forked from ghwatson/faststyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstylize_image.py
82 lines (68 loc) · 2.79 KB
/
stylize_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Used to load and apply a trained faststyle model to an image in order to
stylize it.
File author: Grant Watson
Date: Jan 2017
"""
import tensorflow as tf
import numpy as np
from im_transf_net import create_net
import argparse
import utils
# TODO: handle the upsampling thing better. Really, shouldn't need to
# explicitly have to give it.
def setup_parser():
"""Options for command-line input."""
parser = argparse.ArgumentParser(description="""Use a trained fast style
transfer model to filter an input
image, and save to an output image.""")
parser.add_argument('--input_img_path',
help='Input content image that will be stylized.')
parser.add_argument('--output_img_path',
help='Desired output image path.',
default='./results/styled.jpg')
parser.add_argument('--model_path',
default='./models/starry_final.ckpt',
help='Path to .ckpt for the trained model.')
parser.add_argument('--content_target_resize',
help="""Resize input content image. Useful if having
OOM issues.""",
default=1.0,
type=float)
parser.add_argument('--upsample_method',
help="""The upsample method that was used to construct
the model being loaded. Note that if the wrong one is
chosen an error will occur.""",
choices=['resize', 'deconv'],
default='resize')
return parser
if __name__ == '__main__':
# Command-line argument parsing.
parser = setup_parser()
args = parser.parse_args()
input_img_path = args.input_img_path
output_img_path = args.output_img_path
model_path = args.model_path
upsample_method = args.upsample_method
content_target_resize = args.content_target_resize
# Read + preprocess input image.
img = utils.imread(input_img_path)
img = utils.imresize(img, content_target_resize)
img_4d = img[np.newaxis, :]
# Create the graph.
with tf.variable_scope('img_t_net'):
X = tf.placeholder(tf.float32, shape=img_4d.shape, name='input')
Y = create_net(X, upsample_method)
# Saver used to restore the model to the session.
saver = tf.train.Saver()
# Filter the input image.
with tf.Session() as sess:
print 'Loading up model...'
saver.restore(sess, model_path)
print 'Evaluating...'
img_out = sess.run(Y, feed_dict={X: img_4d})
# Postprocess + save the output image.
print 'Saving image.'
img_out = np.squeeze(img_out)
utils.imwrite(output_img_path, img_out)
print 'Done.'