-
Notifications
You must be signed in to change notification settings - Fork 8
/
create_cistarget_motif_databases.py
executable file
·572 lines (489 loc) · 20.6 KB
/
create_cistarget_motif_databases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#!/usr/bin/env python3
"""
Purpose : Create cisTarget motif databases.
Copyright (C): 2019-2022 - Gert Hulselmans
"""
import argparse
import multiprocessing as mp
import os
import random
import shutil
import sys
import time
from typing import Tuple
import pandas as pd
from cistarget_db import (
CisTargetDatabase,
DatabaseTypes,
MotifOrTrackIDs,
MotifsOrTracksType,
RegionOrGeneIDs,
)
from clusterbuster import (
get_motif_id_to_filename_and_nbr_motifs_dict,
run_cluster_buster_for_motif,
)
def main():
parser = argparse.ArgumentParser(description="Create cisTarget motif databases.")
parser.add_argument(
"-f",
"--fasta",
dest="fasta_filename",
action="store",
type=str,
required=True,
help="FASTA filename which contains the regions/genes to score with Cluster-Buster for each motif. When "
"creating a cisTarget species database from regions/genes lifted over from a different species, provide "
"the original FASTA file for that species to -F.",
)
parser.add_argument(
"-F",
"--fasta-original-species",
dest="original_species_fasta_filename",
action="store",
type=str,
required=False,
help="FASTA filename which contains all the regions/genes of the original species. The fasta file provided to "
"-f can contain less regions (not all regions could be lifted over) than the one provided to -F, but to "
"create a cisTarget cross-species database later, all individual cisTarget species databases need to "
"contain the same amount of regions/genes.",
)
parser.add_argument(
"-M",
"--motifs_dir",
dest="motifs_dir",
action="store",
type=str,
required=True,
help="Path to directory with Cluster-Buster motifs.",
)
parser.add_argument(
"-m",
"--motifs",
dest="motifs_list_filename",
action="store",
type=str,
required=True,
help="Filename with list of motif IDs or motif MD5 names to be scored from directory specified by "
'"--motifs_dir".',
)
parser.add_argument(
"-5",
"--md5",
dest="motif_md5_to_motif_id_filename",
action="store",
type=str,
required=False,
help="Filename with motif MD5 to motif ID mappings to map Cluster-Buster motif MD5 filenames to motif IDs.",
)
parser.add_argument(
"-o",
"--output",
dest="db_prefix",
action="store",
type=str,
required=True,
help="Feather database prefix output filename.",
)
parser.add_argument(
"-c",
"--cbust",
dest="cluster_buster_path",
action="store",
type=str,
required=False,
default="cbust",
help='Path to Cluster-Buster (https://github.com/weng-lab/cluster-buster/). Default: "cbust".',
)
parser.add_argument(
"-t",
"--threads",
dest="nbr_threads",
action="store",
type=int,
required=False,
default=1,
help="Number of threads to use when scoring motifs. Default: 1.",
)
parser.add_argument(
"-p",
"--partial",
dest="partial",
nargs=2,
metavar=("CURRENT_PART", "NBR_TOTAL_PARTS"),
action="store",
type=int,
required=False,
help="Divide the motif list in a number of total parts (of similar size) and score only the part defined by "
"current_part. This allows creating partial databases on machines which do not have enough RAM to score "
"all motifs in one iteration. This will only create a partial regions/genes vs motifs scoring database "
"({db_prefix}.part_000{current_part}_of_000{nbr_total_parts}.regions_vs_motifs.scores.feather or "
"{db_prefix}.part_000{current_part}_of_000{nbr_total_parts}.genes_vs_motifs.scores.feather).",
)
parser.add_argument(
"-g",
"--genes",
dest="extract_gene_id_from_region_id_regex_replace",
action="store",
type=str,
required=False,
default=None,
help="Take top CRM score for a gene by taking the maximum CRM score of multiple regions for that gene. "
"Define a regex which will remove the non-gene part of the region ID, so only the gene ID remains. "
'Examples: "gene_id#some_number": "#[0-9]+$" or "region_id@@gene_id": "^.+@@".',
)
parser.add_argument(
"-b",
"--bgpadding",
dest="bg_padding",
action="store",
type=int,
required=False,
default=0,
help="Background padding in bp that was added for each sequence in FASTA file. Default: 0.",
)
parser.add_argument(
"--min",
dest="min_nbr_motifs",
action="store",
type=int,
required=False,
default=1,
help="Minimum number of motifs needed per Cluster-Buster motif file to be considered for scoring "
"(filters motifs list). Default: 1.",
)
parser.add_argument(
"--max",
dest="max_nbr_motifs",
action="store",
type=int,
required=False,
default=None,
help="Maximum number of motifs needed per Cluster-Buster motif file to be considered for scoring "
"(filters motifs list). Default: None.",
)
parser.add_argument(
"-l",
"--mask",
dest="mask",
action="store_true",
help="Consider masked (lowercase) nucleotides as Ns.",
)
parser.add_argument(
"-s",
"--seed",
dest="seed",
action="store",
type=int,
required=False,
help="Random seed used for breaking ties when creating rankings for a range of tied scores. "
"When setting this seed to a specific value and running this script with the same input, will result in "
"the same rankings databases as output.",
)
parser.add_argument(
"-r",
"--ssh",
dest="ssh_command",
action="store",
type=str,
required=False,
help="If defined, run Cluster-Buster over ssh by running the provided command to make the connection before "
"running Cluster-Buster itself. "
"Example: 'ssh -o ControlMaster=auto -o ControlPath=/tmp/ssh-control-path-%%l-%%h-%%p-%%r -o ControlPersist=600 <hostname>'",
)
args = parser.parse_args()
if not os.path.exists(args.fasta_filename):
print(
f'Error: FASTA filename "{args.fasta_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if args.original_species_fasta_filename and not os.path.exists(
args.original_species_fasta_filename
):
print(
f'Error: Original species FASTA filename "{args.original_species_fasta_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if not os.path.exists(args.motifs_dir):
print(
f'Error: Motif directory "{args.motifs_dir}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if args.motif_md5_to_motif_id_filename and not os.path.exists(
args.motif_md5_to_motif_id_filename
):
print(
f'Error: Motif MD5 to motif ID mappings filename "{args.motif_md5_to_motif_id_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if not os.path.exists(args.motifs_list_filename):
print(
f'Error: Motifs list filename "{args.motifs_list_filename}" does not exist.',
file=sys.stderr,
)
sys.exit(1)
if os.path.dirname(args.db_prefix) and not os.path.exists(
os.path.dirname(args.db_prefix)
):
print(
f'Error: Parent directory "{os.path.dirname(args.db_prefix)}" for Feather database prefix output filename '
"does not exist.",
file=sys.stderr,
)
sys.exit(1)
if args.partial:
current_part, nbr_total_parts = args.partial
if current_part < 1 or current_part > nbr_total_parts:
print(
f"Error: Current part ({current_part}) should be between 1 and the number of total parts "
f"({nbr_total_parts}).",
file=sys.stderr,
)
sys.exit(1)
# Add info about which part of the database this wil be.
db_prefix = f"{args.db_prefix}.part_{current_part:04d}_of_{nbr_total_parts:04d}"
else:
db_prefix = args.db_prefix
if not (args.min_nbr_motifs == 1 and not args.max_nbr_motifs):
if not args.partial:
# Add ".part_0001_of_0001" if partial was not specified but if min and max number of motifs per
# Cluster-Buster motif file is specified, so it is easier to combine those databases with different subsets
# of motifs in a later step.
db_prefix = f"{args.db_prefix}.part_0001_of_0001"
# Add info about number of motifs in Cluster-Buster motif file which will be scored (if min or max is set to a
# non-default value).
if args.max_nbr_motifs:
db_prefix = f"{db_prefix}.min_{args.min_nbr_motifs:d}_to_max_{args.max_nbr_motifs:d}_motifs"
else:
db_prefix = f"{db_prefix}.min_{args.min_nbr_motifs:d}_to_max_motifs"
# Get absolute path to Cluster-Buster binary and see if it can be executed.
cluster_buster_path = shutil.which(args.cluster_buster_path)
if not cluster_buster_path:
print(
f'Error: Cluster-Buster binary ("{args.cluster_buster_path}") could not be found or is not executable.'
)
sys.exit(1)
# Set random seed to provided input value or a random integer.
seed = args.seed if args.seed else random.randint(0, 2**64)
if args.original_species_fasta_filename:
# When creating cisTarget databases for a species with lifted over regions, check if the regions/genes in the
# current species FASTA file are available in the original species FASTA file. Due to liftover, regions might
# be lost in the current species, but the cisTarget database needs to contain all regions/genes from the
# original species to create the cisTarget cross-species database later.
# Get all region or gene IDs from current species FASTA sequence names as a RegionOrGeneIDs object.
region_or_gene_ids_current_species = RegionOrGeneIDs.get_region_or_gene_ids_from_fasta(
fasta_filename=args.fasta_filename,
extract_gene_id_from_region_id_regex_replace=args.extract_gene_id_from_region_id_regex_replace,
)
# Get all region or gene IDs from the original FASTA sequence names as a RegionOrGeneIDs object.
region_or_gene_ids = RegionOrGeneIDs.get_region_or_gene_ids_from_fasta(
fasta_filename=args.original_species_fasta_filename,
extract_gene_id_from_region_id_regex_replace=args.extract_gene_id_from_region_id_regex_replace,
)
if not region_or_gene_ids_current_species.issubset(region_or_gene_ids):
print(
f'Error: Region IDs/gene IDs in "{args.fasta_filename}" are not all present in '
f'"{args.original_species_fasta_filename}".',
file=sys.stderr,
)
sys.exit(1)
else:
# Get all region or gene IDs from the FASTA sequence names as a RegionOrGeneIDs object.
region_or_gene_ids = RegionOrGeneIDs.get_region_or_gene_ids_from_fasta(
fasta_filename=args.fasta_filename,
extract_gene_id_from_region_id_regex_replace=args.extract_gene_id_from_region_id_regex_replace,
)
# Get absolute path name for FASTA filename so in case Cluster-Buster is ran over ssh, the FASTA file can be found.
fasta_filename = os.path.abspath(args.fasta_filename)
# Get motif ID to motif file name mapping and motif ID to number of motifs per motif file mapping for
# a(n optionally) filtered list of motif IDs:
# - if partial is set
# - if min_nbr_motifs is set
# - if max_nbr_motifs is set
(
motif_id_to_filename_dict,
motif_id_to_nbr_motifs_dict,
) = get_motif_id_to_filename_and_nbr_motifs_dict(
motifs_dir=os.path.abspath(args.motifs_dir),
motifs_list_filename=args.motifs_list_filename,
motif_md5_to_motif_id_filename=args.motif_md5_to_motif_id_filename,
partial=(current_part, nbr_total_parts) if args.partial else None,
min_nbr_motifs=args.min_nbr_motifs,
max_nbr_motifs=args.max_nbr_motifs,
)
# Create MotifOrTracksIDs object from plain motif IDs.
motif_ids = MotifOrTrackIDs(
motif_or_track_ids=set(motif_id_to_filename_dict),
motifs_or_tracks_type=MotifsOrTracksType.MOTIFS,
)
nbr_region_or_gene_ids = len(region_or_gene_ids)
nbr_motifs = len(motif_id_to_filename_dict)
if nbr_region_or_gene_ids == 0:
print(f"Error: No {region_or_gene_ids.type.value} provided.", file=sys.stderr)
sys.exit(1)
if nbr_motifs == 0:
print("Error: No motifs provided.", file=sys.stderr)
sys.exit(1)
print(
f"Initialize dataframe ({nbr_region_or_gene_ids} {region_or_gene_ids.type.value} "
f"x {nbr_motifs} motifs) for storing CRM scores for each {region_or_gene_ids.type.value} per motif.",
file=sys.stderr,
)
ct_scores_db_motifs_vs_regions_or_genes = CisTargetDatabase.create_db(
db_type=DatabaseTypes.from_strings(
scores_or_rankings="scores",
column_kind="motifs",
row_kind=region_or_gene_ids.type.value,
),
region_or_gene_ids=region_or_gene_ids,
motif_or_track_ids=motif_ids,
order="F",
)
def write_crm_scores_for_motif_to_ct_scores_db(
df_motif_id_and_crm_scores: Tuple[str, pd.DataFrame]
) -> None:
if (
"nbr_of_scored_motifs"
not in write_crm_scores_for_motif_to_ct_scores_db.__dict__
):
write_crm_scores_for_motif_to_ct_scores_db.nbr_of_scored_motifs = 0
motif_id, df_crm_scores = df_motif_id_and_crm_scores
start_time = time.monotonic()
ct_scores_db_motifs_vs_regions_or_genes.update_scores_for_motif_or_track(
motif_or_track_id=motif_id,
df_scores_for_motif_or_track=df_crm_scores["crm_score"],
)
elapsed_time = time.monotonic() - start_time
write_crm_scores_for_motif_to_ct_scores_db.nbr_of_scored_motifs += 1
print(
f"Adding Cluster-Buster CRM scores ({write_crm_scores_for_motif_to_ct_scores_db.nbr_of_scored_motifs:d} of "
f'{nbr_motifs:d}) for motif "{motif_id:s}" took {elapsed_time:0.6f} seconds.',
file=sys.stderr,
)
def report_error(exception: BaseException) -> None:
print(exception, file=sys.stderr)
start_time = time.monotonic()
with mp.Pool(processes=args.nbr_threads) as pool:
# Motif IDs are sorted by number of motifs in motif ID Cluster-Buster file (high to low) and then by motif ID
# name (in get_motif_id_to_filename_and_nbr_motifs_dict()), so motif IDs which have a lot of motifs in their
# Cluster-Buster motif file are scored first, before singletons are scored to prevent that a few Cluster-Buster
# motifs files with a huge number of motifs got scheduled near the end of the motif scoring and underutilizing
# the compute node.
for motif_id, motif_filename in motif_id_to_filename_dict.items():
# Score all regions/genes in the FASTA file for the current motif and write the result in the
# ct_scores_db_motifs_vs_regions_or_genes CisTargetDatabase object.
pool.apply_async(
func=run_cluster_buster_for_motif,
args=[
cluster_buster_path,
fasta_filename,
motif_filename,
motif_id,
args.extract_gene_id_from_region_id_regex_replace,
args.bg_padding,
args.mask,
args.ssh_command,
],
callback=write_crm_scores_for_motif_to_ct_scores_db,
error_callback=report_error,
)
# Prevents any more task from being submitted to the pool.
pool.close()
# Wait for worker processes to exit.
pool.join()
elapsed_time = time.monotonic() - start_time
print(
f"\nScoring {nbr_motifs} motifs with Cluster-Buster took: {elapsed_time:.06f} seconds\n"
)
if (
"nbr_of_scored_motifs"
not in write_crm_scores_for_motif_to_ct_scores_db.__dict__
):
print(
f"Error: None of {nbr_motifs:d} motifs were scored successfully.",
file=sys.stderr,
)
sys.exit(1)
elif write_crm_scores_for_motif_to_ct_scores_db.nbr_of_scored_motifs != nbr_motifs:
print(
f"Error: Only {write_crm_scores_for_motif_to_ct_scores_db.nbr_of_scored_motifs:d} out of {nbr_motifs:d} "
f"motifs were scored successfully.",
file=sys.stderr,
)
sys.exit(1)
print("", file=sys.stderr)
def write_db(ct_db: CisTargetDatabase, db_prefix: str):
"""
Write cisTarget database to a Feather file and print database location and elapsed time.
:param ct_db: cisTarget database object.
:param db_prefix: Feather database file prefix.
:return:
"""
db_filename = ct_db.create_db_filename_from_db_prefix(
db_prefix=db_prefix, extension="feather"
)
print(
f"Writing cisTarget {ct_db.db_type.row_kind} vs {ct_db.db_type.column_kind} "
f'{ct_db.db_type.scores_or_rankings} db: "{db_filename}"'
)
start_time = time.monotonic()
ct_db.write_db(
db_prefix=db_prefix,
version=2,
)
elapsed_time = time.monotonic() - start_time
print(
f"Writing cisTarget {ct_db.db_type.row_kind} vs {ct_db.db_type.column_kind} "
f"{ct_db.db_type.scores_or_rankings} db took: {elapsed_time:.06f} seconds\n"
)
# Write cisTarget scores database (motifs vs regions or genes) to Feather file.
write_db(ct_db=ct_scores_db_motifs_vs_regions_or_genes, db_prefix=db_prefix)
if not args.partial:
# Create cisTarget scores database (regions or genes vs motifs) from (motifs vs regions or genes) version.
ct_scores_db_regions_or_genes_vs_motifs = (
ct_scores_db_motifs_vs_regions_or_genes.transpose()
)
# Write cisTarget scores database (regions or genes vs motifs) to Feather file.
write_db(ct_db=ct_scores_db_regions_or_genes_vs_motifs, db_prefix=db_prefix)
# Create cisTarget rankings database (motifs vs regions or genes) from cisTarget scores database filename
# (motifs vs regions or genes).
print(
f"""Create rankings from "{
ct_scores_db_motifs_vs_regions_or_genes.create_db_filename_from_db_prefix(
db_prefix=db_prefix,
extension='feather'
)
}" with random seed set to {seed}.""",
file=sys.stderr,
)
start_time = time.monotonic()
ct_rankings_db_motifs_vs_regions_or_genes = (
ct_scores_db_motifs_vs_regions_or_genes.convert_scores_db_to_rankings_db(
seed=seed
)
)
elapsed_time = time.monotonic() - start_time
print(
f"Creating cisTarget rankings db from cisTarget scores db took: "
f"{elapsed_time:.06f} seconds\n"
)
# Reclaim memory occupied by cisTarget scores databases.
del ct_scores_db_motifs_vs_regions_or_genes
del ct_scores_db_regions_or_genes_vs_motifs
# Do not write cisTarget rankings database (motifs vs regions or genes) to Feather file
# as it can take a very long time to write it (1.5 hours for 1 million regions) as the
# rankings database numpy array is in "C" order and writing a Feather database requires
# traversing the numpy array in column order.
# write_db(ct_db=ct_rankings_db_motifs_vs_regions_or_genes, db_prefix=db_prefix)
# Create cisTarget rankings database (regions or genes vs motifs) from (motifs vs regions or genes) version.
ct_rankings_db_regions_or_genes_vs_motifs = (
ct_rankings_db_motifs_vs_regions_or_genes.transpose()
)
# Write cisTarget rankings database (regions or genes vs motifs) to Feather file.
write_db(ct_db=ct_rankings_db_regions_or_genes_vs_motifs, db_prefix=db_prefix)
if __name__ == "__main__":
main()