-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
256 lines (197 loc) · 9.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import numpy as np
import torch
import torchvision
from torch.nn import functional as F
import CUB_dataset, custom_dataset
def _get_scale(square: bool) -> float:
return 10 if square else 20
def db_to_ratio(db: float, square: bool = True) -> float:
return 10 ** (db / _get_scale(square))
def ratio_to_db(ratio: float, square: bool = True) -> float:
return _get_scale(square) * np.log10(ratio)
def get_data(dataset, transform):
if dataset == "imagenet":
train_ds = torchvision.datasets.DatasetFolder(
os.path.join("./data/ImageNet_clip/train"),
loader=lambda path: np.load(path, allow_pickle=True),
is_valid_file=lambda path: path[-4:] == ".npy",
)
test_ds = torchvision.datasets.DatasetFolder(
os.path.join("./data/ImageNet_clip/val"),
loader=lambda path: np.load(path, allow_pickle=True),
is_valid_file=lambda path: path[-4:] == ".npy",
)
if dataset == "places365":
train_ds = custom_dataset.Places365_clip(
root="data/Places365_clip",
split="train-standard",
small=True,
download=False,
transform=transform,
)
test_ds = custom_dataset.Places365_clip(
root="data/Places365_clip",
split="val",
small=True,
download=False,
transform=transform,
)
if dataset == "cifar10":
train_ds = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
test_ds = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
if dataset == "cifar100":
train_ds = torchvision.datasets.CIFAR100(root="./data", train=True, download=True, transform=transform)
test_ds = torchvision.datasets.CIFAR100(root="./data", train=False, download=True, transform=transform)
elif dataset == "cub":
use_attr = True
no_img = False
uncertain_label = False
n_class_atr = 1
data_dir = "data"
image_dir = f"{data_dir}/CUB/CUB_200_2011"
no_label = False
prune = False
train_ds = CUB_dataset.CUBDataset(
[f"{data_dir}/CUB/trainclass_level_all_features.pkl"],
use_attr,
no_img,
uncertain_label,
image_dir,
n_class_atr,
prune=prune,
transform=transform,
no_label=no_label,
)
val_ds = CUB_dataset.CUBDataset(
[f"{data_dir}/CUB/valclass_level_all_features.pkl"],
use_attr,
no_img,
uncertain_label,
image_dir,
n_class_atr,
prune=prune,
transform=transform,
no_label=no_label,
)
test_ds = CUB_dataset.CUBDataset(
[f"{data_dir}/CUB/testclass_level_all_features.pkl"],
use_attr,
no_img,
uncertain_label,
image_dir,
n_class_atr,
prune=prune,
transform=transform,
no_label=no_label,
)
return train_ds, val_ds, test_ds
return train_ds, test_ds
def get_concepts(filename):
list_of_concepts = []
f = open(filename, "r")
for line in f.readlines():
list_of_concepts.append(line.strip())
return list_of_concepts
def compute_queries_needed(logits, threshold):
"""Compute the number of queries needed for each prediction.
Parameters:
logits (torch.Tensor): logits from querier
threshold (float): stopping criterion, should be within (0, 1)
"""
assert 0 < threshold and threshold < 1, 'threshold should be between 0 and 1'
n_samples, n_queries, _ = logits.shape
# turn logits into probability and find queried prob.
prob = F.softmax(logits, dim=2)
prob_max = prob.amax(dim=2)
# `decay` to multipled such that argmax finds
# the first nonzero that is above threshold.
threshold_indicator = (prob_max >= threshold).float().cuda()
decay = torch.linspace(10, 1, n_queries).unsqueeze(0).cuda()
semantic_entropy = (threshold_indicator * decay).argmax(1)
# `threshold_indicator`==0 is to check which
# samples did not stop querying, hence indicator vector
# is all zeros, preventing bug that yields argmax as 0.
semantic_entropy[threshold_indicator.sum(1) == 0] = n_queries
semantic_entropy[threshold_indicator.sum(1) != 0] += 1
return semantic_entropy
def compute_queries_needed_mi(logits, threshold, k=1):
"""Compute the number of queries needed for each prediction.
Parameters:
logits (torch.Tensor): logits from querier
threshold (float): stopping criterion, should be within (0, 1)
"""
n_samples, n_queries, _ = logits.shape
# turn logits into probability and find queried prob.
prob = F.softmax(logits, dim=2)
entropy1 = -(prob[:, :-1] * np.log2(prob[:, :-1])).sum(dim=2)
entropy2 = -(prob[:, 1:] * np.log2(prob[:, 1:])).sum(dim=2)
difference = (np.absolute(entropy1 - entropy2))
difference = torch.cat([difference, torch.zeros(difference.size(0), 1)], dim=1)
# `decay` to multipled such that argmax finds
# the first nonzero that is above threshold.
threshold_indicator = (difference <= threshold).float()
signal = threshold_indicator.view(threshold_indicator.size(0), 1, -1)
# convolution kernel of size 3, expecting 1 input channel and 1 output channel
kernel = torch.ones(1, 1, k, requires_grad=False)
# convoluting signal with kernel and applying padding
output = F.conv1d(signal, kernel, stride=1, padding=k - 1, bias=None)[:, :, k - 1:].squeeze(1)
threshold_indicator = (output == k).float()
decay = torch.linspace(10, 1, n_queries).unsqueeze(0)
semantic_entropy = (threshold_indicator * decay).argmax(1)
# `threshold_indicator`==0 is to check which
# samples did not stop querying, hence indicator vector
# is all zeros, preventing bug that yields argmax as 0.
semantic_entropy[threshold_indicator.sum(1) == 0] = n_queries
semantic_entropy[threshold_indicator.sum(1) != 0] += 1
return semantic_entropy
def get_grad_norm(model):
total_norm = 0
for p in model.parameters():
if p.requires_grad:
if p.grad is None:
continue
else:
param_norm = p.grad.detach().data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** 0.5
return total_norm
def verbose_sequential(x, y, max_queries, actor, classifier):
masked_image = torch.zeros(x.size()).cuda()
mask = torch.zeros(x.size()).cuda()
logits = []
acc = []
queries = []
for i in range(max_queries + 1):
query_vec = actor(masked_image, mask)
label_logits = classifier(masked_image)
mask[np.arange(x.size(0)), query_vec.argmax(dim=1)] = 1.0
masked_image = masked_image + (query_vec * x)
logits.append(label_logits)
queries.append(query_vec)
acc.append((label_logits.argmax(dim=1).float() == y.squeeze()).float().mean().cpu().item())
return np.array(acc), torch.stack(logits).permute(1, 0, 2).cpu(), queries, masked_image
def clip_preprocess(tensors, size):
transform = T.Compose([
T.Resize(size=size, interpolation=BICUBIC),
T.CenterCrop(size=size),
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
return transform(tensors)
def get_pretrained_actor_classifier_filenames(dataset_name):
if dataset_name == "imagenet":
actor_filename = f"saved_models/{dataset_name}/model_actor_{dataset_name}_vip_biased_clip_finetuned_adaptive_0.0_611_0.4_cutoff_different_opt_500_num_queries.pth"
classifier_filename = f"saved_models/{dataset_name}/model_classifier_{dataset_name}_vip_biased_clip_finetuned_adaptive_0.0_611_0.4_cutoff_different_opt_500_num_queries.pth"
elif dataset_name == "places365":
actor_filename = f"saved_models/{dataset_name}/model_actor_places365_vip_biased_clip_finetuned_adaptive_0.0_611_0.4_cutoff_500_num_queries.pth"
classifier_filename = f"saved_models/{dataset_name}/model_classifier_places365_vip_biased_clip_finetuned_adaptive_0.0_611_0.4_cutoff_500_num_queries.pth"
elif dataset_name == "cub":
actor_filename = f"saved_models/{dataset_name}/model_actor_cub_vip_biased_clip_finetuned_adaptive_0.0.pth"
classifier_filename = f"saved_models/{dataset_name}/model_classifier_cub_vip_biased_clip_finetuned_adaptive_0.0.pth"
elif dataset_name == "cifar100":
actor_filename = f"saved_models/{dataset_name}/model_actor_cifar100_vip_biased_clip_finetuned_adaptive_0.0.pth"
classifier_filename = f"saved_models/{dataset_name}/model_classifier_cifar100_vip_biased_clip_finetuned_adaptive_0.0.pth"
elif dataset_name == "cifar10":
actor_filename = f"saved_models/{dataset_name}/model_actor_cifar10_vip_biased_clip_finetuned_adaptive_0.0.pth"
classifier_filename = f"saved_models/{dataset_name}/model_classifier_cifar10_vip_biased_clip_finetuned_adaptive_0.0.pth"
return actor_filename, classifier_filename