-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_text_data.py
238 lines (214 loc) · 5.54 KB
/
process_text_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
Script to process and tokenize document classification dataset.
"""
import os
import pickle
import string
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import sklearn.datasets
import sklearn.feature_extraction
import textblob
#### SET STOP WORDS AND CLEAN NUMBERS AND SPECIAL CHARACTERS
stop_words = sklearn.feature_extraction.text.ENGLISH_STOP_WORDS.union(
[
"'s",
"th",
"anywh",
"becau",
"el",
"elsewh",
"everywh",
"ind",
"otherwi",
"plea",
"somewh",
"abov",
"afterward",
"alon",
"alreadi",
"alway",
"ani",
"anoth",
"anyon",
"anyth",
"anywher",
"becam",
"becaus",
"becom",
"befor",
"besid",
"cri",
"describ",
"dure",
"els",
"elsewher",
"empti",
"everi",
"everyon",
"everyth",
"everywher",
"fifti",
"formerli",
"forti",
"ha",
"henc",
"hereaft",
"herebi",
"hi",
"howev",
"hundr",
"inde",
"latterli",
"mani",
"meanwhil",
"moreov",
"mostli",
"nobodi",
"noon",
"noth",
"nowher",
"onc",
"onli",
"otherwis",
"ourselv",
"perhap",
"pleas",
"seriou",
"sever",
"sinc",
"sincer",
"sixti",
"someon",
"someth",
"sometim",
"somewher",
"themselv",
"thenc",
"thereaft",
"therebi",
"therefor",
"thi",
"thu",
"togeth",
"twelv",
"twenti",
"veri",
"wa",
"whatev",
"whenc",
"whenev",
"wherea",
"whereaft",
"wherebi",
"wherev",
"whi",
"yourselv",
]
+ list(string.digits + string.ascii_lowercase)
)
# get stemming of words
def textblob_tokenizer(str_input):
blob = textblob.TextBlob(str_input.lower())
words = [token.stem() for token in blob.words]
return words
def get_dataset_vocab(dataset_x, max_features=1000, min_df=10):
# Get TFIDF Representation. The purpose of this is to get the
# top `max_features` most common non-stop words above `min_df`
# and turn them into the vocabulary.
print("Computing vocabulary...")
tfidf = TfidfVectorizer(
sublinear_tf=True,
tokenizer=textblob_tokenizer,
min_df=min_df,
max_features=max_features,
norm="l2",
encoding="latin-1",
ngram_range=(1, 1),
stop_words=stop_words,
lowercase=True,
strip_accents="ascii",
analyzer="word",
)
tfidf.fit_transform(dataset_x)
vocabulary = tfidf.get_feature_names()
return vocabulary
def bow_process_dataset(dataset, dataset_name, vocabulary):
""" parameter `dataset` is a dict containing 'x', 'y', 'label_ids' """
# Convert to bag of words representation using vocabulary.
print(f"Converting to {dataset_name} BOW...")
vectorizer = CountVectorizer(
vocabulary=vocabulary,
tokenizer=textblob_tokenizer,
encoding="latin-1",
ngram_range=(1, 1),
stop_words=stop_words,
lowercase=True,
strip_accents="ascii",
analyzer="word",
binary=True,
)
dataset["x"] = vectorizer.fit_transform(dataset["x"])
print("Saving...")
dataset["vocab"] = vocabulary
with open(f"data/doc_classification/{dataset_name}.pkl", "wb") as f:
pickle.dump(dataset, f)
def get_dataset():
# Load dataset
df_huffpost = pd.read_json(
"data/doc_classification/News_Category_Dataset_v2.json", lines=True
)
# Remove categories with ambiguous meanings
categories_to_remove = [
"IMPACT",
"LATINO VOICES",
"EDUCATION",
"COLLEGE",
"GREEN",
"THE WORLDPOST",
"WORLDPOST",
"FIFTY",
]
df_huffpost = df_huffpost[
~df_huffpost["category"].isin(categories_to_remove)
].reset_index()
# Merge duplicate categories
def rename(x):
if x == "PARENTS":
return "PARENTING"
if x in ["ARTS", "CULTURE & ARTS"]:
return "ARTS & CULTURE"
if x == "STYLE":
return "STYLE & BEAUTY"
if x == "TASTE":
return "FOOD & DRINK"
if x == "HEALTHY LIVING":
return "HOME & LIVING"
return x
df_huffpost["category"] = df_huffpost["category"].map(rename)
# Prune to keep only top 10 most frequent categories
top10_categories = (
df_huffpost["category"].value_counts(ascending=True).index.tolist()[-10:]
)
df_huffpost = df_huffpost[
df_huffpost["category"].isin(top10_categories)
].reset_index()
df_huffpost["Text"] = (
df_huffpost["headline"] + " " + df_huffpost["short_description"]
)
# For future convenience
df_huffpost.to_json(
"data/doc_classification/News_Category_Dataset_Cleaned_Categories10.json",
orient="records",
lines=True,
)
x = df_huffpost["Text"]
y, label_ids = df_huffpost["category"].factorize()
return dict(x=x, y=y, label_ids=list(label_ids))
def main():
huffpost_10 = get_dataset()
vocabulary = get_dataset_vocab(huffpost_10["x"])
bow_process_dataset(huffpost_10, "cleaned_categories10", vocabulary)
if __name__ == "__main__":
main()