@@ -8,16 +8,15 @@ open import Level
8
8
9
9
open import Data.Product using (_,_; _×_)
10
10
open import Function using (_$_) renaming (_∘_ to _∙_)
11
- open import Function.Equality using (Π; _⟶_)
12
- import Function.Inverse as FI
11
+ open import Function.Bundles using (Equivalence; LeftInverse; Func; _⟨$⟩_)
13
12
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
14
13
15
14
-- be explicit in imports to 'see' where the information comes from
16
15
open import Categories.Adjoint using (Adjoint; _⊣_)
17
16
open import Categories.Category.Core using (Category)
18
17
open import Categories.Category.Product using (Product; _⁂_)
19
- open import Categories.Category.Instance.Setoids
20
- open import Categories.Morphism
18
+ open import Categories.Category.Instance.Setoids using (Setoids)
19
+ open import Categories.Morphism using (Iso)
21
20
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
22
21
open import Categories.Functor.Bifunctor using (Bifunctor)
23
22
open import Categories.Functor.Hom using (Hom[_][-,-])
@@ -50,11 +49,11 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
50
49
Hom-NI′ : NaturalIsomorphism Hom[L-,-] Hom[-,R-]
51
50
Hom-NI′ = record
52
51
{ F⇒G = ntHelper record
53
- { η = λ _ → Hom-inverse.to
52
+ { η = λ _ → record { to = Hom-inverse.to ; cong = Hom-inverse.to-cong }
54
53
; commute = λ _ eq → Ladjunct-comm eq
55
54
}
56
55
; F⇐G = ntHelper record
57
- { η = λ _ → Hom-inverse.from
56
+ { η = λ _ → record { to = Hom-inverse.from ; cong = Hom-inverse.from-cong }
58
57
; commute = λ _ eq → Radjunct-comm eq
59
58
}
60
59
; iso = λ _ → record
@@ -78,10 +77,10 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
78
77
open NaturalIsomorphism Hni
79
78
open NaturalTransformation
80
79
open Functor
81
- open Π
80
+ open Func
82
81
83
82
private
84
- unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
83
+ unitη : ∀ X → Func ( F₀ Hom[L-,-] (X , L.F₀ X)) ( F₀ Hom[-,R-] (X , L.F₀ X) )
85
84
unitη X = ⇒.η (X , L.F₀ X)
86
85
87
86
unit : NaturalTransformation idF (R ∘F L)
@@ -100,7 +99,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R :
100
99
open HomReasoning
101
100
open MR C
102
101
103
- counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
102
+ counitη : ∀ X → Func ( F₀ Hom[-,R-] (R.F₀ X , X)) ( F₀ Hom[L-,-] (R.F₀ X , X) )
104
103
counitη X = ⇐.η (R.F₀ X , X)
105
104
106
105
counit : NaturalTransformation (L ∘F R) idF
@@ -160,7 +159,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
160
159
module L = Functor L
161
160
module R = Functor R
162
161
open Functor
163
- open Π
162
+ open Func
164
163
165
164
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
166
165
Hom[L-,-] = LiftSetoids ℓ e ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
@@ -171,7 +170,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
171
170
module _ (Hni : Hom[L-,-] ≃ Hom[-,R-]) where
172
171
open NaturalIsomorphism Hni using (module ⇒ ; module ⇐ ; iso)
173
172
private
174
- unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
173
+ unitη : ∀ X → Func ( F₀ Hom[L-,-] (X , L.F₀ X)) ( F₀ Hom[-,R-] (X , L.F₀ X) )
175
174
unitη X = ⇒.η (X , L.F₀ X)
176
175
177
176
unit : NaturalTransformation idF (R ∘F L)
@@ -196,7 +195,7 @@ module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D
196
195
open HomReasoning
197
196
open MR C
198
197
199
- counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
198
+ counitη : ∀ X → Func ( F₀ Hom[-,R-] (R.F₀ X , X)) ( F₀ Hom[L-,-] (R.F₀ X , X) )
200
199
counitη X = ⇐.η (R.F₀ X , X)
201
200
202
201
counit : NaturalTransformation (L ∘F R) idF
0 commit comments