diff --git a/LLM/Mixtral/Mixtral_fine_tuning.ipynb b/LLM/Mixtral/Mixtral_fine_tuning.ipynb
new file mode 100644
index 0000000..8bda720
--- /dev/null
+++ b/LLM/Mixtral/Mixtral_fine_tuning.ipynb
@@ -0,0 +1,3106 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "iEkm_Q9AGgTX"
+ },
+ "source": [
+ "# MIXTRAL 8x7B - Mixture of Experts\n",
+ "\n",
+ "This will not run on the free T4 GPU from Google Colab. You will need A100 to run this."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AlVGJXwsyVQO"
+ },
+ "source": [
+ "### Install Required Packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3IovaXt4ZJQ_"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install -q -U bitsandbytes\n",
+ "!pip install -q -U git+https://github.com/huggingface/transformers.git\n",
+ "!pip install -q -U git+https://github.com/huggingface/peft.git\n",
+ "!pip install -q -U git+https://github.com/huggingface/accelerate.git\n",
+ "!pip install -q datasets scipy\n",
+ "!pip install -q trl\n",
+ "!pip install flash-attn --no-build-isolation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4qjy9PYUaY3W"
+ },
+ "source": [
+ "### Loading the Base Model\n",
+ "\n",
+ "Load the model in `4bit`, with double quantization, with `bfloat16` as the compute dtype.\n",
+ "\n",
+ "In this case we are using the instruct-tuned model - instead of the base model. For fine-tuning a base model will need a lot more data!"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Load dataset for finetuning"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Lets Load the Dataset\n",
+ "\n",
+ "For this tutorial, we will fine-tune Mistral 7B Instruct for code generation.\n",
+ "\n",
+ "We will be using this [dataset](https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style) which is curated by [TokenBender (e/xperiments)](https://twitter.com/4evaBehindSOTA) and is an excellent data source for fine-tuning models for code generation. It follows the alpaca style of instructions, which is an excellent starting point for this task. The dataset structure should resemble the following:\n",
+ "\n",
+ "```json\n",
+ "{\n",
+ " \"instruction\": \"Create a function to calculate the sum of a sequence of integers.\",\n",
+ " \"input\": \"[1, 2, 3, 4, 5]\",\n",
+ " \"output\": \"# Python code def sum_sequence(sequence): sum = 0 for num in sequence: sum += num return sum\"\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model_id = \"mistralai/Mixtral-8x7B-v0.1\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig\n",
+ "\n",
+ "nf4_config = BitsAndBytesConfig(\n",
+ " load_in_4bit=True,\n",
+ " bnb_4bit_quant_type=\"nf4\",\n",
+ " bnb_4bit_use_double_quant=True,\n",
+ " bnb_4bit_compute_dtype=torch.bfloat16\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = AutoModelForCausalLM.from_pretrained(\n",
+ " model_id,\n",
+ " device_map='auto',\n",
+ " quantization_config=nf4_config,\n",
+ " use_cache=False,\n",
+ " attn_implementation=\"flash_attention_2\"\n",
+ "\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
+ "\n",
+ "tokenizer.pad_token = tokenizer.eos_token\n",
+ "tokenizer.padding_side = \"right\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's example how well the model does at this task currently:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_response(prompt, model):\n",
+ " encoded_input = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=True)\n",
+ " model_inputs = encoded_input.to('cuda')\n",
+ "\n",
+ " generated_ids = model.generate(**model_inputs,\n",
+ " max_new_tokens=512,\n",
+ " do_sample=True,\n",
+ " pad_token_id=tokenizer.eos_token_id)\n",
+ "\n",
+ " decoded_output = tokenizer.batch_decode(generated_ids)\n",
+ "\n",
+ " return decoded_output[0].replace(prompt, \"\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "prompt=\"\"\"[INST]Use the provided input to create an instruction that could have been used to generate the response with an LLM. \\nThere are more than 12,000 species of grass. The most common is Kentucky Bluegrass, because it grows quickly, easily, and is soft to the touch. Rygrass is shiny and bright green colored. Fescues are dark green and shiny. Bermuda grass is harder but can grow in drier soil.[\\INST]\"\"\"\n",
+ "\n",
+ "generate_response(prompt, model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "dataset = load_dataset(\"TokenBender/code_instructions_122k_alpaca_style\", split=\"train\")\n",
+ "dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = dataset.to_pandas()\n",
+ "df.head(10)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Instruction Fintuning - Prepare the dataset under the format of \"prompt\" so the model can better understand :\n",
+ "1. the function generate_prompt : take the instruction and output and generate a prompt\n",
+ "2. shuffle the dataset\n",
+ "3. tokenizer the dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Formatting the Dataset\n",
+ "\n",
+ "Now, let's format the dataset in the required [Mistral-7B-Instruct-v0.1 format](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1).\n",
+ "\n",
+ "> Many tutorials and blogs skip over this part, but I feel this is a really important step.\n",
+ "\n",
+ "We'll put each instruction and input pair between `[INST]` and `[/INST]` output after that, like this:\n",
+ "\n",
+ "```\n",
+ "[INST] What is your favorite condiment? [/INST]\n",
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavor to whatever I'm cooking up in the kitchen!\n",
+ "```\n",
+ "\n",
+ "You can use the following code to process your dataset and create a JSONL file in the correct format:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def generate_prompt(data_point):\n",
+ " \"\"\"Gen. input text based on a prompt, task instruction, (context info.), and answer\n",
+ "\n",
+ " :param data_point: dict: Data point\n",
+ " :return: dict: tokenzed prompt\n",
+ " \"\"\"\n",
+ " prefix_text = 'Below is an instruction that describes a task. Write a response that ' \\\n",
+ " 'appropriately completes the request.\\n\\n'\n",
+ " # Samples with additional context into.\n",
+ " if data_point['input']:\n",
+ " text = f\"\"\"[INST]{prefix_text} {data_point[\"instruction\"]} here are the inputs {data_point[\"input\"]} [/INST]{data_point[\"output\"]}\"\"\"\n",
+ " # Without\n",
+ " else:\n",
+ " text = f\"\"\"[INST]{prefix_text} {data_point[\"instruction\"]} [/INST]{data_point[\"output\"]} \"\"\"\n",
+ " return text\n",
+ "\n",
+ "# add the \"prompt\" column in the dataset\n",
+ "text_column = [generate_prompt(data_point) for data_point in dataset]\n",
+ "dataset = dataset.add_column(\"prompt\", text_column)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset = dataset.shuffle(seed=1234) # Shuffle dataset here\n",
+ "dataset = dataset.map(lambda samples: tokenizer(samples[\"prompt\"]), batched=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dataset = dataset.train_test_split(test_size=0.2)\n",
+ "train_data = dataset[\"train\"]\n",
+ "test_data = dataset[\"test\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_data[\"input_ids\"][:10]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### After Formatting, We should get something like this\n",
+ "\n",
+ "```json\n",
+ "{\n",
+ "\"text\":\"[INST] Create a function to calculate the sum of a sequence of integers. here are the inputs [1, 2, 3, 4, 5] [/INST]\n",
+ "# Python code def sum_sequence(sequence): sum = 0 for num in sequence: sum += num return sum\",\n",
+ "\"instruction\":\"Create a function to calculate the sum of a sequence of integers\",\n",
+ "\"input\":\"[1, 2, 3, 4, 5]\",\n",
+ "\"output\":\"# Python code def sum_sequence(sequence): sum = 0 for num in,\n",
+ " sequence: sum += num return sum\"\n",
+ "\"prompt\":\"[INST] Create a function to calculate the sum of a sequence of integers. here are the inputs [1, 2, 3, 4, 5] [/INST]\n",
+ "# Python code def sum_sequence(sequence): sum = 0 for num in sequence: sum += num return sum\"\n",
+ "\n",
+ "}\n",
+ "```\n",
+ "\n",
+ "While using SFT (**[Supervised Fine-tuning Trainer](https://huggingface.co/docs/trl/main/en/sft_trainer)**) for fine-tuning, we will be only passing in the “text” column of the dataset for fine-tuning."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "print(test_data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "g-Vs5Dc3DdY_"
+ },
+ "source": [
+ "### Setting up the Training\n",
+ "we will be using the `huggingface` and the `peft` library!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "id": "SQulqDzjd0gD"
+ },
+ "outputs": [],
+ "source": [
+ "from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training\n",
+ "\n",
+ "peft_config = LoraConfig(\n",
+ " lora_alpha=16,\n",
+ " lora_dropout=0.1,\n",
+ " r=64,\n",
+ " bias=\"none\",\n",
+ " target_modules=[\n",
+ " \"q_proj\",\n",
+ " \"k_proj\",\n",
+ " \"v_proj\",\n",
+ " \"o_proj\",\n",
+ " \"gate_proj\",\n",
+ " \"up_proj\",\n",
+ " \"down_proj\",\n",
+ " \"lm_head\",\n",
+ " ],\n",
+ " task_type=\"CAUSAL_LM\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1SWl1MgjDrXX"
+ },
+ "source": [
+ "we need to prepare the model to be trained in 4bit so we will use the `prepare_model_for_kbit_training` function from peft\n",
+ "\n",
+ "> Indented block\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "id": "bcco3ITVd486"
+ },
+ "outputs": [],
+ "source": [
+ "model = prepare_model_for_kbit_training(model)\n",
+ "model = get_peft_model(model, peft_config)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "id": "BJzV4BRhyVQU"
+ },
+ "outputs": [],
+ "source": [
+ "def print_trainable_parameters(model):\n",
+ " \"\"\"\n",
+ " Prints the number of trainable parameters in the model.\n",
+ " \"\"\"\n",
+ " trainable_params = 0\n",
+ " all_param = 0\n",
+ " for _, param in model.named_parameters():\n",
+ " all_param += param.numel()\n",
+ " if param.requires_grad:\n",
+ " trainable_params += param.numel()\n",
+ " print(\n",
+ " f\"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}\"\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "aWqhs0W-yVQk",
+ "outputId": "29093942-dc74-43e8-fa29-e5177f7c75cb"
+ },
+ "outputs": [],
+ "source": [
+ "print_trainable_parameters(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Model after Adding Lora Config"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "lxN2-hyHyVQk",
+ "outputId": "342ea747-938a-44c3-cad5-b94b79ebcf0b"
+ },
+ "outputs": [],
+ "source": [
+ "print(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "go8_nVq7jO9d"
+ },
+ "source": [
+ "### Hyper-paramters for training\n",
+ "These parameters will depend on how long you want to run training for.\n",
+ "Most important to consider:\n",
+ "\n",
+ "`num_train_epochs/max_steps`: How many iterations over the data you want to do, BE CAREFUL, don't try too many, you will over-fit!!!!!\n",
+ "\n",
+ "`learning_rate`: Controls the speed of convergence\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "id": "hdzkKPXvyVQk",
+ "outputId": "2b645f4e-673b-49ec-d463-94a0f806adfe"
+ },
+ "outputs": [],
+ "source": [
+ "if torch.cuda.device_count() > 1: # If more than 1 GPU\n",
+ " print(torch.cuda.device_count())\n",
+ " model.is_parallelizable = True\n",
+ " model.model_parallel = True"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "id": "YhoCjs9md8pB"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import TrainingArguments\n",
+ "\n",
+ "args = TrainingArguments(\n",
+ " output_dir = \"Mixtral_Alpace_v3\",\n",
+ " #num_train_epochs=5,\n",
+ " max_steps = 100, # comment out this line if you want to train in epochs\n",
+ " per_device_train_batch_size = 32,\n",
+ " warmup_steps = 0.03,\n",
+ " logging_steps=10,\n",
+ " save_strategy=\"epoch\",\n",
+ " #evaluation_strategy=\"epoch\",\n",
+ " evaluation_strategy=\"steps\",\n",
+ " eval_steps=10, # comment out this line if you want to evaluate at the end of each epoch\n",
+ " learning_rate=2.5e-5,\n",
+ " bf16=True,\n",
+ " # lr_scheduler_type='constant',\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Gz6Vhh4WFpMM"
+ },
+ "source": [
+ "Setting up the trainer.\n",
+ "\n",
+ "`max_seq_length`: Context window size\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UyyNtDrmeAkc",
+ "outputId": "4e992c2f-38eb-40fd-e9cf-d4f8ec301b76"
+ },
+ "outputs": [],
+ "source": [
+ "from trl import SFTTrainer\n",
+ "\n",
+ "max_seq_length = 1024\n",
+ "\n",
+ "trainer = SFTTrainer(\n",
+ " model=model,\n",
+ " peft_config=peft_config,\n",
+ " max_seq_length=max_seq_length,\n",
+ " tokenizer=tokenizer,\n",
+ " packing=True,\n",
+ " args=args,\n",
+ " dataset_text_field=\"prompt\",\n",
+ " train_dataset=train_data,\n",
+ " eval_dataset=test_data,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 373
+ },
+ "id": "bsOO4bR9fQBb",
+ "outputId": "cb946242-b113-4a57-a70b-8fbe05bbac07"
+ },
+ "outputs": [],
+ "source": [
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ysHgWnwbfRSt"
+ },
+ "outputs": [],
+ "source": [
+ "trainer.save_model(\"Mixtral_Alpace_v2\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "na6xC6f-mGGm"
+ },
+ "source": [
+ "# Save Model and Push to Hub"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "SBPVlNe0j-Nk"
+ },
+ "outputs": [],
+ "source": [
+ "# !pip install huggingface-hub -qU"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "uCDmkWCXnmuv"
+ },
+ "outputs": [],
+ "source": [
+ "# from huggingface_hub import notebook_login\n",
+ "\n",
+ "# notebook_login()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "HJTZaSXqnqPa"
+ },
+ "outputs": [],
+ "source": [
+ "# trainer.push_to_hub(\"Promptengineering/mistral-instruct-generation\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "9zYrr6sfkA6M"
+ },
+ "outputs": [],
+ "source": [
+ "merged_model = model.merge_and_unload()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "c1Eo6D2mnOgN"
+ },
+ "outputs": [],
+ "source": [
+ "def generate_response(prompt, model):\n",
+ " encoded_input = tokenizer(prompt, return_tensors=\"pt\", add_special_tokens=True)\n",
+ " model_inputs = encoded_input.to('cuda')\n",
+ "\n",
+ " generated_ids = model.generate(**model_inputs,\n",
+ " max_new_tokens=150,\n",
+ " do_sample=True,\n",
+ " pad_token_id=tokenizer.eos_token_id)\n",
+ "\n",
+ " decoded_output = tokenizer.batch_decode(generated_ids)\n",
+ "\n",
+ " return decoded_output[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "fVhc6eD-yVQl"
+ },
+ "outputs": [],
+ "source": [
+ "prompt = \"[INST]Use the provided input to create an instruction that could have been used to generate the response with an LLM.\\nThere are more than 12,000 species of grass. The most common is Kentucky Bluegrass, because it grows quickly, easily, and is soft to the touch. Rygrass is shiny and bright green colored. Fescues are dark green and shiny. Bermuda grass is harder but can grow in drier soil.[/INST]\"\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "NMFDDMwly9L4"
+ },
+ "outputs": [],
+ "source": [
+ "generate_response(prompt, merged_model)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ldSnbui8yVQl",
+ "outputId": "48427c76-a18c-47b8-b92b-d54e8cf67a60"
+ },
+ "outputs": [],
+ "source": [
+ "250*32"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "V100",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.13"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "0055eb4d0d054684878bba6da9cae910": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "084223b1556a420da5964ee086c117e0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "09f69e88c4834d25be2be790022384b0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0b9648d0eccf4516a8c0a7e3843f76b8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "118879d64cae46f5b3e744f86404922c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "164bc349194f4e6ab1229f3d2d03b3db": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "1c03379c0bf84b62a671021810a5caee": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2073bd16554341df9ea62874f4907e18": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "21ac78e940c84842bdde1b64bd1395ad": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "240f5b4175e4469381a53eacdf657419": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "290face1ed4647d7b172109e162c3769": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_773040f77dae4115aefdd958a658a3fc",
+ "max": 116,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_876619b7e19441a096225f72e58b5544",
+ "value": 116
+ }
+ },
+ "296ee6c082da4c76be2b099484662d26": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2998cf3d58354f6f8465a6e2a10ebab2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2de61bee8b56442887b6f42592423064": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2efa53a79dd54d86b72284f3a87c7ca9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_164bc349194f4e6ab1229f3d2d03b3db",
+ "placeholder": "",
+ "style": "IPY_MODEL_732e5508dfb1422c97c0fbc27b888f91",
+ "value": " 571/571 [00:00<00:00, 36.4kB/s]"
+ }
+ },
+ "3454ad0be8554f39bea55eb8d9c3db1b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "35f2eadd1bca48bdbc6504fcd693dab7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4245f82dafc0478ca7ac1f5b372e5a12": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_82c83b75261c4f1db9b7c3d9ad0d097e",
+ "placeholder": "",
+ "style": "IPY_MODEL_fc38a40ba92d46c49b3679a84c8ef879",
+ "value": "pytorch_model-00002-of-00002.bin: 100%"
+ }
+ },
+ "42becf797d9a42bc9984d8e30b307cff": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "444b9f99a79045b9a5c779a3d18bedd4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_240f5b4175e4469381a53eacdf657419",
+ "placeholder": "",
+ "style": "IPY_MODEL_7af0d44687f142288e3e58f15338dedd",
+ "value": "generation_config.json: 100%"
+ }
+ },
+ "48648a0d46104a0db77eabf6d8fdf0f0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "494347c07d684876ba64b39d698250d0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fb5aaa2a96e047a0aa47d07a07b183fe",
+ "max": 5064823659,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f7a940cb871f41c7af7e79c32c3156e7",
+ "value": 5064823659
+ }
+ },
+ "4fbd859668ac43c884d39f675f1158f7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fbe68ed8ac6243f180408175284b98f5",
+ "placeholder": "",
+ "style": "IPY_MODEL_86712973ec7e498da66f29dbcea3f24f",
+ "value": "config.json: 100%"
+ }
+ },
+ "50b0bd7f60ea41c59d6cbd055a10d765": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_85f25707d0a04084aaa1ada15616f415",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_553955d94d844f05bc19116611761127",
+ "value": 2
+ }
+ },
+ "50d301095b594acdb2d754377b029245": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "553955d94d844f05bc19116611761127": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "6223c94b2b814f2ab7abe976402551b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f56251c2b16c4dae99f80db60e5f6330",
+ "placeholder": "",
+ "style": "IPY_MODEL_9e98f0e4ef964bbeaa63ca278313bb19",
+ "value": " 5.06G/5.06G [00:17<00:00, 438MB/s]"
+ }
+ },
+ "643f193c688d49a0a204ea70019f2cc5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "68b12f6f28fa452ea302d83e37084c43": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f369a81a80d84934881c8e9a0bc6a14f",
+ "max": 571,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_72588505d177495b88c39917ae9f743c",
+ "value": 571
+ }
+ },
+ "6950d59bdf254dd896c9f30a220c0533": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0b9648d0eccf4516a8c0a7e3843f76b8",
+ "max": 23950,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a2a870bddb694a8ea69bdac062ef6d46",
+ "value": 23950
+ }
+ },
+ "72588505d177495b88c39917ae9f743c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "72a4b9321abf4d58a093a3d09263c1ad": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "732e5508dfb1422c97c0fbc27b888f91": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "74b57be114494edda79768ff04961193": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "773040f77dae4115aefdd958a658a3fc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "79d82f5e0881485897a8e977269079c8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7af0d44687f142288e3e58f15338dedd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7d8f03389fc64ddfa128be53ea2eb1e8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_21ac78e940c84842bdde1b64bd1395ad",
+ "max": 2,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ddfc0a4121b8447b84abab68482e46a3",
+ "value": 2
+ }
+ },
+ "7e5645b33aa64e7ebbd60cb76e1ecd11": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4245f82dafc0478ca7ac1f5b372e5a12",
+ "IPY_MODEL_494347c07d684876ba64b39d698250d0",
+ "IPY_MODEL_6223c94b2b814f2ab7abe976402551b1"
+ ],
+ "layout": "IPY_MODEL_48648a0d46104a0db77eabf6d8fdf0f0"
+ }
+ },
+ "82c83b75261c4f1db9b7c3d9ad0d097e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "82cafea491ca4350bea831165926d9fb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f3d9d131f5934a048930bc8983437983",
+ "IPY_MODEL_50b0bd7f60ea41c59d6cbd055a10d765",
+ "IPY_MODEL_f27e89855a374c6d93e292dce8e146c5"
+ ],
+ "layout": "IPY_MODEL_72a4b9321abf4d58a093a3d09263c1ad"
+ }
+ },
+ "838cd2c0701c4b0b82fa8ddce51215db": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "85f25707d0a04084aaa1ada15616f415": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "86712973ec7e498da66f29dbcea3f24f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "876619b7e19441a096225f72e58b5544": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8aec8536c28f4c75b2728936f6843a2c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "90de7d165e804fbf8f3782ac5b16f8fb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "95863a2d3c074f45b79a894cb8e67d27": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "963c8c0504554e57bb9a6a8e2c2060fe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_118879d64cae46f5b3e744f86404922c",
+ "placeholder": "",
+ "style": "IPY_MODEL_0055eb4d0d054684878bba6da9cae910",
+ "value": "pytorch_model.bin.index.json: 100%"
+ }
+ },
+ "9e98f0e4ef964bbeaa63ca278313bb19": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a2a870bddb694a8ea69bdac062ef6d46": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "adcfd8c2daa14f81aea6c85bf98cb735": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_42becf797d9a42bc9984d8e30b307cff",
+ "placeholder": "",
+ "style": "IPY_MODEL_1c03379c0bf84b62a671021810a5caee",
+ "value": "Downloading shards: 100%"
+ }
+ },
+ "ae012e86315f41e7ae12b84312d2455b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_444b9f99a79045b9a5c779a3d18bedd4",
+ "IPY_MODEL_290face1ed4647d7b172109e162c3769",
+ "IPY_MODEL_fbeb4393ccb34413bea869355235d0fa"
+ ],
+ "layout": "IPY_MODEL_838cd2c0701c4b0b82fa8ddce51215db"
+ }
+ },
+ "b245d2f284d7450b9d99e820f6193739": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b3a9937a7f5642e1bdddd2cb1c723490": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2de61bee8b56442887b6f42592423064",
+ "max": 9943028044,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_79d82f5e0881485897a8e977269079c8",
+ "value": 9943028044
+ }
+ },
+ "b414aed96db744e99cbe4bf052426fa9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "becf709cc6a4490481f6cbebbc6bad49": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df28571a454d47d698d56d7cf4d90009",
+ "placeholder": "",
+ "style": "IPY_MODEL_b414aed96db744e99cbe4bf052426fa9",
+ "value": " 23.9k/23.9k [00:00<00:00, 1.83MB/s]"
+ }
+ },
+ "c07ef3e83cec46ef8a9fc9d7d3fdb6fe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b245d2f284d7450b9d99e820f6193739",
+ "placeholder": "",
+ "style": "IPY_MODEL_09f69e88c4834d25be2be790022384b0",
+ "value": " 9.94G/9.94G [00:32<00:00, 324MB/s]"
+ }
+ },
+ "c577ab91428c4f5aac8299ba85104dc6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_4fbd859668ac43c884d39f675f1158f7",
+ "IPY_MODEL_68b12f6f28fa452ea302d83e37084c43",
+ "IPY_MODEL_2efa53a79dd54d86b72284f3a87c7ca9"
+ ],
+ "layout": "IPY_MODEL_643f193c688d49a0a204ea70019f2cc5"
+ }
+ },
+ "c65ab63b72d143c7bca446276d0f1aa5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_963c8c0504554e57bb9a6a8e2c2060fe",
+ "IPY_MODEL_6950d59bdf254dd896c9f30a220c0533",
+ "IPY_MODEL_becf709cc6a4490481f6cbebbc6bad49"
+ ],
+ "layout": "IPY_MODEL_90de7d165e804fbf8f3782ac5b16f8fb"
+ }
+ },
+ "ccbc22e41b754682bea5e80531498470": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d429cb7700aa40099e28fa9b6565be26": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_db518d1bca324c98911ad35e5df91c3a",
+ "IPY_MODEL_b3a9937a7f5642e1bdddd2cb1c723490",
+ "IPY_MODEL_c07ef3e83cec46ef8a9fc9d7d3fdb6fe"
+ ],
+ "layout": "IPY_MODEL_74b57be114494edda79768ff04961193"
+ }
+ },
+ "dae5a71abe874e69b3972d5fc861fd1a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "db518d1bca324c98911ad35e5df91c3a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ccbc22e41b754682bea5e80531498470",
+ "placeholder": "",
+ "style": "IPY_MODEL_3454ad0be8554f39bea55eb8d9c3db1b",
+ "value": "pytorch_model-00001-of-00002.bin: 100%"
+ }
+ },
+ "ddfc0a4121b8447b84abab68482e46a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "df28571a454d47d698d56d7cf4d90009": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ed774deaa35441578397fa1241118263": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_adcfd8c2daa14f81aea6c85bf98cb735",
+ "IPY_MODEL_7d8f03389fc64ddfa128be53ea2eb1e8",
+ "IPY_MODEL_fd169008a90840f69ca3ff57ad7f84ed"
+ ],
+ "layout": "IPY_MODEL_8aec8536c28f4c75b2728936f6843a2c"
+ }
+ },
+ "f27e89855a374c6d93e292dce8e146c5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_296ee6c082da4c76be2b099484662d26",
+ "placeholder": "",
+ "style": "IPY_MODEL_2073bd16554341df9ea62874f4907e18",
+ "value": " 2/2 [00:14<00:00, 6.73s/it]"
+ }
+ },
+ "f369a81a80d84934881c8e9a0bc6a14f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f3d9d131f5934a048930bc8983437983": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_35f2eadd1bca48bdbc6504fcd693dab7",
+ "placeholder": "",
+ "style": "IPY_MODEL_084223b1556a420da5964ee086c117e0",
+ "value": "Loading checkpoint shards: 100%"
+ }
+ },
+ "f56251c2b16c4dae99f80db60e5f6330": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f7a940cb871f41c7af7e79c32c3156e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "fb5aaa2a96e047a0aa47d07a07b183fe": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fbe68ed8ac6243f180408175284b98f5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "fbeb4393ccb34413bea869355235d0fa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_95863a2d3c074f45b79a894cb8e67d27",
+ "placeholder": "",
+ "style": "IPY_MODEL_2998cf3d58354f6f8465a6e2a10ebab2",
+ "value": " 116/116 [00:00<00:00, 9.67kB/s]"
+ }
+ },
+ "fc38a40ba92d46c49b3679a84c8ef879": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fd169008a90840f69ca3ff57ad7f84ed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_50d301095b594acdb2d754377b029245",
+ "placeholder": "",
+ "style": "IPY_MODEL_dae5a71abe874e69b3972d5fc861fd1a",
+ "value": " 2/2 [00:51<00:00, 24.32s/it]"
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/mkdocs.yml b/mkdocs.yml
index 7692294..62bb01f 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -1,160 +1,3 @@
-# site_name: AI Engineering.academy
-# docs_dir: .
-# site_dir: ../site
-# plugins:
-# - search
-# - same-dir
-# - exclude:
-# glob:
-# - archives/**
-# - mkdocs-jupyter:
-# include_source: true
-# ignore_h1_titles: true
-# execute: false
-# allow_errors: true
-# ignore_patterns:
-# - "archives/*"
-# - mkdocstrings:
-# default_handler: python
-# handlers:
-# python:
-# rendering:
-# show_source: true
-# theme:
-# name: material
-# features:
-# - navigation.tabs
-# - navigation.sections
-# - toc.integrate
-# - navigation.top
-# - search.suggest
-# - search.highlight
-# - content.tabs.link
-# - content.code.annotation
-# - content.code.copy
-# language: en
-# palette:
-# - scheme: default
-# toggle:
-# icon: material/toggle-switch-off-outline
-# name: Switch to dark mode
-# primary: teal
-# accent: purple
-# - scheme: slate
-# toggle:
-# icon: material/toggle-switch
-# name: Switch to light mode
-# primary: teal
-# accent: lime
-# markdown_extensions:
-# - pymdownx.highlight:
-# anchor_linenums: true
-# - pymdownx.inlinehilite
-# - pymdownx.snippets
-# - admonition
-# - pymdownx.arithmatex:
-# generic: true
-# - footnotes
-# - pymdownx.details
-# - pymdownx.superfences:
-# custom_fences:
-# - name: mermaid
-# class: mermaid
-# format: !!python/name:pymdownx.superfences.fence_code_format
-# - pymdownx.mark
-# - attr_list
-
-# nav:
-# - Home: README.md
-# - RAG:
-# - Introduction: RAG/README.md
-# - RAG from Scratch:
-# - Overview: RAG/00_RAG_from_Scratch/README.md
-# - Implementation: RAG/00_RAG_from_Scratch/RAG_in_10_lines.ipynb
-# - Basic RAG:
-# - Overview: RAG/01_Basic_RAG/README.md
-# - Implementation: RAG/01_Basic_RAG/notebook.ipynb
-# - Evaluation: RAG/01_Basic_RAG/notebook_eval.ipynb
-# - BM25 RAG:
-# - Overview: RAG/01_BM25_RAG/README.md
-# - Implementation: RAG/01_BM25_RAG/notebook.ipynb
-# - Data Ingestion:
-# - Overview: RAG/01_Data_Ingestion/README.md
-# - Data Parsing: RAG/01_Data_Ingestion/data_parsing.ipynb
-# - Data Chunking: RAG/01_Data_Ingestion/data_chunking.ipynb
-# - Data Embedding: RAG/01_Data_Ingestion/data_embedding.ipynb
-# - Data Ingestion: RAG/01_Data_Ingestion/data_ingestion.ipynb
-# - RAG Evaluation:
-# - Overview: RAG/01_RAG_Evaluation/README.md
-# - RAGAS: RAG/01_RAG_Evaluation/RAGAS.ipynb
-# - DeepEval: RAG/01_RAG_Evaluation/deepeval.ipynb
-# - TruLens: RAG/01_RAG_Evaluation/trulens.ipynb
-# - Notebook: RAG/01_RAG_Evaluation/notebook.ipynb
-# - RAG Observability:
-# - Overview: RAG/01_RAG_Observability/README.md
-# - Implementation: RAG/01_RAG_Observability/notebook.ipynb
-# - ReRanker RAG:
-# - Overview: RAG/02_ReRanker_RAG/README.md
-# - Implementation: RAG/02_ReRanker_RAG/notebook.ipynb
-# - Evaluation: RAG/02_ReRanker_RAG/notebook_eval.ipynb
-# - Hybrid RAG:
-# - Overview: RAG/03_Hybrid_RAG/README.md
-# - Qdrant Hybrid Search: RAG/03_Hybrid_RAG/_Qdrant_Hybrid_Search.ipynb
-# - Implementation: RAG/03_Hybrid_RAG/qdrant_hybrid.ipynb
-# - Sentence Window RAG:
-# - Overview: RAG/04_Sentence_Window_RAG/README.md
-# - Implementation: RAG/04_Sentence_Window_RAG/Sentence_window_retrieval.ipynb
-# - Auto Merging RAG:
-# - Overview: RAG/05_Auto_Merging_RAG/README.md
-# - Implementation: RAG/05_Auto_Merging_RAG/Auto-merging_Retrieval.ipynb
-# - HyDE RAG:
-# - Overview: RAG/06_HyDE_RAG/README.md
-# - Implementation: RAG/06_HyDE_RAG/HyDEQueryTransformDemo.ipynb
-# - Query Transformation RAG:
-# - Overview: RAG/06_Query_Transformation_RAG/README.md
-# - Implementation: RAG/06_Query_Transformation_RAG/query_transform_cookbook.ipynb
-# - Self Query RAG:
-# - Overview: RAG/07_Self_Query_RAG/README.md
-# - Implementation: RAG/07_Self_Query_RAG/Self_Query_RAG.ipynb
-# - RAG Fusion:
-# - Overview: RAG/08_RAG_Fusion/README.md
-# - Implementation: RAG/08_RAG_Fusion/ragfusion.ipynb
-# - RAPTOR:
-# - Overview: RAG/09_RAPTOR/README.md
-# - Implementation: RAG/09_RAPTOR/raptor.ipynb
-# - ColBERT RAG:
-# - Overview: RAG/10_ColBERT_RAG/README.md
-# - Implementation: RAG/10_ColBERT_RAG/ColBert_RAG.ipynb
-# - Ragatouille Retriever: RAG/10_ColBERT_RAG/ragatouille_retriever.ipynb
-# - Graph RAG:
-# - Overview: RAG/11_Graph_RAG/README.md
-# - Implementation: RAG/11_Graph_RAG/GraphRAG_v1.ipynb
-# - Agentic RAG:
-# - Overview: RAG/12_Agnetic_RAG/README.md
-# - Implementation: RAG/12_Agnetic_RAG/multi_document_agents.ipynb
-# - Vision RAG:
-# - Implementation: RAG/13_Vision_RAG/gpt4v_multi_modal_retrieval.ipynb
-# - Finetuning:
-# - Introduction: Finetuning/README.md
-# - LLM:
-# - Gemma: Finetuning/LLM/Gemma_finetuning_notebook.ipynb
-# - Llama2: Finetuning/LLM/Llama2_finetuning_notebook.ipynb
-# - Llama3: Finetuning/LLM/Llama3_finetuning_notebook.ipynb
-# - Mistral: Finetuning/LLM/Mistral_finetuning_notebook.ipynb
-# - Deployment:
-# - Introduction: Deployment/README.md
-# - Projects:
-# - Introduction: Projects/README.md
-
-# extra:
-# exclude_files:
-# - archives/**/*
-
-# extra_javascript:
-# - https://unpkg.com/mermaid@8.11.2/dist/mermaid.min.js
-
-# extra_css:
-# - css/extra.css
site_name: AI Engineering Academy
site_url: https://aiengineering.academy
repo_url: https://github.com/adithya-s-k/AI-Engineering.academy
@@ -297,17 +140,47 @@ nav:
- Implementation: RAG/12_Agnetic_RAG/multi_document_agents.ipynb
- Vision RAG:
- Implementation: RAG/13_Vision_RAG/gpt4v_multi_modal_retrieval.ipynb
- - Finetuning:
+ - LLM:
- Introduction: Finetuning/README.md
- LLM:
- - Gemma: Finetuning/LLM/Gemma_finetuning_notebook.ipynb
- - Llama2: Finetuning/LLM/Llama2_finetuning_notebook.ipynb
- - Llama3: Finetuning/LLM/Llama3_finetuning_notebook.ipynb
- - Mistral: Finetuning/LLM/Mistral_finetuning_notebook.ipynb
+ - Gemma:
+ - Overview: LLM/Gemma/README.md
+ - Implementation: LLM/Gemma/Gemma_finetuning_notebook.ipynb
+ - Llama2:
+ - Overview: LLM/LLama2/README.md
+ - Implementation: LLM/LLama2/Llama2_finetuning_notebook.ipynb
+ - QLora: LLM/LLama2/Llama_2_Fine_Tuning_using_QLora.ipynb
+ - Llama3: LLM/Llama3_finetuning_notebook.ipynb
+ - Mistral:
+ - Overview: LLM/Mistral-7b/README.md
+ - Implementation: LLM/Mistral-7b/Mistral_finetuning_notebook.ipynb
+ - Evaluation: LLM/Mistral-7b/LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb
+ - DPO Fine-tuning: LLM/Mistral-7b/notebooks_DPO_fine_tuning.ipynb
+ - SFT Trainer: LLM/Mistral-7b/notebooks_SFTTrainer TRL.ipynb
+ - ChatML Inference: LLM/Mistral-7b/notebooks_chatml_inference.ipynb
+ - Mixtral: LLM/Mixtral/Mixtral_fine_tuning.ipynb
+ - VLM:
+ - Florence2: LLM/VLM/Florence2_finetuning_notebook.ipynb
+ - PaliGemma: LLM/VLM/PaliGemma_finetuning_notebook.ipynb
+ - LLM Architecture:
+ - Lora Explained: LLM/LLMArchitecture/LoraExplained/README.md
+ - Parameter Count: LLM/LLMArchitecture/ParameterCount.ipynb
- Deployment:
- Introduction: Deployment/README.md
+ - Deploy LLM:
+ - Overview: Deployment/DeployLLM/README.md
+ - Quantization:
+ - AWQ: Deployment/Quantization/AWQ_Quantization.ipynb
+ - GGUF: Deployment/Quantization/GGUF_Quantization.ipynb
- Projects:
- Introduction: Projects/README.md
+ - YouTube Clones:
+ - Overview: Projects/YT_Clones/README.md
+ - Fireship Clone: Projects/YT_Clones/Fireship_clone.ipynb
+ - Dataset Preparation: Projects/YT_Clones/dataset_prep.ipynb
+ - Agents:
+ - Overview: Agents/README.md
+ - Multi-document Agents: Agents/multi_document_agents.ipynb
extra:
social: