-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchecksum.py
56 lines (40 loc) · 1.39 KB
/
checksum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import time
from typing import Tuple
def checksum(arr: Tuple[int, ...]) -> int:
length: int = len(arr)
if length == 0:
return 0
sum_values: Tuple[int, ...] = (0, 0, 0, 0)
sum_values = tuple(
sum_values[j] + arr[z + i + j]
for z in range(0, length - 256 + 1, 256)
for i in range(0, min(256, length - z), 4)
for j in range(4)
)
sum_values += tuple(
arr[i]
for z in range(0, length - 256 + 1, 256)
for i in range(z + 256, min(length, z + 256))
)
return sum(sum_values[:4]) ^ sum(sum_values[4:])
def main() -> None:
# Benchmarking parameters
minSize: int = 1000 # Minimum size of data
maxSize: int = 10000 # Maximum size of data
step: int = 1000 # Step size for increasing data size
print("Data Size\tTime (ns)")
for dataSize in range(minSize, maxSize + 1, step):
# Generate random data of given size
data: Tuple[int, ...] = tuple(range(dataSize - 1000))
# Start the timer
start = time.perf_counter_ns()
# Call the function to benchmark
big_endian_checksum = checksum(data)
print(big_endian_checksum)
# End the timer
end = time.perf_counter_ns()
# Calculate elapsed time in nanoseconds
elapsedTime = end - start
print(f"{dataSize}\t\t{elapsedTime}")
if __name__ == "__main__":
main()