@@ -22,12 +22,12 @@ open import Relation.Binary.PropositionalEquality.Properties
2222open import Relation.Unary using (Pred)
2323
2424open import Algebra.Definitions {A = A} _≡_
25- import Algebra.Consequences.Setoid (setoid A) as Base
25+ import Algebra.Consequences.Setoid (setoid A) as SetoidConsequences
2626
2727------------------------------------------------------------------------
2828-- Re-export all proofs that don't require congruence or substitutivity
2929
30- open Base public
30+ open SetoidConsequences public
3131 hiding
3232 ( comm∧assoc⇒middleFour
3333 ; identity∧middleFour⇒assoc
@@ -41,7 +41,6 @@ open Base public
4141 ; comm⇒sym[distribˡ]
4242 ; subst∧comm⇒sym
4343 ; wlog
44- ; sel⇒idem
4544 ; binomial-expansion
4645-- plus all the deprecated versions of the above
4746 ; comm+assoc⇒middleFour
@@ -64,12 +63,12 @@ module _ {_∙_ _⁻¹ ε} where
6463 assoc∧id∧invʳ⇒invˡ-unique : Associative _∙_ → Identity ε _∙_ →
6564 RightInverse ε _⁻¹ _∙_ →
6665 ∀ x y → (x ∙ y) ≡ ε → x ≡ (y ⁻¹)
67- assoc∧id∧invʳ⇒invˡ-unique = Base .assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
66+ assoc∧id∧invʳ⇒invˡ-unique = SetoidConsequences .assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
6867
6968 assoc∧id∧invˡ⇒invʳ-unique : Associative _∙_ → Identity ε _∙_ →
7069 LeftInverse ε _⁻¹ _∙_ →
7170 ∀ x y → (x ∙ y) ≡ ε → y ≡ (x ⁻¹)
72- assoc∧id∧invˡ⇒invʳ-unique = Base .assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
71+ assoc∧id∧invˡ⇒invʳ-unique = SetoidConsequences .assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
7372
7473------------------------------------------------------------------------
7574-- Ring-like structures
@@ -80,27 +79,27 @@ module _ {_+_ _*_ -_ 0#} where
8079 RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
8180 LeftZero 0# _*_
8281 assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ =
83- Base .assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
82+ SetoidConsequences .assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
8483
8584 assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ →
8685 RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
8786 RightZero 0# _*_
8887 assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ =
89- Base .assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
88+ SetoidConsequences .assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
9089
9190------------------------------------------------------------------------
9291-- Bisemigroup-like structures
9392
9493module _ {_∙_ _◦_ : Op₂ A} (∙-comm : Commutative _∙_) where
9594
9695 comm∧distrˡ⇒distrʳ : _∙_ DistributesOverˡ _◦_ → _∙_ DistributesOverʳ _◦_
97- comm∧distrˡ⇒distrʳ = Base .comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
96+ comm∧distrˡ⇒distrʳ = SetoidConsequences .comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
9897
9998 comm∧distrʳ⇒distrˡ : _∙_ DistributesOverʳ _◦_ → _∙_ DistributesOverˡ _◦_
100- comm∧distrʳ⇒distrˡ = Base .comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
99+ comm∧distrʳ⇒distrˡ = SetoidConsequences .comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
101100
102101 comm⇒sym[distribˡ] : ∀ x → Symmetric (λ y z → (x ◦ (y ∙ z)) ≡ ((x ◦ y) ∙ (x ◦ z)))
103- comm⇒sym[distribˡ] = Base .comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
102+ comm⇒sym[distribˡ] = SetoidConsequences .comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
104103
105104module _ {_∙_ _◦_ : Op₂ A}
106105 (∙-assoc : Associative _∙_)
@@ -109,15 +108,7 @@ module _ {_∙_ _◦_ : Op₂ A}
109108
110109 binomial-expansion : ∀ w x y z →
111110 ((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
112- binomial-expansion = Base.binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
113-
114- ------------------------------------------------------------------------
115- -- Selectivity
116-
117- module _ {_∙_ : Op₂ A} where
118-
119- sel⇒idem : Selective _∙_ → Idempotent _∙_
120- sel⇒idem = Base.sel⇒idem _≡_
111+ binomial-expansion = SetoidConsequences.binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
121112
122113------------------------------------------------------------------------
123114-- Middle-Four Exchange
@@ -126,17 +117,17 @@ module _ {_∙_ : Op₂ A} where
126117
127118 comm∧assoc⇒middleFour : Commutative _∙_ → Associative _∙_ →
128119 _∙_ MiddleFourExchange _∙_
129- comm∧assoc⇒middleFour = Base .comm∧assoc⇒middleFour (cong₂ _∙_)
120+ comm∧assoc⇒middleFour = SetoidConsequences .comm∧assoc⇒middleFour (cong₂ _∙_)
130121
131122 identity∧middleFour⇒assoc : {e : A} → Identity e _∙_ →
132123 _∙_ MiddleFourExchange _∙_ →
133124 Associative _∙_
134- identity∧middleFour⇒assoc = Base .identity∧middleFour⇒assoc (cong₂ _∙_)
125+ identity∧middleFour⇒assoc = SetoidConsequences .identity∧middleFour⇒assoc (cong₂ _∙_)
135126
136127 identity∧middleFour⇒comm : {_+_ : Op₂ A} {e : A} → Identity e _+_ →
137128 _∙_ MiddleFourExchange _+_ →
138129 Commutative _∙_
139- identity∧middleFour⇒comm = Base .identity∧middleFour⇒comm (cong₂ _∙_)
130+ identity∧middleFour⇒comm = SetoidConsequences .identity∧middleFour⇒comm (cong₂ _∙_)
140131
141132------------------------------------------------------------------------
142133-- Without Loss of Generality
@@ -145,13 +136,13 @@ module _ {p} {P : Pred A p} where
145136
146137 subst∧comm⇒sym : ∀ {f} (f-comm : Commutative f) →
147138 Symmetric (λ a b → P (f a b))
148- subst∧comm⇒sym = Base .subst∧comm⇒sym {P = P} subst
139+ subst∧comm⇒sym = SetoidConsequences .subst∧comm⇒sym {P = P} subst
149140
150141 wlog : ∀ {f} (f-comm : Commutative f) →
151142 ∀ {r} {_R_ : Rel _ r} → Total _R_ →
152143 (∀ a b → a R b → P (f a b)) →
153144 ∀ a b → P (f a b)
154- wlog = Base .wlog {P = P} subst
145+ wlog = SetoidConsequences .wlog {P = P} subst
155146
156147
157148------------------------------------------------------------------------
0 commit comments