|
| 1 | +{-# OPTIONS --without-K --safe #-} |
| 2 | + |
| 3 | +open import Categories.Adjoint |
| 4 | +open import Categories.Category |
| 5 | +open import Categories.Functor renaming (id to idF) |
| 6 | + |
| 7 | +-- The crude monadicity theorem. This proof is based off of the version |
| 8 | +-- provided in "Sheaves In Geometry and Logic" by Maclane and Moerdijk. |
| 9 | +module Categories.Adjoint.Monadic.Crude {o ℓ e o′ ℓ′ e′} {𝒞 : Category o ℓ e} {𝒟 : Category o′ ℓ′ e′} |
| 10 | + {L : Functor 𝒞 𝒟} {R : Functor 𝒟 𝒞} (adjoint : L ⊣ R) where |
| 11 | + |
| 12 | +open import Level |
| 13 | +open import Function using (_$_) |
| 14 | +open import Data.Product using (Σ-syntax; _,_) |
| 15 | + |
| 16 | +open import Categories.Adjoint.Properties |
| 17 | +open import Categories.Adjoint.Monadic |
| 18 | +open import Categories.Adjoint.Monadic.Properties |
| 19 | +open import Categories.Category.Equivalence using (StrongEquivalence) |
| 20 | +open import Categories.Category.Equivalence.Properties using (pointwise-iso-equivalence) |
| 21 | +open import Categories.Functor.Properties |
| 22 | +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) |
| 23 | +open import Categories.NaturalTransformation |
| 24 | +open import Categories.Monad |
| 25 | + |
| 26 | +open import Categories.Diagram.Coequalizer |
| 27 | +open import Categories.Diagram.ReflexivePair |
| 28 | + |
| 29 | +open import Categories.Adjoint.Construction.EilenbergMoore |
| 30 | +open import Categories.Category.Construction.EilenbergMoore |
| 31 | +open import Categories.Category.Construction.Properties.EilenbergMoore |
| 32 | + |
| 33 | +open import Categories.Morphism |
| 34 | +open import Categories.Morphism.Notation |
| 35 | +open import Categories.Morphism.Properties |
| 36 | +import Categories.Morphism.Reasoning as MR |
| 37 | + |
| 38 | +private |
| 39 | + module L = Functor L |
| 40 | + module R = Functor R |
| 41 | + |
| 42 | + module 𝒞 = Category 𝒞 |
| 43 | + module 𝒟 = Category 𝒟 |
| 44 | + |
| 45 | + module adjoint = Adjoint adjoint |
| 46 | + |
| 47 | + T : Monad 𝒞 |
| 48 | + T = adjoint⇒monad adjoint |
| 49 | + |
| 50 | + 𝒞ᵀ : Category _ _ _ |
| 51 | + 𝒞ᵀ = EilenbergMoore T |
| 52 | + |
| 53 | + Comparison : Functor 𝒟 𝒞ᵀ |
| 54 | + Comparison = ComparisonF adjoint |
| 55 | + |
| 56 | + module Comparison = Functor Comparison |
| 57 | + |
| 58 | + open Coequalizer |
| 59 | + |
| 60 | +-- We could do this with limits, but this is far easier. |
| 61 | +PreservesReflexiveCoequalizers : (F : Functor 𝒟 𝒞) → Set _ |
| 62 | +PreservesReflexiveCoequalizers F = ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → (coeq : Coequalizer 𝒟 f g) → IsCoequalizer 𝒞 (F.F₁ f) (F.F₁ g) (F.F₁ (arr coeq)) |
| 63 | + where |
| 64 | + module F = Functor F |
| 65 | + |
| 66 | +module _ {F : Functor 𝒟 𝒞} (preserves-reflexive-coeq : PreservesReflexiveCoequalizers F) where |
| 67 | + open Functor F |
| 68 | + |
| 69 | + -- Unfortunately, we need to prove that the 'coequalize' arrows are equal as a lemma |
| 70 | + preserves-coequalizer-unique : ∀ {A B C} {f g : 𝒟 [ A , B ]} {h : 𝒟 [ B , C ]} {eq : 𝒟 [ 𝒟 [ h ∘ f ] ≈ 𝒟 [ h ∘ g ] ]} |
| 71 | + → (reflexive-pair : ReflexivePair 𝒟 f g) → (coe : Coequalizer 𝒟 f g) |
| 72 | + → 𝒞 [ F₁ (coequalize coe eq) ≈ IsCoequalizer.coequalize (preserves-reflexive-coeq reflexive-pair coe) ([ F ]-resp-square eq) ] |
| 73 | + preserves-coequalizer-unique reflexive-pair coe = IsCoequalizer.unique (preserves-reflexive-coeq reflexive-pair coe) (F-resp-≈ (universal coe) ○ homomorphism) |
| 74 | + where |
| 75 | + open 𝒞.HomReasoning |
| 76 | + |
| 77 | + |
| 78 | +-- If 𝒟 has coequalizers of reflexive pairs, then the comparison functor has a left adjoint. |
| 79 | +module _ (has-reflexive-coequalizers : ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → Coequalizer 𝒟 f g) where |
| 80 | + |
| 81 | + private |
| 82 | + reflexive-pair : (M : Module T) → ReflexivePair 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M))) |
| 83 | + reflexive-pair M = record |
| 84 | + { s = L.F₁ (adjoint.unit.η (Module.A M)) |
| 85 | + ; isReflexivePair = record |
| 86 | + { sectionₗ = begin |
| 87 | + 𝒟 [ L.F₁ (Module.action M) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈˘⟨ L.homomorphism ⟩ |
| 88 | + L.F₁ (𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ) ≈⟨ L.F-resp-≈ (Module.identity M) ⟩ |
| 89 | + L.F₁ 𝒞.id ≈⟨ L.identity ⟩ |
| 90 | + 𝒟.id ∎ |
| 91 | + ; sectionᵣ = begin |
| 92 | + 𝒟 [ adjoint.counit.η (L.₀ (Module.A M)) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈⟨ adjoint.zig ⟩ |
| 93 | + 𝒟.id ∎ |
| 94 | + } |
| 95 | + } |
| 96 | + where |
| 97 | + open 𝒟.HomReasoning |
| 98 | + |
| 99 | + -- The key part of the proof. As we have all reflexive coequalizers, we can create the following coequalizer. |
| 100 | + -- We can think of this as identifying the action of the algebra lifted to a "free" structure |
| 101 | + -- and the counit of the adjunction, as the unit of the adjunction (also lifted to the "free structure") is a section of both. |
| 102 | + has-coequalizer : (M : Module T) → Coequalizer 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M))) |
| 103 | + has-coequalizer M = has-reflexive-coequalizers (reflexive-pair M) |
| 104 | + |
| 105 | + module Comparison⁻¹ = Functor (Comparison⁻¹ adjoint has-coequalizer) |
| 106 | + module Comparison⁻¹⊣Comparison = Adjoint (Comparison⁻¹⊣Comparison adjoint has-coequalizer) |
| 107 | + |
| 108 | + -- We have one interesting coequalizer in 𝒞 built out of a T-module's action. |
| 109 | + coequalizer-action : (M : Module T) → Coequalizer 𝒞 (R.F₁ (L.F₁ (Module.action M))) (R.F₁ (adjoint.counit.η (L.₀ (Module.A M)))) |
| 110 | + coequalizer-action M = record |
| 111 | + { arr = Module.action M |
| 112 | + ; isCoequalizer = record |
| 113 | + { equality = Module.commute M |
| 114 | + ; coequalize = λ {X} {h} eq → 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] |
| 115 | + ; universal = λ {C} {h} {eq} → begin |
| 116 | + h ≈⟨ introʳ adjoint.zag ○ 𝒞.sym-assoc ⟩ |
| 117 | + 𝒞 [ 𝒞 [ h ∘ R.F₁ (adjoint.counit.η (L.₀ (Module.A M))) ] ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ≈⟨ pushˡ (⟺ eq) ⟩ |
| 118 | + 𝒞 [ h ∘ 𝒞 [ R.F₁ (L.F₁ (Module.action M)) ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ] ≈⟨ pushʳ (adjoint.unit.sym-commute (Module.action M)) ⟩ |
| 119 | + 𝒞 [ 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∘ Module.action M ] ∎ |
| 120 | + ; unique = λ {X} {h} {i} {eq} eq′ → begin |
| 121 | + i ≈⟨ introʳ (Module.identity M) ⟩ |
| 122 | + 𝒞 [ i ∘ 𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ] ≈⟨ pullˡ (⟺ eq′) ⟩ |
| 123 | + 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∎ |
| 124 | + } |
| 125 | + } |
| 126 | + where |
| 127 | + open 𝒞.HomReasoning |
| 128 | + open MR 𝒞 |
| 129 | + |
| 130 | + -- If 'R' preserves reflexive coequalizers, then the unit of the adjunction is a pointwise isomorphism |
| 131 | + unit-iso : PreservesReflexiveCoequalizers R → (X : Module T) → Σ[ h ∈ 𝒞ᵀ [ Comparison.F₀ (Comparison⁻¹.F₀ X) , X ] ] (Iso 𝒞ᵀ (Comparison⁻¹⊣Comparison.unit.η X) h) |
| 132 | + unit-iso preserves-reflexive-coeq X = |
| 133 | + let |
| 134 | + coequalizerˣ = has-coequalizer X |
| 135 | + coequalizerᴿˣ = ((IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair X) (has-coequalizer X)))) |
| 136 | + coequalizer-iso = up-to-iso 𝒞 (coequalizer-action X) coequalizerᴿˣ |
| 137 | + module coequalizer-iso = _≅_ coequalizer-iso |
| 138 | + open 𝒞 |
| 139 | + open 𝒞.HomReasoning |
| 140 | + open MR 𝒞 |
| 141 | + α = record |
| 142 | + { arr = coequalizer-iso.to |
| 143 | + ; commute = begin |
| 144 | + coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _) ≈⟨ introʳ (R.F-resp-≈ L.identity ○ R.identity) ⟩ |
| 145 | + (coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ 𝒞.id) ≈⟨ pushʳ (R.F-resp-≈ (L.F-resp-≈ (⟺ coequalizer-iso.isoʳ)) ○ R.F-resp-≈ L.homomorphism ○ R.homomorphism) ⟩ |
| 146 | + ((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ) ∘ adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ (refl⟩∘⟨ (R.F-resp-≈ L.homomorphism ○ R.homomorphism)) ⟩∘⟨refl ⟩ |
| 147 | + ((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ center ([ R ]-resp-square (adjoint.counit.commute _)) ⟩∘⟨refl ⟩ |
| 148 | + ((coequalizer-iso.to ∘ (R.F₁ (arr coequalizerˣ) ∘ R.F₁ (adjoint.counit.η (L.F₀ _))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to)) ≈⟨ (refl⟩∘⟨ cancelʳ (⟺ R.homomorphism ○ R.F-resp-≈ adjoint.zig ○ R.identity)) ⟩∘⟨refl ⟩ |
| 149 | + (coequalizer-iso.to ∘ R.F₁ (arr coequalizerˣ)) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈˘⟨ universal coequalizerᴿˣ ⟩∘⟨refl ⟩ |
| 150 | + Module.action X ∘ R.F₁ (L.F₁ coequalizer-iso.to) ∎ |
| 151 | + } |
| 152 | + in α , record { isoˡ = coequalizer-iso.isoˡ ; isoʳ = coequalizer-iso.isoʳ } |
| 153 | + |
| 154 | + -- If 'R' preserves reflexive coequalizers and reflects isomorphisms, then the counit of the adjunction is a pointwise isomorphism. |
| 155 | + counit-iso : PreservesReflexiveCoequalizers R → Conservative R → (X : 𝒟.Obj) → Σ[ h ∈ 𝒟 [ X , Comparison⁻¹.F₀ (Comparison.F₀ X) ] ] Iso 𝒟 (Comparison⁻¹⊣Comparison.counit.η X) h |
| 156 | + counit-iso preserves-reflexive-coeq conservative X = |
| 157 | + let coequalizerᴿᴷˣ = IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) (has-coequalizer (Comparison.F₀ X))) |
| 158 | + coequalizerᴷˣ = has-coequalizer (Comparison.F₀ X) |
| 159 | + coequalizer-iso = up-to-iso 𝒞 coequalizerᴿᴷˣ (coequalizer-action (Comparison.F₀ X)) |
| 160 | + module coequalizer-iso = _≅_ coequalizer-iso |
| 161 | + open 𝒞.HomReasoning |
| 162 | + open 𝒞.Equiv |
| 163 | + in conservative (Iso-resp-≈ 𝒞 coequalizer-iso.iso (⟺ (preserves-coequalizer-unique {R} preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) coequalizerᴷˣ)) refl) |
| 164 | + |
| 165 | + -- Now, for the final result. Both the unit and counit of the adjunction between the comparison functor and it's inverse are isomorphisms, |
| 166 | + -- so therefore they form natural isomorphism. Therfore, we have an equivalence of categories. |
| 167 | + crude-monadicity : PreservesReflexiveCoequalizers R → Conservative R → StrongEquivalence 𝒞ᵀ 𝒟 |
| 168 | + crude-monadicity preserves-reflexlive-coeq conservative = record |
| 169 | + { F = Comparison⁻¹ adjoint has-coequalizer |
| 170 | + ; G = Comparison |
| 171 | + ; weak-inverse = pointwise-iso-equivalence (Comparison⁻¹⊣Comparison adjoint has-coequalizer) |
| 172 | + (counit-iso preserves-reflexlive-coeq conservative) |
| 173 | + (unit-iso preserves-reflexlive-coeq) |
| 174 | + } |
0 commit comments