forked from ghwatson/faststyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
97 lines (81 loc) · 3.44 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
This file contains the different loss functions.
File author: Grant Watson
Date: Feb 2017
"""
import tensorflow as tf
import numpy as np
def content_loss(content_layers, target_content_layers,
content_weights):
"""Defines the content loss function.
:param content_layers
List of tensors for layers derived from training graph.
:param target_content_layers
List of placeholders to be filled with content layer data.
:param content_weights
List of floats to be used as weights for content layers.
"""
assert(len(target_content_layers) == len(content_layers))
num_content_layers = len(target_content_layers)
# Content loss
content_losses = []
for i in xrange(num_content_layers):
content_layer = content_layers[i]
target_content_layer = target_content_layers[i]
content_weight = content_weights[i]
loss = tf.reduce_sum(tf.squared_difference(content_layer,
target_content_layer))
loss = content_weight * loss
_, h, w, c = content_layer.get_shape().as_list()
num_elements = h * w * c
loss = loss / tf.cast(num_elements, tf.float32)
content_losses.append(loss)
content_loss = tf.add_n(content_losses, name='content_loss')
return content_loss
def style_loss(grams, target_grams, style_weights):
"""Defines the style loss function.
:param grams
List of tensors for Gram matrices derived from training graph.
:param target_grams
List of numpy arrays for Gram matrices precomputed from style image.
:param style_weights
List of floats to be used as weights for style layers.
"""
assert(len(grams) == len(target_grams))
num_style_layers = len(target_grams)
# Style loss
style_losses = []
for i in xrange(num_style_layers):
gram, target_gram = grams[i], target_grams[i]
style_weight = style_weights[i]
_, c1, c2 = gram.get_shape().as_list()
size = c1*c2
loss = tf.reduce_sum(tf.square(gram - tf.constant(target_gram)))
loss = style_weight * loss / size
style_losses.append(loss)
style_loss = tf.add_n(style_losses, name='style_loss')
return style_loss
def tv_loss(X):
"""Creates 2d TV loss using X as the input tensor. Acts on different colour
channels individually, and uses convolution as a means of calculating the
differences.
:param X:
4D Tensor
"""
# These filters for the convolution will take the differences across the
# spatial dimensions. Constructing these on paper has to be done carefully,
# but can be easily understood when one realizes that the sub-3x3 arrays
# should have no mixing terms as the RGB channels should not interact
# within this convolution. Thus, the 2 3x3 subarrays are identity and
# -1*identity. The filters should look like:
# v_filter = [ [(3x3)], [(3x3)] ]
# h_filter = [ [(3x3), (3x3)] ]
ident = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
v_array = np.array([[ident], [-1*ident]])
h_array = np.array([[ident, -1*ident]])
v_filter = tf.constant(v_array, tf.float32)
h_filter = tf.constant(h_array, tf.float32)
vdiff = tf.nn.conv2d(X, v_filter, strides=[1, 1, 1, 1], padding='VALID')
hdiff = tf.nn.conv2d(X, h_filter, strides=[1, 1, 1, 1], padding='VALID')
loss = tf.reduce_sum(tf.square(hdiff)) + tf.reduce_sum(tf.square(vdiff))
return loss