-
Notifications
You must be signed in to change notification settings - Fork 5
/
_template.py
131 lines (108 loc) · 4.25 KB
/
_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# MIT License
# Copyright (c) 2024 Adithya S K
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ruff: noqa: F405, F403, F401
"""
Custom evaluation tasks for indic_eval. Copy this file and complete it with the info for your task.
This file generally create just a TASKS_TABLE and TASKS_GROUPS which are then imported by LightEval.
Author:
"""
import numpy as np
from aenum import extend_enum
from indic_eval.metrics import Metrics
from indic_eval.metrics.metrics import SampleLevelMetric
from indic_eval.metrics.utils import MetricCategory, MetricUseCase
from indic_eval.tasks.lighteval_task import LightevalTaskConfig
from indic_eval.tasks.requests import Doc
from indic_eval.tasks.tasks_prompt_formatting import LETTER_INDICES
# EVAL WITH NO SUBSET ##
# This is how you create a simple tasks (like hellaswag) which has one single subset
# attached to it, and one evaluation possible.
task = LightevalTaskConfig(
name="myothertask",
prompt_function="prompt_fn", # must be defined in the file or imported from src/indic_eval/tasks/tasks_prompt_formatting.py
suite=["community"],
hf_repo="",
hf_subset="default",
hf_avail_splits=[],
evaluation_splits=[],
few_shots_split="",
few_shots_select="",
metric=[""],
)
# EVALS WITH SUBSET
# This is how you create a subset task (like MMLU), which has several subset
# each being its own evaluation task.
# fmt: off
SAMPLE_SUBSETS = [] # list of all the subsets to use for this eval
# fmt: on
class CustomSubsetTask(LightevalTaskConfig):
def __init__(
self,
name,
hf_subset,
):
super().__init__(
name=name,
hf_subset=hf_subset,
prompt_function="prompt_fn", # must be defined in the file
hf_repo="",
metric=[""],
hf_avail_splits=[],
evaluation_splits=[],
few_shots_split="",
few_shots_select="",
suite=["community"],
generation_size=-1,
stop_sequence=None,
output_regex=None,
frozen=False,
)
# DEFINE YOUR PROMPT FUNCTIONS
# Define as many as you need for your different tasks
def prompt_fn(line, task_name: str = None):
"""Defines how to go from a dataset line to a doc object.
Follow examples in src/indic_eval/tasks/tasks_prompt_formatting.py, or get more info
about what this function should do in the README.
"""
return Doc(
task_name=task_name,
query="",
choices="",
gold_index=0,
instruction="",
)
# STORE YOUR EVALS
SUBSET_TASKS = [CustomSubsetTask(name=f"mytask:{subset}", hf_subset=subset) for subset in SAMPLE_SUBSETS]
_TASKS = SUBSET_TASKS + [task]
# CUSTOM METRIC IF NEEDED
custom_metric = SampleLevelMetric(
metric="my_custom_metric_name",
higher_is_better=True,
category=MetricCategory.IGNORED,
use_case=MetricUseCase.NONE,
sample_level_fn=lambda x: x, # how to compute score for one sample
corpus_level_fn=np.mean, # aggregation
)
extend_enum(Metrics, "my_custom_metric_name", custom_metric)
# MODULE LOGIC
# You should not need to touch this
# Convert to dict for indic_eval
TASKS_TABLE = [task.as_dict() for task in _TASKS]
if __name__ == "__main__":
print(t["name"] for t in TASKS_TABLE)
print(len(TASKS_TABLE))