " 0.08709427, 0.08503284, 0.07601531]))),\n", - " 'Negative electrode OCP entropic change [V.K-1]': 0.0,\n", - " 'Negative electrode active material volume fraction': 0.75,\n", - " 'Negative electrode diffusivity [m2.s-1]': 3.3e-14,\n", - " 'Negative electrode electrons in reaction': 1.0,\n", - " 'Negative electrode exchange-current density [A.m-2]': ,\n", - " 'Negative electrode porosity': 0.25,\n", - " 'Negative electrode thickness [m]': 8.52e-05,\n", - " 'Negative particle radius [m]': 5.86e-06,\n", - " 'Nominal cell capacity [A.h]': 5.0,\n", - " 'Number of cells connected in series to make a battery': 1.0,\n", - " 'Number of electrodes connected in parallel to make a cell': 1.0,\n", - " 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n", - " 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Positive electrode OCP [V]': ('nmc_LGM50_ocp_Chen2020',\n", - " ([array([0.24879728, 0.26614516, 0.26886763, 0.27159011, 0.27431258,\n", - " 0.27703505, 0.27975753, 0.28248 , 0.28520247, 0.28792495,\n", - " 0.29064743, 0.29336992, 0.29609239, 0.29881487, 0.30153735,\n", - " 0.30425983, 0.30698231, 0.30970478, 0.31242725, 0.31514973,\n", - " 0.3178722 , 0.32059466, 0.32331714, 0.32603962, 0.32876209,\n", - " 0.33148456, 0.33420703, 0.3369295 , 0.33965197, 0.34237446,\n", - " 0.34509694, 0.34781941, 0.3505419 , 0.35326438, 0.35598685,\n", - " 0.35870932, 0.3614318 , 0.36415428, 0.36687674, 0.36959921,\n", - " 0.37232169, 0.37504418, 0.37776665, 0.38048913, 0.38321161,\n", - " 0.38593408, 0.38865655, 0.39137903, 0.39410151, 0.39682398,\n", - " 0.39954645, 0.40226892, 0.4049914 , 0.40771387, 0.41043634,\n", - " 0.41315882, 0.41588129, 0.41860377, 0.42132624, 0.42404872,\n", - " 0.4267712 , 0.42949368, 0.43221616, 0.43493864, 0.43766111,\n", - " 0.44038359, 0.44310607, 0.44582856, 0.44855103, 0.45127351,\n", - " 0.453996 , 0.45671848, 0.45944095, 0.46216343, 0.46488592,\n", - " 0.46760838, 0.47033085, 0.47305333, 0.47577581, 0.47849828,\n", - " 0.48122074, 0.48394321, 0.48666569, 0.48938816, 0.49211064,\n", - " 0.4948331 , 0.49755557, 0.50027804, 0.50300052, 0.50572298,\n", - " 0.50844545, 0.51116792, 0.51389038, 0.51661284, 0.51933531,\n", - " 0.52205777, 0.52478024, 0.52750271, 0.53022518, 0.53294765,\n", - " 0.53567012, 0.53839258, 0.54111506, 0.54383753, 0.54656 ,\n", - " 0.54928247, 0.55200494, 0.5547274 , 0.55744986, 0.56017233,\n", - " 0.5628948 , 0.56561729, 0.56833976, 0.57106222, 0.57378469,\n", - " 0.57650716, 0.57922963, 0.5819521 , 0.58467456, 0.58739702,\n", - " 0.59011948, 0.59284194, 0.5955644 , 0.59828687, 0.60100935,\n", - " 0.60373182, 0.60645429, 0.60917677, 0.61189925, 0.61462172,\n", - " 0.61734419, 0.62006666, 0.62278914, 0.62551162, 0.62823408,\n", - " 0.63095656, 0.63367903, 0.6364015 , 0.63912397, 0.64184645,\n", - " 0.64456893, 0.6472914 , 0.65001389, 0.65273637, 0.65545884,\n", - " 0.65818131, 0.66090379, 0.66362625, 0.66634874, 0.66907121,\n", - " 0.67179369, 0.67451616, 0.67723865, 0.67996113, 0.68268361,\n", - " 0.68540608, 0.68812855, 0.69085103, 0.6935735 , 0.69629597,\n", - " 0.69901843, 0.7017409 , 0.70446338, 0.70718585, 0.70990833,\n", - " 0.71263081, 0.71535328, 0.71807574, 0.72079822, 0.72352069,\n", - " 0.72624317, 0.72896564, 0.7316881 , 0.73441057, 0.73713303,\n", - " 0.73985551, 0.74257799, 0.74530047, 0.74802293, 0.7507454 ,\n", - " 0.75346787, 0.75619034, 0.75891281, 0.76163529, 0.76435776,\n", - " 0.76708024, 0.7698027 , 0.77252517, 0.77524765, 0.77797012,\n", - " 0.78069258, 0.78341506, 0.78613753, 0.78885999, 0.79158246,\n", - " 0.79430494, 0.79702741, 0.79974987, 0.80247234, 0.8051948 ,\n", - " 0.80791727, 0.81063974, 0.81336221, 0.81608468, 0.81880714,\n", - " 0.82152961, 0.82425208, 0.82697453, 0.829697 , 0.83241946,\n", - " 0.83514192, 0.83786439, 0.84058684, 0.84330931, 0.84603177,\n", - " 0.84875424, 0.8514767 , 0.85419916, 0.85692162, 0.85964409,\n", - " 0.86236656, 0.86508902, 0.86781149, 0.87053395, 0.87325642,\n", - " 0.87597888, 0.87870135, 0.88142383, 0.8841463 , 0.88686877,\n", - " 0.88959124, 0.89231371, 0.8950362 , 0.89775868, 0.90048116,\n", - " 0.90320364, 0.90592613, 1. ])],\n", - " array([4.4 , 4.2935653 , 4.2768621 , 4.2647018 , 4.2540312 ,\n", - " 4.2449446 , 4.2364879 , 4.2302647 , 4.2225528 , 4.2182574 ,\n", - " 4.213294 , 4.2090373 , 4.2051239 , 4.2012677 , 4.1981564 ,\n", - " 4.1955218 , 4.1931167 , 4.1889744 , 4.1881533 , 4.1865883 ,\n", - " 4.1850228 , 4.1832285 , 4.1808805 , 4.1805749 , 4.1789522 ,\n", - " 4.1768146 , 4.1768146 , 4.1752872 , 4.173111 , 4.1726718 ,\n", - " 4.1710877 , 4.1702285 , 4.168797 , 4.1669831 , 4.1655135 ,\n", - " 4.1634517 , 4.1598248 , 4.1571712 , 4.154079 , 4.1504135 ,\n", - " 4.1466532 , 4.1423388 , 4.1382346 , 4.1338248 , 4.1305799 ,\n", - " 4.1272392 , 4.1228104 , 4.1186109 , 4.114182 , 4.1096005 ,\n", - " 4.1046948 , 4.1004758 , 4.0956464 , 4.0909696 , 4.0864644 ,\n", - " 4.0818448 , 4.077683 , 4.0733309 , 4.0690737 , 4.0647216 ,\n", - " 4.0608654 , 4.0564747 , 4.0527525 , 4.0492401 , 4.0450211 ,\n", - " 4.041986 , 4.0384736 , 4.035171 , 4.0320406 , 4.0289288 ,\n", - " 4.02597 , 4.0227437 , 4.0199757 , 4.0175133 , 4.0149746 ,\n", - " 4.0122066 , 4.009954 , 4.0075679 , 4.0050669 , 4.0023184 ,\n", - " 3.9995501 , 3.9969349 , 3.9926589 , 3.9889555 , 3.9834003 ,\n", - " 3.9783037 , 3.9755929 , 3.9707632 , 3.9681098 , 3.9635665 ,\n", - " 3.9594433 , 3.9556634 , 3.9521511 , 3.9479132 , 3.9438281 ,\n", - " 3.9400866 , 3.9362304 , 3.9314201 , 3.9283848 , 3.9242232 ,\n", - " 3.9192028 , 3.9166257 , 3.9117961 , 3.90815 , 3.9038739 ,\n", - " 3.8995597 , 3.8959136 , 3.8909314 , 3.8872662 , 3.8831048 ,\n", - " 3.8793442 , 3.8747628 , 3.8702576 , 3.8666878 , 3.8623927 ,\n", - " 3.8581741 , 3.854146 , 3.8499846 , 3.8450022 , 3.8422534 ,\n", - " 3.8380919 , 3.8341596 , 3.8309333 , 3.8272109 , 3.823164 ,\n", - " 3.8192315 , 3.8159864 , 3.8123021 , 3.8090379 , 3.8071671 ,\n", - " 3.8040555 , 3.8013639 , 3.7970879 , 3.7953317 , 3.7920673 ,\n", - " 3.788383 , 3.7855389 , 3.7838206 , 3.78111 , 3.7794874 ,\n", - " 3.7769294 , 3.773608 , 3.7695992 , 3.7690265 , 3.7662776 ,\n", - " 3.7642922 , 3.7626889 , 3.7603791 , 3.7575538 , 3.7552056 ,\n", - " 3.7533159 , 3.7507198 , 3.7487535 , 3.7471499 , 3.7442865 ,\n", - " 3.7423012 , 3.7400677 , 3.7385788 , 3.7345319 , 3.7339211 ,\n", - " 3.7301605 , 3.7301033 , 3.7278316 , 3.7251589 , 3.723861 ,\n", - " 3.7215703 , 3.7191267 , 3.7172751 , 3.7157097 , 3.7130945 ,\n", - " 3.7099447 , 3.7071004 , 3.7045615 , 3.703588 , 3.70208 ,\n", - " 3.7002664 , 3.6972122 , 3.6952841 , 3.6929362 , 3.6898055 ,\n", - " 3.6890991 , 3.686522 , 3.6849759 , 3.6821697 , 3.6808143 ,\n", - " 3.6786573 , 3.6761947 , 3.674763 , 3.6712887 , 3.6697233 ,\n", - " 3.6678908 , 3.6652565 , 3.6630611 , 3.660274 , 3.6583652 ,\n", - " 3.6554828 , 3.6522949 , 3.6499848 , 3.6470451 , 3.6405547 ,\n", - " 3.6383405 , 3.635076 , 3.633549 , 3.6322317 , 3.6306856 ,\n", - " 3.6283948 , 3.6268487 , 3.6243098 , 3.6223626 , 3.6193655 ,\n", - " 3.6177621 , 3.6158531 , 3.6128371 , 3.6118062 , 3.6094582 ,\n", - " 3.6072438 , 3.6049912 , 3.6030822 , 3.6012688 , 3.5995889 ,\n", - " 3.5976417 , 3.5951984 , 3.593843 , 3.5916286 , 3.5894907 ,\n", - " 3.587429 , 3.5852909 , 3.5834775 , 3.5817785 , 3.5801177 ,\n", - " 3.5778842 , 3.5763381 , 3.5737801 , 3.5721002 , 3.5702102 ,\n", - " 3.5684922 , 3.5672133 , 3.52302167]))),\n", - " 'Positive electrode OCP entropic change [V.K-1]': 0.0,\n", - " 'Positive electrode active material volume fraction': 0.665,\n", - " 'Positive electrode diffusivity [m2.s-1]': 4e-15,\n", - " 'Positive electrode electrons in reaction': 1.0,\n", - " 'Positive electrode exchange-current density [A.m-2]': ,\n", - " 'Positive electrode porosity': 0.335,\n", - " 'Positive electrode thickness [m]': 7.56e-05,\n", - " 'Positive particle radius [m]': 5.22e-06,\n", - " 'Reference temperature [K]': 298.15,\n", - " 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Separator porosity': 0.47,\n", - " 'Separator thickness [m]': 1.2e-05,\n", - " 'Typical current [A]': 5.0,\n", - " 'Typical electrolyte concentration [mol.m-3]': 1000.0,\n", - " 'Upper voltage cut-off [V]': 4.4}" - ] + "text/plain": "{'Ambient temperature [K]': 298.15,\n 'Boltzmann constant [J.K-1]': 1.380649e-23,\n 'Current function [A]': 5.0,\n 'Electrode height [m]': 0.065,\n 'Electrode width [m]': 1.58,\n 'Electron charge [C]': 1.602176634e-19,\n 'Faraday constant [C.mol-1]': 96485.33212,\n 'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n 'Initial concentration in electrolyte [mol.m-3]': 1000,\n 'Initial concentration in negative electrode [mol.m-3]': 29866.0,\n 'Initial concentration in positive electrode [mol.m-3]': 17038.0,\n 'Initial temperature [K]': 298.15,\n 'Lower voltage cut-off [V]': 2.5,\n 'Maximum concentration in negative electrode [mol.m-3]': 33133.0,\n 'Maximum concentration in positive electrode [mol.m-3]': 63104.0,\n 'Negative electrode Bruggeman coefficient (electrode)': 1.5,\n 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Negative electrode OCP [V]': ('graphite_LGM50_ocp_Chen2020',\n ([array([0. , 0.03129623, 0.03499902, 0.0387018 , 0.04240458,\n 0.04610736, 0.04981015, 0.05351292, 0.05721568, 0.06091845,\n 0.06462122, 0.06832399, 0.07202675, 0.07572951, 0.07943227,\n 0.08313503, 0.08683779, 0.09054054, 0.09424331, 0.09794607,\n 0.10164883, 0.10535158, 0.10905434, 0.1127571 , 0.11645985,\n 0.12016261, 0.12386536, 0.12756811, 0.13127086, 0.13497362,\n 0.13867638, 0.14237913, 0.14608189, 0.14978465, 0.15348741,\n 0.15719018, 0.16089294, 0.1645957 , 0.16829847, 0.17200122,\n 0.17570399, 0.17940674, 0.1831095 , 0.18681229, 0.19051504,\n 0.1942178 , 0.19792056, 0.20162334, 0.2053261 , 0.20902886,\n 0.21273164, 0.2164344 , 0.22013716, 0.22383993, 0.2275427 ,\n 0.23124547, 0.23494825, 0.23865101, 0.24235377, 0.24605653,\n 0.2497593 , 0.25346208, 0.25716486, 0.26086762, 0.26457039,\n 0.26827314, 0.2719759 , 0.27567867, 0.27938144, 0.28308421,\n 0.28678698, 0.29048974, 0.29419251, 0.29789529, 0.30159806,\n 0.30530083, 0.30900361, 0.31270637, 0.31640913, 0.32011189,\n 0.32381466, 0.32751744, 0.33122021, 0.33492297, 0.33862575,\n 0.34232853, 0.34603131, 0.34973408, 0.35343685, 0.35713963,\n 0.36084241, 0.36454517, 0.36824795, 0.37195071, 0.37565348,\n 0.37935626, 0.38305904, 0.38676182, 0.3904646 , 0.39416737,\n 0.39787015, 0.40157291, 0.40527567, 0.40897844, 0.41268121,\n 0.41638398, 0.42008676, 0.42378953, 0.4274923 , 0.43119506,\n 0.43489784, 0.43860061, 0.44230338, 0.44600615, 0.44970893,\n 0.45341168, 0.45711444, 0.46081719, 0.46451994, 0.46822269,\n 0.47192545, 0.47562821, 0.47933098, 0.48303375, 0.48673651,\n 0.49043926, 0.49414203, 0.49784482, 0.50154759, 0.50525036,\n 0.50895311, 0.51265586, 0.51635861, 0.52006139, 0.52376415,\n 0.52746692, 0.53116969, 0.53487245, 0.53857521, 0.54227797,\n 0.54598074, 0.5496835 , 0.55338627, 0.55708902, 0.56079178,\n 0.56449454, 0.5681973 , 0.57190006, 0.57560282, 0.57930558,\n 0.58300835, 0.58671112, 0.59041389, 0.59411664, 0.59781941,\n 0.60152218, 0.60522496, 0.60892772, 0.61263048, 0.61633325,\n 0.62003603, 0.6237388 , 0.62744156, 0.63114433, 0.63484711,\n 0.63854988, 0.64225265, 0.64595543, 0.64965823, 0.653361 ,\n 0.65706377, 0.66076656, 0.66446934, 0.66817212, 0.67187489,\n 0.67557767, 0.67928044, 0.68298322, 0.686686 , 0.69038878,\n 0.69409156, 0.69779433, 0.70149709, 0.70519988, 0.70890264,\n 0.7126054 , 0.71630818, 0.72001095, 0.72371371, 0.72741648,\n 0.73111925, 0.73482204, 0.7385248 , 0.74222757, 0.74593034,\n 0.74963312, 0.75333589, 0.75703868, 0.76074146, 0.76444422,\n 0.76814698, 0.77184976, 0.77555253, 0.77925531, 0.78295807,\n 0.78666085, 0.79036364, 0.79406641, 0.79776918, 0.80147197,\n 0.80517474, 0.80887751, 0.81258028, 0.81628304, 0.81998581,\n 0.82368858, 0.82739136, 0.83109411, 0.83479688, 0.83849965,\n 0.84220242, 0.84590519, 0.84960797, 0.85331075, 0.85701353,\n 0.86071631, 0.86441907, 0.86812186, 0.87182464, 0.87552742,\n 0.87923019, 0.88293296, 0.88663573, 0.89033849, 0.89404126,\n 0.89774404, 0.9014468 , 1. ])],\n array([1.81772748, 1.0828807 , 0.99593794, 0.90023398, 0.79649431,\n 0.73354429, 0.66664314, 0.64137149, 0.59813869, 0.5670836 ,\n 0.54746181, 0.53068399, 0.51304734, 0.49394092, 0.47926274,\n 0.46065259, 0.45992726, 0.43801501, 0.42438665, 0.41150269,\n 0.40033659, 0.38957134, 0.37756538, 0.36292541, 0.34357086,\n 0.3406314 , 0.32299468, 0.31379458, 0.30795386, 0.29207319,\n 0.28697687, 0.27405477, 0.2670497 , 0.25857493, 0.25265783,\n 0.24826777, 0.2414345 , 0.23362778, 0.22956218, 0.22370236,\n 0.22181271, 0.22089651, 0.2194268 , 0.21830064, 0.21845333,\n 0.21753715, 0.21719357, 0.21635373, 0.21667822, 0.21738444,\n 0.21469313, 0.21541846, 0.21465495, 0.2135479 , 0.21392964,\n 0.21074206, 0.20873788, 0.20465319, 0.20205732, 0.19774358,\n 0.19444147, 0.19190285, 0.18850531, 0.18581399, 0.18327537,\n 0.18157659, 0.17814088, 0.17529686, 0.1719375 , 0.16934161,\n 0.16756649, 0.16609676, 0.16414985, 0.16260378, 0.16224113,\n 0.160027 , 0.15827096, 0.1588054 , 0.15552238, 0.15580869,\n 0.15220118, 0.1511132 , 0.14987253, 0.14874637, 0.14678037,\n 0.14620776, 0.14555879, 0.14389819, 0.14359279, 0.14242846,\n 0.14038612, 0.13882096, 0.13954628, 0.13946992, 0.13780934,\n 0.13973714, 0.13698858, 0.13523254, 0.13441178, 0.1352898 ,\n 0.13507985, 0.13647321, 0.13601512, 0.13435452, 0.1334765 ,\n 0.1348317 , 0.13275118, 0.13286571, 0.13263667, 0.13456447,\n 0.13471718, 0.13395369, 0.13448814, 0.1334765 , 0.13298023,\n 0.13259849, 0.13338107, 0.13309476, 0.13275118, 0.13443087,\n 0.13315202, 0.132713 , 0.1330184 , 0.13278936, 0.13225491,\n 0.13317111, 0.13263667, 0.13187316, 0.13265574, 0.13250305,\n 0.13324745, 0.13204496, 0.13242669, 0.13233127, 0.13198769,\n 0.13254122, 0.13145325, 0.13298023, 0.13168229, 0.1313578 ,\n 0.13235036, 0.13120511, 0.13089971, 0.13109058, 0.13082336,\n 0.13011713, 0.129869 , 0.12992626, 0.12942998, 0.12796026,\n 0.12862831, 0.12656689, 0.12734947, 0.12509716, 0.12110791,\n 0.11839751, 0.11244226, 0.11307214, 0.1092165 , 0.10683058,\n 0.10433014, 0.10530359, 0.10056993, 0.09950104, 0.09854668,\n 0.09921473, 0.09541635, 0.09980643, 0.0986612 , 0.09560722,\n 0.09755413, 0.09612258, 0.09430929, 0.09661885, 0.09366032,\n 0.09522548, 0.09535909, 0.09316404, 0.09450016, 0.0930877 ,\n 0.09343126, 0.0932404 , 0.09350762, 0.09339309, 0.09291591,\n 0.09303043, 0.0926296 , 0.0932404 , 0.09261052, 0.09249599,\n 0.09240055, 0.09253416, 0.09209515, 0.09234329, 0.09366032,\n 0.09333583, 0.09322131, 0.09264868, 0.09253416, 0.09243873,\n 0.09230512, 0.09310678, 0.09165615, 0.09159888, 0.09207606,\n 0.09175158, 0.09177067, 0.09236237, 0.09241964, 0.09320222,\n 0.09199972, 0.09167523, 0.09322131, 0.09190428, 0.09167523,\n 0.09285865, 0.09180884, 0.09150345, 0.09186611, 0.0920188 ,\n 0.09320222, 0.09131257, 0.09117896, 0.09133166, 0.09089265,\n 0.09058725, 0.09051091, 0.09033912, 0.09041547, 0.0911217 ,\n 0.0894611 , 0.08999555, 0.08921297, 0.08881213, 0.08797229,\n 0.08709427, 0.08503284, 0.07601531]))),\n 'Negative electrode OCP entropic change [V.K-1]': 0.0,\n 'Negative electrode active material volume fraction': 0.75,\n 'Negative electrode diffusivity [m2.s-1]': 3.3e-14,\n 'Negative electrode electrons in reaction': 1.0,\n 'Negative electrode exchange-current density [A.m-2]': ,\n 'Negative electrode porosity': 0.25,\n 'Negative electrode thickness [m]': 8.52e-05,\n 'Negative particle radius [m]': 5.86e-06,\n 'Nominal cell capacity [A.h]': 5.0,\n 'Number of cells connected in series to make a battery': 1.0,\n 'Number of electrodes connected in parallel to make a cell': 1.0,\n 'Positive electrode Bruggeman coefficient (electrode)': 1.5,\n 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Positive electrode OCP [V]': ('nmc_LGM50_ocp_Chen2020',\n ([array([0.24879728, 0.26614516, 0.26886763, 0.27159011, 0.27431258,\n 0.27703505, 0.27975753, 0.28248 , 0.28520247, 0.28792495,\n 0.29064743, 0.29336992, 0.29609239, 0.29881487, 0.30153735,\n 0.30425983, 0.30698231, 0.30970478, 0.31242725, 0.31514973,\n 0.3178722 , 0.32059466, 0.32331714, 0.32603962, 0.32876209,\n 0.33148456, 0.33420703, 0.3369295 , 0.33965197, 0.34237446,\n 0.34509694, 0.34781941, 0.3505419 , 0.35326438, 0.35598685,\n 0.35870932, 0.3614318 , 0.36415428, 0.36687674, 0.36959921,\n 0.37232169, 0.37504418, 0.37776665, 0.38048913, 0.38321161,\n 0.38593408, 0.38865655, 0.39137903, 0.39410151, 0.39682398,\n 0.39954645, 0.40226892, 0.4049914 , 0.40771387, 0.41043634,\n 0.41315882, 0.41588129, 0.41860377, 0.42132624, 0.42404872,\n 0.4267712 , 0.42949368, 0.43221616, 0.43493864, 0.43766111,\n 0.44038359, 0.44310607, 0.44582856, 0.44855103, 0.45127351,\n 0.453996 , 0.45671848, 0.45944095, 0.46216343, 0.46488592,\n 0.46760838, 0.47033085, 0.47305333, 0.47577581, 0.47849828,\n 0.48122074, 0.48394321, 0.48666569, 0.48938816, 0.49211064,\n 0.4948331 , 0.49755557, 0.50027804, 0.50300052, 0.50572298,\n 0.50844545, 0.51116792, 0.51389038, 0.51661284, 0.51933531,\n 0.52205777, 0.52478024, 0.52750271, 0.53022518, 0.53294765,\n 0.53567012, 0.53839258, 0.54111506, 0.54383753, 0.54656 ,\n 0.54928247, 0.55200494, 0.5547274 , 0.55744986, 0.56017233,\n 0.5628948 , 0.56561729, 0.56833976, 0.57106222, 0.57378469,\n 0.57650716, 0.57922963, 0.5819521 , 0.58467456, 0.58739702,\n 0.59011948, 0.59284194, 0.5955644 , 0.59828687, 0.60100935,\n 0.60373182, 0.60645429, 0.60917677, 0.61189925, 0.61462172,\n 0.61734419, 0.62006666, 0.62278914, 0.62551162, 0.62823408,\n 0.63095656, 0.63367903, 0.6364015 , 0.63912397, 0.64184645,\n 0.64456893, 0.6472914 , 0.65001389, 0.65273637, 0.65545884,\n 0.65818131, 0.66090379, 0.66362625, 0.66634874, 0.66907121,\n 0.67179369, 0.67451616, 0.67723865, 0.67996113, 0.68268361,\n 0.68540608, 0.68812855, 0.69085103, 0.6935735 , 0.69629597,\n 0.69901843, 0.7017409 , 0.70446338, 0.70718585, 0.70990833,\n 0.71263081, 0.71535328, 0.71807574, 0.72079822, 0.72352069,\n 0.72624317, 0.72896564, 0.7316881 , 0.73441057, 0.73713303,\n 0.73985551, 0.74257799, 0.74530047, 0.74802293, 0.7507454 ,\n 0.75346787, 0.75619034, 0.75891281, 0.76163529, 0.76435776,\n 0.76708024, 0.7698027 , 0.77252517, 0.77524765, 0.77797012,\n 0.78069258, 0.78341506, 0.78613753, 0.78885999, 0.79158246,\n 0.79430494, 0.79702741, 0.79974987, 0.80247234, 0.8051948 ,\n 0.80791727, 0.81063974, 0.81336221, 0.81608468, 0.81880714,\n 0.82152961, 0.82425208, 0.82697453, 0.829697 , 0.83241946,\n 0.83514192, 0.83786439, 0.84058684, 0.84330931, 0.84603177,\n 0.84875424, 0.8514767 , 0.85419916, 0.85692162, 0.85964409,\n 0.86236656, 0.86508902, 0.86781149, 0.87053395, 0.87325642,\n 0.87597888, 0.87870135, 0.88142383, 0.8841463 , 0.88686877,\n 0.88959124, 0.89231371, 0.8950362 , 0.89775868, 0.90048116,\n 0.90320364, 0.90592613, 1. ])],\n array([4.4 , 4.2935653 , 4.2768621 , 4.2647018 , 4.2540312 ,\n 4.2449446 , 4.2364879 , 4.2302647 , 4.2225528 , 4.2182574 ,\n 4.213294 , 4.2090373 , 4.2051239 , 4.2012677 , 4.1981564 ,\n 4.1955218 , 4.1931167 , 4.1889744 , 4.1881533 , 4.1865883 ,\n 4.1850228 , 4.1832285 , 4.1808805 , 4.1805749 , 4.1789522 ,\n 4.1768146 , 4.1768146 , 4.1752872 , 4.173111 , 4.1726718 ,\n 4.1710877 , 4.1702285 , 4.168797 , 4.1669831 , 4.1655135 ,\n 4.1634517 , 4.1598248 , 4.1571712 , 4.154079 , 4.1504135 ,\n 4.1466532 , 4.1423388 , 4.1382346 , 4.1338248 , 4.1305799 ,\n 4.1272392 , 4.1228104 , 4.1186109 , 4.114182 , 4.1096005 ,\n 4.1046948 , 4.1004758 , 4.0956464 , 4.0909696 , 4.0864644 ,\n 4.0818448 , 4.077683 , 4.0733309 , 4.0690737 , 4.0647216 ,\n 4.0608654 , 4.0564747 , 4.0527525 , 4.0492401 , 4.0450211 ,\n 4.041986 , 4.0384736 , 4.035171 , 4.0320406 , 4.0289288 ,\n 4.02597 , 4.0227437 , 4.0199757 , 4.0175133 , 4.0149746 ,\n 4.0122066 , 4.009954 , 4.0075679 , 4.0050669 , 4.0023184 ,\n 3.9995501 , 3.9969349 , 3.9926589 , 3.9889555 , 3.9834003 ,\n 3.9783037 , 3.9755929 , 3.9707632 , 3.9681098 , 3.9635665 ,\n 3.9594433 , 3.9556634 , 3.9521511 , 3.9479132 , 3.9438281 ,\n 3.9400866 , 3.9362304 , 3.9314201 , 3.9283848 , 3.9242232 ,\n 3.9192028 , 3.9166257 , 3.9117961 , 3.90815 , 3.9038739 ,\n 3.8995597 , 3.8959136 , 3.8909314 , 3.8872662 , 3.8831048 ,\n 3.8793442 , 3.8747628 , 3.8702576 , 3.8666878 , 3.8623927 ,\n 3.8581741 , 3.854146 , 3.8499846 , 3.8450022 , 3.8422534 ,\n 3.8380919 , 3.8341596 , 3.8309333 , 3.8272109 , 3.823164 ,\n 3.8192315 , 3.8159864 , 3.8123021 , 3.8090379 , 3.8071671 ,\n 3.8040555 , 3.8013639 , 3.7970879 , 3.7953317 , 3.7920673 ,\n 3.788383 , 3.7855389 , 3.7838206 , 3.78111 , 3.7794874 ,\n 3.7769294 , 3.773608 , 3.7695992 , 3.7690265 , 3.7662776 ,\n 3.7642922 , 3.7626889 , 3.7603791 , 3.7575538 , 3.7552056 ,\n 3.7533159 , 3.7507198 , 3.7487535 , 3.7471499 , 3.7442865 ,\n 3.7423012 , 3.7400677 , 3.7385788 , 3.7345319 , 3.7339211 ,\n 3.7301605 , 3.7301033 , 3.7278316 , 3.7251589 , 3.723861 ,\n 3.7215703 , 3.7191267 , 3.7172751 , 3.7157097 , 3.7130945 ,\n 3.7099447 , 3.7071004 , 3.7045615 , 3.703588 , 3.70208 ,\n 3.7002664 , 3.6972122 , 3.6952841 , 3.6929362 , 3.6898055 ,\n 3.6890991 , 3.686522 , 3.6849759 , 3.6821697 , 3.6808143 ,\n 3.6786573 , 3.6761947 , 3.674763 , 3.6712887 , 3.6697233 ,\n 3.6678908 , 3.6652565 , 3.6630611 , 3.660274 , 3.6583652 ,\n 3.6554828 , 3.6522949 , 3.6499848 , 3.6470451 , 3.6405547 ,\n 3.6383405 , 3.635076 , 3.633549 , 3.6322317 , 3.6306856 ,\n 3.6283948 , 3.6268487 , 3.6243098 , 3.6223626 , 3.6193655 ,\n 3.6177621 , 3.6158531 , 3.6128371 , 3.6118062 , 3.6094582 ,\n 3.6072438 , 3.6049912 , 3.6030822 , 3.6012688 , 3.5995889 ,\n 3.5976417 , 3.5951984 , 3.593843 , 3.5916286 , 3.5894907 ,\n 3.587429 , 3.5852909 , 3.5834775 , 3.5817785 , 3.5801177 ,\n 3.5778842 , 3.5763381 , 3.5737801 , 3.5721002 , 3.5702102 ,\n 3.5684922 , 3.5672133 , 3.52302167]))),\n 'Positive electrode OCP entropic change [V.K-1]': 0.0,\n 'Positive electrode active material volume fraction': 0.665,\n 'Positive electrode diffusivity [m2.s-1]': 4e-15,\n 'Positive electrode electrons in reaction': 1.0,\n 'Positive electrode exchange-current density [A.m-2]': ,\n 'Positive electrode porosity': 0.335,\n 'Positive electrode thickness [m]': 7.56e-05,\n 'Positive particle radius [m]': 5.22e-06,\n 'Reference temperature [K]': 298.15,\n 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n 'Separator porosity': 0.47,\n 'Separator thickness [m]': 1.2e-05,\n 'Typical current [A]': 5.0,\n 'Typical electrolyte concentration [mol.m-3]': 1000.0,\n 'Upper voltage cut-off [V]': 4.4}" }, "execution_count": 16, "metadata": {}, @@ -1405,52 +1182,16 @@ { "cell_type": "code", "execution_count": 17, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.608102800Z", + "start_time": "2023-12-10T12:14:19.450757200Z" + } + }, "outputs": [ { "data": { - "text/plain": [ - "{'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n", - " 'Faraday constant [C.mol-1]': 96485.33212,\n", - " 'Negative electrode thickness [m]': 8.52e-05,\n", - " 'Separator thickness [m]': 1.2e-05,\n", - " 'Positive electrode thickness [m]': 7.56e-05,\n", - " 'Electrode height [m]': 0.065,\n", - " 'Electrode width [m]': 1.58,\n", - " 'Nominal cell capacity [A.h]': 5.0,\n", - " 'Current function [A]': 5.0,\n", - " 'Maximum concentration in negative electrode [mol.m-3]': 33133.0,\n", - " 'Negative electrode diffusivity [m2.s-1]': 3.3e-14,\n", - " 'Negative electrode OCP [V]': ,\n", - " 'Negative electrode porosity': 0.25,\n", - " 'Negative electrode active material volume fraction': 0.75,\n", - " 'Negative particle radius [m]': 5.86e-06,\n", - " 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Negative electrode Bruggeman coefficient (electrode)': 0,\n", - " 'Negative electrode exchange-current density [A.m-2]': ,\n", - " 'Negative electrode OCP entropic change [V.K-1]': 0.0,\n", - " 'Maximum concentration in positive electrode [mol.m-3]': 63104.0,\n", - " 'Positive electrode diffusivity [m2.s-1]': 4e-15,\n", - " 'Positive electrode OCP [V]': ,\n", - " 'Positive electrode porosity': 0.335,\n", - " 'Positive electrode active material volume fraction': 0.665,\n", - " 'Positive particle radius [m]': 5.22e-06,\n", - " 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Positive electrode Bruggeman coefficient (electrode)': 0,\n", - " 'Positive electrode exchange-current density [A.m-2]': ,\n", - " 'Positive electrode OCP entropic change [V.K-1]': 0.0,\n", - " 'Separator porosity': 0.47,\n", - " 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n", - " 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n", - " 'Reference temperature [K]': 298.15,\n", - " 'Ambient temperature [K]': 298.15,\n", - " 'Number of electrodes connected in parallel to make a cell': 1.0,\n", - " 'Number of cells connected in series to make a battery': 1.0,\n", - " 'Lower voltage cut-off [V]': 2.5,\n", - " 'Upper voltage cut-off [V]': 4.2,\n", - " 'Initial concentration in negative electrode [mol.m-3]': 29866.0,\n", - " 'Initial concentration in positive electrode [mol.m-3]': 17038.0}" - ] + "text/plain": "{'Ideal gas constant [J.K-1.mol-1]': 8.314462618,\n 'Faraday constant [C.mol-1]': 96485.33212,\n 'Negative electrode thickness [m]': 8.52e-05,\n 'Separator thickness [m]': 1.2e-05,\n 'Positive electrode thickness [m]': 7.56e-05,\n 'Electrode height [m]': 0.065,\n 'Electrode width [m]': 1.58,\n 'Nominal cell capacity [A.h]': 5.0,\n 'Current function [A]': 5.0,\n 'Maximum concentration in negative electrode [mol.m-3]': 33133.0,\n 'Negative electrode diffusivity [m2.s-1]': 3.3e-14,\n 'Negative electrode OCP [V]': ,\n 'Negative electrode porosity': 0.25,\n 'Negative electrode active material volume fraction': 0.75,\n 'Negative particle radius [m]': 5.86e-06,\n 'Negative electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Negative electrode Bruggeman coefficient (electrode)': 0,\n 'Negative electrode exchange-current density [A.m-2]': ,\n 'Negative electrode OCP entropic change [V.K-1]': 0.0,\n 'Maximum concentration in positive electrode [mol.m-3]': 63104.0,\n 'Positive electrode diffusivity [m2.s-1]': 4e-15,\n 'Positive electrode OCP [V]': ,\n 'Positive electrode porosity': 0.335,\n 'Positive electrode active material volume fraction': 0.665,\n 'Positive particle radius [m]': 5.22e-06,\n 'Positive electrode Bruggeman coefficient (electrolyte)': 1.5,\n 'Positive electrode Bruggeman coefficient (electrode)': 0,\n 'Positive electrode exchange-current density [A.m-2]': ,\n 'Positive electrode OCP entropic change [V.K-1]': 0.0,\n 'Separator porosity': 0.47,\n 'Separator Bruggeman coefficient (electrolyte)': 1.5,\n 'Initial concentration in electrolyte [mol.m-3]': 1000.0,\n 'Reference temperature [K]': 298.15,\n 'Ambient temperature [K]': 298.15,\n 'Number of electrodes connected in parallel to make a cell': 1.0,\n 'Number of cells connected in series to make a battery': 1.0,\n 'Lower voltage cut-off [V]': 2.5,\n 'Upper voltage cut-off [V]': 4.2,\n 'Initial concentration in negative electrode [mol.m-3]': 29866.0,\n 'Initial concentration in positive electrode [mol.m-3]': 17038.0}" }, "execution_count": 17, "metadata": {}, @@ -1459,7 +1200,7 @@ ], "source": [ "param_same = pybamm.ParameterValues(\"Chen2020\")\n", - "{k: v for k,v in param_same.items() if k in spm._parameter_info}" + "{k: v for k,v in param_same.items() if k in spm.get_parameter_info()}" ] }, { @@ -1489,7 +1230,12 @@ { "cell_type": "code", "execution_count": 18, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.611194400Z", + "start_time": "2023-12-10T12:14:19.609138100Z" + } + }, "outputs": [ { "name": "stdout", @@ -1500,9 +1246,7 @@ }, { "data": { - "text/plain": [ - "4.0" - ] + "text/plain": "4.0" }, "execution_count": 18, "metadata": {}, @@ -1528,13 +1272,16 @@ { "cell_type": "code", "execution_count": 19, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.641429500Z", + "start_time": "2023-12-10T12:14:19.616345800Z" + } + }, "outputs": [ { "data": { - "text/plain": [ - "" - ] + "text/plain": "" }, "execution_count": 19, "metadata": {}, @@ -1572,23 +1319,24 @@ { "cell_type": "code", "execution_count": 20, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.700673700Z", + "start_time": "2023-12-10T12:14:19.627406900Z" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoQklEQVR4nO3de3yT9fk//lcOTdJjej63UM7nthSoxRPOamUORadDxoZjHj5zsqmdc2Ofidtnm6hf55wbk+lk6G9T0KmoTJlYBYacactBTi0UeqDpuUmbtkmb3L8/kjttoUBTktx3ktfz8chjI72TXLlt0ut+v6/39VYIgiCAiIiISMaUUgdAREREdDlMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPbXUAXiC3W7HuXPnEBkZCYVCIXU4RERENAyCIKCjowOpqalQKi89hhIQCcu5c+eQkZEhdRhEREQ0AjU1NUhPT7/kMQGRsERGRgJwvOGoqCiJoyEiIqLhMJlMyMjIcP0dv5SASFjEaaCoqCgmLERERH5mOOUcLLolIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2XMrYVm1ahVmz56NyMhIJCYmYuHChThx4sRlH/fOO+9g0qRJ0Ol0mD59Oj7++ONBPxcEAStXrkRKSgpCQ0NRWFiIiooK994JERERBSy3EpZt27bh4Ycfxu7du7Flyxb09vbi5ptvhtlsvuhjdu7cicWLF+O+++5DWVkZFi5ciIULF+LIkSOuY5577jm89NJLWLNmDfbs2YPw8HAUFRWhp6dn5O+MiIiIAoZCEARhpA9uampCYmIitm3bhuuuu27IYxYtWgSz2YxNmza57rvqqquQk5ODNWvWQBAEpKam4ic/+Qkef/xxAIDRaERSUhLWrVuHe+6557JxmEwm6PV6GI1G7iVERETkJ9z5+31FNSxGoxEAEBsbe9Fjdu3ahcLCwkH3FRUVYdeuXQCAqqoqGAyGQcfo9Xrk5+e7jjmfxWKByWQadCP39PTaYLePOFclIg+qbOzAK9tPYdvJJqlDIZKtEe/WbLfb8eijj+Lqq6/GtGnTLnqcwWBAUlLSoPuSkpJgMBhcPxfvu9gx51u1ahV+/etfjzT0oGa3C3h283G8tqMKSqUC6dGhSIsJRXpMKNJjwpAeE4q06FBMSI5ElC5E6nCJApaxqxcfHjqHfx2oxcGadtf9N01Jwq9um4q06FDpgiOSoREnLA8//DCOHDmCHTt2eDKeYVmxYgWKi4td/zaZTMjIyPB5HP6m22rDYxvKsfkrZyJoF3C62YzTzRfWIEVo1Vi3bDZmjb746BkRuafPZsf2iia8e6AOW442wGqzAwBUSgVmjYrBgbNt2HK0AV9WNuOxwglYdvVoqFVczEkEjDBhWb58OTZt2oTt27cjPT39kscmJyejoaFh0H0NDQ1ITk52/Vy8LyUlZdAxOTk5Qz6nVquFVqsdSehBq7nTgvtf34/ymnZoVEo8e9d0zBoVi9q2btS2daG2rRt17Y7/f7rJjMYOC+57fT/e+UEBJiRFSh0+kd/7x+6z+GNJBZo6LK77JiVH4q68dNyek4aESC1ONnTgf98/jH1n2vC7j4/hvbI6PH3HNORmxkgYOZE8uFV0KwgCfvSjH+H999/H1q1bMX78+Ms+ZtGiRejq6sJHH33kum/u3LmYMWPGoKLbxx9/HD/5yU8AOEZMEhMTWXTrIZWNnVi2bi9qWruhDw3BK9/NQ/6YuIse3221YcnfdqO0uh0peh3efWguUjk8TTRiX5xoxLK/7wMAxIZrsDAnDd/MS8PUVP0Fx9rtAv51oBZPf3IM7V29UCiAJfmZ+GnRJOhDOU1LgcWdv99uJSw//OEP8eabb+KDDz7AxIkTXffr9XqEhjr+oC1duhRpaWlYtWoVAMey5uuvvx7PPPMMbr31Vqxfvx5PP/00SktLXbUvzz77LJ555hm8/vrryMrKwpNPPolDhw7h6NGj0Ol0Hn3DwWb36Rb8z/93AMbuXmTGhuHvy2ZjbELEZR/XZrbi7r/uQmVjJ8YnRuCdHxQgOkzjg4iJAovB2IOvv/RftJqt+HZ+Jn5921SEDGOap6XTgqc/Po53S2sBAPERWqxbNhvT0i5Mcoj8lddWCb388sswGo2YN28eUlJSXLcNGza4jqmurkZ9fb3r33PnzsWbb76JV155BdnZ2fjXv/6FjRs3DirUfeKJJ/CjH/0IDz74IGbPno3Ozk5s3rx5WMkKXdzGsjp897U9MHb3IjczGu//cO6wkhUAiAnX4PXvz0FylA4VjZ24//X96Om1eTliosBiswt4ZH0ZWs1WTE2NwspvTBlWsgIAcRFa/P5b2XjrgaswJiEczZ0W/OTtg+h11r0QBZsr6sMiFxxhudCfP6/A85+eBAB8fXoyXvhWDnQhKref54ShA3ev2QlTTx8KJydhzXdmsgiQaJj+sOUk/lhSgXCNCpt+fC2y4sNH9DytZisKX9iGVrMVPy2aiIdvGOfhSImk4bM+LCRP2042uZKV/7luDP68eOaIkhUAmJgcib/dOxsatRKfHWvAkx8cQQDkuERet7OyGS997thi5Ok7p484WQEcdS+/vHUyAOClkgqcGWJlH1GgY8ISYGx2Aas+PgYA+N7c0Vjx9clQKhVX9JxzsmLxp8W5UCqAt/bW4A+fcZ8noktp7rTgkQ3lEARg0awM3J6TdsXPeUduGq4eFwdLnx3/u/EwLxwo6DBhCTDvltbiuKEDUTo1Hi28/Cqu4SqamozfLHTUHb1UUoG39lZ77LmJAondLqD47YNo6rBgfGIEfnXbVI88r0KhwO8WTodWrcSXlS14v6zOI89L5C+YsASQbqsNv//UsXv2j7423uOrepbkj8IjNzqSoN9uOor2LqtHn58oEPx1+2lsP9kEXYgSq5fMRKhmZNOxQxkdH44fOz+Dv9l0FK1mfgYpeDBhCSCv7TiNBpMFadGh+G7BKK+8xqOF4zE5JQpmqw1rvzzjldcg8lcHzrbieedFw68WTPVK08UHrxuDiUmRaOvqxe/+fczjz08kV0xYAkRzpwVrtp0GADxxy8QRF9lejkKhwI++5lih8Pcvq2Dq6fXK6xD5m/YuK378VjlsdgG3Zadi0WzvbBcSolJi1TenQ6FwTAHvrGz2yusQyQ0TlgDxx88q0Gnpw/Q0PRbMSPXqa90yNRnjEyPQ0dOH1znKQgQAePGzCtS1d2N0XBh+d8c0KBRXVux+KTMzY/DdqxyjqL94/zB7JFFQYMISAE41deJNZxHsLzywKuhylEoFljtHWV77sgqdlj6vvh6R3Bm7e/H2/hoAwP/dPg2RPtjp/KdFE5EUpcWZli78+fNKr78ekdSYsASA5zYfh80u4MZJiSgYe/E9gjzpGzNSMSY+HO1dvfjH7rM+eU0iudqwrxpdVhsmJUfi2vHxPnnNSF0Ifu1cgbRm2ymcMHT45HWJpMKExc/tO9OK/3zVAKUC+Pn8ST57XZVSgR86u22+uv00uq0ckqbg1Gez4/WdjqT9+1dneXUq6HxFU5Nx05Qk9NkFrHjvEOx29mahwMWExY8JgoCnnU3iFs3OwHgvrEi4lNtzUpERG4oWsxX/3MNRFgpOm78yoK69G3HhGtyW4936sfMpFAr83+1TEaZRobS6HTtPtfj09Yl8iQmLH/v4sAFl1e0I06jwWOEEn79+iEqJh+c5Rlle2X6ahX8UlP723yoAwJKrRnltdd6lpOhD8c2Z6QCAN/fywoECFxMWP2Xts+O5/xwHADxw7RgkRkmzs/WdM9ORFh2Kxg6Lq+iQKFgcONuG8pp2aFRK16odKXw7PxMA8OlXDWjs6JEsDiJvYsLip/655yzOtnQhPkKLB68bI1kcGrUSP7je8fovbz0FSx9HWSh4rN3hGF25LScVCZFayeKYnBKF3Mxo9NkFvLO/VrI4iLyJCYsfstkFvLLd0STusZvGI1yrljSeu2dlIDFSi3pjD949wP1NKDjUtnXhkyP1ABzFtlL79hzHKMtbe6tZfEsBiQmLH9p5qhn1xh7oQ0NwV1661OFAF6LC/1w/FgDwl62V6LXZJY6IyPte33kGdgGYOzYOU1KjpA4H35iRiiidGrVt3dhe0SR1OEQex4TFD717wDHkuyA7BVq174v8hvLtOZmIj9Cgtq0bG7mLLAW4Tksf1u911Gzdd430oysAEKpR4U6x+HYPd1OnwMOExc909PRi81cGAMBded7Zq2QkQjUqPHCto5blL1tPoY+jLBTA3tlfgw5LH8bEh+OGiYlSh+OyxFl8W3K8EQYji28psDBh8TMfH65HT68dYxPCkZ2ulzqcQb5z1SjEhIWgqtmMj48YpA6HyCtsdgF/d+6htezq0V7fCsMd45MiMXt0DGx2ARv2cdUeBRYmLH5GLGr9Zl66TztqDke4Vo3vFowG0D9tRRRoPjvWgOrWLuhDQ/BNGdSQnW9JvmN59YZ91bCx+JYCCBMWP3K2xYy9Z1qhUAB35KZJHc6QFjo7fe6obEar2SpxNESe95pzKfPiOZkI00i7Qm8ot0xLRkxYCM4Ze7D1RKPU4RB5DBMWP/JuqWN05Zpx8UjRh0oczdDGJERgWloUbHYBHx+ulzocIo86UmfE3qpWqJUK3DtXukZxl6ILUbk63/6TxbcUQJiw+Am7XcB7pY5pFjksZb6U27IdoywfHjwncSREniWOrnx9eopsLxoAYLGz+HbriUbUtXdLHA2RZzBh8RN7z7Sitq0bEVo1bp6SLHU4l/SNGY6EZd+ZVtQb+WVJgaGpw4JNhxxJuFyWMl/M2IQIFIyJg10ANuzlKAsFBiYsfuJfziLWb8xIQahGHr1XLiY1OhSzR8dAEIB/H+K0EAWGzUfq0WsTMCNdj+yMaKnDuSxxf6H1+2rYzJECAhMWP9Bl7cMnznoQOa5KGAqnhSjQfOJcqn/r9BSJIxmeoqnJiAvXoLHDgpJjLL4l/8eExQ9sPmKA2WrDqLgwzBoVI3U4w/L16SlQKRU4VGtEVbNZ6nCIrkir2Yo9Va0AgPnT/CNh0aiVuGuWs/Mtp4UoADBh8QPidNCdufLrvXIxcRFaXD0uHgCwiaMs5Oe2HDXAZhcwJSUKmXFhUoczbOKGiP+taEJNa5fE0RBdGSYsMlfX3o1dp1sAAHfOlGfvlYtZMMNxJfrhwXMQBDawIv/18WHHdND8afIueD/fqLhwXDs+HoLg2MWZyJ8xYZG590trIQjAVWNikRHrP1d2AFA0LRkatRIVjZ04buiQOhyiETF292LnqWYAwPzp/pWwAI4GdwDwQTkvHMi/MWGRMUEQXM3ixEZQ/iRKF4IbJiYAYPEt+a+SYw3otQkYnxiBcYmRUofjtnkTE6BVK1HX3s0LB/Jrbics27dvx4IFC5CamgqFQoGNGzde8vjvfe97UCgUF9ymTp3qOuZXv/rVBT+fNGmS228m0JRWt6Gq2YzQEBXm+8nKhPMtcK4W+ojTQuSnxNVB/jYdJArTqHHteEc92WdHGySOhmjk3E5YzGYzsrOzsXr16mEd/8c//hH19fWuW01NDWJjY3H33XcPOm7q1KmDjtuxY4e7oQWcfzk3Opw/PRkRWvntWTIcN05KQrhGhdq2bpTVtEsdDpFbzJY+bD/ZBAC4xU9WBw2lcHISAGDLMSYs5L/c/is4f/58zJ8/f9jH6/V66PV61783btyItrY2LFu2bHAgajWSk/3zCsYbenptrq6ad/nhdJAoVKPCTVOSsLH8HD4sP4eZmf6xLJsIAL440QhLnx2j4sIwOcX/poNEN05OgkJxGIdqjTAYe5Cs10kdEpHbfF7D8tprr6GwsBCjRg3eOKyiogKpqakYM2YMlixZgurqi1e0WywWmEymQbdA89mxBnT09CEtOhRXjYmTOpwrIk4L/ftwPbe7J78iTgfdMi3Zb1oKDCUhUoscZ3fezzjKQn7KpwnLuXPn8Mknn+D+++8fdH9+fj7WrVuHzZs34+WXX0ZVVRWuvfZadHQMXSC2atUq18iNXq9HRkaGL8L3qS3OueYF2alQKv33ixIArh2fAH1oCJo6LNjjXKJNJHc9vTZ8cdzRIfbrfjwdJLppimNaiAkL+SufJiyvv/46oqOjsXDhwkH3z58/H3fffTdmzJiBoqIifPzxx2hvb8fbb7895POsWLECRqPRdaupqfFB9L5jswvY5pw3v3FyosTRXDmNWomvO5eDcrUQ+YttJ5vQZbUhLToUM9L1l3+AzN3krGPZWdmCTkufxNEQuc9nCYsgCFi7di2++93vQqPRXPLY6OhoTJgwAZWVlUP+XKvVIioqatAtkJRVt6G9qxf60BDk+sEma8OxwLmD8ydHDLD2cSM2kr/Nzumgoqn+PR0kGpcYgdFxYbDa7Piv84KIyJ/4LGHZtm0bKisrcd9991322M7OTpw6dQopKf4/DDsSX5xwDENfNyEBalVgtMrJHxOHxEgtjN29+G8FvyxJ3qx9dtfUiT82ixuKQqHoXy3E5c3kh9z+a9jZ2Yny8nKUl5cDAKqqqlBeXu4qkl2xYgWWLl16weNee+015OfnY9q0aRf87PHHH8e2bdtw5swZ7Ny5E3fccQdUKhUWL17sbngB4fPjjj/oYtO1QKBSKnDrgFb9RHL25almdPT0ISFSi7wAWtkm1rF8fqIRfTaOdJJ/cTth2b9/P3Jzc5GbmwsAKC4uRm5uLlauXAkAqK+vv2CFj9FoxLvvvnvR0ZXa2losXrwYEydOxLe+9S3ExcVh9+7dSEgInD/Yw2Uw9uBYvQkKBXD9hMB6/+JqoS1HG9BttUkcDdHFbXbuHXTL1GS/L3ofKG9UDKLDQtDe1Yv9Z9ukDofILW73YZk3b94lO5auW7fugvv0ej26ui6+U+j69evdDSNgidNB2enRiIvQShyNZ+VmRCNVr8M5Yw92V7Xghon+X1BMgafPZsenR/27u+3FqFVKfG1SIt4rrcNnRxv8vmUCBZfAKJAIIOIyyq9NCrw/5gqFAtc7p7m2nWAdC8nT3qpWtHX1IiYsBHOyYqUOx+NuGtD1lttlkD9hwiIjlj4bdlQ6doUN1NGH68Y7EpbtLLwlmRKbxd08JTlgit4Hum5CAjQqJc62dKGysVPqcIiGLfA+jX5sX1Ubuqw2JERqMTU1sJZqi+aOi4dKqcDpJjNq2y4+TUgkBbtdwOavnPUrAbI66HzhWjXmjnNMBX3K1ULkR5iwyMjnzumgeRMSAqrQbyB9aIirRfj2k83SBkN0ngPVbWjqsCBSp8bVY+OlDsdr2PWW/BETFhnZeiJw61cGck0LsXkVycwnztVBN01OgkYduF+PYj+W8pp2NHb0SBwN0fAE7ifSz5xpNuN0sxlqpQJXjw/cKzsAuG6C4/19eaqZvSBIVsQRh6IAWx10vqQoHbLT9RAE4PNjjVKHQzQsTFhkQlzOPHt0LKJ0IRJH410z0qMRHRaCjp4+lNe0Sx0OEQCguqUL1a1dUCsVuGZcYF80AP2jLJwWIn/BhEUmxPqVGyYFVrO4oagG/EHYxmkhkokvTzlqqmZmxiBc63aLKr9z01RHwvLfimZ0WbkZIskfExYZMFv6sOd0K4DAr18RXTeBdSwkLzsqHAnL1UEwugIAE5MikR4TCkuf3fXeieSMCYsM7DzVAqvNjvSYUIxNiJA6HJ8QC28P1RnRarZKHA0FO7tdcI2wXDM+OLq/KhQK12ohboZI/oAJiwx8PqC7bSBsYz8cyXodJiZFQhDgapZHJJWj9Sa0d/UiQqvGjPRoqcPxGddmiMcbYbOz6y3JGxMWiQmC4FrOHKjdbS9GXC3EaSGSmpg0XzUmDiEB2N32YhxF/mq0mK0oq+ZmiCRvwfPJlKnjhg7UG3ugVStRMDY4hqJFYh3LfyuauKcJSUqs4bhmXHB9BkNUSsxzXijxwoHkjgmLxMTlzHPHxkEXopI4Gt+aPToWuhAlGkwWnGjokDocClI9vTbsPeMoer8mwHsgDeVqZ5K281SLxJEQXRoTFokF8u7Ml6MLUbm2t+fuzSSVA2fbYO2zIylKGzRF7wPNdW5BUF7TzuXNJGtMWCRk7OrFgbOOeeN5QVa/IuLuzSQ1sX7l6nHxQVP0PlBGbBjSY0LRZxew7wzrWEi+mLBIaFtFE+wCMD4xAhmxYVKHIwmxjsWxUzWv7sj3xPqVa4NwOkhUMEacFuKKPZIvJiwS2urqbhucoysAMDYhHGnRobDa7K7meUS+0ma24sg5IwAE9O7MlzPXWceym3UsJGNMWCRiswvY6qzKD7blzAMpFArX8ma26Sdf23W6BYIATEiKQGKUTupwJFMwxvEZPFxnhLG7V+JoiIbGhEUix+pNaDVbEaFVY9boGKnDkRTrWEgqA+tXglmyXocxCeGwC8DeKo50kjwxYZHI7tOOoddZo2OCqlHVUOaOi4dKqcDpJjNqWrukDoeCSH//leBOWADWsZD8BfdfSgntdtZriMt6g5k+NAS5GdEAOMpCvlPd0oXq1i6olQrk83PoWt68i3UsJFNMWCRgtwvYd4YJy0DcvZl8TdzsMDczGhFatcTRSO+qMbEAHN23WzotEkdDdCEmLBI4ZjDB2N2LcI0K01KjpA5HFsSEZWdlC3ptdomjoWDA+pXB4iK0mJQcCaB/BJhITpiwSEBcvjtrdCzUQV6/Ipqepkd0WAg6LH0or2mXOhwKcHa7gJ2VrF85n7if2a7TrGMh+eFfSwmIBbf5ziFYAlRKhesPB6eFyNuO1pvQ1tWLCK0a2c76KeqvY+G+QiRHTFh8zG4XXButsX5lsP7dm3l1R94lTgddNSY26FfpDTQnKxZKBXC6yQyDsUfqcIgG4SfVx040dKC9qxdhGhWmp+mlDkdWxGWVR+qMMFvYpp+850vWrwxJHxqCac7vJU4LkdwwYfExcToobxT7r5wvPSYUqXod+uwCyqrbpQ6HAlRPr83VHI31Kxdy1bFwWohkhn8xfWwP+69clEKhwJwsR12POG1G5GkHzrbB0mdHYqQW4xIjpA5HdljHQnLFhMWH7HYBe6ocXwJXseB2SHOyHInc3ip+WZJ37BiwOkihUEgcjfzMGhUDtVKB2rZudp4mWXE7Ydm+fTsWLFiA1NRUKBQKbNy48ZLHb926FQqF4oKbwWAYdNzq1asxevRo6HQ65OfnY+/eve6GJnsVjZ1o6+pFaIgK09OipQ5HluZkOfZVKqtuh6XPJnE0FIjE+pVrxnM6aCjhWjVynCun2Kaf5MTthMVsNiM7OxurV69263EnTpxAfX2965aY2L9D8YYNG1BcXIynnnoKpaWlyM7ORlFRERobG90NT9YG1q9o1BzcGsrYhAjEhmtg6bPjSJ1R6nAowLSZrTjs/L1iwe3FzWUdC8mQ238158+fj9/+9re444473HpcYmIikpOTXTelsv+lX3jhBTzwwANYtmwZpkyZgjVr1iAsLAxr1651NzxZ43TQ5SkUCswZ7Tg/e7hrLHnYrtMtEARgfGIEkqJ0UocjW1eNFTdCbIEgCBJHQ+Tgs8v8nJwcpKSk4KabbsKXX37put9qteLAgQMoLCzsD0qpRGFhIXbt2jXkc1ksFphMpkE3uRMEwVVwy43WLm22WHjLhIU8bI9zlFMcQaChzcx0jAI3dlhwqsksdThEAHyQsKSkpGDNmjV499138e677yIjIwPz5s1DaWkpAKC5uRk2mw1JSUmDHpeUlHRBnYto1apV0Ov1rltGRoa338YVq2zsRIvZCl2IEjPS2X/lUvKdCcuBM22w2Xl1R56z70wbgP7ibhqaLkSFWaMc9WS7TnNaiOTB6wnLxIkT8T//8z/Iy8vD3LlzsXbtWsydOxd/+MMfRvycK1asgNFodN1qamo8GLF3DKxf0apVEkcjb5NTohChVaPD0odj9fIfPSP/YOrpxXGD4/dp1ugYiaORv/46FhbekjxIUvk5Z84cVFZWAgDi4+OhUqnQ0NAw6JiGhgYkJycP+XitVouoqKhBN7kTdz/N55XdZamUCtcfFE4LkaeUnm2DXQAyY8NYvzIMAxvI2TnSSTIgScJSXl6OlJQUAIBGo0FeXh5KSkpcP7fb7SgpKUFBQYEU4XmcIAzsv8KEZThmj2YdC3nWfud0EEdXhmdGejTCNCq0dfXiuKFD6nCIoHb3AZ2dna7REQCoqqpCeXk5YmNjkZmZiRUrVqCurg5vvPEGAODFF19EVlYWpk6dip6eHvztb3/D559/jk8//dT1HMXFxbj33nsxa9YszJkzBy+++CLMZjOWLVvmgbcovVNNnWjutEKrViI7g/UrwyHWsew70wpBENjgi67YPmf3ZDEZpksLUSkxJysWW080YdfpFkxJlf9INgU2txOW/fv344YbbnD9u7i4GABw7733Yt26daivr0d1dbXr51arFT/5yU9QV1eHsLAwzJgxA5999tmg51i0aBGampqwcuVKGAwG5OTkYPPmzRcU4vorcTpoZibrV4ZreroeWrUSLWYrTjWZ2UKdroi1z47ymnYAwGyOsAxbwZg4R8Jyqhn3XZMldTgU5NxOWObNm3fJdfnr1q0b9O8nnngCTzzxxGWfd/ny5Vi+fLm74fgFseA2n/1Xhk2rViEnIxp7qlqxt6qVCQtdkSPnjLD02RETFoKxCfxdGi5xX6E9p1vRZ7NDzQ1bSUL87fMyR/0KNzwciXxXPxYuq6Qrs985HTRrdCynF90wJTUKkc4VeycaWMdC0mLC4mWnm81o6rBAo1a69ueg4RF7ZYi9M4hGSvwd4nSQe1RKBXKd/VgOnOXnkKTFhMXLxO62uRnR0IWwfsUdM0dFQ61UoK69G7Vt3DWWRkYQhEEjLOSevExHwrKfFw4kMSYsXibWr3A6yH1hGjWmpjlWVXF5M43UqSYz2rp6oVUrMS2Vq/TcJS4D5wgLSY0JixcN7L/CgtuRGbi8mWgkxN+dnIxo7pI+AjkZ0VA5Rzrrjd1Sh0NBjJ9eLzrT0oUGkwUalRIzMzl3PhLcuZmuFPuvXJlwrRqTUyIBcFqIpMWExYvE6aCcTNavjJQ4HH26yVG8TOQudri9cmIdC6eFSEpMWLxI3Mr+qixe2Y1UdJgGk5LFqzuOspB7Gkw9qG7tglLh2HiURibPOTrFhIWkxITFi/Y7P9yzmbBckTlZnBaikRFHVyYlRyFSFyJxNP5rljPZO1pvgtnSJ3E0FKyYsHhJg6kHtW3dUCrA/itXaE4WN0KkkemvX+HoypVIjQ5Fql4Hm13AQecWB0S+xoTFS0qdoysTeWV3xcTC22MGE4zdvRJHQ/5k/1n2X/EUcVpoP6eFSCJMWLyktNrxoc4bFS1tIAEgMUqH0XFhEIT+RJDocjotfTh6zgSABbeekJcZDYB1LCQdJixeIn6ouZzZM1jHQu4qq26DXQDSY0KRog+VOhy/J45SlVa3wW6/+Aa4RN7ChMULLH02HKlzXNlxZYJniD00uBEiDVf//kGcDvKEScmRCNOo0NHTh5ON3AiRfI8JixccqTPBarMjPkKDzNgwqcMJCPnOjRAP1xnRbbVJHA35g31VbBjnSWqVErnOaSE2kCMpMGHxArHOIjczhlvZe0hGbCiSo3TotQkoq+GXJV1ar83u+j3hCiHPyRvFfiwkHSYsXiB+mDkd5DkKhcLVz4ZXd3Q5X50zoafXjuiwEIxNiJA6nIAhfqcxYSEpMGHxMEEQcKCaCYs3zHQOR4srsIguRuyKPGtUDJRKjnJ6Sm5mNBQKoLq1C40dPVKHQ0GGCYuH1bZ1o6nDArVSgelp3Mrek8QVV2XV7RAErlKgixMbxrH/imdF6UIwMcmxVcYBjnSSjzFh8TDx6n9qmp4bHnrY5JQoaNVKGLt7cbrZLHU4JFOCILimDVm/4nliTxs2kCNfY8LiYWLBbR77r3icRq3EjHTHqBUbyNHFVDWb0WK2QqNWYhpHOT1u1ih2vCVpMGHxMLF+ZSY73HpFrjMRLK1ulzYQki1xdCUnPRpaNUc5PU2szfuKLQbIx5iweFCXtQ/H6h0NlVhw6x1i4W0ZC2/pIlwbHmbxM+gN6TGhSIzUos8u4FBtu9ThUBBhwuJBB2uMsNkFpOp1bAXuJWLh7cmGDnRym3saAgtuvUuhULCOhSTBhMWDSl3TQbyy85bEKB3SokNhF8Bt7ukCTR0WnGnpgkLBfby8iQ3kSApMWDyIGx76htgenIW3dD5xqnBCYiT0oSESRxO4BjaQ40aI5CtMWDxEEATXCAvrV7zL1Y+FIyx0HvF3QkxqyTumpkZBF+JoMXCqqVPqcChIMGHxkNPNZrR39UIXosSU1Cipwwlo4pRbWXUbG8jRIOIICxMW7wpRKZGdHg2A00LkO0xYPET80M5Ii0aIiqfVm6akREGjVqKtqxdVbCBHTn02Ow7VGgH0L38n72HhLfka/7J6SBkLbn1Go1a6tj1gPxYSnWzoRJfVhkitGuO44aHXzWLhLfkYExYP4Q7NvsV+LHS+shrH70J2RjQ3PPQBcdqtqtmM5k6LtMFQUHA7Ydm+fTsWLFiA1NRUKBQKbNy48ZLHv/fee7jpppuQkJCAqKgoFBQU4D//+c+gY371q19BoVAMuk2aNMnd0CRj7O7FyQZH4Rnnzn1jJjve0nnKnL8L/Az6RnSYBuMTHSNZHGUhX3A7YTGbzcjOzsbq1auHdfz27dtx00034eOPP8aBAwdwww03YMGCBSgrKxt03NSpU1FfX++67dixw93QJFPuXJkwOi4M8RFaaYMJEuLU2wmDiQ3kCAALbqUg1rGwxQD5gtrdB8yfPx/z588f9vEvvvjioH8//fTT+OCDD/DRRx8hNze3PxC1GsnJye6GIwuu/iucDvKZpCgdUvU6nDP24FBNO+aOi5c6JJKQsasXp5ocBdg5Gfwc+kreqFi8tbeGIyzkEz6vYbHb7ejo6EBs7OC22RUVFUhNTcWYMWOwZMkSVFdXX/Q5LBYLTCbToJuUStkwThK5o9iPhRzKnXvajI4LQ2y4RtpggkhORjQA4HCdEb02u7TBUMDzecLy/PPPo7OzE9/61rdc9+Xn52PdunXYvHkzXn75ZVRVVeHaa69FR0fHkM+xatUq6PV61y0jI8NX4V/AZhdcU0IsuPUtVx0Lr+6CXv90ED+DvjQmPhxROjUsfXacMAz9fU3kKT5NWN588038+te/xttvv43ExETX/fPnz8fdd9+NGTNmoKioCB9//DHa29vx9ttvD/k8K1asgNFodN1qamp89RYuIG7CF6FVY0JSpGRxBCPXSqGadjaQC3IsuJWGUqlAtnOUhSv2yNt8lrCsX78e999/P95++20UFhZe8tjo6GhMmDABlZWVQ/5cq9UiKipq0E0q4txtbmY0VFxK6VNTU/XQqJVoNVtxpqVL6nBIIvYBo5y5rF/xuVxulUE+4pOE5a233sKyZcvw1ltv4dZbb73s8Z2dnTh16hRSUlJ8EN2VKeVQtGQ0aiWmObdB4NVd8KpqMcPY3QutWolJKRzl9LVc5whLOVsMkJe5nbB0dnaivLwc5eXlAICqqiqUl5e7imRXrFiBpUuXuo5/8803sXTpUvz+979Hfn4+DAYDDAYDjEaj65jHH38c27Ztw5kzZ7Bz507ccccdUKlUWLx48RW+Pe8rZcM4SfX3Y2HCEqzE6aAZ6XpuiyEBsfDWsZ+aVdpgKKC5/enev38/cnNzXUuSi4uLkZubi5UrVwIA6uvrB63weeWVV9DX14eHH34YKSkprtsjjzziOqa2thaLFy/GxIkT8a1vfQtxcXHYvXs3EhISrvT9eVVzpwVnWrqgUPR/aMm3xKXkpWfbpQ2EJMOCW2nFhGswOi4MQH9PKiJvcLsPy7x58y5Z4Lhu3bpB/966detln3P9+vXuhiEL4pXd+MQI6ENDpA0mSIkjLMcNJpgtfQjXuv0rTX7OVXDLiwbJ5GbG4ExLF8pr2jFvYuLlH0A0Ahw/vQKuDQ95ZSeZZL0OKXod7AJcO/VS8Oiy9uG4wdGHiSMs0slxrRRqlzQOCmxMWK6AOPzJ6SBpsY4leB2sMcIuACl6HZL1OqnDCVricvJythggL2LCMkI2u4CDYsLC3g+SyuXOzUFL3KGZ/VekNSk5Chq1EsbuXlQ1m6UOhwIUE5YRqmzshNlqQ7hGhfGJXEopJVfhbTWv7oJNf/0Kp4OkNLDFAAtvyVuYsIxQufPKbnq6ng3jJDY1NQoalaOB3Fk2kAsagiCww62MuBrIsY6FvIQJywj116/wyk5qWrUKU9OcDeRqOC0ULGrbutHcaYFaqcC0NL3U4QQ9sZaPIyzkLUxYRki8imDBrTz0b4TYLm0g5DNiK/gpqVHQhaikDYZco1zH6k3o6bVJGwwFJCYsI2C29OFkg2NnUg5FywNXCgUfV8M4XjTIQlp0KOIjtOizCzhSxxYD5HlMWEbgcF3/UsqkKC6llIOZo6IBAMcNHeiy9kkbDPlEf/0Kp2XlQKFQDFix1y5pLBSYmLCMAPuvyE+KPhRJUVrY7AKO1JmkDoe8zNJnw9FzYsO4aGmDIRfWsZA3MWEZgXKuTJCl/i9LTgsFuq/OmWC12REbrkFmbJjU4ZATeyKRNzFhGQGuEJIn8b8Hr+4C38D9gxQKthWQixnp0VAogHPGHjSYeqQOhwIMExY3GYw9MJh6oFIqMJ1LKWXFNcLC+fOA59rHaxQvGuQkQqvGxCRHI03WsZCnMWFxkzjdMDEpEqEaLqWUkxnpeiidV3eNvLoLaNyhWb5Yx0LewoTFTWXcP0i2wrVq1zYJZfyyDFiNph7UtXdDoQBmMGGRnf6NEFnHQp7FhMVNbBgnb7y6C3xiMjoxKRIRWrW0wdAFxFqyQ7VG2Ozc24s8hwmLG/psdhyudTRE4lC0PIkjXweZsAQs7h8kb+MSIxChVaPLanM12CTyBCYsbjjZ0InuXhsitWqMTYiQOhwagjjCwqu7wCUW3HKUU55USgVmpDsWJLDwljyJCYsbxGmGGRl6KLlDsyxNSIpEmEaFTksfTjV1Sh0OeVifzY5DzlFOthWQL/ZEIm9gwuIG8cPHKzv5GrjcnMubA09Fo2OUM1yjwrhEjnLKlbhdAkdYyJOYsLiBDeP8g5hQcqVQ4HGNcqZHQ8VRTtkSP4OVTZ0w9fRKGwwFDCYsw9TR04uKRscUA0dY5I0rhQKXOGrGtgLylhCpRXpMKAQBOFTDnZvJM5iwDNPhWiMEwbGFekKkVupw6BLEP2YnDCbu3BxgDta2A+BFgz9gHQt5GhOWYWLDOP8h7txsF8CdmwOI2dLnWibLhEX+WMdCnsaEZZjE6QX2X/EPvLoLPIdqjbALQIpeh6QondTh0GUMnJoVBLYYoCvHhGUYBEEYUHAbLWksNDzcuTnw8DPoX6amRiFEpUCL2Yqa1m6pw6EAwIRlGM4Ze9DUYYFaqcA07tDsF7IzuLQ50BxkwuJXdCEqTEmJAgCUcaSTPIAJyzCInTUnp0RBF8Idmv3BjPRoKLhzc0ARR1iymbD4Da7YI09iwjIM5dzw0O9EaNWYwJ2bA4bB2AODqQdKBVyNAUn+clw7N7dLGgcFBiYsw8C5c/8k/vfiRoj+TyyenpAUiXDu0Ow3xFqyr86ZYO2zSxwN+TsmLJfRa7PjcJ1z7xIuafYrvLoLHOXO5mPcodm/jI4Lgz40BNY+O47Vs8UAXRm3E5bt27djwYIFSE1NhUKhwMaNGy/7mK1bt2LmzJnQarUYN24c1q1bd8Exq1evxujRo6HT6ZCfn4+9e/e6G5pXnDB0wNJnR5ROjay4cKnDITdw5+bAwX28/JNCoXDVHIlN/4hGyu2ExWw2Izs7G6tXrx7W8VVVVbj11ltxww03oLy8HI8++ijuv/9+/Oc//3Eds2HDBhQXF+Opp55CaWkpsrOzUVRUhMbGRnfD87iyAYV+3KHZv4xPjEBoCHdu9nc2u4DDzh2aWXDrf1yFt1yxR1fI7YRl/vz5+O1vf4s77rhjWMevWbMGWVlZ+P3vf4/Jkydj+fLluOuuu/CHP/zBdcwLL7yABx54AMuWLcOUKVOwZs0ahIWFYe3ate6G53Hih4wN4/yPWqXE9HQub/Z3FY0dMFsdOzSPdxZSk//I5Uoh8hCv17Ds2rULhYWFg+4rKirCrl27AABWqxUHDhwYdIxSqURhYaHrmPNZLBaYTKZBN29xDUVz7twv5XLnZr8nFk1PT9dzh2Y/JI6KnW42w9jFnZv9kSAIeHR9Gf6ytRJmi3T7s3k9YTEYDEhKShp0X1JSEkwmE7q7u9Hc3AybzTbkMQaDYcjnXLVqFfR6veuWkZHhldiN3b041WQGAGSnR3vlNci72AfC//Wv0ouRNhAakdhwDUbFhQEAylnH4pfOtHRhY/k5vPhZBUJU0q3V8ctVQitWrIDRaHTdampqvPI6CgWw8htT8L25oxEXwR2a/ZE4MnayoYM7N/upMlcfJPZf8VdsMeDfxJmGaalR0KilSxu83tAgOTkZDQ0Ng+5raGhAVFQUQkNDoVKpoFKphjwmOTl5yOfUarXQar2fQETpQvD9a7K8/jrkPeLOzQ0mC47UmTAnK1bqkMgNg3do5giLv8pOj8YH5ec40umn+punSvsZ9HqqVFBQgJKSkkH3bdmyBQUFBQAAjUaDvLy8QcfY7XaUlJS4jiG6EuJ0Hndu9j9H6hw7NCdH6ZCs5w7N/mpgTyTu3Ox/xBpAqWs53U5YOjs7UV5ejvLycgCOZcvl5eWorq4G4JiuWbp0qev4H/zgBzh9+jSeeOIJHD9+HH/5y1/w9ttv47HHHnMdU1xcjFdffRWvv/46jh07hoceeghmsxnLli27wrdHxAZy/oxdpgPDlBTHzs2t3LnZ7/T02lxN/6ReLev2lND+/ftxww03uP5dXFwMALj33nuxbt061NfXu5IXAMjKysK///1vPPbYY/jjH/+I9PR0/O1vf0NRUZHrmEWLFqGpqQkrV66EwWBATk4ONm/efEEhLtFIsA+E/yqXyZUdXRlx5+aDtUaU1bQh01mES/L31TkTem0C4iM0SI8JlTQWtxOWefPmXXJIb6gutvPmzUNZWdkln3f58uVYvny5u+EQXdb5OzcnRnFqwV+4dmjmKj2/l5MRjYO1RpTXtOP2nDSpw6FhGjjKqVBI21bAL1cJEbmDOzf7pwZTD+qNjh2aZ6RzhZC/E0fJuFLIv8hpWpYJCwUFLqv0P+IXJXdoDgziCpMj3LnZr/Tv4yX9Kj0mLBQUxG6bZaxj8RtyurKjKzdw5+bjBu7c7A9aOi2oae2GQgHMkEEfJCYsFBRyncPRh2rbuXOznxCLpLnhYWAYuHMzV+z5B/G/09iECETpQqQNBkxYKEhMSIpEmEYFs9WGykbu3Cx3NruAw3WOHZo5whI4uGLPv8htlJMJCwUFlVLhKtwsq2YDObk71dSJTksfwjQqTEjiDs2Bgjs3+xcmLEQSEYvG+GUpf+IV+PQ07tAcSLhzs/+w24UBLfmjJY1FxISFgoZYx8LCW/mTSytw8qyBOzcf5M7Nsna6uRMdlj7oQpSYlCyPUU4mLBQ0xOHok40d6LRw52Y5E5ef57BhXMDJ4bSQXygbMMqpVskjVZBHFEQ+kBilQ1p0KATBsVqI5KnbasMJcYdmjrAEnP7NSNsljYMuTfzvk5spff8VERMWCio57Mcie4frjLDZBSRFaZGil3bvEvI87tzsH+RWcAswYaEgk8udm2Wvv7NmtLSBkFdw52b567bacNzgHOWU0eeQCQsFlYEjLLy6kydx9EtOQ9HkOeLOzQBQzqlZWTpyzjHKmRipRYpePpvFMmGhoDItTQ+1UoHmTgvq2nl1J0euhEVGV3bkWWwgJ28DlzNLvUPzQExYKKjoQlSY7Ly6Yx2L/NQbu2Ew9UClVGA6d2gOWP11LGziKEflMm0rwISFgg7rWORLTCInJUciTMMdmgOVuFKIOzfLkxwLbgEmLBSE+utYeHUnN+J/k1yZXdmRZ2XFh3PnZplqNPWgrt25Q7PM+iAxYaGgIyYsvLqTn/76FRbcBrKBOzcf5EinrIhdpickRiJCK69RTiYsFHQGXt0dq+fVnVxY++yuHZo5whL4XCOdTFhkRa7TQQATFgpCCoWC7cFl6LjBBEufHfrQEGTFh0sdDnkZd26WJ9cKIRleNDBhoaDUvxEi61jkor//iryWUpJ3iBcNp5vMaO+yShsMAQBsdsG1bQlHWIhkgiMs8uMquGX9SlCICde4RtI4LSQPlY2dMFttCNOoMCFJHjs0D8SEhYKSmLCcaelCq5lXd3JQ5tpsLVrSOMh3crm3l6yIfXFmpOuhUspvlJMJCwWl6DANxjiv7rhKQXotnRacbekCANfqEQp8uaMco2mcmpWH/oJbeY5yMmGhoCUWlXE4WnriF+W4xAjoQ0OkDYZ8ZqbYxLG6HXY79/aSWtmAlvxyxISFglYuG8jJBvcPCk4TkyIRplGhw9KHisZOqcMJamZLH042OHZoluu0LBMWClribsAHa3h1J7WyGrHDrTyHosk71ColZjj3jCrlhYOkDtcZYReAFL0OSVHy2aF5ICYsFLQmJkdCq1bC1NOH081mqcMJWja7gIM1bBgXrGZmso5FDuQ+HQQwYaEgFjLg6o7Lm6VT2diJTkufbJdSkneJCUspVwpJSlwhxISFSKa4EaL0xHOfnR4ty6WU5F3iqFplYyeMXb3SBhOkBEFwJYxynpZlwkJBTfxwcoRFOgM73FLwiYvQYlRcGID+Wibyrdq2bjR1WKBWKlyjznI0ooRl9erVGD16NHQ6HfLz87F3796LHjtv3jwoFIoLbrfeeqvrmO9973sX/PyWW24ZSWhEbhFHWI4bOtBttUkbTJAS/0jNlPGVHXlXfx1Lu7SBBCmx4HlqahR0ISqJo7k4txOWDRs2oLi4GE899RRKS0uRnZ2NoqIiNDY2Dnn8e++9h/r6etftyJEjUKlUuPvuuwcdd8sttww67q233hrZOyJyQ4peh8RILWx2wbVTMPmOqafXtZxVjputkW+I/Vi4UkgapWedFw2j5H3R4HbC8sILL+CBBx7AsmXLMGXKFKxZswZhYWFYu3btkMfHxsYiOTnZdduyZQvCwsIuSFi0Wu2g42Ji5H3iKDAoFApuhCihQzVGCAKQGRuG+Ait1OGQRAZOzbLFgO8dcH735QVSwmK1WnHgwAEUFhb2P4FSicLCQuzatWtYz/Haa6/hnnvuQXj44O3jt27disTEREycOBEPPfQQWlpaLvocFosFJpNp0I1opMQ21Kxj8T3XhoccXQlqk5IjERqiQkdPHyqb2EDOl7qsfThW72gYJ/dpWbcSlubmZthsNiQlJQ26PykpCQaD4bKP37t3L44cOYL7779/0P233HIL3njjDZSUlODZZ5/Ftm3bMH/+fNhsQ9cUrFq1Cnq93nXLyMhw520QDdI/wtIuaRzByLXhoYyXUpL3DWwgx5FO3zpYY4TNLiBFr0NqdKjU4VyST1cJvfbaa5g+fTrmzJkz6P577rkHt912G6ZPn46FCxdi06ZN2LdvH7Zu3Trk86xYsQJGo9F1q6mp8UH0FKimp+mhVAAGUw/qjd1ShxM0BEEYMMIi7ys78j6xfqL0bLu0gQQZsW5I7vUrgJsJS3x8PFQqFRoaGgbd39DQgOTk5Es+1mw2Y/369bjvvvsu+zpjxoxBfHw8Kisrh/y5VqtFVFTUoBvRSIVr1ZiY7Pgd4iiL75xp6UJbVy80aiUmp/AzHOz6G8hxhMWXDpz1n1V6biUsGo0GeXl5KCkpcd1nt9tRUlKCgoKCSz72nXfegcViwXe+853Lvk5tbS1aWlqQkpLiTnhEIyauUhA/vOR94ujK9DQ9NGq2hAp24tRsRWMnjN1sIOcLjoZx/lFwC4xgSqi4uBivvvoqXn/9dRw7dgwPPfQQzGYzli1bBgBYunQpVqxYccHjXnvtNSxcuBBxcXGD7u/s7MRPf/pT7N69G2fOnEFJSQluv/12jBs3DkVFRSN8W0TumTXa8WFlwuI73KGZBoqP0CIz1tFA7iAL4H3idLMZ7V290KqVmOIHo5xqdx+waNEiNDU1YeXKlTAYDMjJycHmzZtdhbjV1dVQKgfnQSdOnMCOHTvw6aefXvB8KpUKhw4dwuuvv4729nakpqbi5ptvxm9+8xtotVzmSL4xa1QsAOCrc0b09Npk3TwpUHCHZjrfzMxoVLd2obS6DddNSJA6nIAnXqDNSPePUU63ExYAWL58OZYvXz7kz4YqlJ04cSIEYei19aGhofjPf/4zkjCIPCY9JhSJkVo0dlhwsKYd+WPiLv8gGrFuq821lJJLmkk0c1QMNpaf40aIPlLmRwW3APcSIgLgaCAnzuHu57SQ1x2ucyylTIrSIkWvkzockon+Fv1tbCDnA+IIS56fjHIyYSFyynMtq2TC4m2u5cwZMVAouEMzOUxMjoQuRImOnj6cYgM5rzJ29+Jkg+Mcc4SFyM/MGu2oYznAqzuv4w7NNJQQlRIz0qMBsMWAt4mdvUfF+c+2GExYiJwcO5Uq0d7Vi9PNvLrzloFLKVlwS+djPxbf8LfpIIAJC5FLiEqJbOfV3f4z/LL0lrr2bjR2WKBWKjA9TS91OCQz3LnZN/xlh+aBmLAQDcDCW+8Tk8GpaXqEarh8nAYTR90qGjth6mEDOW+w2QXXlJA/dLgVMWEhGkBsIMfCW+/Zd6YVADDbj67syHcSIrXIiA2FILCBnLecbOhAp6UP4RoVJiZHSh3OsDFhIRpAvNo43WxGS6dF4mgCkzjCIhY5E53PVcfCjRC9Qqxfyc2MgUrpP6v0mLAQDRAdpsH4xAgAbNPvDcauXpxocDSME0eziM7Hwlvvcu3Q7Ger9JiwEJ2H+wp5z4Fqx3TQmIRwv1lKSb4nLndnAznv8MeCW4AJC9EFxKs7Ft563t4qxzmdPYrTQXRxk1McLQZMPX043WyWOpyA0tJpwZmWLgD+11aACQvRecTaisO1Rlj6bBJHE1j2OwtuOR1ElxKiUmJGWjQATgt5mrhP0/jECOhDQ6QNxk1MWIjOMzouDHHhGlhtdhypM0odTsDo6bXhUK3jfM5mwS1dRu6oaABcsedproZxfjYdBDBhIbrAoI0Q2UDOYw7XGWG12REfocWouDCpwyGZE6cN9zpH5cgzSv1sh+aBmLAQDUGcsmAdi+e4+q+M5oaHdHniZ/B0kxnNbDHgEb02u6u3jT81jBMxYSEaQp7z6q70bBsEgasUPIH9V8gd0WEaTHI2NdtXxVEWTzh6zgRLnx3RYSEYEx8udThuY8JCNIRpaVHQqJVoMVtdFfU0cna74Cq4ncOEhYZpTpbjd2UPExaP6O+/EgOlHzWMEzFhIRqCVq3CDOfGfPs5h37FHPvC9CFMo8LkFP9pBU7SEouz9zJh8Qix4NbfGsaJmLAQXUQeG8h5jFg4OTMzBmoVv3ZoeMQRlmMGEzdC9AB/bRgn4jcH0UXMctaxsPD2yrH/Co1EUpQOo+PCIAjAAa7YuyL1xm6cM/ZApVQgOz1a6nBGhAkL0UWIS5srGzvR3mWVOBr/Jhbcsv8KuUv8nWEdy5URN5KclByJcK1a2mBGiAkL0UXEhmtclfTstjlyde3dqGvvhkqpQE5GtNThkJ8Rp4X2sZbsiuypagEAzPLT6SCACQvRJbGB3JUTp4Ompkb57ZUdSSc/Kw4AcKi2Hd1WbpUxUntOOz6HV42JkziSkWPCQnQJbCB35TgdRFciIzYUyVE69NoElNXwczgSrWYrTjR0AOgfsfJHTFiILkFsIHewph3WPrvE0fingR1uidylUCgwO4vLm6/EXud00MSkSMRFaCWOZuSYsBBdwtiEcESHhcDSZ8fRepPU4fgdY3ev68pOTP6I3MU6liuz2zkdlD/Gvz+DTFiILkGhUCAvU6xj4ZeluxxbGwBZ8eFIiPTfKzuSVr4zYTlwto0jnSOw+7RjhMWf61cAJixEl8UGciMnXhH788oEkt64hAhEh4Wgp9eOI+eMUofjV9rMVhw3+H/9CsCEheiyBjaQ40aI7mHBLXmCUqlgm/4REvvXjE+MQLwf168ATFiILmtGuh4atRJNHRacbjZLHY7fsPTZUF7bDoAdbunKidNC3LnZPWL/FX+fDgKYsBBdli5E5apj2XWqReJo/MeROiOsfXbER2iQ5Ydb2ZO8iNMZe8+0wmbnSOdwBUrBLTDChGX16tUYPXo0dDod8vPzsXfv3oseu27dOigUikE3nU436BhBELBy5UqkpKQgNDQUhYWFqKioGEloRF4xd6zj6oQJy/Dtc04HzRoVC4XC/7ayJ3mZkhKFcI0KHT19OOGsyaBLa++y4rjBsbpRbMDnz9xOWDZs2IDi4mI89dRTKC0tRXZ2NoqKitDY2HjRx0RFRaG+vt51O3v27KCfP/fcc3jppZewZs0a7NmzB+Hh4SgqKkJPT4/774jICwrEhOV0C+y8uhsWbnhInqRWKV27DHN58/DsrWqFIDjaMwTCKj23E5YXXngBDzzwAJYtW4YpU6ZgzZo1CAsLw9q1ay/6GIVCgeTkZNctKSnJ9TNBEPDiiy/il7/8JW6//XbMmDEDb7zxBs6dO4eNGzeO6E0RedqM9GiEaVSDOkbSxdntgmuEhQW35Cn5bCDnlt0B0I5/ILcSFqvVigMHDqCwsLD/CZRKFBYWYteuXRd9XGdnJ0aNGoWMjAzcfvvt+Oqrr1w/q6qqgsFgGPScer0e+fn5l3xOIl/SqJWuP7ycFrq8yqZOGLt7ERqiwpTUKKnDoQAxcOdmrti7PLHgNj8YE5bm5mbYbLZBIyQAkJSUBIPBMORjJk6ciLVr1+KDDz7AP/7xD9jtdsydOxe1tbUA4HqcO89psVhgMpkG3Yi8TZwW2smE5bLEIfvczGiEqFjbT56RnRENjUqJ5k4Lqrhi75KMXb2u7txX+Xn/FZHXv0kKCgqwdOlS5OTk4Prrr8d7772HhIQE/PWvfx3xc65atQp6vd51y8jI8GDEREMTC2/3VLVwlcJliEtPZ3E6iDxIF6JCTkY0ANaxXM6+M476lTEJ4UiM0l3+AX7ArYQlPj4eKpUKDQ0Ng+5vaGhAcnLysJ4jJCQEubm5qKysBADX49x5zhUrVsBoNLpuNTU17rwNohGZmqpHpE6Njp4+fMVumxclCAK+dI5CBcqVHcnH7CxH4e0e1rFcktiOPxBWB4ncSlg0Gg3y8vJQUlLius9ut6OkpAQFBQXDeg6bzYbDhw8jJSUFAJCVlYXk5ORBz2kymbBnz56LPqdWq0VUVNSgG5G3qZQKV/Eap4UurqKxE00dFuhC+ld1EHnKHOcfYBbeXpqY0F0VAP1XRG5PCRUXF+PVV1/F66+/jmPHjuGhhx6C2WzGsmXLAABLly7FihUrXMf/3//9Hz799FOcPn0apaWl+M53voOzZ8/i/vvvB+BYQfToo4/it7/9LT788EMcPnwYS5cuRWpqKhYuXOiZd0nkIQVMWC5rR0UzAEeBpC5EJXE0FGjyRsVAqQBq27pxrr1b6nBkydjd6xoFDpQVQgCgdvcBixYtQlNTE1auXAmDwYCcnBxs3rzZVTRbXV0NpbI/D2pra8MDDzwAg8GAmJgY5OXlYefOnZgyZYrrmCeeeAJmsxkPPvgg2tvbcc0112Dz5s0XNJgjktrccY4P/76qVlj77NCoWVB6vh2VjoTl2vHxEkdCgShCq8a0ND0O1Rqx70wrbs9Jkzok2dl/phV25y7pSQFSvwIACiEA1oaZTCbo9XoYjUZOD5FX2e0CZv/uM7SYrfjXDwpYVHqeXpsd2b/+FF1WG/7942swNVUvdUgUgH6z6She21GFb+dn4uk7pksdjuw8/fExvLL9NO6ZnYFnvjlD6nAuyZ2/37w8JHKDknUsl1Re044uqw2x4RpMTubFA3nHHDaQuySx4DaQpoMAJixEbuvvx9IscSTyI9avzB0bB6WS+weRd4gN5CobO9HSaZE4Gnnp6OnFkTpH/UogbHg4EBMWIjeJ/VhKq9vR02uTOBp5Yf0K+UJsuAYTkiIA9LefJ4f9Z9pgF4BRcWFI0YdKHY5HMWEhclNWfDiSo3Sw9tlRerZN6nBko6OnF+U17QCAq8cxYSHvumZcAgBg+8kmiSORl91VYg+kwJoOApiwELlNoVCwTf8Q9pxuhc0uYHRcGNJjwqQOhwLcdRMcSfH2iibuKzSAOOIUaNNBABMWohFhHcuFxOkgjq6QL+RnxUGjVqLe2IPKxk6pw5GFTkvfgPoVjrAQEfrrWA7VGtFp6ZM4Gnn40pmwXMOEhXwgVKNCvnO10DZOCwFw9F+x2QVkxoYhLTqw6lcAJixEI5IeE4aM2FD02QVuwgbAYOxBRWMnFApg7lgmLOQb14131LEwYXFwTQcF6B5eTFiIRmjuGMcf5l2sY3GNrsxI00MfFiJxNBQsrp/oSFj2VrVyxR4cO8kDgdd/RcSEhWiExDb9TFj6ExbWr5AvjU+MQHKUDpY+e9Dv3tzR04tDtYHZf0XEhIVohMSNEI+cM8LY1StxNNIRBMFVcMv6FfIlhULRv1ooyKeFvqxshs0uYEx8eMCu0mPCQjRCiVE6jE0IhyD09z4IRhWNnWjssECrVmLmqBipw6Egc90E9mMBgM+PNwIA5k1MlDgS72HCQnQFxALTYJ4WEtvxz8mKhS5EJXE0FGyuGRcPpcKROJ9r75Y6HEkIgoAvTjgStq9NYsJCREMQlzcHc8LC5cwkpegwDWakRwMA/lsRnKMsX50zoanDgjCNCrOzAneUkwkL0RUQq/FPNHSgqSP4NmHrtdldO8Oy4JakIk4LBevy5i+c00HXjIuHVh24o5xMWIiuQEy4BpNTogD0b+keTMpr2mG22hAbrsEU53kg8rXrnQnLjopm9NnsEkfje5+fcCQsNwTwdBDAhIXoionTQuLUSDAR61fmjo2DUqmQOBoKVtnpekTp1DD19OGgc2lvsGg1W12bjt4QwAW3ABMWoismXt2VHG+E3R5cm7CxfoXkQK1S4prxwbm8edvJRggCMDklCsl6ndTheBUTFqIrlD8mFhFaNZo6LDhUFzxXdx09vShzXtmxfoWkJrbp3x5khbdfHBdXByVIHIn3MWEhukJatcrVInzLUYPE0fjOntOOjdZGxYUhIzYwG1WR/xALbw/WtAdNI8c+m91VaBzo00EAExYij7hpchIA4LOjjRJH4js72I6fZCQ1OhTjEiNgF/p/NwNdWU07jN29iA4LQW5m4C5nFjFhIfKAGyYmQqVU4ERDB6pbuqQOxyfE+pVrmbCQTPTv3hwcFw7icubrxidAFQRF70xYiDxAHxaCOaMdG45tOdYgcTTe12DqQUVjJxQKoGBsYO4MS/5HnJrdfrIZghD4BfBiO/5A7m47EBMWIg+5aYo4LRT4CctWZ9+H6Wl6RIdpJI6GyCE/KxZatRIGZ0IdyOqN3Thu6IBC0V+/E+iYsBB5SKGzjmXvmVa0d1kljsa7PjniKC4Wa3eI5EAXosKcLMdIZ6AvbxZXB+VmRCM2PDguGpiwEHlIZlwYJiZFwmYXsPVE4H5ZGrt7XfUr86cnSxwN0WDXB0mb/i/E7rZBsDpIxISFyIPEaaEtATwt9PnxBvTaBIxLjMC4xEipwyEaRJwe2VvVip5em8TReIelz+a6aAj0dvwDMWEh8qBCZ8Ky7WQTLH2B+WX5yWHHdND8aRxdIfkZnxiB5CgdLH127KlqlTocr9hb1Youqw2JkVpMTQ2ePbyYsBB50Iw0PRIjtei09GH36cD7sjRb+lxD7fOnpUgcDdGFFAoFrpvgWGq/LUCnZsXVQTdMTIRCEfjLmUVMWIg8SKlU4MbJgbta6IsTjbD02TEqLgyTUzgdRPJ0/QTHNMnWAO3HItbI3RAE7fgHYsJC5GE3i8ubjzUEXC8IcXXQLdOSg+rKjvzLNePjoVEpcbrJjOMGk9TheFRVsxlVzWaEqBRB12V6RAnL6tWrMXr0aOh0OuTn52Pv3r0XPfbVV1/Ftddei5iYGMTExKCwsPCC47/3ve9BoVAMut1yyy0jCY1IcgVj4xCmUaHe2IOvzgXOl2VPr83VWZPTQSRn+tAQVxO5D8vPSRyNZ4mfwdmjYxGpC5E4Gt9yO2HZsGEDiouL8dRTT6G0tBTZ2dkoKipCY+PQQ29bt27F4sWL8cUXX2DXrl3IyMjAzTffjLq6ukHH3XLLLaivr3fd3nrrrZG9IyKJ6UJUrhbhnwbQtND2k03ostqQqtchO10vdThEl3RbdioA4KND5wJqpFNczhws3W0HcjtheeGFF/DAAw9g2bJlmDJlCtasWYOwsDCsXbt2yOP/+c9/4oc//CFycnIwadIk/O1vf4PdbkdJScmg47RaLZKTk123mJjA38iJAldhAHa93eycDiridBD5gRsnJyI0RIWa1m6U17RLHY5HmC192OMs5p8XRP1XRG4lLFarFQcOHEBhYWH/EyiVKCwsxK5du4b1HF1dXejt7UVsbOyg+7du3YrExERMnDgRDz30EFpaWtwJjUhWvjYpEUoFcLTehNo2/98M0dpnd+2R9PXpnA4i+QvTqF19kT48GBjTQl9WNsNqsyMzNgxjE8KlDsfn3EpYmpubYbPZkJQ0uB13UlISDAbDsJ7jZz/7GVJTUwclPbfccgveeOMNlJSU4Nlnn8W2bdswf/582GxD97GwWCwwmUyDbkRyEhuuwaxRjqS85Jj/r1TYeaoZHT19SIjUIi8ItrGnwCBOC/37UD1sdv+fFupfzpwQlKOcPl0l9Mwzz2D9+vV4//33odPpXPffc889uO222zB9+nQsXLgQmzZtwr59+7B169Yhn2fVqlXQ6/WuW0ZGho/eAdHwBVLXW7FZXNHUJCiDYBt7CgzXTohHlE6Nxg4L9lT596h9T68NHx+uBwDcNCU4mza6lbDEx8dDpVKhoWHwF3BDQwOSky99Ap9//nk888wz+PTTTzFjxoxLHjtmzBjEx8ejsrJyyJ+vWLECRqPRdaupqXHnbRD5hFjHsvt0C0w9vRJHM3J9Njs+PSp2t+V0EPkPrVrl+p396GC9xNFcmZJjjTD19CFFr0PB2Dipw5GEWwmLRqNBXl7eoIJZsYC2oKDgoo977rnn8Jvf/AabN2/GrFmzLvs6tbW1aGlpQUrK0F+OWq0WUVFRg25EcpMVH45xiRHo8/PNEPdWtaKtqxcxYSHIz4q9/AOIZOS2HMe00CdH6mHts0sczcj964DjwvzOmWlQBekop9tTQsXFxXj11Vfx+uuv49ixY3jooYdgNpuxbNkyAMDSpUuxYsUK1/HPPvssnnzySaxduxajR4+GwWCAwWBAZ2cnAKCzsxM//elPsXv3bpw5cwYlJSW4/fbbMW7cOBQVFXnobRJJozAAut6KzeJumpIEtYq9Jsm/XDUmDvERWrR39WJHpX9eODR29GB7hWOzwztnpkscjXTc/vZZtGgRnn/+eaxcuRI5OTkoLy/H5s2bXYW41dXVqK/vH3p7+eWXYbVacddddyElJcV1e/755wEAKpUKhw4dwm233YYJEybgvvvuQ15eHv773/9Cq9V66G0SSUOsY/niRCN6bf53dWe3C/jPV87pIK4OIj+kUirwjRn+PS30Qdk52OwCcjOjMTYhQupwJKMeyYOWL1+O5cuXD/mz8wtlz5w5c8nnCg0NxX/+85+RhEEkezkZ0YiP0KC504odlc24wc96J5RWt6Gxw4JInRpXjw2uNuAUOBZkp2LdzjP49CsDuq02hGpUUoc0bIIg4F8HagEA3wzi0RWAewkReZVKqcAC59LKt/ZUSxyN+z52rg4qnJwEjZpfF+SfZmZGIy06FGarzbU02F98dc6EEw0d0KiVWDAjVepwJMVvICIvW5KfCQAoOd4Ig7FH4miGTxD6p4NumRacyygpMCgU/RcOH/lZEzlxdOWmKUnQhwXX3kHnY8JC5GXjEiMxZ3QsbHYBG/b5zxL8Q7VG1LV3I0yjwvUTgmsbewo8YhO5z080+k2bAWuf3dWl964gnw4CmLAQ+cS3naMsG/ZV+03HTXF10A0TE6EL8Z85f6KhTE6JxNiEcFj77Pj0K/9YtffFiUa0mq1IiNTi2vGsIWPCQuQDt0xLRkxYCM4Ze7D1hPzn0AVBwCdHHCsq5k/ndBD5P4VCgduy0wD4z7TQu87poDty09hSAExYiHxCF6LCXXmOId03/aD4dtvJJpxt6UKEVu13K5uILmZBtmN5847KZrR0WiSO5tJazVZ84by4CfbVQSImLEQ+sniOY1roixONqGvvljiaS3ttRxUA4FuzMhCuHVH3AyLZGZMQgWlpUbDZBXx8ZHgb9krlw/I69NoETEuLwsTkSKnDkQUmLEQ+MiYhAgVj4mAXgA175TvKcsLQgf9WNEOpAJZdPVrqcIg86jY/WS30r1LHdBCLbfsxYSHyoSVXOUZZ1u+rkW3n27XO0ZWbpyQjIzZM4miIPOsbzl4m+860ot4oz5HOE4YOHKkzIUSlwG05aVKHIxtMWIh86OYpyYiP0KCxw4KSY/Irvm3utOD98joAwH3XZkkcDZHnpUaHYvboGAgCsLFMnqMs7zpHV26YmIjYcI3E0cgHExYiH9KolbgrLwMA8KYMp4X+ubsa1j47ZqTrMWtUjNThEHnF3c7P4N+/rEJPr03iaAbrs9nxfpnjokEs1CcHJixEPrZ4juPL8r8VTahp7ZI4mn6WPhv+v91nAQD3XZMFhSI4t7CnwLcwNw1p0aFo7LDg7f3yaub434pmNHVYEBuuwTyu0BuECQuRj42KC8e14+MhCMBbMhpl+bD8HJo7LUiO0uHr3JmZAphGrcQPrh8DAHh56ylY+uQzyiIW296Wncr9u87Ds0EkAXF/obf318DaJ33xrSAIrqXMS+eOQgibVFGAu3tWBhIjtag39uDdA3VShwMAMHb1YstRRxdeTgddiN9KRBK4cXISEiK1aO60ur6gpLTrVAuOGzoQGqLCt539YogCmS5EhR9cPxYA8JetlbJYtffGrjOw9tkxMSkSU1OjpA5HdpiwEEkgRKXEolli8e1ZiaPpbxT3zbw0RIdxVQIFh8VzMhEfoUFtWzc2lkk7ytLcacGabacAAA9/bRxryIbAhIVIIvfMyYBCAXxZ2YKqZrNkcZxu6kTJcccS62VXcykzBY9QjQoPXOuoZVn9RSX6JBxl+eNnFTBbbZiRrsc3WEM2JCYsRBJJjwnDvAkJAKQtvv37l2cAAF+blIixCRGSxUEkhe9cNQoxYSE409KFTYfqJYnhVFOnq83BL74+GUolR1eGwoSFSELfzh8FwJGwNHb0+Pz127us+JdzR9j7ruHoCgWfcK0a9ztHWf78RSXsdsHnMTz7yXHY7AIKJyfiqjFxPn99f8GEhUhCX5uUiOlpenT09OH/Pjrq89d/a28NunttmJQciblj+UVJwWlpwShE6dSobOzEJz7eFHFvVSs+PdoAlVKBn8+f5NPX9jdMWIgkpFIqsOrO6VApFdh0qB5fHPddu/5emx2v7zwDAPg+G8VREIvUhbjqt/70eYXPRlkEQcDTHx8DACyanYFxidyV+VKYsBBJbFqaHt937or8y41HYLb0+eR1Pz5cD4OpB/ERGtcOtkTB6vtXZyFCq8ZxQwe2HPNNq4F/H65HeU07wjQqPFo43iev6c+YsBDJwGM3TUBadCjq2rvxhy0nvf56jR09+M0mxxTUd68aDV2IyuuvSSRn+rAQLC1w1JT96fMKCIJ3R1msfXY8t/kEAODB68YgMVLn1dcLBExYiGQgTKPGbxdOAwCs/bIKR+qMXnstm13AYxvK0dxpxaTkSPyPs0U5UbC7/9oxCNOocKTOhK0nmrz6Wv/YfRbVrV1IiNS6llbTpTFhIZKJGyYl4hszUmAXgJ+/d8hrPSFe3lqJLytbEBqiwp+/PZOjK0ROseEafOcqxyjLH0u8N8pi7O7FS59XAACKb5qAcK3aK68TaJiwEMnIygVTEKVT40idCeucBbGetLeqFS84p5x+s3AaxiWy7wrRQPdfmwWtWonymnas/qLSK6/xl62VaO/qxfjECNzNPYOGjQkLkYwkRuqw4uuTAQAvbDmJ2rYujz13q9mKH79VBrsA3DkzjZurEQ0hMVKHX97q+Aw+/+lJbNjn2aaOtW1drmaNK74+CWpuNDpsPFNEMrNoVgZmj45Bl9WGlR985ZFhaUEQ8Pg7B2Ew9WBMQjh+c/s0D0RKFJi+WzAaP5zn2BhxxXuH8ZmHNigVBAHPfHIc1j47rhoTixsmJnrkeYMFExYimVE6e7OEqBT4/HgjPj585Y2sXttRhc+PN0KjVuLPi2dyzpzoMn5aNBF356XDLgDL3yrFgbNtV/R8lj4bit8+6Gr//4uvT2bvIzcxYSGSoXGJkXho3jgAwFMffgVjV++In6u8ph3PfHIcALDyG1MwhdvWE12WQuG4cPjapET09Npx3+v7UNnYMaLnMnb1Yulre/F+WR1USgWe/eZ0zEiP9mzAQYAJC5FM/XDeWIyJD0dzpwUL//Ilvqxsdvs5jN29+NFbpeizC/j69GQsyc/0QqREgUmtUuLP385FTkY02p1JR72x263nqGntwp0vf4k9Va2I0Krx9+/NxqLZ/ByOxIgSltWrV2P06NHQ6XTIz8/H3r17L3n8O++8g0mTJkGn02H69On4+OOPB/1cEASsXLkSKSkpCA0NRWFhISoqKkYSGlHA0IWo8IdFOUiI1KKq2Ywlf9uDR9eXobnTMqzHd1r68LN/HUJNazcyYkOx6s4ZHIImclOYRo2135uNMQnhOGfswffW7hv2iGdZdRvu+MuXONVkRqpeh389VIDrnDu0k/vcTlg2bNiA4uJiPPXUUygtLUV2djaKiorQ2Dj0Hig7d+7E4sWLcd9996GsrAwLFy7EwoULceTIEdcxzz33HF566SWsWbMGe/bsQXh4OIqKitDT4/vda4nkJDsjGiU/uR73FoyCQgFsLD+Hrz2/FW/uqR5yvxO7XcDOymYUbyjH7N9+hs1fGRCiUuDPi2dCHxoiwTsg8n+x4Rq88f05SIrS4kRDBx54Yz96em2XfMzmI/W455XdaO60YmpqFN5/+GpMSuZ07JVQCG4uQcjPz8fs2bPx5z//GQBgt9uRkZGBH/3oR/j5z39+wfGLFi2C2WzGpk2bXPddddVVyMnJwZo1ayAIAlJTU/GTn/wEjz/+OADAaDQiKSkJ69atwz333HPZmEwmE/R6PYxGI6Ki+AtBgelgTTt+8f5hfHXOBADIGxWD390xDZOSo3Cm2Yx3S2vxXmkd6tr7h6zHxIfjp0UTMX96ilRhEwWM4wYT7l6zCx09fYgJC0FmXDjSo0ORHiPewpAWE4rtJ5vwu4+PQRAcO7L/aXEuC90vwp2/326dQavVigMHDmDFihWu+5RKJQoLC7Fr164hH7Nr1y4UFxcPuq+oqAgbN24EAFRVVcFgMKCwsND1c71ej/z8fOzatWtYCQtRMMjOiMYHD1+N13edxQufnsCBs234xks7MCklEkfqTK7jInVqLMhOxV156cjNiOY0EJGHTEqOwqtLZ+GBN/ajrasXbV3tOFjTftHjv3NVJn61YCp7rXiIWwlLc3MzbDYbkpKSBt2flJSE48ePD/kYg8Ew5PEGg8H1c/G+ix1zPovFAoulfx7fZDINeRxRoFGrlLjvmix8fXoyfv3hUWz+yoAjdSYoFcB1ExLwzZnpuGlKEtvtE3nJVWPisHvFjTjTYkZtW7fz1oXatm7UOf+/zS7g0cIJuP/aLF4weJBfjlGtWrUKv/71r6UOg0gyKfpQrPluHnZWNuNMSxdunJyIpCju9krkC+FaNaam6jE1VT/kz+12AUolExVPc2ucKj4+HiqVCg0Ng7v+NTQ0IDk5ecjHJCcnX/J48X/dec4VK1bAaDS6bjU1Ne68DaKAMXdcPL6dn8lkhUhGmKx4h1sJi0ajQV5eHkpKSlz32e12lJSUoKCgYMjHFBQUDDoeALZs2eI6PisrC8nJyYOOMZlM2LNnz0WfU6vVIioqatCNiIiIApfbU0LFxcW49957MWvWLMyZMwcvvvgizGYzli1bBgBYunQp0tLSsGrVKgDAI488guuvvx6///3vceutt2L9+vXYv38/XnnlFQCOboKPPvoofvvb32L8+PHIysrCk08+idTUVCxcuNBz75SIiIj8ltsJy6JFi9DU1ISVK1fCYDAgJycHmzdvdhXNVldXQ6nsH7iZO3cu3nzzTfzyl7/EL37xC4wfPx4bN27EtGn9m6898cQTMJvNePDBB9He3o5rrrkGmzdvhk7HYW4iIiIaQR8WOWIfFiIiIv/jzt9vLg4nIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2XO7Nb8cic16TSaTxJEQERHRcIl/t4fTdD8gEpaOjg4AQEZGhsSREBERkbs6Ojqg1+sveUxA7CVkt9tx7tw5REZGQqFQePS5TSYTMjIyUFNTw32KLoPnavh4roaP58o9PF/Dx3M1fN46V4IgoKOjA6mpqYM2Th5KQIywKJVKpKene/U1oqKi+As9TDxXw8dzNXw8V+7h+Ro+nqvh88a5utzIiohFt0RERCR7TFiIiIhI9piwXIZWq8VTTz0FrVYrdSiyx3M1fDxXw8dz5R6er+HjuRo+OZyrgCi6JSIiosDGERYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhuYzVq1dj9OjR0Ol0yM/Px969e6UOSVKrVq3C7NmzERkZicTERCxcuBAnTpwYdExPTw8efvhhxMXFISIiAt/85jfR0NAgUcTy8cwzz0ChUODRRx913cdzNVhdXR2+853vIC4uDqGhoZg+fTr279/v+rkgCFi5ciVSUlIQGhqKwsJCVFRUSBixNGw2G5588klkZWUhNDQUY8eOxW9+85tB+7EE67navn07FixYgNTUVCgUCmzcuHHQz4dzXlpbW7FkyRJERUUhOjoa9913Hzo7O334LnzjUueqt7cXP/vZzzB9+nSEh4cjNTUVS5cuxblz5wY9hy/PFROWS9iwYQOKi4vx1FNPobS0FNnZ2SgqKkJjY6PUoUlm27ZtePjhh7F7925s2bIFvb29uPnmm2E2m13HPPbYY/joo4/wzjvvYNu2bTh37hzuvPNOCaOW3r59+/DXv/4VM2bMGHQ/z1W/trY2XH311QgJCcEnn3yCo0eP4ve//z1iYmJcxzz33HN46aWXsGbNGuzZswfh4eEoKipCT0+PhJH73rPPPouXX34Zf/7zn3Hs2DE8++yzeO655/CnP/3JdUywniuz2Yzs7GysXr16yJ8P57wsWbIEX331FbZs2YJNmzZh+/btePDBB331FnzmUueqq6sLpaWlePLJJ1FaWor33nsPJ06cwG233TboOJ+eK4Euas6cOcLDDz/s+rfNZhNSU1OFVatWSRiVvDQ2NgoAhG3btgmCIAjt7e1CSEiI8M4777iOOXbsmABA2LVrl1RhSqqjo0MYP368sGXLFuH6668XHnnkEUEQeK7O97Of/Uy45pprLvpzu90uJCcnC//v//0/133t7e2CVqsV3nrrLV+EKBu33nqr8P3vf3/QfXfeeaewZMkSQRB4rkQAhPfff9/17+Gcl6NHjwoAhH379rmO+eSTTwSFQiHU1dX5LHZfO/9cDWXv3r0CAOHs2bOCIPj+XHGE5SKsVisOHDiAwsJC131KpRKFhYXYtWuXhJHJi9FoBADExsYCAA4cOIDe3t5B523SpEnIzMwM2vP28MMP49Zbbx10TgCeq/N9+OGHmDVrFu6++24kJiYiNzcXr776quvnVVVVMBgMg86XXq9Hfn5+0J2vuXPnoqSkBCdPngQAHDx4EDt27MD8+fMB8FxdzHDOy65duxAdHY1Zs2a5jiksLIRSqcSePXt8HrOcGI1GKBQKREdHA/D9uQqIzQ+9obm5GTabDUlJSYPuT0pKwvHjxyWKSl7sdjseffRRXH311Zg2bRoAwGAwQKPRuH6hRUlJSTAYDBJEKa3169ejtLQU+/btu+BnPFeDnT59Gi+//DKKi4vxi1/8Avv27cOPf/xjaDQa3Hvvva5zMtRnMtjO189//nOYTCZMmjQJKpUKNpsNv/vd77BkyRIA4Lm6iOGcF4PBgMTExEE/V6vViI2NDepz19PTg5/97GdYvHixa/NDX58rJiw0Yg8//DCOHDmCHTt2SB2KLNXU1OCRRx7Bli1boNPppA5H9ux2O2bNmoWnn34aAJCbm4sjR45gzZo1uPfeeyWOTl7efvtt/POf/8Sbb76JqVOnory8HI8++ihSU1N5rsjjent78a1vfQuCIODll1+WLA5OCV1EfHw8VCrVBSs2GhoakJycLFFU8rF8+XJs2rQJX3zxBdLT0133Jycnw2q1or29fdDxwXjeDhw4gMbGRsycORNqtRpqtRrbtm3DSy+9BLVajaSkJJ6rAVJSUjBlypRB902ePBnV1dUA4Don/EwCP/3pT/Hzn/8c99xzD6ZPn47vfve7eOyxx7Bq1SoAPFcXM5zzkpycfMHCir6+PrS2tgbluROTlbNnz2LLli2u0RXA9+eKCctFaDQa5OXloaSkxHWf3W5HSUkJCgoKJIxMWoIgYPny5Xj//ffx+eefIysra9DP8/LyEBISMui8nThxAtXV1UF33m688UYcPnwY5eXlrtusWbOwZMkS1//nuep39dVXX7BE/uTJkxg1ahQAICsrC8nJyYPOl8lkwp49e4LufHV1dUGpHPz1rVKpYLfbAfBcXcxwzktBQQHa29tx4MAB1zGff/457HY78vPzfR6zlMRkpaKiAp999hni4uIG/dzn58rjZbwBZP369YJWqxXWrVsnHD16VHjwwQeF6OhowWAwSB2aZB566CFBr9cLW7duFerr6123rq4u1zE/+MEPhMzMTOHzzz8X9u/fLxQUFAgFBQUSRi0fA1cJCQLP1UB79+4V1Gq18Lvf/U6oqKgQ/vnPfwphYWHCP/7xD9cxzzzzjBAdHS188MEHwqFDh4Tbb79dyMrKErq7uyWM3PfuvfdeIS0tTdi0aZNQVVUlvPfee0J8fLzwxBNPuI4J1nPV0dEhlJWVCWVlZQIA4YUXXhDKyspcK1uGc15uueUWITc3V9izZ4+wY8cOYfz48cLixYulektec6lzZbVahdtuu01IT08XysvLB33fWywW13P48lwxYbmMP/3pT0JmZqag0WiEOXPmCLt375Y6JEkBGPL297//3XVMd3e38MMf/lCIiYkRwsLChDvuuEOor6+XLmgZOT9h4bka7KOPPhKmTZsmaLVaYdKkScIrr7wy6Od2u1148sknhaSkJEGr1Qo33nijcOLECYmilY7JZBIeeeQRITMzU9DpdMKYMWOE//3f/x30hyRYz9UXX3wx5HfUvffeKwjC8M5LS0uLsHjxYiEiIkKIiooSli1bJnR0dEjwbrzrUueqqqrqot/3X3zxhes5fHmuFIIwoDUiERERkQyxhoWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke/8/v1IMEV2W6YMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoQklEQVR4nO3de3yT9fk//lcOTdJjej63UM7nthSoxRPOamUORadDxoZjHj5zsqmdc2Ofidtnm6hf55wbk+lk6G9T0KmoTJlYBYacactBTi0UeqDpuUmbtkmb3L8/kjttoUBTktx3ktfz8chjI72TXLlt0ut+v6/39VYIgiCAiIiISMaUUgdAREREdDlMWIiIiEj2mLAQERGR7DFhISIiItljwkJERESyx4SFiIiIZI8JCxEREckeExYiIiKSPbXUAXiC3W7HuXPnEBkZCYVCIXU4RERENAyCIKCjowOpqalQKi89hhIQCcu5c+eQkZEhdRhEREQ0AjU1NUhPT7/kMQGRsERGRgJwvOGoqCiJoyEiIqLhMJlMyMjIcP0dv5SASFjEaaCoqCgmLERERH5mOOUcLLolIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2XMrYVm1ahVmz56NyMhIJCYmYuHChThx4sRlH/fOO+9g0qRJ0Ol0mD59Oj7++ONBPxcEAStXrkRKSgpCQ0NRWFiIiooK994JERERBSy3EpZt27bh4Ycfxu7du7Flyxb09vbi5ptvhtlsvuhjdu7cicWLF+O+++5DWVkZFi5ciIULF+LIkSOuY5577jm89NJLWLNmDfbs2YPw8HAUFRWhp6dn5O+MiIiIAoZCEARhpA9uampCYmIitm3bhuuuu27IYxYtWgSz2YxNmza57rvqqquQk5ODNWvWQBAEpKam4ic/+Qkef/xxAIDRaERSUhLWrVuHe+6557JxmEwm6PV6GI1G7iVERETkJ9z5+31FNSxGoxEAEBsbe9Fjdu3ahcLCwkH3FRUVYdeuXQCAqqoqGAyGQcfo9Xrk5+e7jjmfxWKByWQadCP39PTaYLePOFclIg+qbOzAK9tPYdvJJqlDIZKtEe/WbLfb8eijj+Lqq6/GtGnTLnqcwWBAUlLSoPuSkpJgMBhcPxfvu9gx51u1ahV+/etfjzT0oGa3C3h283G8tqMKSqUC6dGhSIsJRXpMKNJjwpAeE4q06FBMSI5ElC5E6nCJApaxqxcfHjqHfx2oxcGadtf9N01Jwq9um4q06FDpgiOSoREnLA8//DCOHDmCHTt2eDKeYVmxYgWKi4td/zaZTMjIyPB5HP6m22rDYxvKsfkrZyJoF3C62YzTzRfWIEVo1Vi3bDZmjb746BkRuafPZsf2iia8e6AOW442wGqzAwBUSgVmjYrBgbNt2HK0AV9WNuOxwglYdvVoqFVczEkEjDBhWb58OTZt2oTt27cjPT39kscmJyejoaFh0H0NDQ1ITk52/Vy8LyUlZdAxOTk5Qz6nVquFVqsdSehBq7nTgvtf34/ymnZoVEo8e9d0zBoVi9q2btS2daG2rRt17Y7/f7rJjMYOC+57fT/e+UEBJiRFSh0+kd/7x+6z+GNJBZo6LK77JiVH4q68dNyek4aESC1ONnTgf98/jH1n2vC7j4/hvbI6PH3HNORmxkgYOZE8uFV0KwgCfvSjH+H999/H1q1bMX78+Ms+ZtGiRejq6sJHH33kum/u3LmYMWPGoKLbxx9/HD/5yU8AOEZMEhMTWXTrIZWNnVi2bi9qWruhDw3BK9/NQ/6YuIse3221YcnfdqO0uh0peh3efWguUjk8TTRiX5xoxLK/7wMAxIZrsDAnDd/MS8PUVP0Fx9rtAv51oBZPf3IM7V29UCiAJfmZ+GnRJOhDOU1LgcWdv99uJSw//OEP8eabb+KDDz7AxIkTXffr9XqEhjr+oC1duhRpaWlYtWoVAMey5uuvvx7PPPMMbr31Vqxfvx5PP/00SktLXbUvzz77LJ555hm8/vrryMrKwpNPPolDhw7h6NGj0Ol0Hn3DwWb36Rb8z/93AMbuXmTGhuHvy2ZjbELEZR/XZrbi7r/uQmVjJ8YnRuCdHxQgOkzjg4iJAovB2IOvv/RftJqt+HZ+Jn5921SEDGOap6XTgqc/Po53S2sBAPERWqxbNhvT0i5Mcoj8lddWCb388sswGo2YN28eUlJSXLcNGza4jqmurkZ9fb3r33PnzsWbb76JV155BdnZ2fjXv/6FjRs3DirUfeKJJ/CjH/0IDz74IGbPno3Ozk5s3rx5WMkKXdzGsjp897U9MHb3IjczGu//cO6wkhUAiAnX4PXvz0FylA4VjZ24//X96Om1eTliosBiswt4ZH0ZWs1WTE2NwspvTBlWsgIAcRFa/P5b2XjrgaswJiEczZ0W/OTtg+h11r0QBZsr6sMiFxxhudCfP6/A85+eBAB8fXoyXvhWDnQhKref54ShA3ev2QlTTx8KJydhzXdmsgiQaJj+sOUk/lhSgXCNCpt+fC2y4sNH9DytZisKX9iGVrMVPy2aiIdvGOfhSImk4bM+LCRP2042uZKV/7luDP68eOaIkhUAmJgcib/dOxsatRKfHWvAkx8cQQDkuERet7OyGS997thi5Ok7p484WQEcdS+/vHUyAOClkgqcGWJlH1GgY8ISYGx2Aas+PgYA+N7c0Vjx9clQKhVX9JxzsmLxp8W5UCqAt/bW4A+fcZ8noktp7rTgkQ3lEARg0awM3J6TdsXPeUduGq4eFwdLnx3/u/EwLxwo6DBhCTDvltbiuKEDUTo1Hi28/Cqu4SqamozfLHTUHb1UUoG39lZ77LmJAondLqD47YNo6rBgfGIEfnXbVI88r0KhwO8WTodWrcSXlS14v6zOI89L5C+YsASQbqsNv//UsXv2j7423uOrepbkj8IjNzqSoN9uOor2LqtHn58oEPx1+2lsP9kEXYgSq5fMRKhmZNOxQxkdH44fOz+Dv9l0FK1mfgYpeDBhCSCv7TiNBpMFadGh+G7BKK+8xqOF4zE5JQpmqw1rvzzjldcg8lcHzrbieedFw68WTPVK08UHrxuDiUmRaOvqxe/+fczjz08kV0xYAkRzpwVrtp0GADxxy8QRF9lejkKhwI++5lih8Pcvq2Dq6fXK6xD5m/YuK378VjlsdgG3Zadi0WzvbBcSolJi1TenQ6FwTAHvrGz2yusQyQ0TlgDxx88q0Gnpw/Q0PRbMSPXqa90yNRnjEyPQ0dOH1znKQgQAePGzCtS1d2N0XBh+d8c0KBRXVux+KTMzY/DdqxyjqL94/zB7JFFQYMISAE41deJNZxHsLzywKuhylEoFljtHWV77sgqdlj6vvh6R3Bm7e/H2/hoAwP/dPg2RPtjp/KdFE5EUpcWZli78+fNKr78ekdSYsASA5zYfh80u4MZJiSgYe/E9gjzpGzNSMSY+HO1dvfjH7rM+eU0iudqwrxpdVhsmJUfi2vHxPnnNSF0Ifu1cgbRm2ymcMHT45HWJpMKExc/tO9OK/3zVAKUC+Pn8ST57XZVSgR86u22+uv00uq0ckqbg1Gez4/WdjqT9+1dneXUq6HxFU5Nx05Qk9NkFrHjvEOx29mahwMWExY8JgoCnnU3iFs3OwHgvrEi4lNtzUpERG4oWsxX/3MNRFgpOm78yoK69G3HhGtyW4936sfMpFAr83+1TEaZRobS6HTtPtfj09Yl8iQmLH/v4sAFl1e0I06jwWOEEn79+iEqJh+c5Rlle2X6ahX8UlP723yoAwJKrRnltdd6lpOhD8c2Z6QCAN/fywoECFxMWP2Xts+O5/xwHADxw7RgkRkmzs/WdM9ORFh2Kxg6Lq+iQKFgcONuG8pp2aFRK16odKXw7PxMA8OlXDWjs6JEsDiJvYsLip/655yzOtnQhPkKLB68bI1kcGrUSP7je8fovbz0FSx9HWSh4rN3hGF25LScVCZFayeKYnBKF3Mxo9NkFvLO/VrI4iLyJCYsfstkFvLLd0STusZvGI1yrljSeu2dlIDFSi3pjD949wP1NKDjUtnXhkyP1ABzFtlL79hzHKMtbe6tZfEsBiQmLH9p5qhn1xh7oQ0NwV1661OFAF6LC/1w/FgDwl62V6LXZJY6IyPte33kGdgGYOzYOU1KjpA4H35iRiiidGrVt3dhe0SR1OEQex4TFD717wDHkuyA7BVq174v8hvLtOZmIj9Cgtq0bG7mLLAW4Tksf1u911Gzdd430oysAEKpR4U6x+HYPd1OnwMOExc909PRi81cGAMBded7Zq2QkQjUqPHCto5blL1tPoY+jLBTA3tlfgw5LH8bEh+OGiYlSh+OyxFl8W3K8EQYji28psDBh8TMfH65HT68dYxPCkZ2ulzqcQb5z1SjEhIWgqtmMj48YpA6HyCtsdgF/d+6htezq0V7fCsMd45MiMXt0DGx2ARv2cdUeBRYmLH5GLGr9Zl66TztqDke4Vo3vFowG0D9tRRRoPjvWgOrWLuhDQ/BNGdSQnW9JvmN59YZ91bCx+JYCCBMWP3K2xYy9Z1qhUAB35KZJHc6QFjo7fe6obEar2SpxNESe95pzKfPiOZkI00i7Qm8ot0xLRkxYCM4Ze7D1RKPU4RB5DBMWP/JuqWN05Zpx8UjRh0oczdDGJERgWloUbHYBHx+ulzocIo86UmfE3qpWqJUK3DtXukZxl6ILUbk63/6TxbcUQJiw+Am7XcB7pY5pFjksZb6U27IdoywfHjwncSREniWOrnx9eopsLxoAYLGz+HbriUbUtXdLHA2RZzBh8RN7z7Sitq0bEVo1bp6SLHU4l/SNGY6EZd+ZVtQb+WVJgaGpw4JNhxxJuFyWMl/M2IQIFIyJg10ANuzlKAsFBiYsfuJfziLWb8xIQahGHr1XLiY1OhSzR8dAEIB/H+K0EAWGzUfq0WsTMCNdj+yMaKnDuSxxf6H1+2rYzJECAhMWP9Bl7cMnznoQOa5KGAqnhSjQfOJcqn/r9BSJIxmeoqnJiAvXoLHDgpJjLL4l/8eExQ9sPmKA2WrDqLgwzBoVI3U4w/L16SlQKRU4VGtEVbNZ6nCIrkir2Yo9Va0AgPnT/CNh0aiVuGuWs/Mtp4UoADBh8QPidNCdufLrvXIxcRFaXD0uHgCwiaMs5Oe2HDXAZhcwJSUKmXFhUoczbOKGiP+taEJNa5fE0RBdGSYsMlfX3o1dp1sAAHfOlGfvlYtZMMNxJfrhwXMQBDawIv/18WHHdND8afIueD/fqLhwXDs+HoLg2MWZyJ8xYZG590trIQjAVWNikRHrP1d2AFA0LRkatRIVjZ04buiQOhyiETF292LnqWYAwPzp/pWwAI4GdwDwQTkvHMi/MWGRMUEQXM3ixEZQ/iRKF4IbJiYAYPEt+a+SYw3otQkYnxiBcYmRUofjtnkTE6BVK1HX3s0LB/Jrbics27dvx4IFC5CamgqFQoGNGzde8vjvfe97UCgUF9ymTp3qOuZXv/rVBT+fNGmS228m0JRWt6Gq2YzQEBXm+8nKhPMtcK4W+ojTQuSnxNVB/jYdJArTqHHteEc92WdHGySOhmjk3E5YzGYzsrOzsXr16mEd/8c//hH19fWuW01NDWJjY3H33XcPOm7q1KmDjtuxY4e7oQWcfzk3Opw/PRkRWvntWTIcN05KQrhGhdq2bpTVtEsdDpFbzJY+bD/ZBAC4xU9WBw2lcHISAGDLMSYs5L/c/is4f/58zJ8/f9jH6/V66PV61783btyItrY2LFu2bHAgajWSk/3zCsYbenptrq6ad/nhdJAoVKPCTVOSsLH8HD4sP4eZmf6xLJsIAL440QhLnx2j4sIwOcX/poNEN05OgkJxGIdqjTAYe5Cs10kdEpHbfF7D8tprr6GwsBCjRg3eOKyiogKpqakYM2YMlixZgurqi1e0WywWmEymQbdA89mxBnT09CEtOhRXjYmTOpwrIk4L/ftwPbe7J78iTgfdMi3Zb1oKDCUhUoscZ3fezzjKQn7KpwnLuXPn8Mknn+D+++8fdH9+fj7WrVuHzZs34+WXX0ZVVRWuvfZadHQMXSC2atUq18iNXq9HRkaGL8L3qS3OueYF2alQKv33ixIArh2fAH1oCJo6LNjjXKJNJHc9vTZ8cdzRIfbrfjwdJLppimNaiAkL+SufJiyvv/46oqOjsXDhwkH3z58/H3fffTdmzJiBoqIifPzxx2hvb8fbb7895POsWLECRqPRdaupqfFB9L5jswvY5pw3v3FyosTRXDmNWomvO5eDcrUQ+YttJ5vQZbUhLToUM9L1l3+AzN3krGPZWdmCTkufxNEQuc9nCYsgCFi7di2++93vQqPRXPLY6OhoTJgwAZWVlUP+XKvVIioqatAtkJRVt6G9qxf60BDk+sEma8OxwLmD8ydHDLD2cSM2kr/Nzumgoqn+PR0kGpcYgdFxYbDa7Piv84KIyJ/4LGHZtm0bKisrcd9991322M7OTpw6dQopKf4/DDsSX5xwDENfNyEBalVgtMrJHxOHxEgtjN29+G8FvyxJ3qx9dtfUiT82ixuKQqHoXy3E5c3kh9z+a9jZ2Yny8nKUl5cDAKqqqlBeXu4qkl2xYgWWLl16weNee+015OfnY9q0aRf87PHHH8e2bdtw5swZ7Ny5E3fccQdUKhUWL17sbngB4fPjjj/oYtO1QKBSKnDrgFb9RHL25almdPT0ISFSi7wAWtkm1rF8fqIRfTaOdJJ/cTth2b9/P3Jzc5GbmwsAKC4uRm5uLlauXAkAqK+vv2CFj9FoxLvvvnvR0ZXa2losXrwYEydOxLe+9S3ExcVh9+7dSEgInD/Yw2Uw9uBYvQkKBXD9hMB6/+JqoS1HG9BttUkcDdHFbXbuHXTL1GS/L3ofKG9UDKLDQtDe1Yv9Z9ukDofILW73YZk3b94lO5auW7fugvv0ej26ui6+U+j69evdDSNgidNB2enRiIvQShyNZ+VmRCNVr8M5Yw92V7Xghon+X1BMgafPZsenR/27u+3FqFVKfG1SIt4rrcNnRxv8vmUCBZfAKJAIIOIyyq9NCrw/5gqFAtc7p7m2nWAdC8nT3qpWtHX1IiYsBHOyYqUOx+NuGtD1lttlkD9hwiIjlj4bdlQ6doUN1NGH68Y7EpbtLLwlmRKbxd08JTlgit4Hum5CAjQqJc62dKGysVPqcIiGLfA+jX5sX1Ubuqw2JERqMTU1sJZqi+aOi4dKqcDpJjNq2y4+TUgkBbtdwOavnPUrAbI66HzhWjXmjnNMBX3K1ULkR5iwyMjnzumgeRMSAqrQbyB9aIirRfj2k83SBkN0ngPVbWjqsCBSp8bVY+OlDsdr2PWW/BETFhnZeiJw61cGck0LsXkVycwnztVBN01OgkYduF+PYj+W8pp2NHb0SBwN0fAE7ifSz5xpNuN0sxlqpQJXjw/cKzsAuG6C4/19eaqZvSBIVsQRh6IAWx10vqQoHbLT9RAE4PNjjVKHQzQsTFhkQlzOPHt0LKJ0IRJH410z0qMRHRaCjp4+lNe0Sx0OEQCguqUL1a1dUCsVuGZcYF80AP2jLJwWIn/BhEUmxPqVGyYFVrO4oagG/EHYxmkhkokvTzlqqmZmxiBc63aLKr9z01RHwvLfimZ0WbkZIskfExYZMFv6sOd0K4DAr18RXTeBdSwkLzsqHAnL1UEwugIAE5MikR4TCkuf3fXeieSMCYsM7DzVAqvNjvSYUIxNiJA6HJ8QC28P1RnRarZKHA0FO7tdcI2wXDM+OLq/KhQK12ohboZI/oAJiwx8PqC7bSBsYz8cyXodJiZFQhDgapZHJJWj9Sa0d/UiQqvGjPRoqcPxGddmiMcbYbOz6y3JGxMWiQmC4FrOHKjdbS9GXC3EaSGSmpg0XzUmDiEB2N32YhxF/mq0mK0oq+ZmiCRvwfPJlKnjhg7UG3ugVStRMDY4hqJFYh3LfyuauKcJSUqs4bhmXHB9BkNUSsxzXijxwoHkjgmLxMTlzHPHxkEXopI4Gt+aPToWuhAlGkwWnGjokDocClI9vTbsPeMoer8mwHsgDeVqZ5K281SLxJEQXRoTFokF8u7Ml6MLUbm2t+fuzSSVA2fbYO2zIylKGzRF7wPNdW5BUF7TzuXNJGtMWCRk7OrFgbOOeeN5QVa/IuLuzSQ1sX7l6nHxQVP0PlBGbBjSY0LRZxew7wzrWEi+mLBIaFtFE+wCMD4xAhmxYVKHIwmxjsWxUzWv7sj3xPqVa4NwOkhUMEacFuKKPZIvJiwS2urqbhucoysAMDYhHGnRobDa7K7meUS+0ma24sg5IwAE9O7MlzPXWceym3UsJGNMWCRiswvY6qzKD7blzAMpFArX8ma26Sdf23W6BYIATEiKQGKUTupwJFMwxvEZPFxnhLG7V+JoiIbGhEUix+pNaDVbEaFVY9boGKnDkRTrWEgqA+tXglmyXocxCeGwC8DeKo50kjwxYZHI7tOOoddZo2OCqlHVUOaOi4dKqcDpJjNqWrukDoeCSH//leBOWADWsZD8BfdfSgntdtZriMt6g5k+NAS5GdEAOMpCvlPd0oXq1i6olQrk83PoWt68i3UsJFNMWCRgtwvYd4YJy0DcvZl8TdzsMDczGhFatcTRSO+qMbEAHN23WzotEkdDdCEmLBI4ZjDB2N2LcI0K01KjpA5HFsSEZWdlC3ptdomjoWDA+pXB4iK0mJQcCaB/BJhITpiwSEBcvjtrdCzUQV6/Ipqepkd0WAg6LH0or2mXOhwKcHa7gJ2VrF85n7if2a7TrGMh+eFfSwmIBbf5ziFYAlRKhesPB6eFyNuO1pvQ1tWLCK0a2c76KeqvY+G+QiRHTFh8zG4XXButsX5lsP7dm3l1R94lTgddNSY26FfpDTQnKxZKBXC6yQyDsUfqcIgG4SfVx040dKC9qxdhGhWmp+mlDkdWxGWVR+qMMFvYpp+850vWrwxJHxqCac7vJU4LkdwwYfExcToobxT7r5wvPSYUqXod+uwCyqrbpQ6HAlRPr83VHI31Kxdy1bFwWohkhn8xfWwP+69clEKhwJwsR12POG1G5GkHzrbB0mdHYqQW4xIjpA5HdljHQnLFhMWH7HYBe6ocXwJXseB2SHOyHInc3ip+WZJ37BiwOkihUEgcjfzMGhUDtVKB2rZudp4mWXE7Ydm+fTsWLFiA1NRUKBQKbNy48ZLHb926FQqF4oKbwWAYdNzq1asxevRo6HQ65OfnY+/eve6GJnsVjZ1o6+pFaIgK09OipQ5HluZkOfZVKqtuh6XPJnE0FIjE+pVrxnM6aCjhWjVynCun2Kaf5MTthMVsNiM7OxurV69263EnTpxAfX2965aY2L9D8YYNG1BcXIynnnoKpaWlyM7ORlFRERobG90NT9YG1q9o1BzcGsrYhAjEhmtg6bPjSJ1R6nAowLSZrTjs/L1iwe3FzWUdC8mQ238158+fj9/+9re444473HpcYmIikpOTXTelsv+lX3jhBTzwwANYtmwZpkyZgjVr1iAsLAxr1651NzxZ43TQ5SkUCswZ7Tg/e7hrLHnYrtMtEARgfGIEkqJ0UocjW1eNFTdCbIEgCBJHQ+Tgs8v8nJwcpKSk4KabbsKXX37put9qteLAgQMoLCzsD0qpRGFhIXbt2jXkc1ksFphMpkE3uRMEwVVwy43WLm22WHjLhIU8bI9zlFMcQaChzcx0jAI3dlhwqsksdThEAHyQsKSkpGDNmjV499138e677yIjIwPz5s1DaWkpAKC5uRk2mw1JSUmDHpeUlHRBnYto1apV0Ov1rltGRoa338YVq2zsRIvZCl2IEjPS2X/lUvKdCcuBM22w2Xl1R56z70wbgP7ibhqaLkSFWaMc9WS7TnNaiOTB6wnLxIkT8T//8z/Iy8vD3LlzsXbtWsydOxd/+MMfRvycK1asgNFodN1qamo8GLF3DKxf0apVEkcjb5NTohChVaPD0odj9fIfPSP/YOrpxXGD4/dp1ugYiaORv/46FhbekjxIUvk5Z84cVFZWAgDi4+OhUqnQ0NAw6JiGhgYkJycP+XitVouoqKhBN7kTdz/N55XdZamUCtcfFE4LkaeUnm2DXQAyY8NYvzIMAxvI2TnSSTIgScJSXl6OlJQUAIBGo0FeXh5KSkpcP7fb7SgpKUFBQYEU4XmcIAzsv8KEZThmj2YdC3nWfud0EEdXhmdGejTCNCq0dfXiuKFD6nCIoHb3AZ2dna7REQCoqqpCeXk5YmNjkZmZiRUrVqCurg5vvPEGAODFF19EVlYWpk6dip6eHvztb3/D559/jk8//dT1HMXFxbj33nsxa9YszJkzBy+++CLMZjOWLVvmgbcovVNNnWjutEKrViI7g/UrwyHWsew70wpBENjgi67YPmf3ZDEZpksLUSkxJysWW080YdfpFkxJlf9INgU2txOW/fv344YbbnD9u7i4GABw7733Yt26daivr0d1dbXr51arFT/5yU9QV1eHsLAwzJgxA5999tmg51i0aBGampqwcuVKGAwG5OTkYPPmzRcU4vorcTpoZibrV4ZreroeWrUSLWYrTjWZ2UKdroi1z47ymnYAwGyOsAxbwZg4R8Jyqhn3XZMldTgU5NxOWObNm3fJdfnr1q0b9O8nnngCTzzxxGWfd/ny5Vi+fLm74fgFseA2n/1Xhk2rViEnIxp7qlqxt6qVCQtdkSPnjLD02RETFoKxCfxdGi5xX6E9p1vRZ7NDzQ1bSUL87fMyR/0KNzwciXxXPxYuq6Qrs985HTRrdCynF90wJTUKkc4VeycaWMdC0mLC4mWnm81o6rBAo1a69ueg4RF7ZYi9M4hGSvwd4nSQe1RKBXKd/VgOnOXnkKTFhMXLxO62uRnR0IWwfsUdM0dFQ61UoK69G7Vt3DWWRkYQhEEjLOSevExHwrKfFw4kMSYsXibWr3A6yH1hGjWmpjlWVXF5M43UqSYz2rp6oVUrMS2Vq/TcJS4D5wgLSY0JixcN7L/CgtuRGbi8mWgkxN+dnIxo7pI+AjkZ0VA5Rzrrjd1Sh0NBjJ9eLzrT0oUGkwUalRIzMzl3PhLcuZmuFPuvXJlwrRqTUyIBcFqIpMWExYvE6aCcTNavjJQ4HH26yVG8TOQudri9cmIdC6eFSEpMWLxI3Mr+qixe2Y1UdJgGk5LFqzuOspB7Gkw9qG7tglLh2HiURibPOTrFhIWkxITFi/Y7P9yzmbBckTlZnBaikRFHVyYlRyFSFyJxNP5rljPZO1pvgtnSJ3E0FKyYsHhJg6kHtW3dUCrA/itXaE4WN0KkkemvX+HoypVIjQ5Fql4Hm13AQecWB0S+xoTFS0qdoysTeWV3xcTC22MGE4zdvRJHQ/5k/1n2X/EUcVpoP6eFSCJMWLyktNrxoc4bFS1tIAEgMUqH0XFhEIT+RJDocjotfTh6zgSABbeekJcZDYB1LCQdJixeIn6ouZzZM1jHQu4qq26DXQDSY0KRog+VOhy/J45SlVa3wW6/+Aa4RN7ChMULLH02HKlzXNlxZYJniD00uBEiDVf//kGcDvKEScmRCNOo0NHTh5ON3AiRfI8JixccqTPBarMjPkKDzNgwqcMJCPnOjRAP1xnRbbVJHA35g31VbBjnSWqVErnOaSE2kCMpMGHxArHOIjczhlvZe0hGbCiSo3TotQkoq+GXJV1ar83u+j3hCiHPyRvFfiwkHSYsXiB+mDkd5DkKhcLVz4ZXd3Q5X50zoafXjuiwEIxNiJA6nIAhfqcxYSEpMGHxMEEQcKCaCYs3zHQOR4srsIguRuyKPGtUDJRKjnJ6Sm5mNBQKoLq1C40dPVKHQ0GGCYuH1bZ1o6nDArVSgelp3Mrek8QVV2XV7RAErlKgixMbxrH/imdF6UIwMcmxVcYBjnSSjzFh8TDx6n9qmp4bHnrY5JQoaNVKGLt7cbrZLHU4JFOCILimDVm/4nliTxs2kCNfY8LiYWLBbR77r3icRq3EjHTHqBUbyNHFVDWb0WK2QqNWYhpHOT1u1ih2vCVpMGHxMLF+ZSY73HpFrjMRLK1ulzYQki1xdCUnPRpaNUc5PU2szfuKLQbIx5iweFCXtQ/H6h0NlVhw6x1i4W0ZC2/pIlwbHmbxM+gN6TGhSIzUos8u4FBtu9ThUBBhwuJBB2uMsNkFpOp1bAXuJWLh7cmGDnRym3saAgtuvUuhULCOhSTBhMWDSl3TQbyy85bEKB3SokNhF8Bt7ukCTR0WnGnpgkLBfby8iQ3kSApMWDyIGx76htgenIW3dD5xqnBCYiT0oSESRxO4BjaQ40aI5CtMWDxEEATXCAvrV7zL1Y+FIyx0HvF3QkxqyTumpkZBF+JoMXCqqVPqcChIMGHxkNPNZrR39UIXosSU1Cipwwlo4pRbWXUbG8jRIOIICxMW7wpRKZGdHg2A00LkO0xYPET80M5Ii0aIiqfVm6akREGjVqKtqxdVbCBHTn02Ow7VGgH0L38n72HhLfka/7J6SBkLbn1Go1a6tj1gPxYSnWzoRJfVhkitGuO44aHXzWLhLfkYExYP4Q7NvsV+LHS+shrH70J2RjQ3PPQBcdqtqtmM5k6LtMFQUHA7Ydm+fTsWLFiA1NRUKBQKbNy48ZLHv/fee7jpppuQkJCAqKgoFBQU4D//+c+gY371q19BoVAMuk2aNMnd0CRj7O7FyQZH4Rnnzn1jJjve0nnKnL8L/Az6RnSYBuMTHSNZHGUhX3A7YTGbzcjOzsbq1auHdfz27dtx00034eOPP8aBAwdwww03YMGCBSgrKxt03NSpU1FfX++67dixw93QJFPuXJkwOi4M8RFaaYMJEuLU2wmDiQ3kCAALbqUg1rGwxQD5gtrdB8yfPx/z588f9vEvvvjioH8//fTT+OCDD/DRRx8hNze3PxC1GsnJye6GIwuu/iucDvKZpCgdUvU6nDP24FBNO+aOi5c6JJKQsasXp5ocBdg5Gfwc+kreqFi8tbeGIyzkEz6vYbHb7ejo6EBs7OC22RUVFUhNTcWYMWOwZMkSVFdXX/Q5LBYLTCbToJuUStkwThK5o9iPhRzKnXvajI4LQ2y4RtpggkhORjQA4HCdEb02u7TBUMDzecLy/PPPo7OzE9/61rdc9+Xn52PdunXYvHkzXn75ZVRVVeHaa69FR0fHkM+xatUq6PV61y0jI8NX4V/AZhdcU0IsuPUtVx0Lr+6CXv90ED+DvjQmPhxROjUsfXacMAz9fU3kKT5NWN588038+te/xttvv43ExETX/fPnz8fdd9+NGTNmoKioCB9//DHa29vx9ttvD/k8K1asgNFodN1qamp89RYuIG7CF6FVY0JSpGRxBCPXSqGadjaQC3IsuJWGUqlAtnOUhSv2yNt8lrCsX78e999/P95++20UFhZe8tjo6GhMmDABlZWVQ/5cq9UiKipq0E0q4txtbmY0VFxK6VNTU/XQqJVoNVtxpqVL6nBIIvYBo5y5rF/xuVxulUE+4pOE5a233sKyZcvw1ltv4dZbb73s8Z2dnTh16hRSUlJ8EN2VKeVQtGQ0aiWmObdB4NVd8KpqMcPY3QutWolJKRzl9LVc5whLOVsMkJe5nbB0dnaivLwc5eXlAICqqiqUl5e7imRXrFiBpUuXuo5/8803sXTpUvz+979Hfn4+DAYDDAYDjEaj65jHH38c27Ztw5kzZ7Bz507ccccdUKlUWLx48RW+Pe8rZcM4SfX3Y2HCEqzE6aAZ6XpuiyEBsfDWsZ+aVdpgKKC5/enev38/cnNzXUuSi4uLkZubi5UrVwIA6uvrB63weeWVV9DX14eHH34YKSkprtsjjzziOqa2thaLFy/GxIkT8a1vfQtxcXHYvXs3EhISrvT9eVVzpwVnWrqgUPR/aMm3xKXkpWfbpQ2EJMOCW2nFhGswOi4MQH9PKiJvcLsPy7x58y5Z4Lhu3bpB/966detln3P9+vXuhiEL4pXd+MQI6ENDpA0mSIkjLMcNJpgtfQjXuv0rTX7OVXDLiwbJ5GbG4ExLF8pr2jFvYuLlH0A0Ahw/vQKuDQ95ZSeZZL0OKXod7AJcO/VS8Oiy9uG4wdGHiSMs0slxrRRqlzQOCmxMWK6AOPzJ6SBpsY4leB2sMcIuACl6HZL1OqnDCVricvJythggL2LCMkI2u4CDYsLC3g+SyuXOzUFL3KGZ/VekNSk5Chq1EsbuXlQ1m6UOhwIUE5YRqmzshNlqQ7hGhfGJXEopJVfhbTWv7oJNf/0Kp4OkNLDFAAtvyVuYsIxQufPKbnq6ng3jJDY1NQoalaOB3Fk2kAsagiCww62MuBrIsY6FvIQJywj116/wyk5qWrUKU9OcDeRqOC0ULGrbutHcaYFaqcC0NL3U4QQ9sZaPIyzkLUxYRki8imDBrTz0b4TYLm0g5DNiK/gpqVHQhaikDYZco1zH6k3o6bVJGwwFJCYsI2C29OFkg2NnUg5FywNXCgUfV8M4XjTIQlp0KOIjtOizCzhSxxYD5HlMWEbgcF3/UsqkKC6llIOZo6IBAMcNHeiy9kkbDPlEf/0Kp2XlQKFQDFix1y5pLBSYmLCMAPuvyE+KPhRJUVrY7AKO1JmkDoe8zNJnw9FzYsO4aGmDIRfWsZA3MWEZgXKuTJCl/i9LTgsFuq/OmWC12REbrkFmbJjU4ZATeyKRNzFhGQGuEJIn8b8Hr+4C38D9gxQKthWQixnp0VAogHPGHjSYeqQOhwIMExY3GYw9MJh6oFIqMJ1LKWXFNcLC+fOA59rHaxQvGuQkQqvGxCRHI03WsZCnMWFxkzjdMDEpEqEaLqWUkxnpeiidV3eNvLoLaNyhWb5Yx0LewoTFTWXcP0i2wrVq1zYJZfyyDFiNph7UtXdDoQBmMGGRnf6NEFnHQp7FhMVNbBgnb7y6C3xiMjoxKRIRWrW0wdAFxFqyQ7VG2Ozc24s8hwmLG/psdhyudTRE4lC0PIkjXweZsAQs7h8kb+MSIxChVaPLanM12CTyBCYsbjjZ0InuXhsitWqMTYiQOhwagjjCwqu7wCUW3HKUU55USgVmpDsWJLDwljyJCYsbxGmGGRl6KLlDsyxNSIpEmEaFTksfTjV1Sh0OeVifzY5DzlFOthWQL/ZEIm9gwuIG8cPHKzv5GrjcnMubA09Fo2OUM1yjwrhEjnLKlbhdAkdYyJOYsLiBDeP8g5hQcqVQ4HGNcqZHQ8VRTtkSP4OVTZ0w9fRKGwwFDCYsw9TR04uKRscUA0dY5I0rhQKXOGrGtgLylhCpRXpMKAQBOFTDnZvJM5iwDNPhWiMEwbGFekKkVupw6BLEP2YnDCbu3BxgDta2A+BFgz9gHQt5GhOWYWLDOP8h7txsF8CdmwOI2dLnWibLhEX+WMdCnsaEZZjE6QX2X/EPvLoLPIdqjbALQIpeh6QondTh0GUMnJoVBLYYoCvHhGUYBEEYUHAbLWksNDzcuTnw8DPoX6amRiFEpUCL2Yqa1m6pw6EAwIRlGM4Ze9DUYYFaqcA07tDsF7IzuLQ50BxkwuJXdCEqTEmJAgCUcaSTPIAJyzCInTUnp0RBF8Idmv3BjPRoKLhzc0ARR1iymbD4Da7YI09iwjIM5dzw0O9EaNWYwJ2bA4bB2AODqQdKBVyNAUn+clw7N7dLGgcFBiYsw8C5c/8k/vfiRoj+TyyenpAUiXDu0Ow3xFqyr86ZYO2zSxwN+TsmLJfRa7PjcJ1z7xIuafYrvLoLHOXO5mPcodm/jI4Lgz40BNY+O47Vs8UAXRm3E5bt27djwYIFSE1NhUKhwMaNGy/7mK1bt2LmzJnQarUYN24c1q1bd8Exq1evxujRo6HT6ZCfn4+9e/e6G5pXnDB0wNJnR5ROjay4cKnDITdw5+bAwX28/JNCoXDVHIlN/4hGyu2ExWw2Izs7G6tXrx7W8VVVVbj11ltxww03oLy8HI8++ijuv/9+/Oc//3Eds2HDBhQXF+Opp55CaWkpsrOzUVRUhMbGRnfD87iyAYV+3KHZv4xPjEBoCHdu9nc2u4DDzh2aWXDrf1yFt1yxR1fI7YRl/vz5+O1vf4s77rhjWMevWbMGWVlZ+P3vf4/Jkydj+fLluOuuu/CHP/zBdcwLL7yABx54AMuWLcOUKVOwZs0ahIWFYe3ate6G53Hih4wN4/yPWqXE9HQub/Z3FY0dMFsdOzSPdxZSk//I5Uoh8hCv17Ds2rULhYWFg+4rKirCrl27AABWqxUHDhwYdIxSqURhYaHrmPNZLBaYTKZBN29xDUVz7twv5XLnZr8nFk1PT9dzh2Y/JI6KnW42w9jFnZv9kSAIeHR9Gf6ytRJmi3T7s3k9YTEYDEhKShp0X1JSEkwmE7q7u9Hc3AybzTbkMQaDYcjnXLVqFfR6veuWkZHhldiN3b041WQGAGSnR3vlNci72AfC//Wv0ouRNhAakdhwDUbFhQEAylnH4pfOtHRhY/k5vPhZBUJU0q3V8ctVQitWrIDRaHTdampqvPI6CgWw8htT8L25oxEXwR2a/ZE4MnayoYM7N/upMlcfJPZf8VdsMeDfxJmGaalR0KilSxu83tAgOTkZDQ0Ng+5raGhAVFQUQkNDoVKpoFKphjwmOTl5yOfUarXQar2fQETpQvD9a7K8/jrkPeLOzQ0mC47UmTAnK1bqkMgNg3do5giLv8pOj8YH5ec40umn+punSvsZ9HqqVFBQgJKSkkH3bdmyBQUFBQAAjUaDvLy8QcfY7XaUlJS4jiG6EuJ0Hndu9j9H6hw7NCdH6ZCs5w7N/mpgTyTu3Ox/xBpAqWs53U5YOjs7UV5ejvLycgCOZcvl5eWorq4G4JiuWbp0qev4H/zgBzh9+jSeeOIJHD9+HH/5y1/w9ttv47HHHnMdU1xcjFdffRWvv/46jh07hoceeghmsxnLli27wrdHxAZy/oxdpgPDlBTHzs2t3LnZ7/T02lxN/6ReLev2lND+/ftxww03uP5dXFwMALj33nuxbt061NfXu5IXAMjKysK///1vPPbYY/jjH/+I9PR0/O1vf0NRUZHrmEWLFqGpqQkrV66EwWBATk4ONm/efEEhLtFIsA+E/yqXyZUdXRlx5+aDtUaU1bQh01mES/L31TkTem0C4iM0SI8JlTQWtxOWefPmXXJIb6gutvPmzUNZWdkln3f58uVYvny5u+EQXdb5OzcnRnFqwV+4dmjmKj2/l5MRjYO1RpTXtOP2nDSpw6FhGjjKqVBI21bAL1cJEbmDOzf7pwZTD+qNjh2aZ6RzhZC/E0fJuFLIv8hpWpYJCwUFLqv0P+IXJXdoDgziCpMj3LnZr/Tv4yX9Kj0mLBQUxG6bZaxj8RtyurKjKzdw5+bjBu7c7A9aOi2oae2GQgHMkEEfJCYsFBRyncPRh2rbuXOznxCLpLnhYWAYuHMzV+z5B/G/09iECETpQqQNBkxYKEhMSIpEmEYFs9WGykbu3Cx3NruAw3WOHZo5whI4uGLPv8htlJMJCwUFlVLhKtwsq2YDObk71dSJTksfwjQqTEjiDs2Bgjs3+xcmLEQSEYvG+GUpf+IV+PQ07tAcSLhzs/+w24UBLfmjJY1FxISFgoZYx8LCW/mTSytw8qyBOzcf5M7Nsna6uRMdlj7oQpSYlCyPUU4mLBQ0xOHok40d6LRw52Y5E5ef57BhXMDJ4bSQXygbMMqpVskjVZBHFEQ+kBilQ1p0KATBsVqI5KnbasMJcYdmjrAEnP7NSNsljYMuTfzvk5spff8VERMWCio57Mcie4frjLDZBSRFaZGil3bvEvI87tzsH+RWcAswYaEgk8udm2Wvv7NmtLSBkFdw52b567bacNzgHOWU0eeQCQsFlYEjLLy6kydx9EtOQ9HkOeLOzQBQzqlZWTpyzjHKmRipRYpePpvFMmGhoDItTQ+1UoHmTgvq2nl1J0euhEVGV3bkWWwgJ28DlzNLvUPzQExYKKjoQlSY7Ly6Yx2L/NQbu2Ew9UClVGA6d2gOWP11LGziKEflMm0rwISFgg7rWORLTCInJUciTMMdmgOVuFKIOzfLkxwLbgEmLBSE+utYeHUnN+J/k1yZXdmRZ2XFh3PnZplqNPWgrt25Q7PM+iAxYaGgIyYsvLqTn/76FRbcBrKBOzcf5EinrIhdpickRiJCK69RTiYsFHQGXt0dq+fVnVxY++yuHZo5whL4XCOdTFhkRa7TQQATFgpCCoWC7cFl6LjBBEufHfrQEGTFh0sdDnkZd26WJ9cKIRleNDBhoaDUvxEi61jkor//iryWUpJ3iBcNp5vMaO+yShsMAQBsdsG1bQlHWIhkgiMs8uMquGX9SlCICde4RtI4LSQPlY2dMFttCNOoMCFJHjs0D8SEhYKSmLCcaelCq5lXd3JQ5tpsLVrSOMh3crm3l6yIfXFmpOuhUspvlJMJCwWl6DANxjiv7rhKQXotnRacbekCANfqEQp8uaMco2mcmpWH/oJbeY5yMmGhoCUWlXE4WnriF+W4xAjoQ0OkDYZ8ZqbYxLG6HXY79/aSWtmAlvxyxISFglYuG8jJBvcPCk4TkyIRplGhw9KHisZOqcMJamZLH042OHZoluu0LBMWClribsAHa3h1J7WyGrHDrTyHosk71ColZjj3jCrlhYOkDtcZYReAFL0OSVHy2aF5ICYsFLQmJkdCq1bC1NOH081mqcMJWja7gIM1bBgXrGZmso5FDuQ+HQQwYaEgFjLg6o7Lm6VT2diJTkufbJdSkneJCUspVwpJSlwhxISFSKa4EaL0xHOfnR4ty6WU5F3iqFplYyeMXb3SBhOkBEFwJYxynpZlwkJBTfxwcoRFOgM73FLwiYvQYlRcGID+Wibyrdq2bjR1WKBWKlyjznI0ooRl9erVGD16NHQ6HfLz87F3796LHjtv3jwoFIoLbrfeeqvrmO9973sX/PyWW24ZSWhEbhFHWI4bOtBttUkbTJAS/0jNlPGVHXlXfx1Lu7SBBCmx4HlqahR0ISqJo7k4txOWDRs2oLi4GE899RRKS0uRnZ2NoqIiNDY2Dnn8e++9h/r6etftyJEjUKlUuPvuuwcdd8sttww67q233hrZOyJyQ4peh8RILWx2wbVTMPmOqafXtZxVjputkW+I/Vi4UkgapWedFw2j5H3R4HbC8sILL+CBBx7AsmXLMGXKFKxZswZhYWFYu3btkMfHxsYiOTnZdduyZQvCwsIuSFi0Wu2g42Ji5H3iKDAoFApuhCihQzVGCAKQGRuG+Ait1OGQRAZOzbLFgO8dcH735QVSwmK1WnHgwAEUFhb2P4FSicLCQuzatWtYz/Haa6/hnnvuQXj44O3jt27disTEREycOBEPPfQQWlpaLvocFosFJpNp0I1opMQ21Kxj8T3XhoccXQlqk5IjERqiQkdPHyqb2EDOl7qsfThW72gYJ/dpWbcSlubmZthsNiQlJQ26PykpCQaD4bKP37t3L44cOYL7779/0P233HIL3njjDZSUlODZZ5/Ftm3bMH/+fNhsQ9cUrFq1Cnq93nXLyMhw520QDdI/wtIuaRzByLXhoYyXUpL3DWwgx5FO3zpYY4TNLiBFr0NqdKjU4VyST1cJvfbaa5g+fTrmzJkz6P577rkHt912G6ZPn46FCxdi06ZN2LdvH7Zu3Trk86xYsQJGo9F1q6mp8UH0FKimp+mhVAAGUw/qjd1ShxM0BEEYMMIi7ys78j6xfqL0bLu0gQQZsW5I7vUrgJsJS3x8PFQqFRoaGgbd39DQgOTk5Es+1mw2Y/369bjvvvsu+zpjxoxBfHw8Kisrh/y5VqtFVFTUoBvRSIVr1ZiY7Pgd4iiL75xp6UJbVy80aiUmp/AzHOz6G8hxhMWXDpz1n1V6biUsGo0GeXl5KCkpcd1nt9tRUlKCgoKCSz72nXfegcViwXe+853Lvk5tbS1aWlqQkpLiTnhEIyauUhA/vOR94ujK9DQ9NGq2hAp24tRsRWMnjN1sIOcLjoZx/lFwC4xgSqi4uBivvvoqXn/9dRw7dgwPPfQQzGYzli1bBgBYunQpVqxYccHjXnvtNSxcuBBxcXGD7u/s7MRPf/pT7N69G2fOnEFJSQluv/12jBs3DkVFRSN8W0TumTXa8WFlwuI73KGZBoqP0CIz1tFA7iAL4H3idLMZ7V290KqVmOIHo5xqdx+waNEiNDU1YeXKlTAYDMjJycHmzZtdhbjV1dVQKgfnQSdOnMCOHTvw6aefXvB8KpUKhw4dwuuvv4729nakpqbi5ptvxm9+8xtotVzmSL4xa1QsAOCrc0b09Npk3TwpUHCHZjrfzMxoVLd2obS6DddNSJA6nIAnXqDNSPePUU63ExYAWL58OZYvXz7kz4YqlJ04cSIEYei19aGhofjPf/4zkjCIPCY9JhSJkVo0dlhwsKYd+WPiLv8gGrFuq821lJJLmkk0c1QMNpaf40aIPlLmRwW3APcSIgLgaCAnzuHu57SQ1x2ucyylTIrSIkWvkzockon+Fv1tbCDnA+IIS56fjHIyYSFyynMtq2TC4m2u5cwZMVAouEMzOUxMjoQuRImOnj6cYgM5rzJ29+Jkg+Mcc4SFyM/MGu2oYznAqzuv4w7NNJQQlRIz0qMBsMWAt4mdvUfF+c+2GExYiJwcO5Uq0d7Vi9PNvLrzloFLKVlwS+djPxbf8LfpIIAJC5FLiEqJbOfV3f4z/LL0lrr2bjR2WKBWKjA9TS91OCQz3LnZN/xlh+aBmLAQDcDCW+8Tk8GpaXqEarh8nAYTR90qGjth6mEDOW+w2QXXlJA/dLgVMWEhGkBsIMfCW+/Zd6YVADDbj67syHcSIrXIiA2FILCBnLecbOhAp6UP4RoVJiZHSh3OsDFhIRpAvNo43WxGS6dF4mgCkzjCIhY5E53PVcfCjRC9Qqxfyc2MgUrpP6v0mLAQDRAdpsH4xAgAbNPvDcauXpxocDSME0eziM7Hwlvvcu3Q7Ger9JiwEJ2H+wp5z4Fqx3TQmIRwv1lKSb4nLndnAznv8MeCW4AJC9EFxKs7Ft563t4qxzmdPYrTQXRxk1McLQZMPX043WyWOpyA0tJpwZmWLgD+11aACQvRecTaisO1Rlj6bBJHE1j2OwtuOR1ElxKiUmJGWjQATgt5mrhP0/jECOhDQ6QNxk1MWIjOMzouDHHhGlhtdhypM0odTsDo6bXhUK3jfM5mwS1dRu6oaABcsedproZxfjYdBDBhIbrAoI0Q2UDOYw7XGWG12REfocWouDCpwyGZE6cN9zpH5cgzSv1sh+aBmLAQDUGcsmAdi+e4+q+M5oaHdHniZ/B0kxnNbDHgEb02u6u3jT81jBMxYSEaQp7z6q70bBsEgasUPIH9V8gd0WEaTHI2NdtXxVEWTzh6zgRLnx3RYSEYEx8udThuY8JCNIRpaVHQqJVoMVtdFfU0cna74Cq4ncOEhYZpTpbjd2UPExaP6O+/EgOlHzWMEzFhIRqCVq3CDOfGfPs5h37FHPvC9CFMo8LkFP9pBU7SEouz9zJh8Qix4NbfGsaJmLAQXUQeG8h5jFg4OTMzBmoVv3ZoeMQRlmMGEzdC9AB/bRgn4jcH0UXMctaxsPD2yrH/Co1EUpQOo+PCIAjAAa7YuyL1xm6cM/ZApVQgOz1a6nBGhAkL0UWIS5srGzvR3mWVOBr/Jhbcsv8KuUv8nWEdy5URN5KclByJcK1a2mBGiAkL0UXEhmtclfTstjlyde3dqGvvhkqpQE5GtNThkJ8Rp4X2sZbsiuypagEAzPLT6SCACQvRJbGB3JUTp4Ompkb57ZUdSSc/Kw4AcKi2Hd1WbpUxUntOOz6HV42JkziSkWPCQnQJbCB35TgdRFciIzYUyVE69NoElNXwczgSrWYrTjR0AOgfsfJHTFiILkFsIHewph3WPrvE0fingR1uidylUCgwO4vLm6/EXud00MSkSMRFaCWOZuSYsBBdwtiEcESHhcDSZ8fRepPU4fgdY3ev68pOTP6I3MU6liuz2zkdlD/Gvz+DTFiILkGhUCAvU6xj4ZeluxxbGwBZ8eFIiPTfKzuSVr4zYTlwto0jnSOw+7RjhMWf61cAJixEl8UGciMnXhH788oEkt64hAhEh4Wgp9eOI+eMUofjV9rMVhw3+H/9CsCEheiyBjaQ40aI7mHBLXmCUqlgm/4REvvXjE+MQLwf168ATFiILmtGuh4atRJNHRacbjZLHY7fsPTZUF7bDoAdbunKidNC3LnZPWL/FX+fDgKYsBBdli5E5apj2XWqReJo/MeROiOsfXbER2iQ5Ydb2ZO8iNMZe8+0wmbnSOdwBUrBLTDChGX16tUYPXo0dDod8vPzsXfv3oseu27dOigUikE3nU436BhBELBy5UqkpKQgNDQUhYWFqKioGEloRF4xd6zj6oQJy/Dtc04HzRoVC4XC/7ayJ3mZkhKFcI0KHT19OOGsyaBLa++y4rjBsbpRbMDnz9xOWDZs2IDi4mI89dRTKC0tRXZ2NoqKitDY2HjRx0RFRaG+vt51O3v27KCfP/fcc3jppZewZs0a7NmzB+Hh4SgqKkJPT4/774jICwrEhOV0C+y8uhsWbnhInqRWKV27DHN58/DsrWqFIDjaMwTCKj23E5YXXngBDzzwAJYtW4YpU6ZgzZo1CAsLw9q1ay/6GIVCgeTkZNctKSnJ9TNBEPDiiy/il7/8JW6//XbMmDEDb7zxBs6dO4eNGzeO6E0RedqM9GiEaVSDOkbSxdntgmuEhQW35Cn5bCDnlt0B0I5/ILcSFqvVigMHDqCwsLD/CZRKFBYWYteuXRd9XGdnJ0aNGoWMjAzcfvvt+Oqrr1w/q6qqgsFgGPScer0e+fn5l3xOIl/SqJWuP7ycFrq8yqZOGLt7ERqiwpTUKKnDoQAxcOdmrti7PLHgNj8YE5bm5mbYbLZBIyQAkJSUBIPBMORjJk6ciLVr1+KDDz7AP/7xD9jtdsydOxe1tbUA4HqcO89psVhgMpkG3Yi8TZwW2smE5bLEIfvczGiEqFjbT56RnRENjUqJ5k4Lqrhi75KMXb2u7txX+Xn/FZHXv0kKCgqwdOlS5OTk4Prrr8d7772HhIQE/PWvfx3xc65atQp6vd51y8jI8GDEREMTC2/3VLVwlcJliEtPZ3E6iDxIF6JCTkY0ANaxXM6+M476lTEJ4UiM0l3+AX7ArYQlPj4eKpUKDQ0Ng+5vaGhAcnLysJ4jJCQEubm5qKysBADX49x5zhUrVsBoNLpuNTU17rwNohGZmqpHpE6Njp4+fMVumxclCAK+dI5CBcqVHcnH7CxH4e0e1rFcktiOPxBWB4ncSlg0Gg3y8vJQUlLius9ut6OkpAQFBQXDeg6bzYbDhw8jJSUFAJCVlYXk5ORBz2kymbBnz56LPqdWq0VUVNSgG5G3qZQKV/Eap4UurqKxE00dFuhC+ld1EHnKHOcfYBbeXpqY0F0VAP1XRG5PCRUXF+PVV1/F66+/jmPHjuGhhx6C2WzGsmXLAABLly7FihUrXMf/3//9Hz799FOcPn0apaWl+M53voOzZ8/i/vvvB+BYQfToo4/it7/9LT788EMcPnwYS5cuRWpqKhYuXOiZd0nkIQVMWC5rR0UzAEeBpC5EJXE0FGjyRsVAqQBq27pxrr1b6nBkydjd6xoFDpQVQgCgdvcBixYtQlNTE1auXAmDwYCcnBxs3rzZVTRbXV0NpbI/D2pra8MDDzwAg8GAmJgY5OXlYefOnZgyZYrrmCeeeAJmsxkPPvgg2tvbcc0112Dz5s0XNJgjktrccY4P/76qVlj77NCoWVB6vh2VjoTl2vHxEkdCgShCq8a0ND0O1Rqx70wrbs9Jkzok2dl/phV25y7pSQFSvwIACiEA1oaZTCbo9XoYjUZOD5FX2e0CZv/uM7SYrfjXDwpYVHqeXpsd2b/+FF1WG/7942swNVUvdUgUgH6z6She21GFb+dn4uk7pksdjuw8/fExvLL9NO6ZnYFnvjlD6nAuyZ2/37w8JHKDknUsl1Re044uqw2x4RpMTubFA3nHHDaQuySx4DaQpoMAJixEbuvvx9IscSTyI9avzB0bB6WS+weRd4gN5CobO9HSaZE4Gnnp6OnFkTpH/UogbHg4EBMWIjeJ/VhKq9vR02uTOBp5Yf0K+UJsuAYTkiIA9LefJ4f9Z9pgF4BRcWFI0YdKHY5HMWEhclNWfDiSo3Sw9tlRerZN6nBko6OnF+U17QCAq8cxYSHvumZcAgBg+8kmiSORl91VYg+kwJoOApiwELlNoVCwTf8Q9pxuhc0uYHRcGNJjwqQOhwLcdRMcSfH2iibuKzSAOOIUaNNBABMWohFhHcuFxOkgjq6QL+RnxUGjVqLe2IPKxk6pw5GFTkvfgPoVjrAQEfrrWA7VGtFp6ZM4Gnn40pmwXMOEhXwgVKNCvnO10DZOCwFw9F+x2QVkxoYhLTqw6lcAJixEI5IeE4aM2FD02QVuwgbAYOxBRWMnFApg7lgmLOQb14131LEwYXFwTQcF6B5eTFiIRmjuGMcf5l2sY3GNrsxI00MfFiJxNBQsrp/oSFj2VrVyxR4cO8kDgdd/RcSEhWiExDb9TFj6ExbWr5AvjU+MQHKUDpY+e9Dv3tzR04tDtYHZf0XEhIVohMSNEI+cM8LY1StxNNIRBMFVcMv6FfIlhULRv1ooyKeFvqxshs0uYEx8eMCu0mPCQjRCiVE6jE0IhyD09z4IRhWNnWjssECrVmLmqBipw6Egc90E9mMBgM+PNwIA5k1MlDgS72HCQnQFxALTYJ4WEtvxz8mKhS5EJXE0FGyuGRcPpcKROJ9r75Y6HEkIgoAvTjgStq9NYsJCREMQlzcHc8LC5cwkpegwDWakRwMA/lsRnKMsX50zoanDgjCNCrOzAneUkwkL0RUQq/FPNHSgqSP4NmHrtdldO8Oy4JakIk4LBevy5i+c00HXjIuHVh24o5xMWIiuQEy4BpNTogD0b+keTMpr2mG22hAbrsEU53kg8rXrnQnLjopm9NnsEkfje5+fcCQsNwTwdBDAhIXoionTQuLUSDAR61fmjo2DUqmQOBoKVtnpekTp1DD19OGgc2lvsGg1W12bjt4QwAW3ABMWoismXt2VHG+E3R5cm7CxfoXkQK1S4prxwbm8edvJRggCMDklCsl6ndTheBUTFqIrlD8mFhFaNZo6LDhUFzxXdx09vShzXtmxfoWkJrbp3x5khbdfHBdXByVIHIn3MWEhukJatcrVInzLUYPE0fjOntOOjdZGxYUhIzYwG1WR/xALbw/WtAdNI8c+m91VaBzo00EAExYij7hpchIA4LOjjRJH4js72I6fZCQ1OhTjEiNgF/p/NwNdWU07jN29iA4LQW5m4C5nFjFhIfKAGyYmQqVU4ERDB6pbuqQOxyfE+pVrmbCQTPTv3hwcFw7icubrxidAFQRF70xYiDxAHxaCOaMdG45tOdYgcTTe12DqQUVjJxQKoGBsYO4MS/5HnJrdfrIZghD4BfBiO/5A7m47EBMWIg+5aYo4LRT4CctWZ9+H6Wl6RIdpJI6GyCE/KxZatRIGZ0IdyOqN3Thu6IBC0V+/E+iYsBB5SKGzjmXvmVa0d1kljsa7PjniKC4Wa3eI5EAXosKcLMdIZ6AvbxZXB+VmRCM2PDguGpiwEHlIZlwYJiZFwmYXsPVE4H5ZGrt7XfUr86cnSxwN0WDXB0mb/i/E7rZBsDpIxISFyIPEaaEtATwt9PnxBvTaBIxLjMC4xEipwyEaRJwe2VvVip5em8TReIelz+a6aAj0dvwDMWEh8qBCZ8Ky7WQTLH2B+WX5yWHHdND8aRxdIfkZnxiB5CgdLH127KlqlTocr9hb1Youqw2JkVpMTQ2ePbyYsBB50Iw0PRIjtei09GH36cD7sjRb+lxD7fOnpUgcDdGFFAoFrpvgWGq/LUCnZsXVQTdMTIRCEfjLmUVMWIg8SKlU4MbJgbta6IsTjbD02TEqLgyTUzgdRPJ0/QTHNMnWAO3HItbI3RAE7fgHYsJC5GE3i8ubjzUEXC8IcXXQLdOSg+rKjvzLNePjoVEpcbrJjOMGk9TheFRVsxlVzWaEqBRB12V6RAnL6tWrMXr0aOh0OuTn52Pv3r0XPfbVV1/Ftddei5iYGMTExKCwsPCC47/3ve9BoVAMut1yyy0jCY1IcgVj4xCmUaHe2IOvzgXOl2VPr83VWZPTQSRn+tAQVxO5D8vPSRyNZ4mfwdmjYxGpC5E4Gt9yO2HZsGEDiouL8dRTT6G0tBTZ2dkoKipCY+PQQ29bt27F4sWL8cUXX2DXrl3IyMjAzTffjLq6ukHH3XLLLaivr3fd3nrrrZG9IyKJ6UJUrhbhnwbQtND2k03ostqQqtchO10vdThEl3RbdioA4KND5wJqpFNczhws3W0HcjtheeGFF/DAAw9g2bJlmDJlCtasWYOwsDCsXbt2yOP/+c9/4oc//CFycnIwadIk/O1vf4PdbkdJScmg47RaLZKTk123mJjA38iJAldhAHa93eycDiridBD5gRsnJyI0RIWa1m6U17RLHY5HmC192OMs5p8XRP1XRG4lLFarFQcOHEBhYWH/EyiVKCwsxK5du4b1HF1dXejt7UVsbOyg+7du3YrExERMnDgRDz30EFpaWtwJjUhWvjYpEUoFcLTehNo2/98M0dpnd+2R9PXpnA4i+QvTqF19kT48GBjTQl9WNsNqsyMzNgxjE8KlDsfn3EpYmpubYbPZkJQ0uB13UlISDAbDsJ7jZz/7GVJTUwclPbfccgveeOMNlJSU4Nlnn8W2bdswf/582GxD97GwWCwwmUyDbkRyEhuuwaxRjqS85Jj/r1TYeaoZHT19SIjUIi8ItrGnwCBOC/37UD1sdv+fFupfzpwQlKOcPl0l9Mwzz2D9+vV4//33odPpXPffc889uO222zB9+nQsXLgQmzZtwr59+7B169Yhn2fVqlXQ6/WuW0ZGho/eAdHwBVLXW7FZXNHUJCiDYBt7CgzXTohHlE6Nxg4L9lT596h9T68NHx+uBwDcNCU4mza6lbDEx8dDpVKhoWHwF3BDQwOSky99Ap9//nk888wz+PTTTzFjxoxLHjtmzBjEx8ejsrJyyJ+vWLECRqPRdaupqXHnbRD5hFjHsvt0C0w9vRJHM3J9Njs+PSp2t+V0EPkPrVrl+p396GC9xNFcmZJjjTD19CFFr0PB2Dipw5GEWwmLRqNBXl7eoIJZsYC2oKDgoo977rnn8Jvf/AabN2/GrFmzLvs6tbW1aGlpQUrK0F+OWq0WUVFRg25EcpMVH45xiRHo8/PNEPdWtaKtqxcxYSHIz4q9/AOIZOS2HMe00CdH6mHts0sczcj964DjwvzOmWlQBekop9tTQsXFxXj11Vfx+uuv49ixY3jooYdgNpuxbNkyAMDSpUuxYsUK1/HPPvssnnzySaxduxajR4+GwWCAwWBAZ2cnAKCzsxM//elPsXv3bpw5cwYlJSW4/fbbMW7cOBQVFXnobRJJozAAut6KzeJumpIEtYq9Jsm/XDUmDvERWrR39WJHpX9eODR29GB7hWOzwztnpkscjXTc/vZZtGgRnn/+eaxcuRI5OTkoLy/H5s2bXYW41dXVqK/vH3p7+eWXYbVacddddyElJcV1e/755wEAKpUKhw4dwm233YYJEybgvvvuQ15eHv773/9Cq9V66G0SSUOsY/niRCN6bf53dWe3C/jPV87pIK4OIj+kUirwjRn+PS30Qdk52OwCcjOjMTYhQupwJKMeyYOWL1+O5cuXD/mz8wtlz5w5c8nnCg0NxX/+85+RhEEkezkZ0YiP0KC504odlc24wc96J5RWt6Gxw4JInRpXjw2uNuAUOBZkp2LdzjP49CsDuq02hGpUUoc0bIIg4F8HagEA3wzi0RWAewkReZVKqcAC59LKt/ZUSxyN+z52rg4qnJwEjZpfF+SfZmZGIy06FGarzbU02F98dc6EEw0d0KiVWDAjVepwJMVvICIvW5KfCQAoOd4Ig7FH4miGTxD6p4NumRacyygpMCgU/RcOH/lZEzlxdOWmKUnQhwXX3kHnY8JC5GXjEiMxZ3QsbHYBG/b5zxL8Q7VG1LV3I0yjwvUTgmsbewo8YhO5z080+k2bAWuf3dWl964gnw4CmLAQ+cS3naMsG/ZV+03HTXF10A0TE6EL8Z85f6KhTE6JxNiEcFj77Pj0K/9YtffFiUa0mq1IiNTi2vGsIWPCQuQDt0xLRkxYCM4Ze7D1hPzn0AVBwCdHHCsq5k/ndBD5P4VCgduy0wD4z7TQu87poDty09hSAExYiHxCF6LCXXmOId03/aD4dtvJJpxt6UKEVu13K5uILmZBtmN5847KZrR0WiSO5tJazVZ84by4CfbVQSImLEQ+sniOY1roixONqGvvljiaS3ttRxUA4FuzMhCuHVH3AyLZGZMQgWlpUbDZBXx8ZHgb9krlw/I69NoETEuLwsTkSKnDkQUmLEQ+MiYhAgVj4mAXgA175TvKcsLQgf9WNEOpAJZdPVrqcIg86jY/WS30r1LHdBCLbfsxYSHyoSVXOUZZ1u+rkW3n27XO0ZWbpyQjIzZM4miIPOsbzl4m+860ot4oz5HOE4YOHKkzIUSlwG05aVKHIxtMWIh86OYpyYiP0KCxw4KSY/Irvm3utOD98joAwH3XZkkcDZHnpUaHYvboGAgCsLFMnqMs7zpHV26YmIjYcI3E0cgHExYiH9KolbgrLwMA8KYMp4X+ubsa1j47ZqTrMWtUjNThEHnF3c7P4N+/rEJPr03iaAbrs9nxfpnjokEs1CcHJixEPrZ4juPL8r8VTahp7ZI4mn6WPhv+v91nAQD3XZMFhSI4t7CnwLcwNw1p0aFo7LDg7f3yaub434pmNHVYEBuuwTyu0BuECQuRj42KC8e14+MhCMBbMhpl+bD8HJo7LUiO0uHr3JmZAphGrcQPrh8DAHh56ylY+uQzyiIW296Wncr9u87Ds0EkAXF/obf318DaJ33xrSAIrqXMS+eOQgibVFGAu3tWBhIjtag39uDdA3VShwMAMHb1YstRRxdeTgddiN9KRBK4cXISEiK1aO60ur6gpLTrVAuOGzoQGqLCt539YogCmS5EhR9cPxYA8JetlbJYtffGrjOw9tkxMSkSU1OjpA5HdpiwEEkgRKXEolli8e1ZiaPpbxT3zbw0RIdxVQIFh8VzMhEfoUFtWzc2lkk7ytLcacGabacAAA9/bRxryIbAhIVIIvfMyYBCAXxZ2YKqZrNkcZxu6kTJcccS62VXcykzBY9QjQoPXOuoZVn9RSX6JBxl+eNnFTBbbZiRrsc3WEM2JCYsRBJJjwnDvAkJAKQtvv37l2cAAF+blIixCRGSxUEkhe9cNQoxYSE409KFTYfqJYnhVFOnq83BL74+GUolR1eGwoSFSELfzh8FwJGwNHb0+Pz127us+JdzR9j7ruHoCgWfcK0a9ztHWf78RSXsdsHnMTz7yXHY7AIKJyfiqjFxPn99f8GEhUhCX5uUiOlpenT09OH/Pjrq89d/a28NunttmJQciblj+UVJwWlpwShE6dSobOzEJz7eFHFvVSs+PdoAlVKBn8+f5NPX9jdMWIgkpFIqsOrO6VApFdh0qB5fHPddu/5emx2v7zwDAPg+G8VREIvUhbjqt/70eYXPRlkEQcDTHx8DACyanYFxidyV+VKYsBBJbFqaHt937or8y41HYLb0+eR1Pz5cD4OpB/ERGtcOtkTB6vtXZyFCq8ZxQwe2HPNNq4F/H65HeU07wjQqPFo43iev6c+YsBDJwGM3TUBadCjq2rvxhy0nvf56jR09+M0mxxTUd68aDV2IyuuvSSRn+rAQLC1w1JT96fMKCIJ3R1msfXY8t/kEAODB68YgMVLn1dcLBExYiGQgTKPGbxdOAwCs/bIKR+qMXnstm13AYxvK0dxpxaTkSPyPs0U5UbC7/9oxCNOocKTOhK0nmrz6Wv/YfRbVrV1IiNS6llbTpTFhIZKJGyYl4hszUmAXgJ+/d8hrPSFe3lqJLytbEBqiwp+/PZOjK0ROseEafOcqxyjLH0u8N8pi7O7FS59XAACKb5qAcK3aK68TaJiwEMnIygVTEKVT40idCeucBbGetLeqFS84p5x+s3AaxiWy7wrRQPdfmwWtWonymnas/qLSK6/xl62VaO/qxfjECNzNPYOGjQkLkYwkRuqw4uuTAQAvbDmJ2rYujz13q9mKH79VBrsA3DkzjZurEQ0hMVKHX97q+Aw+/+lJbNjn2aaOtW1drmaNK74+CWpuNDpsPFNEMrNoVgZmj45Bl9WGlR985ZFhaUEQ8Pg7B2Ew9WBMQjh+c/s0D0RKFJi+WzAaP5zn2BhxxXuH8ZmHNigVBAHPfHIc1j47rhoTixsmJnrkeYMFExYimVE6e7OEqBT4/HgjPj585Y2sXttRhc+PN0KjVuLPi2dyzpzoMn5aNBF356XDLgDL3yrFgbNtV/R8lj4bit8+6Gr//4uvT2bvIzcxYSGSoXGJkXho3jgAwFMffgVjV++In6u8ph3PfHIcALDyG1MwhdvWE12WQuG4cPjapET09Npx3+v7UNnYMaLnMnb1Yulre/F+WR1USgWe/eZ0zEiP9mzAQYAJC5FM/XDeWIyJD0dzpwUL//Ilvqxsdvs5jN29+NFbpeizC/j69GQsyc/0QqREgUmtUuLP385FTkY02p1JR72x263nqGntwp0vf4k9Va2I0Krx9+/NxqLZ/ByOxIgSltWrV2P06NHQ6XTIz8/H3r17L3n8O++8g0mTJkGn02H69On4+OOPB/1cEASsXLkSKSkpCA0NRWFhISoqKkYSGlHA0IWo8IdFOUiI1KKq2Ywlf9uDR9eXobnTMqzHd1r68LN/HUJNazcyYkOx6s4ZHIImclOYRo2135uNMQnhOGfswffW7hv2iGdZdRvu+MuXONVkRqpeh389VIDrnDu0k/vcTlg2bNiA4uJiPPXUUygtLUV2djaKiorQ2Dj0Hig7d+7E4sWLcd9996GsrAwLFy7EwoULceTIEdcxzz33HF566SWsWbMGe/bsQXh4OIqKitDT4/vda4nkJDsjGiU/uR73FoyCQgFsLD+Hrz2/FW/uqR5yvxO7XcDOymYUbyjH7N9+hs1fGRCiUuDPi2dCHxoiwTsg8n+x4Rq88f05SIrS4kRDBx54Yz96em2XfMzmI/W455XdaO60YmpqFN5/+GpMSuZ07JVQCG4uQcjPz8fs2bPx5z//GQBgt9uRkZGBH/3oR/j5z39+wfGLFi2C2WzGpk2bXPddddVVyMnJwZo1ayAIAlJTU/GTn/wEjz/+OADAaDQiKSkJ69atwz333HPZmEwmE/R6PYxGI6Ki+AtBgelgTTt+8f5hfHXOBADIGxWD390xDZOSo3Cm2Yx3S2vxXmkd6tr7h6zHxIfjp0UTMX96ilRhEwWM4wYT7l6zCx09fYgJC0FmXDjSo0ORHiPewpAWE4rtJ5vwu4+PQRAcO7L/aXEuC90vwp2/326dQavVigMHDmDFihWu+5RKJQoLC7Fr164hH7Nr1y4UFxcPuq+oqAgbN24EAFRVVcFgMKCwsND1c71ej/z8fOzatWtYCQtRMMjOiMYHD1+N13edxQufnsCBs234xks7MCklEkfqTK7jInVqLMhOxV156cjNiOY0EJGHTEqOwqtLZ+GBN/ajrasXbV3tOFjTftHjv3NVJn61YCp7rXiIWwlLc3MzbDYbkpKSBt2flJSE48ePD/kYg8Ew5PEGg8H1c/G+ix1zPovFAoulfx7fZDINeRxRoFGrlLjvmix8fXoyfv3hUWz+yoAjdSYoFcB1ExLwzZnpuGlKEtvtE3nJVWPisHvFjTjTYkZtW7fz1oXatm7UOf+/zS7g0cIJuP/aLF4weJBfjlGtWrUKv/71r6UOg0gyKfpQrPluHnZWNuNMSxdunJyIpCju9krkC+FaNaam6jE1VT/kz+12AUolExVPc2ucKj4+HiqVCg0Ng7v+NTQ0IDk5ecjHJCcnX/J48X/dec4VK1bAaDS6bjU1Ne68DaKAMXdcPL6dn8lkhUhGmKx4h1sJi0ajQV5eHkpKSlz32e12lJSUoKCgYMjHFBQUDDoeALZs2eI6PisrC8nJyYOOMZlM2LNnz0WfU6vVIioqatCNiIiIApfbU0LFxcW49957MWvWLMyZMwcvvvgizGYzli1bBgBYunQp0tLSsGrVKgDAI488guuvvx6///3vceutt2L9+vXYv38/XnnlFQCOboKPPvoofvvb32L8+PHIysrCk08+idTUVCxcuNBz75SIiIj8ltsJy6JFi9DU1ISVK1fCYDAgJycHmzdvdhXNVldXQ6nsH7iZO3cu3nzzTfzyl7/EL37xC4wfPx4bN27EtGn9m6898cQTMJvNePDBB9He3o5rrrkGmzdvhk7HYW4iIiIaQR8WOWIfFiIiIv/jzt9vLg4nIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2XO7Nb8cic16TSaTxJEQERHRcIl/t4fTdD8gEpaOjg4AQEZGhsSREBERkbs6Ojqg1+sveUxA7CVkt9tx7tw5REZGQqFQePS5TSYTMjIyUFNTw32KLoPnavh4roaP58o9PF/Dx3M1fN46V4IgoKOjA6mpqYM2Th5KQIywKJVKpKene/U1oqKi+As9TDxXw8dzNXw8V+7h+Ro+nqvh88a5utzIiohFt0RERCR7TFiIiIhI9piwXIZWq8VTTz0FrVYrdSiyx3M1fDxXw8dz5R6er+HjuRo+OZyrgCi6JSIiosDGERYiIiKSPSYsREREJHtMWIiIiEj2mLAQERGR7DFhuYzVq1dj9OjR0Ol0yM/Px969e6UOSVKrVq3C7NmzERkZicTERCxcuBAnTpwYdExPTw8efvhhxMXFISIiAt/85jfR0NAgUcTy8cwzz0ChUODRRx913cdzNVhdXR2+853vIC4uDqGhoZg+fTr279/v+rkgCFi5ciVSUlIQGhqKwsJCVFRUSBixNGw2G5588klkZWUhNDQUY8eOxW9+85tB+7EE67navn07FixYgNTUVCgUCmzcuHHQz4dzXlpbW7FkyRJERUUhOjoa9913Hzo7O334LnzjUueqt7cXP/vZzzB9+nSEh4cjNTUVS5cuxblz5wY9hy/PFROWS9iwYQOKi4vx1FNPobS0FNnZ2SgqKkJjY6PUoUlm27ZtePjhh7F7925s2bIFvb29uPnmm2E2m13HPPbYY/joo4/wzjvvYNu2bTh37hzuvPNOCaOW3r59+/DXv/4VM2bMGHQ/z1W/trY2XH311QgJCcEnn3yCo0eP4ve//z1iYmJcxzz33HN46aWXsGbNGuzZswfh4eEoKipCT0+PhJH73rPPPouXX34Zf/7zn3Hs2DE8++yzeO655/CnP/3JdUywniuz2Yzs7GysXr16yJ8P57wsWbIEX331FbZs2YJNmzZh+/btePDBB331FnzmUueqq6sLpaWlePLJJ1FaWor33nsPJ06cwG233TboOJ+eK4Euas6cOcLDDz/s+rfNZhNSU1OFVatWSRiVvDQ2NgoAhG3btgmCIAjt7e1CSEiI8M4777iOOXbsmABA2LVrl1RhSqqjo0MYP368sGXLFuH6668XHnnkEUEQeK7O97Of/Uy45pprLvpzu90uJCcnC//v//0/133t7e2CVqsV3nrrLV+EKBu33nqr8P3vf3/QfXfeeaewZMkSQRB4rkQAhPfff9/17+Gcl6NHjwoAhH379rmO+eSTTwSFQiHU1dX5LHZfO/9cDWXv3r0CAOHs2bOCIPj+XHGE5SKsVisOHDiAwsJC131KpRKFhYXYtWuXhJHJi9FoBADExsYCAA4cOIDe3t5B523SpEnIzMwM2vP28MMP49Zbbx10TgCeq/N9+OGHmDVrFu6++24kJiYiNzcXr776quvnVVVVMBgMg86XXq9Hfn5+0J2vuXPnoqSkBCdPngQAHDx4EDt27MD8+fMB8FxdzHDOy65duxAdHY1Zs2a5jiksLIRSqcSePXt8HrOcGI1GKBQKREdHA/D9uQqIzQ+9obm5GTabDUlJSYPuT0pKwvHjxyWKSl7sdjseffRRXH311Zg2bRoAwGAwQKPRuH6hRUlJSTAYDBJEKa3169ejtLQU+/btu+BnPFeDnT59Gi+//DKKi4vxi1/8Avv27cOPf/xjaDQa3Hvvva5zMtRnMtjO189//nOYTCZMmjQJKpUKNpsNv/vd77BkyRIA4Lm6iOGcF4PBgMTExEE/V6vViI2NDepz19PTg5/97GdYvHixa/NDX58rJiw0Yg8//DCOHDmCHTt2SB2KLNXU1OCRRx7Bli1boNPppA5H9ux2O2bNmoWnn34aAJCbm4sjR45gzZo1uPfeeyWOTl7efvtt/POf/8Sbb76JqVOnory8HI8++ihSU1N5rsjjent78a1vfQuCIODll1+WLA5OCV1EfHw8VCrVBSs2GhoakJycLFFU8rF8+XJs2rQJX3zxBdLT0133Jycnw2q1or29fdDxwXjeDhw4gMbGRsycORNqtRpqtRrbtm3DSy+9BLVajaSkJJ6rAVJSUjBlypRB902ePBnV1dUA4Don/EwCP/3pT/Hzn/8c99xzD6ZPn47vfve7eOyxx7Bq1SoAPFcXM5zzkpycfMHCir6+PrS2tgbluROTlbNnz2LLli2u0RXA9+eKCctFaDQa5OXloaSkxHWf3W5HSUkJCgoKJIxMWoIgYPny5Xj//ffx+eefIysra9DP8/LyEBISMui8nThxAtXV1UF33m688UYcPnwY5eXlrtusWbOwZMkS1//nuep39dVXX7BE/uTJkxg1ahQAICsrC8nJyYPOl8lkwp49e4LufHV1dUGpHPz1rVKpYLfbAfBcXcxwzktBQQHa29tx4MAB1zGff/457HY78vPzfR6zlMRkpaKiAp999hni4uIG/dzn58rjZbwBZP369YJWqxXWrVsnHD16VHjwwQeF6OhowWAwSB2aZB566CFBr9cLW7duFerr6123rq4u1zE/+MEPhMzMTOHzzz8X9u/fLxQUFAgFBQUSRi0fA1cJCQLP1UB79+4V1Gq18Lvf/U6oqKgQ/vnPfwphYWHCP/7xD9cxzzzzjBAdHS188MEHwqFDh4Tbb79dyMrKErq7uyWM3PfuvfdeIS0tTdi0aZNQVVUlvPfee0J8fLzwxBNPuI4J1nPV0dEhlJWVCWVlZQIA4YUXXhDKyspcK1uGc15uueUWITc3V9izZ4+wY8cOYfz48cLixYulektec6lzZbVahdtuu01IT08XysvLB33fWywW13P48lwxYbmMP/3pT0JmZqag0WiEOXPmCLt375Y6JEkBGPL297//3XVMd3e38MMf/lCIiYkRwsLChDvuuEOor6+XLmgZOT9h4bka7KOPPhKmTZsmaLVaYdKkScIrr7wy6Od2u1148sknhaSkJEGr1Qo33nijcOLECYmilY7JZBIeeeQRITMzU9DpdMKYMWOE//3f/x30hyRYz9UXX3wx5HfUvffeKwjC8M5LS0uLsHjxYiEiIkKIiooSli1bJnR0dEjwbrzrUueqqqrqot/3X3zxhes5fHmuFIIwoDUiERERkQyxhoWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke0xYiIiISPaYsBAREZHsMWEhIiIi2WPCQkRERLLHhIWIiIhkjwkLERERyR4TFiIiIpI9JixEREQke/8/v1IMEV2W6YMAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": [ - "" - ] + "text/plain": "" }, "execution_count": 20, "metadata": {}, @@ -1616,23 +1364,24 @@ { "cell_type": "code", "execution_count": 21, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:19.785875100Z", + "start_time": "2023-12-10T12:14:19.699175500Z" + } + }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLe0lEQVR4nO3deVxVdf7H8Rc7KIIgCoIo7jtgoGSlbYxYTrZZ5piYNdPUlNVQpvYr0JwCzSkrHCvbbDHNyrKNShLLwg3c9x1DAVFZBNnuPb8/qFvkxlXhXuD9fDzO4xHnfs/hc75z5L7nLN+vg2EYBiIiIiJ2zNHWBYiIiIiciwKLiIiI2D0FFhEREbF7CiwiIiJi9xRYRERExO4psIiIiIjdU2ARERERu6fAIiIiInbP2dYFXAxms5lDhw7RokULHBwcbF2OiIiI1IJhGBQXFxMYGIij49mvoTSKwHLo0CGCg4NtXYaIiIich4MHD9KuXbuztmkUgaVFixZA9QF7eXnZuBoRERGpjaKiIoKDgy3f42fTKALLb7eBvLy8FFhEREQamNo8zqGHbkVERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNg9BRYRERGxewosIiIiYvcUWERERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFREREzqis0sTsZbuZkbLdpnU0itmaRURE5OIyDIMvNh4m6evtZBecxMnRgZH9g+nQqrlN6lFgERERkRo2HCxg2hdbWXvgOACB3u5MvK4H7X2b2awmBRYREREBILeojOkp2/kkMxsADxcn7r+qM/8Y1AkPVyeb1qbAIiIi0sSVVZp4/ce9/C9tD6UVJgBuuSSIx2N6EODtbuPqqimwiIiINFGGYfDlpsMkflX9nArAJe1bEn9Db8KDW9q2uD9RYBEREWmCNmcX8vTnW1m9/xgAbb3dmXRdD4aHBeLg4GDj6k6lwCIiItKE5J8oZ+Y3O1i49iCGAe4ujvxzcGfuu7KzzZ9TORsFFhERkSagosrMvJ/381LqLorLqwAYHhbIpOt6ENjSw8bVnZsCi4iISCP3/fZcpn2xjX35JQD0DfIm4YZeRIb42riy2lNgERERaaR2551g2hdbWb7zCAB+nm48HtOdERHtcHS0v+dUzkaBRUREpJEpPFnJS6m7mPfzfqrMBi5ODtx9RUcevLoLLdxdbF3eeVFgERERaSRMZoNFaw/y3Dc7OFpSAUB0zzb837BedPSzzZD6F4sCi4iISCOwdv8xpny+hc3ZRQB0bt2c+Bt6c2W31jau7OJQYBEREWnAcgrLSPp6G5+uPwRACzdnHo7uytjLQnBxcrRxdRePAouIiEgDVFZp4o0V+5i9bDelFSYcHOD2iGAmDO2On6ebrcu76BRYREREGhDDMEjdlse0L7dy4GgpUD2c/tThfejbztvG1dUdBRYREZEGYu+RE0z9/PfXlNu0cGPy9T24KTzILofTv5gUWEREROzcifIqXv5+F2+u2Eelqfo15Xuu6MSD13TB061pfJU3jaMUERFpgAzD4NP12SR+tZ284nIAru7emvgbejf415StpcAiIiJihzZnFzJlyRbWHjgOQIdWzUi4oRfX9PC3cWW2ocAiIiJiR46XVPDf73Ywf1UWZgM8XJx48Jou/H1QR9yc7Xc25bp2Xi9oz549m5CQENzd3YmKimL16tVnbDt37lwGDRqEj48PPj4+REdHn9L+xIkTPPjgg7Rr1w4PDw969erFK6+8cj6liYiINEgms8H7qw5w9X/TeG9ldVi5ISyQ7x+7kgeu7tKkwwqcR2BZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OtrSJi4sjJSWF9957j23btvHII4/w4IMPsmTJkvM/MhERkQYi48Bxbpy9gv9bvJmC0kp6BLRgwb2X8vKofrT19rB1eXbBwTAMw5oNoqKi6N+/P8nJyQCYzWaCg4MZP348kyZNOuf2JpMJHx8fkpOTiY2NBaBPnz6MHDmSp556ytIuIiKC6667jv/85z/n3GdRURHe3t4UFhbi5eVlzeGIiIjYTP6JcqZ/vZ1FGb8A0MLdmUf/0o07L+2AcyMapfZMrPn+tqo3KioqyMjIIDo6+vcdODoSHR1Nenp6rfZRWlpKZWUlvr6+lnWXXXYZS5YsITs7G8MwWLZsGTt37mTIkCGn3Ud5eTlFRUU1FhERkYaiymTmrZ/2cfXMNEtYuS2iHcseu4q7Lu/YJMKKtax66DY/Px+TyYS/f80nlP39/dm+fXut9jFx4kQCAwNrhJ6XX36Ze++9l3bt2uHs7IyjoyNz585l8ODBp91HYmIiU6dOtaZ0ERERu7Bq71ESlmxhe04xAH2CvHj6xj5c0t7HxpXZt3p9SygpKYkFCxaQlpaGu7u7Zf3LL7/MypUrWbJkCR06dOCHH37ggQceOCXY/Gby5MnExcVZfi4qKiI4OLhejkFEROR85BWV8exXv09S2LKZCxNiunNH//Y4OTbuUWovBqsCi5+fH05OTuTm5tZYn5ubS0BAwFm3nTlzJklJSSxdupTQ0FDL+pMnT/LEE0+wePFihg0bBkBoaCjr169n5syZpw0sbm5uuLk1vomdRESk8ak0mZn3835mLd3FifIqHBxg1ID2TBjSHZ/mrrYur8Gw6iaZq6srERERpKamWtaZzWZSU1MZOHDgGbebMWMG06ZNIyUlhcjIyBqfVVZWUllZiaNjzVKcnJwwm83WlCciImJXVu49yrCXfuQ/X27jRHkVYcEt+eyBy3n25r4KK1ay+pZQXFwcY8eOJTIykgEDBjBr1ixKSkoYN24cALGxsQQFBZGYmAjA9OnTiY+PZ/78+YSEhJCTkwOAp6cnnp6eeHl5ceWVVzJhwgQ8PDzo0KEDy5cv55133uH555+/iIcqIiJSP/58+8enmQsTh/bg9shgHHX757xYHVhGjhzJkSNHiI+PJycnh/DwcFJSUiwP4mZlZdW4WjJnzhwqKioYMWJEjf0kJCQwZcoUABYsWMDkyZMZPXo0x44do0OHDjzzzDPcd999F3BoIiIi9avKZOad9AO88N1Oin+9/fO3Ae2ZENOdls10ReVCWD0Oiz3SOCwiImJra/Yf46lPN1ve/gkLbsm0G3sT2q6lbQuzY9Z8f2suIRERkQtwpLicpK+383Fm9XgqLX+9/TNSt38uKgUWERGR8/Db3D/PfbOD4rLq2z939A/m8ZgeeqC2DiiwiIiIWGld1nGe+mwzm7OrR1rvE+TFtBv70E+Dv9UZBRYREZFaKiitYHrKDhasycIwquf+eTymO3+L6qDB3+qYAouIiMg5mM0GH2X+QtLX2zlWUgHALZcEMfm6nrRuoYFM64MCi4iIyFlszyniycWbWXvgOADd/D2ZdmMfojq1snFlTYsCi4iIyGmcKK/ixaU7efOn/ZjMBs1cnfh3dDfuujwEF82mXO8UWERERP7AMAxSNucw9fOt5BSVAXB93wCe+msv2np72Li6pkuBRURE5FcHjpYQ/9kWlu88AkB732ZMvbE3V3dvY+PKRIFFRESavPIqE68t30vyst2UV5lxdXLkvis78a+ru+Du4mTr8gQFFhERaeJ+3p3Pk59tZu+REgCu6OLH0zf2plNrTxtXJn+kwCIiIk3SkeJynv1qG4vXZQPQuoUbT/21FzeEtsXBQWOq2BsFFhERaVLMZoP5q7OYkbKdol+H1B9zaQcei+mOl7uLrcuTM1BgERGRJmProSKeWLyJ9QcLgOoh9Z+9ua9mVG4AFFhERKTRKymv4oXvdvLWz9Vjqni6OfPYkG6MGRiiIfUbCAUWERFp1L7dksOUJVs4VFg9psqwvm156q+9CPB2t3FlYg0FFhERaZQOFZwkYckWvtuaC0CwrwdPD+/D1T00pkpDpMAiIiKNSpXJzNs/7+f573ZSWmHC2dGBewd3Yvw1XfFw1ZgqDZUCi4iINBobDhbwxOJNbDlUBED/EB+eubkv3fxb2LgyuVAKLCIi0uAVl1Xy3293Mi99P4YB3h4uPHF9D26LCMZRD9U2CgosIiLSYBmGwTdbcpmyZItlosKb+wXxf8N64ufpZuPq5GJSYBERkQYpu+AkCZ9tYem26odqO7RqxjM39eWKrn42rkzqggKLiIg0KCazwds/7+e/3+6gtMKEi5MD/xzcmQev0USFjZkCi4iINBibswuZ/MkmNmUXAhDZwYdnb9FDtU2BAouIiNi90orqkWrfWLEPswEt3J154vqejIzUQ7VNhQKLiIjYtWU78nhy8WayC04C8NfQtsTf0Is2LTRSbVOiwCIiInbpSHE5T3+xlc83HAIgqKUH/7lJI9U2VQosIiJiVwzD4MO1B3nmy20UlVXh6AB3X96Rf/+lG83d9LXVVOl/eRERsRt7j5xg8iebWLXvGAB9grxIvDmUvu28bVyZ2JoCi4iI2FxFlZnXftjDS9/vpqLKjIeLE3F/6ca4y0NwdnK0dXliBxRYRETEptZlHWfSx5vYkVsMwOBurXnmpj4E+zazcWViTxRYRETEJk6UVzHzmx2W+X98m7uScEMvhocF4uCgV5WlJgUWERGpd99vz+XJxZs5VFg9/88tlwTx5LBe+DZ3tXFlYq8UWEREpN7knyhn6ue/v6oc7OvBszf3ZVDX1jauTOydAouIiNQ5wzD4JDObaV9upaC0EkcH+PugTjwS3ZVmrvoqknM7r0evZ8+eTUhICO7u7kRFRbF69eoztp07dy6DBg3Cx8cHHx8foqOjT2nv4OBw2uW55547n/JERMSOHDxWSuybq3l00QYKSivp1daLzx64gieu76mwIrVmdWBZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OtrQ5fPhwjeXNN9/EwcGBW2+99fyPTEREbMpkNnj9x70MeeEHftyVj5uzIxOH9uCzBy/XuCpiNQfDMAxrNoiKiqJ///4kJycDYDabCQ4OZvz48UyaNOmc25tMJnx8fEhOTiY2Nva0bW666SaKi4tJTU2tVU1FRUV4e3tTWFiIl5dX7Q9GRETqxPacIiZ+vIkNBwsAiOroS9KtoXT0a27bwsSuWPP9bdW1uIqKCjIyMpg8ebJlnaOjI9HR0aSnp9dqH6WlpVRWVuLr63vaz3Nzc/nyyy+ZN2/eGfdRXl5OeXm55eeioqJaHoGIiNSl8ioTs7/fzf/S9lBlNmjh5szk63tyR3/NqiwXxqrAkp+fj8lkwt/fv8Z6f39/tm/fXqt9TJw4kcDAQKKjo0/7+bx582jRogW33HLLGfeRmJjI1KlTa1+4iIjUuYwDx5n48UZ2550AYEgvf6bd1Ad/L82qLBeuXp92SkpKYsGCBaSlpeHufvoT+M0332T06NFn/Bxg8uTJxMXFWX4uKioiODj4otcrIiLnVlJexcxvd/D2z9UDwPl5uvL0jX24rk+ABoCTi8aqwOLn54eTkxO5ubk11ufm5hIQEHDWbWfOnElSUhJLly4lNDT0tG1+/PFHduzYwcKFC8+6Lzc3N9zc3KwpXURE6sAPO48w+ZNNZBecBGBERDueHNaTls00AJxcXFa9JeTq6kpERESNh2HNZjOpqakMHDjwjNvNmDGDadOmkZKSQmRk5BnbvfHGG0RERBAWFmZNWSIiUs8KSyt5bNEGYt9cTXbBSYJaevDO3QOYeVuYworUCatvCcXFxTF27FgiIyMZMGAAs2bNoqSkhHHjxgEQGxtLUFAQiYmJAEyfPp34+Hjmz59PSEgIOTk5AHh6euLp6WnZb1FREYsWLeK///3vxTguERGpIymbc3jqs80cKS7HwQHGDgxhQkx3mrtpTBWpO1afXSNHjuTIkSPEx8eTk5NDeHg4KSkplgdxs7KycHT8/cLNnDlzqKioYMSIETX2k5CQwJQpUyw/L1iwAMMwGDVq1HkeioiI1KX8E+UkLNnClxsPA9CpdXNm3BpKZMjp3/oUuZisHofFHmkcFhGRumMYBp+tP8TUz7dwvLQSJ0cH/jm4Ew9d2xV3FydblycNWJ2NwyIiIk1LTmEZ/7d4E6nbq0cz79XWixkjQukTpJFqpX4psIiIyCkMw2DhmoM88+U2isurcHVyZPw1Xbjvqs64OJ3XNHQiF0SBRUREajh4rJRJn2zkp91HAQgPbslzI0Lp6t/CxpVJU6bAIiIiAJjNBu+uPMD0lO2UVphwc3ZkQkx3xl3eEScNqy82psAiIiLszy/h8Y83snrfMQAGdPRluiYrFDuiwCIi0oSZzAZv/bSPmd/uoKzSTDNXJyYO7cGYSztoskKxKwosIiJN1J4jJ5iwaAOZWQUAXNa5FdNvDSXYt5ltCxM5DQUWEZEmxmQ2eP3Hvfz3u51UVJnxdHPmiet7MmpAsCYrFLulwCIi0oTszivmsUUbWX+wAIDB3VqTeEtfglp62LYwkXNQYBERaQKqTGbm/riPF5ZWX1Vp4e7MU8N6cVtkO11VkQZBgUVEpJHblVvMYx9tZMOvV1Wu7t6aZ2/pS1tvXVWRhkOBRUSkkbJcVfluJxWm6qsq8X/txYgIXVWRhkeBRUSkETrdVZXEW0IJ8Ha3bWEi50mBRUSkETndsyq6qiKNgQKLiEgjsTvvBI8t2mB5A+iq7q1J0lUVaSQUWEREGjiT2eDNFft47tsd1VdV3Jx56oZe3KarKtKIKLCIiDRg+/JLeGzRBjIOHAeqx1WZfqveAJLGR4FFRKQBMpsN3v55PzO+2U5ZZfVotU8O68nI/hqtVhonBRYRkQYm62gpj320wTKz8uVdqucAauejOYCk8VJgERFpIAzD4L1VWSR+tY3SChPNXJ2YfH1P7oxqr6sq0ugpsIiINACHCk7y+EcbWbE7H4ABHX2ZOSKM9q10VUWaBgUWERE7ZhgGH2X8wtOfb6W4vAo3Z0cmDu3BXZeF4OioqyrSdCiwiIjYqbziMp74ZBNLt+UB0K99S2beFkbn1p42rkyk/imwiIjYoS82HuLJTzdTUFqJq5Mj//5LN+4d3AknXVWRJkqBRUTEjhwvqSB+yRY+33AIgF5tvXh+ZBg9ArxsXJmIbSmwiIjYiWXb83j8440cKS7HydGBB67qzIPXdMXV2dHWpYnYnAKLiIiNnSiv4j9fbGXBmoMAdG7dnOdvDycsuKVtCxOxIwosIiI2tHLvUR5btIFfjp/EwQHuubwjj8V0x93FydalidgVBRYRERsoqzQx85sdvPHTPgwD2vl4MPO2MC7t1MrWpYnYJQUWEZF6tjm7kH8vXM+uvBMA3NE/mCf/2gtPN/1JFjkT/esQEaknVSYzc9L28GLqLqrMBn6ebswY0ZdrevjbujQRu6fAIiJSD/YcOUHchxvYcLAAgOv7BvCfm/ri29zVtoWJNBAKLCIidchsNnh35QESv95GWaUZL3dnpt3Uh+FhgZqwUMQKCiwiInUkp7CMCR9t4Mdd1RMWXtHFj+duC6Wtt4eNKxNpeBRYRETqwOcbqofWLzxZiZuzI09c35Mxl3bQhIUi5+m8hk+cPXs2ISEhuLu7ExUVxerVq8/Ydu7cuQwaNAgfHx98fHyIjo4+bftt27YxfPhwvL29ad68Of379ycrK+t8yhMRsZnC0koe+mAd4z9YR+HJSsLaefPVw4MYq9mVRS6I1YFl4cKFxMXFkZCQQGZmJmFhYcTExJCXl3fa9mlpaYwaNYply5aRnp5OcHAwQ4YMITs729Jmz549XHHFFfTo0YO0tDQ2btzIU089hbu7+/kfmYhIPVuxK5+YWT+wZMMhnBwdePjarnx0/2WaXVnkInAwDMOwZoOoqCj69+9PcnIyAGazmeDgYMaPH8+kSZPOub3JZMLHx4fk5GRiY2MBuOOOO3BxceHdd989j0OAoqIivL29KSwsxMtLE4SJSP0qqzQxPWU7b/20H4COfs15YWQ44RpaX+SsrPn+tuoKS0VFBRkZGURHR/++A0dHoqOjSU9Pr9U+SktLqaysxNfXF6gOPF9++SXdunUjJiaGNm3aEBUVxaeffnrGfZSXl1NUVFRjERGxhc3Zhdzw8gpLWLnz0vZ8+dAVCisiF5lVgSU/Px+TyYS/f81Bjvz9/cnJyanVPiZOnEhgYKAl9OTl5XHixAmSkpIYOnQo3377LTfffDO33HILy5cvP+0+EhMT8fb2tizBwcHWHIaIyAUzmQ1mL9vNzf/7iV15J2jdwo23xvXnPzf1pZmr3mcQudjq9V9VUlISCxYsIC0tzfJ8itlsBuDGG2/k3//+NwDh4eH8/PPPvPLKK1x55ZWn7Gfy5MnExcVZfi4qKlJoEZF6c/BYKXEfrmfN/uMADO0dwLO3aBA4kbpkVWDx8/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJpUuXEhoaWmOfzs7O9OrVq0b7nj17smLFitPuy83NDTc3N2tKFxG5YIZh8HFmNlOWbOFEeRWebs4k3NCLERHtNAicSB2z6paQq6srERERpKamWtaZzWZSU1MZOHDgGbebMWMG06ZNIyUlhcjIyFP22b9/f3bs2FFj/c6dO+nQoYM15YmI1JnjJRU8MD+TxxZt4ER5FZEdfPj64UHcFhmssCJSD6y+JRQXF8fYsWOJjIxkwIABzJo1i5KSEsaNGwdAbGwsQUFBJCYmAjB9+nTi4+OZP38+ISEhlmddPD098fSsftVvwoQJjBw5ksGDB3P11VeTkpLC559/Tlpa2kU6TBGR8/fjriM8tmgDuUXlODs68O+/dOO+KzvjpHFVROqN1YFl5MiRHDlyhPj4eHJycggPDyclJcXyIG5WVhaOjr9fuJkzZw4VFRWMGDGixn4SEhKYMmUKADfffDOvvPIKiYmJPPTQQ3Tv3p2PP/6YK6644gIOTUTkwpRVmpiRsoM3f9oHQKfWzXlxZD/6tvO2cWUiTY/V47DYI43DIiIX27bDRTyyYD07cosBGHNpB564vicerk42rkyk8bDm+1vv3omI/IHZbPDmT/uYkbKDCpMZP09XZowI5Zoe/ufeWETqjAKLiMivcovKePTDDazYXT278rU92jB9RCh+nnorUcTWFFhERICUzYeZ9MkmCkorcXdx5MlhvRgd1V5vAInYCQUWEWnSSsqrmPbFVhasOQhAnyAvZo3sR5c2mrBQxJ4osIhIk7XhYAGPLFzPvvwSHBzgn4M7E/eXbrg6Wz2RvYjUMQUWEWlyTGaDV5bv4YXvdlJlNmjr7c7zt4czsHMrW5cmImegwCIiTcqhgpP8e+F6Vu07BsCwvm159ua+eDdzsXFlInI2Ciwi0mR8ufEwkz/ZSFFZFc1dnZgyvLfmARJpIBRYRKTRKymvYsqSLSzK+AWAsOCWvDgynBC/5jauTERqS4FFRBq1jb8U8PCC3x+sfeCqLjwc3RUXJz1YK9KQKLCISKNkNhu89uNeZn6zgyqzQaC3Oy+MDCeqkx6sFWmIFFhEpNHJKSwj7sP1/LznKADX9w0g8eZQPVgr0oApsIhIo/Ld1lwe/2gDx0sr8XBxYurw3twWqQdrRRo6BRYRaRTKKk088+U23l15AKgesfbFO/rRubVGrBVpDBRYRKTB25FTzPgPMtmZewKAewd34rEh3TVirUgjosAiIg2WYRi8u/IA//lyGxVVZvw83Xj+9jAGd2tt69JE5CJTYBGRBul4SQUTPtrI0m25AFzdvTXP3RaGn6ebjSsTkbqgwCIiDU76nqP8e+F6corKcHVyZNJ1PRh3eYgerBVpxBRYRKTBqDKZeTF1F8nLdmMY0Kl1c14e1Y/egd62Lk1E6pgCi4g0CL8cL+XhBevJOHAcgNsj2zFleG+auerPmEhToH/pImL3vt50mIkfV09a2MLNmWdu6cvwsEBblyUi9UiBRUTsVlmliae/2Mr8VVkAhAe35OVR/Qj2bWbjykSkvimwiIhd2plbzIPzq8dWcXCA+67sTNxfumnSQpEmSoFFROyKYRgsWHOQqZ9voayyemyVF0aGMairxlYRacoUWETEbhSVVTL5k018ufEwAIO6+vH87eG0bqGxVUSaOgUWEbEL6w8WMP6DTA4eO4mzowMTYrrzj0GdcHTU2CoiosAiIjZmNhu8vmIvM1J2UGU2aOfjwcuj+tGvvY+tSxMRO6LAIiI2c/REOY8u2kDajiMADOvblmdv6Yu3h4uNKxMRe6PAIiI2kb7nKI8sXEduUTluzo7E39CLvw1or+H1ReS0FFhEpF6ZzAYvf7+Ll1J3YTagc+vmzB59CT0CvGxdmojYMQUWEak3uUVlPLxgHSv3HgNgREQ7nr5Rw+uLyLnpr4SI1IvlO48Qt3A9R0sqaObqxH9u6sMtl7SzdVki0kAosIhInao0mXn+u53MSdsDQM+2XiT/rR+dW3vauDIRaUgUWESkzhwqOMn4D9ZZZlgec2kH/m9YT9xdnGxcmYg0NAosIlInUrfl8uiiDRSUVtLCzZmkW0MZFtrW1mWJSAN1XrOIzZ49m5CQENzd3YmKimL16tVnbDt37lwGDRqEj48PPj4+REdHn9L+rrvuwsHBocYydOjQ8ylNRGys0mTm2a+2cc+8tRSUVtI3yJsvHrpCYUVELojVgWXhwoXExcWRkJBAZmYmYWFhxMTEkJeXd9r2aWlpjBo1imXLlpGenk5wcDBDhgwhOzu7RruhQ4dy+PBhy/LBBx+c3xGJiM1kF5xk5KvpvPbDXgDuuiyEj+4fSIdWzW1cmYg0dA6GYRjWbBAVFUX//v1JTk4GwGw2ExwczPjx45k0adI5tzeZTPj4+JCcnExsbCxQfYWloKCATz/91PojAIqKivD29qawsBAvL43lIGILS7dW3wIqPFlJC3dnnhsRxtA+AbYuS0TsmDXf31ZdYamoqCAjI4Po6Ojfd+DoSHR0NOnp6bXaR2lpKZWVlfj6+tZYn5aWRps2bejevTv3338/R48ePeM+ysvLKSoqqrGIiG38dgvo7++spfBkJWHtvPnqoUEKKyJyUVkVWPLz8zGZTPj7+9dY7+/vT05OTq32MXHiRAIDA2uEnqFDh/LOO++QmprK9OnTWb58Oddddx0mk+m0+0hMTMTb29uyBAcHW3MYInKRZBec5PY/3AIad3kIi+67jGDfZjauTEQam3p9SygpKYkFCxaQlpaGu7u7Zf0dd9xh+e++ffsSGhpK586dSUtL49prrz1lP5MnTyYuLs7yc1FRkUKLSD37fnsucR/++haQbgGJSB2zKrD4+fnh5OREbm5ujfW5ubkEBJz9D9XMmTNJSkpi6dKlhIaGnrVtp06d8PPzY/fu3acNLG5ubri5uVlTuohcJFUmMzO/3ckry6sHggtt503yqEto30pXVUSk7lh1S8jV1ZWIiAhSU1Mt68xmM6mpqQwcOPCM282YMYNp06aRkpJCZGTkOX/PL7/8wtGjR2nbVq9BitiTnMIyRs1daQkrd10WwqL7BiqsiEids/qWUFxcHGPHjiUyMpIBAwYwa9YsSkpKGDduHACxsbEEBQWRmJgIwPTp04mPj2f+/PmEhIRYnnXx9PTE09OTEydOMHXqVG699VYCAgLYs2cPjz/+OF26dCEmJuYiHqqIXIgfdh7hkYXrOVZSQQs3Z6aPCOX6vvo/FSJSP6wOLCNHjuTIkSPEx8eTk5NDeHg4KSkplgdxs7KycHT8/cLNnDlzqKioYMSIETX2k5CQwJQpU3BycmLjxo3MmzePgoICAgMDGTJkCNOmTdNtHxE7YDIbvJi6i5e/34VhQK+2Xvxv9CWE+GlsFRGpP1aPw2KPNA6LSN04UlzOIwvX8dPu6mEG/hbVnvi/9tJcQCJyUVjz/a25hETktFbtPcr4D9aRV1xOM1cnnr25Lzf1C7J1WSLSRCmwiEgNZrPBaz/u5blvdmAyG3Rt48mcOy+hS5sWti5NRJowBRYRsSgsreTRRetZuq16brCb+wXxzM19aOaqPxUiYlv6KyQiAGz8pYB/vZ/JL8dP4ursyNThvbmjfzAODg62Lk1ERIFFpKkzDIP3V2Xx9OdbqTCZCfb1YM7oCPoEedu6NBERCwUWkSastKKKJz7ZxKfrDwHwl17+zLwtDG8PFxtXJiJSkwKLSBO1O+8E97+Xwa68Ezg5OjBxaHf+MaiTbgGJiF1SYBFpgj7fcIiJH2+ktMJE6xZuJI/qR1SnVrYuS0TkjBRYRJqQiiozz361jbd/3g/ApZ18eWlUP9q0cD/7hiIiNqbAItJEHC48yQPvZ5KZVQDA/Vd15tG/dMPZyao5UEVEbEKBRaQJ+Gl3Pg99sI6jJRW0cHfm+dvD+Usvf1uXJSJSawosIo2Y2WwwZ/ke/vvtDsy/Tlw4585L6NBKExeKSMOiwCLSSBWerOTRD38ftfb2yHY8fWMfTVwoIg2SAotII7TlUCH3v5dJ1rFSXJ0dmXZjb0b2b2/rskREzpsCi0gj81HGL/zf4k2UV5lp51M9am3fdhq1VkQaNgUWkUaivMrE059v5f1VWQBc3b01L4wMp2UzVxtXJiJy4RRYRBqBQwUnuf/9TDYcLMDBAR6+tisPXdMVR0eNWisijYMCi0gD99PufMZ/sI5jJRV4e7jw4h3hXNW9ja3LEhG5qBRYRBoow6h+ZXnmN9WvLPcJ8mLO6AiCfZvZujQRkYtOgUWkASouq+SxRRv4ZksuoFeWRaTxU2ARaWB25Rbzz/cy2HukBFcnR6be2JtRA/TKsog0bgosIg3IlxsPM+GjDZRWmGjr7c6cOyMID25p67JEROqcAotIA1BlMjPjmx289sNeAC7r3IqXR/WjlaebjSsTEakfCiwidu7oiXLGf7COn/ccBeCfgzsxIaa7ZlkWkSZFgUXEjm38pYD73s3gUGEZzVydeG5EGMNC29q6LBGReqfAImKnPlxzkCc/20xFlZmOfs15dUwE3fxb2LosERGbUGARsTMVVWamfr7FMsR+dE9/nh8Zhpe7i40rExGxHQUWETuSW1TG/e9lkJlVPcT+v6O78eDVXTTEvog0eQosInZizf5j/Ov9TI4Ul9PC3ZmX7ujH1T00xL6ICCiwiNicYRi8t/IAUz/fSpXZoLt/C14dE0GIX3NblyYiYjcUWERsqKzSxFOfbmZRxi8A/DW0LTNGhNLMVf80RUT+SH8VRWzkcOFJ7ns3gw2/FOLoABOH9uDewZ1wcNDzKiIif6bAImIDq/Ye5YH5meSfqMDbw4Xkv/VjUNfWti5LRMRuKbCI1CPDMHgn/QDTvqh+XqVHQAteGxNJ+1bNbF2aiIhdU2ARqSdllSbiP9vMh2v1vIqIiLXOazKS2bNnExISgru7O1FRUaxevfqMbefOncugQYPw8fHBx8eH6Ojos7a/7777cHBwYNasWedTmohdyiksY+RrK/lw7S84OsDk63rw8qh+CisiIrVkdWBZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OPqXt4sWLWblyJYGBgdYfiYidWrv/GH99eQUbDhbg7eHC2+MG8M8rO+vhWhERKzgYhmFYs0FUVBT9+/cnOTkZALPZTHBwMOPHj2fSpEnn3N5kMuHj40NycjKxsbGW9dnZ2URFRfHNN98wbNgwHnnkER555JFa1VRUVIS3tzeFhYV4eXlZczgidWr+qiwSlmym0qTnVURE/sya72+rrrBUVFSQkZFBdHT07ztwdCQ6Opr09PRa7aO0tJTKykp8fX0t68xmM2PGjGHChAn07t3bmpJE7FJFlZn/W7yJJxZvotJkMKxvWz7512UKKyIi58mqG+j5+fmYTCb8/f1rrPf392f79u212sfEiRMJDAysEXqmT5+Os7MzDz30UK32UV5eTnl5ueXnoqKiWm0nUh+OFJfzr/czWLP/OA4O8NiQ7vzrKt0CEhG5EPX6xF9SUhILFiwgLS0Nd3d3ADIyMnjxxRfJzMys9R/0xMREpk6dWpelipyXjb8U8M93MzhcWEYLN2deHBXONT38z72hiIiclVW3hPz8/HByciI3N7fG+tzcXAICAs667cyZM0lKSuLbb78lNDTUsv7HH38kLy+P9u3b4+zsjLOzMwcOHODRRx8lJCTktPuaPHkyhYWFluXgwYPWHIZInfh0XTa3vZLO4cIyOvk159MHL1dYERG5SKy6wuLq6kpERASpqancdNNNQPXzJ6mpqTz44INn3G7GjBk888wzfPPNN0RGRtb4bMyYMTVuDwHExMQwZswYxo0bd9r9ubm54ebmZk3pInXGZDaYkbKdV3/YC8DV3Vvz4qh+eLm72LgyEZHGw+pbQnFxcYwdO5bIyEgGDBjArFmzKCkpsYSL2NhYgoKCSExMBKqfT4mPj2f+/PmEhISQk5MDgKenJ56enrRq1YpWrVrV+B0uLi4EBATQvXv3Cz0+kTpVeLKShz5Yx/KdRwD411WdeXRId5wc9byKiMjFZHVgGTlyJEeOHCE+Pp6cnBzCw8NJSUmxPIiblZWFo+Pvd5rmzJlDRUUFI0aMqLGfhIQEpkyZcmHVi9jQ7rwT/OOdtezLL8HdxZEZI8IYHqYxhERE6oLV47DYI43DIvVt2fY8HvpgHcXlVQR6u/NabCR9grxtXZaISINizfe3xgUXsYJhGLyyfC8zvtmOYUD/EB/m3BmBn6eeqRIRqUsKLCK1VFZpYtLHG/l0/SEARg1oz9ThvXF1Pq8puURExAoKLCK1kFNYxr3vrmXjL4U4OTow5YZe3HlpBw0GJyJSTxRYRM5hXdZx/vluBnnF5bRs5sL/Rl/CZZ39bF2WiEiTosAichaL1/3CxI83UVFlprt/C+bGavJCERFbUGAROQ2T2WDGN9t5dXn1YHDRPf2ZdUc4nm76JyMiYgv66yvyJ8VllTy8YD3fb88D4IGrO/PoX7rjqMHgRERsRoFF5A+yjpZyz7w17Mo7gZuzIzNGhHJjeJCtyxIRafIUWER+lb7nKPe/n0FBaSX+Xm68NiaSsOCWti5LRERQYBEB4P1VB0j4bAtVZoOw4Ja8NiYCfy93W5clIiK/UmCRJq3KZOY/X27j7Z/3A3BjeCDTbw3F3cXJtoWJiEgNCizSZBWWVvLA/ExW7M4HYEJMd/51VWcNBiciYocUWKRJ2nvkBH+ft5a9+SV4uDjxwshwhvYJsHVZIiJyBgos0uT8tDuf+9/LoKiseqbluWMj6R2omZZFROyZAos0Ke+tPEDCki2YzAb92rfk1TERtGmhh2tFROydAos0CX9+uPam8ECS9HCtiEiDocAijV5RWSUPzl/HDzuPAHq4VkSkIVJgkUbtwNES7pm3lt15J359uDaMoX3a2rosERGxkgKLNFqr9x3jn++u5XhpJQFe7rw+NpI+QXq4VkSkIVJgkUZp0dqDPLF4E5Umg9B23syNjdTItSIiDZgCizQqZrPBjG928MryPQAM69uWmbeF4eGqh2tFRBoyBRZpNEorqvj3wvV8syUXgIeu6cIj0d1wdNTDtSIiDZ0CizQKOYVl/P2dNWzOLsLVyZEZI0K5qV+QrcsSEZGLRIFFGrzN2YXcM28NuUXltGruyqtjIogM8bV1WSIichEpsEiD9u2WHB5esJ6TlSa6tvHkzbv6E+zbzNZliYjIRabAIg2SYRi8/uM+nv16G4YBg7r6MXv0JXi5u9i6NBERqQMKLNLgVJrMxH+2hQ9WZwEwOqo9U4f3xtnJ0caViYhIXVFgkQal8GQlD7yfyYrd+Tg4wJPDenH35SEaZl9EpJFTYJEG4+CxUsa9vYbdeSdo5urES3f0I7qXv63LEhGReqDAIg1CxoHj3PvOWo6WVBDg5c4bd0XSO1DD7IuINBUKLGL3vth4iLgPN1BRZaZ3oBdvjO1PgLeG2RcRaUoUWMRuGYbB/9L28Nw3OwCI7tmGF+/oR3M3nbYiIk2N/vKLXao0mfm/xZv4cO0vANx9eUf+b1hPnDTMvohIk6TAInan8GQl/3o/g592H8XRAaYM703swBBblyUiIjakwCJ25eCxUu5+ew27fn0TKPlv/bimh94EEhFp6hRYxG6sP1jA3+etIf9EBf5ebrx5V3+9CSQiIgCc19Cgs2fPJiQkBHd3d6Kioli9evUZ286dO5dBgwbh4+ODj48P0dHRp7SfMmUKPXr0oHnz5pY2q1atOp/SpIFK2ZzDHa+lk3+igp5tvfj0gcsVVkRExMLqwLJw4ULi4uJISEggMzOTsLAwYmJiyMvLO237tLQ0Ro0axbJly0hPTyc4OJghQ4aQnZ1tadOtWzeSk5PZtGkTK1asICQkhCFDhnDkyJHzPzJpEAzD4I0V+7j//QzKKs1c1b01i+4bSFtvD1uXJiIidsTBMAzDmg2ioqLo378/ycnJAJjNZoKDgxk/fjyTJk065/YmkwkfHx+Sk5OJjY09bZuioiK8vb1ZunQp11577Tn3+Vv7wsJCvLy8rDkcsSGT2eDpz7cwL/0AoDmBRESaGmu+v616hqWiooKMjAwmT55sWefo6Eh0dDTp6em12kdpaSmVlZX4+vqe8Xe89tpreHt7ExYWdto25eXllJeXW34uKiqy4ijEHpRWVPHQB+tYuq36ytwT1/fgH4M6aU4gERE5Lav+r2x+fj4mkwl//5pvbfj7+5OTk1OrfUycOJHAwECio6NrrP/iiy/w9PTE3d2dF154ge+++w4/P7/T7iMxMRFvb2/LEhwcbM1hiI3lFZdx+6vpLN2Wh5uzI/8bfQn3Du6ssCIiImdUr9fek5KSWLBgAYsXL8bdvebQ6ldffTXr16/n559/ZujQodx+++1nfC5m8uTJFBYWWpaDBw/WR/lyEezKLebm2T+zObsI3+auzP/HpVzft62tyxIRETtnVWDx8/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJb7/9ltDQ0FM+b968OV26dOHSSy/ljTfewNnZmTfeeOO0+3Jzc8PLy6vGIvYvfc9RbpnzM9kFJ+no15xP7r+MiA4+ti5LREQaAKsCi6urKxEREaSmplrWmc1mUlNTGThw4Bm3mzFjBtOmTSMlJYXIyMha/S6z2VzjORVp2D5dl03sm6soLqsiooMPH99/GSF+zW1dloiINBBWDxwXFxfH2LFjiYyMZMCAAcyaNYuSkhLGjRsHQGxsLEFBQSQmJgIwffp04uPjmT9/PiEhIZZnXTw9PfH09KSkpIRnnnmG4cOH07ZtW/Lz85k9ezbZ2dncdtttF/FQxRb+PIHhsL5t+e/tYbi7ONm4MhERaUisDiwjR47kyJEjxMfHk5OTQ3h4OCkpKZYHcbOysnB0/P3CzZw5c6ioqGDEiBE19pOQkMCUKVNwcnJi+/btzJs3j/z8fFq1akX//v358ccf6d279wUenthSlcnMU59t4YPVWQDcO7gTk4b2wFETGIqIiJWsHofFHmkcFvtTUl7Fg/MzWbbjiCYwFBGR06qzcVhEaiOvuIy7317D5uwi3F0ceemOfgzpffaHskVERM5GgUUuqt15xYx9cw3ZBSdp1dyV18dG0q+93gQSEZELo8AiF82a/cf4+7y1FJ6spKNfc94e158OrfQmkIiIXDgFFrkovtp0mEcWrqeiyky/9i15Y2x/fJu72rosERFpJBRY5IK9sWIf//lyK4YBQ3r58+Id/fBw1WvLIiJy8SiwyHkzmw2e+Wobb6zYB0DswA4k3NAbJ722LCIiF5kCi5yX8ioTcR9u4MuNhwGYdF0P/jlYsy2LiEjdUGARqxWWVnLvu2tZte8YLk4OzLwtjBvDg2xdloiINGIKLGKVQwUnueut1ezMPUELN2deHRPBZV38bF2WiIg0cgosUmvbc4q468015BSV4e/lxtvjBtCzrUYWFhGRuqfAIrWSvuco9767luKyKrq08WTe3QMIaulh67JERKSJUGCRc/pi4yHiFm6gwmSmf4gPc2MjadlMY6yIiEj9UWCRs3pzxT6m/TrGytDeAcy6Ixx3F42xIiIi9UuBRU7LbDaY/s12Xl2+F9AYKyIiYlsKLHKKSpOZiR9t5JN12QBMiOnOv67qrDFWRETEZhRYpIaS8irufz+TH3YewcnRgaRb+nJbZLCtyxIRkSZOgUUs8k+Uc/fba9j4SyEeLk78785LuLp7G1uXJSIiosAi1bKOlhL75ir2Hy3Ft7krb97Vn/DglrYuS0REBFBgEWBzdiF3vbWG/BPltPPx4J27B9CptaetyxIREbFQYGnift6dz73vZnCivIqebb2YN64/bbzcbV2WiIhIDQosTdgfB4S7tJMvr8VG4uXuYuuyRERETqHA0kS9k76fhCVbMAy4vm8Az9+uAeFERMR+KbA0MYZh8MJ3O3np+90A3Hlpe6YO76MB4URExK4psDQhJrPBk59u5oPVWQA8Et2Vh6/tqgHhRETE7imwNBFllSYeWbCelC05ODjAtBv7cOelHWxdloiISK0osDQBxWWV/OOdtazcewxXJ0devCOc6/q2tXVZIiIitabA0sgdKS7nrrdWs+VQEZ5uzrwWG8Flnf1sXZaIiIhVFFgasYPHShnzRvXotX6errw9bgB9grxtXZaIiIjVFFgaqW2Hi4h9czVHiqtHr333nig6+jW3dVkiIiLnRYGlEVqz/xh3v72G4rIqegS0YN7dA/DX6LUiItKAKbA0Mt9vz+X+9zIprzIT2cGHN8b2x7uZRq8VEZGGTYGlEVm87hceW7QRk9ngmh5tmP23S/Bw1ei1IiLS8CmwNBJv/bSPqZ9vBeDmfkHMGBGKi5OjjasSERG5OBRYGrg/D7U/7vIQnhrWC0cNtS8iIo2IAksDZjYbJCzZwrsrDwDw2JBuPHB1Fw21LyIijc553TOYPXs2ISEhuLu7ExUVxerVq8/Ydu7cuQwaNAgfHx98fHyIjo6u0b6yspKJEyfSt29fmjdvTmBgILGxsRw6dOh8SmsyKk1mHlm4nndXHqgeav+mPjx4jeYFEhGRxsnqwLJw4ULi4uJISEggMzOTsLAwYmJiyMvLO237tLQ0Ro0axbJly0hPTyc4OJghQ4aQnZ0NQGlpKZmZmTz11FNkZmbyySefsGPHDoYPH35hR9aInawwce87a1my4RDOjg68eEc/xmheIBERacQcDMMwrNkgKiqK/v37k5ycDIDZbCY4OJjx48czadKkc25vMpnw8fEhOTmZ2NjY07ZZs2YNAwYM4MCBA7Rv3/6c+ywqKsLb25vCwkK8vLysOZwGp/BkJX+ft4Y1+4/j7uLInDsjuLp7G1uXJSIiYjVrvr+tusJSUVFBRkYG0dHRv+/A0ZHo6GjS09NrtY/S0lIqKyvx9fU9Y5vCwkIcHBxo2bLlaT8vLy+nqKioxtIUHCkuZ9RrK1mz/zgt3J15754ohRUREWkSrAos+fn5mEwm/P39a6z39/cnJyenVvuYOHEigYGBNULPH5WVlTFx4kRGjRp1xrSVmJiIt7e3ZQkODrbmMBqk7IKT3P5qOlsPF+Hn6cbCewcSGXLm0CciItKY1OtAHUlJSSxYsIDFixfj7n7qUPGVlZXcfvvtGIbBnDlzzrifyZMnU1hYaFkOHjxYl2Xb3O68E4yY8zP78ksIaunBovsG0iuwcd/6EhER+SOrXmv28/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJpUuXEhoaesrnv4WVAwcO8P3335/1Xpabmxtubm7WlN5gbc4uJPbN1RwrqaBz6+a89/co2np72LosERGRemXVFRZXV1ciIiJITU21rDObzaSmpjJw4MAzbjdjxgymTZtGSkoKkZGRp3z+W1jZtWsXS5cupVWrVtaU1Wit3neMUa+t5FhJBX2DvPnwnwMVVkREpEmyeuC4uLg4xo4dS2RkJAMGDGDWrFmUlJQwbtw4AGJjYwkKCiIxMRGA6dOnEx8fz/z58wkJCbE86+Lp6YmnpyeVlZWMGDGCzMxMvvjiC0wmk6WNr68vrq6uF+tYG5S0HXnc914GZZVmBnT05Y2xkbRw1ySGIiLSNFkdWEaOHMmRI0eIj48nJyeH8PBwUlJSLA/iZmVl4ej4+4WbOXPmUFFRwYgRI2rsJyEhgSlTppCdnc2SJUsACA8Pr9Fm2bJlXHXVVdaW2OB9ufEwjyxcR6WpehLD/42+BHcXTWIoIiJNl9XjsNijxjQOy4drDjLpk42YDfhraFuevz0cV2dNYigiIo2PNd/fmkvIjryxYh/TvqiecXnUgPb856Y+OGkSQxEREQUWe2AYBi+l7uaFpTsBuHdwJyZf10PzAomIiPxKgcXGDMPg2a+2MffHfYBmXBYRETkdBRYbMpkNnvx0Ex+srh74Lv6vvbj7io42rkpERMT+KLDYSKXJzGOLNvDZ+kM4OkDSLaHc3r/xTzEgIiJyPhRYbKCs0sSD89exdFsuzo4OzLojnL+GBtq6LBEREbulwFLPSiuquPedDFbszsfV2ZFX7ryEa3r4n3tDERGRJkyBpR4VlVVy91trWHvgOM1cnXh9bCSXdfazdVkiIiJ2T4GlnhwvqSD2zdVsyi6khbszb48bQEQHH1uXJSIi0iAosNSDvOIyxry+mh25xfg2d+WduwfQJ8jb1mWJiIg0GAosdexQwUlGv76KffkltGnhxvt/j6KrfwtblyUiItKgKLDUoayjpfzt9ZX8cvwkQS09mP+PKDq0am7rskRERBocBZY6sjvvBHe+voqcojJCWjXj/X9cSlBLD1uXJSIi0iApsNSB7TlF3Pn6KvJPVNDN35P37omijZe7rcsSERFpsBRYLrJNvxQy5s1VFJRW0jvQi3fvicK3uautyxIREWnQFFguoowDx7jrzTUUl1fRr31L3h43AG8PF1uXJSIi0uApsFwk6XuOcs+8NZRWmBjQ0Zc37+qPp5u6V0RE5GLQN+pF8MPOI/zjnbWUV5m5oosfc2Mj8XB1snVZIiIijYYCywVaujWXf72fSYXJzDU92vC/0Zfg7qKwIiIicjEpsFyArzcdZvwH66gyG8T09uflUZfg6uxo67JEREQaHQWW8/TZ+mziPtyAyWxwQ1ggz98ehouTwoqIiEhdUGA5Dx9l/MKEjzZgGHDrJe2YMSIUJ0cHW5clIiLSaOmSgJU+WJ1lCSujBgTznMKKiIhIndMVFiu8k76f+M+2ADB2YAemDO+Ng4PCioiISF1TYKmlN1bsY9oXWwH4+xUd+b9hPRVWRERE6okCSy28unwPiV9vB+D+qzrzeEx3hRUREZF6pMByDsnf72LmtzsBeOjarvw7uqvCioiISD1TYDmL9QcLLGHl0b90Y/y1XW1ckYiISNOkwHIW4cEteXJYT6rMBvdd2dnW5YiIiDRZCizn8PdBnWxdgoiISJOncVhERETE7imwiIiIiN1TYBERERG7p8AiIiIidk+BRUREROzeeQWW2bNnExISgru7O1FRUaxevfqMbefOncugQYPw8fHBx8eH6OjoU9p/8sknDBkyhFatWuHg4MD69evPpywRERFppKwOLAsXLiQuLo6EhAQyMzMJCwsjJiaGvLy807ZPS0tj1KhRLFu2jPT0dIKDgxkyZAjZ2dmWNiUlJVxxxRVMnz79/I9EREREGi0HwzAMazaIioqif//+JCcnA2A2mwkODmb8+PFMmjTpnNubTCZ8fHxITk4mNja2xmf79++nY8eOrFu3jvDw8FrXVFRUhLe3N4WFhXh5eVlzOCIiImIj1nx/W3WFpaKigoyMDKKjo3/fgaMj0dHRpKen12ofpaWlVFZW4uvra82vrqG8vJyioqIai4iIiDReVgWW/Px8TCYT/v7+Ndb7+/uTk5NTq31MnDiRwMDAGqHHWomJiXh7e1uW4ODg896XiIiI2L96fUsoKSmJBQsWsHjxYtzd3c97P5MnT6awsNCyHDx48CJWKSIiIvbGqrmE/Pz8cHJyIjc3t8b63NxcAgICzrrtzJkzSUpKYunSpYSGhlpf6R+4ubnh5uZ2QfsQERGRhsOqKyyurq5ERESQmppqWWc2m0lNTWXgwIFn3G7GjBlMmzaNlJQUIiMjz79aERERaZKsnq05Li6OsWPHEhkZyYABA5g1axYlJSWMGzcOgNjYWIKCgkhMTARg+vTpxMfHM3/+fEJCQizPunh6euLp6QnAsWPHyMrK4tChQwDs2LEDgICAgHNeuQH47UUnPXwrIiLScPz2vV2rF5aN8/Dyyy8b7du3N1xdXY0BAwYYK1eutHx25ZVXGmPHjrX83KFDBwM4ZUlISLC0eeutt87Z5mwOHjx42u21aNGiRYsWLfa/HDx48Jzf9VaPw2KPzGYzhw4dokWLFjg4OFzUfRcVFREcHMzBgwc1xss5qK9qT31Ve+or66i/ak99VXt11VeGYVBcXExgYCCOjmd/SsXqW0L2yNHRkXbt2tXp7/Dy8tIJXUvqq9pTX9We+so66q/aU1/VXl30lbe3d63aafJDERERsXsKLCIiImL3FFjOwc3NjYSEBI37Ugvqq9pTX9We+so66q/aU1/Vnj30VaN46FZEREQaN11hEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNi9JhFY5syZQ2hoqGXAm4EDB/L1119bPi8rK+OBBx6gVatWeHp6cuutt54yI3VWVhbDhg2jWbNmtGnThgkTJlBVVVWjTVpaGpdccglubm506dKFt99+uz4O76I6V19dddVVODg41Fjuu+++GvtoKn31Z0lJSTg4OPDII49Y1uncOr3T9ZXOrWpTpkw5pR969Ohh+Vzn1O/O1Vc6p2rKzs7mzjvvpFWrVnh4eNC3b1/Wrl1r+dwwDOLj42nbti0eHh5ER0eza9euGvs4duwYo0ePxsvLi5YtW3LPPfdw4sSJGm02btzIoEGDcHd3Jzg4mBkzZlycA6jVZD0N3JIlS4wvv/zS2Llzp7Fjxw7jiSeeMFxcXIzNmzcbhmEY9913nxEcHGykpqYaa9euNS699FLjsssus2xfVVVl9OnTx4iOjjbWrVtnfPXVV4afn58xefJkS5u9e/cazZo1M+Li4oytW7caL7/8suHk5GSkpKTU+/FeiHP11ZVXXmn84x//MA4fPmxZCgsLLds3pb76o9WrVxshISFGaGio8fDDD1vW69w61Zn6SudWtYSEBKN37941+uHIkSOWz3VO/e5cfaVz6nfHjh0zOnToYNx1113GqlWrjL179xrffPONsXv3bkubpKQkw9vb2/j000+NDRs2GMOHDzc6duxonDx50tJm6NChRlhYmLFy5Urjxx9/NLp06WKMGjXK8nlhYaHh7+9vjB492ti8ebPxwQcfGB4eHsarr756wcfQJALL6fj4+Bivv/66UVBQYLi4uBiLFi2yfLZt2zYDMNLT0w3DMIyvvvrKcHR0NHJycixt5syZY3h5eRnl5eWGYRjG448/bvTu3bvG7xg5cqQRExNTD0dTt37rK8Oo/gPwxy+ZP2uKfVVcXGx07drV+O6772r0j86tU52prwxD59ZvEhISjLCwsNN+pnOqprP1lWHonPqjiRMnGldcccUZPzebzUZAQIDx3HPPWdYVFBQYbm5uxgcffGAYhmFs3brVAIw1a9ZY2nz99deGg4ODkZ2dbRiGYfzvf/8zfHx8LP332+/u3r37BR9Dk7gl9Ecmk4kFCxZQUlLCwIEDycjIoLKykujoaEubHj160L59e9LT0wFIT0+nb9+++Pv7W9rExMRQVFTEli1bLG3+uI/f2vy2j4boz331m/fffx8/Pz/69OnD5MmTKS0ttXzWFPvqgQceYNiwYacck86tU52pr36jc6varl27CAwMpFOnTowePZqsrCxA59TpnKmvfqNzqtqSJUuIjIzktttuo02bNvTr14+5c+daPt+3bx85OTk1jtXb25uoqKga51bLli2JjIy0tImOjsbR0ZFVq1ZZ2gwePBhXV1dLm5iYGHbs2MHx48cv6BgaxeSHtbFp0yYGDhxIWVkZnp6eLF68mF69erF+/XpcXV1p2bJljfb+/v7k5OQAkJOTU+OE/u3z3z47W5uioiJOnjyJh4dHHR3ZxXemvgL429/+RocOHQgMDGTjxo1MnDiRHTt28MknnwBNr68WLFhAZmYma9asOeWznJwcnVt/cLa+Ap1bv4mKiuLtt9+me/fuHD58mKlTpzJo0CA2b96sc+pPztZXLVq00Dn1B3v37mXOnDnExcXxxBNPsGbNGh566CFcXV0ZO3as5XhPd6x/7Is2bdrU+NzZ2RlfX98abTp27HjKPn77zMfH57yPockElu7du7N+/XoKCwv56KOPGDt2LMuXL7d1WXbpTH3Vq1cv7r33Xku7vn370rZtW6699lr27NlD586dbVh1/Tt48CAPP/ww3333He7u7rYux67Vpq90blW77rrrLP8dGhpKVFQUHTp04MMPP2wwX4715Wx9dc899+ic+gOz2UxkZCTPPvssAP369WPz5s288sorjB071sbV1U6TuSXk6upKly5diIiIIDExkbCwMF588UUCAgKoqKigoKCgRvvc3FwCAgIACAgIOOUp/N9+PlcbLy+vBvdH5kx9dTpRUVEA7N69G2hafZWRkUFeXh6XXHIJzs7OODs7s3z5cl566SWcnZ3x9/fXufWrc/WVyWQ6ZZumfG79UcuWLenWrRu7d+/W36tz+GNfnU5TPqfatm1ruVL+m549e1puof12vKc71j/2RV5eXo3Pq6qqOHbsmFXn3/lqMoHlz8xmM+Xl5URERODi4kJqaqrlsx07dpCVlWV5bmPgwIFs2rSpxv9Q3333HV5eXpYTYODAgTX28VubPz770VD91lens379eqD6HwM0rb669tpr2bRpE+vXr7cskZGRjB492vLfOreqnauvnJycTtmmKZ9bf3TixAn27NlD27Zt9ffqHP7YV6fTlM+pyy+/nB07dtRYt3PnTjp06ABAx44dCQgIqHGsRUVFrFq1qsa5VVBQQEZGhqXN999/j9lstoTBgQMH8sMPP1BZWWlp891339G9e/cLuh0ENI3XmidNmmQsX77c2Ldvn7Fx40Zj0qRJhoODg/Htt98ahlH9mmD79u2N77//3li7dq0xcOBAY+DAgZbtf3v1bciQIcb69euNlJQUo3Xr1qd99W3ChAnGtm3bjNmzZzfIV9/O1le7d+82nn76aWPt2rXGvn37jM8++8zo1KmTMXjwYMv2TamvTufPbyXo3DqzP/aVzq3fPfroo0ZaWpqxb98+46effjKio6MNPz8/Iy8vzzAMnVN/dLa+0jlV0+rVqw1nZ2fjmWeeMXbt2mW8//77RrNmzYz33nvP0iYpKclo2bKl8dlnnxkbN240brzxxtO+1tyvXz9j1apVxooVK4yuXbvWeK25oKDA8Pf3N8aMGWNs3rzZWLBggdGsWTO91lxbd999t9GhQwfD1dXVaN26tXHttddawophGMbJkyeNf/3rX4aPj4/RrFkz4+abbzYOHz5cYx/79+83rrvuOsPDw8Pw8/MzHn30UaOysrJGm2XLlhnh4eGGq6ur0alTJ+Ott96qj8O7qM7WV1lZWcbgwYMNX19fw83NzejSpYsxYcKEGuMaGEbT6avT+XNg0bl1Zn/sK51bvxs5cqTRtm1bw9XV1QgKCjJGjhxZY6wMnVO/O1tf6Zw61eeff2706dPHcHNzM3r06GG89tprNT43m83GU089Zfj7+xtubm7Gtddea+zYsaNGm6NHjxqjRo0yPD09DS8vL2PcuHFGcXFxjTYbNmwwrrjiCsPNzc0ICgoykpKSLkr9DoZhGBd2jUZERESkbjXZZ1hERESk4VBgEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNg9BRYRERGxewosIiIiYvcUWERERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFRERE7N7/A3R7MLUKHBJhAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLe0lEQVR4nO3deVxVdf7H8Rc7KIIgCoIo7jtgoGSlbYxYTrZZ5piYNdPUlNVQpvYr0JwCzSkrHCvbbDHNyrKNShLLwg3c9x1DAVFZBNnuPb8/qFvkxlXhXuD9fDzO4xHnfs/hc75z5L7nLN+vg2EYBiIiIiJ2zNHWBYiIiIiciwKLiIiI2D0FFhEREbF7CiwiIiJi9xRYRERExO4psIiIiIjdU2ARERERu6fAIiIiInbP2dYFXAxms5lDhw7RokULHBwcbF2OiIiI1IJhGBQXFxMYGIij49mvoTSKwHLo0CGCg4NtXYaIiIich4MHD9KuXbuztmkUgaVFixZA9QF7eXnZuBoRERGpjaKiIoKDgy3f42fTKALLb7eBvLy8FFhEREQamNo8zqGHbkVERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNg9BRYRERGxewosIiIiYvcUWERERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFREREzqis0sTsZbuZkbLdpnU0itmaRURE5OIyDIMvNh4m6evtZBecxMnRgZH9g+nQqrlN6lFgERERkRo2HCxg2hdbWXvgOACB3u5MvK4H7X2b2awmBRYREREBILeojOkp2/kkMxsADxcn7r+qM/8Y1AkPVyeb1qbAIiIi0sSVVZp4/ce9/C9tD6UVJgBuuSSIx2N6EODtbuPqqimwiIiINFGGYfDlpsMkflX9nArAJe1bEn9Db8KDW9q2uD9RYBEREWmCNmcX8vTnW1m9/xgAbb3dmXRdD4aHBeLg4GDj6k6lwCIiItKE5J8oZ+Y3O1i49iCGAe4ujvxzcGfuu7KzzZ9TORsFFhERkSagosrMvJ/381LqLorLqwAYHhbIpOt6ENjSw8bVnZsCi4iISCP3/fZcpn2xjX35JQD0DfIm4YZeRIb42riy2lNgERERaaR2551g2hdbWb7zCAB+nm48HtOdERHtcHS0v+dUzkaBRUREpJEpPFnJS6m7mPfzfqrMBi5ODtx9RUcevLoLLdxdbF3eeVFgERERaSRMZoNFaw/y3Dc7OFpSAUB0zzb837BedPSzzZD6F4sCi4iISCOwdv8xpny+hc3ZRQB0bt2c+Bt6c2W31jau7OJQYBEREWnAcgrLSPp6G5+uPwRACzdnHo7uytjLQnBxcrRxdRePAouIiEgDVFZp4o0V+5i9bDelFSYcHOD2iGAmDO2On6ebrcu76BRYREREGhDDMEjdlse0L7dy4GgpUD2c/tThfejbztvG1dUdBRYREZEGYu+RE0z9/PfXlNu0cGPy9T24KTzILofTv5gUWEREROzcifIqXv5+F2+u2Eelqfo15Xuu6MSD13TB061pfJU3jaMUERFpgAzD4NP12SR+tZ284nIAru7emvgbejf415StpcAiIiJihzZnFzJlyRbWHjgOQIdWzUi4oRfX9PC3cWW2ocAiIiJiR46XVPDf73Ywf1UWZgM8XJx48Jou/H1QR9yc7Xc25bp2Xi9oz549m5CQENzd3YmKimL16tVnbDt37lwGDRqEj48PPj4+REdHn9L+xIkTPPjgg7Rr1w4PDw969erFK6+8cj6liYiINEgms8H7qw5w9X/TeG9ldVi5ISyQ7x+7kgeu7tKkwwqcR2BZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OtrSJi4sjJSWF9957j23btvHII4/w4IMPsmTJkvM/MhERkQYi48Bxbpy9gv9bvJmC0kp6BLRgwb2X8vKofrT19rB1eXbBwTAMw5oNoqKi6N+/P8nJyQCYzWaCg4MZP348kyZNOuf2JpMJHx8fkpOTiY2NBaBPnz6MHDmSp556ytIuIiKC6667jv/85z/n3GdRURHe3t4UFhbi5eVlzeGIiIjYTP6JcqZ/vZ1FGb8A0MLdmUf/0o07L+2AcyMapfZMrPn+tqo3KioqyMjIIDo6+vcdODoSHR1Nenp6rfZRWlpKZWUlvr6+lnWXXXYZS5YsITs7G8MwWLZsGTt37mTIkCGn3Ud5eTlFRUU1FhERkYaiymTmrZ/2cfXMNEtYuS2iHcseu4q7Lu/YJMKKtax66DY/Px+TyYS/f80nlP39/dm+fXut9jFx4kQCAwNrhJ6XX36Ze++9l3bt2uHs7IyjoyNz585l8ODBp91HYmIiU6dOtaZ0ERERu7Bq71ESlmxhe04xAH2CvHj6xj5c0t7HxpXZt3p9SygpKYkFCxaQlpaGu7u7Zf3LL7/MypUrWbJkCR06dOCHH37ggQceOCXY/Gby5MnExcVZfi4qKiI4OLhejkFEROR85BWV8exXv09S2LKZCxNiunNH//Y4OTbuUWovBqsCi5+fH05OTuTm5tZYn5ubS0BAwFm3nTlzJklJSSxdupTQ0FDL+pMnT/LEE0+wePFihg0bBkBoaCjr169n5syZpw0sbm5uuLk1vomdRESk8ak0mZn3835mLd3FifIqHBxg1ID2TBjSHZ/mrrYur8Gw6iaZq6srERERpKamWtaZzWZSU1MZOHDgGbebMWMG06ZNIyUlhcjIyBqfVVZWUllZiaNjzVKcnJwwm83WlCciImJXVu49yrCXfuQ/X27jRHkVYcEt+eyBy3n25r4KK1ay+pZQXFwcY8eOJTIykgEDBjBr1ixKSkoYN24cALGxsQQFBZGYmAjA9OnTiY+PZ/78+YSEhJCTkwOAp6cnnp6eeHl5ceWVVzJhwgQ8PDzo0KEDy5cv55133uH555+/iIcqIiJSP/58+8enmQsTh/bg9shgHHX757xYHVhGjhzJkSNHiI+PJycnh/DwcFJSUiwP4mZlZdW4WjJnzhwqKioYMWJEjf0kJCQwZcoUABYsWMDkyZMZPXo0x44do0OHDjzzzDPcd999F3BoIiIi9avKZOad9AO88N1Oin+9/fO3Ae2ZENOdls10ReVCWD0Oiz3SOCwiImJra/Yf46lPN1ve/gkLbsm0G3sT2q6lbQuzY9Z8f2suIRERkQtwpLicpK+383Fm9XgqLX+9/TNSt38uKgUWERGR8/Db3D/PfbOD4rLq2z939A/m8ZgeeqC2DiiwiIiIWGld1nGe+mwzm7OrR1rvE+TFtBv70E+Dv9UZBRYREZFaKiitYHrKDhasycIwquf+eTymO3+L6qDB3+qYAouIiMg5mM0GH2X+QtLX2zlWUgHALZcEMfm6nrRuoYFM64MCi4iIyFlszyniycWbWXvgOADd/D2ZdmMfojq1snFlTYsCi4iIyGmcKK/ixaU7efOn/ZjMBs1cnfh3dDfuujwEF82mXO8UWERERP7AMAxSNucw9fOt5BSVAXB93wCe+msv2np72Li6pkuBRURE5FcHjpYQ/9kWlu88AkB732ZMvbE3V3dvY+PKRIFFRESavPIqE68t30vyst2UV5lxdXLkvis78a+ru+Du4mTr8gQFFhERaeJ+3p3Pk59tZu+REgCu6OLH0zf2plNrTxtXJn+kwCIiIk3SkeJynv1qG4vXZQPQuoUbT/21FzeEtsXBQWOq2BsFFhERaVLMZoP5q7OYkbKdol+H1B9zaQcei+mOl7uLrcuTM1BgERGRJmProSKeWLyJ9QcLgOoh9Z+9ua9mVG4AFFhERKTRKymv4oXvdvLWz9Vjqni6OfPYkG6MGRiiIfUbCAUWERFp1L7dksOUJVs4VFg9psqwvm156q+9CPB2t3FlYg0FFhERaZQOFZwkYckWvtuaC0CwrwdPD+/D1T00pkpDpMAiIiKNSpXJzNs/7+f573ZSWmHC2dGBewd3Yvw1XfFw1ZgqDZUCi4iINBobDhbwxOJNbDlUBED/EB+eubkv3fxb2LgyuVAKLCIi0uAVl1Xy3293Mi99P4YB3h4uPHF9D26LCMZRD9U2CgosIiLSYBmGwTdbcpmyZItlosKb+wXxf8N64ufpZuPq5GJSYBERkQYpu+AkCZ9tYem26odqO7RqxjM39eWKrn42rkzqggKLiIg0KCazwds/7+e/3+6gtMKEi5MD/xzcmQev0USFjZkCi4iINBibswuZ/MkmNmUXAhDZwYdnb9FDtU2BAouIiNi90orqkWrfWLEPswEt3J154vqejIzUQ7VNhQKLiIjYtWU78nhy8WayC04C8NfQtsTf0Is2LTRSbVOiwCIiInbpSHE5T3+xlc83HAIgqKUH/7lJI9U2VQosIiJiVwzD4MO1B3nmy20UlVXh6AB3X96Rf/+lG83d9LXVVOl/eRERsRt7j5xg8iebWLXvGAB9grxIvDmUvu28bVyZ2JoCi4iI2FxFlZnXftjDS9/vpqLKjIeLE3F/6ca4y0NwdnK0dXliBxRYRETEptZlHWfSx5vYkVsMwOBurXnmpj4E+zazcWViTxRYRETEJk6UVzHzmx2W+X98m7uScEMvhocF4uCgV5WlJgUWERGpd99vz+XJxZs5VFg9/88tlwTx5LBe+DZ3tXFlYq8UWEREpN7knyhn6ue/v6oc7OvBszf3ZVDX1jauTOydAouIiNQ5wzD4JDObaV9upaC0EkcH+PugTjwS3ZVmrvoqknM7r0evZ8+eTUhICO7u7kRFRbF69eoztp07dy6DBg3Cx8cHHx8foqOjT2nv4OBw2uW55547n/JERMSOHDxWSuybq3l00QYKSivp1daLzx64gieu76mwIrVmdWBZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OtrQ5fPhwjeXNN9/EwcGBW2+99fyPTEREbMpkNnj9x70MeeEHftyVj5uzIxOH9uCzBy/XuCpiNQfDMAxrNoiKiqJ///4kJycDYDabCQ4OZvz48UyaNOmc25tMJnx8fEhOTiY2Nva0bW666SaKi4tJTU2tVU1FRUV4e3tTWFiIl5dX7Q9GRETqxPacIiZ+vIkNBwsAiOroS9KtoXT0a27bwsSuWPP9bdW1uIqKCjIyMpg8ebJlnaOjI9HR0aSnp9dqH6WlpVRWVuLr63vaz3Nzc/nyyy+ZN2/eGfdRXl5OeXm55eeioqJaHoGIiNSl8ioTs7/fzf/S9lBlNmjh5szk63tyR3/NqiwXxqrAkp+fj8lkwt/fv8Z6f39/tm/fXqt9TJw4kcDAQKKjo0/7+bx582jRogW33HLLGfeRmJjI1KlTa1+4iIjUuYwDx5n48UZ2550AYEgvf6bd1Ad/L82qLBeuXp92SkpKYsGCBaSlpeHufvoT+M0332T06NFn/Bxg8uTJxMXFWX4uKioiODj4otcrIiLnVlJexcxvd/D2z9UDwPl5uvL0jX24rk+ABoCTi8aqwOLn54eTkxO5ubk11ufm5hIQEHDWbWfOnElSUhJLly4lNDT0tG1+/PFHduzYwcKFC8+6Lzc3N9zc3KwpXURE6sAPO48w+ZNNZBecBGBERDueHNaTls00AJxcXFa9JeTq6kpERESNh2HNZjOpqakMHDjwjNvNmDGDadOmkZKSQmRk5BnbvfHGG0RERBAWFmZNWSIiUs8KSyt5bNEGYt9cTXbBSYJaevDO3QOYeVuYworUCatvCcXFxTF27FgiIyMZMGAAs2bNoqSkhHHjxgEQGxtLUFAQiYmJAEyfPp34+Hjmz59PSEgIOTk5AHh6euLp6WnZb1FREYsWLeK///3vxTguERGpIymbc3jqs80cKS7HwQHGDgxhQkx3mrtpTBWpO1afXSNHjuTIkSPEx8eTk5NDeHg4KSkplgdxs7KycHT8/cLNnDlzqKioYMSIETX2k5CQwJQpUyw/L1iwAMMwGDVq1HkeioiI1KX8E+UkLNnClxsPA9CpdXNm3BpKZMjp3/oUuZisHofFHmkcFhGRumMYBp+tP8TUz7dwvLQSJ0cH/jm4Ew9d2xV3FydblycNWJ2NwyIiIk1LTmEZ/7d4E6nbq0cz79XWixkjQukTpJFqpX4psIiIyCkMw2DhmoM88+U2isurcHVyZPw1Xbjvqs64OJ3XNHQiF0SBRUREajh4rJRJn2zkp91HAQgPbslzI0Lp6t/CxpVJU6bAIiIiAJjNBu+uPMD0lO2UVphwc3ZkQkx3xl3eEScNqy82psAiIiLszy/h8Y83snrfMQAGdPRluiYrFDuiwCIi0oSZzAZv/bSPmd/uoKzSTDNXJyYO7cGYSztoskKxKwosIiJN1J4jJ5iwaAOZWQUAXNa5FdNvDSXYt5ltCxM5DQUWEZEmxmQ2eP3Hvfz3u51UVJnxdHPmiet7MmpAsCYrFLulwCIi0oTszivmsUUbWX+wAIDB3VqTeEtfglp62LYwkXNQYBERaQKqTGbm/riPF5ZWX1Vp4e7MU8N6cVtkO11VkQZBgUVEpJHblVvMYx9tZMOvV1Wu7t6aZ2/pS1tvXVWRhkOBRUSkkbJcVfluJxWm6qsq8X/txYgIXVWRhkeBRUSkETrdVZXEW0IJ8Ha3bWEi50mBRUSkETndsyq6qiKNgQKLiEgjsTvvBI8t2mB5A+iq7q1J0lUVaSQUWEREGjiT2eDNFft47tsd1VdV3Jx56oZe3KarKtKIKLCIiDRg+/JLeGzRBjIOHAeqx1WZfqveAJLGR4FFRKQBMpsN3v55PzO+2U5ZZfVotU8O68nI/hqtVhonBRYRkQYm62gpj320wTKz8uVdqucAauejOYCk8VJgERFpIAzD4L1VWSR+tY3SChPNXJ2YfH1P7oxqr6sq0ugpsIiINACHCk7y+EcbWbE7H4ABHX2ZOSKM9q10VUWaBgUWERE7ZhgGH2X8wtOfb6W4vAo3Z0cmDu3BXZeF4OioqyrSdCiwiIjYqbziMp74ZBNLt+UB0K99S2beFkbn1p42rkyk/imwiIjYoS82HuLJTzdTUFqJq5Mj//5LN+4d3AknXVWRJkqBRUTEjhwvqSB+yRY+33AIgF5tvXh+ZBg9ArxsXJmIbSmwiIjYiWXb83j8440cKS7HydGBB67qzIPXdMXV2dHWpYnYnAKLiIiNnSiv4j9fbGXBmoMAdG7dnOdvDycsuKVtCxOxIwosIiI2tHLvUR5btIFfjp/EwQHuubwjj8V0x93FydalidgVBRYRERsoqzQx85sdvPHTPgwD2vl4MPO2MC7t1MrWpYnYJQUWEZF6tjm7kH8vXM+uvBMA3NE/mCf/2gtPN/1JFjkT/esQEaknVSYzc9L28GLqLqrMBn6ebswY0ZdrevjbujQRu6fAIiJSD/YcOUHchxvYcLAAgOv7BvCfm/ri29zVtoWJNBAKLCIidchsNnh35QESv95GWaUZL3dnpt3Uh+FhgZqwUMQKCiwiInUkp7CMCR9t4Mdd1RMWXtHFj+duC6Wtt4eNKxNpeBRYRETqwOcbqofWLzxZiZuzI09c35Mxl3bQhIUi5+m8hk+cPXs2ISEhuLu7ExUVxerVq8/Ydu7cuQwaNAgfHx98fHyIjo4+bftt27YxfPhwvL29ad68Of379ycrK+t8yhMRsZnC0koe+mAd4z9YR+HJSsLaefPVw4MYq9mVRS6I1YFl4cKFxMXFkZCQQGZmJmFhYcTExJCXl3fa9mlpaYwaNYply5aRnp5OcHAwQ4YMITs729Jmz549XHHFFfTo0YO0tDQ2btzIU089hbu7+/kfmYhIPVuxK5+YWT+wZMMhnBwdePjarnx0/2WaXVnkInAwDMOwZoOoqCj69+9PcnIyAGazmeDgYMaPH8+kSZPOub3JZMLHx4fk5GRiY2MBuOOOO3BxceHdd989j0OAoqIivL29KSwsxMtLE4SJSP0qqzQxPWU7b/20H4COfs15YWQ44RpaX+SsrPn+tuoKS0VFBRkZGURHR/++A0dHoqOjSU9Pr9U+SktLqaysxNfXF6gOPF9++SXdunUjJiaGNm3aEBUVxaeffnrGfZSXl1NUVFRjERGxhc3Zhdzw8gpLWLnz0vZ8+dAVCisiF5lVgSU/Px+TyYS/f81Bjvz9/cnJyanVPiZOnEhgYKAl9OTl5XHixAmSkpIYOnQo3377LTfffDO33HILy5cvP+0+EhMT8fb2tizBwcHWHIaIyAUzmQ1mL9vNzf/7iV15J2jdwo23xvXnPzf1pZmr3mcQudjq9V9VUlISCxYsIC0tzfJ8itlsBuDGG2/k3//+NwDh4eH8/PPPvPLKK1x55ZWn7Gfy5MnExcVZfi4qKlJoEZF6c/BYKXEfrmfN/uMADO0dwLO3aBA4kbpkVWDx8/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJpUuXEhoaWmOfzs7O9OrVq0b7nj17smLFitPuy83NDTc3N2tKFxG5YIZh8HFmNlOWbOFEeRWebs4k3NCLERHtNAicSB2z6paQq6srERERpKamWtaZzWZSU1MZOHDgGbebMWMG06ZNIyUlhcjIyFP22b9/f3bs2FFj/c6dO+nQoYM15YmI1JnjJRU8MD+TxxZt4ER5FZEdfPj64UHcFhmssCJSD6y+JRQXF8fYsWOJjIxkwIABzJo1i5KSEsaNGwdAbGwsQUFBJCYmAjB9+nTi4+OZP38+ISEhlmddPD098fSsftVvwoQJjBw5ksGDB3P11VeTkpLC559/Tlpa2kU6TBGR8/fjriM8tmgDuUXlODs68O+/dOO+KzvjpHFVROqN1YFl5MiRHDlyhPj4eHJycggPDyclJcXyIG5WVhaOjr9fuJkzZw4VFRWMGDGixn4SEhKYMmUKADfffDOvvPIKiYmJPPTQQ3Tv3p2PP/6YK6644gIOTUTkwpRVmpiRsoM3f9oHQKfWzXlxZD/6tvO2cWUiTY/V47DYI43DIiIX27bDRTyyYD07cosBGHNpB564vicerk42rkyk8bDm+1vv3omI/IHZbPDmT/uYkbKDCpMZP09XZowI5Zoe/ufeWETqjAKLiMivcovKePTDDazYXT278rU92jB9RCh+nnorUcTWFFhERICUzYeZ9MkmCkorcXdx5MlhvRgd1V5vAInYCQUWEWnSSsqrmPbFVhasOQhAnyAvZo3sR5c2mrBQxJ4osIhIk7XhYAGPLFzPvvwSHBzgn4M7E/eXbrg6Wz2RvYjUMQUWEWlyTGaDV5bv4YXvdlJlNmjr7c7zt4czsHMrW5cmImegwCIiTcqhgpP8e+F6Vu07BsCwvm159ua+eDdzsXFlInI2Ciwi0mR8ufEwkz/ZSFFZFc1dnZgyvLfmARJpIBRYRKTRKymvYsqSLSzK+AWAsOCWvDgynBC/5jauTERqS4FFRBq1jb8U8PCC3x+sfeCqLjwc3RUXJz1YK9KQKLCISKNkNhu89uNeZn6zgyqzQaC3Oy+MDCeqkx6sFWmIFFhEpNHJKSwj7sP1/LznKADX9w0g8eZQPVgr0oApsIhIo/Ld1lwe/2gDx0sr8XBxYurw3twWqQdrRRo6BRYRaRTKKk088+U23l15AKgesfbFO/rRubVGrBVpDBRYRKTB25FTzPgPMtmZewKAewd34rEh3TVirUgjosAiIg2WYRi8u/IA//lyGxVVZvw83Xj+9jAGd2tt69JE5CJTYBGRBul4SQUTPtrI0m25AFzdvTXP3RaGn6ebjSsTkbqgwCIiDU76nqP8e+F6corKcHVyZNJ1PRh3eYgerBVpxBRYRKTBqDKZeTF1F8nLdmMY0Kl1c14e1Y/egd62Lk1E6pgCi4g0CL8cL+XhBevJOHAcgNsj2zFleG+auerPmEhToH/pImL3vt50mIkfV09a2MLNmWdu6cvwsEBblyUi9UiBRUTsVlmliae/2Mr8VVkAhAe35OVR/Qj2bWbjykSkvimwiIhd2plbzIPzq8dWcXCA+67sTNxfumnSQpEmSoFFROyKYRgsWHOQqZ9voayyemyVF0aGMairxlYRacoUWETEbhSVVTL5k018ufEwAIO6+vH87eG0bqGxVUSaOgUWEbEL6w8WMP6DTA4eO4mzowMTYrrzj0GdcHTU2CoiosAiIjZmNhu8vmIvM1J2UGU2aOfjwcuj+tGvvY+tSxMRO6LAIiI2c/REOY8u2kDajiMADOvblmdv6Yu3h4uNKxMRe6PAIiI2kb7nKI8sXEduUTluzo7E39CLvw1or+H1ReS0FFhEpF6ZzAYvf7+Ll1J3YTagc+vmzB59CT0CvGxdmojYMQUWEak3uUVlPLxgHSv3HgNgREQ7nr5Rw+uLyLnpr4SI1IvlO48Qt3A9R0sqaObqxH9u6sMtl7SzdVki0kAosIhInao0mXn+u53MSdsDQM+2XiT/rR+dW3vauDIRaUgUWESkzhwqOMn4D9ZZZlgec2kH/m9YT9xdnGxcmYg0NAosIlInUrfl8uiiDRSUVtLCzZmkW0MZFtrW1mWJSAN1XrOIzZ49m5CQENzd3YmKimL16tVnbDt37lwGDRqEj48PPj4+REdHn9L+rrvuwsHBocYydOjQ8ylNRGys0mTm2a+2cc+8tRSUVtI3yJsvHrpCYUVELojVgWXhwoXExcWRkJBAZmYmYWFhxMTEkJeXd9r2aWlpjBo1imXLlpGenk5wcDBDhgwhOzu7RruhQ4dy+PBhy/LBBx+c3xGJiM1kF5xk5KvpvPbDXgDuuiyEj+4fSIdWzW1cmYg0dA6GYRjWbBAVFUX//v1JTk4GwGw2ExwczPjx45k0adI5tzeZTPj4+JCcnExsbCxQfYWloKCATz/91PojAIqKivD29qawsBAvL43lIGILS7dW3wIqPFlJC3dnnhsRxtA+AbYuS0TsmDXf31ZdYamoqCAjI4Po6Ojfd+DoSHR0NOnp6bXaR2lpKZWVlfj6+tZYn5aWRps2bejevTv3338/R48ePeM+ysvLKSoqqrGIiG38dgvo7++spfBkJWHtvPnqoUEKKyJyUVkVWPLz8zGZTPj7+9dY7+/vT05OTq32MXHiRAIDA2uEnqFDh/LOO++QmprK9OnTWb58Oddddx0mk+m0+0hMTMTb29uyBAcHW3MYInKRZBec5PY/3AIad3kIi+67jGDfZjauTEQam3p9SygpKYkFCxaQlpaGu7u7Zf0dd9xh+e++ffsSGhpK586dSUtL49prrz1lP5MnTyYuLs7yc1FRkUKLSD37fnsucR/++haQbgGJSB2zKrD4+fnh5OREbm5ujfW5ubkEBJz9D9XMmTNJSkpi6dKlhIaGnrVtp06d8PPzY/fu3acNLG5ubri5uVlTuohcJFUmMzO/3ckry6sHggtt503yqEto30pXVUSk7lh1S8jV1ZWIiAhSU1Mt68xmM6mpqQwcOPCM282YMYNp06aRkpJCZGTkOX/PL7/8wtGjR2nbVq9BitiTnMIyRs1daQkrd10WwqL7BiqsiEids/qWUFxcHGPHjiUyMpIBAwYwa9YsSkpKGDduHACxsbEEBQWRmJgIwPTp04mPj2f+/PmEhIRYnnXx9PTE09OTEydOMHXqVG699VYCAgLYs2cPjz/+OF26dCEmJuYiHqqIXIgfdh7hkYXrOVZSQQs3Z6aPCOX6vvo/FSJSP6wOLCNHjuTIkSPEx8eTk5NDeHg4KSkplgdxs7KycHT8/cLNnDlzqKioYMSIETX2k5CQwJQpU3BycmLjxo3MmzePgoICAgMDGTJkCNOmTdNtHxE7YDIbvJi6i5e/34VhQK+2Xvxv9CWE+GlsFRGpP1aPw2KPNA6LSN04UlzOIwvX8dPu6mEG/hbVnvi/9tJcQCJyUVjz/a25hETktFbtPcr4D9aRV1xOM1cnnr25Lzf1C7J1WSLSRCmwiEgNZrPBaz/u5blvdmAyG3Rt48mcOy+hS5sWti5NRJowBRYRsSgsreTRRetZuq16brCb+wXxzM19aOaqPxUiYlv6KyQiAGz8pYB/vZ/JL8dP4ursyNThvbmjfzAODg62Lk1ERIFFpKkzDIP3V2Xx9OdbqTCZCfb1YM7oCPoEedu6NBERCwUWkSastKKKJz7ZxKfrDwHwl17+zLwtDG8PFxtXJiJSkwKLSBO1O+8E97+Xwa68Ezg5OjBxaHf+MaiTbgGJiF1SYBFpgj7fcIiJH2+ktMJE6xZuJI/qR1SnVrYuS0TkjBRYRJqQiiozz361jbd/3g/ApZ18eWlUP9q0cD/7hiIiNqbAItJEHC48yQPvZ5KZVQDA/Vd15tG/dMPZyao5UEVEbEKBRaQJ+Gl3Pg99sI6jJRW0cHfm+dvD+Usvf1uXJSJSawosIo2Y2WwwZ/ke/vvtDsy/Tlw4585L6NBKExeKSMOiwCLSSBWerOTRD38ftfb2yHY8fWMfTVwoIg2SAotII7TlUCH3v5dJ1rFSXJ0dmXZjb0b2b2/rskREzpsCi0gj81HGL/zf4k2UV5lp51M9am3fdhq1VkQaNgUWkUaivMrE059v5f1VWQBc3b01L4wMp2UzVxtXJiJy4RRYRBqBQwUnuf/9TDYcLMDBAR6+tisPXdMVR0eNWisijYMCi0gD99PufMZ/sI5jJRV4e7jw4h3hXNW9ja3LEhG5qBRYRBoow6h+ZXnmN9WvLPcJ8mLO6AiCfZvZujQRkYtOgUWkASouq+SxRRv4ZksuoFeWRaTxU2ARaWB25Rbzz/cy2HukBFcnR6be2JtRA/TKsog0bgosIg3IlxsPM+GjDZRWmGjr7c6cOyMID25p67JEROqcAotIA1BlMjPjmx289sNeAC7r3IqXR/WjlaebjSsTEakfCiwidu7oiXLGf7COn/ccBeCfgzsxIaa7ZlkWkSZFgUXEjm38pYD73s3gUGEZzVydeG5EGMNC29q6LBGReqfAImKnPlxzkCc/20xFlZmOfs15dUwE3fxb2LosERGbUGARsTMVVWamfr7FMsR+dE9/nh8Zhpe7i40rExGxHQUWETuSW1TG/e9lkJlVPcT+v6O78eDVXTTEvog0eQosInZizf5j/Ov9TI4Ul9PC3ZmX7ujH1T00xL6ICCiwiNicYRi8t/IAUz/fSpXZoLt/C14dE0GIX3NblyYiYjcUWERsqKzSxFOfbmZRxi8A/DW0LTNGhNLMVf80RUT+SH8VRWzkcOFJ7ns3gw2/FOLoABOH9uDewZ1wcNDzKiIif6bAImIDq/Ye5YH5meSfqMDbw4Xkv/VjUNfWti5LRMRuKbCI1CPDMHgn/QDTvqh+XqVHQAteGxNJ+1bNbF2aiIhdU2ARqSdllSbiP9vMh2v1vIqIiLXOazKS2bNnExISgru7O1FRUaxevfqMbefOncugQYPw8fHBx8eH6Ojos7a/7777cHBwYNasWedTmohdyiksY+RrK/lw7S84OsDk63rw8qh+CisiIrVkdWBZuHAhcXFxJCQkkJmZSVhYGDExMeTl5Z22fVpaGqNGjWLZsmWkp6cTHBzMkCFDyM7OPqXt4sWLWblyJYGBgdYfiYidWrv/GH99eQUbDhbg7eHC2+MG8M8rO+vhWhERKzgYhmFYs0FUVBT9+/cnOTkZALPZTHBwMOPHj2fSpEnn3N5kMuHj40NycjKxsbGW9dnZ2URFRfHNN98wbNgwHnnkER555JFa1VRUVIS3tzeFhYV4eXlZczgidWr+qiwSlmym0qTnVURE/sya72+rrrBUVFSQkZFBdHT07ztwdCQ6Opr09PRa7aO0tJTKykp8fX0t68xmM2PGjGHChAn07t3bmpJE7FJFlZn/W7yJJxZvotJkMKxvWz7512UKKyIi58mqG+j5+fmYTCb8/f1rrPf392f79u212sfEiRMJDAysEXqmT5+Os7MzDz30UK32UV5eTnl5ueXnoqKiWm0nUh+OFJfzr/czWLP/OA4O8NiQ7vzrKt0CEhG5EPX6xF9SUhILFiwgLS0Nd3d3ADIyMnjxxRfJzMys9R/0xMREpk6dWpelipyXjb8U8M93MzhcWEYLN2deHBXONT38z72hiIiclVW3hPz8/HByciI3N7fG+tzcXAICAs667cyZM0lKSuLbb78lNDTUsv7HH38kLy+P9u3b4+zsjLOzMwcOHODRRx8lJCTktPuaPHkyhYWFluXgwYPWHIZInfh0XTa3vZLO4cIyOvk159MHL1dYERG5SKy6wuLq6kpERASpqancdNNNQPXzJ6mpqTz44INn3G7GjBk888wzfPPNN0RGRtb4bMyYMTVuDwHExMQwZswYxo0bd9r9ubm54ebmZk3pInXGZDaYkbKdV3/YC8DV3Vvz4qh+eLm72LgyEZHGw+pbQnFxcYwdO5bIyEgGDBjArFmzKCkpsYSL2NhYgoKCSExMBKqfT4mPj2f+/PmEhISQk5MDgKenJ56enrRq1YpWrVrV+B0uLi4EBATQvXv3Cz0+kTpVeLKShz5Yx/KdRwD411WdeXRId5wc9byKiMjFZHVgGTlyJEeOHCE+Pp6cnBzCw8NJSUmxPIiblZWFo+Pvd5rmzJlDRUUFI0aMqLGfhIQEpkyZcmHVi9jQ7rwT/OOdtezLL8HdxZEZI8IYHqYxhERE6oLV47DYI43DIvVt2fY8HvpgHcXlVQR6u/NabCR9grxtXZaISINizfe3xgUXsYJhGLyyfC8zvtmOYUD/EB/m3BmBn6eeqRIRqUsKLCK1VFZpYtLHG/l0/SEARg1oz9ThvXF1Pq8puURExAoKLCK1kFNYxr3vrmXjL4U4OTow5YZe3HlpBw0GJyJSTxRYRM5hXdZx/vluBnnF5bRs5sL/Rl/CZZ39bF2WiEiTosAichaL1/3CxI83UVFlprt/C+bGavJCERFbUGAROQ2T2WDGN9t5dXn1YHDRPf2ZdUc4nm76JyMiYgv66yvyJ8VllTy8YD3fb88D4IGrO/PoX7rjqMHgRERsRoFF5A+yjpZyz7w17Mo7gZuzIzNGhHJjeJCtyxIRafIUWER+lb7nKPe/n0FBaSX+Xm68NiaSsOCWti5LRERQYBEB4P1VB0j4bAtVZoOw4Ja8NiYCfy93W5clIiK/UmCRJq3KZOY/X27j7Z/3A3BjeCDTbw3F3cXJtoWJiEgNCizSZBWWVvLA/ExW7M4HYEJMd/51VWcNBiciYocUWKRJ2nvkBH+ft5a9+SV4uDjxwshwhvYJsHVZIiJyBgos0uT8tDuf+9/LoKiseqbluWMj6R2omZZFROyZAos0Ke+tPEDCki2YzAb92rfk1TERtGmhh2tFROydAos0CX9+uPam8ECS9HCtiEiDocAijV5RWSUPzl/HDzuPAHq4VkSkIVJgkUbtwNES7pm3lt15J359uDaMoX3a2rosERGxkgKLNFqr9x3jn++u5XhpJQFe7rw+NpI+QXq4VkSkIVJgkUZp0dqDPLF4E5Umg9B23syNjdTItSIiDZgCizQqZrPBjG928MryPQAM69uWmbeF4eGqh2tFRBoyBRZpNEorqvj3wvV8syUXgIeu6cIj0d1wdNTDtSIiDZ0CizQKOYVl/P2dNWzOLsLVyZEZI0K5qV+QrcsSEZGLRIFFGrzN2YXcM28NuUXltGruyqtjIogM8bV1WSIichEpsEiD9u2WHB5esJ6TlSa6tvHkzbv6E+zbzNZliYjIRabAIg2SYRi8/uM+nv16G4YBg7r6MXv0JXi5u9i6NBERqQMKLNLgVJrMxH+2hQ9WZwEwOqo9U4f3xtnJ0caViYhIXVFgkQal8GQlD7yfyYrd+Tg4wJPDenH35SEaZl9EpJFTYJEG4+CxUsa9vYbdeSdo5urES3f0I7qXv63LEhGReqDAIg1CxoHj3PvOWo6WVBDg5c4bd0XSO1DD7IuINBUKLGL3vth4iLgPN1BRZaZ3oBdvjO1PgLeG2RcRaUoUWMRuGYbB/9L28Nw3OwCI7tmGF+/oR3M3nbYiIk2N/vKLXao0mfm/xZv4cO0vANx9eUf+b1hPnDTMvohIk6TAInan8GQl/3o/g592H8XRAaYM703swBBblyUiIjakwCJ25eCxUu5+ew27fn0TKPlv/bimh94EEhFp6hRYxG6sP1jA3+etIf9EBf5ebrx5V3+9CSQiIgCc19Cgs2fPJiQkBHd3d6Kioli9evUZ286dO5dBgwbh4+ODj48P0dHRp7SfMmUKPXr0oHnz5pY2q1atOp/SpIFK2ZzDHa+lk3+igp5tvfj0gcsVVkRExMLqwLJw4ULi4uJISEggMzOTsLAwYmJiyMvLO237tLQ0Ro0axbJly0hPTyc4OJghQ4aQnZ1tadOtWzeSk5PZtGkTK1asICQkhCFDhnDkyJHzPzJpEAzD4I0V+7j//QzKKs1c1b01i+4bSFtvD1uXJiIidsTBMAzDmg2ioqLo378/ycnJAJjNZoKDgxk/fjyTJk065/YmkwkfHx+Sk5OJjY09bZuioiK8vb1ZunQp11577Tn3+Vv7wsJCvLy8rDkcsSGT2eDpz7cwL/0AoDmBRESaGmu+v616hqWiooKMjAwmT55sWefo6Eh0dDTp6em12kdpaSmVlZX4+vqe8Xe89tpreHt7ExYWdto25eXllJeXW34uKiqy4ijEHpRWVPHQB+tYuq36ytwT1/fgH4M6aU4gERE5Lav+r2x+fj4mkwl//5pvbfj7+5OTk1OrfUycOJHAwECio6NrrP/iiy/w9PTE3d2dF154ge+++w4/P7/T7iMxMRFvb2/LEhwcbM1hiI3lFZdx+6vpLN2Wh5uzI/8bfQn3Du6ssCIiImdUr9fek5KSWLBgAYsXL8bdvebQ6ldffTXr16/n559/ZujQodx+++1nfC5m8uTJFBYWWpaDBw/WR/lyEezKLebm2T+zObsI3+auzP/HpVzft62tyxIRETtnVWDx8/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJb7/9ltDQ0FM+b968OV26dOHSSy/ljTfewNnZmTfeeOO0+3Jzc8PLy6vGIvYvfc9RbpnzM9kFJ+no15xP7r+MiA4+ti5LREQaAKsCi6urKxEREaSmplrWmc1mUlNTGThw4Bm3mzFjBtOmTSMlJYXIyMha/S6z2VzjORVp2D5dl03sm6soLqsiooMPH99/GSF+zW1dloiINBBWDxwXFxfH2LFjiYyMZMCAAcyaNYuSkhLGjRsHQGxsLEFBQSQmJgIwffp04uPjmT9/PiEhIZZnXTw9PfH09KSkpIRnnnmG4cOH07ZtW/Lz85k9ezbZ2dncdtttF/FQxRb+PIHhsL5t+e/tYbi7ONm4MhERaUisDiwjR47kyJEjxMfHk5OTQ3h4OCkpKZYHcbOysnB0/P3CzZw5c6ioqGDEiBE19pOQkMCUKVNwcnJi+/btzJs3j/z8fFq1akX//v358ccf6d279wUenthSlcnMU59t4YPVWQDcO7gTk4b2wFETGIqIiJWsHofFHmkcFvtTUl7Fg/MzWbbjiCYwFBGR06qzcVhEaiOvuIy7317D5uwi3F0ceemOfgzpffaHskVERM5GgUUuqt15xYx9cw3ZBSdp1dyV18dG0q+93gQSEZELo8AiF82a/cf4+7y1FJ6spKNfc94e158OrfQmkIiIXDgFFrkovtp0mEcWrqeiyky/9i15Y2x/fJu72rosERFpJBRY5IK9sWIf//lyK4YBQ3r58+Id/fBw1WvLIiJy8SiwyHkzmw2e+Wobb6zYB0DswA4k3NAbJ722LCIiF5kCi5yX8ioTcR9u4MuNhwGYdF0P/jlYsy2LiEjdUGARqxWWVnLvu2tZte8YLk4OzLwtjBvDg2xdloiINGIKLGKVQwUnueut1ezMPUELN2deHRPBZV38bF2WiIg0cgosUmvbc4q468015BSV4e/lxtvjBtCzrUYWFhGRuqfAIrWSvuco9767luKyKrq08WTe3QMIaulh67JERKSJUGCRc/pi4yHiFm6gwmSmf4gPc2MjadlMY6yIiEj9UWCRs3pzxT6m/TrGytDeAcy6Ixx3F42xIiIi9UuBRU7LbDaY/s12Xl2+F9AYKyIiYlsKLHKKSpOZiR9t5JN12QBMiOnOv67qrDFWRETEZhRYpIaS8irufz+TH3YewcnRgaRb+nJbZLCtyxIRkSZOgUUs8k+Uc/fba9j4SyEeLk78785LuLp7G1uXJSIiosAi1bKOlhL75ir2Hy3Ft7krb97Vn/DglrYuS0REBFBgEWBzdiF3vbWG/BPltPPx4J27B9CptaetyxIREbFQYGnift6dz73vZnCivIqebb2YN64/bbzcbV2WiIhIDQosTdgfB4S7tJMvr8VG4uXuYuuyRERETqHA0kS9k76fhCVbMAy4vm8Az9+uAeFERMR+KbA0MYZh8MJ3O3np+90A3Hlpe6YO76MB4URExK4psDQhJrPBk59u5oPVWQA8Et2Vh6/tqgHhRETE7imwNBFllSYeWbCelC05ODjAtBv7cOelHWxdloiISK0osDQBxWWV/OOdtazcewxXJ0devCOc6/q2tXVZIiIitabA0sgdKS7nrrdWs+VQEZ5uzrwWG8Flnf1sXZaIiIhVFFgasYPHShnzRvXotX6errw9bgB9grxtXZaIiIjVFFgaqW2Hi4h9czVHiqtHr333nig6+jW3dVkiIiLnRYGlEVqz/xh3v72G4rIqegS0YN7dA/DX6LUiItKAKbA0Mt9vz+X+9zIprzIT2cGHN8b2x7uZRq8VEZGGTYGlEVm87hceW7QRk9ngmh5tmP23S/Bw1ei1IiLS8CmwNBJv/bSPqZ9vBeDmfkHMGBGKi5OjjasSERG5OBRYGrg/D7U/7vIQnhrWC0cNtS8iIo2IAksDZjYbJCzZwrsrDwDw2JBuPHB1Fw21LyIijc553TOYPXs2ISEhuLu7ExUVxerVq8/Ydu7cuQwaNAgfHx98fHyIjo6u0b6yspKJEyfSt29fmjdvTmBgILGxsRw6dOh8SmsyKk1mHlm4nndXHqgeav+mPjx4jeYFEhGRxsnqwLJw4ULi4uJISEggMzOTsLAwYmJiyMvLO237tLQ0Ro0axbJly0hPTyc4OJghQ4aQnZ0NQGlpKZmZmTz11FNkZmbyySefsGPHDoYPH35hR9aInawwce87a1my4RDOjg68eEc/xmheIBERacQcDMMwrNkgKiqK/v37k5ycDIDZbCY4OJjx48czadKkc25vMpnw8fEhOTmZ2NjY07ZZs2YNAwYM4MCBA7Rv3/6c+ywqKsLb25vCwkK8vLysOZwGp/BkJX+ft4Y1+4/j7uLInDsjuLp7G1uXJSIiYjVrvr+tusJSUVFBRkYG0dHRv+/A0ZHo6GjS09NrtY/S0lIqKyvx9fU9Y5vCwkIcHBxo2bLlaT8vLy+nqKioxtIUHCkuZ9RrK1mz/zgt3J15754ohRUREWkSrAos+fn5mEwm/P39a6z39/cnJyenVvuYOHEigYGBNULPH5WVlTFx4kRGjRp1xrSVmJiIt7e3ZQkODrbmMBqk7IKT3P5qOlsPF+Hn6cbCewcSGXLm0CciItKY1OtAHUlJSSxYsIDFixfj7n7qUPGVlZXcfvvtGIbBnDlzzrifyZMnU1hYaFkOHjxYl2Xb3O68E4yY8zP78ksIaunBovsG0iuwcd/6EhER+SOrXmv28/PDycmJ3NzcGutzc3MJCAg467YzZ84kKSmJpUuXEhoaesrnv4WVAwcO8P3335/1Xpabmxtubm7WlN5gbc4uJPbN1RwrqaBz6+a89/co2np72LosERGRemXVFRZXV1ciIiJITU21rDObzaSmpjJw4MAzbjdjxgymTZtGSkoKkZGRp3z+W1jZtWsXS5cupVWrVtaU1Wit3neMUa+t5FhJBX2DvPnwnwMVVkREpEmyeuC4uLg4xo4dS2RkJAMGDGDWrFmUlJQwbtw4AGJjYwkKCiIxMRGA6dOnEx8fz/z58wkJCbE86+Lp6YmnpyeVlZWMGDGCzMxMvvjiC0wmk6WNr68vrq6uF+tYG5S0HXnc914GZZVmBnT05Y2xkbRw1ySGIiLSNFkdWEaOHMmRI0eIj48nJyeH8PBwUlJSLA/iZmVl4ej4+4WbOXPmUFFRwYgRI2rsJyEhgSlTppCdnc2SJUsACA8Pr9Fm2bJlXHXVVdaW2OB9ufEwjyxcR6WpehLD/42+BHcXTWIoIiJNl9XjsNijxjQOy4drDjLpk42YDfhraFuevz0cV2dNYigiIo2PNd/fmkvIjryxYh/TvqiecXnUgPb856Y+OGkSQxEREQUWe2AYBi+l7uaFpTsBuHdwJyZf10PzAomIiPxKgcXGDMPg2a+2MffHfYBmXBYRETkdBRYbMpkNnvx0Ex+srh74Lv6vvbj7io42rkpERMT+KLDYSKXJzGOLNvDZ+kM4OkDSLaHc3r/xTzEgIiJyPhRYbKCs0sSD89exdFsuzo4OzLojnL+GBtq6LBEREbulwFLPSiuquPedDFbszsfV2ZFX7ryEa3r4n3tDERGRJkyBpR4VlVVy91trWHvgOM1cnXh9bCSXdfazdVkiIiJ2T4GlnhwvqSD2zdVsyi6khbszb48bQEQHH1uXJSIi0iAosNSDvOIyxry+mh25xfg2d+WduwfQJ8jb1mWJiIg0GAosdexQwUlGv76KffkltGnhxvt/j6KrfwtblyUiItKgKLDUoayjpfzt9ZX8cvwkQS09mP+PKDq0am7rskRERBocBZY6sjvvBHe+voqcojJCWjXj/X9cSlBLD1uXJSIi0iApsNSB7TlF3Pn6KvJPVNDN35P37omijZe7rcsSERFpsBRYLrJNvxQy5s1VFJRW0jvQi3fvicK3uautyxIREWnQFFguoowDx7jrzTUUl1fRr31L3h43AG8PF1uXJSIi0uApsFwk6XuOcs+8NZRWmBjQ0Zc37+qPp5u6V0RE5GLQN+pF8MPOI/zjnbWUV5m5oosfc2Mj8XB1snVZIiIijYYCywVaujWXf72fSYXJzDU92vC/0Zfg7qKwIiIicjEpsFyArzcdZvwH66gyG8T09uflUZfg6uxo67JEREQaHQWW8/TZ+mziPtyAyWxwQ1ggz98ehouTwoqIiEhdUGA5Dx9l/MKEjzZgGHDrJe2YMSIUJ0cHW5clIiLSaOmSgJU+WJ1lCSujBgTznMKKiIhIndMVFiu8k76f+M+2ADB2YAemDO+Ng4PCioiISF1TYKmlN1bsY9oXWwH4+xUd+b9hPRVWRERE6okCSy28unwPiV9vB+D+qzrzeEx3hRUREZF6pMByDsnf72LmtzsBeOjarvw7uqvCioiISD1TYDmL9QcLLGHl0b90Y/y1XW1ckYiISNOkwHIW4cEteXJYT6rMBvdd2dnW5YiIiDRZCizn8PdBnWxdgoiISJOncVhERETE7imwiIiIiN1TYBERERG7p8AiIiIidk+BRUREROzeeQWW2bNnExISgru7O1FRUaxevfqMbefOncugQYPw8fHBx8eH6OjoU9p/8sknDBkyhFatWuHg4MD69evPpywRERFppKwOLAsXLiQuLo6EhAQyMzMJCwsjJiaGvLy807ZPS0tj1KhRLFu2jPT0dIKDgxkyZAjZ2dmWNiUlJVxxxRVMnz79/I9EREREGi0HwzAMazaIioqif//+JCcnA2A2mwkODmb8+PFMmjTpnNubTCZ8fHxITk4mNja2xmf79++nY8eOrFu3jvDw8FrXVFRUhLe3N4WFhXh5eVlzOCIiImIj1nx/W3WFpaKigoyMDKKjo3/fgaMj0dHRpKen12ofpaWlVFZW4uvra82vrqG8vJyioqIai4iIiDReVgWW/Px8TCYT/v7+Ndb7+/uTk5NTq31MnDiRwMDAGqHHWomJiXh7e1uW4ODg896XiIiI2L96fUsoKSmJBQsWsHjxYtzd3c97P5MnT6awsNCyHDx48CJWKSIiIvbGqrmE/Pz8cHJyIjc3t8b63NxcAgICzrrtzJkzSUpKYunSpYSGhlpf6R+4ubnh5uZ2QfsQERGRhsOqKyyurq5ERESQmppqWWc2m0lNTWXgwIFn3G7GjBlMmzaNlJQUIiMjz79aERERaZKsnq05Li6OsWPHEhkZyYABA5g1axYlJSWMGzcOgNjYWIKCgkhMTARg+vTpxMfHM3/+fEJCQizPunh6euLp6QnAsWPHyMrK4tChQwDs2LEDgICAgHNeuQH47UUnPXwrIiLScPz2vV2rF5aN8/Dyyy8b7du3N1xdXY0BAwYYK1eutHx25ZVXGmPHjrX83KFDBwM4ZUlISLC0eeutt87Z5mwOHjx42u21aNGiRYsWLfa/HDx48Jzf9VaPw2KPzGYzhw4dokWLFjg4OFzUfRcVFREcHMzBgwc1xss5qK9qT31Ve+or66i/ak99VXt11VeGYVBcXExgYCCOjmd/SsXqW0L2yNHRkXbt2tXp7/Dy8tIJXUvqq9pTX9We+so66q/aU1/VXl30lbe3d63aafJDERERsXsKLCIiImL3FFjOwc3NjYSEBI37Ugvqq9pTX9We+so66q/aU1/Vnj30VaN46FZEREQaN11hEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNi9JhFY5syZQ2hoqGXAm4EDB/L1119bPi8rK+OBBx6gVatWeHp6cuutt54yI3VWVhbDhg2jWbNmtGnThgkTJlBVVVWjTVpaGpdccglubm506dKFt99+uz4O76I6V19dddVVODg41Fjuu+++GvtoKn31Z0lJSTg4OPDII49Y1uncOr3T9ZXOrWpTpkw5pR969Ohh+Vzn1O/O1Vc6p2rKzs7mzjvvpFWrVnh4eNC3b1/Wrl1r+dwwDOLj42nbti0eHh5ER0eza9euGvs4duwYo0ePxsvLi5YtW3LPPfdw4sSJGm02btzIoEGDcHd3Jzg4mBkzZlycA6jVZD0N3JIlS4wvv/zS2Llzp7Fjxw7jiSeeMFxcXIzNmzcbhmEY9913nxEcHGykpqYaa9euNS699FLjsssus2xfVVVl9OnTx4iOjjbWrVtnfPXVV4afn58xefJkS5u9e/cazZo1M+Li4oytW7caL7/8suHk5GSkpKTU+/FeiHP11ZVXXmn84x//MA4fPmxZCgsLLds3pb76o9WrVxshISFGaGio8fDDD1vW69w61Zn6SudWtYSEBKN37941+uHIkSOWz3VO/e5cfaVz6nfHjh0zOnToYNx1113GqlWrjL179xrffPONsXv3bkubpKQkw9vb2/j000+NDRs2GMOHDzc6duxonDx50tJm6NChRlhYmLFy5Urjxx9/NLp06WKMGjXK8nlhYaHh7+9vjB492ti8ebPxwQcfGB4eHsarr756wcfQJALL6fj4+Bivv/66UVBQYLi4uBiLFi2yfLZt2zYDMNLT0w3DMIyvvvrKcHR0NHJycixt5syZY3h5eRnl5eWGYRjG448/bvTu3bvG7xg5cqQRExNTD0dTt37rK8Oo/gPwxy+ZP2uKfVVcXGx07drV+O6772r0j86tU52prwxD59ZvEhISjLCwsNN+pnOqprP1lWHonPqjiRMnGldcccUZPzebzUZAQIDx3HPPWdYVFBQYbm5uxgcffGAYhmFs3brVAIw1a9ZY2nz99deGg4ODkZ2dbRiGYfzvf/8zfHx8LP332+/u3r37BR9Dk7gl9Ecmk4kFCxZQUlLCwIEDycjIoLKykujoaEubHj160L59e9LT0wFIT0+nb9+++Pv7W9rExMRQVFTEli1bLG3+uI/f2vy2j4boz331m/fffx8/Pz/69OnD5MmTKS0ttXzWFPvqgQceYNiwYacck86tU52pr36jc6varl27CAwMpFOnTowePZqsrCxA59TpnKmvfqNzqtqSJUuIjIzktttuo02bNvTr14+5c+daPt+3bx85OTk1jtXb25uoqKga51bLli2JjIy0tImOjsbR0ZFVq1ZZ2gwePBhXV1dLm5iYGHbs2MHx48cv6BgaxeSHtbFp0yYGDhxIWVkZnp6eLF68mF69erF+/XpcXV1p2bJljfb+/v7k5OQAkJOTU+OE/u3z3z47W5uioiJOnjyJh4dHHR3ZxXemvgL429/+RocOHQgMDGTjxo1MnDiRHTt28MknnwBNr68WLFhAZmYma9asOeWznJwcnVt/cLa+Ap1bv4mKiuLtt9+me/fuHD58mKlTpzJo0CA2b96sc+pPztZXLVq00Dn1B3v37mXOnDnExcXxxBNPsGbNGh566CFcXV0ZO3as5XhPd6x/7Is2bdrU+NzZ2RlfX98abTp27HjKPn77zMfH57yPockElu7du7N+/XoKCwv56KOPGDt2LMuXL7d1WXbpTH3Vq1cv7r33Xku7vn370rZtW6699lr27NlD586dbVh1/Tt48CAPP/ww3333He7u7rYux67Vpq90blW77rrrLP8dGhpKVFQUHTp04MMPP2wwX4715Wx9dc899+ic+gOz2UxkZCTPPvssAP369WPz5s288sorjB071sbV1U6TuSXk6upKly5diIiIIDExkbCwMF588UUCAgKoqKigoKCgRvvc3FwCAgIACAgIOOUp/N9+PlcbLy+vBvdH5kx9dTpRUVEA7N69G2hafZWRkUFeXh6XXHIJzs7OODs7s3z5cl566SWcnZ3x9/fXufWrc/WVyWQ6ZZumfG79UcuWLenWrRu7d+/W36tz+GNfnU5TPqfatm1ruVL+m549e1puof12vKc71j/2RV5eXo3Pq6qqOHbsmFXn3/lqMoHlz8xmM+Xl5URERODi4kJqaqrlsx07dpCVlWV5bmPgwIFs2rSpxv9Q3333HV5eXpYTYODAgTX28VubPz770VD91lens379eqD6HwM0rb669tpr2bRpE+vXr7cskZGRjB492vLfOreqnauvnJycTtmmKZ9bf3TixAn27NlD27Zt9ffqHP7YV6fTlM+pyy+/nB07dtRYt3PnTjp06ABAx44dCQgIqHGsRUVFrFq1qsa5VVBQQEZGhqXN999/j9lstoTBgQMH8sMPP1BZWWlp891339G9e/cLuh0ENI3XmidNmmQsX77c2Ldvn7Fx40Zj0qRJhoODg/Htt98ahlH9mmD79u2N77//3li7dq0xcOBAY+DAgZbtf3v1bciQIcb69euNlJQUo3Xr1qd99W3ChAnGtm3bjNmzZzfIV9/O1le7d+82nn76aWPt2rXGvn37jM8++8zo1KmTMXjwYMv2TamvTufPbyXo3DqzP/aVzq3fPfroo0ZaWpqxb98+46effjKio6MNPz8/Iy8vzzAMnVN/dLa+0jlV0+rVqw1nZ2fjmWeeMXbt2mW8//77RrNmzYz33nvP0iYpKclo2bKl8dlnnxkbN240brzxxtO+1tyvXz9j1apVxooVK4yuXbvWeK25oKDA8Pf3N8aMGWNs3rzZWLBggdGsWTO91lxbd999t9GhQwfD1dXVaN26tXHttddawophGMbJkyeNf/3rX4aPj4/RrFkz4+abbzYOHz5cYx/79+83rrvuOsPDw8Pw8/MzHn30UaOysrJGm2XLlhnh4eGGq6ur0alTJ+Ott96qj8O7qM7WV1lZWcbgwYMNX19fw83NzejSpYsxYcKEGuMaGEbT6avT+XNg0bl1Zn/sK51bvxs5cqTRtm1bw9XV1QgKCjJGjhxZY6wMnVO/O1tf6Zw61eeff2706dPHcHNzM3r06GG89tprNT43m83GU089Zfj7+xtubm7Gtddea+zYsaNGm6NHjxqjRo0yPD09DS8vL2PcuHFGcXFxjTYbNmwwrrjiCsPNzc0ICgoykpKSLkr9DoZhGBd2jUZERESkbjXZZ1hERESk4VBgEREREbunwCIiIiJ2T4FFRERE7J4Ci4iIiNg9BRYRERGxewosIiIiYvcUWERERMTuKbCIiIiI3VNgEREREbunwCIiIiJ2T4FFRERE7N7/A3R7MLUKHBJhAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": [ - "" - ] + "text/plain": "" }, "execution_count": 21, "metadata": {}, @@ -1661,27 +1410,28 @@ { "cell_type": "code", "execution_count": 22, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:21.137222900Z", + "start_time": "2023-12-10T12:14:19.775429Z" + } + }, "outputs": [ { "data": { + "text/plain": "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.0, step=35.99), Output()), _dom_classes…", "application/vnd.jupyter.widget-view+json": { - "model_id": "eea07489478640aab13bd2aab1fe5020", "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(FloatSlider(value=0.0, description='t', max=3599.0, step=35.99), Output()), _dom_classes…" - ] + "version_minor": 0, + "model_id": "e3e2a10c3de140de8cc785ae5421b534" + } }, "metadata": {}, "output_type": "display_data" }, { "data": { - "text/plain": [ - "" - ] + "text/plain": "" }, "execution_count": 22, "metadata": {}, @@ -1707,7 +1457,12 @@ { "cell_type": "code", "execution_count": 23, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2023-12-10T12:14:21.184199300Z", + "start_time": "2023-12-10T12:14:21.136110400Z" + } + }, "outputs": [ { "name": "stdout", @@ -1718,8 +1473,7 @@ "[3] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, and others. Array programming with NumPy. Nature, 585(7825):357–362, 2020. doi:10.1038/s41586-020-2649-2.\n", "[4] Scott G. Marquis, Valentin Sulzer, Robert Timms, Colin P. Please, and S. Jon Chapman. An asymptotic derivation of a single particle model with electrolyte. Journal of The Electrochemical Society, 166(15):A3693–A3706, 2019. doi:10.1149/2.0341915jes.\n", "[5] Valentin Sulzer, Scott G. Marquis, Robert Timms, Martin Robinson, and S. Jon Chapman. Python Battery Mathematical Modelling (PyBaMM). Journal of Open Research Software, 9(1):14, 2021. doi:10.5334/jors.309.\n", - "[6] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, and others. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272, 2020. doi:10.1038/s41592-019-0686-2.\n", - "\n" + "[6] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, and others. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–272, 2020. doi:10.1038/s41592-019-0686-2.\n" ] } ], diff --git a/pybamm/models/base_model.py b/pybamm/models/base_model.py index 8e4c80a625..3da6b53618 100644 --- a/pybamm/models/base_model.py +++ b/pybamm/models/base_model.py @@ -421,31 +421,63 @@ def input_parameters(self): self._input_parameters = self._find_symbols(pybamm.InputParameter) return self._input_parameters - def print_parameter_info(self): - """Returns parameters used in the model""" - self._parameter_info = "" + def get_parameter_info(self): + """ + Extracts the parameter information and returns it as a dictionary. + To get a list of all parameter-like objects without extra information, + use :py:attr:`model.parameters`. + """ + parameter_info = {} parameters = self._find_symbols(pybamm.Parameter) for param in parameters: - self._parameter_info += f"{param.name} (Parameter)\n" + parameter_info[param.name] = (param, "Parameter") + input_parameters = self._find_symbols(pybamm.InputParameter) for input_param in input_parameters: - if input_param.domain == []: - self._parameter_info += f"{input_param.name} (InputParameter)\n" + if not input_param.domain: + parameter_info[input_param.name] = (input_param, "InputParameter") else: - self._parameter_info += ( - f"{input_param.name} (InputParameter in {input_param.domain})\n" - ) + parameter_info[input_param.name] = (input_param, f"InputParameter in {input_param.domain}") + function_parameters = self._find_symbols(pybamm.FunctionParameter) for func_param in function_parameters: - # don't double count function parameters - if func_param.name not in self._parameter_info: - input_names = "'" + "', '".join(func_param.input_names) + "'" - self._parameter_info += ( - f"{func_param.name} (FunctionParameter " - f"with input(s) {input_names})\n" - ) + if func_param.name not in parameter_info: + input_names = "', '".join(func_param.input_names) + parameter_info[func_param.name] = (func_param, f"FunctionParameter with inputs(s) '{input_names}'") - print(self._parameter_info) + return parameter_info + + def print_parameter_info(self): + """Print parameter information in a formatted table from a dictionary of parameters""" + info = self.get_parameter_info() + max_param_name_length = 0 + max_param_type_length = 0 + + for param, param_type in info.values(): + param_name_length = len(getattr(param, 'name', str(param))) + param_type_length = len(param_type) + max_param_name_length = max(max_param_name_length, param_name_length) + max_param_type_length = max(max_param_type_length, param_type_length) + + header_format = f"| {{:<{max_param_name_length}}} | {{:<{max_param_type_length}}} |" + row_format = f"| {{:<{max_param_name_length}}} | {{:<{max_param_type_length}}} |" + + table = [header_format.format("Parameter", "Type of parameter"), + header_format.format("=" * max_param_name_length, "=" * max_param_type_length)] + + for param, param_type in info.values(): + param_name = getattr(param, 'name', str(param)) + param_name_lines = [param_name[i:i + max_param_name_length] for i in range(0, len(param_name), max_param_name_length)] + param_type_lines = [param_type[i:i + max_param_type_length] for i in range(0, len(param_type), max_param_type_length)] + max_lines = max(len(param_name_lines), len(param_type_lines)) + + for i in range(max_lines): + param_line = param_name_lines[i] if i < len(param_name_lines) else "" + type_line = param_type_lines[i] if i < len(param_type_lines) else "" + table.append(row_format.format(param_line, type_line)) + + for line in table: + print(line) def _find_symbols(self, typ): """Find all the instances of `typ` in the model"""