diff --git a/seminar3/.ipynb_checkpoints/mri_3DCNN-checkpoint.ipynb b/seminar3/.ipynb_checkpoints/mri_3DCNN-checkpoint.ipynb
new file mode 100644
index 0000000..83c3384
--- /dev/null
+++ b/seminar3/.ipynb_checkpoints/mri_3DCNN-checkpoint.ipynb
@@ -0,0 +1,1002 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "name": "mri_3DCNN.ipynb",
+ "provenance": [],
+ "collapsed_sections": [],
+ "toc_visible": true,
+ "machine_shape": "hm"
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.4"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "URuxAJkkEjV0",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "bHS8qClIqSdl",
+ "colab_type": "text"
+ },
+ "source": [
+ "## **MRI classification with 3D CNN**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "gYI4bcYpptdM",
+ "colab_type": "text"
+ },
+ "source": [
+ "#### 1. Introduction\n",
+ "In this notebook we will explore simple 3D CNN classificationl model on `pytorch` from the Frontiers in Neuroscience paper: https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full. In the current notebook we follow [the paper](https://arxiv.org/pdf/2006.15969.pdf) on `3T` `T1w` MRI images from https://www.humanconnectome.org/. \n",
+ "\n",
+ "**Our goal will be to build a network for MEN and WOMEN brain classification, to explore gender influence on brain structure and find gender-specific biomarkers.**\n",
+ "\n",
+ "\n",
+ "*Proceeding with this Notebook you confirm your personal acess [to the data](https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release). \n",
+ " And your agreement on data [terms and conditions](https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms).*\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "YqAayt8wtZ-m",
+ "colab_type": "text"
+ },
+ "source": [
+ "1. Importing needed libs\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "TbVC-fIYcwoA",
+ "colab": {}
+ },
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import torch\n",
+ "import torch.nn as nn\n",
+ "import torch.utils.data as torch_data\n",
+ "import torch.nn.functional as F\n",
+ "from torchsummary import summary\n",
+ "import os\n",
+ "from sklearn.model_selection import train_test_split, StratifiedKFold\n",
+ "\n",
+ "\n",
+ "%matplotlib inline"
+ ],
+ "execution_count": 1,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Tb4Hu77AuRte",
+ "colab_type": "text"
+ },
+ "source": [
+ "2. Mounting Google Drive to Collab Notebook. You should go with the link and enter your personal authorization code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "ZXYXRCCIB2Ue",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "10b09fe9-7442-42d7-cdd9-e52b66dd7596"
+ },
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')"
+ ],
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Mounted at /content/drive\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1IlGfuWsuot2",
+ "colab_type": "text"
+ },
+ "source": [
+ "3. Get the data. Add a shortcut to your Google Drive for `labels.npy` and `tensors.npy`. \n",
+ "\n",
+ "Shared link: https://drive.google.com/drive/folders/1Cq35zfhqJHlmhQjNlsDIeQ71ZsT2aghv?usp=sharing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "WBxqm43mKUCl",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "data_dir = '/content/drive/My Drive/Skoltech Neuroimaging/NeuroML2020/data/seminars/anat/'"
+ ],
+ "execution_count": 6,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5tJhdbkMKte1",
+ "colab_type": "text"
+ },
+ "source": [
+ "Let's watch the data. We will use `nilearn` package for the visualisation: \n",
+ "https://nilearn.github.io/modules/generated/nilearn.plotting.plot_anat.html#nilearn.plotting.plot_anat "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "CRiEcgFIK5gZ",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "94cb16b6-fcd6-4d6a-fba1-a9e8b5131570"
+ },
+ "source": [
+ "!pip install --quiet --upgrade nilearn\n",
+ "import nilearn\n",
+ "from nilearn import plotting"
+ ],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "\u001b[K |████████████████████████████████| 2.5MB 2.5MB/s \n",
+ "\u001b[?25h"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "jsQ_-1WsMd0C",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ },
+ "outputId": "9a272066-ac8e-44a3-f9d3-7d57e0788a84"
+ },
+ "source": [
+ "img = nilearn.image.load_img(data_dir +'100408.nii')\n",
+ "plotting.plot_anat(img)"
+ ],
+ "execution_count": 9,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 9
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydSY9c53X+n5rneehq9sgmRVJTSA1WFFvQ30K8sBYxEiDfwUCW3mWT5AMEQbZZJcgiayNZOAnsGDAMx3FiQVEkW7I4NNnssbprnsf/ovE7/RZlW3YispvSfQBBEtlVdbvue8/wnOec45M0lwcPHjx48ODhwsF/3hfgwYMHDx48ePjl8Jy0Bw8ePHjwcEHhOWkPHjx48ODhgsJz0h48ePDgwcMFheekPXjw4MGDhwsKz0l78ODBgwcPFxSek/bgwYMHDx4uKDwn7cGDBw8ePFxQeE7agwcPHjx4uKDwnLQHDx48ePBwQeE5aQ8ePHjw4OGCwnPSHjx48ODBwwWF56Q9ePDgwYOHCwrPSXvw4MGDBw8XFJ6T9uDBgwcPHi4oPCftwYMHDx48XFB4TtqDBw8ePHi4oPCctAcPHjx48HBB4TlpDx48ePDwWPGtb31L3/rWt877Mp5KBM/7Ajx48ODBw+cb169fP+9LeGrhZdIePHjw4MHDBYXnpD148ODhCePevXv6/d///fO+DA+/Je7du6der6d2u639/X397d/+rRKJxGP9TM9Je/DgwYMHD78h/uAP/kCpVEq3bt3SSy+9pD/90z99rJ/nOWkPHjx48ODht8Th4aH+5V/+Rbdu3Xqsn+MJxzx48ODBwxPH1taWxuOxQqGQQqGQCoWCfvSjH533Zf3GWFlZ0dtvv61/+7d/e6yf4zlpDx48ePDwG+HWrVuaz+caDofy+/1KJpMaDoc6OjpSMBjUzs7Op77H1taW8vm8lpeXFQwGFY/HNRqNdHx8rNdee02tVkuS9OGHHz7uX+d/hW9/+9uaz+dKpVL63ve+pz//8z9/rJ/nOWkPHjx48PBr8cYbb2g+nyuZTMrv92s6nUqSZrOZRqORfD6fWq2WlpeXNRgMVK/XP/Ee4XBYW1tb2traUiKRUCQS0XQ6VbfblSRls1kVCgUNh0ONRiNNJhO1Wi0dHR090d/10/CHf/iH+t73vqc333xT//AP/6Bisahms/nYPs9z0h48ePDg4ddiMploeXlZs9lM0+lUwWBQk8lEgUBA0WhUgUBAiURC0+lU4/FY3W73E5lwLBbTc889J5/Pp/l8Lr/fr0AgoNlspuFwqNlsptlsJp/PJ7/fry996Us6OTnRnTt3dOfOnXP6zX81fvCDH+jv/u7v9Jd/+Zf6oz/6o8f2OZ6T9uDBg4dzQCgUUiQSsf+fTCaWoZ4XXnvtNQWDQZ2cnKjX6ykcDsvn86lUKikYDCoQCGg4HJqTlaT5fK5IJKJIJCKfz6dAICCfz6dgMKhoNCq/3694PK5gMGh/vrS0pMFgIEkaDof2en6+Wq2q3W5rNBopGAxqdXVV3W7XHHssFrNr+vGPf3xu39df//Vfa3t7W7/zO7+j995777F8hqfu9uDBg4dzwHe+8x0NBgP75y/+4i/O9XreeustXb58WRsbG3rxxRd1+fJlxWIxra2tKRKJaD6fKxQKKZVKaTabaTKZaDQaaTQaWY02Go0qEokoEAgom80qGo1aZixJfr/fMm8CABx+JpNRJpNRs9nUeDzWYDDQwcGBQqGQ8vm8OfBAIKCXX35ZV65cUaVS0SuvvKI//uM/Ppfv7Pj4WH//93+vP/uzP3tsn+Fl0h48ePDwhHH58uXzvoQFfP3rX9d0OpXf71e/39d8Plc+n1cgEFAqlVK/31c2mzVnG4vF1Ov1NJvNFA6HFQqFlE6nJUm9Xk+tVkvBYFCdTkfj8Vg+n08+n0+j0UjxeFzhcFiz2Uzj8VjhcFjSqQOfz+caDAYaDoc6Pj7WbDbT8vKyJFltOpfLSZIGg4GCwaBKpZLefffdJ/I9/bL79id/8ieP9TM9J/0ZggHyf/VXf3XOV+LBwy+Hd0Y9PIovf/nL6vV6qlQqmkwmikQi8vv9Go1GikQiGo/HyufzCofDVneORCIKh8Py+/2WHfv9fg2HQ00mE81mM3O4/X7fxGaz2UztdlvBYFDLy8uKRCLqdDqKRqMKhUIajUYaDAZqNBrKZDK6ceOG2u22ptOpstmsksmkSqWS5vO54vG4xuOxotGoXnzxRS0tLanZbOr9998/76/0M4XnpD9DeEPkPVx0eGfUg4sbN27I7/erVCppMBiYs41Go8pkMioWi5pOp/L5fAqHw0Z5S1Imk9F0OlU4HDba++TkxOhrFN7BYFDz+VzSabbc7XY1Ho+NIs/lcvb6QCAgSeaUe72eAoGABoOB8vm88vm85vO5gsGgstmsZrOZjo6O7L0qlYqy2awePnyo7e3tc/lOP2t4TtqDBw8evoC4cuWKNjc3LTum/zkYDGowGCgcDpvgSzpttwqFQvL5fJrNZvL7/QqFQur3+2q1WhqPx6bulk7rtcViUZPJRPP5XD6fz+jt2WymRqNhYjRJ8vl8mk6nikajyufz6na7qlQq6nQ6mkwmisVikk5buQqFgqRT8V02mzWnP5lMlM/nFQqFjG4/ODg4h2/3s8NjFY55Q+SfXpzHIHkPHjw8Prz11lt6/vnndevWLd26dUvT6VShUEjj8dhaofr9vobDoaTT2vJgMFCn09FoNLL2K0mWLbvCNxw9VDk/j1PHUeNMeR+EZTjsdDpt2TyUtqSFz3dBZh8MBk1BnkwmdePGDT377LOPfWzn44an7vbwK/GkB8l78ODh8SESiejGjRtaXV3V6uqqyuWyJpOJxuOxYrGYZrOZAoGA+v2+0daorHHYbq16Pp9bjVk6dbij0UiSrF0KBzwejzWZTExsJknj8ViNRsNeSy07n89rc3NTKysrNjLUbfmSZHXrbrerXq9ntDvv7fP5FAqFlEgktLS0pPX19Sf5VX+m8Jy0h0/Fkxok78GDh8eDt956S7FYTOFw2PqZ8/m8ptOpAoGARqORVlZWjMJOJBJqNBo6OjpSp9NRu922LBgxGZl4KBSyDBdHWS6Xlc1mFYlELGseDofa39/X8fGxOeVer2cqbgIA3jccDisYDBrNLsmy/Xq9btPKmE7G6+LxuPL5vFH10WhUq6ur5/bd/1/hOWkPnwoGyd++ffu8L8WDBw+/JV5++WWl02kFAgETXNE2RUmr1+up3+9bhi1JhULBpoFFo1GjoX0+n2KxmAKBgAKBgHK5nNLptCKRiNLptBKJhEajkfL5vGXq0WhUiURCzzzzjBKJhI6Pj43Grlar6nQ6CgaDVlKDHp9Op3Yd4XDYlOXD4dCU46jGmXqWyWQUDofVbDY1HA61u7t7YeeA/ybwnLSHX4lvf/vbarVaevjwoY6Ojh77IHkPHjx89kgmkzYnO5FIKBgMWm8yfy6dTjzz+/3mdBFrxWIxy4Z9Pp8kmVOEzg6FQgv/7/P5rJ7sZsS0TpVKJU2nU/V6Pc3nc6OsyaapT/t8PhuQIsn+HhEao0QDgYBdQyqVUrVald/v12Qy0WAwUKVSOYdv/rOBp+728CvxpAfJe/Dg4bPDG2+8YT3FklSpVEwolslk1O12lUqlTAUdDAZVq9WUTqdVLBat5kx7kySrD/d6PZv+FQgElMlkrMeZlqnJZKJ0Om3qcHe+d7/fVyQSUTAYtHryeDzWeDxWOp22LJvXbW5uant726jv2Wy20Jsdj8eVy+UUj8d1cHBgLV0+n09XrlyR3+9XKpXS9va2Dg8Pn/zN+D/Ac9IePhVPapC8Bw8ePjugdiZzRoUdCAQUiURULpd1dHRkk77a7bZms5kikYhisZjK5bJl2YlEQoFAwJZrIDTr9Xoaj8dqNpvqdDoLmTmgnoyjpE7NgJNgMGivY5JZIBCwv49EIgqFQrp8+bK63a729vYUDAbV7Xbl8/mUyWRUKBQUi8XU7/clyTJ5aPler6dUKqVMJuM56UdxEYfIe/jt8SQGyXvw4OGzQ6FQsE1VjPuUTqnqXC6nUCikpaWlBXU2dDYDQ8rlsvx+v1HWk8lEw+FQoVBI1WpV1WrVhGORSETdbteGm9RqNWulQp3NNDNod5/Pp8lkYjQ510vbViQSsSEnkUjE6t0EBKFQyLZzDQYD+Xw+JRIJJZNJU493Oh3L7Le2tnTt2jX5/X69//77ymazeuedd87tHv0meOw16Ys2RN7D/w5PYpC8Bw8ePjvgOHG8tCVBEeOIo9GovYbJYrw+Go3a38/n84U+6E6nY3Xg2Wymw8NDbW9v6xe/+IXq9bpqtZot2+AaaO/Cebo904wYlWQDTlB98xnT6dQCjHA4rGQyaUEILWPRaFSdTkeHh4caDoeaTqdqt9uKxWL2u0ynU8XjcWsZu8h4rJn0RRsi7+E3x3kMkvfgwcNnh3q9rmKxaFlwNps1ehmlNw6Q9qpUKmXrJiXZEoxQKKTJZGKZbK1WM7obZ16pVFSpVCw7TiQSJuzifVB1Q3FXq1VVKhUTf7n7pNmShUCMa4pGo7py5YrR6IPBwMaV+v1+7ezsaDAYaDQaWX93sVi0drFIJGIjUDudzrndn98UXk3agwcPHj6HoLTIWM1kMqlUKqVYLGZbqagN0/pEmxNZtt/vVywW03A4VDgcVrvdVjgcVr/f12w2UyqVssycvdBMMEsmk6rVajo5ObFrYpgJ1PR0OrXxoThZSbZ0QzodegJVPplMjCbvdDoL+6snk4mq1aparZaq1arVznO5nCaTiVZWVhSLxXT37l3L3hmmcpHhOWkPHjx4+Bzg9ddftzWO+/v7qlartrlqMpnYwgucXzQatQldLM/gz4fDoWW8zPMeDodKJBIaj8dW72aASCwWsww1GAyqWq0qk8no4ODAKGu0SKlUSj/96U+1tbWlXC6nRqOh4XCoTCZjwjKCBUmWvZNhk5Uz9YygYn9/X91uV91uV9ls1hZ7pFIplctlzWYzG6QSDoet/euiw3PSHjx48PA5wObmpjqdjvU601LV7/dVKBRsGYYk62Gmp1mSZdez2cwcHKKwQCBgoz2pQ1+6dEm9Xs/+HwFYt9tVMBhUu92W3+9XMpk0GhtRGa1hzWbTlN3D4dCmopHJuypvWq64Rhc+n8+yeXqmWQZSLBYVDAbVaDSstYufpT3sIuPiX6EHDx48ePi1ePvtt20ymHQ2wGQymWg0GunOnTvK5/PK5XKWEc/ncyUSCXNs0+nUatYouEejkTlWeqRHo5FisZg6nY6y2ayN95xOpzo8PLT+al6fzWbNuVIH3trass9g4AjLOFiBSZaM4pvaM21lfA7/zUhS6tn5fN4Wd/R6PbVaLZugtre3Z9dz0eE5aQ8ePHh4yhGPx205RTgcVqPRsHnbgUDAeoylUzEY08RwvlDJjNjkz6gb4+xwptSqB4OBZrOZTk5ObCWldCrmunv3rqnLUYVDZ/PeiMJQkUNnIxrjeoPBoFHeDD9xJ5SFw2Gtrq7aTPFkMmnBR6fT0c7Ojvr9vrrdrtrttubzufr9vpdJe/DgwYOHxw8c7GAwkCSVSiUb58l2KWjgdDptbVb0JrvbpmiLCofDlpUOBgMb8cn74aAPDw81m83U7XaN1k4kEtra2rLZ4Ai7ut2u8vm8otGoZfn0Vs/ncxWLRduaRc2ZHm+YAWrfCM3Y3JVOpy3z5vonk4n29vbse1paWlKpVLK+69lsppdfflnValU//OEPz+XefRo8J+3BgwcPTzlwjkwAm8/nisViRmGTXTJnmzGc9Be7GSwZKCpusmhX9Y3KutlsWgY9m81s8xROmwyfGjJrL8lgo9GotYMxHYx+bmrhfC4ZtST7DEk267vZbNrIULfnmvdDre7W3qVTFXw2m9WtW7f07rvvPulb96nwnLQHDx48POW4f/++crmc8vm8ZrOZ9TGn02mFQiHlcjlzZtKps6QVi6yaP5dkddxgMKjxeGwtWPP53BTcPp9P2WxWPp9PJycnisVilo2jHA8Gg1Z35u/a7fZCnToWi0nSgjPHMeNMeS07raPRqPr9vjl4HLAky8T5dz6fV7/ft8CCAS6oxxm0JUk3b97Uf//3fz+Zm/YbwnPSHjx48PCUY29vT/V6Xbu7u/L7/cpmsyoWi7YI4+TkROvr61YDRt09n89NQT2bzSz7fjRLjcfjkmT91r1ez2ra7G4Gs9nMJnl1Oh0TdJGxS1K321UikbDMlwwdWhznLp1t3mKaGEIz6GquCwEZY0Rx6IlEQolEQoPBwAISggiy7l6vp2QyqYcPHz6Bu/XbwXPSHjx48PCUolwuKxaLaWNjw3ZGs2Xq4OBA4/HY2pCOjo5sIhhiLeq3OEvqw/Q/40B9Pp/a7bbR18lkUq1WayFrDQQCarfbGgwGajQaJiIjy2aGdjwet/YnAgRJ5qCphUNxIxQjEIAGJ4DgZ9xebHq8R6OR7Y5wnT5bsghUQqGQ8vm8jo6OnvQt/FR4+6Q9ePDg4SlFMplULpezLVU4xlgspmw2q1wup2QyKUnW0oSSmyya+i/1ard3WjpTg0ciEZvF7VLnODkcubuJKhqNqtVqGVU+HA4lnWbSrVbrE1kzoz+pKeP8CRhwqpIWAgxGinItbg0bFTnXzrWgBKd3OhAIaGNj43Hfst8aXibtwYMHD08hXnvtNWWzWUmy7JPpYlC9KKQDgYDS6bTN08ZhkiW7TlGS/T3Tv/i5Xq9n+5tjsZi63a5l5DhRd0vW5cuXlc1m1Ww2FY/HVSwWNZlMFI1GlU6n7fq4Brf2zL7pXq9nQQGir9FoZNdKJt/tdm0sKap1fhdJttDDFY2heo9EIur3+0omkxdOQOY5aQ8ePHh4yvDyyy+rUCgok8lYdppMJk3BTdsUoitWRCKQenT4B21MODZeM5lMjDKn35nXQSkjUBuNRrp27Zplwz6fT3t7e1peXlY+n5ckXb9+XfF43FTjONxoNKrBYGBbq3w+n/r9vgncOp2Oba1KJpM24EQ6db6ow+n7pp9bkr03IJsmyECkNhwO7VouEjwn7cHD5wjr6+uazWYXUgDj4bMDaxrdedbUXumXRiSFI2WZBlQwr8P5+nw+y1ZjsZh6vZ5RxdSiodRdp+0OGuHv3H5tnDGiLgRg/DnO9tGtV61WS9Fo1DJjd3gJ7WI4VbL3cDisg4ODTzAE0tmqTYRzCOVGo5E5dCauXSRcrKvx4MHDb4XV1VVls1kVCgWjO2u1mpaWltTtdvXhhx+e9yV6eAyg9QhHE41GreZKJkq9lv9mRjY13k6no2QyaU4RgRZjPnlNIBBQr9dTv99XJpMxR4dTR/yFo8YJo/Lm/X0+n12DdLa7ms+Lx+NWZ6bfu9vtanl5Wf1+3zJcAgxq39JpDbvRaJhojTax+Xyu4+NjxeNx+zP6vlnhmc/nFwbBXLQd019oJ/3mm2+a0rDdbqter+vOnTv295ubm4pEIkqlUrZF5v79+/+rz1pdXVU8HrepPLPZTMvLy1pdXbXDdHJycmGn3nh4vOAcQBv+Oue6tbWlq1evyu/3K5PJmNgHQ0vdsd/vK5vN6sc//vET/E08PAlQi47FYspkMlajhd6GwpVk07nISMlCGZmJ8CoSiajZbCoajVqNGwEZ9e1Op2M7pwEKbwIASUab46xdCpz3Yt43CuzRaKTBYKCHDx/qzp07qlQqWl1dtYUcrVbLsnxauyTZPG5Als77E0RQp3bXcc7nc9spHY1GF9rELgq+kE76+eefVyqVUqlUsgPL4Pe1tTVTEgaDQZVKJctS5vP5/9pJS7KVbjw8S0tLdtjD4bAKhYJu3LjhZT9fMCwvL6tYLJpQptPpaGNj45eetZs3byqbzSqTyZgq1p3K5BojxEK/6r2k02ehXC6r3W7bJKn/+q//ety/sof/I9hoFY1G1e12zWbhsNjpDDWM6IsMstFoKBKJLAwSGY/HGo1GarfbKhQKSqVSJsYaDofqdru2G5oEhtfx+dTC+TcUuyTL8BkpCq0cCoXU6/XU7Xb14MEDHRwcqNvt6ujoSKlUSplMxhTikozixgmDRqNhn+Uqxvn/+XyuZDJpizrI2gOBgFKplF3jRdsx/YVz0mtra9ra2lqoO9D3l06nNRgMLJIsFAoql8tGgzz33HMaj8f62c9+9ivfPxqNamVlxWo2ZM5ErtlsVvP5XOl0emEAgHQakV6/fl3lclk/+MEPHs8X4OGJ4Pr160omkyaQQcX6zjvvLPzc1atXtba2pkqlYgaj2Wyq0WhoaWlJgUBAgUBAV65cUSqVUjweN5oQx4zBw3BDQ8bjcfn9fhWLxQUnHYlEdOvWLa2urtrmpEKhIOm0NeYb3/iGer2eqtWq6vW6Hjx48ES/Ow+fDlqXmLrFbmdEXlC2ULqMBkWABc3sztDmXJFtU38mK45EIjo6OjLHu76+bmIunDS1YRw1g0VITNiMJWlBLBaPx/Xzn//czikBA5+Ng6beTXAqndrvZrNpdpoecLJ2HDS/C2UCtz8bJmA+n1+4JOkL5aRXV1f10ksv2SFOJpMKhULqdrsaDAZKJBLmPLPZrNEqZBjtdltra2u/0kkjfIAep22g3++r2WwqlUrZQ8PMWlazSaeR4Gw2UyKRUKlUsnaEQCCgfD6vfD5vtNVgMPBozAuIq1evKhgMWr8lNB57dx9t7/D7/VpZWVEgEFA8HrdaHMakVCrp8uXLSqVSlh1hRHHMLjXpZj60maTTaWWzWVO1hkIhbW5u2nu4wh+o82QyqVQqpf39fc9JX0AcHx9reXnZFkq47VS0QbGligBxMBio3W6r0WgomUxqeXl5YasVlHEsFlMikVCn07E6MI53d3dX0+lUOzs7GgwGunbtms34dieA8RqX3UE4Rk93q9XSaDRSPB7Xd7/7XRsk4o4Spa5OAEtQyXsxZ5y/Z4f2cDhcCDok2e/iLg7hmpvN5sIzc5HwhXHSm5ubevbZZ00lSKZBlivJ6J+1tTVrcCcSw4D+OlDXWV1dld/v1/HxsU5OThZ6/5aWlham4VQqFRthRzRMFBqJRLS2tmbCEOk0go7H40qlUvra176m7373u4/3i/PwG+H5559XsVhUPp+3+4uBYsYx7SuTyUS7u7vWg0rmizGBzVlfX1elUjHxTSAQUCwWW2ibQQBEnyjnzK2tkblgxOgldVWu1PGgHvm8XC6nt956S9///vfP7bv18EmQ0bIXmix6Op0qEoloaWlJ8/lcqVTKKGkyRZIDV9EMxYtaezweK5vNmiOMx+MLwq14PK53331X9+/f140bN3T16lWj3zmfnU7HzpqkhZGg1IJbrZbeeecdy47RVTAIxX2eCCag78n2qTtDo5NR53K5hQEtnH2WbQyHQ3U6HU0mE3U6HcViMdVqtSd9Kz8VXwgnffXqVcXjcTucZBPc9Gg0ajtJMYJQI0SVCBx+laigXC5bloNiEgPYarU0GAysRsR18A+UDpGj+9nxeNwUmkzTkU4PfDwe16uvvqrxeHzhhsJ/0ZBMJk356oq4iNo5a5FIRJlMRru7uybkkWQOl3u8srKiQqFglCSBJNQhlB0GiWESrjDGXUOIU3fPHapdPhMjhsOHCUomk3rzzTe9EswFQrfbVS6XM9tArdltscpms0Y5j8dj9ft9TadTm89dr9ftzJGNE1SWSiV1u12l02lj7iSZM0TB3e/39cMf/lDb29t64YUXlMvlFn4GRzqZTIyqns/nOjg40O3bt3V0dGSZ9mg0slLgcDjUiy++aD3ZZODU1mEqO52OlXjc3yGZTFrgCdvAist2u23BMn3ZiOYuopO+WDK2x4RgMKjl5WXLbnDGUIVMv5FkO1ips+RyOctyiMauXr36ic9wl5lDKyJ6WF5eVjqdtgMlnTpZxAo8WNSNarWa1RKpZaPaTaVSymazZnhzuZwtc/dwfsjlchbgBQIBRaNRpVIpc77S2XjFaDRqRqTX69nMZCjuSqWipaUlc5pkMdB8MC6MNsSI8v8nJydmyCSp1+tZDy0OPJFILIxd7Pf7RpNGo1Fr6yIYiMfj+n//7/+d2/frYRGFQkHFYlGpVMqGmOCcw+GwMpmM9VFDgWPvOBc4Usp9OFPOGM4dWxUIBJRMJk0UJp1l3vv7+7p9+7YNB+HMEFQSvEKNP3z4UMfHxwvBI3T9dDrVtWvXrL2L3u1+v69Go7EQWPBazinXQ0KEyjsUCqnVatls8U6no263a3XtXq+nnZ0d+24uEj4XmfStW7dsO8tgMFC/37dxdQhv3N48pvK4h4emdgxaJBJRIpGwz0CFzbi9XweG00ejUWUyGU2nU6VSKW1vb9t1uVnxfD63z93f37cRehj90Whkwp54PK75fL4QPTKb18P5gS067kAIAjZ3AT1GjwUDZBDUDWFfJJkRcv8tnZ5FN+uhRDIajfTw4UOFQiGVSiW1223LlmezmVKplOkrms2maTOGw6G1bbn7gIPBoBKJhFHf8Xj8l3YflMtlra6uKhaLqd1uq9ls/p+6IDz8erz66qtaWVlZcHCSzDE/Sge787AZEIK2xa1jN5tN5fN5c5hk3LRLTSYTvfzyy7p7964+/vhj0/Mgwt3Z2VG1WtXS0pKuX7+uTqejYrG4UDfe3d3V7du3Va1WLaun//qZZ56xoLTdbtsYz2QyaSNKA4GAut2utX25dhAnjcqbXupEIqH9/X0rZ/Ic0VNNLbzdbqtarZ7DHf31eOqd9PXr17W+vm4UC6Pv2u22Hj58qNFoZL2nOEV2o0IpE31ls1ml02mjZojYqPcEAgGr7TyKUqkkSRbNooAkM4lGo7p+/boZRx4wqEWyIfbAQr/jzBEDuXNnJalararVaunatWvqdrva3d19Ml+8hwU0Gg1zdNTuXIoQQzaZTLS/v2/BIcaP85JKpUwzwZ8zAMJd4yfJjB96hk6no2w2q2Qyadk8zjsajapYLC7Q7rPZTPV6XUdHR3r22WcVDAY1GAyUTCZtChNnDqP3aEeCJL344otWT4Sq9PD48CgbKJ2puDl/nU7Hzh0Mnd/vV71eVyqVssDs+PhY0+lUy8vLKhQKdv9RY2Mr3XLfc889p0qloor26yYAACAASURBVO3tbdNAYPN8Pp8ODw/l8/m0tbWlRqOhfr9vbWG3b99Wq9VaUGdfu3ZNy8vLpvlpt9vKZDLqdDry+XzWm93v901EBqsJhd7pdKz8g4PnOVxdXdVkMlE6nTYNCO8Fa9TpdHT79u1zuJufjqfeSUPbMWcWAxYMBlWv11Wv120tmTtwnYNO/ZDWBRw2dQxJZnQwno+OjXvuuedMwEH25IqG+v2+vYbIl12qUIwILcjwE4mEZVocLOroPBQIMFzqHpUn/YwengwGg4FarZbK5fKCaAvqjeBNOtuxi/Pr9/uKxWJGSVKbI0Bzh1BIZ+03ZCecoWazqfX19QWBT7/f12g0UiwWUywWs6wLupDnwNVKYOwIEl0a9FHcuHHDnDqiIbc/1cNnD7fbhASAoJ4An8Cu2+0u2BeGNzUaDTUaDQvquHf8P9ksQivpNCGA+ZlMJioWi9rY2FCtVtNHH31kO5vn87k++OADYyzJiGkB4/VXr1614LHb7dqOa84t3TDuKFHsaL/fVy6XUzgc1tHRkRKJhD1T5XJZs9lMx8fHKpfLxqjSEy6diYQlWZnI5/Pp6tWrF85ZP/VOOpfL2QEjssLRXblyRXfv3lW1WlW/31c4HFY6nVaz2bR6M1EalCT0IS0HjNtDYEPGvbm5qfF4bNkJnyudth6gkoVaIjNBYEa0Sj2If2MMl5aWFt7P3e8aiUTsAX322WfNCUynU62tralarXpO+jFjeXlZmUxG6XRah4eHGgwGajabWltbU6fTUaFQsJozrTAMluBcMD2p1WrZGSSzRnNAawsBoDvfGOGLdGq0rly5otFoZL2z3W5Xx8fHCofDun79up0tAj+cPkEfFD0jGqHJCfwwsoVCwc7w+vq6er2e8vm8+v2+5vO5isXied6azz1werAoBEiU7WBoyIA5J8xpwJHi8LCfsVjMuk6gkSmtAHdiGc4zHo/r2rVrunfvngWjtEtNp9OFyWIMS8nlcsrlcsZQSrISEMnJeDxWKpWyLVjUunme2H0N3FJkKBRSOp02X0CJUZIJyAhIYVndQVMXCU+tk7506ZJSqZRisZjd3FwutzDPdTgc6tKlSwoEAqrVatrb2zM6EQNFNu1mxzhDSVazk2RBQDqdVjAY1Pb2tmKxmEWeZBHUk11FudtWhdiHbIgD3263JZ3tgqXn2lVt8np32g/0OxOm8vm8MpmMPvroI2/RwmMCvfQ4493dXY1GI+3v7yuTyajf7ysejyufzxsjgwEsl8tW9uj3+2q1Wrp69ara7badAXeRATSipIU2Pf6bsYl0LZAJY4g3NzcX6EFJVo8sFou6ffu2GUaMOjqO8XiscDisWq2mRqNhDrxUKpmSFwoSFikWi+ntt9/WaDTS8fHxQtnoIq0AfFrR6XS0vb1tu6LJbrvdrgm8EomERqORtSHBuNCDHI/HdXh4aMspsE3YU2rZg8HAmJx4PL5AeyPEpV1qY2ND+/v71pv94MEDPfPMM6ajmc9PN00lk0ltbm5a90Cr1bL6NMGidJqA0UeN05ZkzxZC3Hw+b4EmJU96nmEPeD+EwpJspSffzcbGxoWcCfBUOunNzU2trq6qWCwuTJUhKoMCQkCwtramVCql+/fvq9frKZ1Om4HkMEtaqN1IMqoGKpIDyaFBnY1y1hUMcaA44PzjRovUqwkaEIG5g06oNZHp00+YTqdNGMRDiCEcjUZKpVJ6+eWXtbm5qU6n4xnHzxhu4IUjPjk50f379/XKK69YrzF9qgRXo9FIa2trymazajQa6nQ61vqRzWbV7XaVTCbVbDYXFKtoGGjtcu97rVbT8vKyiXgYfBKPx7WxsaFwOGz/746P5LxjtAkyEZbhuPv9vmq1mprNpmazmUqlkpaXlyXJjCjPBNkN17K2tmaMlN/v1/LysqrVqv1u0+lUJycn2t7ePt8b+pTgjTfesI4TdAiwasViUb1ez8R+nNFIJKJsNmvZMTXiS5cuqdfrWXLTarWsrxinKWlhaQeZp6uzgMXEGe/v7xvVzplC28AITuwugQWONJlMWiCIvYvH4xbstVotG4nLd0CQIMl+D+z0eDy27wQmi5ZGGAnOYiAQ0ObmpgqFgn7yk5+czw3+JXjqnHSlUtGNGzesr1M6E1Lg+IBba0MB7W5vIYLCQFFzxkEiUEAAxM2EHnFrxhwWNr3wWY86YAbac3BdxS8H3zWYkhYm9tAXye9E/ZLsxxW4hcNhFYtFxWIxvfHGG97yjv8FnnvuOaN+J5OJUbo4XBSuxWJRs9lM9+/fV61Ws6yDPnwMBTqCbDarRCKhk5MT7e3tmVPDSUqyGjUiF+lsAxAsSq1WswwdVgaH6A56cClzt93FXRtILZNz72by7XbbGBzO3Wg0UjabXejNJXjgLHNmuQ7OJENYotGoyuWylpaWtLOzo729vfO83RcaN2/etF58dAm0X929e1fSqYC12WxqPB7bIJzpdLrQOsX9GgwGprTe2tqye4dNPD4+liQ7e+6eAXfGg9uStbKyomg0qvfee8/oY3f2hHs+6X6hpNLr9UxhjuiRiX3pdFq1Ws0Ettg7AlpJqtfrds4IUmi/Yld0MplUu91WOp22kag8n41GQ/F4/MKVCp+6PumbN28qFotZvSUUCpkjcmlpaXFuLXQMRpJ6CZmO2xI1nU4XDKPbkkAEN51OFY/HreUBBy5pIWoke3G3waDmpt5N5r6ysiJJZuC5freth4yZLC4ejyuRSFh7AuIKaP1YLKZyuaxSqaSvfOUrT/RePe144YUXtLS0pEqloo2NDa2vryudTptD6na7ajabVo7I5XJKp9O6e/eusSEPHjyws+T3+5XP522CXDwe16VLl3Tz5k3t7u7qww8/VDAYVK/Xs4wGdbc7q7ter2t3d1cPHjzQ7u6uMpmMGS/YnXQ6rWQyqWw2a5vcqMvhfMlMyuWyOWbOjGuwu92ulV5SqZRyudzC/HBKQv1+34KHXC6nYrGobDZrRhd6nvOM45jP5yqVSnr11Vf16quvnvNdv7hg+xR97pIsQchkMqrValbmoLbq6g/cITvYTumMAUR85uoeKK1wvlBDc17cGeDUn7mn3GtGK/MZpVLJKPP5fG7LXdLptNXNsV+SFuYJAChvzqx0pq2QZO2A1LvD4bB1X/AzMFywse53eZEQkPQX530RvwmuXbum3/u93zNaIxKJKJ1Om9Eka2m32+r1ehoOh+a0ccJQ4NDdqML5mUdnI9PgT/8o2SmqbW426tybN29qNpvpJz/5iUW7OFXo+Gg0+gkaye2B5bDwe7ltXLwXn83DRIAxn8+VyWTMYXPo+YxOp6NSqeRlK78Brl27ps3NTWWz2YWgL5lM6uTkZOF+QTP6/X4TkjGtiXPHmQmFQtavjOOeTqc2uObg4ECVSuUTbUw4NmrWiHugFJk+5S4ZgNrG2Q4GA12/fl3z+Vzvvvuu/H6/PvroI21ublpPrDsXGcHRgwcPTKBTqVSUSCRsPC0GGucwHA4XBqsQUFPvZDgP2bakhT7eZDKpy5cv2yAVsqQvOm7duqXl5WV75nO5nK2+JZgLhUJ2PmAAyWYRvpK1QkdLMqefyWTs3pycnJjTCoVCqtVqqlQqxuRhY1FjMyuchTLUiy9duqTZbKbnnntO8/lc//zP/6ylpSVls1mzn64Nz2QyZuvIwFutlpVaJFmAQDZP33Sr1bLZ3a1WS4lEwtoRKfkg3CRQDgaDVtKk7JlMJhUMBq1/+rzxVNDdW1tbKpfL1tTOgHZqYNLpQWu323YTpLMo06Vb2NpCtiCd3fREImEtK/F43KhNHCAOvdfrWaSZSCS0u7trmTTGFMoJoxcOh41+kmROVjpbo0bbA9EeGTqZO+9PsADFToDiRpU4Z/4MCuvjjz/W5uamVwP8NWAzFf31rkMJh8NaXV3VRx99pGg0qpOTExMwQrMxVOfu3bu6fv26jo+PTc3vllqkM4PQ7/dVKBQ0n5+OTEQhTVCKmCeXy1mdrlgsqlar2eQmdy+we+8fHXXIZzQaDTNO3W7X2v4kmcOmvQu6nOcOh0yLmPt5BLjRaFS1Ws36cnEwXD9nFcqUZ4MaNwp476yeLWqRZIGOJNOmMMXOLY3l83lJZxkjNtKd7V6pVOTz+ZTP5y245z5y3yeTiSqVinZ3d7W2tmbBKAFBJBIxtoXabzKZtIwd8Rp2i8CCUglYXl42waQkU3DDJJGN023A6FoSp2QyabacIJmzRQLGc0drGX92cnJi5U6eqYuCp4LuhtJ1pzRh8FzD4a43c3vfmEbjCh0kLRgbVzRGRs4B4mfINrgGsifqGWTOR0dH1vLlKhJxvAQZRIDUevi3JHsd14tx5+GE0oIBcOkt97vpdrsL6+yWlpYe8916+gE9zAMvyahmHDZZpCRbJCDJRCzUbWFC6Fdlqh2MD4MdyEBxmpRBUORyZoLBoAWdk8nE6O1+v7+wX9c1Zm4NUpKprvl5HCTXCxXK70xm0+12zci7w1moZ2MIeU4ZMEF7Ib83n+XSmW6HBZl8Pp//pYODvoigZECJCzuF0n5lZcX2jBcKBS0vL5vdGAwGqlarOj4+NnYQm8eZcieXdTodmz/hMjqIBd3tVpPJxKaYSVoo4yEKow7OZ1D+w5bxGgJZ7BksJiJG6Wy/AXaPLFg6G7vLeccmko23220Tt5HM7ezsWGLGOT45OVkIHs4bF+dKHsHrr7+uW7duKZ/P281zo3kcLREiBglnzI3kQOFoyRao/QUCAROyUEthRrarmoY+arValjE1Gg2bRdtoNOxzMDK1Wk337t3TRx99ZK0GvA/CD36erJrozu0ddAercJjczJmfdVuyaOlqtVoaj8eq1+uKRqO6ceOGV/f7FJTL5YWlFNLZ8A9XNMjZ29vbU6PRsPs6mUx0eHgoSZZxj0Yj252LZmE4HNrqQLQRKHYJsvr9vo26hV5kZC2lk42NDSUSCTPe0OKz2Uy1Ws3OPtcfCAT07LPPamtrS4PBQMfHxxYcuEpe6t+UhiqVijqdjg4PDxdqhAxnwfA1Gg0dHh5ahkNPKmsRmWzGvHBeR5lJkpV0GIf7RQdODVvkfk84Ws4ANiQej9voS86WdCa05b7Scx8IBEyISlAPEwh7SJmG8wej42bdLPLAxro9ypwBhJIMWiEBQkRLIMdnkDEDd7rfo4K2ZDKpXC5nIz/b7bYODg5sXgXlRPd5oGTDAKyLNGr5wtHdX/3qV40+hKLlxuKw3Oip1+stjL6jLkMriOukUU1T5yIbIjPghkEdcrgxjG6N+OTkxMQypVJJS0tLJsRgvJ4k24hFuxdRrHu4OCTNZtMcPA8Cjhy6nv5osn4yHjIi6B3qONCOHF5auN5++2195zvfOYc7fPHhji2E8YDOg+FIpVJ2tnjA+Yd7LZ0qTqEjuS/9ft+M2ZUrV9Tr9awfnox1Z2dHkUjEHJp0RkHzLJCx8HcYUToIqFcfHh4qEAgok8ksdAyUSiXN53NVq1Wrd9ZqNXtPspLl5WUTC/H5BCaRSMSEZJJsHCULa3AmnGGo9UwmY4EKz507AlWSBT1fZLz11ltqtVqSTr/DXC63UFoACKDoCICZ2d/fX7BlZMadTkfXrl2TdOrwmPdweHhoNpdzTbLCfzOJzC19JBIJG1Iym820s7NjQS51alpDj46O9OKLL6rVamk+n9uzxM4CHDe2kM/HKTMiGfuND6BEhP1cXV1VIBDQxx9/rPX19QXmxp1AyfcbDodt7sFFmjp2oZz0a6+9ZoYGJfTS0pIODw9VrVYtmqRORr+gdKbkJgOStHCIqZ0hfIAah4J2BWPQxBzS8Xhs9ZfZbKY7d+7o5OTE6hrUz6CuaYsg2+AzXbWuO8KUjIHpUmRqGHYOJ5GuW1tBcEFQw3u6tBOtDghC+B48/HL89Kc/Xfj/tbU1U25nMhlzwKzPg70g+8OxMj/+ww8/VD6fN6qaPn6Cy3K5rEajYT2d0G2z2cwoX5xcqVRaqOVBkUNtUreE5el0OmaQKf8wgGQ2O521TT0O0aIky7KWl5fNmRKohkIhm8v8i1/8wtYmQr26LWDuSFQCyvF4rHv37pmSmBahbDYrSZaJsQ3ujTfeUK/X0zvvvPOkjsCFQbvdtuC6XC6bM4ZVobRAIAjzI8lsIY4sFotZQIW2ATU1Ng/mA9tJVwv1ZtTPlCP6/b7a7baprbGTaDUQbaGfwaHCYvr9fmMtOdMEpyze2NvbWxA0ugJHv99vA006nY4NEqLMOZ1OtbW1pYODAy0vL5vdJUtHEY5/mM1OF9Fsbm5emEFQF8pJI94iSkwkEjYykbqeq45Gqc3Nxei5VOR0OrX6HkpXBAg4O7JVd6xoOBxWs9m0gwugRCQZ1ey2b9H/N5lMFtZIoiTHkbsTwzBU0llE7AobpLO6OLSRG8y4r3fBQAC2epFZSTJj7uHTMZ1OValUFobWuDU9amiMG4RqxNDs7+8rGAyqVCppOp0qnU7bfXDvMT/PNC96pBuNhn3mbDazLJTAADEORkySsUZk6XweZ522FhyoJNMySLLAgyDR1UO4y2rcdqpSqWTtZhg+HLGrLC4Wi6rX62o2m9aaiLBMkj1fgUDAVN6pVOpCzlV+3GDtJKwggXqtVjNHB33N7H+fz6dMJrPAQsTjcdvIx7mFFnazb+yiez7QFlBOqdVqymQyxkDCmtTrdeuZZpgIZ4AzQUBZr9eVz+eNLXy03IHux309VDyZPkEDQQDPHs9ps9m0qWYkZDCZvHehUDBR3vHxsZW1CDYuAi6Uk8YBTyYTZbNZm3tNXcOlu6XTXjgUqgwIIZvkgXeHKpDpkHVKsn48aomuw0f272ZLzP2ORqM6PDy0zJvon4eEujdN8zhkolu3do7gZmVlxT4zl8tJktHTGD1oGn6/R8U90qmxRSnM9zYajWz83mx2Onx+c3PTIluvLetXg+wVNTPUIMMWyKyDwdOlLogEQ6GQZcmbm5t2z2mVI4B0HWIul1O5XLYaHb389J+GQiHdu3fPtBqRSMQyTgRg6XRa9Xpdg8FABwcHeuWVV8zIuq2G2WxWe3t7Ns9+aWlJw+FQmUzGsieCVmrUUPrNZlOpVErr6+tqtVpaWlqychNUKXVMDDa/z2Aw0LVr17Szs6N6vW7CHih5RuISYPJMlsvlL5yTxjEThPMdwgDiVPhZgjeYFDpQ3Lozmapbj8Z+sCiIbJrPpsQGGwQdTUbLYB3pNPuHnkbpTwuqS1nz2dhrroffAcYRsRe2vNlsWpbMd0LyRfBIxg2DSZmFJMidxtZqtdRqtew1fG+XLl3SfH46Qe08caGcNA8kdCERIpSf2xvq1khYgOFmtmTfkhamgUmyhx/JvjtWjvYt+gMnk4kZPFYBXrlyxSK66XSqVqtlu4RHo5EJDzBu1DOhAHmo3OUJBA0MRyFr/mWZDXAfIr4LAhCcNw8bhtytib7wwgsm4iiXy97o0F8B6nvU10qlkkXlMCLhcNg2ruEEuSeoYn0+n/WEEoxSK5zNZmq32zZ0AcfEGWIVKhObPvjgA5VKJZXLZbVaLWNtqBefnJwYzR0Oh23yEgat1WrZbPlSqaRqtWoTwNhIRFaDkXZ7TanH53I59Xo9a6uCtmTAiSsug9HhWS0UCqrVaioWixYYhEIhq3cS1FIDdc/+FwWxWMw6W9yRrtgeOjdQznc6HVUqFdMQQGM3Gg0bXwujmM/ndXBwYGsh0UnwvTNe1s1kU6mURqOR2TMYPpTbR0dHun//vqLRqAqFgo0chaXENgWDQUvEsIc8Z2T3LA9B0xMMBq21ip/nfBEAE/DxvPp8Pj18+FCFQkHb29taX1+3SX+RSMT2R49GI1WrVQ0GA5VKJRteVK1W5fP5zjWJuVBOulqtWm15NpvZpBoyalqx8vm8er2e0TC0O2FM3J5ll87m7/L5vB0+Ikp3EwqGLBqNql6vWx8qi+35nFgsZnQ2h0WSarWa8vm8GVoOItkI1CEKRg49NRJUijgCMhOuC3qG6JQIGmUwdWnqNe6w+ZOTE7XbbdsBTBQ9m830+uuv68c//vGTv/HngBdeeMEYCZSvH3744S/92U6no7t37yoQCGhtbc1W/Elno18ZawhF6J5HlKL5fN4CMrKCk5OThSyGc9hoNKwvmgyBDoFAIKArV64YpZ7L5ezPeV/6WXkNinXpjH0hq5FkhoutVr1ezxwq2RLLa6gFUmNEgSudLadBud7r9YxWJaPi/E4mE5XLZW1ubi5QrQSmmUzGaq3j8dgEPl8kYN/IMqnjunYKgW00GtXy8rKazaa2t7c1Go106dIlffTRR3YWyIJhJaPRqNLptKrVqgVGBP8I92KxmDqdjlZXVy0blc5WZiIElM7Kfb1ez2rAsJz0MnMOSb6goOnXJrkgSUEg5rbbSrIEBxocEATyOcvLyzo8PFSxWFwo2bTbbUv+9vf3TfUdj8ctCNnc3Dx36vtCOelaraZwOGwGEJGVJDMaUH9snsKYuROgOGA+n8+GTEANoWR0ldU4MageahYYR2qAtFtR4+DP+HxU5BhGxoa6qnFaDNzFG2QobnsFP4Ojxmm7PdPQOTh/SeaseW9ab5i2htgJx4R6uVQqXZgJO48bb731lnq93oLaudvtqtVqmcFKpVKW3e3s7Ng529zcNMPitsPhwB6l56jRun3H0qmjY8gJ3QPuWcBZz+dzo7WpsU2nU6v3IRzkHM5mM3svHKnb1YDh43cgQ0LDQdmGAM6dBY8ICMo1kUiYIImAB7qboILgA9qWmd3QoIwk5fvieefa3V5eAmWcFMON3n///fM5SE8AbrmOHcvSmX4nnU4bm0cgH4/HrT+53W7r8uXL9t1yRnw+nzF56BiwiZwpN1NG3OW2ciEyy2azptvo9/vKZrMLWhuuEVuby+W0tbVl1LPbqQKjiI2jFzqbzRobA5NDTZ5gEqRSKWtd5JqXlpbsGUUdjpZjd3dX4XBYS0tLnxiAwhn9xS9+8cTu+aO4UE7are9JMvoYZ3V0dKRWq6V8Pm+ZK2MbcWD8fCKRsEyG6M6NkBjzSaQnnU114sCUSiUzoO4BoyneHX/YarXsvTDa1DH5TCaZBQIBayPDaPL+bgZGhozBdpkCjDA1HGrxriDOBXOdccR8JwjUCGK+COh2uyoUCibgIrBKJpOq1Wp66aWXzMjV63Wj+CqVioka+X75rskMcd7cZ84iQZ90msmi/CdYg2lJpVImnPL5fGo2myoUCna2OI98FvVbhGMwR+6YTzJ9d9odgVoqldLBwYHVgxFzzedztVot9Xo97e/vL0xIW11dNVrc7ajAaLvdEjgMgkNX5UsAgmKY79KdHe0OBFpaWjLmAOfl8/lULBZ1fHz8uXTWLGZxA3PuMyyQJBWLRRvF6Q5wIlFgM5R05qRg7lyGD8ecTqetzYnPhbXjM2FPKI/A8rlBWyaT0cnJib1HOBzWxsaGPR88K5IsCGGeBHbYte/YwEAgsLDtCxaJ55PvhrZHt/5OTZ5NdZRFOdMElQQzsE3nhQvlpNfW1qx3k8zRrdeORiMbnIAT5ot12wQ4TBwCV9WNI8fZEe27EnwMT7vd1ubmpi3E4PMkWY0Po0RmjaMjq8Cgupk2zpiDJ8nqNNDY/P5EoGRk1NzdqTxkHYgpoDLZWQz9Sn2aQ8r4xXA4rP39/QUV++cZfv/ZvG1XqxCLxZTP51UqlWxjFaUAImrOB4pl5lNT3+KcYEwYxEAfPRuy0DkgfqH/NZPJLIydlc6MF9ksY23JJjKZjJaXlxdUq5wxhF5k/ZIsKyPrZo7yaDRSoVAwB0pfP3QhJSayebZgMQrVDV56vZ6Oj49taQzBNJP5+K6pTUOtutdK+6AbEJVKpYXWRb67YrH4uXTS1GC5l26WC4vB+SUAwk7BPjItkbLBfD7XysqKJpOJMTmowwuFgmkWEomE3ZfV1VVjEbGZZO/5fF71et02wd27d09Xr17VwcHBQkadTCb1jW98wwb7wLIgckM5jlobB0otPZVK2dIMsnu3i4dnEmW7OwCGEgy20l30cXBwoPX1dUmygDqTyZjGJJlM6pVXXvlEa+aTwoVasHHz5k1r0YjFYrbJhw0+rqqQPmCcGpGgq7CWzmZYu/ULtxWK98KJc/MlLbwHG7AYi0iWxIPg9/v11a9+VfP5XP/5n/9pCxOITjmEUDgYZ1dQ5v6Dw+VzOIBuWxkPjHTal4hYBwEGDghjTt1yaWnJDiIRNzWqe/funcOdf7J45plnLEKHDqPHslKpmIMCqVTKBCScI7e0QZYhyYboYBzi8bjS6bQFYPR9uvQlRowAkx5OSXZ99FUz95hBEH7/2RxljB//dq8zHA6r3W7rlVde0Xw+13vvvWf1Ob4LgkqCDkl23dlsVrlczgIRnC7BJdeDyGd7e1vNZlPlctkEc5xl6YzGjcViajab1vcraWExDu1E0PvcH74PBFU+n0/Xrl1TPB4/dzXuZwlEUpxHgium18HgoI2p1+uaz+e2EQv2EG0Du5s586ibKd0REGFj+v3+wtx5zjU90pRL3Bn3m5ubFiwcHR3p4cOHevXVVxUMBvWjH/3Ing+YFQIJxLfQ4ASRzKogYEO344oSKc/QDeFmzv1+X0dHRxaI8Np6vb7Q2ksQm06nF1pk3Xa1bDb7xMuCFyp1wvlB20hacFyM6+QmU0t2aynSmTAGB4Rx4CDivDBSZL1k1IitoKhx9NB67oB6rtOlRAKBgDXyu0wAQYHbMuGKcCRZDRnj4/ZHcq3UqN3MF8NG1EgwA/2DU3BnANPfTTb+RVHPUquXzupvGH63Rz0cDisWiykWi9noQwIougxQ1/I6gjCcEN/veDzWeDw2EeKjc7LRPnDWOaMYX1gTDAfCRVdpi/F2W15cBoh77howMmi+Bz7LbSWkjU86pZzJph8dxcuzwUjUYrForAPXLJ3R7byvGyjye7ilK66L34nPks6CcOn0W30kNwAAIABJREFUuf+8zaZ310K6LWwE8JyHR9ubHj58aAtiIpGIDg4OLIDDznFv3YVFbh892StUNudkMBjo4cOHymQyajQaC4kAc8ILhYI5WQK52Wy2sFWuVqup3+9b5wkMC84We0s5Eucsne1VHw6HRs1jW5m01m63VavV7Gc//vhjHR8f6/j42M4MgTOdBy6djx3n9Y8uBHlSuFCZtHRqBHhAUek96lD5Qt32JQyb+wBzo6HmUFXjHN2hDDh7bh7UEcbKFWRVq1WNRiMdHR1pNBopl8spmUzq1q1bikQiOj4+tkiM9yVT4Jp4KHjIXEPL9UF5kgnx+RhFHhgoUKb/QDsiKMGZJJNJy+rIbPx+vy1/oCb6ee+ZxnghgqnX6zbUIBKJWI3MHcFKpH1ycqJYLGaUsCvI8fl8arVaikQiNjsbB4WRYklFKpWy18MSBQIBNRqNhcEN8/nZKFjOMucZOh3jgmjIZVAI8vjvGzduaDab6d1337WuiX6/by04ZOGcMTonCGKTyaR1PVDrZv53o9GwCVmSzCFAp+P8GR1JqyX1+ZOTE9Xr9QXxmLS4PIRef55TaHZ+X0na3NxUoVDQ7u7ukz5anznW19fNWRLcY1f4f1dESvBF2yUbqDgftFi5s69dMSsBE2UegncCemrFzAkgsOUaKfN0Oh3F43GbHf+Vr3xFfr9fDx48ML0DSm5q7mTMiMQIImANSDywoXQK8JxgHxFZugkSATavoUxKIEFrJDMwYBEe1Qrt7+9/Yqvc48aFqknPZjP9/Oc/1/LysrUG9Ho9c6bQLnxx0FxQ0Tg2Bj/QMI8x4yYzC9k9iJKMvoFGxhiQESOoWVpaMkEPU8nIorhORtlR9+h2uza6jqjx0Zpyr9ezdgOMkCSLYqlLuf2SiM/Iwmh9YdRjOBw2ypUH1q2FU2/nQF+6dOnJ3/gnDIIWnMPa2po5N0oXk8nEdAcYH3QQOzs7KpVKCofDlgkSHFYqFe3t7dmQEZwjXQm0y0DfZTIZc4a9Xm9B8OOOpOWzKcVgcPP5vKnSYWpcdS09xhhDjC51TtpnWMTi1hA5I65CHYNO/ZG2Pwz2lStXrEXN7/er2WzaukqeO8oA4/HYAiafz6dKpWJnn6ABBT7PB7+7G4C78wa4hxsbG5pMJo9tlOjf/M3fPJb3fRQoo92hJtgxnmOcMKwhARFBlDvkw+0ewc7h5NDyuJogbJ90tszDVd27dsr9Of4NE8TazLfeesvuG68hAeP88necQ7cjgesnKHE7YrhWtyzoXo/bMeM6dtc38L3wnrwXzwL0+GeNb37zm7/y7y6Ek97a2rK6Hg3x8/npQJJLly6Z0URV7X7J7mQm6mcIBqDo3EPB4XJpC5ysS+tBa5IBTSYTNZtN+f2ns2YZRh8Oh43yQRR2//59tVotm/pFnbvZbNqwkvn8dNwezt/tNeX3cHtOURnyoJBZkUUTHFDDKxQKZtwZBIHTJjPisx7th33ttdf0k5/85EkegSeK1dVV2/y0vLxszousjIcQw5BIJKx1D6FOu902xwcti0aC2vLq6qrq9boCgYCq1ao9/GQvtPy5ugS39kZUTysJwrJarWblFc4mjA0MFIHhdHo2Jc+l9mGSAoGArWXlszh/ZB44egwjFCBGzu3CQK2LIUUUhoOmjkxmA5PgDhwiMCJI4ed5thkLLMlYI3dpjd/vV6fT0dramlqt1lM7pcwtZ7i0v3tmpLPvgIwXZyPJavfu/eL1LnMIW4cDfzRJwAFzzrCPjwYO2EHXLrkjiPlc9z15PZ+J0+azXLEcgQnBBQ7UFYDisN334XO4Luyu6wsIBt3P4bWPliqfJC6Ek2Y0ZTKZVKFQMJEEm3bK5bLdeFe9jKHBeCBCcCNtaGYMI3APJ1G9O9iCqMw1WO122xx+NBo1QZFbp6b2S0uLW1sn2vf7/bp375453kKhYE6Tmjy0EgeO3w9KH2GYq+h1e6ChaDi8HEocAw+IS9liWAkWPq+o1WrmRDkXtGOhKpXO9BDMFYYOTCaTarfbFgTRx4mxZNEAmamkhc4Cgit66flzzux4PLYpUBhPzhyMilvumc1majQakk4zlkajoen0dOkKW7keNToYTq7ZFcVh+PhZgjdqgjhazlUoFLLpYc1mU8ViUa1Wy+Y04+ypw/MdsByEMhRBMYaSwIHvAEUwzxA1SXcRDi1DOJvV1dXH4qR/Xebzf8XXvvY1G1PJsx4MBo1C9vv91pZHMLO9va3V1VULNCVZDzOvJ3HBXjCyGKfFvaKzJRAImLKaMhnBVa/XUz6f197e3kJbUywWs5/pdDo2cvOb3/ymfD6f/umf/snaBglAaOVzW7KgvxGRuUNWeFbcBIrnwz27JHs8b5QG9/f3dfnyZeu84Dyy6nM8Huvo6MiCGLYejkYjNZtN3b9//7Hd+1+GC1GTLhaLqlQqunz5snK5nBKJhDKZjDKZjI6Pj82A4IwRo7iRt5thSlqI7B6t8ZJNcphctR/N7BwCbjqfV61W1e121ev1zFCheH3ttdcUDof18ccfW+sJYpfZ7HTy1E9/+lN98MEH2t7e1uHhoZ5//nklk0kblIIRQvHI9fHgYcQRX/BQYeAxom52nkqlTDTHAeZ1RIY8DAQkqJA/jwiHw3rttdfsTGHYcKrQt4hU+K5hKxifSUTvtsC4oj6ym2azaaM5eX8MB1kgtTFJCzVZAioCBrfdyRWskZF2u92FUYquc+/1erZL/Pvf/76q1arVod2BKzxDOFECQL4PqFAyEQxgMplUt9vVYDBQoVCw4NilRR9lkaSzrVcIdUKhkH0u3ylZEd83mRQBgKSFzIjvlemCJycnj/dQfYa4fv262Sk26iHUI4HhWZfOAntGrGJzCKIkWfBCYgBzSAbL/eXeTqdni2DQVcDISFooN7rUM//mNZPJRMfHx/ryl7+sQCCgO3fu2D1DVY0Ow2UZYQCksxo83wHDgsiAOcM8L8FgULVazRws5xf7hpIc+813Qm3cXaw0m81MZ0Lp8ElrHS5EJn3p0iVbKkAPHl8qtSVXdYsCUJJF1G7DO+CB5fBg1AD1XOq8GLJ3331Xa2trWlpaWohiY7GY1tbWNBqNrM81n8/rd3/3d018IEmVSkWBQMAGQ2Bw/vVf/1UHBwdm4K9cubKQmcTjcRsB6NasmazDg8fv6kaTLgvgPqQEKO5gFP6NyAJD6Pf7rQ7LA/J5xPLysjlCHIzrRAiMMILuxDhKF/SUPnz4UMvLyws1MZSmlEIikYiOjo5ULpcXRDhk6Di1VqulUqlk9DUME5oFBpkAglKyaFib69evW9DmLjJw6fpnn33WRplWq1Xt7OwsZM6ZTMZ6aMl60YRQf+bM0urDd8TWL7JnMjYCAJzNYDCwuj2O6NFSFgaZjFk6C5p4Tlw1O+Ihnp3xeHzuE6N+G9y8eVP1et0GKbnCQuYtEHyfnJwY87iysmJlAQLBXC5nto/3IBB1B45wH11BbTqdXhh7LMnKPjBPCLoikdMNewgEcbaUOAqFgiTZdRwfH6tYLFp5olQqmZ3jGijVoNx2leLRaFTtdtuum++EASUkOzwv/X7fBJDM3qdOzzPCc4guJBAI6Pj4WMFg0Orp4/HYnrUniXPLpK9fv25DCNjVK8nk8NSdXGqLNhIcjisycOsabr0EZ0WmBL2JM3MFBihdB4OB7t+/r3q9rmeeeWahRkHNN5vNWjsTasIXXnhBPt/pMHaWHmCUfvCDH1g/Ikpw5t1Cw9AHzmdxra5Sl79za5euYSMSdutQLpWP8eQhwrHw/9Dog8FADx48OIeT8fjx+uuvW+DH747QC7qNBQbQs5KsxxKH4GoiXKeEyIvMhO/+UV0BmUwikbA+TFTh0ul5ROTGQAr2TSNYQ5TGPuarV6+aQ5bOnh80DFevXpUk3b9/X/l8XrFYTBsbG9rY2NAzzzyjbDZrW7T8fr+Oj4/N2Lp0fDKZtOlW/I4EMeVy2a7ZnV3A2SJIJXM+Pj62lYUwANTJOZ/hcNieNZz5cDi0BSU8++1228bfUtNlnS3LFC4ySqWS1tfXLZmANSNwRABKYM93RGuqy+qgZZBkZQ/3/BLk8P7j8dhsAvcSloZ/k00T7HM2GMWJFoJAijrurVu35Pf7tb29bToOsnzpjE3BniEapMSIVoggw7Vj0tm8CVgjdBTSWXsqQ1MymYyi0ah1KtCLjdobsePq6upCC2W/31e1WtXly5efKMt4bunSfD7XpUuXFkQkGDuy5GQyaQpcDIF7Y9xJYS7V4VJefJbbq+kqVQHtBb1eT5VKReFwWA8ePNDu7q5KpZKNa6TOhlqblidXXcrnkXXcu3fPapSRSERra2tmoKG2fT6freAkM3ZrL/y+ZHXQf24d3hVPuO0a0tkhdh21JMv6+Fn+3p2F+3kDNUyXdanX6xqPxyoUCvYdEt1Ho1EzcGRtTHTCobkTjuij5qxIZ/3rMEKRSGTB6UPfMg+b89NsNtVut83ZJZNJm9RVKpUsw8RJkX27Z4Gz7s4Xl2QGFUMfCJyOGSX4YHBDq9VStVpVv983tgc1eDKZVLPZtMCaLIrOhv39fRtaQWDpGmeYIWqD6Dhgr1xq220X5NnnvRqNhonMKPEQ4HLPLjrW19e1sbHxiU4VwPmi9i6d3UtJxpLAhO3v79uGvpWVlYWhIyQAMBycXwKqRCJhQZhb44YmdoOHQqFg5QscIzoIkhL+260/z2ZnrVp8tjtjAEc7GJzujqafmro3rAn6DjbC4YDd8lOn09HS0pIt+HAX5CBK5Pet1Wq6evWqPaswTqFQSNeuXdN0OtWbb76pbrf7RKaQncvJffXVVy3yDwQC2tnZ0dHRkYlP6BnlMBF5S2dOB2OE8MtVd5NNS7KbRMTn0sFufYuMGrFGNptVJBLR3t6eHjx4oEuXLumZZ56xvr94PK5ms2niDCJAor7JZKL/+I//0NHR0ULN7Utf+pLV/qAyoZxdoYRLsUJzsbZOOs1q+J245lgsZtm6WyvFuPGgcC04B3fKEL3AriLz8wi3njednq53vHz5srUo4VTIVqgrM0yG1jrp1EGUSiVzupQsEHBR/6d2iMjM7X1vNBoWgPZ6PR0dHSmZTOrVV181ERFZ1MnJiQKBgDlI6SzjYuIZmackW+QBs4JDflSJTRBAF8JkMtGlS5e0urpqqxB/9rOf2TVLsoyXmiG0fLFYVLPZVC6XU71eVy6XW5inzDV0Oh0Vi0U7g81m04KJUqmk4+NjVSoVDYdDNZtNe65p07p9+7YqlYoymYzm87kZYVdzQZZ0kfHmm2/a8+eKFMfj06mGBGQ8sy4LxMAS6Uw9D42LY+Pv3O4X2CR3SYarfcBWwsrgrN2EqN/v2/IZ2BSCtEf1B2TV7gYvar30bzNjgGEoBF2cMzehwHbBKElnJU6eLbLocPhscRPzAUjaoLn5rovF4oIGA9YMe83Zikajev755/XBBx881rNxLk46HD5dbi+dRtIrKys2xUiSHTq3Ru3Wmxk44dZiOQBQu9xwsl7pbPwhBgln5mbkONDBYGBbkH7+85/rvffe089//nNdvnzZ6tJcHzU6Mq/3339f29vbC6KX2WymjY0No4rIFAqFgh2IWCxmQ0c6nY7Vf3CoRJo4Z4wrFA8CIJf6JkqEyuaQ83AgwpNkgjk3qPk8goeTIGY+n2t1dVXtdluVSsWUpPzMv//7v8vvP10Wsbq6qmw2q2azuXA2uTcuY0N2Ql8xM+bd7Jo+Y4KzQqGglZUVm1MsnZaAyIT39vZMXIVIzB2mMplMVK1WTczIs0Fb09e+9jXLKqfTqfXuY5j5b0k2RpHnLRqN6o033lAoFNL//M//GC0YCATMCcPY9Pt9JRIJM7j3799XNpvVpUuXdHR0ZH3jBNhumQYn1Gq17DnBIdE3Lp2e/5deesmeHwIf7AilimazqTt37jzRM/bbwufzqVwu239zz2AvUFsTjMHgkWW6SUw0GtXh4aFlvjzjiCFh/bAr6CP4/ulQ4b/b7bbVsNltTWLBUB5q2wQB2KJYLGbXTnDLZDJsLgEqC4kIGBB2IYTkXFarVa2srGhnZ8cCA0lm37DhsIydTsd2wEtnrW0kUwQI2FyEmZQKYbj43vgu5vO5zS14nDgXJ+2OT2SQQiaT0cOHDy2Dnc1mtj2HA0UWSeSEQSECJNJDkCOd9cZx89xsAgPrUmFLS0s6Pj62nx0MBqpUKnr48KE6nY4+/PBDvf/++zbW8JVXXrEl49VqVfP5XNvb2/YwuZNxyuWy0SYo2F11LDRTp9MxR+227kwmE52cnJhBkz7ZE/hotNhqtcxwQfsRoRJtxmIx5XI5i3ChwT5v+PrXv656va69vT2trq4utOHRKw69DVV69+5dZbNZXb582dqvqIFKstpZs9m08+pmE5w/aD5EYBjcbrer559/3uhxMhCCTCJ8SSb8Icgke2LcYaPRWKC0MVJkTNVqVY1GQ36/X//4j/+oeDyuUqmkZDIpv/907CErYNvttiaTiQ1LcdcCTiYT3bx50+p3rPIkw0bJHgyebqxiFSrjQuPx+MICEFpfoHbJGH2+03WKiDTr9bqSyaSWlpYsY6K2T5Difu84jadhHr3b1UHprdPpmEBqZeX/s3dmv3Gf1/l/ZobLcPadOyVqs2TLSxLHFhK3RdqmaZEW6HWBXhe9zlX/hQbobZG/oL1o0Ys2SBCnyFLHsRMvkq3NkrWQFIez7+Rw9t/F/D6H78hJEycWSbl8AcOSSA6/y/ue5TnPec7yBNIiyewDWabX6zWiVSqVktfrtSERvI9Wq6Xd3V35fD5lMhlzjmg9kLAQ9PB3HD6Ke27pTTroMsEmB4NBFQoF21MEYq1Wy8qT2MKlpSUrP7k6GDDzB4OBYrGY1adx7gQMw+HQkCzmorP3gbCZBgZJsVKpmIYB34+k7OOdFvV63cSC4vG4IWxTU1NGsKRU+STWkThpMj0gBEapwdBjo0qaqEMT2WAEpYOaTK83HheJkZLGrHGCARiBiK9zHdTyYIhjdGEEEhggg0fmI0mFQkFf/vKX1Wq1VKvVLEvlPtjAXq9Xi4uLtgGBkYhUCQja7fYEKxVnQcTrjsYks0BYgoCj3W5PGHogP7f3FCfB9VKPISqkZvp5WF/72te0sbEhr9drtV32HqUEGNCoO/GcyBSfe+45g495dyyIhPAVgP0I0gj0mKrlSiA2Gg0tLy8bIRKnzB4gcHOd/WAwsN/XarWUzWbNobJX2SvsAZfcxuJ78vm8zdPl58+dO2c/A3RPJwQ1cPZgOBzWxYsXlc1mVSgULPCBdSsdKPstLy8rm80azClNojfSQf2cNT09bX2pGHScM2gbGRefhQF129CO8/rqV786wSMIBALGFbh06ZIajYY5EmwUHApU5UKhkBGy2OOQACORiO7fv69MJmP7CkQPhJKgh75rN2t3gz0kX7E/qEKC1KF2h75FsVi0/ct5qNfrikajZsNrtdrEHqUrJpfLyev12mQ49iflu1/FuyHQ9nq9ev/99zUajfSlL33J7N/09LTK5bKRGBmQlE6nza9wftlTJCzsW1As7Mjn0knDZCbTpGcPFiYQBvUV4GKcDcaHDLHVallvK5/v8/m0ubmpVCpl0CUkBDYmgQAvi99J/Y2MaWZmRsvLyyZcD+yxuroqaayYxtg4/v3BgwcKhUJaWFhQOp02Aw38iTEGknbrKD6fz6AYMmPgbIKVWq1mNVDQhsXFRftsCFBkGeVy2YQNyMw5nGTWOCu3H/NpXq+99prq9boSiYQWFxcN/q3VambYcXw4if39fdM1h7iSTqfNWQFL8x4omUAuI8twW1wkGaxGjzXZjguvu8MIcEJcM1PKQqGQOcNgMKizZ8/qmWeeMTIPIigu/8Dv92tzc9McMcGma6QHg7Eudjgc1uuvv24tVXNzc3rxxRct4JRkmRi69Z1OR+vr6yYpe+fOHeNAZLNZO4MovJVKJRu0AMrAniUImJmZUblcnlDIu3Dhgs33JmCCI0IwCkzZ6XTUaDS0tbVlw26mp6ePZe+/i+hAVsK+gexI0tbWlu0zyHiSLFOmO8TthmHPkT2GQiEL+rvdrmko1Ot1DQYD4164RFScq9sJA8TNqNRms2lBLq1TZMrSgSMlyeLMuERfAiqg83A4bK1YbqDqahi4tWMCD1BSuEMEdSRJXA9SvAsLC5JkZE2WW/YhiHZbeClLPGlS4pHVpFEIImIExpAmHzaRnCuygLMG6mk0GvZz5XJZmUxmYgNT66XNyyWfuMaVDeDxHOgI1+t1OzCusMPq6qrOnTtnEObU1JT1zxaLRV25cmWix9HdZGT0jI5kk5LhSwcKVdRD3LolB2R+fl43btywWvz09LSWl5etVxUoZjAYGBGDGtL+/r5BX8BsQJZu/f9pX2QYlFhATh49eqSzZ89OtDvxnjh4Lvuaw847YZ+ASHg8HoP3MFAwQ6enx3OkC4WC1cguXbqk+fl5y+BdLfFEIqHNzU0r/UgHAwKAqx9vP+I6EIigp5nrvnz5sqElc3Nzev7557W1tWWkNO6n1WpNCKXs7e3pxz/+sYLBoCKRiJ5//nn7THqkySi434sXLxoZ7v79+7p79+6E8lUwGNS9e/eUSCQUi8XsjBSLRSUSCUM4gH1R5cO5z8zMWBDgTtGifZJ78Xg8Onfu3ASB7jg6aewKgcRwOJ4SRgCO4yZjq1ar1gFAsP/o0SPNz8+braTH3VVaHAwG+vDDD02ZjM93s2bKZG7CAzpHGx1DXehuAKEql8smgELNPBAIKJfLmdMkw3dbFGGkw1ink4fea66DM0UAyVnCUQO148RTqZSWlpY0HA6N10H9nWBjeXnZzhBJDQuuUSKRsGskuIfc1+l0rFT7pNaROGmiXdidkgzfJ0t+vL8XQhT/JsmiRPf73Ggag+u2mLBhcbaSzDiTZUIsoI2EIRRAjRj7arVqvc7uSqVSikajyuVyZuwxopBgqJXgoDlQGD1QBLKeQCBgRpkoF1gvFoup0WjYUAJpDM1QQnCJFWTrLooAIxdnQ9b4eVgEUBxQ4GgCERdCxGjwfDi8QOA8J7IFgqVGo6F6vT4B5VETxqEC25EdJBIJMyiuEY1EIpbR8rNk+6PRSLlcztTu3EEynCW/3694PG4/79YP2+22dResra3J6x3L09br9YmyDv3QLkER3sW7776r5557bkIZDEdJUEqmB3TdaDSUzWZN1ASnVCwWFYvFrK0LiJwgmpoimYpba5YOgm0MKzKUQLwwk/n544oO4XAkTagAejweraysqNvt2rzuubk5k3599OiRBTJwB1ZWViyAIfCnhEjSUygUzNa6SBCiHuwbzgcQODaaejmojVtOcxnVKOD1ej3jakiy+rfP57PhNdVq1VA/YHNJBnPT7gcDG7QV+Jkzxr81m02trKzI6x1LqLpCLsPhUJVKxYIakBu3VYzWMVAZbARkSO4lEAgY1+KJ7Q8dgZjJ+vq6bUyiX5xGvV5XuVw2Q2UX+v8PJM7d4/FoZ2dnQjAB4yLJKPJkQm7bkctcZPPRukLm41L9MezhcFiZTEarq6taW1vTgwcPrHYxPz+vhYUFuy42lStKwHXjCNHFJQPBAcDqdOvtZPpseFYikVAgEFAikVAwGLSebO4PlalSqaTd3V3rM6WOhPAGwUK329XW1tYTmx50mAtHBJmIvlu33gs3gPcMm9Tr9ermzZtWZsDZbGxsqNVq6dGjR7ZHpqenlUqllEwmtbW1NRGUdTodE3lA4nE4HNq1sTA0BAqj0cjeS7/f18bGht59910Vi0UzIJlMRslkUnt7exMwHOWNXC6ner2ujz/+2DL1V199Vc1mU7du3VIikVAikTBkCwfI72TfYeBnZmZUKBR07949FQoFU456XK9A0oSi3fr6uiFHCMbQb7u8vGxniIDaVRcjS8aZuKUvIG+eNUNslpeXbUYyAQ61xuM4bGN1ddXIWp1Ox54Rz5UMjyQFNIKsNxKJKJ/PK5PJ2DMfjUaKRCKWwGDzQG8I6LCXKL6RXZOkSAfTrQik6vW6qZFBjN3d3TUEye/3W4IwHA6Vz+f10ksvaWpqSnfu3JnoAHCzY+yVNHbk3LPbVuhyRyRNECPZx7RqYa8Jzvf29gx1JcgEdSIopwzgdm5QNkKHAFievb63t6dcLvfE9seROOn79+8b+QEoEugK4hcwL/UoFodyf3/farFsaL7GC/V4PBYFUvNDeadYLJpKDsQbF+5kwzIsA6INRr3T6WhpaUkff/yxDRe/dOmSgsGgGXcmAAHlE2WSkXO9OGY2GwaP3+sezrm5ORNqIADBsbDRe72esbXRIm82m+p2uyqXy0aKm5qaMrJdo9HQ9va2KpXKUyOh+JvW6urqREuGG4zMzMyoVCpZdgeKAOR448YNLS4uamlpySQMyQ6TyaQymYzJGfJeYI6WSiV7zslkUqFQSNFoVIFAwEhAFy5cmFBPYi9jaKQDck4ul9Obb76p4XAsJTs/P6+dnR1tb29blopSH6WNWCymaDSqM2fOKJFIGDHm8uXLmp6e1rVr16zckUwmDaXBAWKYEbshk6cDYTQaC63cv39/AqmiJIPRo1a6sLCgxcVFzczMKJ/Pa2pqSqurq5bZUbOWDkYKErhw3t12QUlmfN1+YabPubwTl3R6HJne8/Pz1jtOsCLJngn2j/dCBwZoIV0cs7OzlplKByQ8gjoyQFq3YrGYBekQY7FHDLmgK4F3iu0gq6WFzmVBw7jm8x4+fKhXX31Vo9FIP/zhD+2dASPPzs6q0WhMCEoxwpQ9haOWDura8CIkGc8DVECSyZRSawYtIxgm2HH5FpReXSlm9g+IEUgmZ6Jer3/+nLQ0VniiX5I6Bi+X+cfAX0B8tEZx8BqNxsRhJOJ0a7lAm0CeGGdIFjh0+gkxLNRNiNwYUwksRc3k7Nmz2tzcVD6f19e//nVNTU3OnMiCAAAgAElEQVRpc3PT4GteqkvWcJ0CcDRsReA54HA24+7uruLxuE3Igg2JTKIkqxfR+gIk3mg0zPBBFuH3urNUmZH9JOsrh7Xo58WwuYGbNEZINjc3jSjG90DwGgwGWlhYsAOP0XIZpgRS1AVBQuh3BeV49OiRKpWKSqWScSNAUjAslDgwALSXBAIBvffeewZz+nw+3bp1y95hpVLR2tqaotGoMpmMlpaWLBiFJUw2EAgE9Pzzz8vj8ejjjz/W/v6+dnZ2LEvFqAGVuroClFkwjMCNHo9HDx48mKgVEgiR+dLL7ff7tbCwoOnpaW1tbdkwjkAgYIEGjgqDDHJGFsd5cK8TZ9DpdGw+titSxM+Q+VQqlcPejv/runDhggUj2WxWOzs7arfbikajEwihq3XAmaX0FgqFVCwWjXzL1wlScdbYQNeO0QMPihiJRNRqtdRut5XJZMw2EwxR3yWgQ0AKxMjdI++8845KpZL++I//WLOzs3rjjTfMOeLoXERPkgWpwOZwQ+AFYd/dd+sG2ATN7vORDloYqe8D7+M/aDmj7IkkL/8mHXQEuXak2WxqZ2fnie2PI9fKow+SBwsDNRwOq9/vmw4vkCObgxfkNs9LB+pbRGSuk+YzJE3UnXlBHHyiVwyxJIM/IJkRFBCdcZB4udQCXciNTIHIDmgGaJBMC2chaULyEYIPv5Pojo0maQI9YDMRJW9tbZnuL1E49W6vd9wn+yRbCQ5zce/sFRANFzZNpVLWCrWwsKD9/X2Fw2FtbGxMiB8QULFHeB/Sgayly4fo9/tKJpPy+/02bpV3kEqljAh4//59ra+vWxYB+ZBFu182mzWpWnd85XA41Pz8vNbW1iTJAk+CN/gdGCkybVjbnU5H8XjchsPQS8s+xqjzDNlzZLggPyjd5XI5Q75c+Bq2Mp9HqahSqZgG/vb2tsHcnG0CGOmgjcslNFLz56wT+GAD3G4Jgna3veu4rO3tbQvSeX7NZlPpdNoyQK/Xa8kMfdI4btDD5eVl3bp1S6lUSul0ekLZCwQERFCSMZ5B4uLxuGWHZO/tdluVSmVCmQ4b4UqBgjDi+NLptN544w2l02lJB2pnsVhMDx48UCKRmICmsWOUCaWDrBabBvJDFu8Gcu5nkNy4QlfYW/YRiJWLxMABglFOhg1iQ6IlaUIa9UmTbD2SRr/ui9/5znee6C+XZKxPSRZdsXi40gHdHaMoTQ68J0Lie/l+4DccKk7RrQ8/TqHHuNAOw0uEGMEmIOvBOC8uLkqSNcm7hpzr5bP5OwGCe90uk929b2pUXINLZOJ+OGQ8Dw4pG5JNz6ZzSSo8R+o2T/Mim2L/8A5xcBxO/p29w2El66ZWzWe479U1AC7hBHiW9+jWUt39huPg5wi2+D6vdyzR6mZO/E6MK0ElBoO9wP1JB/DgaDQykYtKpSKPx2PXiUGjHMPvkWR77/HrZL9hvHDIPF+XNcvPs+fcmqTLKfH7/XZe3HPsPt/H3yvPodVqGWHObaXh8zDkv0ki9KOPPtI//dM//f6b8LdcKBHSjre1taXBYKDl5WWdOnXK7AXoWLfbtXaqXq83UYYrl8umhpfJZIwDQbkFeynJuAHYi+FwqFQqZU4YWVGQHaBv9/e5GSbnhhJaoVAwBvq3vvUtDYdDffvb31a329VXvvKVif5u6WB4BoEaZUxETVz77nZV8Psl2V7m8+gOICtnT/KzXH+1WrUghGfk6lmQxfO86Mdut9va2NjQtWvXntj+OPJMGkdHTQmn6D58DBeQFY7I/c+tVblGDkeL0XEzX9d5SgeOCkfG73UNEgbCrSc/HuFz3WwGt+fQNR7u97lBAPfE9+McOKz83w0euBeMoyQjdgCbcj1AkXy/+zwhUzztsqCuk5Im3weBDbU2d38AzfKz7ue478OtS/FueGcYOZ4ngRCH3oXMGDDgOnjqee4QAbdsIh1AgaBIZLmuI+Pn3Joc18UewYC5+x5H/fh18zPuNblQMo6as8NzY48+/md6tt19zJ+5T4Jq9+y4gSuL+6WD4Vc5dIzwcVvRaFTpdFrBYNCeK4IbELDgxyQSCStxuZ0gOEnKM2Sro9FoQpqTZ0v5AQIZSCEcAkhWLpzMtUkHDpCyh9d7oG6GPWHPugRJ7DyBEvdAVi9pwp7xf6/3QD8flBNbCSKIFKm7D3C2OH8+G/geO8c+cf0Fv1fSxPlx9x3B5pNc/6uT/ru/+7sn9otPnz6t4XCohYWFiRGBwITUWdyHjDhJMBjU3Nycqe7QW0kmyAZwp03hTBF8oAaEU5IODAgvktqwO8uVl8iGHgwGJo7x93//95Kk119/3WrgU1NTqlarymQyJm0IvAhBgXt3xeAHg4HJ4Ln1H2AnYHGiWg4pAcP169eVTCa1uLhoaAUHE2UiSaZhS73a4/Ho2rVrWllZ0c9+9rMn9v6f9Pr6178uSUZ+gSiCqluv17OeW+Ddra0tM5jsBZw2Pe2UEtwghmw2l8uZyAywGpE8hkiS9XBiSGZmZox4MjMznkFdKpXk9Xo1Pz+vcrms4fBgTi8ZTCgUUiQSUSKR0OrqqpEB3alT9LMSAP/1X/+1BoOBvvvd79p52NnZUTqd1rlz59RoNPTw4UMbHoOgCFkDNUyMK2M9n3/+eU1PTxu5zusdK7yBaJCls1e5z1/+8peq1Wqq1WpaWVlROp02h8B7ocQzGAwmhElgo2NcITzyztwe9+Fw3Ef90UcfHfJO/N/Xyy+/LEmGPsBpSCaTyuVyKpfLmp2dtYmBpVLJpnxJMiSEsla5XJbX69XCwoIe/v+xkEtLSxYQUXbBxoFc0FoE+iZpgmyLg+fd0dPPzzCalxYpOnSwrR6Px9CCYrGo/f1942zUajWzc24AzXsGNYAYy/22223F43Fz2PSEdzodK+cQ+Ln3AdcIUjDEWjeQdEm7lBPcDgaIy71ez5z3k1pHmklHIhETVe90Opqfn7foz4WFgRoymYwKhYIdOGpabCocNSxtFgQANgVRl0ugAiojewmFQhNtBWQaLokAdvTMzIyq1eqEA+dAuFkGwir8G0o9fL3dblv7FzXqWq2m2dlZGwQPuUOS1R2JDDlIMD+pyRPNum0pZD1utOvWcY771KDftF5//XX92Z/9maSDjJYIH1EIDFy321WpVLKMhQwZQzYYDLSzszORVbuEv7m5OW1tbalarWpmZsaCQFcVCeOIgaO9yT3k1P48nrGYDnCfS3hzmag+n8+cGwEEes4YEFpUJFldmBou9U1XBhJxBpi7Lu/CRRxoLwyFQjp9+rQSiYTV+mD6Pk464/yA4hAgo8bnPm/qgOxP3h33TxbFO6Cfdn5+XrlczmrPvV5PhULhE5n3cVm9Xs/kOiHv1Wo17e/vK5lMKp/PG4l0cXFxAn1hRCQQ/nB4IBMci8W0uLho4ko4nl6vZwM5eA/U7jkP0sF8BCDuVqtlPfwkH2SnLo9hMBirltVqNX3pS1/SxsaGSqWSJT2hUEjJZFLXr1/XV77yFQsg6c/3+/3WUsgZ4qyBCsJmJ/kgC+ceCd7wH+wd+rD39vasdEhiRNDjlgHxFSBYnGdq8dLB1LEnuY7ESb/22mvq98eC5oPBwLLjVCplUAxQGo4GdnMsFlM2m1U2m1UgEDACmMt2TiaTmp6eVr1et7YnXhizb3HisBJxxtQdqKH1+33LBu7du6czZ84ol8vZ1yKRiCqVygT70VUDotXBhWbYSPl83q6r0WhYBkSWy0EaDAbmYF3IBZIFUR0tVt1uV0tLS3ruuef0/vvv27OFbOEGBmhOoxDUaDS0uLhoIxCf5oWDAEbDqEAMYZoSMprr6+vmmDisGDYMDcNIpHEv59LSkj788ENj3fO+CZIIfGiRAQ7M5XKqVqtaX183edCVlRXt7OxYtt7r9bS0tKStra2JkYOQiDBkrvYxOsdkFtls1hygS3yD0T41NaWNjY0J0g+wfyAQ0OLioiEH8XhcwWBQpVJJ0WhUfr9fS0tLE9rGsGEJFHDc1Ol5/gSYjx490tTUlF588UWbuQ4KAcIDJE+rGExgECZprCb24osvqt/vm0xquVxWqVR64sSe32cRPGDzqLv6/X6Vy+UJQioMeJ4HAiTM/q5WqxP99kDRSLfS2sR5x8bhnAOBgILBoKF97BkcMeqEJAm9Xk/hcNhGVUrSo0eP7NoePnyoqakpLSwsWIC3u7tr349tQlZZkhHmQIVw2vAokDddWVkxqVtKeY/rYbhDhBgaI8mQUUlWb+b6geM5G/y8yxfyeDzWouWWhZ7UOhInzQPlxdF2hAFxlYFomg8Gg9rb2zOFMTYVxgXnR7SD3Kh08CIkWeEf0gURmiR7CUDDQGZEdolEQvl83rIIjEg+n1epVLIXyDVBeuh2u8rlclpbW1M8Hlej0bAMjs0EHEPtAynTaDSqWq1mUSybBiNMJOpGjahf/eQnP7HMxo0myfYx6hxEd1RbPB4/dtDgp11u9M0ho02Etg7aLRYWFgyhAdblmTFfORKJWMTNM7t27ZpNJsPgsFeuXbtmmQ9BnctWXlpaMmYvgWEikZhgWWezWT333HO6d++eQeI4UT4vn89bQEf5Z29vT+Fw2JApty7I/imXy5Jk2TP7r9VqmWEleJyenjbHSs/1/v6+yWxyXkKhkHVm4Lynp6dNUUoak0Vv3bqlmzdvanZ2Vs8884whN4zohBEuHUx7KpfLViIi0+v3+7p3757OnTtnMC7PIpFImC4z5Ry/33+sxlZ+8MEHmp+fn+DF8GwpJcD8R+4U59NqtQxinp2dnRihil0JBAJmZ4CQ3bLD48jFjRs3rC3Wbf3iGtiX/X7fgl1KKltbW9YhQUtrJBKxgIEz0+v1rNzj8Xhs+iEZeqlUskRld3dXy8vL6na7piLXbrf1zjvvaHl52fYxcscsly1O6YXuB5fPIR0MeXFr8CRAvBcQBpcQKWlCWOpJrSOTBXVbo8hmiSKBeJnBiyHFefp8PhsmATROJkvGkUwmzRmysRBIQJ+YegyO0WXm7u3tWdRGW9jc3Jyy2ewEfPzw4UObgMVhQXI0mUza/QJDuUQ3nCL3RT0HOMc1rkSW3AOkB7feR5QL4zMWiymZTFrLTSgUMuiMIIKsBTRCkjmJhYUFg96exgXhBUPDswKxoIRBGxIGwO/3TzgK0B72VDqd1scff2ws+C984Qu6c+eO0um0PU+QolQqpXw+r/v371s/KrAcmQ7QG3uvXC5raWlJPp9PzzzzjO7evavTp09rdXVVzWZTd+7csTJRvV5Xp9OxMY61Wk1bW1uan583shCKdi4h7qOPPrL3/vLLLxsMODU17rFvNptWy+92u5aNw79gD0LWgamdy+WsR5VWRYJXHCx107W1NVMdDAaDqlQq5qwxsqAOrVZLp06dUiKRkCRDjUARCKwkGSGQn/f5fBOw7HFbKHiBtGQyGUsy2CskFiAT+/v7JufK1xHaITsmoyQrdvuCR6ORcQZw3oPBwPrY4QwQ5BPkpFIpK9dMTU0Z+hEIBHT58mVT73KDIhBKj8ejl156yfg83Ecul7PgF7sG76HT6ejGjRsm+IItbTab+vjjj9Xr9XT+/Hk9evTIygZu5kvS5BLNQCwIArvdrprNpkmcQqDc3d39RHAtyf5MqeVJy4IemZPmAQEVQGaivgDcBxkFqcW5uTnNz8+r2+1aqxMPC7H34XBowzTQl8VINxoNc8b8ftdAuu0xZPlEtkSriFjQhI+hwqC7pDYcBUaO2jVRKI6SbAtnQe0I2J/P5trJEoFqOcwEPjMzMyb5ODMzo2QyaeUDJBlZPFd+nuw8GAw+1bA3WQLOBK4CxguiCpE0hp3lMvjdYffFYtFqc27mjNCOxzOeKoTTSyaTevDggTlFr9c70eZGX3Wn07GZ5D6fTysrK6pUKmq1WtrZ2dHMzIzOnz+vd999d6JWTBaLowwGgyoWi9aTDF+BPUS7EucLVAqjCEmGe3dV+FznybPibIFsuXOh3Tr+cDi0IJbPZvoS+5kMkHNDwDw7O2skKj57OBxqdXVV+Xzezq7XOx63iMPj97D3H++uOA4LeJUgUtKEEiMOU5K9Q3g6aMXDW8CuBoPBicBFknFtIBWS7YIwlUol+12VSkWrq6tKJBK2Bx48eKCNjQ2z2alUSqlUyvYgSRPa8jhIt/uhVqspnU5PQPsXL160Mh0cG/wA767RaJjEsdsGFovF9OGHHyqdTts8aEo/nH/pYGgHZ5qyIvV87IDb7kcg7zp4njGfcRgJzJHNk261WpqenrYIypW2Q91ra2vLJuUA5fCQk8mkTagC3qWGSEa4v79vTpsNw/+pS/BycHRsSLJ3aorSwYg+l4VILRj4aDAYWC0JQ4JjcDNtmLGuEeL+cdC5XO4TqlTAp279D0O0t7dnxvzUqVMaDAaKx+MTDfwzMzNGLKNG5PYBc92II8DqfRoXh57s2XXC8XhchULBiCw4IgwZhxcHDbmlWCyqVCqp3+8rnU4b3wAWMZnn3t6elpaWVCgUVKvVTKoSSJbWKTKbq1evanV1VZlMRs8995wZyqmpKb3yyisTJYrz58/bHgfa3t/fN4a5mw30+33TwacOCZJDzU+SZeTcI3VQao5kOJRicAYwcIfDoYrFopWCOMeQ8VzjKGmixCQdjD7k3ezt7alarerhw4d64YUXLOsjg/P5fCZOcuHCBd2/f99mVS8tLdnnYfA7nY4KhcIE8e64LJTW3L5e9zmBykHg8vl8dm5BJB/XQWBv8X+eGd8HrEvWiSb8/fv3NTs7q+XlZQ0GA73//vtqt9taWFgwnfZYLGaCIyyY0uzvaDRqNWwCZYJBumKw80DQ8Cz29/etLEXHCffZ6/XUbDa1vb2tVCplrWg3b97U6uqqaZBjY92zAGy/v79vIlnYfs5Co9FQoVBQo9GwZIdzjS9A8IQyzJNeR+KkERiBzQmuT7Qcj8ct28nlcgqFQkokEqZ3DeMxHA5bnRqyjqSJF4XDYdIODotmdJdEBgmN1gRJE4QbyDREuIxJW1paUqlUspfabrdNhICsgAw+EAhYGwWblSyWayBCG41GFkHizGnVAvpCrW13d1ebm5tKJBKan5+37I5pMkA3lAbI9Nj8bD4idOCqxcXFJyp591mur3/96+Yw2+223ZeLQLDffD6fTTBz+4YJltxMESnCcrmsra0txWIxc6S8v0ajYQz8XC5nusiSVCwW9eUvf9nqZwzhwJHAut7c3FS73dYf/dEfaXFx0QwKhoD/Lyws6MyZMxZggrQEAgHNz89bbQ2jlslkbDwqRpH9DZELY00PK99DvRGHR3BAxpvP5+3ZIidJkItuvKuxzzWAprlnDqSiUCio1WqpVqvpypUrqtfrisfjFjS4GgJwRvx+v/L5vGZmZnT79m2FQiGtra2ZQ6tUKmo2m08cmvy06xvf+IYhEdKB3CyOiZqvm0AA47rDhVziE04Y54y9w7FC4OPM43jfffddCzbJLoPBoBYXF01LGz18VPJgmJOISDKyLtk11yUd6DIwcAW0jgwZRAXC22AwUKVSMalm9Nmxszw3xlYmk8mJWjvPkKAORw3PiOeEzXXrzdKYD0HnB87cneZ2GMJPR+Kku92usTqfe+45IxOQXUBASKVSVsv1er3KZDLmMDFYOzs7Wl9ft8/AwQCtYaA3Nzd1+vRpNZtNyzCo41I/A8YgE4I9joNjzCDZCJ9PluPCzR6PR+Vy2ZwkG3p3d3eiab/T6RgU62bGtISNRiPL6IDN+VmyGTKQ2dlZk4iMRCI28YasEMhMkjkxtxWHLMXjGU/yIrt8Wtbj74HAikNPNI8DIwPEaeBIXEJhLBbT1taWcrmc9WUC08GSRSO+3W6bs4zFYvbMyQz39vYUjUb14MGDCaY177lQKOib3/ymwebU9Gi5AW1aXV2d2Otzc3OmCMW+B748deqUOp2OMpmMarWaITKxWExzc3MqFAoGD8LIXlhYMCe6vb1t9UuCTM5qq9WyNkMGO8RiMWsldDMgMjiMIfXxmZkZFYtFSTLiHj27dBngXIBAOQ9TU1PWYwv0nUgkVCqVlMvljARFduca3+Oy4vG4TVRj/0JqxU5BxuK8Uw6JRqMTMLkL8RKgYrtAHdifOCpYytvb25ZtYwMXFxeNX0AiRQaO+hn2rFAomPNyFb5c5nO329WdO3eMgb+zs2PZKdA2yQn3T6tZLBbT//zP/1jQil2empoytGdra8s6WVzuASUd94xLBwpnzK1mcEwsFtP8/Ly140qyM+/Wt6enp01+9e23335ie+RIdm2v1zPWH0QRarrSGMJD0k6SZQT8mRoxkDMGAgfJZnNrYWTmwCBEdkDSOCkyE5e9B8wIm5saIE6W+grRPQYXR8DP1Ot1i/wIEthw1KfJth4XGBkOhyY7SkbotquwufleiDLD4dDIXzwznjkQZrfbVTabNTGOYrFo18JzfxrW9773PUNnXMcMvO+WN9ySBe+M9wcygYHf2dkx1AUHhPEjM6CNj0gdNIYhBZImCDxAe7TElUolpdNpc6IEF9lsdmJ6EdkRDp99BxkSJjbG9/HRf9yjJCPEuaiTdNBKVSqV1Gw2JyRDydIwdIiL9Ho9gwhxoOxfV45yd3dX9Xrd5p8zyavRaJiWOKgRTgIHJMkCIfY8qEm73dbq6qp8Pp9WV1d14cIFa5XDsB5HqPvq1asmgENrD6gGtd1er6disWhBG0Q47AtZK+feTRzgwsAlIDiCGAk/gL0rjRMfAlp60Ala9/f3jSeBDd3b2zMBID6j1xuL5Dx8+FD379+3+0Kz4vr16+Y8QTpcrQfee71e14MHD/TLX/5SjUZDzWZTqVTKOlX4/ZLs+0ELOQtwNwjA6WAh6MtkMnbu+BxmOtBySfBBuZRES5KRGZ/UOvRM+tlnn9XCwoK9jFqtpmw2a8IGHGpX+i0Wi9kDwtBR54I9SK8czEUa9nG6q6urNhC+VCrZ5qW2gPOnHkP0/ejRo09M58EA8p/bTkAkRoZDdAhxi6wBpi+TkSD80GrAdbGRCVSIEAlEkOKbn5+X1+udmAu7v7+vYrFozHBpbOTcYIONjHgLZKNut2uw49O0eHY/+clP7N/+6I/+yKAxAqPHtbqJjHGA586d082bN62kgWGsVquKRCKKRqMqFot2wN2pPnNzc8YU5XcAF7KvPZ6DwSfxeFzr6+s6deqUms2m7SX2GZkVdWX6lXHMgUDAhg/gmMLhsInskGW6bYlu6QMYEKdaqVS0tbUlaQz3MR7VDSwJECVZdkvNGPJQNBpVu93W3bt3bX9J4yCgUChYvzNwJIgXc4CZfQ4iRP8uGbgbbJ0+fdpq7xA6z58/b1+v1+vqdru6cuWKstmsNjc3D2dD/oZ1+/Ztvfjii3adoA0EmATXbkLD/WOzyFwp1fCzkqyDhGDUdfDIv6JUBll0dnY8GjKXy2lpaWli8A8OzFUSkw7amSi7wWWhfZREiaTIRZDQ8AapZC+wV9fW1nT37l0ju7m97+wDSQY9nzlzRv1+39rRQLlcdvvKyorZfTewIFlyS0JudwJoAQEBnTRPch2qk4aMxAvw+XxKp9NqNpvWZyeNHzKRcywWs35B4FhquUT1QMYo0/D/brdrdQw2E/2xtJJQ76V2xhQkIBOuD0gEYw+ZgkwK0hf1IqBWDHyn09G1a9dUq9UUCAS0urpqBAmCDzIENpt7H4hWsOHJDoBaW62WUqmUwZJAZUCDLnFmMBhLDwLZgwSQiRE5r6ysqNMZz/jm3Rz39R//8R+f+DfXYUsHThvCXywWM2JJq9VSOp3W3bt31Wg07FnAco3H47p165YuXbpkPAhqt+VyWWtra9rY2DC4OhgMKhKJmPACmswLCwsmrhAOhzU/P68HDx5YzQtkh15nEI9UKmUs506no0QiYTB2KpUyh3jr1i3rD33++eeVz+cNonSz8VQqZecAeDsejyufz1u7I8gVzgC2balU0vnz5y2QJijmuTSbTY1GI1P6A3Kdm5uz2ma73TZjPDMzo+3tbas9A6OTKUH247zOzs4qnU5bFkmmJ8kCWjIi0Lbd3d1D6W39NItACGfgIn1uPzjOF5QLtPBx5jJoImRC1+Gxb1y+Du/XLf9VKhX1ej2trq5aLRxREBwZzhz0r9vtamdnR5VKRefPnzcbRGJB4FCr1bS8vDwBxYNSkdGSwJDpv/TSS7p69ao5yUajYe8RzgRBJ8+B/euSa909ApEWdJVn6yJKLGw7/280GoaaPWm08VCdNFENkWA4HLaIem5uToFAQLlczvrkUGqKRqNWY8Hw4fymp6dVKpWMcQgUgRMnQsVRY7jcvmivdyzBGY/HzXlTv11aWlKz2VSlUtEHH3ygtbU1+f1+JZNJ20SZTMZgUAxIOBxWNps1CPPnP//5xKxmNoJrNKvVqkGDtGLxtXA4bALzfA9wH4e1UqloMBgYE5RNCuRDxsHhoXca6JwMj3ojrG53fOLnYT3utB9fX/ziF9XpdHT+/Hn5fD7t7OxoenraAiCYoDiCbDarZDJpfw8EAtre3talS5ckjQ/7mTNnrC0lHA5rZWVF9Xpd169flyTrSfb5fMrlchbIYcj8fr8FaChEJRIJI/BARItEIvrFL36hWq1mBj6VSmk4HBrJC4SK9+yWSfr9vm7evGnI1XA4tH0OWXFzc9Ng64sXL1qdHXSIwBCiJwFLOBzW9PS0KU65tWKCpHQ6rd3dXUMMPB6PzXOn7JTJZAxxctne+/v7Jozh9t3i8CQZrHycViwWM+OPU6F8IGmChU1QAycFGJp7dLs2+Hfq0NJBu9zu7q69K2ksSev3+1UoFBQIBBSJRCaUF3HUBPL5fN7kVkEvsdG0uzWbTc3PzxvPRZIlIy6vxyXNYvshOhKchsNhPfvss7p+/boWFhYUiURUKBTsGUAYBeaXZEEN+5sFWVOSoY6UNSWZTYQHQICCbgXoKO/D3ZEhXVgAACAASURBVF9PYh2qkyYbpmbHS3VfGAePKI8MBec7PT1t9H5qV4hIUIMB6kVDmfYkRNfJNDEejzP63NryvXv37EW5PaCSrL7BSDZpfEii0ajV3SBg3blzR1/5ylfk9Xq1uLg4MQyBVjGeA0bHrV/ze4neJFkdiUiarIHn7NbXOcwuuxntcoQQJBlRr9lsWqYJqvF/ZQ2HQyWTSev7TaVSxjBG9YuhFxhAv99vkpl+v98MzNLSkh49emTObmVlRblczvZcIpEwhj4CPc1m05w+MDp1aTSKK5WKGSagxL29PW1sbBgjdWFhwXSsCQDJJmBnQ3Aja19YWNC1a9cm6r2oNXW7XeMrwJzd2trS+fPnJ54fbY+c9Wg0aoE1wYb7e4EgacsBkpVkkpYgb6ihYSzJ6igzkGUShFALB+odDofHrluBTI5gG4lebBDIGXCsJHNucC7cc+yWxcgi3Zasx5XHQHf8fr+Wl5eNEInqnCRzZIPBwMosqCTyefxeV8Y5l8tNZO8zMzNaXFy0JAo+AeUnPocAgkCDpC0ej+vdd981hIk2KLJb7LSkiRp+r9eztkMCR+wtZSh+v/vsXYKuJOvq4ez1+/0nXjo5VCd99uxZSZpo91lcXLSpKK6yEbVWamEIyY9GI62srEiSZRMYPGAT4A/gZhfScKEaV92m3+/b4SCC6vfHMo0PHjzQL37xi0/czze/+U0jXxAMkIHkcjnduXNHDx8+tO//4IMP9Oyzz1rG0Gq1JmBNolaMI6IoDHFIpVLWW02PJGpP4XDYsgeXfcvGJDPhdxH0cP0IH7gZOfDgccs8nvSihlur1az1r16va2FhQaPRSLlcTvPz81YHxtik02kLHFdWVjQajVQul9Xv9/XRRx+ZwWGPoPb0xhtvKBQKqdlsamdnR7Ozs+YYaWVCFwDOBjD36uqqcrmcKe199NFHmp+fN25EuVzWj370I125csW4Ff1+XxsbG1brxnkTnH7ta19TuVzW6dOn9fOf/1xXr1414qMkffzxx/as8vm8MpmM1fvJlqUD3gQ9uF6v1/p8aXehgwJkaWlpSZLMiNPTihPhnMINCQQCFtCORiM988wzVqJwe2Al2Wcdt0UmRrACwtBut/Xw4UPjHZw9e3biubjtVzwfgpvhcGgtc5S7EHgiwJmamlKhUFC5XFYoFLJ9CaxNayhBEESqXq9ndovnzr+B8EHwI2uHV3P37l0TWSKD5vu2t7fNeQaDQePxtNttu16/36/z58/r6tWrhlL2+33rjCGYQ9eAEiIthAQrPGuQRp4jzpmgid8PlwhUgeC43W4bOvqk1qE66bffflt/9Vd/ZQeMySqZTMZYxxi+ZDJprVA4D1o3MHb00eHcqKu67Tb0FVN/IGNG+hGyGjUtCDvAzaPRSJcuXTJY0l3f/e53J/7+N3/zN5Kkb3/727/y/u/fv6/Lly9rNBrZoACuDfF7pByTyaRlT/QQkg0lEgkzQKhaUYtymexzc3MTtUXIRCiQ8cxpQWu1WiZqwfOQpHfeeeez3AbHdl28eNGMDGL+zWbThjtAXMEgoOoGZ4DMAl7B6dOnVSwW5ff7tba2pn6/r0KhoNOnT2t7e1vNZlPnzp3T8vKygsGgNjY21Gg09Nprr5nxW1lZMZQlGo0aKzqRSKhSqZhC2dbWltWoqTG/8cYbksZsXYbSf+c735H0yXd68eJFjUYjhcNhXb582UZ2vvTSSwbtf//73/+Vz+3111+3P1++fFmJRMICl0QiYQab7A2CE21jlUrFECKCUPZ9rVabyJrX19clHZDx8vm81a8xrBheMkt+FrbxcVsgBQTo7EH2FWcWdIKzSVaNk6tWqxMtmthAyGFuOxTvg1owGSJIDq2cEAHJMF2mPHtdOpBi9fv9SqVSyuVyxtbGJrv3iBN1NSFIsEhS2AcukQzOA+gjnUIEkAQIEGjZA+wvfAdJCa2akgxxAc2krISWuNu6CRJ8GMTaQ2d3/+d//qdefvllG8XHZJfZ2VktLCyoWq1O1MyAZqUDdSOgOr7uDryYnj4YBOD1jgeFV6tVg1T4LLflQTpo03B7FN25uZ/Vcnui6UFk0yLKArzJRBjqU6FQSPfu3ZPf7zdFMTcwcXv6gGiWl5etvjM3N2ewODV0soxCoWDsWe57d3dXt27d+szu/bivbrertbU1rays6P3331cmk7GpQwSIkoxYNT8/r0qlolOnTlm0n8lkdPv2bV26dMkkYLe3t/XCCy+oWq0a4oJjyeVypgW+v7+vZ5991vSY2+22CoWCGT+gSjdryOVy2tnZsSldQMLpdPpT3Xs+n9f09FjH/Pvf/75OnTqlBw8eqFQqKRKJ/NbO7fr163r55ZdNscqdWoWwCMYaAij7cGpqSpVKRdKBWAp7O5lM2lnkexG4cFvhJJnD7nQ6qlQq9pkuAnCc1rVr1/Tqq68ahIoDLRaLWlhYMM4OPfAEcNhISaa6SF85kDXqedgHl4SG85Zk74EOGNTFsA9klW72DJ+B4C4Wi03MHpA0ocYoyTpvQPhc7oK7vyHwukkcTtTj8ejixYu6e/euBcQ4ZdjwaIhT32cfkZBh791SCPdZqVSMuc2zkTTh0OE5HUYCcyRiJhAKyGpduAV9bHR23Y2JGhbOmlYsohqiOZw17OZSqWQ1NbJrd9NgBInKIE/wb//2b//2md07Kldu24+r/Q1Zy0UEeAZEnY1GQ+vr6wYzuZEdxoko0RWuIBiAwUi/L+0YLoEI2Ptpnyv9aZarf4wBIYL3esfDJWq1mgWTyGdms1nNzs4qHo+r1WppdnZWpVLJ3jERN7VuVK9Go5GNpiRbZo+zjzGyIEqgJBAU4STwjpE7/LSwbrValTQO1iRZ7f13Wa7ICDVRSjRo4XP+3KCbbIfvR7ue0hUkSqBcYFlXwpUAnbar3d3dY+uc3YUKoNuWhh4DjpJzCcuechTnliyYWiq8CJ9vPHecCYBuaQOOASN80+m04vH4BArhZsPA8a5aIS14QOC0dbpqeQROqMMh8wqXgkmH09PTqlQqGg6HxtdhNCrOdGZmRufOndONGzesbImDHw6HKhQKxnmQDgRY3NYqsmxJE7wbuBG0qZLs8VnUvillHcY6EiftPjwis1qtpl6vZyxt+kp5SG5bgdtcT5TEoaUlC41lZj+7qkqumhNGAlIOZBrqzC5R7LNYr7zyil5//XUj14TDYSWTSZsFyz0SoaIIhkOOx+O6fv26PvzwQyPsEDkS9LgsRKYlSQdC/rATW62W9eVSzyKw6Xa7un379md678d5rays6Ny5cxbknD9/Xg8fPjRyHQHg3t6eTp06pXq9rmKxqC984QvWhlKpVBQMBnX69Glzcn6/X2fOnFE+nzdonJnP5XJZq6urevPNN63ViOwzmUwqHA4bPExUTxBFxvDlL3/ZREQwlA8fPjzScYxvvfWWnn32WXk8Hi0vL5vDRk0M4+2258CvcBm2OHUCSHdoBoY3n89rZ2dngnHPZ9y/f//InsGnXVevXtUzzzyjpaUly9IIaLgfiFQ8P2rA8HGAcqvVqsLhsOkskMC4BFCXbMfvYH54JpOxPYejxqnXajXrgeazKdVRJqNcifY8zrPf75sQCSNEXZSq3W4b6xyE0GVmk4wQNCwtLSmfz1sQjagQJDO0COiXpt2VbB8fgqIfugSURUmQ8A10G7Xbbb333nuHtjeOxElL4+w5EolMPBwcBoPkieI4yPS3seF4iGQ/bEJESdrttvL5vGKxmDmwfr+vUqkkn89nMMtodDDsolKpWN2k0+nohz/84Wd639/61rckjWuA6XRa+XzemJDVatUiYjIqDLff7zdmY7fb1Y0bN7Szs6MXXnjBenjZdDhhjJY0hmdgJHe7XduwZI27u7u6d++eGUpIJp+X9dprr9nzAGn46U9/al8ny0Cmkuk+5XJZly5dUi6Xsxqex+PR+vq6qtWq6vW6UqmUpIOJagRgwJEwvxFVgMC0sLCg9957zzJPWnFCoZD13dMzDduVNpn19XUtLS0pm80qk8lYC81gMNCVK1c0Pz+vRCLxKwmPh7Fu3rwpSdYKCNRI779rbPkzDpjA/XEIG6jRnVrU7/dNiY8aIk79aVsgaTwvV2CH880MANAvxGskTbRSkgkTsFMGJEN0e6sJ8GFMkzzNzs6qVqtZsEhfMu+mWCxqfX19QpWRrBOypcuOnpqaMq6RC9W72Tq8Bc4oMDTOl5ITNpvgGT/gzmLg56hBg9K4KA4Md6B9PleSXQvPkut21cYOYx2Jk8Yh0q8GZEFUuL29rXA4rGg0atkykTMvTTqYsUyk2O/3VavVrLj/4osvan5+Xr/4xS+Uy+W0trZmwh8wunFKSOH94Ac/OJRncPv2bd2+fVt/+qd/qk6nY/APxhkFKFpWQBYWFhZsSEcul5voxd3b2zOWuDvAo91uW/O/SziBZIHjXltbs58j+/68LDoEpIN+/a997WuampoyDWGyheXlZRNzQWiHuj4QJM/4gw8+sIEbBJGBQMBY2Kgura2tGWIUiUQ0OzurDz74wCBtOhVWVlasZ7rfH0+wAqojG11aWjIiYTqdNn6DJKtJv/TSSzp79uyROWkWPIhgMGgwrbsHIQW5bS58HxC321rFwASIkSBM1HKBzZ+0wMSTWPSQw/qnrZP7BZZGQ579SDbswtK0mbqBEdA3zpsuF2m8Z1dWVoyFTaZO7RhhFLg8CPvwXkA9EFXyeMb6/yj2UbJzGeYI25DdkpyEQiFtbW0pHo/bEIu1tTXL3N3edzgKBHsej8dEpiib0PrF/bCPKpXKBOGW/0uy2ewIWLFfmTh3mOtInLQ74JyDBszoynm6tWbqqbwM+t5cMgDGVJI582QyqeXlZRUKBSOZsfl3d3dNUYwa0GEvDFaj0TAIqN1uG7y3uLhodU2GKwwGA7333nuWpXGvbr83MD0serIMV4eZrE6StdEQmVKj/DysV199VdK4B5w9RPCCQafWRPAGL4KoGcPp6in7fD4tLS3ZTGSCzunpacuKG42GzYpGtc7n86lQKNgoR7KG6elpK3u4ko2UReASuLVaonw0i+nVpr/6qBf7ifPsEuBAe9yaKqUt9Az4GoaYAJyvs8gMXUncp23h5GiPpLUI6Bd983A4rNXV1Yl+Z4ZDAMtKB8/EZYXTssZgGARJzp07p3g8PsHLIADge12CKq2c2OqZmRmbBMho0/Pnz+v+/fum/AZcjL4De5drd2HoTCZjLaToNuArGCjDPZJ89Pt9m3wGSZHn4/KOaJEFuUGgBaU8tC5crQj2MKz7w1xH4qQHg7GwP9AUPdAcMklGBEkmk1YnoMeUSJFNLY0Zzdls1pjRGINgMKiLFy/qmWee0euvv249el6v13pMic6OgiTl9n9ub29bpsxBQ1UH4w1J6E/+5E+sZYJgJpVKWemA2hUQNy0KjGijHgVrlmyN7PppNHK/bt28eVNf/epXjZTHBB360EejkdLptPXoP3z40OpnyWTSRBR2d3etxso7oo4H87NYLFqr22g0MigR5/3w4UNtbm5OSNxiPJCa5b1StmCKFsaWrwOL045IMCaNFaToOT7K9cYbb+grX/mKJJmz5dkQeFPa6XQ6xguBO+IKe1CbJWiHOAWsKh3Utg8bkvws1tWrV3Xx4sUJBTH6kuv1uiqVihYXF20cIzYiEokYOxsnTCBDJ4lbz+d70ZFwe6TJPgOBgDwej+r1umq1mkHYyKuSJOHM2Xuu2lcmkzF5UJAAgln4Me1226SiIcnhkEulkh49eqQvfvGLGgwGphrJz4KcoAmxtram9fV1CwClg8SFGjskOoJt+A3033u9XsViMc3MzCgWixkSII33XSaTOXSJ5CNx0jS+03NKNsPLcSGWnZ0dpVIptdttG/WIMDt9ekBdfDa6qog5ABv/wR/8gd5//3172JCqMAwulH5Y60c/+pGk8Szk/f3xQIx0Oq3p6WltbGyYFCjQENEmh5Q6SigUMqEIGJMEPpKsoZ+ajItKELSQscP6/rysZrNp6AQDWRgAEY1GTUAEmc2lpSVrEcQI9ft9E+ogK5YOpkANh+PJPQjtYBhGo5E+/PBDlUqliWcKUxajlE6ntbi4aM4YMg2/i7KPJMu40a1GFAfuAgNXDmPW7W+zKpWKEonEhBqW207pEkRBKaRxoM4zpCUSh4OBr1arVuLCwHo8HqVSqaeKOMaCDc1zkWQOiUEn0oG0pdu7zLOlXcsNhvhMzrgb1FBCIFlx7Snnhkzc5/PZEBvKkJJM34E/uyODYUzzHt3Z0SAsbnsY8wPi8biV8UAMUYp0M2TuNZ1OW/sZNWjXsZOcwGfg72TLcJ8qlYqSyaRB8QTyXK9LwDuMdSSjKvP5vE1jkjTRt4dEnasWRJ9zLpezfji+HyYkhX82AUxEZBSpv3zjG9/QF77wBa2trdmEIMTkj9IxucHFjRs3LNtC8YZeSSawUGOi97vVatl/GHUgXYydC3tNTU0Zix0ChiRr3qdN6POyrl69atPJJFn2Sjteq9Uyqc1AIKBsNmsiHEwqm5mZ0f3791UqlazuHI1GlUgkFIvFjBiD4717965+/OMfK5fLGUGHehr96pR8MpmMoRpTU1OWmWCcyAwIYnnnlDW4L+Bin8/3xJWQftt1+/Ztlctl5XK5CbIQWRd/hswIrOpK7botiwjMNJtNVatVZbNZq+0jiXvUtfjfdV2/ft2yN949+3NxcdHePbAtATswbLVaVaVSMadCLdhV2QLGZh+iUwH6QKlN0gSTm3Yo+tYpN9BdEolEdP78eT3//PP2zgiMQVCYGOg6b+wRU/m4FnhJsMR5FkxHo3NHGiOpFy9eVCQSscACMRRQAvaVW++HcIatBJktFAoWMFAiJes+7OD3SJw0sCOFfOlg5rMkg2F4eER46LzCyJbGRouInCk7TM5isgubgZGQRJ309HH4s9nsUTwOSeMxawQXRLYQKlyNWSaCEXRgvBmIQR0FOBfjTeYMagF5KZlMmhgMWTnv5/O0EEugtovjoxZarVbNmEBuwtli5Gj3oB8UJEM66GvvdscjPt12OgJAfp872IAyTiqVsgBsNBrZ+4Etyx6WDoazEHRRU6OdpVqtWt3xuCzKKKAaOBi3Jo3jIPPBMEsH7TfUS3d3d03SkvcAmvS0jVd9fO3t7Rm6II0Dr3g8bnuKTJKpU6VSyaBc2rFAY9zsERSI/0B7KDlgZ9h39JnjcEl28vn8BK9geno85IizJclGje7s7Eyw7ZnPzL6XDgSefD6fOVQmp83Pz9sIVOZJz8zMWIsj90f7JD7C5/NZ0AEiQSaeSqVs3Gw8HlcsFlM0GjVHXC6X5fF4VC6X1Ww2LRDiXRx2Jn0kcHen09Fbb72ly5cvG7tOks2EBj7EUfF14GBYhS7UQT2jXC6b3CiKTclk0tpT3AEePp/PiAx83lEtMglXGtHj8SiZTBpRgw3MgZQOYLFsNms/R80fI0hPLeMCB4OBsZU7nY4pYREAPY0w4W9aDJufnZ01cgwCCgQzhULB5tWGQiEVi8WJPTIcjqUo2Y/MS2aPSbJ6YrFY1NLSknK5nBFgIKZRcwURisVikg6IPgRRQICULZDSJMOGlR8Oh20aFlr2Dx8+PFbkv42NDUnS5uam/vIv/1IPHz60rIngiP0PWuAqV0H2GwwGun37tqFOrFarpe3t7SO5t896AbHyrqUD5IcAb3d3V9VqVadOnTLngwN027bcFjcQS5IT9hG2Bgfr8XhULBbt9xEUwQmirCLJHCZOEqjc7/dra2tLXq9XDx48MLgeB0dwLMnIlQQDbo82SZdb656bmzPi7P7+vlKplM6cOWPEyWazadA+gZ3bgguHA54DAQ3X5fF41Gq1TGQIMhuyvvB7DmsdWZ+0NIa9YeFFIhGrpxIdSQfygNSq6ClmE7pEiFqtplOnTimXy9nXIPwQfe7u7ppBg3hC3+pR6vp+8MEHOnXqlEKhkHZ3d7W9va2VlZVPSNpBDKlUKgaxotiWz+eNSezOZsXRSLK6n1t3dg8yes+fx3Xr1i2trq5OtO6Uy2X7OyUYkATKDel02uYlUxoYDAaWtS0uLprcJaSWWCymSqWi559/XrVaTdeuXZPH4zE4OxQKqVKpWJ0VQiSBGORHgis06xGoIOBA7x0SGkHr22+/fWzJf//1X/9lfz537txE94YLy7q91YFA4KmFsD/ton5LBooNoMWUrI6AjOdH+UrSRCnBVWLkebKPcGAgeDx/MmVsJ4pkDNxBtARJTv4NfQrpYMAK9wODG4liUFIEqhj802q1TFvA4/Eom81a8gbiyZkh0EPzAiQGX+IKQZGEEZBQ+qMMJY1RDBBZrhln3u/3j6SEdKROulgsqlgs6sKFCyoWi5qfnzcnLcma0KkNwDgkwqLlAGbecDhUrVYzGNgdeE52DQTIC41EItra2joWUfjGxoZlHJKUSqXsAKbTaRO26Ha7SqfT8nq9JuMIGSoSiUz0/JKhTE1N2exu6tNAvu5G/Dyv3d1dbW5u6tKlS9aG1ul0rE4GiWRlZcV6K+E6YNyI0NG05plLsswWY+aKcaRSKcv+kBil5ri4uGhkl6mpKTUaDcXjcSPjzMzMqF6vm+PmGpC65X2TQfX7fb355ptH+ah/6/U0SHYe9rp9+7YuX75sLXrYKmqy6Mmzv6amppRIJCzAkw4ma2ErQWMI8oPBoOknAHmTISNRS7bu9Xr1wgsvmEMdDAYqFosqFArKZDJmc0iU4Bb1+32l02krL0H+c9uhCFZJnEBWCVIk2VxxaSyC9fbbbxsXx+/368KFC3Z2QEgpl0qTwYLH47GBLpIsaw4Gg1Z/huiYy+VsxGq1WtVbb7112FthfP1H8lsfW5lMxnqcIUfxEHu9nm0E+uGI9nAu1O2IjmD4kR0Bo8Po5QVSuziuzoleXbcdBwhU0sTUpV6vNyHi4CIRkD44TJDxgsGgwVMej+dYBCpPcsHqZNKO3+9XtVqd0BimHYUAhr2YyWQ0NTVlyl6UU9wsR5rsTXXbVSD6wYHg67u7uzbVzOfz2TxljO9gMDBZw3A4bOx/7ocMmmDUHQxwsp7edf36dV2+fFnhcNiQBRBGt3bLjAG379yFrkFXEHBKJpOWBbuCTo+rN05PT+vmzZuKx+NWcns8Y+bMgNYRnEoy5Tx3sBFBLNfD3gWCz+VyFkjQgy2Ny6DvvvuuNjc3DXamXTIej2t5eXni2cHpwSnjuNEekGT2cjAY2Dmt1WpWagFxdFUJj2odCXHs8fXGG2/ovffe00cffaRarWYjyPx+v06fPm2ZTCAQMIauKxUKw5tpN8FgUPF43DIc2N8IgjAtxefzaWNj49gymX/4wx8aRIWeNuQG2LvusyB4wSFwIHq9nmXlbE5akSBQZLPZYznG77NcRMTvvPOO3nrrLVOt2tjYMGUhGKYQ82jt4OCHQiFDM7rdri5cuCBJpsAEqxQVO+A0xlrW63W1Wi0ra4xGIxOsoW4myXqhXYEdSGyQe4AeEe/w+/2KxWK6e/fuoT/bk/XZr+vXr5teBME2/0kHGSKJBtkqGTL9zZTzHh8aAapDlwjiIhCumMDltngRJPR6PRWLRVPpgliWSqUUi8WUSqV09uxZhcPhCeERIHTQH0h/aBdUKhUjZoJm5XI5bWxsWDIxNzenubk5LSwsaHV11RI2V2uc4EOSkcFoG/N4PDa1KxqNms9xmfJHIf/569axcNLuWlhY0PT0tBYXF7W4uGj1WEkG/VFLLBaLlkX7fD7rL2ZE3WAwsOlAtAIwfKPX6+nWrVvHniTFIXFnGOMAaCHikBIhDwYDmyIGVARK4fb6+f1+hcNhFQqF/1PDNFgw5WdnZ5XL5eT1eq2fGdQGyK/ZbNrEoFAopKmpKcXjcWOOxuNxDYdDm3JG3zXSgkBsoDr0Xs/Pz09kJvS2hsNhBQIBi+7hFPD+cchIFkIalPS55hX8X1vUc91s2q2tgrZIMq150CEIpsPhUOVyeaJX2SVVuTVbnPBwODSGtSu9KY2DxXK5rGg0amNVsc04WOrNtJDiSPkcggNU9HCKECa5JtBRl9UOPyMajZqCH/oOZN/ufTGrQNKEWiAkNEh0riY8cx+OwzoWcLe73nrrLX3xi1+0OjIiEh6Pxx7mcDg0uIOoDEhldnbWoiY24mHpcT+J9dOf/lRXrlxRt9tVLBaz2iR1m+FwqGw2axAS0qKMvgsEAjp37twE4WE4HOonP/nJUd3SsVlAWc8++6zq9boFc/Q/U4NziSWzs7M2dUmSOUqQCXSVKbWMRiNdvXrVBtw/evRIgUDAYOlz585JksGPtCVCYEsmkxZwPV7e4c+0Gvr9fv3jP/7j0TzMk/VEVi6XMwY39VqyRPYgTmt7e9sQQrJJyjtLS0s2HIa9QuZJpizJsmlKMfx9ZmZGtVpN+Xze+vrJosmEaevimqiFu10zIFCUgPg7NXdQ0NFoZMgR2g9uu5jf79f8/Lz1xUsHAQ11eAJt2lgrlYq1NhJco7xIeYszW6vVdOfOncN81b92HTsnLY1fJG0q1DtQ2gGaYWIWkRebkr5pagpHocf9WS+iPkhCj6uGzc7OmkNGnccly0mydgJmtZ6sgxWPx1WpVIyZzb6C2UrPuSRjwQaDQdujkib61lEQK5VKJjlKH7t0QDCLx+P2bkGIqBOCmmDo3DY8tJQx2IVCQaurq0okEkf2DE/Wk1mQSf/wD//QiLA4WPYiwSFkL8ixyWRSgUDAnJBLtnIzZrfdFedJFwNOvFQqWXZNbztQNZ8ryTJjyFuMUZUOynHA4wiTwD5fXl62vU+XgnTA8wA5QEwF9je2H41z5E9ZOHVY7XQT0RVEqQmfQTvfceEqHUsnff36db322msGr3S7XcsmqC/QDgN5x+/3W5/lv/zLvxzxHXy262c/+5n+/M//3PRtqYlCgOLA1et1YwbH43ENXtFOdAAAFy1JREFUBgNtb28b3M0GZ/OfrPGKRCJaWVmxZ4VQAvDa0tKSaaiTXfMsq9WqQdAgPPv7+9ZLiWGVxv2gsVhswohQWyYj4L0ihQtEiPTrzMyMms2mscv39/e1sLCgRqOhGzduHM0DPFlPfG1vb2t5eXlCgxuxI84/mgc+n0+pVMocrSsXCgwsaUKjwlWso6MB+U5ga/Y5TO5QKGQO2T0TMzMzVjJyh6hIsjIPe5uEA4lmnCXXgJ13RW78fr8NnpE00Z3CeXFr7Vy/yw9h7CswOW2psMR3dnaO4C3/6nUsnbQ0rqtduHDBIF6yZeAc6hluOwtZ5udxUZt0+w3RLMZRMze7UqnYIXXrQdlsdmKy08kar+9973sTf89kMtZzT50akRPaXXDOEMBAbFqtlsFllCjYk5lMxgzBvXv3lEwmrdtgOBzauwkGg6rX64pEIjY8AmGafD5vtTuMbLfb1b/+678e+nM7WYe37t27Z+UNaSxuwghPxHPm5uZsOpYkQxRd2V/q0EDCrpwyzlPSBBkLBTBXl4IuEdjekiZIaThA/k5pbmpqypyudOBgye7dThVIckDrZMtwNyCJMQUMMhrIEwEBTG93NrTf71etVrOggr/3er0ja7X6devYOmlJqtfrWl9ft5cOeQYdZSJEHHS73da///u/H/FVP5n16zbOiy++qH5/PFoxHo/r3r17CgQC+vjjj61OBGSVTqf19ttvH/KVP31rNBpZ+YD2QIKebDY7QZiBSIZqE0aHwTG0lLi91swDJxPGUEYiEWvxYi4ymRAZPH2z1BdLpZI++OCDo35kJ+sQ1v379031KxqN6s6dO4pEIgqFQjbDmYAwFApNaHZDSHQFP9iv/J22RPrzsbO095H1SjIyKw64XC4beYygcjQaaWFhwaD46elplctl66Ag6XAdK86b80f/MqU87o3xlpLM/uPkuRege0Z8ElgHg0HrtoAQSrvYUapO/rp1rJ00GrG9Xs9etCTbAER/yFy+9957R3zFh7+uXbv2a78Gk3hmZkbnzp07cdC/5eKZAo1hpJgYhKQqbPq1tTVdv37dWkOkg2H0roPGYADXpVIpU36SZD2baCbjxCORiEqlkhFrEIzodDra2dnRzZs3j+xZnazDXW6b5CuvvKKlpSWrU7tCRTCdQdlwgKiMoShGfdhV6KJkA++FRT82zlGS/R0OB4EpnxeLxYw06c4ikGQyvMDeONk333xTqVRK6+vrxvqOxWKGop49e3Zi6Aw6EAQiTI9jeBLBBipn7izraDSqer2ura0t3bt373Be4qdcx9pJSwejHE/Wp19EnpL+z0gqfpbr+vXrkqTLly9LknZ2dnThwoWJ0kowGNT9+/dtBq07ZcuVWHTrZe+9956uXLli5DNarECGIIVVq1Vjya6vr1t2DfOUST0n6//mgs2MJKh0QLJyHSlZpov0UKPl69KBOBKOkZYk4Gh+jlozjp9gFESIDNadAw4JLRqNqtFoqFKpGLmMe4HYGovFlE6nTR+81+spHo+bBCm1dVAD+EiSjAjm8/mMYyJNDtlgjUYj60EnuD6O69g76ZN1so564azPnDmj27dvW21ZkjGygaMZYJLJZCTJ6mfb29s2LB62bbvdtsHyXq9XmUxGuVzO5qX3ej3dv39fMzMz2tzc1GAw0H//938fzUM4WcdukUFLB7O3CfRcwRKY3W79WJI5VBTyOp2OERjb7baGw6HVveG8IAZFFs5kLJcgKR3Up1utlg2q4d9pEwUxotV2OBwqFosZcxsoXhoz1dEmR/4T1MCdECeNg42trS3riHDVKQlqUWaDHMpzPI7rxEmfrJP1Wy6Eb+ifXFtb0+rq6gSJxc2YIcD4fD4bjDAYDMwoYhiZwkXmQZaC+lM+nz+pO5+sTywU7NBwr9frn2BR8/d4PG7lGwJKd6oVAh90yhBc0iIlyeZc7+/v69q1awqFQrb/gaoJDnZ2dkzjgsze5/MpFArZoBggejpRqIWTDdOfLR0gBJQ6YWTPzMwY14N7hQ+Cg2awDVn/rwom3nnnncN8dZ9qnTjpk3WyfseFMQLqY4ZzJpMx5nWz2dSjR4+0vb09oXecTCatr3N/f9+yZ1fhiQEDx5HMcrKOfv3gBz/Qa6+9pkePHplWNq1JEKXok3YHxfT7fbVaLRsfiVOm57jVahkJzM3U3faoV155RcPhUPV6XXt7e9ra2rJxqtPT01pbWzPEiKwYdCgQCNjsb9jj6F5IY0ga+JmuCVjqrr44DpzAgECB3m06KSC4MdwDYhvEz+Ou0HfipE/WyfodF/PJGcpRq9WUSCRMMazX66lSqWhjY0PRaNTaBS9dumTGj2wZQYpgMGjqZaPRyCRJT9bJ+lULqdnNzU0tLS0ZDE0W6Q6MkGSQN/34nU5H4XBYkUjEgkFXXMdlXEtjYRC3LTYSiRjETlCQSCTk8/kUiUTMaVMPZ+pUKBSy63EzYL6n1+vZ+EkyaJd/QcAgyZw/dXZat/gM15lLMtSL1rXjvk6c9Mk6Wb/jQmgBQYnp6Wk1Gg1TXZqbm1M2mzX2KbUxekgRbyCbkWSDUZi+NTU1dez15U/W0S0Xph2NRmo0GopGo4rH46brPz09rUgkYnsOyJqWI+rN7mhHYO7H5ybQK51Kpay8w1hgWqWGw6HS6bSKxeLE1DecJJA7pZ9Wq2X69UDZ8XhckkzTAeY5Yk6gV66zpvUK4R8GZ9BuhnJgr9czvX6XXHtc14mTPlkn63dc29vbNsCFnk96MBFfoP+Zud+uNCJkG9oMpYNoHyY3EODJOlm/aS0uLtpsZMZKMoUKSBhNeGlcY0ZueW9vz3r/XRUyAktqwRDAyLYhPwJDo8sAKezhw4fK5/P6i7/4C/V6PbVaLUljlT9q6bR6eTweq1nzZ1jpqC3iYN2hGlwnZ2hqasr6nvv9vhqNhgUwkNTcMbDHfZ046ZN1sn6PxfxciDf9ft8OfrFY1O7urmUADDbAidMbSp0OPWT6OmdnZz8X2vMn63DW1atX9eyzz5qwDv3Frl42PAdUwwKBgMG/7hxq9ix/LxaLpg8wNTVljh94HQIX3Q3Us0+fPq0LFy58YiY2WS/kNurEQNOuiM/s7Kzm5ubs9wCPo5BGwEtwQZYej8cn5j/Mzc1pf39f1WpVpVLp2AzQ+E3r2I2qPFkn62lavV5PhULBasher1eFQsGINjjdSqVixs1lu0rj4SfdbtfqdLSo7OzsnAjQnKxPtWBrQ/ACien1etZtAOQtydjPkmwSldtLTIYKZM0oSkbi8rv4HHdsphtgurKkLsNcGqNG/Jxb/+Z6uH6GbxBoMF6y1WqZHC/fyz35/X6rUc/OzioQCCgcDhuC8DSsk0z6ZJ2s32Ntb29re3v7E+P/Wq2W1aljsZgNmc9ms9azKslqz/1+31TJOp2O/vmf//mI7+xkPY0L1cXZ2VlrbarX60okEtYOCNEqHo9PBIzu1+k8cNnQfr/f+BHnzp2T1+s1zexut6t8Pm9OcXZ21sas4ozJ1JErdYlcaIG7dWa3Tg2kjXAKAzy63a6q1aohBsFgcELBz+fzaWFhQZVKxaBxhFWelnXipE/WyfoMFjKE9Xpd6XTaMg8EJTKZjGkWw76dnp62mbdkJTMzM1a/Plkn63ddw+FQtVrNarlMdpPG0LXX6zVJThjXLtOamc60M7GXn3nmGe3t7Smfz2t1dXWiRkw3wuzsrHUzSLLPxNnu7u4qGAzadUqy9rDBYKBEImHkMEbxImyCvCgZP3Old3d3bQxvNBqdUF5Dg4B7qNVqKpVKh/k6fq914qRP1sn6DBZqYpJULpc/8fUzZ84oGo2aM6fmRj808B/tJifrZP0+66233tKVK1dUKpUUDAYVi8W0t7enbDYrSeYIGXkpjSftRSIRa3eiDuxOimIADENl0AeIx+NW80WYBCKXW/MulUpaXFycgMU7nY729vasjk4PtIsuQWCDZU73xGg0Mna4z+cz4tz09LSazaaVoQaDgdrtth49eqThcHhsdbp/1TqpSZ+sk3UIKxaLWdYyNTVlLSaoOsFqnZ2d1dWrV4/4ak/W52HVajW1Wi2VSiXl83ltbGxIkjlF1O3Qgy+Xy9rb2zP0RzpofSKTZeBMOBzW7u6uMbphUk9NTalSqUg6YIdLsr3v9XonGNYwt6k5u10Obn+3JCOVoTQmyQiYkNwgjfV6PRvmwZlDeOju3buH8wI+o3WSSZ+sk3UIiz7SVqulmZkZE1HodDpKJBIaDodKpVL6/ve/fyIBerI+k3X79u2Jv1+4cEGDwUChUMjqushrAglXq1VzfLRTuTXeQCCgQCCgZrOpSCSibDarZDKpdrs90V9dLpcVCARULpdtSIc05mCUy2WdPn3apm/5/X4bRczIShduR00MyHowGFi27GrnIzXabrcnyGOlUkn9fv+pJWEeSSb9D//wD2o2m/YfYhDJZPIoLudkPWXr29/+tu7cuaNGo6Fbt27pb//2b4/6kn7jQgrRHeUXDAYtg+h2u6pUKtbSdbJO1me9EAmJRCJWa/Z6vTafenV1VXt7eyoUChqNRqpUKiqVStrZ2VG1WjVoWxrXrL1er+bn57W9va1r167p1q1bNiBjYWFB8Xhc8/Pz9nsajYbeeOMN/fjHPzYp0263K5/Pp2q1qnK5rI2NDfu3ubk5eb1e7e7umq54uVxWqVRSo9Ew8hiOfH9/35TQhsOhms3m/2vv3kKa/MM4gH/NYcvNNY9pBVkZSVkmIdGZ6IBBGlGmQSQJ0cHoQoLsSq8Uugi76GAtyk4UFIRBaRKlCaWGeKpcReZ52XRzc/OQ9v4v4v39teM0dVt9P/CDPOzdMxk9e3+H50FLSwvKy8tRWFjo5L/+6DnlTjorKwtZWVni6/T0dKxZs+aHa3lE37LZbIiNjcWbN28QHR2N/Px8vHv3Ds+ePXN2aD8UFxcnagj7+fmhp6cHgYGBYtpv8uTJ6Onpwdu3b0XHLaKx1tTUhAULFohTB/IObrmO9eDgIEJCQmCz2dDY2IipU6eKxw4MDECtVkOr1YoqYIGBgTAajZg9ezba2trEJjClUomAgABxLltu2zqUh4cHysrKxNqz1WpFQEAAgoKCMH36dLFZzGw2i3KharUa06ZNQ1dXFz59+gS1Wg2VSgWLxSKahTQ1NUGSJLx+/RrNzc3idbmz395JHz16FLdv3x72vVOnTiE7O3vMgtizZw9yc3PH7HrkuubMmYOOjg5ERUUB+Folqb29HWvXrnX4GhkZGdDr9ZAkCWVlZXj69CmWL18+XiH/sdmzZ8Pb2xtKpVKcnzaZTDCZTGJDTkNDA548eeLsUOkvZrFY0Nraiv7+fjGtPHQ6W66YJydi+TiUXBHMarXCZrOJTV5yMRRPT0+EhIRAo9FApVJBo9FAkiTYbDZxpvlbhYWF8PLygtlshslkwqxZszBz5kyx9CPfZff394uSot3d3bDb7eL8tclkGtb4o6enB7W1tSgsLERzczMAuH2CBhxI0teuXUNMTIz4VOXp6YnExERcuXIFp0+fFv/ZfDuqqqocCmD16tUICgrCnTt3/uyVkFt4//49jh07hmvXrmHKlCm4dOkScnNzUVRUNKr3k1KpRHR0NF6+fDnBr8Rxp06dgkKhEJWgNBoNAIi1uPb2djx8+NDJUdK/oLGxEeXl5TCZTKIwibwzWqlUimIffn5+0Gq18PLygkajQUBAALRarbiOXLdbpVIhODgYAQEBCA0Nha+vL/r6+sQUtbwm/SOVlZX48OEDVqxYgdDQUFFZTKPRiI1tFosFg4ODsNlsMBqN6OrqQl9fHzQaDZRKpfiw0dnZOeyY2d/kt9PdBoMBxcXFiI+Ph06nQ0xMDIxGIyoqKlBRUYGUlJQ/CiApKQm3b9/+K9bi9Hq9s0NwCzqdDrGxsSgtLYUkSYiLiwMApKSkjPj9dO7cOVRVVaGgoGA8Qh0zQ6s8ydWXgP9LG04UvkdpcHAQ1dXV8PHxwfz588U6tTztLZ9Dlr+W71SHbuKSN2XJ55CBr7u55ZK2ZrMZbW1tog3k9u3bfxqPPO0ufwiQd4UbDAa0tbVBrVYjJCRkWC1xAKK5jV6vh8FgQGNj43j+2ZzGoTXp3NxcHDx4EDqdDrt378bVq1cdfoJVq1bhwYMHAICGhgZERESIn02ZMgXx8fHYunXrCMN2TSdPnnR2CG7jwoULuHfvHvbt2yeS10idOHECERERWLdu3RhHNz7kvr3d3d3DjozcunVrwmLge5RkVqsVL168gEKhQFhYGObOnSuqccmFdrRarfieXIJTnh5XKBRiPVguHCK3f6yvr3d4NrWtrU2shctT8MDXNXT5NITcPU6pVIrKZSaTCb29vaivr3eLblaj5dDu7rt372Lx4sVYuHAhtmzZguvXrwMAzp49O2yX9tAhb4ApKSkRtVKHJmgA2LZtGzo7O7kW949RqVTIzs6GTqdDRkaGODPsyPtJlpGRgc2bN2PTpk1u0W9Zrp0sF4iQa3X/bCqQaKIMDAygrq4ODQ0Nooyn3Hda7nPe398v6mb39vaKymHyXTfw//lro9E4ohmbvr4+mM1mUQdcoVDAbDajq6tL3DUPDg6KZhnyWnVPTw8MBoNoZPO38gAgOfKL58+fx7Jly2A0GrF+/foxefKCggI8f/4c6enpY3I9cg86nQ5qtRqJiYnIycmBVqtFQkKCw49PS0tDcnIyVq9ejY8fP45jpGPn8OHDsNlsYt1N7v7z7t075OfnOzs8IgAQGxzDw8MRFBQElUolCo5MmjQJdrsdFosFgYGBYsq7r68PFosF7e3tqK2thUKh+O7ONicnBwCwf//+757Ty8sLarUaoaGhUCqVsNvt4uTDly9fxK5uuTpfa2sr6uvr/4pNYY5wOEmvXLkSJSUl2Lt3Ly5fvvzHTzx9+nQ0NDQgPDzcrUq00Z+Ji4vDmTNnsGjRIphMJqhUKlRWViI9PR03btxw6BqSJIkCDLLMzMxhx/pcVVJSEoKDg0UDjvr6epdfT6d/14wZM+Dj4yPWrIGvRyDlHtPA117Ur169+uV1fpWk6dccPifd2NgIu90+ZruwW1tbWaP4H5SXl4e8vDzxtc1mw7x580Z0DfkTvDtSKBTo6urCuXPnnB0K0W+1tLQ4O4R/nkNJ2sPDA6mpqbh586ZbrP8RuaqLFy86OwQiciO/TdLe3t6iOHtMTMxExERERERwIEnb7Xb4+PhMRCxEREQ0BFtVEhERuSgmaSIiIhfFJE1E5ARRUVEoKiqC1WqFwWDAkSNHnB0SuSAmaSKiCebv74/8/Hzk5OTA398fYWFhbLJCP8QkTUQ0Qjt37hxWtra3txePHz92+PGpqakoKCjAjRs30N/fj+7ubtTV1Y1jxM6l1+vZ3GWUHK44RkRE3/Px8UFpaSmys7Ph6+uLtLS0n/6uXKf+0aNHqKmpQXR0NMLCwlBaWoqUlBQ0NTVNVNjkJpikiYhGycPDA3l5eWhqasKhQ4ccfpxer0dQUBA2btyImpoanDhxAkuXLsWqVavGMVpyR0zSRESjlJmZiRUrVmDDhg0YGBhw+HGVlZWoqKhAcnIyAMDPzw8dHR2YOnUqLBbLeIVLbohr0kREo5CQkIBdu3Zhx44dIkEfP378p+1Wh5ZUrq6uFm0YAQz7N9G3JA4ODg4Ox8eSJUuk9vZ2KTIyclSPX7dundTZ2SlFRkZKCoVCOnnypFRcXOz018XhksPpAXBwcHC41UhPT5c+f/4sWa1WMe7fvz+iaxw4cEBqbm6WOjs7pby8PGnmzJlOf10crje4Jk1EROSiuCZNRETkopikiYiIXBSTNBERkYtikiYiInJRTNJEREQuikmaiIjIRTFJExERuSgmaSIiIhfFJE1EROSimKSJiIhcFJM0ERGRi2KSJiIiclFM0kRERC7qP6hTVGwNdh0lAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "iR-yP8c-NanX",
+ "colab_type": "text"
+ },
+ "source": [
+ "Questions:\n",
+ "1. What is the size of image (file)?\n",
+ "2. That is the intensity distribution of voxels?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "oHD0cZv9NmWg",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "a14bea50-ce47-4c51-b2ac-0703aa73a7d0"
+ },
+ "source": [
+ "img_array = nilearn.image.get_data(img)\n",
+ "img_array.shape"
+ ],
+ "execution_count": 10,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(260, 311, 260)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 10
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EMokM8qhKq_4",
+ "colab_type": "text"
+ },
+ "source": [
+ "#### 2. Defining training and target samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "Ng1IcCer9NSG",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "3b27c863-34b9-44b3-c775-3f37416e7f9f"
+ },
+ "source": [
+ "X, y = np.load(data_dir + 'tensors.npy'), \\\n",
+ "np.load(data_dir + 'labels.npy')\n",
+ "X = X[:, np.newaxis, :, :, :]\n",
+ "print(X.shape, y.shape)"
+ ],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(1113, 1, 58, 70, 58) (1113,)\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "G-in4TXqOuzY",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "cc475860-ba6f-43d5-f34a-c327fda09234"
+ },
+ "source": [
+ "sample_data = X[1,0,:,:,:]\n",
+ "X[1,0,:,:,:].shape"
+ ],
+ "execution_count": 12,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(58, 70, 58)"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 12
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "aVv2Rd0GY5YZ",
+ "colab_type": "text"
+ },
+ "source": [
+ "**From the sourse article:**\n",
+ "\n",
+ "[The original data were too large](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full) to train the model and it would cause RESOURCE EXAUSTED problem while training due to the insufficient of GPU memory. The GPU we used in the experiment is NVIDIAN TITAN_XP with 12G memory each. To solve the problem, we scaled the size of FA image to [58 × 70 × 58]. This procedure may lead to a better classification result, since a smaller size of the input image can provide a larger receptive field to the CNN model. In order to perform the image scaling, “dipy” (http://nipy.org/dipy/) was used to read the .nii data of FA. Then “ndimage” in the SciPy (http://www.scipy.org) was used to reduce the size of the data. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "be_2ekP6PG2t",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ },
+ "outputId": "cf54fb05-5d9a-4105-8d9a-cddb15c6c5c1"
+ },
+ "source": [
+ "sample_img = nilearn.image.new_img_like(img, sample_data)\n",
+ "plotting.plot_anat(sample_img)"
+ ],
+ "execution_count": 13,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 13
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2de4xV1fn+n2GEUREEvHATQRSvgIMKQjVfrUCrf2hta201JvifSW1MNU3UxraaNjVNGoKxtbFqra2JeEtK24hSFUVrQfEuAiI3h4sgXhBFBGT//uD3rPPsM++ZGXDmnH1mnk9ywmad2XuvvfbaZ7/vu95LA4AMxhhjjCkcvWrdAWOMMcbE+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXFL2ljjDGmoPglbYwxxhQUv6SNMcaYguKXtDHGGFNQ/JI2xhhjCopf0sYYY0xB8UvaGGOMKSh+SRtjjDEFxS9pY4wxpqD4JW2MMcYUFL+kjTHGdAnXXXcdrrvuulp3o645oNYdMMYY0z054YQTat2FuseatDHGVJnVq1dj6tSpte6G2UdWr16N7du3Y9u2bdi4cSPuvfde9O3bt0vP6Ze0McYY00EuvPBC9OvXD83NzZgwYQJuvPHGLj2fX9LGGGPMPrJp0yY88cQTaG5u7tLz+CVtjDHG7CPDhw/HBRdcgHfffbdLz+OXtDHGGNNB/vGPf+DTTz/FunXrsHnzZvzqV7/q0vP5JW2MMcZ0kIsvvhj9+/fHOeecgxNPPBGHH354l57PL2ljjDFmH1mwYAH++te/4ve//32Xnsdx0sYYUwN69+6Npqam9P/du3fjq6++qmGPOk5DQ0OrtizL2tynsbExbR900EEAgO3bt6e2PXv2dFLvqsesWbOwZs0ajB8/Hm+88UaXnMOatDHG1IC5c+dix44d6XPzzTfXuktmH9myZQv+9re/4Ze//GWXncOatDHGVJljjjmm1l0w+0F033784x936Tn9kjbGGFORAw4ovSaOOOIIAPl0nzRdr1ixIrW1tLQAKJm4+/XrhzPOOCN9P3r06NzfAcCGDRsA5E3gW7duBQB8/PHHqa0ezeJfB5u7jTHGmIJiTboTYJWXmTNn1rgnxuzFc9J0FHXoGjx4cNo+8sgjAQBDhgxJbTT3Dh06NLXR2Y3aMQCsW7cOADBw4EAAwLRp0zBq1Kj0/SGHHAIAOOyww1Ibj3nggQemti+++AIAsGTJktS2dOnStK1ad3fFL+lOwJVeTNHwnDSme9Cl5m5XeqlPalHpxRhjTGusSZuQCy+8EE899RQGDx6MJ554AjfeeCNuuummWnfLGNNJ9Oq1V0dTj+Xp06en7UGDBgHIO2r169cPAHDooYemtg8++AAA0KdPn9Q2YMAAACWns0GDBqXzAcBnn33Wqj90QNMMXjTFq5LQv3//tL1y5UoAwKeffpratm3bBgB1E3PeHnYcM21SrUovxhhjWmNN2rQJK708/fTTte6KMWY/oZaqGjAdtI477rhwH2rNBx98cKt9VCv+8ssvAeQ17nItds+ePbl9iB6bGrL2kVnMPv/889SmDmrjx48HkHcgo9Pa4sWLUxu1/XrEmrQJqXalF2OMMa3xS9qEVLvSizHGmNbY3G3aRCu9fPe73611d4wxHUQduSZMmAAAGDduXGqjeVpjlXft2pW2P/zwQwB5py3GN9PEDZTM4pqZjOZumrgPPPDAXPwzHcvUCax37965fQFg/fr1AErx0kDJoU37rv1hm5rAFyxYAKD9IiBFpMtf0vVc6cXspRqVXowxxrSmy1/Sc+fOzf3/N7/5DX7xi1909WlNJ6KVXi655JJad8cY0wYMWzr55JNT2+mnnw4gr4XSGUu1WYXff/LJJ6mNWmpUqlIdxzSLGVEtlhq2avvUxFWbZ85uOr4BpUxoALB582YAe5W/8n7oEt2pp54KAFizZk1q0+sqMl36knall/qkFpVejDHGtMaOY8YYY0xBseOYMcbUOeqUxZKQEydOTG0sdKHmZZqz1eFLHbAYr6xmY/6t+hVxe+fOnamNJmeauPfs2ZOLdaa5W+Ok6YCmpnT+nTqv0cFMj68mcu5/7LHHprbjjz8eQL44hy7F6nUXDWvSxhhjTEHxS9oYY4wpKDZ3G2NMHaIe1OrJPWXKFAB5T26arjU1544dOwDkTeCRuVtNzdxn48aNqY3xyOq9TW9rmp4bGhpy3t/02lYz9UknnQQAuZBdxlOr97Z+TxO5Hoee4NpvtqkJXLdpBi9iHLU1aWOMMaagWJM2xpg65KijjkrbZ555ZtqmtsyMYUDJkWvYsGGpjYUq1FFLi1vQSUy1y/fffz/3r6J/x20eu0+fPsl5DShZAdQawH3UkW3UqFEASho8kNekmQGN5Sl5Lv1Oj63x1izOAZQsA9Twi4Q1aWOMMaag+CVtjDHGFBSbu40xpo6giVgzA6qTFM3dGrfMesrqOHb00UcDyDuOqemb2+rwRUctNT/TaStKzcl/v/jii1waTpqshw4d2qrfGgdN07f2UfvDFKFq2ub4qAl806ZNAPJFN/Rame5069at4XlqiTVpY4wxpqBYk95HVBJtT9KiFKjOEZRui+jqb4wpPszSpY5Yms2Lv0tR8YrPPvsstVEb1mxlUeEM/f2ixqpaM4/TVsGKLMty4V3Uvrds2ZLa2ireERXnAErXqNo3+6OOczy37jty5Mi0zVCvf//736mtpaWl4vVUE2vSxhhjTEHpkZq0SpjcVq2YUqKGAnDtQwPgGYZAya+pqSmt2QDA1KlTAeSTCrzwwgsAgBUrVqS2aE3HmnbPI8pZrDmSo/J+pPzvNPQFyCd78Nwypn7okS9pY4ypJ1SAO+GEEwAAw4cPT20q4NP0q0oGzdQ06wIlAS4yL1c6N+OM1Wz87rvvAsg7ZdGRjabyQw45JBejzP6oAsN+R0JkpWXGtszzgwcPTm0sEqKmex0fmuqbm5tT24YNGwDkBeBaYHO3McYYU1C6vSZNCYzhBkApty0ADBkyBACwefPm1LZ8+XIAebd+5pUdM2ZMaqNjAqXTc889N5cFaNy4cQDyGXLopDF27NjURkcHSqQAsHLlyrStzh6me0ANQLULXSrhnFENiXNLQ28IQ0y4L+fkWWedBaCkFQDA2rVrAeRDdKi92BReTFTrO+644wCUHK0A4NNPP231t/37909t/FvVpKOyk6qxRlpqtORCbVj31VAmHksd3Rh6FYV/RZnL9NgKnw+dy6q9E2rf6rzGsDRgb4gYkB/n9iwM1cKatDHGGFNQ/JI2xhhjCkq3MnfTPKFxf0woP23atNSm5kLGHKpphA4Q0XE0sw9NLfy7ESNG5GLv2K7mJDow0Ftc+33iiSemNprcAWDx4sUAgHXr1rU6t6lPaObjkggAHHHEEWmbc0ZNmpw7aiLn36mTzPbt29Pc43KOzltuq4mU8aqVnHJoJlSzYlEyMvUE9PeJJmtdHuHcAErmXv1e44gJTbxqSta5RaL7rA5YNF1rcQ7OJ87DkSNH5szv0Xk4x/R8PI/2Uc3hNKureb3caa18f6Lzm8+Rjhn7qJnLaoE1aWOMMaagdCtNesSIEQCA6dOnpzZKkOqgEGWs0VAAFlBXJwJKr1FuW42TVg1XY1MJNXftA7dV8lOtmk5ES5YsSW2M0VZtiJKxnX+KRSTFUzOiExCQn4PcR50Oo+NEWk5TU1Oak1FYC8+jmg81HnUs0u+p5WhWqVWrVgHIazG1DlcxprvRrV7SxhjTU1ABXc3ZNNOqSZkKgCoRFLh030iZ0SUOKgJquub+aiqmyZlCpkbXACVhTk3JjLBR4ZDnUeFPt3k9qjy1pZip4qTHoRCrQjGXmmzuNsYYY0xI3WvSKi0xhllNxZSQGBsKAB9//HHaprSpjhk0/UUODJpVh/HNPMfOnTuTpKnf67EjBw7ur5JdlJJUYfyr9mfRokUAgHfeeSe12cGsulBiV9M0tQqV9ql16P3RfSjRq+RPjUbnZXlJQMI5xTmo2hDnls5FLhVxOabSPnSgBEqahj5bdG7UeFTtm83h+4f+HnBsVZPWuUVNVJcuOM/094n7q1asyyK8b5qnYfXq1QDyjoh0ltW28hjjhoaG3HEYo6yFQYj+pnE+6lKgopov4VhFMc9aYlOfPW7rM6j71xJr0sYYY0xBKYao0EFUsqH0N3HixNQWlVGjNKl5blWTplSqGgSlNpXeuH6j6xOUyihx7ty5M3T0UakykgipLanWpH9HyVilXEqtGk5GjXv+/Pmp7aWXXkrbdijrPHQuRmt/Og+Ya1k1V3U2JJoVjBYi1TyjQiycG2pR2rVrV25OlveXz4nONz4H2qZaR/RM8JmJ5mC03geUtG69Vs9LYypTVy9pY4zpSVCYo6AHlBQOdbCKltR0uYJKhpqcKZhpVEGUklPNz1ym0eWMpUuXAsjHanMphMrUypUrc9EpjOtX5YgCqwqCFDajqBrd1v7wGnVMuK3HjlKk6pjxejZu3JjaIvN8V2NztzHGGFNQCqtJU0KiQwsATJ48OW1TilTXfprS3nvvvdRGJzCVFiOHgPYSy9P0p5IopSpKnLt37w7DGaJjR9KgSnnRtpoQ6XihTmWUTkeNGpXali1blrYpEduZbP+haVudbbSoCu+ROktxjuq8Y0amaFkDKC3JqMmZx26rPB+w1zmIc5LzUZ16qL2ohsT+qrk7ykSl18B9NDMf0edAz03HM2bRA0qaimpDZi/Rsgjngd5z/Z7Pty7NcTtaClSNU4/Jv9V7zvuqc5DzQH9rqIXy3j/55JO53y8+MzpPoiUVzkHtd5QbQI/D/uqYsL/qOKdFlfhbrtd19tln564BAJ555hkA1XWAtCZtjDHGFJRCadJRYfMLLrggtanWHGnDlIa0zCNzF+vah2osqqkQSnIqsXF/dTrj+fh3O3bsyK1pRERZo3g+df7R64u+jxzQ2De9vu9///tp+8033wSQD9HSMA6Th/dA1wMZ3qdl91T7pHSuknZ0/6iZqjSv2jm1G50HzOwVlffTebVjx440J6lR67GJzm/2p1KoS/n5dH9dx4y0Lz0m2ydMmJDaeK2arz7K1mdMT6RQL2ljjOnpqCBExUSXtegEVskrnk5bVFC0Tc29NAergBdFmOhyRrRUxuOogsIlDB5vy5YtOeUhimWm8KnREuybCpSRc5u2sb9RNIU6fkXx2Cp8U4FrrwZ3V2NztzHGGFNQCqVJq3PX1KlTAeQdx1R6oeONSm+U/DQUoDyWGchLWJS6Imcchc4D2sdyqXLPnj2hubu9Mmnst5rk9XueR03zlDb17+jUpo5M2keGTxx77LGpbd68eQDyZvyejI7n6NGjAQCTJk1KbTQb63xSTYP7a9EJSvk6Dyid63zRexCZnTlv9Th0ttI5rX2j5hTNf3WIiZzSoj5E2c5UO2PfKmXZ43n0e46zmuS5ZKXLAT0lnlrH64wzzgCQL8TCZ1qdWDVMiPcwKl8ZaZc6ruq8x3mt9yrSINkfXTrTucXzqxYbaancJ8o7oHMsisH/8MMPW/VHy7zyPKrNq9WA3+szSGc7fb5pNaimk6M1aWOMMaag+CVtjDHGFJRCmLtpdtFFe5pY1IyjqQRpalPzBY8TedaqaUO9Yztq7ub+UZk0mvgOPPDAnMmaTgbtxUnr/kTPQ0cRNScx3lSPQ3OhmpBYdxpoHbsIlLIX2dy9F42tZOEAXTLgfNR7FaWU1ftHk62aDblsouX9dJtmSV3ioGlc7znNbuWOM5xTPI46yUSe40Tb9JhRyl2a9KNnp9Jcjkod0iypzzJ/CzStrZo0u3OhDl1SoIlYf0O4BKgmYDV9RzHvH330EYD8POC4V1oqiSIHoigBzgP9faLTGo89aNCg3P3jb5ouzUXzMvrd1XlZPs+1H9Hf6W+jFovh+Ojy0xFHHAEgP5d5/dWMirEmbYwxxhSUmmnSKn1TYznttNNSGyU61a5VeqHGQ2lH2bRpU9puKw66vB/lqFTFDF+UuICShEUprampKecwFDmyRQ5fUV/03DymSoGRhYDnUUlUnSc4pjqOjAFWBx3d7mnouDMnsUKnO3VuibKCKfxb1UIp5etcVG2A30eWIr2/PKb2+6uvvkpzknOiUnYqEmVxonOmnlP35bOpc5AWGdW+9LojZxz2LSqgc/rpp7c6NlCK+a9FLmVjqkkhzN3GGGP2okINi1KodzcFNxV0okQ5qlBQyYiW3vR8UbpiFR6jOucU8KJUuTRhn3baaanWOFCK+1Zhl0JapWIaRM3YUSx3lAKUwpz2MVpyZGplRdOr1qLGtM3dxhhjTEGpmSat0tmZZ54JABg7dmxqo4Sl8WjqWEMpSM10/F5rR1PiU4lNJShKZVFbFDOnJmdeA6U57R9QMhurpEoJUyU/nk+vRSVjSp1qSqcTnZpXadpUaVCdlTiWmr2ITk86zk888QSA7p+aUceYRM42Ooa8/zruKl1H2gCl9yimP5LmtT1yeNR9eD69lj179rSKcVaTPLf1fJx7lbQqPgv6HNHcreeOYrn1Wec8U0enKPsU+695CXRec/+333671TXUO7qkoFnDCOeRPrN0xAJK81U1QM4jHU9SSXPleEalI7WP/L2Nigtx3759++LUU09N3/OZiJZ4omciirXX/uh8IurQyW0dE4VjFs15fW5p0WhpaQn70xVYkzbGGGMKSs006UrFJAglJ5VYdC2C+6vjCNdqVOKmJKeSfZS5KFr7iLLhqAbMvqkmrI5ulMBUyqNEq1JeVNhcpVc6f0WZeFSa5vVHBRiAOCSMfWfWJ6Ak5WrIRHdB7+nEiRPTNjVIDfOLHP8oNVeyMnCeRCUdI2220hoXNZWOhgaWh06Vl6pUTaQtKmVSizRtzj21NHCfSuVQOUfVKsRnOApfrKSlMHxGfx/0mMZ0F+w4ZowxBYACmVZdmzJlCoA4llkFuKjWvDpOUThVAZ3blWLjeU5ti2KwqRRopA37QGHtk08+yaV4bkvoiwTKSstC7IeapKOlIuaL0DhxFdip2KmQyvMMHTo0tVEQrGR+7wps7jbGGGMKSs006Si5vzo/0AlL40TVtE1zoDpB8W8jSSzKpKNETjTlSeLLKTcf9+7dOxeXTLOxmjnZ70hiU4k16qOGD9A0GJWWU8lOx4zn1HNzHzWl87q7k7mb16mhLOPHj0/bHBM6MQKlOGG9LxxvvT+6vBBlBeM+kZaiDjiRQ4zOQR5b52pUOCHLslZZ7HQfnidyCNI+RM+EmsA5r3XJJYrB1uNwrKJloWjMKhUyoNZ20kknpbbFixcDqGxqLzq8h8cff3xq4++gOjxx3FVTVm24rfurS2/8PankVBvNCd4rHWNuR9qu5pCIiBwVtd9RcZroOdIlTo6V5oPgu0WdgfW3k/NMx5TjrL+70dh2NdakjTHGmIJSdU2a0tIxxxyT2rhWodIWJSRdx1Aph9KfahqUbqI1FCVqU0mNkpi28Ty69lGuARxwwAHhsbWPlBz3p+yeSqpRwXYeW8dJteHIaS0KQyoPJesORE5gep1RCTo6J3F9DYgzfCm8R5GTn2q7+n353wGl+xppFdHcUY2kqakp9SPSpDlHozYl0qCiv4syrpWHhJEo3Ir3Qect56pev2rx3B4zZkxqo+WDZS6BnlPe0nRf7DhmjDEFgMt1KjxG5l4KM2quVSEtSuFKoUaXD6MIgihfRFRUKBJ+ojwApFevXuHSXBSJokJdlEMiMqtHS4VRLgMdE1VgonhsKjNRkRu9R12dmtbmbmOMMaagVF2TpkSj5u4oDphSjEpaGo8ZEZnxOopKaitWrABQypsLlIp/qHmNhUEonY0cOTJ0BNJykcyQFB2nEpHps/w7/V7HSU2IjAFWiZdhCJH5MZKq6xVqElo0QiVgjpk6lnBsImk/cugC4qxJPI8ep73wl6hMYGS6pgOW3vOmpqY0D5nhrr2iMtSQVNtRxxsuAUVOh9ofLhfocdRMHTl1cSyjpSsNmYnQ34xTTjkFQD52upLj2dflzjvv7PRj8lqi/NKRY1j07CuR9qnHibLDRUS/AzpXI42b2/wtmTRpUjj/o3nZXm4AhedRB+JIk476rWMRafHl3+n3559/fmprb452hKuuuqrid9akjTHGmIJSdU2aoRPqMh85QTFUoFI4Bduj8A5ti7TCyJ1fJSjmot24cWNqe/nllwHkpfTm5mYA+fy0qjWznJ7uQ83n5JNPTm1RcoIoj7NKhgwp0NAMXr9qF7p2QkeoqIKNnrveNWn2Wx3kqM1pYgKVgCNNkm0aLkStWOdllJta71Xk0Mh1rihJBQCMGjUKQD5BBO9vpFVpv3ft2tVqza89DYFjpVqvPqMcq/Xr16c2JnbQ+cbrUQtOlOwhcpKLLAmqfalm39b16Ph0lSbdluazvzA8cPLkyamN46lrybwXeq/0Oed467VzHFVLpxOlPicRkYNh+XzTfgGl329aIJ9++uncfIocf6N14WhuKJwT+hvL+6/zJQqDjEr/6pjxWnUO8rmdO3duatP88V2BHceMMaZGqLDCJTBd/qJQqMs0fInpC0Vfdiyiod/zOPriiso8RqZvFYii2Gluq+DKlzSXgt5///2cgBAJc1EBGbZVEma5HaXXVcGGy1j6Ytbv2d9omUYFII5fe4JNZ2JztzHGGFNQqq5J08FFTWSUTtTVnRJdZFbR71U6oykjinVVqSlyTFBJjGaZqVOnpjZKWiw/qf1RaVGdkWiq1OIVLD2nEl1ElJdXTela0J1QuqsUChE5R0Rl7yKnpXoqA0itQkvj8Zo0y1iUUU6vc9OmTQDyTlmU7HWudtRxJMo8p6Y0LdXKJZcoC5m2MYxEY7n79OmTHMaoqeh84txR03UUQ3/00UenbS4TaDYsmrvV1Mj5pM+TPhPUiKICJVFWNB0zhc96FEetSwRdHR5jTFdjc7cxxtSIyH9GFQquG6tJmn4oqqCoqZlCo/pSUCBVHxYKMLpOq9EpFAqjBE4qPPHc2kYBl8LWp59+mqswF/khRUTr1CoA0rSvbTy3pkDlOGra5sjTXb3ESeTDU0l47Aps7jbGGGMKStU1aZrfNB6Vpm81/UXetgolLDU1UsqLHCEqJUSnpKdmTrapiZB9VEmMpkb2Yfny5bkCDjSbq2m/Uv3g8j7quTlmKhlS+o1KvUVpGoG4aEE0vpTk1SSvjitFh/efJl+gNLd0bqgGwbmjEjvN3DrGHNtK9yoyfUeFAzgv1bzMpRn9XvvIe6nepK+99lqr8/Xv3z9FD7zzzjsA8vOW95ce5ACwbNkyAKWIhPJtzuVJkyalNprDdZ7Q9E1tBshrZ5x7Oqa8Vn0GOS+1TTXMyGzOsVcNMzp2kYjyE2gb56COYTQHdd5xGUJ/Yzl2Gt3A8+jvU3ue3Dx3dK+0QFJUnEd/Q6jZRrHTOuej94CORRTRwu/1WeYSiI6Z1h+PojLaWnJVi0RXY03aGGOMKShV16Qp5ahWSCmms2IB1dGH0mIlSTpykiJRxh6VxKgFUWI7/PDDc1JetE90vkiCjIqElBdRAPLXT0m2UixgFGcbxQJy/HR9pp40aV6LxmWyTTVXlZqpdUSZxKKY6EqlKnkcHWMeUy0cnP9cUwNiDULPQ+2EJRmV8vhX9pMatM5lOiDq3GAhG3VAU+fE1atXA8hrENOmTQMAHHvssamNTpJ6/WvXrk3bnLeqnXCcI41O75eOBcdH5z/nrfYn6rcx9UQDgIpZKpz6bt9S33388cddmvpOf+SrkfpOf6Q7I/VdteA9UC9f3gu9P1Gd6PYS3bQnzEX1piOTa1SfWZ+JCL7MIlOizrE+ffokpyGNiy0/d/S8qfAcLYWoCZHn0Gsg+vKMnGyiBCfR2LdXYz2ayypUUWiKzleJ5cuXY+bMmR3++6+DCkozZswAkDdJ876q8B85XUVLLpEipIIQIwhUMNXx5DKb3j9u6xhzHzWvU7iaMmUKgL2plvVeUmiKfhvVUY1/p33UqAPOPT02rz96VnVOa6QO+x7Vqtb5zb+bPXt2alu3bl2r83QmNncbY4wxBaVNc3dnpb5Taem8884DkI8JpZlWnVsiKUY1DUpLmrqT59HjUCpVDUD7ExUJiMzLlCBVQ6B0Pm7cOAClwhwkcmqg9tKedh2FPaxZsya1sR9RFh817am2xL+NakirBE2T57x581Lbiy++2GqfokIN4dJLL01tjE9XjUQlf84nHS+OQ1QPXOdLFI6ix6GDijpT0cytzm3f+MY30nakISxcuBAA8Prrr6c23ksWl+C1ck7ScUznE7WJyOlQY561LjOvUa9r4sSJAICzzz47tUWx+q+++mrapnYWpWTVecnvo9wJ+rdqDuccfu+991LbggULABTX3B2VZdTfAc6D6LcoKr4ClCx7+psXpdXkb5D2QceJyxT6m8f7r+fj763OZX7P+zRkyJDQWqmaLZ9HdVjkMpv+XXvlNnnuyMpYyeEzCjdjiJo+/7ROVNOyaE3aGGOMKShVcRxT6YXOPOoww+9VQuJajUpQKmlTIlcJsa11R5UWVcJsaz08krQid3x+9+WXX+Y0tUhrZlvkOFZJk+b+qjVQytNjU4JWCVLXpSiB63nobKNrl1E4Qj0RJRxgm+YKjpwONSyDc1DvBaX0SpJ0pBUyF7Peq2gdTzVOOnJpWAstKTrHuC6s/fnyyy9bZSfTe85+RA5x+gzqdnRdUUGbSBvU/vKZUU2MfY+0fSUqAqP3kPdOk3jQqrJ8+fJWfTSmHnDGMWOMqREqmFAgU4dHCuaRo22koACx8MR9VEHhtiowulTw7LPPAsgLVNw+55xzUlsU81zu5JdlWa4tinyhUKzpfF966SUA+ZTIKlxGQmFbbbqvRgHxbzWNLB3LVJDm+Kjy09XY3G2MMcYUlKpo0lEoU+TwEZVR03AENVVSyomcJ6JE/WrOjrJ+aR8pEUaOB2qGo+TLti1btuSyOPE47TmqRY5jkRSokh/DcHTMaALU+OAo+1p7YWJR0Y16gvdDQ8g43yqFYNE0HknXOsY8ZlTzFigt40TLGVE9XdVc3njjjbS9dOlSAPlYdZrAVeOX4UgAABjpSURBVPPhPNBrbWpqSmMQZaeiNqGmfWpvqsXpeajJqXPQiSee2OpaOXeiQjRAHK7F8+j5ojwA+vzTRK7f89j6fLOtqLXRtf9LliwBkHdUoman85bjpNcRZa5Th1USjYP+zun3vG861ydMmACg5IhZvk95H5WOasD6DNKZkvHu5UT3MrI0cL7ocaLlPO135ATK4+i1dDXWpI0xxpiCUhVNWiUWhqGodkLtQx0+ojWL6JjqMBOFrUSl87Q/bWUka88JjOsS7GufPn3CkKgooYj2IcpDrPtEiQh4nuhaVKrWffi3Ub5jPR9DKlSirSeoPer6UuR8p/OEWpruE2WC4zjp/NXkCryXUV5ldcTi96pZqlZFSV2TXVCr1rnKe1Re2pT/p4at91c1UhJpoercyXHTrH8cAw3biZ5LnW/sj2rfUcnQqMSknrv8fHrMKPlGkbRnY/YFO44ZY0yNiARFJUr1S4FJlQgViig8RctakWlaj63pfylwqiPXMccckzseUBIoVbCiMsY+LFy4MCdcUgCk0xlQEsKiyACtY96e5395vxQVelXQpjCnx+Y4RwpTNYU+m7uNMcaYglIVTVqlLkoq69evT210flHzKk1gKg2qqZImRpX8aE5UsyKlN+2DSp00B0cOExFqxqTzBPt14okn5vrYVrnBKNNQ1Fbp3HQOiXIbq9NOeU7n8vOwPxoKQglU2+oJSvSaJY3jpMUXVBOhE1V076P88VEheKCkfeixqSGpRE4pXrPjaZgJNRbVNHgc3YeOXHrs3bt3p3nIeaJaA++5zg0+g+okpNfIuaWhJ9FSSVQOVdHno7w/0djrck1UdEavgdeo18r7anO3qVds7jbGmAJAoUfX6FXhIJFQr0JRJCBFHuEUvNQsrIISvfc15SyFOPUFiDz6WZ/8uOOOA7A3ikH9dXhdqhxRAFQ/jSgaRr+PImOitM4cWxVCNdqCf6tLDrwujZxgMQ2bu40xxhhTHU1aYz0ZZ6em7SheLTKbqamMx1RHgKgsJSUolfLUHEapTKUqSnlR/GBkciPlWXUonUUlClXKo3lWa/nqddPJQq8/igln2kg1m6opkmMe1ZOOUolGHrb1AO+RlnRctGgRgFIsKpD3yqbTSlTQRe8f44hVIteMRNxftaHIE5+RDGo+VueYyBmHZm6d87yXkckZKGkG+rxFyxn00I5qluvfquc0x0zborS37S3tRM8E57/eQ70uLgNoH3kcLUSjz1TR4XP77rvvpraTTjoJQP6ec05Ey3ZAXHSirTr2umSgy0Gct/pM8P5putqoBG551rMDDzwwPI4+O/xd1igf9k3j9/XZi9BzEs6tKFWwXoP+7vIataCN/rZWC2vSxhhjTEGpiiYdaYDaRslIpX1KhlG2Lt1HHcsoLakzGaWhKJ4YKElvKqXzPNqf8mIaQElKp4azcuXKJPkqeuxIy2O4gmaAirLlaH+o+asEHWk2uq1SK4kKo3Mf1VLqEb3nnBM6NzTbF+85i2EApVKMqsVQ4lYpXbXmKE6Y90XnDsdYnwPdZplAXZPk91FWJNWKV61alSxNLPsXhbCo5kqNW+egOqjxulQz5bOjc5BjpdqOPm9Rliv2J3pG9dj6/HP89bq5DqqadDUzQxnTFdhxzBhjCgAFt2eeeSa1UUiLkhKpUKfmYJqpVYDRhEuEQo8KPxpNQCFdlQwuG+ryIYXUqLpeZHoG4rrMFD5VEGTfNJGNCn38PnKI0+tnPyolM+ISgio1K1asAAC88sorqa0WQp/N3cYYY0xBqYomrc4xNKupxEapS01klBZVclFpMkqvSfObno+OAHocNfFGxTYiUyQlUJXOaJIcM2ZM+j9DDoCSJKrSK82J2kf2ITIv6ramX+Sx1QTOMY2KlwCl8VEJkpKo/h2XCFR6LWqBgn1Fw0D03vOaoxrLavbn3KlkhuV9jZZpdIx57qiYgp5TnWg4jyLHvw0bNqS2tWvX4rTTTssd8/nnn0/fM0fB2LFjUxvnrc6nl19+OW2zMEGUkaq5uTm1MW5bryt6xqLiNapt8bqirFlASbtTJytuqzZUj+iSA52W1Pk2KtwTOcuqgyx/t/SZ5pJZtIwIlO6LOktxmU5/v6IMZ/zd5X38/PPPc88e0XOzb6q56zHbQp8tvmNU2yeVfvu5v7ZxPun9qAXWpI0xxpiCUhVNWt316ayjGgLRQHJKYipxqzRJKVClZgaaK5TEKq0lRGFbPI5KlXSIUclu/PjxAEra2eTJk8P1Eu0jncRUa4rCI9oqwabH1vUbatJRxjWgpP1t3Lgxtek2oca+atWqNvtTj+h4aAgWtTidYxzj8mxeQFwUAoiLQPC+Rc5UOr+j9bm2MnQBpfmoJSQHDhyY5uTo0aMBAIsXL07fv/POOwDySRpYJlOfE9WaVSsrZ+HChWmbiS9oXQLyYxWF/bQV3qhalc7V5cuXA8g7/9Vrhjxj2sKOY8YYUyBUWKFANXz48NRGAUiFdo3vjSIMuK3H5vJaJDDpcaLcAdpGhSOqtMbz7d69O7eUQoFVzeYUyFTQ5XkiM7z2N6qxrspRJAhGSpEKppq6upbY3G2MMcYUlKpo0irRvPrqqwBKxSmA0sK8mvEi13uV+CipqXmO0pSavaIsWyqVUVJTp6zIaSWqN00zHiWyvn37thviwL7p+Wi6j+Ky9Vq135SMo8w/6oCmx4mKDVAyVvP7ypUrAZRM890JXVLRsWE5vmiMNU66PJQEyN9fOnxpG+eeHpv3X+PlOe5AaTkoOk5U57s83p3/Z6y3OlhFhVgiJ5uOomNKzU/7PXTo0LTNvkfjqPeD87GlpSW1aba4qIRjd4RzUJcrOB/VoVFzIETZ4aJcCxFRyUd1kuQ9igrM6G/fqFGjAJTm/ODBg3NzgsfUY0f3lN9Hv7/6t1Ee82hZSPsdZR9j2BWQt0TUEmvSxhhjTEGp+po0HT3mz5+f2r71rW8ByDuTUYKKnE6AknOXSmJ0slEJiQ4vqg2pxMc1EXXAorTFcoHaptIrpThKn42NjTkpkFp+VLBdNRtqs3r9eh5uq7RITUMlQ2plan1QaZCSqrZR2tQxo/ZSSXrtLqgVhpqdjntUxpNzR8MyVCvktrZRstf1Nz4Hqj3rfWF4lGrf0TyIsnU1Nja2qg4UhUF1BXzeXnrppdSmY8Hx0xBMPptqXeLzqG1tlZA1prtixzFjjCk4uqRAYVyVDRXCuK0CJ4v0RMsMkSOWosemohQ5YKkSVV5gozzemQKyHpuRFSqYRnkH9BoonEbZzlTopVKjAm6UNvi1114Lv68lNncbY4wxBaXqmjQlGXV1j7K90IytbWr6omSpjlM0F6sJnJKYOsZEpc4ic7cWy6BJOiqWwX937doVSphq5mQ8qpoDaV4+/fTTU5tKi23FlqoEybHS+Fc1Y0fOE9xfrz+Kne4uRJnVgJLjjZpheS/1/nHuVHJEJGoi1/lBGFKjf6eZndSxsq3jRNe1Z8+eVoVctOhENTQE7U8UCqRjz/nd3ZdXjNkfbO42xpiCo9EXVHA0dlpTbkZ+EfTt0URHFDQrmbupFKhQSJ+aKO2tmrRVoeI5Im/qKP2xRqewb5UKY/A42m8qayr0UXFRgVs94uk9rwpOUbC52xhjjCkoNdOk1QRGk5yaqSl1qcSmWXW4rV7Sw4YNAxBLYozfBPLpLilNqrcuJUIt/8Z40yjWT2P1tI+U5FjnFgCee+45APmCCDRzqvTJawFK6StVmmQ/1NTKNjVtqvRKxwyVJhctWgSgVEChvB/dDZXC1eRKE79K5PQ61pSYdErRuarHpDagTjRRmcAoTa0WZ+HfRtECkVm4krmb3uM654uGzdztoxonf08YiwzkY9GpVWtMNJ3IoqUZJboXUWauKMWtLteUH698iYbt0fzWJaAoJlz7GGUS47k0oidK8csCSUApzWwR56I1aWOMMaagFEKTnjdvHgBg5MiRqY0xyrrWEmk+qpFyW5P7cy1HnaE0k1YkOVE6e/LJJ1t9N2LEiLQ9btw4APlSkqpJsz//+c9/WrXpeanZvvnmm6lNNX+Oi44PJWfV9hl7q9YFlXjpbKc5aVmOsCfGoOq9Yty9tlGb1XHnHFRNWqGkHpWl1GNrSA1RbSjKpESriGr7/F4tPNu2bUtzknOvO1tHjOnO2HHMGGPqCCoeKoxrbXCaudVMzegWXf7isqBGNERx0lFqWl0yo9KjiheX1jROWgVbOrJFMdhq2o6S8ERCql5XVGmRTnS6bKCKUCQ0FwWbu40xxpiCUghNmo5j6v5O5wiV8lRSi4py0KVeixZQ0lJzd3vOATQ1qll4zpw5APL1hikZsobukiVLciZrOlJozdu2zq3fqWTHpO/q3EbJUU33NKXr36nzCI+j19UTzdwR1E6iVKE6xyjl61zUmGY6q6gWo2ZuQg1BncmiFLh6HJ4zinNWjWPJkiXJqYgOgd29EEVPgvdSHVI1UxaLxehSIX8nVAPmnNE0wpFmq3OQ32sbNVYWCtLv1WlSw8jYN12O43PS3nOgjmX8zY9Cq/Ra2A91kFVNushYkzbGGGMKSiE0aaLSPrUG1ULbg/uo5tJW2Ep7RMHwqqU++OCDAIAbbrgBwF7JVjOJdZaWSs1Jg+8pBarmR+cg1bSiIu5FyUlbRHTu8P6pBkBNupK1YtKkSQDyiSa4j2oDPLbOsajMqd5f7r906dLUxtCR6dOnp7Zly5bhm9/8JoD8Wp0xpv4o1EvaGGNMx1ABTCNRKECeeeaZqY0CoOZaiJzAVFGicKn7EDVJc9lPl+hoXqcQ+vnnn+ccwiiE6tIkl5dUMKU5XIVZ3YfnUee28usDSjHRzFMBFKdedHvY3G2MMcYUlG6lSVfDnKvHppMYzcyLFy/u0nOr5KwOY6SI2XLqGY6njuvbb7/d6u9UYj/hhBMA5LOHRVmeqC2oY2RUq1zPTVP8ggULUhsdYTSHwJIlS9Kc9JzoGag2/PzzzwPIa7aRMxmXwnQ5R3+/OEdVs+UxNbyJWqwu+1Ar5tw/8sgjc0tEXO7ROc/9dYkuKiqjczr6nsdh4SIAmDt3LoC841i9YE3aGGOMKSjdSpOuNpQ6dd2lWlhDKg5R3mDVSOjwFZUI1ZA+1SAYZqL3mSE3DKUDSutq6rCYZZnnhzHdBL+kjTGmG0FhkOUXgdJyyOTJk1MbTc0qPGoxGcb863INHcbUBE7HMU09S7M4Bc/GxsZc5ATbNQsZjxkV01ChUx3Z6BCnUUDMA6Gx4yzvWY/5AmzuNsYYYwqKNWljviZq2qb0ftRRR6U2mrR1OWT06NEA8lpKVIJPw01YLCMKHalHDcEY0z5+SRtjTDdETdJMeqMe1lOnTgVQikgA8j4SFAZVAKQJXAXKyExN4ZK+FRs3bkx90O+PPvro1BbVao/8fFQoZmTFwoULUxt9NrpL0iabu40xxpiCYk3amE6ERVUef/zx1HbyyScDyDu8UHvRVKGqsVDjeeihh1LbqlWruqDHpifAuaWFhlg0aPz48amtubk5bbNwjMY/MzWxaqn8Xud3uca9c+dOvPjii+l7FvWYMWNGamNstcZ8f/DBBwDyy0LqEMaIBy3b2V00aGJN2hhjjCko1qSN6USosaxbty61MTvcWWedldqoGURFNwDgqaeeAgC89dZbqc2xz8b0PPySNsaYHgjjml944YXU9vLLL6dtmqQ1lSidukaOHJna6GymTmcsaMFjPPLII8l0DZRSHC9atCi1MUWuprhl6mVt03hsrS3dXamJuXvIkCGYM2cO1q9fjyzLcjcc2Bugfs8992Dr1q3YuHEjrr322vRd79698fDDD2P16tXIsgznnHNOtbtvasxbb72Fbdu2pc+uXbvwz3/+M31/6qmnYvHixfj888+xePHilLfYGGPqjZpo0nv27MHjjz+OW2+9Ff/73/9afX/zzTdjzJgxGDlyJIYMGYL58+fj7bffxhNPPAFgbwL5WbNm4eGHH652100BGDt2bO7/q1atSnOhd+/emDNnDmbNmoU77rgDV111FebMmYMxY8Z0Wn3vjqBOYAxRGTx4cGpjUQJNBaoOMc8++yyA7ucEY4qHzlUt4sNt1YCJhlMx65cWmmH4Fuuab9iwIbc/HSMfe+yx1MZnQfvjJZ4OaNI/+9nP8Mgjj+TabrvtNsyaNWu/T7p582b86U9/yuUbVmbMmIFf//rX+OSTT7Bs2TLcdddduPLKKwHsXbe77bbb8N///tc/YHXI6NGj8eGHH2LChAkAgKFDh2Lz5s37bRH5v//7Pxx++OF49NFHAQDnnnsuDjjgAMyaNQs7d+7E7bffjoaGBpx33nmddg3GGFMt2tWk77//ftx888049NBDsXXrVjQ2NuJHP/oRLrjgAvzxj3/E5ZdfHu733nvv7ZeZccCAARg2bBhef/311Pb666/j4osv3udjmeKxatUqXH/99bj//vtxxhln4N5778V9992HZ599dr/m04wZM/Doo48myf2UU07BG2+8kfubN954A6ecckqyxFQbagPz589PbcxtrNr1vHnz0na9FKQ3xnQt7b6k33//fSxYsAA/+MEPcPfdd+P888/Hli1b8Morr+CVV17B1Vdf3akdYsydZsbZunVrckAoImr6Me1z991348ILL8SiRYuQZRkuuugiAMDVV1+9T/PpoIMOwiWXXJL2B/bOH507QPHnT1fgOWm6El06+jrLSDZnt0+HHMfuu+8+XHHFFQCAK664An//+987fIKzzz47OfhoOEklGMiuHoX9+/fPefQVjZkzZ2LmzJm17kZdcdddd2HcuHG4/fbb99tD83vf+x4++uijtH4L7J0/OneA4s+frsBz0pjuQ9bep6mpKfvoo4+yU045Jdu2bVs2YsSIDED2pz/9Kdu2bVv4eeutt9o9bmNjY5ZlWTZy5Mhc+/r167Np06al/99yyy3ZAw880Gr/lpaW7Jxzzmn3PP4U69O3b9/s3Xffze66665s3bp12cCBA/drPs2bNy+75ZZbcm3Tp0/PWlpacm1r1qzJvv3tb9f8uvXTq1evrFevXlljY2P61LpP/vjT2Z8777wzu/POO2vejzr/dOwP//znP2evv/569tRTT3XKiZuamrKDDz44y7IsO/7447Ompqb03a233po988wz2YABA7ITTjgh27BhQ+5Htk+fPllTU1PW0tKSTZ8+PbevP8X/3H333dns2bMzYO9D/OCDD+7zMYYPH57t2rUrGz16dK69d+/e2Zo1a7Jrrrkm69OnT3b11Vdna9asyXr37l3z69aPX9L+9ISPX9Kd8unYH5511llZlmXZlVde2SknjuB3ffr0ye65555s69at2fvvv59de+21uX1Xr17dat9ybdyfYn4uuuiinPbct2/fbMWKFdnll1++T8e54YYbsgULFoTfNTc3Z4sXL862b9+evfzyy1lzc3PNr9sff3rixy/pr/9p+P8b7TJixAgsW7YMQ4YM6XHre8YYY/adO++8EwBw1VVX1bgn9UuHHMcaGhpw3XXXYfbs2X5BG2OMMVWi3RCsgw8+GJs2bcLatWtx/vnnV6NPxhhjjEEHXtLbt2/vcTGmxhhjTBFwPWljjDGmoPglbYwxxhQUv6SNMaYAjBw5ElmW5cqw3nTTTa3+buDAgdi8eTOee+65GvTSVJualKo0xhgTM2DAgDYr/P3ud7/D0qVL0auXdayegO+yMcbsB5deemlO692xY0eu0llXMGXKFIwdOxb33ntvl57HFAe/pI0xZj946KGH0K9fP/Tr1w/Dhg3DqlWr8MADD+D666/Hxx9/XPHTHmvXrkVLSwv+8pe/4LDDDkvtvXr1wh/+8Af85Cc/wd4EjcVn+fLlrsjWCdQ87Zk//vjjT71+Ghoasn/961/ZHXfc8bWO07dv3+z000/PGhsbsyOPPDJ7+OGHs8cffzx9/9Of/jSdY8aMGdlzzz1X82v3pyqfmnfAH3/88aduP7/97W+zZ555JjvggAM6vM+IESNyVd6ivxk8eHCWZVl2yCGHZEOHDs1WrVqVct77Jd1zPnYcM8aY/eSHP/whLrvsMkycOBG7d+8GANx44434+c9/XnGffv36oaWlpd0kUTRp9+rVC5MmTcLQoUPx9ttvAwAOOuggHHTQQdi4cSOGDx+OPXv2dNIVmSJSc0nBH3/88afePs3NzdnmzZuzU089tVOON2nSpOz444/PGhoaskGDBmWzZ8/Onn766QzYWxlw8ODB6XPNNddkCxcuzAYPHlzzcfCnaz92HDPGmP3gO9/5DgYOHIjnn38+eXg/9thj+3280aNH4/HHH8e2bdvw1ltv4csvv8Rll10GANi5cyc2bdqUPlu3bsWuXbuwadOmzrocU1A6XKrSGGOMMdXFmrQxxhhTUPySNsYYYwqKX9LGGGNMQfFL2hhjjCkofkkbY4wxBcUvaWOMMaag+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXl/wECvy9cAjCijAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "R9ObKK2YQW2s",
+ "colab_type": "text"
+ },
+ "source": [
+ "#### 3. Defining Data Set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "hjalzY4ZylGC",
+ "colab": {}
+ },
+ "source": [
+ "class MriData(torch.utils.data.Dataset):\n",
+ " def __init__(self, X, y):\n",
+ " super(MriData, self).__init__()\n",
+ " self.X = torch.tensor(X, dtype=torch.float32)\n",
+ " self.y = torch.tensor(y).long()\n",
+ " \n",
+ " def __len__(self):\n",
+ " return self.X.shape[0]\n",
+ " \n",
+ " def __getitem__(self, idx):\n",
+ " return self.X[idx], self.y[idx]"
+ ],
+ "execution_count": 14,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8lv4i-TSQvcX",
+ "colab_type": "text"
+ },
+ "source": [
+ "#### 4. Defining the CNN model architecture\n",
+ "\n",
+ "[3D PCNN architecture](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full)\n",
+ "![model](https://www.frontiersin.org/files/Articles/442577/fnins-13-00185-HTML/image_m/fnins-13-00185-g001.jpg)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cqFwgNpJHdDN",
+ "colab_type": "text"
+ },
+ "source": [
+ "At first check if we have GPU onborad:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "mvbAGRRAHS63",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "371a6856-9f5c-4688-f210-6066f488abb4"
+ },
+ "source": [
+ " torch.cuda.is_available()"
+ ],
+ "execution_count": 18,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 18
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "jX-W0Nv_HaLG",
+ "colab_type": "code",
+ "colab": {}
+ },
+ "source": [
+ "if torch.cuda.is_available():\n",
+ " device = torch.device(\"cuda\")\n",
+ "else:\n",
+ " device = torch.device(\"cpu\")"
+ ],
+ "execution_count": 19,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "vvoEO3-oQxfV",
+ "colab_type": "code",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 485
+ },
+ "outputId": "30a6b67d-2c69-4db9-a725-1a518841f82d"
+ },
+ "source": [
+ "## Hidden layers 1, 2 and 3\n",
+ "hidden = lambda c_in, c_out: nn.Sequential(\n",
+ " nn.Conv3d(c_in, c_out, (3,3,3)), # Convolutional layer\n",
+ " nn.BatchNorm3d(c_out), # Batch Normalization layer\n",
+ " nn.ReLU(), # Activational layer\n",
+ " nn.MaxPool3d(2) # Pooling layer\n",
+ ")\n",
+ "\n",
+ "class MriNet(nn.Module):\n",
+ " def __init__(self, c):\n",
+ " super(MriNet, self).__init__()\n",
+ " self.hidden1 = hidden(1, c)\n",
+ " self.hidden2 = hidden(c, 2*c)\n",
+ " self.hidden3 = hidden(2*c, 4*c)\n",
+ " self.linear = nn.Linear(128*5*7*5, 2)\n",
+ " self.flatten = nn.Flatten()\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.hidden1(x)\n",
+ " x = self.hidden2(x)\n",
+ " x = self.hidden3(x)\n",
+ " x = self.flatten(x)\n",
+ " x = self.linear(x)\n",
+ " x = F.log_softmax(x, dim=1)\n",
+ " return x\n",
+ "\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "\n",
+ "c = 32\n",
+ "model = MriNet(c).to(device)\n",
+ "summary(model, (1, 58, 70, 58))"
+ ],
+ "execution_count": 20,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "----------------------------------------------------------------\n",
+ " Layer (type) Output Shape Param #\n",
+ "================================================================\n",
+ " Conv3d-1 [-1, 32, 56, 68, 56] 896\n",
+ " BatchNorm3d-2 [-1, 32, 56, 68, 56] 64\n",
+ " ReLU-3 [-1, 32, 56, 68, 56] 0\n",
+ " MaxPool3d-4 [-1, 32, 28, 34, 28] 0\n",
+ " Conv3d-5 [-1, 64, 26, 32, 26] 55,360\n",
+ " BatchNorm3d-6 [-1, 64, 26, 32, 26] 128\n",
+ " ReLU-7 [-1, 64, 26, 32, 26] 0\n",
+ " MaxPool3d-8 [-1, 64, 13, 16, 13] 0\n",
+ " Conv3d-9 [-1, 128, 11, 14, 11] 221,312\n",
+ " BatchNorm3d-10 [-1, 128, 11, 14, 11] 256\n",
+ " ReLU-11 [-1, 128, 11, 14, 11] 0\n",
+ " MaxPool3d-12 [-1, 128, 5, 7, 5] 0\n",
+ " Flatten-13 [-1, 22400] 0\n",
+ " Linear-14 [-1, 2] 44,802\n",
+ "================================================================\n",
+ "Total params: 322,818\n",
+ "Trainable params: 322,818\n",
+ "Non-trainable params: 0\n",
+ "----------------------------------------------------------------\n",
+ "Input size (MB): 0.90\n",
+ "Forward/backward pass size (MB): 201.01\n",
+ "Params size (MB): 1.23\n",
+ "Estimated Total Size (MB): 203.14\n",
+ "----------------------------------------------------------------\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "wUtTLI4ZwhDi"
+ },
+ "source": [
+ "#### 5. Training the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "yUZGw-ETwKA5",
+ "colab": {}
+ },
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42) \n",
+ "#del X, y #deleting for freeing space on disc\n",
+ "\n",
+ "train_dataset = MriData(X_train, y_train)\n",
+ "test_dataset = MriData(X_test, y_test)\n",
+ "#del X_train, X_test, y_train, y_test #deleting for freeing space on disc"
+ ],
+ "execution_count": 16,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "BttsN8kG3YyG",
+ "colab": {}
+ },
+ "source": [
+ "train_dataset = MriData(X_train, y_train)\n",
+ "test_dataset = MriData(X_test, y_test)\n",
+ "train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ "val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) "
+ ],
+ "execution_count": 17,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "Ry5Deo3uYufS",
+ "colab": {}
+ },
+ "source": [
+ "CHECKPOINTS_DIR = data_dir +'/checkpoints'\n",
+ "\n",
+ "criterion = nn.NLLLoss().to(device)\n",
+ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)"
+ ],
+ "execution_count": 22,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "InIC1EMOZRHs",
+ "colab": {}
+ },
+ "source": [
+ "# timing\n",
+ "from tqdm import tqdm\n",
+ "\n",
+ "def get_accuracy(net, data_loader):\n",
+ " net.eval()\n",
+ " correct = 0\n",
+ " for data, target in data_loader:\n",
+ " data = data.to(device)\n",
+ " target = target.to(device)\n",
+ "\n",
+ " out = net(data)\n",
+ " pred = out.data.max(1)[1] # get the index of the max log-probability\n",
+ " correct += pred.eq(target.data).cpu().sum()\n",
+ " del data, target\n",
+ " accuracy = 100. * correct / len(data_loader.dataset)\n",
+ " return accuracy.item()\n",
+ "\n",
+ "def get_loss(net, data_loader):\n",
+ " net.eval()\n",
+ " loss = 0 \n",
+ " for data, target in data_loader:\n",
+ " data = data.to(device)\n",
+ " target = target.to(device)\n",
+ "\n",
+ " out = net(data)\n",
+ " loss += criterion(out, target).item()*len(data)\n",
+ "\n",
+ " del data, target, out \n",
+ "\n",
+ " return loss / len(data_loader.dataset)\n",
+ "\n",
+ "\n",
+ "def train(epochs, net, criterion, optimizer, train_loader, val_loader, scheduler=None, verbose=True, save=False):\n",
+ " best_val_loss = 100_000\n",
+ " best_model = None\n",
+ " train_loss_list = []\n",
+ " val_loss_list = []\n",
+ " train_acc_list = []\n",
+ " val_acc_list = []\n",
+ "\n",
+ " train_loss_list.append(get_loss(net, train_loader))\n",
+ " val_loss_list.append(get_loss(net, val_loader))\n",
+ " train_acc_list.append(get_accuracy(net, train_loader))\n",
+ " val_acc_list.append(get_accuracy(net, val_loader))\n",
+ " if verbose:\n",
+ " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(0, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
+ "\n",
+ " net.to(device)\n",
+ " for epoch in tqdm(range(1, epochs+1)):\n",
+ " net.train()\n",
+ " for X, y in train_loader:\n",
+ " # Perform one step of minibatch stochastic gradient descent\n",
+ " X, y = X.to(device), y.to(device)\n",
+ " optimizer.zero_grad()\n",
+ " out = net(X)\n",
+ " loss = criterion(out, y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ " del X, y, out, loss #freeing gpu space\n",
+ " \n",
+ " \n",
+ " # define NN evaluation, i.e. turn off dropouts, batchnorms, etc.\n",
+ " net.eval()\n",
+ " for X, y in val_loader:\n",
+ " # Compute the validation loss\n",
+ " X, y = X.to(device), y.to(device)\n",
+ " out = net(X)\n",
+ " del X, y, out #freeing gpu space\n",
+ " \n",
+ " if scheduler is not None:\n",
+ " scheduler.step()\n",
+ " \n",
+ " \n",
+ " train_loss_list.append(get_loss(net, train_loader))\n",
+ " val_loss_list.append(get_loss(net, val_loader))\n",
+ " train_acc_list.append(get_accuracy(net, train_loader))\n",
+ " val_acc_list.append(get_accuracy(net, val_loader))\n",
+ "\n",
+ " if save and val_loss_list[-1] < best_val_loss:\n",
+ " torch.save(net.state_dict(), CHECKPOINTS_DIR+'best_model')\n",
+ " freq = 1\n",
+ " if verbose and epoch%freq==0:\n",
+ " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(epoch, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
+ " \n",
+ " return train_loss_list, val_loss_list, train_acc_list, val_acc_list "
+ ],
+ "execution_count": 23,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2UznBfFtRtQS",
+ "colab_type": "text"
+ },
+ "source": [
+ "##### Training first **20 epochs**:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "ETQqxi4CeFgm",
+ "colab": {}
+ },
+ "source": [
+ "# training will take ~3 min\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "EPOCHS = 20\n",
+ "\n",
+ "train_loss_list, val_loss_list, train_acc_list, val_acc_list = train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False) "
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "AgbxRc1RsPEl",
+ "colab": {}
+ },
+ "source": [
+ "plt.figure(figsize=(20,8))\n",
+ "\n",
+ "plt.subplot(1, 2, 1)\n",
+ "plt.title('Loss history', fontsize=18)\n",
+ "plt.plot(train_loss_list[1:], label='Train')\n",
+ "plt.plot(val_loss_list[1:], label='Validation')\n",
+ "plt.xlabel('# of epoch', fontsize=16)\n",
+ "plt.ylabel('Loss', fontsize=16)\n",
+ "plt.legend(fontsize=16)\n",
+ "plt.grid()\n",
+ "\n",
+ "plt.subplot(1, 2, 2)\n",
+ "plt.title('Accuracy history', fontsize=18)\n",
+ "plt.plot(train_acc_list, label='Train')\n",
+ "plt.plot(val_acc_list, label='Validation')\n",
+ "plt.xlabel('# of epoch', fontsize=16)\n",
+ "plt.ylabel('Accuracy', fontsize=16)\n",
+ "plt.legend(fontsize=16)\n",
+ "plt.grid()"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "OT1c6OQmwvRV"
+ },
+ "source": [
+ "##### K-Fold model validation:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Sody3ciZTAcy",
+ "colab_type": "text"
+ },
+ "source": [
+ "Questions:\n",
+ "1. What is the purpose of K-Fold in that experiment setting?\n",
+ "2. Can we afford cross-validation in regular DL?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "kwwuFwsH2Ifa",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 121
+ },
+ "outputId": "c0bc9da8-5ea6-4ef8-fdcd-8a4ca7735109"
+ },
+ "source": [
+ "# execute for ~ 5 min\n",
+ "skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)\n",
+ "cross_vall_acc_list = []\n",
+ "j = 0\n",
+ "\n",
+ "for train_index, test_index in skf.split(X, y):\n",
+ " print('Doing {} split'.format(j))\n",
+ " j += 1\n",
+ "\n",
+ " X_train, X_test = X[train_index], X[test_index]\n",
+ " y_train, y_test = y[train_index], y[test_index]\n",
+ " train_dataset = MriData(X_train, y_train)\n",
+ " test_dataset = MriData(X_test, y_test)\n",
+ " train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ " val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) \n",
+ " \n",
+ " torch.manual_seed(1)\n",
+ " np.random.seed(1)\n",
+ "\n",
+ " c = 32\n",
+ " model = MriNet(c).to(device)\n",
+ " criterion = nn.NLLLoss().to(device)\n",
+ " optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ " scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
+ "\n",
+ " train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False, verbose=False) \n",
+ " cross_vall_acc_list.append(get_accuracy(model, val_loader))\n"
+ ],
+ "execution_count": 26,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Doing 0 split\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.04s/it]\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Doing 1 split\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "Doing 2 split\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "RKbs0w6HwynW",
+ "colab": {}
+ },
+ "source": [
+ "print('Average cross-validation accuracy (3-folds):', sum(cross_vall_acc_list)/len(cross_vall_acc_list))"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "QLX_sxmGsgI2"
+ },
+ "source": [
+ "#### Model save\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "colab_type": "code",
+ "id": "bSiiJhZZsf3u",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "outputId": "26b6ea06-13c7-436b-b4cb-a8243e34cef8"
+ },
+ "source": [
+ "# Training model on whole data and saving it\n",
+ "dataset = MriData(X, y)\n",
+ "loader = torch.utils.data.DataLoader(dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ "\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "\n",
+ "model = MriNet(c).to(device)\n",
+ "criterion = nn.NLLLoss().to(device)\n",
+ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
+ "\n",
+ "train(EPOCHS, model, criterion, optimizer, loader, loader, scheduler=scheduler, save=True, verbose=False) \n",
+ "pass"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ " 25%|██▌ | 5/20 [01:31<04:33, 18.23s/it]"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Xmw3OAG7Z9p4",
+ "colab_type": "text"
+ },
+ "source": [
+ "## What else?\n",
+ "\n",
+ "MRI classifcation model interpretation \n",
+ "\n",
+ "Visit: https://github.com/kondratevakate/InterpretableNeuroDL\n",
+ "\n",
+ "Meaningfull perturbations on MEN brains prediction:\n",
+ "![img](https://github.com/kondratevakate/InterpretableNeuroDL/raw/master/image/man.png)"
+ ]
+ }
+ ]
+}
\ No newline at end of file
diff --git a/seminar3/mri_3DCNN.ipynb b/seminar3/mri_3DCNN.ipynb
index 83c3384..9ce6672 100644
--- a/seminar3/mri_3DCNN.ipynb
+++ b/seminar3/mri_3DCNN.ipynb
@@ -1,1002 +1,1002 @@
{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
- "accelerator": "GPU",
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "URuxAJkkEjV0"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "bHS8qClIqSdl"
+ },
+ "source": [
+ "## **MRI classification with 3D CNN**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "gYI4bcYpptdM"
+ },
+ "source": [
+ "#### 1. Introduction\n",
+ "In this notebook we will explore simple 3D CNN classificationl model on `pytorch` from the Frontiers in Neuroscience paper: https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full. In the current notebook we follow [the paper](https://arxiv.org/pdf/2006.15969.pdf) on `3T` `T1w` MRI images from https://www.humanconnectome.org/. \n",
+ "\n",
+ "**Our goal will be to build a network for MEN and WOMEN brain classification, to explore gender influence on brain structure and find gender-specific biomarkers.**\n",
+ "\n",
+ "\n",
+ "*Proceeding with this Notebook you confirm your personal acess [to the data](https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release). \n",
+ " And your agreement on data [terms and conditions](https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms).*\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "YqAayt8wtZ-m"
+ },
+ "source": [
+ "1. Importing needed libs\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "TbVC-fIYcwoA"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import torch\n",
+ "import torch.nn as nn\n",
+ "import torch.utils.data as torch_data\n",
+ "import torch.nn.functional as F\n",
+ "from torchsummary import summary\n",
+ "import os\n",
+ "from sklearn.model_selection import train_test_split, StratifiedKFold\n",
+ "\n",
+ "\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Tb4Hu77AuRte"
+ },
+ "source": [
+ "2. Mounting Google Drive to Collab Notebook. You should go with the link and enter your personal authorization code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
"colab": {
- "name": "mri_3DCNN.ipynb",
- "provenance": [],
- "collapsed_sections": [],
- "toc_visible": true,
- "machine_shape": "hm"
- },
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.4"
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "ZXYXRCCIB2Ue",
+ "outputId": "10b09fe9-7442-42d7-cdd9-e52b66dd7596"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mounted at /content/drive\n"
+ ]
}
+ ],
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')"
+ ]
},
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "URuxAJkkEjV0",
- "colab_type": "text"
- },
- "source": [
- ""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "bHS8qClIqSdl",
- "colab_type": "text"
- },
- "source": [
- "## **MRI classification with 3D CNN**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "gYI4bcYpptdM",
- "colab_type": "text"
- },
- "source": [
- "#### 1. Introduction\n",
- "In this notebook we will explore simple 3D CNN classificationl model on `pytorch` from the Frontiers in Neuroscience paper: https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full. In the current notebook we follow [the paper](https://arxiv.org/pdf/2006.15969.pdf) on `3T` `T1w` MRI images from https://www.humanconnectome.org/. \n",
- "\n",
- "**Our goal will be to build a network for MEN and WOMEN brain classification, to explore gender influence on brain structure and find gender-specific biomarkers.**\n",
- "\n",
- "\n",
- "*Proceeding with this Notebook you confirm your personal acess [to the data](https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release). \n",
- " And your agreement on data [terms and conditions](https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms).*\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "YqAayt8wtZ-m",
- "colab_type": "text"
- },
- "source": [
- "1. Importing needed libs\n"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "TbVC-fIYcwoA",
- "colab": {}
- },
- "source": [
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "import pandas as pd\n",
- "import torch\n",
- "import torch.nn as nn\n",
- "import torch.utils.data as torch_data\n",
- "import torch.nn.functional as F\n",
- "from torchsummary import summary\n",
- "import os\n",
- "from sklearn.model_selection import train_test_split, StratifiedKFold\n",
- "\n",
- "\n",
- "%matplotlib inline"
- ],
- "execution_count": 1,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Tb4Hu77AuRte",
- "colab_type": "text"
- },
- "source": [
- "2. Mounting Google Drive to Collab Notebook. You should go with the link and enter your personal authorization code:"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "ZXYXRCCIB2Ue",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "10b09fe9-7442-42d7-cdd9-e52b66dd7596"
- },
- "source": [
- "from google.colab import drive\n",
- "drive.mount('/content/drive')"
- ],
- "execution_count": 2,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Mounted at /content/drive\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "1IlGfuWsuot2",
- "colab_type": "text"
- },
- "source": [
- "3. Get the data. Add a shortcut to your Google Drive for `labels.npy` and `tensors.npy`. \n",
- "\n",
- "Shared link: https://drive.google.com/drive/folders/1Cq35zfhqJHlmhQjNlsDIeQ71ZsT2aghv?usp=sharing"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "WBxqm43mKUCl",
- "colab_type": "code",
- "colab": {}
- },
- "source": [
- "data_dir = '/content/drive/My Drive/Skoltech Neuroimaging/NeuroML2020/data/seminars/anat/'"
- ],
- "execution_count": 6,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "5tJhdbkMKte1",
- "colab_type": "text"
- },
- "source": [
- "Let's watch the data. We will use `nilearn` package for the visualisation: \n",
- "https://nilearn.github.io/modules/generated/nilearn.plotting.plot_anat.html#nilearn.plotting.plot_anat "
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "CRiEcgFIK5gZ",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "94cb16b6-fcd6-4d6a-fba1-a9e8b5131570"
- },
- "source": [
- "!pip install --quiet --upgrade nilearn\n",
- "import nilearn\n",
- "from nilearn import plotting"
- ],
- "execution_count": 8,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "\u001b[K |████████████████████████████████| 2.5MB 2.5MB/s \n",
- "\u001b[?25h"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "jsQ_-1WsMd0C",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 235
- },
- "outputId": "9a272066-ac8e-44a3-f9d3-7d57e0788a84"
- },
- "source": [
- "img = nilearn.image.load_img(data_dir +'100408.nii')\n",
- "plotting.plot_anat(img)"
- ],
- "execution_count": 9,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 9
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydSY9c53X+n5rneehq9sgmRVJTSA1WFFvQ30K8sBYxEiDfwUCW3mWT5AMEQbZZJcgiayNZOAnsGDAMx3FiQVEkW7I4NNnssbprnsf/ovE7/RZlW3YispvSfQBBEtlVdbvue8/wnOec45M0lwcPHjx48ODhwsF/3hfgwYMHDx48ePjl8Jy0Bw8ePHjwcEHhOWkPHjx48ODhgsJz0h48ePDgwcMFheekPXjw4MGDhwsKz0l78ODBgwcPFxSek/bgwYMHDx4uKDwn7cGDBw8ePFxQeE7agwcPHjx4uKDwnLQHDx48ePBwQeE5aQ8ePHjw4OGCwnPSHjx48ODBwwWF56Q9ePDgwYOHCwrPSXvw4MGDBw8XFJ6T9uDBgwcPHi4oPCftwYMHDx48XFB4TtqDBw8ePHi4oPCctAcPHjx48HBB4TlpDx48ePDwWPGtb31L3/rWt877Mp5KBM/7Ajx48ODBw+cb169fP+9LeGrhZdIePHjw4MHDBYXnpD148ODhCePevXv6/d///fO+DA+/Je7du6der6d2u639/X397d/+rRKJxGP9TM9Je/DgwYMHD78h/uAP/kCpVEq3bt3SSy+9pD/90z99rJ/nOWkPHjx48ODht8Th4aH+5V/+Rbdu3Xqsn+MJxzx48ODBwxPH1taWxuOxQqGQQqGQCoWCfvSjH533Zf3GWFlZ0dtvv61/+7d/e6yf4zlpDx48ePDwG+HWrVuaz+caDofy+/1KJpMaDoc6OjpSMBjUzs7Op77H1taW8vm8lpeXFQwGFY/HNRqNdHx8rNdee02tVkuS9OGHHz7uX+d/hW9/+9uaz+dKpVL63ve+pz//8z9/rJ/nOWkPHjx48PBr8cYbb2g+nyuZTMrv92s6nUqSZrOZRqORfD6fWq2WlpeXNRgMVK/XP/Ee4XBYW1tb2traUiKRUCQS0XQ6VbfblSRls1kVCgUNh0ONRiNNJhO1Wi0dHR090d/10/CHf/iH+t73vqc333xT//AP/6Bisahms/nYPs9z0h48ePDg4ddiMploeXlZs9lM0+lUwWBQk8lEgUBA0WhUgUBAiURC0+lU4/FY3W73E5lwLBbTc889J5/Pp/l8Lr/fr0AgoNlspuFwqNlsptlsJp/PJ7/fry996Us6OTnRnTt3dOfOnXP6zX81fvCDH+jv/u7v9Jd/+Zf6oz/6o8f2OZ6T9uDBg4dzQCgUUiQSsf+fTCaWoZ4XXnvtNQWDQZ2cnKjX6ykcDsvn86lUKikYDCoQCGg4HJqTlaT5fK5IJKJIJCKfz6dAICCfz6dgMKhoNCq/3694PK5gMGh/vrS0pMFgIEkaDof2en6+Wq2q3W5rNBopGAxqdXVV3W7XHHssFrNr+vGPf3xu39df//Vfa3t7W7/zO7+j995777F8hqfu9uDBg4dzwHe+8x0NBgP75y/+4i/O9XreeustXb58WRsbG3rxxRd1+fJlxWIxra2tKRKJaD6fKxQKKZVKaTabaTKZaDQaaTQaWY02Go0qEokoEAgom80qGo1aZixJfr/fMm8CABx+JpNRJpNRs9nUeDzWYDDQwcGBQqGQ8vm8OfBAIKCXX35ZV65cUaVS0SuvvKI//uM/Ppfv7Pj4WH//93+vP/uzP3tsn+Fl0h48ePDwhHH58uXzvoQFfP3rX9d0OpXf71e/39d8Plc+n1cgEFAqlVK/31c2mzVnG4vF1Ov1NJvNFA6HFQqFlE6nJUm9Xk+tVkvBYFCdTkfj8Vg+n08+n0+j0UjxeFzhcFiz2Uzj8VjhcFjSqQOfz+caDAYaDoc6Pj7WbDbT8vKyJFltOpfLSZIGg4GCwaBKpZLefffdJ/I9/bL79id/8ieP9TM9J/0ZggHyf/VXf3XOV+LBwy+Hd0Y9PIovf/nL6vV6qlQqmkwmikQi8vv9Go1GikQiGo/HyufzCofDVneORCIKh8Py+/2WHfv9fg2HQ00mE81mM3O4/X7fxGaz2UztdlvBYFDLy8uKRCLqdDqKRqMKhUIajUYaDAZqNBrKZDK6ceOG2u22ptOpstmsksmkSqWS5vO54vG4xuOxotGoXnzxRS0tLanZbOr9998/76/0M4XnpD9DeEPkPVx0eGfUg4sbN27I7/erVCppMBiYs41Go8pkMioWi5pOp/L5fAqHw0Z5S1Imk9F0OlU4HDba++TkxOhrFN7BYFDz+VzSabbc7XY1Ho+NIs/lcvb6QCAgSeaUe72eAoGABoOB8vm88vm85vO5gsGgstmsZrOZjo6O7L0qlYqy2awePnyo7e3tc/lOP2t4TtqDBw8evoC4cuWKNjc3LTum/zkYDGowGCgcDpvgSzpttwqFQvL5fJrNZvL7/QqFQur3+2q1WhqPx6bulk7rtcViUZPJRPP5XD6fz+jt2WymRqNhYjRJ8vl8mk6nikajyufz6na7qlQq6nQ6mkwmisVikk5buQqFgqRT8V02mzWnP5lMlM/nFQqFjG4/ODg4h2/3s8NjFY55Q+SfXpzHIHkPHjw8Prz11lt6/vnndevWLd26dUvT6VShUEjj8dhaofr9vobDoaTT2vJgMFCn09FoNLL2K0mWLbvCNxw9VDk/j1PHUeNMeR+EZTjsdDpt2TyUtqSFz3dBZh8MBk1BnkwmdePGDT377LOPfWzn44an7vbwK/GkB8l78ODh8SESiejGjRtaXV3V6uqqyuWyJpOJxuOxYrGYZrOZAoGA+v2+0daorHHYbq16Pp9bjVk6dbij0UiSrF0KBzwejzWZTExsJknj8ViNRsNeSy07n89rc3NTKysrNjLUbfmSZHXrbrerXq9ntDvv7fP5FAqFlEgktLS0pPX19Sf5VX+m8Jy0h0/Fkxok78GDh8eDt956S7FYTOFw2PqZ8/m8ptOpAoGARqORVlZWjMJOJBJqNBo6OjpSp9NRu922LBgxGZl4KBSyDBdHWS6Xlc1mFYlELGseDofa39/X8fGxOeVer2cqbgIA3jccDisYDBrNLsmy/Xq9btPKmE7G6+LxuPL5vFH10WhUq6ur5/bd/1/hOWkPnwoGyd++ffu8L8WDBw+/JV5++WWl02kFAgETXNE2RUmr1+up3+9bhi1JhULBpoFFo1GjoX0+n2KxmAKBgAKBgHK5nNLptCKRiNLptBKJhEajkfL5vGXq0WhUiURCzzzzjBKJhI6Pj43Grlar6nQ6CgaDVlKDHp9Op3Yd4XDYlOXD4dCU46jGmXqWyWQUDofVbDY1HA61u7t7YeeA/ybwnLSHX4lvf/vbarVaevjwoY6Ojh77IHkPHjx89kgmkzYnO5FIKBgMWm8yfy6dTjzz+/3mdBFrxWIxy4Z9Pp8kmVOEzg6FQgv/7/P5rJ7sZsS0TpVKJU2nU/V6Pc3nc6OsyaapT/t8PhuQIsn+HhEao0QDgYBdQyqVUrVald/v12Qy0WAwUKVSOYdv/rOBp+728CvxpAfJe/Dg4bPDG2+8YT3FklSpVEwolslk1O12lUqlTAUdDAZVq9WUTqdVLBat5kx7kySrD/d6PZv+FQgElMlkrMeZlqnJZKJ0Om3qcHe+d7/fVyQSUTAYtHryeDzWeDxWOp22LJvXbW5uant726jv2Wy20Jsdj8eVy+UUj8d1cHBgLV0+n09XrlyR3+9XKpXS9va2Dg8Pn/zN+D/Ac9IePhVPapC8Bw8ePjugdiZzRoUdCAQUiURULpd1dHRkk77a7bZms5kikYhisZjK5bJl2YlEQoFAwJZrIDTr9Xoaj8dqNpvqdDoLmTmgnoyjpE7NgJNgMGivY5JZIBCwv49EIgqFQrp8+bK63a729vYUDAbV7Xbl8/mUyWRUKBQUi8XU7/clyTJ5aPler6dUKqVMJuM56UdxEYfIe/jt8SQGyXvw4OGzQ6FQsE1VjPuUTqnqXC6nUCikpaWlBXU2dDYDQ8rlsvx+v1HWk8lEw+FQoVBI1WpV1WrVhGORSETdbteGm9RqNWulQp3NNDNod5/Pp8lkYjQ510vbViQSsSEnkUjE6t0EBKFQyLZzDQYD+Xw+JRIJJZNJU493Oh3L7Le2tnTt2jX5/X69//77ymazeuedd87tHv0meOw16Ys2RN7D/w5PYpC8Bw8ePjvgOHG8tCVBEeOIo9GovYbJYrw+Go3a38/n84U+6E6nY3Xg2Wymw8NDbW9v6xe/+IXq9bpqtZot2+AaaO/Cebo904wYlWQDTlB98xnT6dQCjHA4rGQyaUEILWPRaFSdTkeHh4caDoeaTqdqt9uKxWL2u0ynU8XjcWsZu8h4rJn0RRsi7+E3x3kMkvfgwcNnh3q9rmKxaFlwNps1ehmlNw6Q9qpUKmXrJiXZEoxQKKTJZGKZbK1WM7obZ16pVFSpVCw7TiQSJuzifVB1Q3FXq1VVKhUTf7n7pNmShUCMa4pGo7py5YrR6IPBwMaV+v1+7ezsaDAYaDQaWX93sVi0drFIJGIjUDudzrndn98UXk3agwcPHj6HoLTIWM1kMqlUKqVYLGZbqagN0/pEmxNZtt/vVywW03A4VDgcVrvdVjgcVr/f12w2UyqVssycvdBMMEsmk6rVajo5ObFrYpgJ1PR0OrXxoThZSbZ0QzodegJVPplMjCbvdDoL+6snk4mq1aparZaq1arVznO5nCaTiVZWVhSLxXT37l3L3hmmcpHhOWkPHjx4+Bzg9ddftzWO+/v7qlartrlqMpnYwgucXzQatQldLM/gz4fDoWW8zPMeDodKJBIaj8dW72aASCwWsww1GAyqWq0qk8no4ODAKGu0SKlUSj/96U+1tbWlXC6nRqOh4XCoTCZjwjKCBUmWvZNhk5Uz9YygYn9/X91uV91uV9ls1hZ7pFIplctlzWYzG6QSDoet/euiw3PSHjx48PA5wObmpjqdjvU601LV7/dVKBRsGYYk62Gmp1mSZdez2cwcHKKwQCBgoz2pQ1+6dEm9Xs/+HwFYt9tVMBhUu92W3+9XMpk0GhtRGa1hzWbTlN3D4dCmopHJuypvWq64Rhc+n8+yeXqmWQZSLBYVDAbVaDSstYufpT3sIuPiX6EHDx48ePi1ePvtt20ymHQ2wGQymWg0GunOnTvK5/PK5XKWEc/ncyUSCXNs0+nUatYouEejkTlWeqRHo5FisZg6nY6y2ayN95xOpzo8PLT+al6fzWbNuVIH3trass9g4AjLOFiBSZaM4pvaM21lfA7/zUhS6tn5fN4Wd/R6PbVaLZugtre3Z9dz0eE5aQ8ePHh4yhGPx205RTgcVqPRsHnbgUDAeoylUzEY08RwvlDJjNjkz6gb4+xwptSqB4OBZrOZTk5ObCWldCrmunv3rqnLUYVDZ/PeiMJQkUNnIxrjeoPBoFHeDD9xJ5SFw2Gtrq7aTPFkMmnBR6fT0c7Ojvr9vrrdrtrttubzufr9vpdJe/DgwYOHxw8c7GAwkCSVSiUb58l2KWjgdDptbVb0JrvbpmiLCofDlpUOBgMb8cn74aAPDw81m83U7XaN1k4kEtra2rLZ4Ai7ut2u8vm8otGoZfn0Vs/ncxWLRduaRc2ZHm+YAWrfCM3Y3JVOpy3z5vonk4n29vbse1paWlKpVLK+69lsppdfflnValU//OEPz+XefRo8J+3BgwcPTzlwjkwAm8/nisViRmGTXTJnmzGc9Be7GSwZKCpusmhX9Y3KutlsWgY9m81s8xROmwyfGjJrL8lgo9GotYMxHYx+bmrhfC4ZtST7DEk267vZbNrIULfnmvdDre7W3qVTFXw2m9WtW7f07rvvPulb96nwnLQHDx48POW4f/++crmc8vm8ZrOZ9TGn02mFQiHlcjlzZtKps6QVi6yaP5dkddxgMKjxeGwtWPP53BTcPp9P2WxWPp9PJycnisVilo2jHA8Gg1Z35u/a7fZCnToWi0nSgjPHMeNMeS07raPRqPr9vjl4HLAky8T5dz6fV7/ft8CCAS6oxxm0JUk3b97Uf//3fz+Zm/YbwnPSHjx48PCUY29vT/V6Xbu7u/L7/cpmsyoWi7YI4+TkROvr61YDRt09n89NQT2bzSz7fjRLjcfjkmT91r1ez2ra7G4Gs9nMJnl1Oh0TdJGxS1K321UikbDMlwwdWhznLp1t3mKaGEIz6GquCwEZY0Rx6IlEQolEQoPBwAISggiy7l6vp2QyqYcPHz6Bu/XbwXPSHjx48PCUolwuKxaLaWNjw3ZGs2Xq4OBA4/HY2pCOjo5sIhhiLeq3OEvqw/Q/40B9Pp/a7bbR18lkUq1WayFrDQQCarfbGgwGajQaJiIjy2aGdjwet/YnAgRJ5qCphUNxIxQjEIAGJ4DgZ9xebHq8R6OR7Y5wnT5bsghUQqGQ8vm8jo6OnvQt/FR4+6Q9ePDg4SlFMplULpezLVU4xlgspmw2q1wup2QyKUnW0oSSmyya+i/1ard3WjpTg0ciEZvF7VLnODkcubuJKhqNqtVqGVU+HA4lnWbSrVbrE1kzoz+pKeP8CRhwqpIWAgxGinItbg0bFTnXzrWgBKd3OhAIaGNj43Hfst8aXibtwYMHD08hXnvtNWWzWUmy7JPpYlC9KKQDgYDS6bTN08ZhkiW7TlGS/T3Tv/i5Xq9n+5tjsZi63a5l5DhRd0vW5cuXlc1m1Ww2FY/HVSwWNZlMFI1GlU6n7fq4Brf2zL7pXq9nQQGir9FoZNdKJt/tdm0sKap1fhdJttDDFY2heo9EIur3+0omkxdOQOY5aQ8ePHh4yvDyyy+rUCgok8lYdppMJk3BTdsUoitWRCKQenT4B21MODZeM5lMjDKn35nXQSkjUBuNRrp27Zplwz6fT3t7e1peXlY+n5ckXb9+XfF43FTjONxoNKrBYGBbq3w+n/r9vgncOp2Oba1KJpM24EQ6db6ow+n7pp9bkr03IJsmyECkNhwO7VouEjwn7cHD5wjr6+uazWYXUgDj4bMDaxrdedbUXumXRiSFI2WZBlQwr8P5+nw+y1ZjsZh6vZ5RxdSiodRdp+0OGuHv3H5tnDGiLgRg/DnO9tGtV61WS9Fo1DJjd3gJ7WI4VbL3cDisg4ODTzAE0tmqTYRzCOVGo5E5dCauXSRcrKvx4MHDb4XV1VVls1kVCgWjO2u1mpaWltTtdvXhhx+e9yV6eAyg9QhHE41GreZKJkq9lv9mRjY13k6no2QyaU4RgRZjPnlNIBBQr9dTv99XJpMxR4dTR/yFo8YJo/Lm/X0+n12DdLa7ms+Lx+NWZ6bfu9vtanl5Wf1+3zJcAgxq39JpDbvRaJhojTax+Xyu4+NjxeNx+zP6vlnhmc/nFwbBXLQd019oJ/3mm2+a0rDdbqter+vOnTv295ubm4pEIkqlUrZF5v79+/+rz1pdXVU8HrepPLPZTMvLy1pdXbXDdHJycmGn3nh4vOAcQBv+Oue6tbWlq1evyu/3K5PJmNgHQ0vdsd/vK5vN6sc//vET/E08PAlQi47FYspkMlajhd6GwpVk07nISMlCGZmJ8CoSiajZbCoajVqNGwEZ9e1Op2M7pwEKbwIASUab46xdCpz3Yt43CuzRaKTBYKCHDx/qzp07qlQqWl1dtYUcrVbLsnxauyTZPG5Als77E0RQp3bXcc7nc9spHY1GF9rELgq+kE76+eefVyqVUqlUsgPL4Pe1tTVTEgaDQZVKJctS5vP5/9pJS7KVbjw8S0tLdtjD4bAKhYJu3LjhZT9fMCwvL6tYLJpQptPpaGNj45eetZs3byqbzSqTyZgq1p3K5BojxEK/6r2k02ehXC6r3W7bJKn/+q//ety/sof/I9hoFY1G1e12zWbhsNjpDDWM6IsMstFoKBKJLAwSGY/HGo1GarfbKhQKSqVSJsYaDofqdru2G5oEhtfx+dTC+TcUuyTL8BkpCq0cCoXU6/XU7Xb14MEDHRwcqNvt6ujoSKlUSplMxhTikozixgmDRqNhn+Uqxvn/+XyuZDJpizrI2gOBgFKplF3jRdsx/YVz0mtra9ra2lqoO9D3l06nNRgMLJIsFAoql8tGgzz33HMaj8f62c9+9ivfPxqNamVlxWo2ZM5ErtlsVvP5XOl0emEAgHQakV6/fl3lclk/+MEPHs8X4OGJ4Pr160omkyaQQcX6zjvvLPzc1atXtba2pkqlYgaj2Wyq0WhoaWlJgUBAgUBAV65cUSqVUjweN5oQx4zBw3BDQ8bjcfn9fhWLxQUnHYlEdOvWLa2urtrmpEKhIOm0NeYb3/iGer2eqtWq6vW6Hjx48ES/Ow+fDlqXmLrFbmdEXlC2ULqMBkWABc3sztDmXJFtU38mK45EIjo6OjLHu76+bmIunDS1YRw1g0VITNiMJWlBLBaPx/Xzn//czikBA5+Ng6beTXAqndrvZrNpdpoecLJ2HDS/C2UCtz8bJmA+n1+4JOkL5aRXV1f10ksv2SFOJpMKhULqdrsaDAZKJBLmPLPZrNEqZBjtdltra2u/0kkjfIAep22g3++r2WwqlUrZQ8PMWlazSaeR4Gw2UyKRUKlUsnaEQCCgfD6vfD5vtNVgMPBozAuIq1evKhgMWr8lNB57dx9t7/D7/VpZWVEgEFA8HrdaHMakVCrp8uXLSqVSlh1hRHHMLjXpZj60maTTaWWzWVO1hkIhbW5u2nu4wh+o82QyqVQqpf39fc9JX0AcHx9reXnZFkq47VS0QbGligBxMBio3W6r0WgomUxqeXl5YasVlHEsFlMikVCn07E6MI53d3dX0+lUOzs7GgwGunbtms34dieA8RqX3UE4Rk93q9XSaDRSPB7Xd7/7XRsk4o4Spa5OAEtQyXsxZ5y/Z4f2cDhcCDok2e/iLg7hmpvN5sIzc5HwhXHSm5ubevbZZ00lSKZBlivJ6J+1tTVrcCcSw4D+OlDXWV1dld/v1/HxsU5OThZ6/5aWlham4VQqFRthRzRMFBqJRLS2tmbCEOk0go7H40qlUvra176m7373u4/3i/PwG+H5559XsVhUPp+3+4uBYsYx7SuTyUS7u7vWg0rmizGBzVlfX1elUjHxTSAQUCwWW2ibQQBEnyjnzK2tkblgxOgldVWu1PGgHvm8XC6nt956S9///vfP7bv18EmQ0bIXmix6Op0qEoloaWlJ8/lcqVTKKGkyRZIDV9EMxYtaezweK5vNmiOMx+MLwq14PK53331X9+/f140bN3T16lWj3zmfnU7HzpqkhZGg1IJbrZbeeecdy47RVTAIxX2eCCag78n2qTtDo5NR53K5hQEtnH2WbQyHQ3U6HU0mE3U6HcViMdVqtSd9Kz8VXwgnffXqVcXjcTucZBPc9Gg0ajtJMYJQI0SVCBx+laigXC5bloNiEgPYarU0GAysRsR18A+UDpGj+9nxeNwUmkzTkU4PfDwe16uvvqrxeHzhhsJ/0ZBMJk356oq4iNo5a5FIRJlMRru7uybkkWQOl3u8srKiQqFglCSBJNQhlB0GiWESrjDGXUOIU3fPHapdPhMjhsOHCUomk3rzzTe9EswFQrfbVS6XM9tArdltscpms0Y5j8dj9ft9TadTm89dr9ftzJGNE1SWSiV1u12l02lj7iSZM0TB3e/39cMf/lDb29t64YUXlMvlFn4GRzqZTIyqns/nOjg40O3bt3V0dGSZ9mg0slLgcDjUiy++aD3ZZODU1mEqO52OlXjc3yGZTFrgCdvAist2u23BMn3ZiOYuopO+WDK2x4RgMKjl5WXLbnDGUIVMv5FkO1ips+RyOctyiMauXr36ic9wl5lDKyJ6WF5eVjqdtgMlnTpZxAo8WNSNarWa1RKpZaPaTaVSymazZnhzuZwtc/dwfsjlchbgBQIBRaNRpVIpc77S2XjFaDRqRqTX69nMZCjuSqWipaUlc5pkMdB8MC6MNsSI8v8nJydmyCSp1+tZDy0OPJFILIxd7Pf7RpNGo1Fr6yIYiMfj+n//7/+d2/frYRGFQkHFYlGpVMqGmOCcw+GwMpmM9VFDgWPvOBc4Usp9OFPOGM4dWxUIBJRMJk0UJp1l3vv7+7p9+7YNB+HMEFQSvEKNP3z4UMfHxwvBI3T9dDrVtWvXrL2L3u1+v69Go7EQWPBazinXQ0KEyjsUCqnVatls8U6no263a3XtXq+nnZ0d+24uEj4XmfStW7dsO8tgMFC/37dxdQhv3N48pvK4h4emdgxaJBJRIpGwz0CFzbi9XweG00ejUWUyGU2nU6VSKW1vb9t1uVnxfD63z93f37cRehj90Whkwp54PK75fL4QPTKb18P5gS067kAIAjZ3AT1GjwUDZBDUDWFfJJkRcv8tnZ5FN+uhRDIajfTw4UOFQiGVSiW1223LlmezmVKplOkrms2maTOGw6G1bbn7gIPBoBKJhFHf8Xj8l3YflMtlra6uKhaLqd1uq9ls/p+6IDz8erz66qtaWVlZcHCSzDE/Sge787AZEIK2xa1jN5tN5fN5c5hk3LRLTSYTvfzyy7p7964+/vhj0/Mgwt3Z2VG1WtXS0pKuX7+uTqejYrG4UDfe3d3V7du3Va1WLaun//qZZ56xoLTdbtsYz2QyaSNKA4GAut2utX25dhAnjcqbXupEIqH9/X0rZ/Ic0VNNLbzdbqtarZ7DHf31eOqd9PXr17W+vm4UC6Pv2u22Hj58qNFoZL2nOEV2o0IpE31ls1ml02mjZojYqPcEAgGr7TyKUqkkSRbNooAkM4lGo7p+/boZRx4wqEWyIfbAQr/jzBEDuXNnJalararVaunatWvqdrva3d19Ml+8hwU0Gg1zdNTuXIoQQzaZTLS/v2/BIcaP85JKpUwzwZ8zAMJd4yfJjB96hk6no2w2q2Qyadk8zjsajapYLC7Q7rPZTPV6XUdHR3r22WcVDAY1GAyUTCZtChNnDqP3aEeCJL344otWT4Sq9PD48CgbKJ2puDl/nU7Hzh0Mnd/vV71eVyqVssDs+PhY0+lUy8vLKhQKdv9RY2Mr3XLfc889p0qloor26yYAACAASURBVO3tbdNAYPN8Pp8ODw/l8/m0tbWlRqOhfr9vbWG3b99Wq9VaUGdfu3ZNy8vLpvlpt9vKZDLqdDry+XzWm93v901EBqsJhd7pdKz8g4PnOVxdXdVkMlE6nTYNCO8Fa9TpdHT79u1zuJufjqfeSUPbMWcWAxYMBlWv11Wv120tmTtwnYNO/ZDWBRw2dQxJZnQwno+OjXvuuedMwEH25IqG+v2+vYbIl12qUIwILcjwE4mEZVocLOroPBQIMFzqHpUn/YwengwGg4FarZbK5fKCaAvqjeBNOtuxi/Pr9/uKxWJGSVKbI0Bzh1BIZ+03ZCecoWazqfX19QWBT7/f12g0UiwWUywWs6wLupDnwNVKYOwIEl0a9FHcuHHDnDqiIbc/1cNnD7fbhASAoJ4An8Cu2+0u2BeGNzUaDTUaDQvquHf8P9ksQivpNCGA+ZlMJioWi9rY2FCtVtNHH31kO5vn87k++OADYyzJiGkB4/VXr1614LHb7dqOa84t3TDuKFHsaL/fVy6XUzgc1tHRkRKJhD1T5XJZs9lMx8fHKpfLxqjSEy6diYQlWZnI5/Pp6tWrF85ZP/VOOpfL2QEjssLRXblyRXfv3lW1WlW/31c4HFY6nVaz2bR6M1EalCT0IS0HjNtDYEPGvbm5qfF4bNkJnyudth6gkoVaIjNBYEa0Sj2If2MMl5aWFt7P3e8aiUTsAX322WfNCUynU62tralarXpO+jFjeXlZmUxG6XRah4eHGgwGajabWltbU6fTUaFQsJozrTAMluBcMD2p1WrZGSSzRnNAawsBoDvfGOGLdGq0rly5otFoZL2z3W5Xx8fHCofDun79up0tAj+cPkEfFD0jGqHJCfwwsoVCwc7w+vq6er2e8vm8+v2+5vO5isXied6azz1werAoBEiU7WBoyIA5J8xpwJHi8LCfsVjMuk6gkSmtAHdiGc4zHo/r2rVrunfvngWjtEtNp9OFyWIMS8nlcsrlcsZQSrISEMnJeDxWKpWyLVjUunme2H0N3FJkKBRSOp02X0CJUZIJyAhIYVndQVMXCU+tk7506ZJSqZRisZjd3FwutzDPdTgc6tKlSwoEAqrVatrb2zM6EQNFNu1mxzhDSVazk2RBQDqdVjAY1Pb2tmKxmEWeZBHUk11FudtWhdiHbIgD3263JZ3tgqXn2lVt8np32g/0OxOm8vm8MpmMPvroI2/RwmMCvfQ4493dXY1GI+3v7yuTyajf7ysejyufzxsjgwEsl8tW9uj3+2q1Wrp69ara7badAXeRATSipIU2Pf6bsYl0LZAJY4g3NzcX6EFJVo8sFou6ffu2GUaMOjqO8XiscDisWq2mRqNhDrxUKpmSFwoSFikWi+ntt9/WaDTS8fHxQtnoIq0AfFrR6XS0vb1tu6LJbrvdrgm8EomERqORtSHBuNCDHI/HdXh4aMspsE3YU2rZg8HAmJx4PL5AeyPEpV1qY2ND+/v71pv94MEDPfPMM6ajmc9PN00lk0ltbm5a90Cr1bL6NMGidJqA0UeN05ZkzxZC3Hw+b4EmJU96nmEPeD+EwpJspSffzcbGxoWcCfBUOunNzU2trq6qWCwuTJUhKoMCQkCwtramVCql+/fvq9frKZ1Om4HkMEtaqN1IMqoGKpIDyaFBnY1y1hUMcaA44PzjRovUqwkaEIG5g06oNZHp00+YTqdNGMRDiCEcjUZKpVJ6+eWXtbm5qU6n4xnHzxhu4IUjPjk50f379/XKK69YrzF9qgRXo9FIa2trymazajQa6nQ61vqRzWbV7XaVTCbVbDYXFKtoGGjtcu97rVbT8vKyiXgYfBKPx7WxsaFwOGz/746P5LxjtAkyEZbhuPv9vmq1mprNpmazmUqlkpaXlyXJjCjPBNkN17K2tmaMlN/v1/LysqrVqv1u0+lUJycn2t7ePt8b+pTgjTfesI4TdAiwasViUb1ez8R+nNFIJKJsNmvZMTXiS5cuqdfrWXLTarWsrxinKWlhaQeZp6uzgMXEGe/v7xvVzplC28AITuwugQWONJlMWiCIvYvH4xbstVotG4nLd0CQIMl+D+z0eDy27wQmi5ZGGAnOYiAQ0ObmpgqFgn7yk5+czw3+JXjqnHSlUtGNGzesr1M6E1Lg+IBba0MB7W5vIYLCQFFzxkEiUEAAxM2EHnFrxhwWNr3wWY86YAbac3BdxS8H3zWYkhYm9tAXye9E/ZLsxxW4hcNhFYtFxWIxvfHGG97yjv8FnnvuOaN+J5OJUbo4XBSuxWJRs9lM9+/fV61Ws6yDPnwMBTqCbDarRCKhk5MT7e3tmVPDSUqyGjUiF+lsAxAsSq1WswwdVgaH6A56cClzt93FXRtILZNz72by7XbbGBzO3Wg0UjabXejNJXjgLHNmuQ7OJENYotGoyuWylpaWtLOzo729vfO83RcaN2/etF58dAm0X929e1fSqYC12WxqPB7bIJzpdLrQOsX9GgwGprTe2tqye4dNPD4+liQ7e+6eAXfGg9uStbKyomg0qvfee8/oY3f2hHs+6X6hpNLr9UxhjuiRiX3pdFq1Ws0Ettg7AlpJqtfrds4IUmi/Yld0MplUu91WOp22kag8n41GQ/F4/MKVCp+6PumbN28qFotZvSUUCpkjcmlpaXFuLXQMRpJ6CZmO2xI1nU4XDKPbkkAEN51OFY/HreUBBy5pIWoke3G3waDmpt5N5r6ysiJJZuC5freth4yZLC4ejyuRSFh7AuIKaP1YLKZyuaxSqaSvfOUrT/RePe144YUXtLS0pEqloo2NDa2vryudTptD6na7ajabVo7I5XJKp9O6e/eusSEPHjyws+T3+5XP522CXDwe16VLl3Tz5k3t7u7qww8/VDAYVK/Xs4wGdbc7q7ter2t3d1cPHjzQ7u6uMpmMGS/YnXQ6rWQyqWw2a5vcqMvhfMlMyuWyOWbOjGuwu92ulV5SqZRyudzC/HBKQv1+34KHXC6nYrGobDZrRhd6nvOM45jP5yqVSnr11Vf16quvnvNdv7hg+xR97pIsQchkMqrValbmoLbq6g/cITvYTumMAUR85uoeKK1wvlBDc17cGeDUn7mn3GtGK/MZpVLJKPP5fG7LXdLptNXNsV+SFuYJAChvzqx0pq2QZO2A1LvD4bB1X/AzMFywse53eZEQkPQX530RvwmuXbum3/u93zNaIxKJKJ1Om9Eka2m32+r1ehoOh+a0ccJQ4NDdqML5mUdnI9PgT/8o2SmqbW426tybN29qNpvpJz/5iUW7OFXo+Gg0+gkaye2B5bDwe7ltXLwXn83DRIAxn8+VyWTMYXPo+YxOp6NSqeRlK78Brl27ps3NTWWz2YWgL5lM6uTkZOF+QTP6/X4TkjGtiXPHmQmFQtavjOOeTqc2uObg4ECVSuUTbUw4NmrWiHugFJk+5S4ZgNrG2Q4GA12/fl3z+Vzvvvuu/H6/PvroI21ublpPrDsXGcHRgwcPTKBTqVSUSCRsPC0GGucwHA4XBqsQUFPvZDgP2bakhT7eZDKpy5cv2yAVsqQvOm7duqXl5WV75nO5nK2+JZgLhUJ2PmAAyWYRvpK1QkdLMqefyWTs3pycnJjTCoVCqtVqqlQqxuRhY1FjMyuchTLUiy9duqTZbKbnnntO8/lc//zP/6ylpSVls1mzn64Nz2QyZuvIwFutlpVaJFmAQDZP33Sr1bLZ3a1WS4lEwtoRKfkg3CRQDgaDVtKk7JlMJhUMBq1/+rzxVNDdW1tbKpfL1tTOgHZqYNLpQWu323YTpLMo06Vb2NpCtiCd3fREImEtK/F43KhNHCAOvdfrWaSZSCS0u7trmTTGFMoJoxcOh41+kmROVjpbo0bbA9EeGTqZO+9PsADFToDiRpU4Z/4MCuvjjz/W5uamVwP8NWAzFf31rkMJh8NaXV3VRx99pGg0qpOTExMwQrMxVOfu3bu6fv26jo+PTc3vllqkM4PQ7/dVKBQ0n5+OTEQhTVCKmCeXy1mdrlgsqlar2eQmdy+we+8fHXXIZzQaDTNO3W7X2v4kmcOmvQu6nOcOh0yLmPt5BLjRaFS1Ws36cnEwXD9nFcqUZ4MaNwp476yeLWqRZIGOJNOmMMXOLY3l83lJZxkjNtKd7V6pVOTz+ZTP5y245z5y3yeTiSqVinZ3d7W2tmbBKAFBJBIxtoXabzKZtIwd8Rp2i8CCUglYXl42waQkU3DDJJGN023A6FoSp2QyabacIJmzRQLGc0drGX92cnJi5U6eqYuCp4LuhtJ1pzRh8FzD4a43c3vfmEbjCh0kLRgbVzRGRs4B4mfINrgGsifqGWTOR0dH1vLlKhJxvAQZRIDUevi3JHsd14tx5+GE0oIBcOkt97vpdrsL6+yWlpYe8916+gE9zAMvyahmHDZZpCRbJCDJRCzUbWFC6Fdlqh2MD4MdyEBxmpRBUORyZoLBoAWdk8nE6O1+v7+wX9c1Zm4NUpKprvl5HCTXCxXK70xm0+12zci7w1moZ2MIeU4ZMEF7Ib83n+XSmW6HBZl8Pp//pYODvoigZECJCzuF0n5lZcX2jBcKBS0vL5vdGAwGqlarOj4+NnYQm8eZcieXdTodmz/hMjqIBd3tVpPJxKaYSVoo4yEKow7OZ1D+w5bxGgJZ7BksJiJG6Wy/AXaPLFg6G7vLeccmko23220Tt5HM7ezsWGLGOT45OVkIHs4bF+dKHsHrr7+uW7duKZ/P281zo3kcLREiBglnzI3kQOFoyRao/QUCAROyUEthRrarmoY+arValjE1Gg2bRdtoNOxzMDK1Wk337t3TRx99ZK0GvA/CD36erJrozu0ddAercJjczJmfdVuyaOlqtVoaj8eq1+uKRqO6ceOGV/f7FJTL5YWlFNLZ8A9XNMjZ29vbU6PRsPs6mUx0eHgoSZZxj0Yj252LZmE4HNrqQLQRKHYJsvr9vo26hV5kZC2lk42NDSUSCTPe0OKz2Uy1Ws3OPtcfCAT07LPPamtrS4PBQMfHxxYcuEpe6t+UhiqVijqdjg4PDxdqhAxnwfA1Gg0dHh5ahkNPKmsRmWzGvHBeR5lJkpV0GIf7RQdODVvkfk84Ws4ANiQej9voS86WdCa05b7Scx8IBEyISlAPEwh7SJmG8wej42bdLPLAxro9ypwBhJIMWiEBQkRLIMdnkDEDd7rfo4K2ZDKpXC5nIz/b7bYODg5sXgXlRPd5oGTDAKyLNGr5wtHdX/3qV40+hKLlxuKw3Oip1+stjL6jLkMriOukUU1T5yIbIjPghkEdcrgxjG6N+OTkxMQypVJJS0tLJsRgvJ4k24hFuxdRrHu4OCTNZtMcPA8Cjhy6nv5osn4yHjIi6B3qONCOHF5auN5++2195zvfOYc7fPHhji2E8YDOg+FIpVJ2tnjA+Yd7LZ0qTqEjuS/9ft+M2ZUrV9Tr9awfnox1Z2dHkUjEHJp0RkHzLJCx8HcYUToIqFcfHh4qEAgok8ksdAyUSiXN53NVq1Wrd9ZqNXtPspLl5WUTC/H5BCaRSMSEZJJsHCULa3AmnGGo9UwmY4EKz507AlWSBT1fZLz11ltqtVqSTr/DXC63UFoACKDoCICZ2d/fX7BlZMadTkfXrl2TdOrwmPdweHhoNpdzTbLCfzOJzC19JBIJG1Iym820s7NjQS51alpDj46O9OKLL6rVamk+n9uzxM4CHDe2kM/HKTMiGfuND6BEhP1cXV1VIBDQxx9/rPX19QXmxp1AyfcbDodt7sFFmjp2oZz0a6+9ZoYGJfTS0pIODw9VrVYtmqRORr+gdKbkJgOStHCIqZ0hfIAah4J2BWPQxBzS8Xhs9ZfZbKY7d+7o5OTE6hrUz6CuaYsg2+AzXbWuO8KUjIHpUmRqGHYOJ5GuW1tBcEFQw3u6tBOtDghC+B48/HL89Kc/Xfj/tbU1U25nMhlzwKzPg70g+8OxMj/+ww8/VD6fN6qaPn6Cy3K5rEajYT2d0G2z2cwoX5xcqVRaqOVBkUNtUreE5el0OmaQKf8wgGQ2O521TT0O0aIky7KWl5fNmRKohkIhm8v8i1/8wtYmQr26LWDuSFQCyvF4rHv37pmSmBahbDYrSZaJsQ3ujTfeUK/X0zvvvPOkjsCFQbvdtuC6XC6bM4ZVobRAIAjzI8lsIY4sFotZQIW2ATU1Ng/mA9tJVwv1ZtTPlCP6/b7a7baprbGTaDUQbaGfwaHCYvr9fmMtOdMEpyze2NvbWxA0ugJHv99vA006nY4NEqLMOZ1OtbW1pYODAy0vL5vdJUtHEY5/mM1OF9Fsbm5emEFQF8pJI94iSkwkEjYykbqeq45Gqc3Nxei5VOR0OrX6HkpXBAg4O7JVd6xoOBxWs9m0gwugRCQZ1ey2b9H/N5lMFtZIoiTHkbsTwzBU0llE7AobpLO6OLSRG8y4r3fBQAC2epFZSTJj7uHTMZ1OValUFobWuDU9amiMG4RqxNDs7+8rGAyqVCppOp0qnU7bfXDvMT/PNC96pBuNhn3mbDazLJTAADEORkySsUZk6XweZ522FhyoJNMySLLAgyDR1UO4y2rcdqpSqWTtZhg+HLGrLC4Wi6rX62o2m9aaiLBMkj1fgUDAVN6pVOpCzlV+3GDtJKwggXqtVjNHB33N7H+fz6dMJrPAQsTjcdvIx7mFFnazb+yiez7QFlBOqdVqymQyxkDCmtTrdeuZZpgIZ4AzQUBZr9eVz+eNLXy03IHux309VDyZPkEDQQDPHs9ps9m0qWYkZDCZvHehUDBR3vHxsZW1CDYuAi6Uk8YBTyYTZbNZm3tNXcOlu6XTXjgUqgwIIZvkgXeHKpDpkHVKsn48aomuw0f272ZLzP2ORqM6PDy0zJvon4eEujdN8zhkolu3do7gZmVlxT4zl8tJktHTGD1oGn6/R8U90qmxRSnM9zYajWz83mx2Onx+c3PTIluvLetXg+wVNTPUIMMWyKyDwdOlLogEQ6GQZcmbm5t2z2mVI4B0HWIul1O5XLYaHb389J+GQiHdu3fPtBqRSMQyTgRg6XRa9Xpdg8FABwcHeuWVV8zIuq2G2WxWe3t7Ns9+aWlJw+FQmUzGsieCVmrUUPrNZlOpVErr6+tqtVpaWlqychNUKXVMDDa/z2Aw0LVr17Szs6N6vW7CHih5RuISYPJMlsvlL5yTxjEThPMdwgDiVPhZgjeYFDpQ3Lozmapbj8Z+sCiIbJrPpsQGGwQdTUbLYB3pNPuHnkbpTwuqS1nz2dhrroffAcYRsRe2vNlsWpbMd0LyRfBIxg2DSZmFJMidxtZqtdRqtew1fG+XLl3SfH46Qe08caGcNA8kdCERIpSf2xvq1khYgOFmtmTfkhamgUmyhx/JvjtWjvYt+gMnk4kZPFYBXrlyxSK66XSqVqtlu4RHo5EJDzBu1DOhAHmo3OUJBA0MRyFr/mWZDXAfIr4LAhCcNw8bhtytib7wwgsm4iiXy97o0F8B6nvU10qlkkXlMCLhcNg2ruEEuSeoYn0+n/WEEoxSK5zNZmq32zZ0AcfEGWIVKhObPvjgA5VKJZXLZbVaLWNtqBefnJwYzR0Oh23yEgat1WrZbPlSqaRqtWoTwNhIRFaDkXZ7TanH53I59Xo9a6uCtmTAiSsug9HhWS0UCqrVaioWixYYhEIhq3cS1FIDdc/+FwWxWMw6W9yRrtgeOjdQznc6HVUqFdMQQGM3Gg0bXwujmM/ndXBwYGsh0UnwvTNe1s1kU6mURqOR2TMYPpTbR0dHun//vqLRqAqFgo0chaXENgWDQUvEsIc8Z2T3LA9B0xMMBq21ip/nfBEAE/DxvPp8Pj18+FCFQkHb29taX1+3SX+RSMT2R49GI1WrVQ0GA5VKJRteVK1W5fP5zjWJuVBOulqtWm15NpvZpBoyalqx8vm8er2e0TC0O2FM3J5ll87m7/L5vB0+Ikp3EwqGLBqNql6vWx8qi+35nFgsZnQ2h0WSarWa8vm8GVoOItkI1CEKRg49NRJUijgCMhOuC3qG6JQIGmUwdWnqNe6w+ZOTE7XbbdsBTBQ9m830+uuv68c//vGTv/HngBdeeMEYCZSvH3744S/92U6no7t37yoQCGhtbc1W/Elno18ZawhF6J5HlKL5fN4CMrKCk5OThSyGc9hoNKwvmgyBDoFAIKArV64YpZ7L5ezPeV/6WXkNinXpjH0hq5FkhoutVr1ezxwq2RLLa6gFUmNEgSudLadBud7r9YxWJaPi/E4mE5XLZW1ubi5QrQSmmUzGaq3j8dgEPl8kYN/IMqnjunYKgW00GtXy8rKazaa2t7c1Go106dIlffTRR3YWyIJhJaPRqNLptKrVqgVGBP8I92KxmDqdjlZXVy0blc5WZiIElM7Kfb1ez2rAsJz0MnMOSb6goOnXJrkgSUEg5rbbSrIEBxocEATyOcvLyzo8PFSxWFwo2bTbbUv+9vf3TfUdj8ctCNnc3Dx36vtCOelaraZwOGwGEJGVJDMaUH9snsKYuROgOGA+n8+GTEANoWR0ldU4MageahYYR2qAtFtR4+DP+HxU5BhGxoa6qnFaDNzFG2QobnsFP4Ojxmm7PdPQOTh/SeaseW9ab5i2htgJx4R6uVQqXZgJO48bb731lnq93oLaudvtqtVqmcFKpVKW3e3s7Ng529zcNMPitsPhwB6l56jRun3H0qmjY8gJ3QPuWcBZz+dzo7WpsU2nU6v3IRzkHM5mM3svHKnb1YDh43cgQ0LDQdmGAM6dBY8ICMo1kUiYIImAB7qboILgA9qWmd3QoIwk5fvieefa3V5eAmWcFMON3n///fM5SE8AbrmOHcvSmX4nnU4bm0cgH4/HrT+53W7r8uXL9t1yRnw+nzF56BiwiZwpN1NG3OW2ciEyy2azptvo9/vKZrMLWhuuEVuby+W0tbVl1LPbqQKjiI2jFzqbzRobA5NDTZ5gEqRSKWtd5JqXlpbsGUUdjpZjd3dX4XBYS0tLnxiAwhn9xS9+8cTu+aO4UE7are9JMvoYZ3V0dKRWq6V8Pm+ZK2MbcWD8fCKRsEyG6M6NkBjzSaQnnU114sCUSiUzoO4BoyneHX/YarXsvTDa1DH5TCaZBQIBayPDaPL+bgZGhozBdpkCjDA1HGrxriDOBXOdccR8JwjUCGK+COh2uyoUCibgIrBKJpOq1Wp66aWXzMjV63Wj+CqVioka+X75rskMcd7cZ84iQZ90msmi/CdYg2lJpVImnPL5fGo2myoUCna2OI98FvVbhGMwR+6YTzJ9d9odgVoqldLBwYHVgxFzzedztVot9Xo97e/vL0xIW11dNVrc7ajAaLvdEjgMgkNX5UsAgmKY79KdHe0OBFpaWjLmAOfl8/lULBZ1fHz8uXTWLGZxA3PuMyyQJBWLRRvF6Q5wIlFgM5R05qRg7lyGD8ecTqetzYnPhbXjM2FPKI/A8rlBWyaT0cnJib1HOBzWxsaGPR88K5IsCGGeBHbYte/YwEAgsLDtCxaJ55PvhrZHt/5OTZ5NdZRFOdMElQQzsE3nhQvlpNfW1qx3k8zRrdeORiMbnIAT5ot12wQ4TBwCV9WNI8fZEe27EnwMT7vd1ubmpi3E4PMkWY0Po0RmjaMjq8Cgupk2zpiDJ8nqNNDY/P5EoGRk1NzdqTxkHYgpoDLZWQz9Sn2aQ8r4xXA4rP39/QUV++cZfv/ZvG1XqxCLxZTP51UqlWxjFaUAImrOB4pl5lNT3+KcYEwYxEAfPRuy0DkgfqH/NZPJLIydlc6MF9ksY23JJjKZjJaXlxdUq5wxhF5k/ZIsKyPrZo7yaDRSoVAwB0pfP3QhJSayebZgMQrVDV56vZ6Oj49taQzBNJP5+K6pTUOtutdK+6AbEJVKpYXWRb67YrH4uXTS1GC5l26WC4vB+SUAwk7BPjItkbLBfD7XysqKJpOJMTmowwuFgmkWEomE3ZfV1VVjEbGZZO/5fF71et02wd27d09Xr17VwcHBQkadTCb1jW98wwb7wLIgckM5jlobB0otPZVK2dIMsnu3i4dnEmW7OwCGEgy20l30cXBwoPX1dUmygDqTyZjGJJlM6pVXXvlEa+aTwoVasHHz5k1r0YjFYrbJhw0+rqqQPmCcGpGgq7CWzmZYu/ULtxWK98KJc/MlLbwHG7AYi0iWxIPg9/v11a9+VfP5XP/5n/9pCxOITjmEUDgYZ1dQ5v6Dw+VzOIBuWxkPjHTal4hYBwEGDghjTt1yaWnJDiIRNzWqe/funcOdf7J45plnLEKHDqPHslKpmIMCqVTKBCScI7e0QZYhyYboYBzi8bjS6bQFYPR9uvQlRowAkx5OSXZ99FUz95hBEH7/2RxljB//dq8zHA6r3W7rlVde0Xw+13vvvWf1Ob4LgkqCDkl23dlsVrlczgIRnC7BJdeDyGd7e1vNZlPlctkEc5xl6YzGjcViajab1vcraWExDu1E0PvcH74PBFU+n0/Xrl1TPB4/dzXuZwlEUpxHgium18HgoI2p1+uaz+e2EQv2EG0Du5s586ibKd0REGFj+v3+wtx5zjU90pRL3Bn3m5ubFiwcHR3p4cOHevXVVxUMBvWjH/3Ing+YFQIJxLfQ4ASRzKogYEO344oSKc/QDeFmzv1+X0dHRxaI8Np6vb7Q2ksQm06nF1pk3Xa1bDb7xMuCFyp1wvlB20hacFyM6+QmU0t2aynSmTAGB4Rx4CDivDBSZL1k1IitoKhx9NB67oB6rtOlRAKBgDXyu0wAQYHbMuGKcCRZDRnj4/ZHcq3UqN3MF8NG1EgwA/2DU3BnANPfTTb+RVHPUquXzupvGH63Rz0cDisWiykWi9noQwIougxQ1/I6gjCcEN/veDzWeDw2EeKjc7LRPnDWOaMYX1gTDAfCRVdpi/F2W15cBoh77howMmi+Bz7LbSWkjU86pZzJph8dxcuzwUjUYrForAPXLJ3R7byvGyjye7ilK66L34nPks6CcOn0W30kNwAAIABJREFUuf+8zaZ310K6LWwE8JyHR9ubHj58aAtiIpGIDg4OLIDDznFv3YVFbh892StUNudkMBjo4cOHymQyajQaC4kAc8ILhYI5WQK52Wy2sFWuVqup3+9b5wkMC84We0s5Eucsne1VHw6HRs1jW5m01m63VavV7Gc//vhjHR8f6/j42M4MgTOdBy6djx3n9Y8uBHlSuFCZtHRqBHhAUek96lD5Qt32JQyb+wBzo6HmUFXjHN2hDDh7bh7UEcbKFWRVq1WNRiMdHR1pNBopl8spmUzq1q1bikQiOj4+tkiM9yVT4Jp4KHjIXEPL9UF5kgnx+RhFHhgoUKb/QDsiKMGZJJNJy+rIbPx+vy1/oCb6ee+ZxnghgqnX6zbUIBKJWI3MHcFKpH1ycqJYLGaUsCvI8fl8arVaikQiNjsbB4WRYklFKpWy18MSBQIBNRqNhcEN8/nZKFjOMucZOh3jgmjIZVAI8vjvGzduaDab6d1337WuiX6/by04ZOGcMTonCGKTyaR1PVDrZv53o9GwCVmSzCFAp+P8GR1JqyX1+ZOTE9Xr9QXxmLS4PIRef55TaHZ+X0na3NxUoVDQ7u7ukz5anznW19fNWRLcY1f4f1dESvBF2yUbqDgftFi5s69dMSsBE2UegncCemrFzAkgsOUaKfN0Oh3F43GbHf+Vr3xFfr9fDx48ML0DSm5q7mTMiMQIImANSDywoXQK8JxgHxFZugkSATavoUxKIEFrJDMwYBEe1Qrt7+9/Yqvc48aFqknPZjP9/Oc/1/LysrUG9Ho9c6bQLnxx0FxQ0Tg2Bj/QMI8x4yYzC9k9iJKMvoFGxhiQESOoWVpaMkEPU8nIorhORtlR9+h2uza6jqjx0Zpyr9ezdgOMkCSLYqlLuf2SiM/Iwmh9YdRjOBw2ypUH1q2FU2/nQF+6dOnJ3/gnDIIWnMPa2po5N0oXk8nEdAcYH3QQOzs7KpVKCofDlgkSHFYqFe3t7dmQEZwjXQm0y0DfZTIZc4a9Xm9B8OOOpOWzKcVgcPP5vKnSYWpcdS09xhhDjC51TtpnWMTi1hA5I65CHYNO/ZG2Pwz2lStXrEXN7/er2WzaukqeO8oA4/HYAiafz6dKpWJnn6ABBT7PB7+7G4C78wa4hxsbG5pMJo9tlOjf/M3fPJb3fRQoo92hJtgxnmOcMKwhARFBlDvkw+0ewc7h5NDyuJogbJ90tszDVd27dsr9Of4NE8TazLfeesvuG68hAeP88necQ7cjgesnKHE7YrhWtyzoXo/bMeM6dtc38L3wnrwXzwL0+GeNb37zm7/y7y6Ek97a2rK6Hg3x8/npQJJLly6Z0URV7X7J7mQm6mcIBqDo3EPB4XJpC5ysS+tBa5IBTSYTNZtN+f2ns2YZRh8Oh43yQRR2//59tVotm/pFnbvZbNqwkvn8dNwezt/tNeX3cHtOURnyoJBZkUUTHFDDKxQKZtwZBIHTJjPisx7th33ttdf0k5/85EkegSeK1dVV2/y0vLxszousjIcQw5BIJKx1D6FOu902xwcti0aC2vLq6qrq9boCgYCq1ao9/GQvtPy5ugS39kZUTysJwrJarWblFc4mjA0MFIHhdHo2Jc+l9mGSAoGArWXlszh/ZB44egwjFCBGzu3CQK2LIUUUhoOmjkxmA5PgDhwiMCJI4ed5thkLLMlYI3dpjd/vV6fT0dramlqt1lM7pcwtZ7i0v3tmpLPvgIwXZyPJavfu/eL1LnMIW4cDfzRJwAFzzrCPjwYO2EHXLrkjiPlc9z15PZ+J0+azXLEcgQnBBQ7UFYDisN334XO4Luyu6wsIBt3P4bWPliqfJC6Ek2Y0ZTKZVKFQMJEEm3bK5bLdeFe9jKHBeCBCcCNtaGYMI3APJ1G9O9iCqMw1WO122xx+NBo1QZFbp6b2S0uLW1sn2vf7/bp375453kKhYE6Tmjy0EgeO3w9KH2GYq+h1e6ChaDi8HEocAw+IS9liWAkWPq+o1WrmRDkXtGOhKpXO9BDMFYYOTCaTarfbFgTRx4mxZNEAmamkhc4Cgit66flzzux4PLYpUBhPzhyMilvumc1majQakk4zlkajoen0dOkKW7keNToYTq7ZFcVh+PhZgjdqgjhazlUoFLLpYc1mU8ViUa1Wy+Y04+ypw/MdsByEMhRBMYaSwIHvAEUwzxA1SXcRDi1DOJvV1dXH4qR/Xebzf8XXvvY1G1PJsx4MBo1C9vv91pZHMLO9va3V1VULNCVZDzOvJ3HBXjCyGKfFvaKzJRAImLKaMhnBVa/XUz6f197e3kJbUywWs5/pdDo2cvOb3/ymfD6f/umf/snaBglAaOVzW7KgvxGRuUNWeFbcBIrnwz27JHs8b5QG9/f3dfnyZeu84Dyy6nM8Huvo6MiCGLYejkYjNZtN3b9//7Hd+1+GC1GTLhaLqlQqunz5snK5nBKJhDKZjDKZjI6Pj82A4IwRo7iRt5thSlqI7B6t8ZJNcphctR/N7BwCbjqfV61W1e121ev1zFCheH3ttdcUDof18ccfW+sJYpfZ7HTy1E9/+lN98MEH2t7e1uHhoZ5//nklk0kblIIRQvHI9fHgYcQRX/BQYeAxom52nkqlTDTHAeZ1RIY8DAQkqJA/jwiHw3rttdfsTGHYcKrQt4hU+K5hKxifSUTvtsC4oj6ym2azaaM5eX8MB1kgtTFJCzVZAioCBrfdyRWskZF2u92FUYquc+/1erZL/Pvf/76q1arVod2BKzxDOFECQL4PqFAyEQxgMplUt9vVYDBQoVCw4NilRR9lkaSzrVcIdUKhkH0u3ylZEd83mRQBgKSFzIjvlemCJycnj/dQfYa4fv262Sk26iHUI4HhWZfOAntGrGJzCKIkWfBCYgBzSAbL/eXeTqdni2DQVcDISFooN7rUM//mNZPJRMfHx/ryl7+sQCCgO3fu2D1DVY0Ow2UZYQCksxo83wHDgsiAOcM8L8FgULVazRws5xf7hpIc+813Qm3cXaw0m81MZ0Lp8ElrHS5EJn3p0iVbKkAPHl8qtSVXdYsCUJJF1G7DO+CB5fBg1AD1XOq8GLJ3331Xa2trWlpaWohiY7GY1tbWNBqNrM81n8/rd3/3d018IEmVSkWBQMAGQ2Bw/vVf/1UHBwdm4K9cubKQmcTjcRsB6NasmazDg8fv6kaTLgvgPqQEKO5gFP6NyAJD6Pf7rQ7LA/J5xPLysjlCHIzrRAiMMILuxDhKF/SUPnz4UMvLyws1MZSmlEIikYiOjo5ULpcXRDhk6Di1VqulUqlk9DUME5oFBpkAglKyaFib69evW9DmLjJw6fpnn33WRplWq1Xt7OwsZM6ZTMZ6aMl60YRQf+bM0urDd8TWL7JnMjYCAJzNYDCwuj2O6NFSFgaZjFk6C5p4Tlw1O+Ihnp3xeHzuE6N+G9y8eVP1et0GKbnCQuYtEHyfnJwY87iysmJlAQLBXC5nto/3IBB1B45wH11BbTqdXhh7LMnKPjBPCLoikdMNewgEcbaUOAqFgiTZdRwfH6tYLFp5olQqmZ3jGijVoNx2leLRaFTtdtuum++EASUkOzwv/X7fBJDM3qdOzzPCc4guJBAI6Pj4WMFg0Orp4/HYnrUniXPLpK9fv25DCNjVK8nk8NSdXGqLNhIcjisycOsabr0EZ0WmBL2JM3MFBihdB4OB7t+/r3q9rmeeeWahRkHNN5vNWjsTasIXXnhBPt/pMHaWHmCUfvCDH1g/Ikpw5t1Cw9AHzmdxra5Sl79za5euYSMSdutQLpWP8eQhwrHw/9Dog8FADx48OIeT8fjx+uuvW+DH747QC7qNBQbQs5KsxxKH4GoiXKeEyIvMhO/+UV0BmUwikbA+TFTh0ul5ROTGQAr2TSNYQ5TGPuarV6+aQ5bOnh80DFevXpUk3b9/X/l8XrFYTBsbG9rY2NAzzzyjbDZrW7T8fr+Oj4/N2Lp0fDKZtOlW/I4EMeVy2a7ZnV3A2SJIJXM+Pj62lYUwANTJOZ/hcNieNZz5cDi0BSU8++1228bfUtNlnS3LFC4ySqWS1tfXLZmANSNwRABKYM93RGuqy+qgZZBkZQ/3/BLk8P7j8dhsAvcSloZ/k00T7HM2GMWJFoJAijrurVu35Pf7tb29bToOsnzpjE3BniEapMSIVoggw7Vj0tm8CVgjdBTSWXsqQ1MymYyi0ah1KtCLjdobsePq6upCC2W/31e1WtXly5efKMt4bunSfD7XpUuXFkQkGDuy5GQyaQpcDIF7Y9xJYS7V4VJefJbbq+kqVQHtBb1eT5VKReFwWA8ePNDu7q5KpZKNa6TOhlqblidXXcrnkXXcu3fPapSRSERra2tmoKG2fT6freAkM3ZrL/y+ZHXQf24d3hVPuO0a0tkhdh21JMv6+Fn+3p2F+3kDNUyXdanX6xqPxyoUCvYdEt1Ho1EzcGRtTHTCobkTjuij5qxIZ/3rMEKRSGTB6UPfMg+b89NsNtVut83ZJZNJm9RVKpUsw8RJkX27Z4Gz7s4Xl2QGFUMfCJyOGSX4YHBDq9VStVpVv983tgc1eDKZVLPZtMCaLIrOhv39fRtaQWDpGmeYIWqD6Dhgr1xq220X5NnnvRqNhonMKPEQ4HLPLjrW19e1sbHxiU4VwPmi9i6d3UtJxpLAhO3v79uGvpWVlYWhIyQAMBycXwKqRCJhQZhb44YmdoOHQqFg5QscIzoIkhL+260/z2ZnrVp8tjtjAEc7GJzujqafmro3rAn6DjbC4YDd8lOn09HS0pIt+HAX5CBK5Pet1Wq6evWqPaswTqFQSNeuXdN0OtWbb76pbrf7RKaQncvJffXVVy3yDwQC2tnZ0dHRkYlP6BnlMBF5S2dOB2OE8MtVd5NNS7KbRMTn0sFufYuMGrFGNptVJBLR3t6eHjx4oEuXLumZZ56xvr94PK5ms2niDCJAor7JZKL/+I//0NHR0ULN7Utf+pLV/qAyoZxdoYRLsUJzsbZOOs1q+J245lgsZtm6WyvFuPGgcC04B3fKEL3AriLz8wi3njednq53vHz5srUo4VTIVqgrM0yG1jrp1EGUSiVzupQsEHBR/6d2iMjM7X1vNBoWgPZ6PR0dHSmZTOrVV181ERFZ1MnJiQKBgDlI6SzjYuIZmackW+QBs4JDflSJTRBAF8JkMtGlS5e0urpqqxB/9rOf2TVLsoyXmiG0fLFYVLPZVC6XU71eVy6XW5inzDV0Oh0Vi0U7g81m04KJUqmk4+NjVSoVDYdDNZtNe65p07p9+7YqlYoymYzm87kZYVdzQZZ0kfHmm2/a8+eKFMfj06mGBGQ8sy4LxMAS6Uw9D42LY+Pv3O4X2CR3SYarfcBWwsrgrN2EqN/v2/IZ2BSCtEf1B2TV7gYvar30bzNjgGEoBF2cMzehwHbBKElnJU6eLbLocPhscRPzAUjaoLn5rovF4oIGA9YMe83Zikajev755/XBBx881rNxLk46HD5dbi+dRtIrKys2xUiSHTq3Ru3Wmxk44dZiOQBQu9xwsl7pbPwhBgln5mbkONDBYGBbkH7+85/rvffe089//nNdvnzZ6tJcHzU6Mq/3339f29vbC6KX2WymjY0No4rIFAqFgh2IWCxmQ0c6nY7Vf3CoRJo4Z4wrFA8CIJf6JkqEyuaQ83AgwpNkgjk3qPk8goeTIGY+n2t1dVXtdluVSsWUpPzMv//7v8vvP10Wsbq6qmw2q2azuXA2uTcuY0N2Ql8xM+bd7Jo+Y4KzQqGglZUVm1MsnZaAyIT39vZMXIVIzB2mMplMVK1WTczIs0Fb09e+9jXLKqfTqfXuY5j5b0k2RpHnLRqN6o033lAoFNL//M//GC0YCATMCcPY9Pt9JRIJM7j3799XNpvVpUuXdHR0ZH3jBNhumQYn1Gq17DnBIdE3Lp2e/5deesmeHwIf7AilimazqTt37jzRM/bbwufzqVwu239zz2AvUFsTjMHgkWW6SUw0GtXh4aFlvjzjiCFh/bAr6CP4/ulQ4b/b7bbVsNltTWLBUB5q2wQB2KJYLGbXTnDLZDJsLgEqC4kIGBB2IYTkXFarVa2srGhnZ8cCA0lm37DhsIydTsd2wEtnrW0kUwQI2FyEmZQKYbj43vgu5vO5zS14nDgXJ+2OT2SQQiaT0cOHDy2Dnc1mtj2HA0UWSeSEQSECJNJDkCOd9cZx89xsAgPrUmFLS0s6Pj62nx0MBqpUKnr48KE6nY4+/PBDvf/++zbW8JVXXrEl49VqVfP5XNvb2/YwuZNxyuWy0SYo2F11LDRTp9MxR+227kwmE52cnJhBkz7ZE/hotNhqtcxwQfsRoRJtxmIx5XI5i3ChwT5v+PrXv656va69vT2trq4utOHRKw69DVV69+5dZbNZXb582dqvqIFKstpZs9m08+pmE5w/aD5EYBjcbrer559/3uhxMhCCTCJ8SSb8Icgke2LcYaPRWKC0MVJkTNVqVY1GQ36/X//4j/+oeDyuUqmkZDIpv/907CErYNvttiaTiQ1LcdcCTiYT3bx50+p3rPIkw0bJHgyebqxiFSrjQuPx+MICEFpfoHbJGH2+03WKiDTr9bqSyaSWlpYsY6K2T5Difu84jadhHr3b1UHprdPpmEBqZeX/s3dmv3Gf1/l/ZobLcPadOyVqs2TLSxLHFhK3RdqmaZEW6HWBXhe9zlX/hQbobZG/oL1o0Ys2SBCnyFLHsRMvkq3NkrWQFIez7+Rw9t/F/D6H78hJEycWSbl8AcOSSA6/y/ue5TnPec7yBNIiyewDWabX6zWiVSqVktfrtSERvI9Wq6Xd3V35fD5lMhlzjmg9kLAQ9PB3HD6Ke27pTTroMsEmB4NBFQoF21MEYq1Wy8qT2MKlpSUrP7k6GDDzB4OBYrGY1adx7gQMw+HQkCzmorP3gbCZBgZJsVKpmIYB34+k7OOdFvV63cSC4vG4IWxTU1NGsKRU+STWkThpMj0gBEapwdBjo0qaqEMT2WAEpYOaTK83HheJkZLGrHGCARiBiK9zHdTyYIhjdGEEEhggg0fmI0mFQkFf/vKX1Wq1VKvVLEvlPtjAXq9Xi4uLtgGBkYhUCQja7fYEKxVnQcTrjsYks0BYgoCj3W5PGHogP7f3FCfB9VKPISqkZvp5WF/72te0sbEhr9drtV32HqUEGNCoO/GcyBSfe+45g495dyyIhPAVgP0I0gj0mKrlSiA2Gg0tLy8bIRKnzB4gcHOd/WAwsN/XarWUzWbNobJX2SvsAZfcxuJ78vm8zdPl58+dO2c/A3RPJwQ1cPZgOBzWxYsXlc1mVSgULPCBdSsdKPstLy8rm80azClNojfSQf2cNT09bX2pGHScM2gbGRefhQF129CO8/rqV786wSMIBALGFbh06ZIajYY5EmwUHApU5UKhkBGy2OOQACORiO7fv69MJmP7CkQPhJKgh75rN2t3gz0kX7E/qEKC1KF2h75FsVi0/ct5qNfrikajZsNrtdrEHqUrJpfLyev12mQ49iflu1/FuyHQ9nq9ev/99zUajfSlL33J7N/09LTK5bKRGBmQlE6nza9wftlTJCzsW1As7Mjn0knDZCbTpGcPFiYQBvUV4GKcDcaHDLHVallvK5/v8/m0ubmpVCpl0CUkBDYmgQAvi99J/Y2MaWZmRsvLyyZcD+yxuroqaayYxtg4/v3BgwcKhUJaWFhQOp02Aw38iTEGknbrKD6fz6AYMmPgbIKVWq1mNVDQhsXFRftsCFBkGeVy2YQNyMw5nGTWOCu3H/NpXq+99prq9boSiYQWFxcN/q3VambYcXw4if39fdM1h7iSTqfNWQFL8x4omUAuI8twW1wkGaxGjzXZjguvu8MIcEJcM1PKQqGQOcNgMKizZ8/qmWeeMTIPIigu/8Dv92tzc9McMcGma6QHg7Eudjgc1uuvv24tVXNzc3rxxRct4JRkmRi69Z1OR+vr6yYpe+fOHeNAZLNZO4MovJVKJRu0AMrAniUImJmZUblcnlDIu3Dhgs33JmCCI0IwCkzZ6XTUaDS0tbVlw26mp6ePZe+/i+hAVsK+gexI0tbWlu0zyHiSLFOmO8TthmHPkT2GQiEL+rvdrmko1Ot1DQYD4164RFScq9sJA8TNqNRms2lBLq1TZMrSgSMlyeLMuERfAiqg83A4bK1YbqDqahi4tWMCD1BSuEMEdSRJXA9SvAsLC5JkZE2WW/YhiHZbeClLPGlS4pHVpFEIImIExpAmHzaRnCuygLMG6mk0GvZz5XJZmUxmYgNT66XNyyWfuMaVDeDxHOgI1+t1OzCusMPq6qrOnTtnEObU1JT1zxaLRV25cmWix9HdZGT0jI5kk5LhSwcKVdRD3LolB2R+fl43btywWvz09LSWl5etVxUoZjAYGBGDGtL+/r5BX8BsQJZu/f9pX2QYlFhATh49eqSzZ89OtDvxnjh4Lvuaw847YZ+ASHg8HoP3MFAwQ6enx3OkC4WC1cguXbqk+fl5y+BdLfFEIqHNzU0r/UgHAwKAqx9vP+I6EIigp5nrvnz5sqElc3Nzev7557W1tWWkNO6n1WpNCKXs7e3pxz/+sYLBoCKRiJ5//nn7THqkySi434sXLxoZ7v79+7p79+6E8lUwGNS9e/eUSCQUi8XsjBSLRSUSCUM4gH1R5cO5z8zMWBDgTtGifZJ78Xg8Onfu3ASB7jg6aewKgcRwOJ4SRgCO4yZjq1ar1gFAsP/o0SPNz8+braTH3VVaHAwG+vDDD02ZjM93s2bKZG7CAzpHGx1DXehuAKEql8smgELNPBAIKJfLmdMkw3dbFGGkw1ink4fea66DM0UAyVnCUQO148RTqZSWlpY0HA6N10H9nWBjeXnZzhBJDQuuUSKRsGskuIfc1+l0rFT7pNaROGmiXdidkgzfJ0t+vL8XQhT/JsmiRPf73Ggag+u2mLBhcbaSzDiTZUIsoI2EIRRAjRj7arVqvc7uSqVSikajyuVyZuwxopBgqJXgoDlQGD1QBLKeQCBgRpkoF1gvFoup0WjYUAJpDM1QQnCJFWTrLooAIxdnQ9b4eVgEUBxQ4GgCERdCxGjwfDi8QOA8J7IFgqVGo6F6vT4B5VETxqEC25EdJBIJMyiuEY1EIpbR8rNk+6PRSLlcztTu3EEynCW/3694PG4/79YP2+22dResra3J6x3L09br9YmyDv3QLkER3sW7776r5557bkIZDEdJUEqmB3TdaDSUzWZN1ASnVCwWFYvFrK0LiJwgmpoimYpba5YOgm0MKzKUQLwwk/n544oO4XAkTagAejweraysqNvt2rzuubk5k3599OiRBTJwB1ZWViyAIfCnhEjSUygUzNa6SBCiHuwbzgcQODaaejmojVtOcxnVKOD1ej3jakiy+rfP57PhNdVq1VA/YHNJBnPT7gcDG7QV+Jkzxr81m02trKzI6x1LqLpCLsPhUJVKxYIakBu3VYzWMVAZbARkSO4lEAgY1+KJ7Q8dgZjJ+vq6bUyiX5xGvV5XuVw2Q2UX+v8PJM7d4/FoZ2dnQjAB4yLJKPJkQm7bkctcZPPRukLm41L9MezhcFiZTEarq6taW1vTgwcPrHYxPz+vhYUFuy42lStKwHXjCNHFJQPBAcDqdOvtZPpseFYikVAgEFAikVAwGLSebO4PlalSqaTd3V3rM6WOhPAGwUK329XW1tYTmx50mAtHBJmIvlu33gs3gPcMm9Tr9ermzZtWZsDZbGxsqNVq6dGjR7ZHpqenlUqllEwmtbW1NRGUdTodE3lA4nE4HNq1sTA0BAqj0cjeS7/f18bGht59910Vi0UzIJlMRslkUnt7exMwHOWNXC6ner2ujz/+2DL1V199Vc1mU7du3VIikVAikTBkCwfI72TfYeBnZmZUKBR07949FQoFU456XK9A0oSi3fr6uiFHCMbQb7u8vGxniIDaVRcjS8aZuKUvIG+eNUNslpeXbUYyAQ61xuM4bGN1ddXIWp1Ox54Rz5UMjyQFNIKsNxKJKJ/PK5PJ2DMfjUaKRCKWwGDzQG8I6LCXKL6RXZOkSAfTrQik6vW6qZFBjN3d3TUEye/3W4IwHA6Vz+f10ksvaWpqSnfu3JnoAHCzY+yVNHbk3LPbVuhyRyRNECPZx7RqYa8Jzvf29gx1JcgEdSIopwzgdm5QNkKHAFievb63t6dcLvfE9seROOn79+8b+QEoEugK4hcwL/UoFodyf3/farFsaL7GC/V4PBYFUvNDeadYLJpKDsQbF+5kwzIsA6INRr3T6WhpaUkff/yxDRe/dOmSgsGgGXcmAAHlE2WSkXO9OGY2GwaP3+sezrm5ORNqIADBsbDRe72esbXRIm82m+p2uyqXy0aKm5qaMrJdo9HQ9va2KpXKUyOh+JvW6urqREuGG4zMzMyoVCpZdgeKAOR448YNLS4uamlpySQMyQ6TyaQymYzJGfJeYI6WSiV7zslkUqFQSNFoVIFAwEhAFy5cmFBPYi9jaKQDck4ul9Obb76p4XAsJTs/P6+dnR1tb29blopSH6WNWCymaDSqM2fOKJFIGDHm8uXLmp6e1rVr16zckUwmDaXBAWKYEbshk6cDYTQaC63cv39/AqmiJIPRo1a6sLCgxcVFzczMKJ/Pa2pqSqurq5bZUbOWDkYKErhw3t12QUlmfN1+YabPubwTl3R6HJne8/Pz1jtOsCLJngn2j/dCBwZoIV0cs7OzlplKByQ8gjoyQFq3YrGYBekQY7FHDLmgK4F3iu0gq6WFzmVBw7jm8x4+fKhXX31Vo9FIP/zhD+2dASPPzs6q0WhMCEoxwpQ9haOWDura8CIkGc8DVECSyZRSawYtIxgm2HH5FpReXSlm9g+IEUgmZ6Jer3/+nLQ0VniiX5I6Bi+X+cfAX0B8tEZx8BqNxsRhJOJ0a7lAm0CeGGdIFjh0+gkxLNRNiNwYUwksRc3k7Nmz2tzcVD6f19e//nVNTU3OnMiCAAAgAElEQVRpc3PT4GteqkvWcJ0CcDRsReA54HA24+7uruLxuE3Igg2JTKIkqxfR+gIk3mg0zPBBFuH3urNUmZH9JOsrh7Xo58WwuYGbNEZINjc3jSjG90DwGgwGWlhYsAOP0XIZpgRS1AVBQuh3BeV49OiRKpWKSqWScSNAUjAslDgwALSXBAIBvffeewZz+nw+3bp1y95hpVLR2tqaotGoMpmMlpaWLBiFJUw2EAgE9Pzzz8vj8ejjjz/W/v6+dnZ2LEvFqAGVuroClFkwjMCNHo9HDx48mKgVEgiR+dLL7ff7tbCwoOnpaW1tbdkwjkAgYIEGjgqDDHJGFsd5cK8TZ9DpdGw+titSxM+Q+VQqlcPejv/runDhggUj2WxWOzs7arfbikajEwihq3XAmaX0FgqFVCwWjXzL1wlScdbYQNeO0QMPihiJRNRqtdRut5XJZMw2EwxR3yWgQ0AKxMjdI++8845KpZL++I//WLOzs3rjjTfMOeLoXERPkgWpwOZwQ+AFYd/dd+sG2ATN7vORDloYqe8D7+M/aDmj7IkkL/8mHXQEuXak2WxqZ2fnie2PI9fKow+SBwsDNRwOq9/vmw4vkCObgxfkNs9LB+pbRGSuk+YzJE3UnXlBHHyiVwyxJIM/IJkRFBCdcZB4udQCXciNTIHIDmgGaJBMC2chaULyEYIPv5Pojo0maQI9YDMRJW9tbZnuL1E49W6vd9wn+yRbCQ5zce/sFRANFzZNpVLWCrWwsKD9/X2Fw2FtbGxMiB8QULFHeB/Sgayly4fo9/tKJpPy+/02bpV3kEqljAh4//59ra+vWxYB+ZBFu182mzWpWnd85XA41Pz8vNbW1iTJAk+CN/gdGCkybVjbnU5H8XjchsPQS8s+xqjzDNlzZLggPyjd5XI5Q75c+Bq2Mp9HqahSqZgG/vb2tsHcnG0CGOmgjcslNFLz56wT+GAD3G4Jgna3veu4rO3tbQvSeX7NZlPpdNoyQK/Xa8kMfdI4btDD5eVl3bp1S6lUSul0ekLZCwQERFCSMZ5B4uLxuGWHZO/tdluVSmVCmQ4b4UqBgjDi+NLptN544w2l02lJB2pnsVhMDx48UCKRmICmsWOUCaWDrBabBvJDFu8Gcu5nkNy4QlfYW/YRiJWLxMABglFOhg1iQ6IlaUIa9UmTbD2SRr/ui9/5znee6C+XZKxPSRZdsXi40gHdHaMoTQ68J0Lie/l+4DccKk7RrQ8/TqHHuNAOw0uEGMEmIOvBOC8uLkqSNcm7hpzr5bP5OwGCe90uk929b2pUXINLZOJ+OGQ8Dw4pG5JNz6ZzSSo8R+o2T/Mim2L/8A5xcBxO/p29w2El66ZWzWe479U1AC7hBHiW9+jWUt39huPg5wi2+D6vdyzR6mZO/E6MK0ElBoO9wP1JB/DgaDQykYtKpSKPx2PXiUGjHMPvkWR77/HrZL9hvHDIPF+XNcvPs+fcmqTLKfH7/XZe3HPsPt/H3yvPodVqGWHObaXh8zDkv0ki9KOPPtI//dM//f6b8LdcKBHSjre1taXBYKDl5WWdOnXK7AXoWLfbtXaqXq83UYYrl8umhpfJZIwDQbkFeynJuAHYi+FwqFQqZU4YWVGQHaBv9/e5GSbnhhJaoVAwBvq3vvUtDYdDffvb31a329VXvvKVif5u6WB4BoEaZUxETVz77nZV8Psl2V7m8+gOICtnT/KzXH+1WrUghGfk6lmQxfO86Mdut9va2NjQtWvXntj+OPJMGkdHTQmn6D58DBeQFY7I/c+tVblGDkeL0XEzX9d5SgeOCkfG73UNEgbCrSc/HuFz3WwGt+fQNR7u97lBAPfE9+McOKz83w0euBeMoyQjdgCbcj1AkXy/+zwhUzztsqCuk5Im3weBDbU2d38AzfKz7ue478OtS/FueGcYOZ4ngRCH3oXMGDDgOnjqee4QAbdsIh1AgaBIZLmuI+Pn3Joc18UewYC5+x5H/fh18zPuNblQMo6as8NzY48+/md6tt19zJ+5T4Jq9+y4gSuL+6WD4Vc5dIzwcVvRaFTpdFrBYNCeK4IbELDgxyQSCStxuZ0gOEnKM2Sro9FoQpqTZ0v5AQIZSCEcAkhWLpzMtUkHDpCyh9d7oG6GPWHPugRJ7DyBEvdAVi9pwp7xf6/3QD8flBNbCSKIFKm7D3C2OH8+G/geO8c+cf0Fv1fSxPlx9x3B5pNc/6uT/ru/+7sn9otPnz6t4XCohYWFiRGBwITUWdyHjDhJMBjU3Nycqe7QW0kmyAZwp03hTBF8oAaEU5IODAgvktqwO8uVl8iGHgwGJo7x93//95Kk119/3WrgU1NTqlarymQyJm0IvAhBgXt3xeAHg4HJ4Ln1H2AnYHGiWg4pAcP169eVTCa1uLhoaAUHE2UiSaZhS73a4/Ho2rVrWllZ0c9+9rMn9v6f9Pr6178uSUZ+gSiCqluv17OeW+Ddra0tM5jsBZw2Pe2UEtwghmw2l8uZyAywGpE8hkiS9XBiSGZmZox4MjMznkFdKpXk9Xo1Pz+vcrms4fBgTi8ZTCgUUiQSUSKR0OrqqpEB3alT9LMSAP/1X/+1BoOBvvvd79p52NnZUTqd1rlz59RoNPTw4UMbHoOgCFkDNUyMK2M9n3/+eU1PTxu5zusdK7yBaJCls1e5z1/+8peq1Wqq1WpaWVlROp02h8B7ocQzGAwmhElgo2NcITzyztwe9+Fw3Ef90UcfHfJO/N/Xyy+/LEmGPsBpSCaTyuVyKpfLmp2dtYmBpVLJpnxJMiSEsla5XJbX69XCwoIe/v+xkEtLSxYQUXbBxoFc0FoE+iZpgmyLg+fd0dPPzzCalxYpOnSwrR6Px9CCYrGo/f1942zUajWzc24AzXsGNYAYy/22223F43Fz2PSEdzodK+cQ+Ln3AdcIUjDEWjeQdEm7lBPcDgaIy71ez5z3k1pHmklHIhETVe90Opqfn7foz4WFgRoymYwKhYIdOGpabCocNSxtFgQANgVRl0ugAiojewmFQhNtBWQaLokAdvTMzIyq1eqEA+dAuFkGwir8G0o9fL3dblv7FzXqWq2m2dlZGwQPuUOS1R2JDDlIMD+pyRPNum0pZD1utOvWcY771KDftF5//XX92Z/9maSDjJYIH1EIDFy321WpVLKMhQwZQzYYDLSzszORVbuEv7m5OW1tbalarWpmZsaCQFcVCeOIgaO9yT3k1P48nrGYDnCfS3hzmag+n8+cGwEEes4YEFpUJFldmBou9U1XBhJxBpi7Lu/CRRxoLwyFQjp9+rQSiYTV+mD6Pk464/yA4hAgo8bnPm/qgOxP3h33TxbFO6Cfdn5+XrlczmrPvV5PhULhE5n3cVm9Xs/kOiHv1Wo17e/vK5lMKp/PG4l0cXFxAn1hRCQQ/nB4IBMci8W0uLho4ko4nl6vZwM5eA/U7jkP0sF8BCDuVqtlPfwkH2SnLo9hMBirltVqNX3pS1/SxsaGSqWSJT2hUEjJZFLXr1/XV77yFQsg6c/3+/3WUsgZ4qyBCsJmJ/kgC+ceCd7wH+wd+rD39vasdEhiRNDjlgHxFSBYnGdq8dLB1LEnuY7ESb/22mvq98eC5oPBwLLjVCplUAxQGo4GdnMsFlM2m1U2m1UgEDACmMt2TiaTmp6eVr1et7YnXhizb3HisBJxxtQdqKH1+33LBu7du6czZ84ol8vZ1yKRiCqVygT70VUDotXBhWbYSPl83q6r0WhYBkSWy0EaDAbmYF3IBZIFUR0tVt1uV0tLS3ruuef0/vvv27OFbOEGBmhOoxDUaDS0uLhoIxCf5oWDAEbDqEAMYZoSMprr6+vmmDisGDYMDcNIpHEv59LSkj788ENj3fO+CZIIfGiRAQ7M5XKqVqtaX183edCVlRXt7OxYtt7r9bS0tKStra2JkYOQiDBkrvYxOsdkFtls1hygS3yD0T41NaWNjY0J0g+wfyAQ0OLioiEH8XhcwWBQpVJJ0WhUfr9fS0tLE9rGsGEJFHDc1Ol5/gSYjx490tTUlF588UWbuQ4KAcIDJE+rGExgECZprCb24osvqt/vm0xquVxWqVR64sSe32cRPGDzqLv6/X6Vy+UJQioMeJ4HAiTM/q5WqxP99kDRSLfS2sR5x8bhnAOBgILBoKF97BkcMeqEJAm9Xk/hcNhGVUrSo0eP7NoePnyoqakpLSwsWIC3u7tr349tQlZZkhHmQIVw2vAokDddWVkxqVtKeY/rYbhDhBgaI8mQUUlWb+b6geM5G/y8yxfyeDzWouWWhZ7UOhInzQPlxdF2hAFxlYFomg8Gg9rb2zOFMTYVxgXnR7SD3Kh08CIkWeEf0gURmiR7CUDDQGZEdolEQvl83rIIjEg+n1epVLIXyDVBeuh2u8rlclpbW1M8Hlej0bAMjs0EHEPtAynTaDSqWq1mUSybBiNMJOpGjahf/eQnP7HMxo0myfYx6hxEd1RbPB4/dtDgp11u9M0ho02Etg7aLRYWFgyhAdblmTFfORKJWMTNM7t27ZpNJsPgsFeuXbtmmQ9BnctWXlpaMmYvgWEikZhgWWezWT333HO6d++eQeI4UT4vn89bQEf5Z29vT+Fw2JApty7I/imXy5Jk2TP7r9VqmWEleJyenjbHSs/1/v6+yWxyXkKhkHVm4Lynp6dNUUoak0Vv3bqlmzdvanZ2Vs8884whN4zohBEuHUx7KpfLViIi0+v3+7p3757OnTtnMC7PIpFImC4z5Ry/33+sxlZ+8MEHmp+fn+DF8GwpJcD8R+4U59NqtQxinp2dnRihil0JBAJmZ4CQ3bLD48jFjRs3rC3Wbf3iGtiX/X7fgl1KKltbW9YhQUtrJBKxgIEz0+v1rNzj8Xhs+iEZeqlUskRld3dXy8vL6na7piLXbrf1zjvvaHl52fYxcscsly1O6YXuB5fPIR0MeXFr8CRAvBcQBpcQKWlCWOpJrSOTBXVbo8hmiSKBeJnBiyHFefp8PhsmATROJkvGkUwmzRmysRBIQJ+YegyO0WXm7u3tWdRGW9jc3Jyy2ewEfPzw4UObgMVhQXI0mUza/QJDuUQ3nCL3RT0HOMc1rkSW3AOkB7feR5QL4zMWiymZTFrLTSgUMuiMIIKsBTRCkjmJhYUFg96exgXhBUPDswKxoIRBGxIGwO/3TzgK0B72VDqd1scff2ws+C984Qu6c+eO0um0PU+QolQqpXw+r/v371s/KrAcmQ7QG3uvXC5raWlJPp9PzzzzjO7evavTp09rdXVVzWZTd+7csTJRvV5Xp9OxMY61Wk1bW1uan583shCKdi4h7qOPPrL3/vLLLxsMODU17rFvNptWy+92u5aNw79gD0LWgamdy+WsR5VWRYJXHCx107W1NVMdDAaDqlQq5qwxsqAOrVZLp06dUiKRkCRDjUARCKwkGSGQn/f5fBOw7HFbKHiBtGQyGUsy2CskFiAT+/v7JufK1xHaITsmoyQrdvuCR6ORcQZw3oPBwPrY4QwQ5BPkpFIpK9dMTU0Z+hEIBHT58mVT73KDIhBKj8ejl156yfg83Ecul7PgF7sG76HT6ejGjRsm+IItbTab+vjjj9Xr9XT+/Hk9evTIygZu5kvS5BLNQCwIArvdrprNpkmcQqDc3d39RHAtyf5MqeVJy4IemZPmAQEVQGaivgDcBxkFqcW5uTnNz8+r2+1aqxMPC7H34XBowzTQl8VINxoNc8b8ftdAuu0xZPlEtkSriFjQhI+hwqC7pDYcBUaO2jVRKI6SbAtnQe0I2J/P5trJEoFqOcwEPjMzMyb5ODMzo2QyaeUDJBlZPFd+nuw8GAw+1bA3WQLOBK4CxguiCpE0hp3lMvjdYffFYtFqc27mjNCOxzOeKoTTSyaTevDggTlFr9c70eZGX3Wn07GZ5D6fTysrK6pUKmq1WtrZ2dHMzIzOnz+vd999d6JWTBaLowwGgyoWi9aTDF+BPUS7EucLVAqjCEmGe3dV+FznybPibIFsuXOh3Tr+cDi0IJbPZvoS+5kMkHNDwDw7O2skKj57OBxqdXVV+Xzezq7XOx63iMPj97D3H++uOA4LeJUgUtKEEiMOU5K9Q3g6aMXDW8CuBoPBicBFknFtIBWS7YIwlUol+12VSkWrq6tKJBK2Bx48eKCNjQ2z2alUSqlUyvYgSRPa8jhIt/uhVqspnU5PQPsXL160Mh0cG/wA767RaJjEsdsGFovF9OGHHyqdTts8aEo/nH/pYGgHZ5qyIvV87IDb7kcg7zp4njGfcRgJzJHNk261WpqenrYIypW2Q91ra2vLJuUA5fCQk8mkTagC3qWGSEa4v79vTpsNw/+pS/BycHRsSLJ3aorSwYg+l4VILRj4aDAYWC0JQ4JjcDNtmLGuEeL+cdC5XO4TqlTAp279D0O0t7dnxvzUqVMaDAaKx+MTDfwzMzNGLKNG5PYBc92II8DqfRoXh57s2XXC8XhchULBiCw4IgwZhxcHDbmlWCyqVCqp3+8rnU4b3wAWMZnn3t6elpaWVCgUVKvVTKoSSJbWKTKbq1evanV1VZlMRs8995wZyqmpKb3yyisTJYrz58/bHgfa3t/fN4a5mw30+33TwacOCZJDzU+SZeTcI3VQao5kOJRicAYwcIfDoYrFopWCOMeQ8VzjKGmixCQdjD7k3ezt7alarerhw4d64YUXLOsjg/P5fCZOcuHCBd2/f99mVS8tLdnnYfA7nY4KhcIE8e64LJTW3L5e9zmBykHg8vl8dm5BJB/XQWBv8X+eGd8HrEvWiSb8/fv3NTs7q+XlZQ0GA73//vtqt9taWFgwnfZYLGaCIyyY0uzvaDRqNWwCZYJBumKw80DQ8Cz29/etLEXHCffZ6/XUbDa1vb2tVCplrWg3b97U6uqqaZBjY92zAGy/v79vIlnYfs5Co9FQoVBQo9GwZIdzjS9A8IQyzJNeR+KkERiBzQmuT7Qcj8ct28nlcgqFQkokEqZ3DeMxHA5bnRqyjqSJF4XDYdIODotmdJdEBgmN1gRJE4QbyDREuIxJW1paUqlUspfabrdNhICsgAw+EAhYGwWblSyWayBCG41GFkHizGnVAvpCrW13d1ebm5tKJBKan5+37I5pMkA3lAbI9Nj8bD4idOCqxcXFJyp591mur3/96+Yw2+223ZeLQLDffD6fTTBz+4YJltxMESnCcrmsra0txWIxc6S8v0ajYQz8XC5nusiSVCwW9eUvf9nqZwzhwJHAut7c3FS73dYf/dEfaXFx0QwKhoD/Lyws6MyZMxZggrQEAgHNz89bbQ2jlslkbDwqRpH9DZELY00PK99DvRGHR3BAxpvP5+3ZIidJkItuvKuxzzWAprlnDqSiUCio1WqpVqvpypUrqtfrisfjFjS4GgJwRvx+v/L5vGZmZnT79m2FQiGtra2ZQ6tUKmo2m08cmvy06xvf+IYhEdKB3CyOiZqvm0AA47rDhVziE04Y54y9w7FC4OPM43jfffddCzbJLoPBoBYXF01LGz18VPJgmJOISDKyLtk11yUd6DIwcAW0jgwZRAXC22AwUKVSMalm9Nmxszw3xlYmk8mJWjvPkKAORw3PiOeEzXXrzdKYD0HnB87cneZ2GMJPR+Kku92usTqfe+45IxOQXUBASKVSVsv1er3KZDLmMDFYOzs7Wl9ft8/AwQCtYaA3Nzd1+vRpNZtNyzCo41I/A8YgE4I9joNjzCDZCJ9PluPCzR6PR+Vy2ZwkG3p3d3eiab/T6RgU62bGtISNRiPL6IDN+VmyGTKQ2dlZk4iMRCI28YasEMhMkjkxtxWHLMXjGU/yIrt8Wtbj74HAikNPNI8DIwPEaeBIXEJhLBbT1taWcrmc9WUC08GSRSO+3W6bs4zFYvbMyQz39vYUjUb14MGDCaY177lQKOib3/ymwebU9Gi5AW1aXV2d2Otzc3OmCMW+B748deqUOp2OMpmMarWaITKxWExzc3MqFAoGD8LIXlhYMCe6vb1t9UuCTM5qq9WyNkMGO8RiMWsldDMgMjiMIfXxmZkZFYtFSTLiHj27dBngXIBAOQ9TU1PWYwv0nUgkVCqVlMvljARFduca3+Oy4vG4TVRj/0JqxU5BxuK8Uw6JRqMTMLkL8RKgYrtAHdifOCpYytvb25ZtYwMXFxeNX0AiRQaO+hn2rFAomPNyFb5c5nO329WdO3eMgb+zs2PZKdA2yQn3T6tZLBbT//zP/1jQil2empoytGdra8s6WVzuASUd94xLBwpnzK1mcEwsFtP8/Ly140qyM+/Wt6enp01+9e23335ie+RIdm2v1zPWH0QRarrSGMJD0k6SZQT8mRoxkDMGAgfJZnNrYWTmwCBEdkDSOCkyE5e9B8wIm5saIE6W+grRPQYXR8DP1Ot1i/wIEthw1KfJth4XGBkOhyY7SkbotquwufleiDLD4dDIXzwznjkQZrfbVTabNTGOYrFo18JzfxrW9773PUNnXMcMvO+WN9ySBe+M9wcygYHf2dkx1AUHhPEjM6CNj0gdNIYhBZImCDxAe7TElUolpdNpc6IEF9lsdmJ6EdkRDp99BxkSJjbG9/HRf9yjJCPEuaiTdNBKVSqV1Gw2JyRDydIwdIiL9Ho9gwhxoOxfV45yd3dX9Xrd5p8zyavRaJiWOKgRTgIHJMkCIfY8qEm73dbq6qp8Pp9WV1d14cIFa5XDsB5HqPvq1asmgENrD6gGtd1er6disWhBG0Q47AtZK+feTRzgwsAlIDiCGAk/gL0rjRMfAlp60Ala9/f3jSeBDd3b2zMBID6j1xuL5Dx8+FD379+3+0Kz4vr16+Y8QTpcrQfee71e14MHD/TLX/5SjUZDzWZTqVTKOlX4/ZLs+0ELOQtwNwjA6WAh6MtkMnbu+BxmOtBySfBBuZRES5KRGZ/UOvRM+tlnn9XCwoK9jFqtpmw2a8IGHGpX+i0Wi9kDwtBR54I9SK8czEUa9nG6q6urNhC+VCrZ5qW2gPOnHkP0/ejRo09M58EA8p/bTkAkRoZDdAhxi6wBpi+TkSD80GrAdbGRCVSIEAlEkOKbn5+X1+udmAu7v7+vYrFozHBpbOTcYIONjHgLZKNut2uw49O0eHY/+clP7N/+6I/+yKAxAqPHtbqJjHGA586d082bN62kgWGsVquKRCKKRqMqFot2wN2pPnNzc8YU5XcAF7KvPZ6DwSfxeFzr6+s6deqUms2m7SX2GZkVdWX6lXHMgUDAhg/gmMLhsInskGW6bYlu6QMYEKdaqVS0tbUlaQz3MR7VDSwJECVZdkvNGPJQNBpVu93W3bt3bX9J4yCgUChYvzNwJIgXc4CZfQ4iRP8uGbgbbJ0+fdpq7xA6z58/b1+v1+vqdru6cuWKstmsNjc3D2dD/oZ1+/Ztvfjii3adoA0EmATXbkLD/WOzyFwp1fCzkqyDhGDUdfDIv6JUBll0dnY8GjKXy2lpaWli8A8OzFUSkw7amSi7wWWhfZREiaTIRZDQ8AapZC+wV9fW1nT37l0ju7m97+wDSQY9nzlzRv1+39rRQLlcdvvKyorZfTewIFlyS0JudwJoAQEBnTRPch2qk4aMxAvw+XxKp9NqNpvWZyeNHzKRcywWs35B4FhquUT1QMYo0/D/brdrdQw2E/2xtJJQ76V2xhQkIBOuD0gEYw+ZgkwK0hf1IqBWDHyn09G1a9dUq9UUCAS0urpqBAmCDzIENpt7H4hWsOHJDoBaW62WUqmUwZJAZUCDLnFmMBhLDwLZgwSQiRE5r6ysqNMZz/jm3Rz39R//8R+f+DfXYUsHThvCXywWM2JJq9VSOp3W3bt31Wg07FnAco3H47p165YuXbpkPAhqt+VyWWtra9rY2DC4OhgMKhKJmPACmswLCwsmrhAOhzU/P68HDx5YzQtkh15nEI9UKmUs506no0QiYTB2KpUyh3jr1i3rD33++eeVz+cNonSz8VQqZecAeDsejyufz1u7I8gVzgC2balU0vnz5y2QJijmuTSbTY1GI1P6A3Kdm5uz2ma73TZjPDMzo+3tbas9A6OTKUH247zOzs4qnU5bFkmmJ8kCWjIi0Lbd3d1D6W39NItACGfgIn1uPzjOF5QLtPBx5jJoImRC1+Gxb1y+Du/XLf9VKhX1ej2trq5aLRxREBwZzhz0r9vtamdnR5VKRefPnzcbRGJB4FCr1bS8vDwBxYNSkdGSwJDpv/TSS7p69ao5yUajYe8RzgRBJ8+B/euSa909ApEWdJVn6yJKLGw7/280GoaaPWm08VCdNFENkWA4HLaIem5uToFAQLlczvrkUGqKRqNWY8Hw4fymp6dVKpWMcQgUgRMnQsVRY7jcvmivdyzBGY/HzXlTv11aWlKz2VSlUtEHH3ygtbU1+f1+JZNJ20SZTMZgUAxIOBxWNps1CPPnP//5xKxmNoJrNKvVqkGDtGLxtXA4bALzfA9wH4e1UqloMBgYE5RNCuRDxsHhoXca6JwMj3ojrG53fOLnYT3utB9fX/ziF9XpdHT+/Hn5fD7t7OxoenraAiCYoDiCbDarZDJpfw8EAtre3talS5ckjQ/7mTNnrC0lHA5rZWVF9Xpd169flyTrSfb5fMrlchbIYcj8fr8FaChEJRIJI/BARItEIvrFL36hWq1mBj6VSmk4HBrJC4SK9+yWSfr9vm7evGnI1XA4tH0OWXFzc9Ng64sXL1qdHXSIwBCiJwFLOBzW9PS0KU65tWKCpHQ6rd3dXUMMPB6PzXOn7JTJZAxxctne+/v7Jozh9t3i8CQZrHycViwWM+OPU6F8IGmChU1QAycFGJp7dLs2+Hfq0NJBu9zu7q69K2ksSev3+1UoFBQIBBSJRCaUF3HUBPL5fN7kVkEvsdG0uzWbTc3PzxvPRZIlIy6vxyXNYvshOhKchsNhPfvss7p+/boWFhYUiURUKBTsGUAYBeaXZEEN+5sFWVOSoY6UNSWZTYQHQICCbgXoKO/D3ZEhXVgAACAASURBVF9PYh2qkyYbpmbHS3VfGAePKI8MBec7PT1t9H5qV4hIUIMB6kVDmfYkRNfJNDEejzP63NryvXv37EW5PaCSrL7BSDZpfEii0ajV3SBg3blzR1/5ylfk9Xq1uLg4MQyBVjGeA0bHrV/ze4neJFkdiUiarIHn7NbXOcwuuxntcoQQJBlRr9lsWqYJqvF/ZQ2HQyWTSev7TaVSxjBG9YuhFxhAv99vkpl+v98MzNLSkh49emTObmVlRblczvZcIpEwhj4CPc1m05w+MDp1aTSKK5WKGSagxL29PW1sbBgjdWFhwXSsCQDJJmBnQ3Aja19YWNC1a9cm6r2oNXW7XeMrwJzd2trS+fPnJ54fbY+c9Wg0aoE1wYb7e4EgacsBkpVkkpYgb6ihYSzJ6igzkGUShFALB+odDofHrluBTI5gG4lebBDIGXCsJHNucC7cc+yWxcgi3Zasx5XHQHf8fr+Wl5eNEInqnCRzZIPBwMosqCTyefxeV8Y5l8tNZO8zMzNaXFy0JAo+AeUnPocAgkCDpC0ej+vdd981hIk2KLJb7LSkiRp+r9eztkMCR+wtZSh+v/vsXYKuJOvq4ez1+/0nXjo5VCd99uxZSZpo91lcXLSpKK6yEbVWamEIyY9GI62srEiSZRMYPGAT4A/gZhfScKEaV92m3+/b4SCC6vfHMo0PHjzQL37xi0/czze/+U0jXxAMkIHkcjnduXNHDx8+tO//4IMP9Oyzz1rG0Gq1JmBNolaMI6IoDHFIpVLWW02PJGpP4XDYsgeXfcvGJDPhdxH0cP0IH7gZOfDgccs8nvSihlur1az1r16va2FhQaPRSLlcTvPz81YHxtik02kLHFdWVjQajVQul9Xv9/XRRx+ZwWGPoPb0xhtvKBQKqdlsamdnR7Ozs+YYaWVCFwDOBjD36uqqcrmcKe199NFHmp+fN25EuVzWj370I125csW4Ff1+XxsbG1brxnkTnH7ta19TuVzW6dOn9fOf/1xXr1414qMkffzxx/as8vm8MpmM1fvJlqUD3gQ9uF6v1/p8aXehgwJkaWlpSZLMiNPTihPhnMINCQQCFtCORiM988wzVqJwe2Al2Wcdt0UmRrACwtBut/Xw4UPjHZw9e3biubjtVzwfgpvhcGgtc5S7EHgiwJmamlKhUFC5XFYoFLJ9CaxNayhBEESqXq9ndovnzr+B8EHwI2uHV3P37l0TWSKD5vu2t7fNeQaDQePxtNttu16/36/z58/r6tWrhlL2+33rjCGYQ9eAEiIthAQrPGuQRp4jzpmgid8PlwhUgeC43W4bOvqk1qE66bffflt/9Vd/ZQeMySqZTMZYxxi+ZDJprVA4D1o3MHb00eHcqKu67Tb0FVN/IGNG+hGyGjUtCDvAzaPRSJcuXTJY0l3f/e53J/7+N3/zN5Kkb3/727/y/u/fv6/Lly9rNBrZoACuDfF7pByTyaRlT/QQkg0lEgkzQKhaUYtymexzc3MTtUXIRCiQ8cxpQWu1WiZqwfOQpHfeeeez3AbHdl28eNGMDGL+zWbThjtAXMEgoOoGZ4DMAl7B6dOnVSwW5ff7tba2pn6/r0KhoNOnT2t7e1vNZlPnzp3T8vKygsGgNjY21Gg09Nprr5nxW1lZMZQlGo0aKzqRSKhSqZhC2dbWltWoqTG/8cYbksZsXYbSf+c735H0yXd68eJFjUYjhcNhXb582UZ2vvTSSwbtf//73/+Vz+3111+3P1++fFmJRMICl0QiYQab7A2CE21jlUrFECKCUPZ9rVabyJrX19clHZDx8vm81a8xrBheMkt+FrbxcVsgBQTo7EH2FWcWdIKzSVaNk6tWqxMtmthAyGFuOxTvg1owGSJIDq2cEAHJMF2mPHtdOpBi9fv9SqVSyuVyxtbGJrv3iBN1NSFIsEhS2AcukQzOA+gjnUIEkAQIEGjZA+wvfAdJCa2akgxxAc2krISWuNu6CRJ8GMTaQ2d3/+d//qdefvllG8XHZJfZ2VktLCyoWq1O1MyAZqUDdSOgOr7uDryYnj4YBOD1jgeFV6tVg1T4LLflQTpo03B7FN25uZ/Vcnui6UFk0yLKArzJRBjqU6FQSPfu3ZPf7zdFMTcwcXv6gGiWl5etvjM3N2ewODV0soxCoWDsWe57d3dXt27d+szu/bivbrertbU1rays6P3331cmk7GpQwSIkoxYNT8/r0qlolOnTlm0n8lkdPv2bV26dMkkYLe3t/XCCy+oWq0a4oJjyeVypgW+v7+vZ5991vSY2+22CoWCGT+gSjdryOVy2tnZsSldQMLpdPpT3Xs+n9f09FjH/Pvf/75OnTqlBw8eqFQqKRKJ/NbO7fr163r55ZdNscqdWoWwCMYaAij7cGpqSpVKRdKBWAp7O5lM2lnkexG4cFvhJJnD7nQ6qlQq9pkuAnCc1rVr1/Tqq68ahIoDLRaLWlhYMM4OPfAEcNhISaa6SF85kDXqedgHl4SG85Zk74EOGNTFsA9klW72DJ+B4C4Wi03MHpA0ocYoyTpvQPhc7oK7vyHwukkcTtTj8ejixYu6e/euBcQ4ZdjwaIhT32cfkZBh791SCPdZqVSMuc2zkTTh0OE5HUYCcyRiJhAKyGpduAV9bHR23Y2JGhbOmlYsohqiOZw17OZSqWQ1NbJrd9NgBInKIE/wb//2b//2md07Kldu24+r/Q1Zy0UEeAZEnY1GQ+vr6wYzuZEdxoko0RWuIBiAwUi/L+0YLoEI2Ptpnyv9aZarf4wBIYL3esfDJWq1mgWTyGdms1nNzs4qHo+r1WppdnZWpVLJ3jERN7VuVK9Go5GNpiRbZo+zjzGyIEqgJBAU4STwjpE7/LSwbrValTQO1iRZ7f13Wa7ICDVRSjRo4XP+3KCbbIfvR7ue0hUkSqBcYFlXwpUAnbar3d3dY+uc3YUKoNuWhh4DjpJzCcuechTnliyYWiq8CJ9vPHecCYBuaQOOASN80+m04vH4BArhZsPA8a5aIS14QOC0dbpqeQROqMMh8wqXgkmH09PTqlQqGg6HxtdhNCrOdGZmRufOndONGzesbImDHw6HKhQKxnmQDgRY3NYqsmxJE7wbuBG0qZLs8VnUvillHcY6EiftPjwis1qtpl6vZyxt+kp5SG5bgdtcT5TEoaUlC41lZj+7qkqumhNGAlIOZBrqzC5R7LNYr7zyil5//XUj14TDYSWTSZsFyz0SoaIIhkOOx+O6fv26PvzwQyPsEDkS9LgsRKYlSQdC/rATW62W9eVSzyKw6Xa7un379md678d5rays6Ny5cxbknD9/Xg8fPjRyHQHg3t6eTp06pXq9rmKxqC984QvWhlKpVBQMBnX69Glzcn6/X2fOnFE+nzdonJnP5XJZq6urevPNN63ViOwzmUwqHA4bPExUTxBFxvDlL3/ZREQwlA8fPjzScYxvvfWWnn32WXk8Hi0vL5vDRk0M4+2258CvcBm2OHUCSHdoBoY3n89rZ2dngnHPZ9y/f//InsGnXVevXtUzzzyjpaUly9IIaLgfiFQ8P2rA8HGAcqvVqsLhsOkskMC4BFCXbMfvYH54JpOxPYejxqnXajXrgeazKdVRJqNcifY8zrPf75sQCSNEXZSq3W4b6xyE0GVmk4wQNCwtLSmfz1sQjagQJDO0COiXpt2VbB8fgqIfugSURUmQ8A10G7Xbbb333nuHtjeOxElL4+w5EolMPBwcBoPkieI4yPS3seF4iGQ/bEJESdrttvL5vGKxmDmwfr+vUqkkn89nMMtodDDsolKpWN2k0+nohz/84Wd639/61rckjWuA6XRa+XzemJDVatUiYjIqDLff7zdmY7fb1Y0bN7Szs6MXXnjBenjZdDhhjJY0hmdgJHe7XduwZI27u7u6d++eGUpIJp+X9dprr9nzAGn46U9/al8ny0Cmkuk+5XJZly5dUi6Xsxqex+PR+vq6qtWq6vW6UqmUpIOJagRgwJEwvxFVgMC0sLCg9957zzJPWnFCoZD13dMzDduVNpn19XUtLS0pm80qk8lYC81gMNCVK1c0Pz+vRCLxKwmPh7Fu3rwpSdYKCNRI779rbPkzDpjA/XEIG6jRnVrU7/dNiY8aIk79aVsgaTwvV2CH880MANAvxGskTbRSkgkTsFMGJEN0e6sJ8GFMkzzNzs6qVqtZsEhfMu+mWCxqfX19QpWRrBOypcuOnpqaMq6RC9W72Tq8Bc4oMDTOl5ITNpvgGT/gzmLg56hBg9K4KA4Md6B9PleSXQvPkut21cYOYx2Jk8Yh0q8GZEFUuL29rXA4rGg0atkykTMvTTqYsUyk2O/3VavVrLj/4osvan5+Xr/4xS+Uy+W0trZmwh8wunFKSOH94Ac/OJRncPv2bd2+fVt/+qd/qk6nY/APxhkFKFpWQBYWFhZsSEcul5voxd3b2zOWuDvAo91uW/O/SziBZIHjXltbs58j+/68LDoEpIN+/a997WuampoyDWGyheXlZRNzQWiHuj4QJM/4gw8+sIEbBJGBQMBY2Kgura2tGWIUiUQ0OzurDz74wCBtOhVWVlasZ7rfH0+wAqojG11aWjIiYTqdNn6DJKtJv/TSSzp79uyROWkWPIhgMGgwrbsHIQW5bS58HxC321rFwASIkSBM1HKBzZ+0wMSTWPSQw/qnrZP7BZZGQ579SDbswtK0mbqBEdA3zpsuF2m8Z1dWVoyFTaZO7RhhFLg8CPvwXkA9EFXyeMb6/yj2UbJzGeYI25DdkpyEQiFtbW0pHo/bEIu1tTXL3N3edzgKBHsej8dEpiib0PrF/bCPKpXKBOGW/0uy2ewIWLFfmTh3mOtInLQ74JyDBszoynm6tWbqqbwM+t5cMgDGVJI582QyqeXlZRUKBSOZsfl3d3dNUYwa0GEvDFaj0TAIqN1uG7y3uLhodU2GKwwGA7333nuWpXGvbr83MD0serIMV4eZrE6StdEQmVKj/DysV199VdK4B5w9RPCCQafWRPAGL4KoGcPp6in7fD4tLS3ZTGSCzunpacuKG42GzYpGtc7n86lQKNgoR7KG6elpK3u4ko2UReASuLVaonw0i+nVpr/6qBf7ifPsEuBAe9yaKqUt9Az4GoaYAJyvs8gMXUncp23h5GiPpLUI6Bd983A4rNXV1Yl+Z4ZDAMtKB8/EZYXTssZgGARJzp07p3g8PsHLIADge12CKq2c2OqZmRmbBMho0/Pnz+v+/fum/AZcjL4De5drd2HoTCZjLaToNuArGCjDPZJ89Pt9m3wGSZHn4/KOaJEFuUGgBaU8tC5crQj2MKz7w1xH4qQHg7GwP9AUPdAcMklGBEkmk1YnoMeUSJFNLY0Zzdls1pjRGINgMKiLFy/qmWee0euvv249el6v13pMic6OgiTl9n9ub29bpsxBQ1UH4w1J6E/+5E+sZYJgJpVKWemA2hUQNy0KjGijHgVrlmyN7PppNHK/bt28eVNf/epXjZTHBB360EejkdLptPXoP3z40OpnyWTSRBR2d3etxso7oo4H87NYLFqr22g0MigR5/3w4UNtbm5OSNxiPJCa5b1StmCKFsaWrwOL045IMCaNFaToOT7K9cYbb+grX/mKJJmz5dkQeFPa6XQ6xguBO+IKe1CbJWiHOAWsKh3Utg8bkvws1tWrV3Xx4sUJBTH6kuv1uiqVihYXF20cIzYiEokYOxsnTCBDJ4lbz+d70ZFwe6TJPgOBgDwej+r1umq1mkHYyKuSJOHM2Xuu2lcmkzF5UJAAgln4Me1226SiIcnhkEulkh49eqQvfvGLGgwGphrJz4KcoAmxtram9fV1CwClg8SFGjskOoJt+A3033u9XsViMc3MzCgWixkSII33XSaTOXSJ5CNx0jS+03NKNsPLcSGWnZ0dpVIptdttG/WIMDt9ekBdfDa6qog5ABv/wR/8gd5//3172JCqMAwulH5Y60c/+pGk8Szk/f3xQIx0Oq3p6WltbGyYFCjQENEmh5Q6SigUMqEIGJMEPpKsoZ+ajItKELSQscP6/rysZrNp6AQDWRgAEY1GTUAEmc2lpSVrEcQI9ft9E+ogK5YOpkANh+PJPQjtYBhGo5E+/PBDlUqliWcKUxajlE6ntbi4aM4YMg2/i7KPJMu40a1GFAfuAgNXDmPW7W+zKpWKEonEhBqW207pEkRBKaRxoM4zpCUSh4OBr1arVuLCwHo8HqVSqaeKOMaCDc1zkWQOiUEn0oG0pdu7zLOlXcsNhvhMzrgb1FBCIFlx7Snnhkzc5/PZEBvKkJJM34E/uyODYUzzHt3Z0SAsbnsY8wPi8biV8UAMUYp0M2TuNZ1OW/sZNWjXsZOcwGfg72TLcJ8qlYqSyaRB8QTyXK9LwDuMdSSjKvP5vE1jkjTRt4dEnasWRJ9zLpezfji+HyYkhX82AUxEZBSpv3zjG9/QF77wBa2trdmEIMTkj9IxucHFjRs3LNtC8YZeSSawUGOi97vVatl/GHUgXYydC3tNTU0Zix0ChiRr3qdN6POyrl69atPJJFn2Sjteq9Uyqc1AIKBsNmsiHEwqm5mZ0f3791UqlazuHI1GlUgkFIvFjBiD4717965+/OMfK5fLGUGHehr96pR8MpmMoRpTU1OWmWCcyAwIYnnnlDW4L+Bin8/3xJWQftt1+/Ztlctl5XK5CbIQWRd/hswIrOpK7botiwjMNJtNVatVZbNZq+0jiXvUtfjfdV2/ft2yN949+3NxcdHePbAtATswbLVaVaVSMadCLdhV2QLGZh+iUwH6QKlN0gSTm3Yo+tYpN9BdEolEdP78eT3//PP2zgiMQVCYGOg6b+wRU/m4FnhJsMR5FkxHo3NHGiOpFy9eVCQSscACMRRQAvaVW++HcIatBJktFAoWMFAiJes+7OD3SJw0sCOFfOlg5rMkg2F4eER46LzCyJbGRouInCk7TM5isgubgZGQRJ309HH4s9nsUTwOSeMxawQXRLYQKlyNWSaCEXRgvBmIQR0FOBfjTeYMagF5KZlMmhgMWTnv5/O0EEugtovjoxZarVbNmEBuwtli5Gj3oB8UJEM66GvvdscjPt12OgJAfp872IAyTiqVsgBsNBrZ+4Etyx6WDoazEHRRU6OdpVqtWt3xuCzKKKAaOBi3Jo3jIPPBMEsH7TfUS3d3d03SkvcAmvS0jVd9fO3t7Rm6II0Dr3g8bnuKTJKpU6VSyaBc2rFAY9zsERSI/0B7KDlgZ9h39JnjcEl28vn8BK9geno85IizJclGje7s7Eyw7ZnPzL6XDgSefD6fOVQmp83Pz9sIVOZJz8zMWIsj90f7JD7C5/NZ0AEiQSaeSqVs3Gw8HlcsFlM0GjVHXC6X5fF4VC6X1Ww2LRDiXRx2Jn0kcHen09Fbb72ly5cvG7tOks2EBj7EUfF14GBYhS7UQT2jXC6b3CiKTclk0tpT3AEePp/PiAx83lEtMglXGtHj8SiZTBpRgw3MgZQOYLFsNms/R80fI0hPLeMCB4OBsZU7nY4pYREAPY0w4W9aDJufnZ01cgwCCgQzhULB5tWGQiEVi8WJPTIcjqUo2Y/MS2aPSbJ6YrFY1NLSknK5nBFgIKZRcwURisVikg6IPgRRQICULZDSJMOGlR8Oh20aFlr2Dx8+PFbkv42NDUnS5uam/vIv/1IPHz60rIngiP0PWuAqV0H2GwwGun37tqFOrFarpe3t7SO5t896AbHyrqUD5IcAb3d3V9VqVadOnTLngwN027bcFjcQS5IT9hG2Bgfr8XhULBbt9xEUwQmirCLJHCZOEqjc7/dra2tLXq9XDx48MLgeB0dwLMnIlQQDbo82SZdb656bmzPi7P7+vlKplM6cOWPEyWazadA+gZ3bgguHA54DAQ3X5fF41Gq1TGQIMhuyvvB7DmsdWZ+0NIa9YeFFIhGrpxIdSQfygNSq6ClmE7pEiFqtplOnTimXy9nXIPwQfe7u7ppBg3hC3+pR6vp+8MEHOnXqlEKhkHZ3d7W9va2VlZVPSNpBDKlUKgaxotiWz+eNSezOZsXRSLK6n1t3dg8yes+fx3Xr1i2trq5OtO6Uy2X7OyUYkATKDel02uYlUxoYDAaWtS0uLprcJaSWWCymSqWi559/XrVaTdeuXZPH4zE4OxQKqVKpWJ0VQiSBGORHgis06xGoIOBA7x0SGkHr22+/fWzJf//1X/9lfz537txE94YLy7q91YFA4KmFsD/ton5LBooNoMWUrI6AjOdH+UrSRCnBVWLkebKPcGAgeDx/MmVsJ4pkDNxBtARJTv4NfQrpYMAK9wODG4liUFIEqhj802q1TFvA4/Eom81a8gbiyZkh0EPzAiQGX+IKQZGEEZBQ+qMMJY1RDBBZrhln3u/3j6SEdKROulgsqlgs6sKFCyoWi5qfnzcnLcma0KkNwDgkwqLlAGbecDhUrVYzGNgdeE52DQTIC41EItra2joWUfjGxoZlHJKUSqXsAKbTaRO26Ha7SqfT8nq9JuMIGSoSiUz0/JKhTE1N2exu6tNAvu5G/Dyv3d1dbW5u6tKlS9aG1ul0rE4GiWRlZcV6K+E6YNyI0NG05plLsswWY+aKcaRSKcv+kBil5ri4uGhkl6mpKTUaDcXjcSPjzMzMqF6vm+PmGpC65X2TQfX7fb355ptH+ah/6/U0SHYe9rp9+7YuX75sLXrYKmqy6Mmzv6amppRIJCzAkw4ma2ErQWMI8oPBoOknAHmTISNRS7bu9Xr1wgsvmEMdDAYqFosqFArKZDJmc0iU4Bb1+32l02krL0H+c9uhCFZJnEBWCVIk2VxxaSyC9fbbbxsXx+/368KFC3Z2QEgpl0qTwYLH47GBLpIsaw4Gg1Z/huiYy+VsxGq1WtVbb7112FthfP1H8lsfW5lMxnqcIUfxEHu9nm0E+uGI9nAu1O2IjmD4kR0Bo8Po5QVSuziuzoleXbcdBwhU0sTUpV6vNyHi4CIRkD44TJDxgsGgwVMej+dYBCpPcsHqZNKO3+9XtVqd0BimHYUAhr2YyWQ0NTVlyl6UU9wsR5rsTXXbVSD6wYHg67u7uzbVzOfz2TxljO9gMDBZw3A4bOx/7ocMmmDUHQxwsp7edf36dV2+fFnhcNiQBRBGt3bLjAG379yFrkFXEHBKJpOWBbuCTo+rN05PT+vmzZuKx+NWcns8Y+bMgNYRnEoy5Tx3sBFBLNfD3gWCz+VyFkjQgy2Ny6DvvvuuNjc3DXamXTIej2t5eXni2cHpwSnjuNEekGT2cjAY2Dmt1WpWagFxdFUJj2odCXHs8fXGG2/ovffe00cffaRarWYjyPx+v06fPm2ZTCAQMIauKxUKw5tpN8FgUPF43DIc2N8IgjAtxefzaWNj49gymX/4wx8aRIWeNuQG2LvusyB4wSFwIHq9nmXlbE5akSBQZLPZYznG77NcRMTvvPOO3nrrLVOt2tjYMGUhGKYQ82jt4OCHQiFDM7rdri5cuCBJpsAEqxQVO+A0xlrW63W1Wi0ra4xGIxOsoW4myXqhXYEdSGyQe4AeEe/w+/2KxWK6e/fuoT/bk/XZr+vXr5teBME2/0kHGSKJBtkqGTL9zZTzHh8aAapDlwjiIhCumMDltngRJPR6PRWLRVPpgliWSqUUi8WUSqV09uxZhcPhCeERIHTQH0h/aBdUKhUjZoJm5XI5bWxsWDIxNzenubk5LSwsaHV11RI2V2uc4EOSkcFoG/N4PDa1KxqNms9xmfJHIf/569axcNLuWlhY0PT0tBYXF7W4uGj1WEkG/VFLLBaLlkX7fD7rL2ZE3WAwsOlAtAIwfKPX6+nWrVvHniTFIXFnGOMAaCHikBIhDwYDmyIGVARK4fb6+f1+hcNhFQqF/1PDNFgw5WdnZ5XL5eT1eq2fGdQGyK/ZbNrEoFAopKmpKcXjcWOOxuNxDYdDm3JG3zXSgkBsoDr0Xs/Pz09kJvS2hsNhBQIBi+7hFPD+cchIFkIalPS55hX8X1vUc91s2q2tgrZIMq150CEIpsPhUOVyeaJX2SVVuTVbnPBwODSGtSu9KY2DxXK5rGg0amNVsc04WOrNtJDiSPkcggNU9HCKECa5JtBRl9UOPyMajZqCH/oOZN/ufTGrQNKEWiAkNEh0riY8cx+OwzoWcLe73nrrLX3xi1+0OjIiEh6Pxx7mcDg0uIOoDEhldnbWoiY24mHpcT+J9dOf/lRXrlxRt9tVLBaz2iR1m+FwqGw2axAS0qKMvgsEAjp37twE4WE4HOonP/nJUd3SsVlAWc8++6zq9boFc/Q/U4NziSWzs7M2dUmSOUqQCXSVKbWMRiNdvXrVBtw/evRIgUDAYOlz585JksGPtCVCYEsmkxZwPV7e4c+0Gvr9fv3jP/7j0TzMk/VEVi6XMwY39VqyRPYgTmt7e9sQQrJJyjtLS0s2HIa9QuZJpizJsmlKMfx9ZmZGtVpN+Xze+vrJosmEaevimqiFu10zIFCUgPg7NXdQ0NFoZMgR2g9uu5jf79f8/Lz1xUsHAQ11eAJt2lgrlYq1NhJco7xIeYszW6vVdOfOncN81b92HTsnLY1fJG0q1DtQ2gGaYWIWkRebkr5pagpHocf9WS+iPkhCj6uGzc7OmkNGnccly0mydgJmtZ6sgxWPx1WpVIyZzb6C2UrPuSRjwQaDQdujkib61lEQK5VKJjlKH7t0QDCLx+P2bkGIqBOCmmDo3DY8tJQx2IVCQaurq0okEkf2DE/Wk1mQSf/wD//QiLA4WPYiwSFkL8ixyWRSgUDAnJBLtnIzZrfdFedJFwNOvFQqWXZNbztQNZ8ryTJjyFuMUZUOynHA4wiTwD5fXl62vU+XgnTA8wA5QEwF9je2H41z5E9ZOHVY7XQT0RVEqQmfQTvfceEqHUsnff36db322msGr3S7XcsmqC/QDgN5x+/3W5/lv/zLvxzxHXy262c/+5n+/M//3PRtqYlCgOLA1et1YwbH43ENXtFOdAAAFy1JREFUBgNtb28b3M0GZ/OfrPGKRCJaWVmxZ4VQAvDa0tKSaaiTXfMsq9WqQdAgPPv7+9ZLiWGVxv2gsVhswohQWyYj4L0ihQtEiPTrzMyMms2mscv39/e1sLCgRqOhGzduHM0DPFlPfG1vb2t5eXlCgxuxI84/mgc+n0+pVMocrSsXCgwsaUKjwlWso6MB+U5ga/Y5TO5QKGQO2T0TMzMzVjJyh6hIsjIPe5uEA4lmnCXXgJ13RW78fr8NnpE00Z3CeXFr7Vy/yw9h7CswOW2psMR3dnaO4C3/6nUsnbQ0rqtduHDBIF6yZeAc6hluOwtZ5udxUZt0+w3RLMZRMze7UqnYIXXrQdlsdmKy08kar+9973sTf89kMtZzT50akRPaXXDOEMBAbFqtlsFllCjYk5lMxgzBvXv3lEwmrdtgOBzauwkGg6rX64pEIjY8AmGafD5vtTuMbLfb1b/+678e+nM7WYe37t27Z+UNaSxuwghPxHPm5uZsOpYkQxRd2V/q0EDCrpwyzlPSBBkLBTBXl4IuEdjekiZIaThA/k5pbmpqypyudOBgye7dThVIckDrZMtwNyCJMQUMMhrIEwEBTG93NrTf71etVrOggr/3er0ja7X6devYOmlJqtfrWl9ft5cOeQYdZSJEHHS73da///u/H/FVP5n16zbOiy++qH5/PFoxHo/r3r17CgQC+vjjj61OBGSVTqf19ttvH/KVP31rNBpZ+YD2QIKebDY7QZiBSIZqE0aHwTG0lLi91swDJxPGUEYiEWvxYi4ymRAZPH2z1BdLpZI++OCDo35kJ+sQ1v379031KxqN6s6dO4pEIgqFQjbDmYAwFApNaHZDSHQFP9iv/J22RPrzsbO095H1SjIyKw64XC4beYygcjQaaWFhwaD46elplctl66Ag6XAdK86b80f/MqU87o3xlpLM/uPkuRege0Z8ElgHg0HrtoAQSrvYUapO/rp1rJ00GrG9Xs9etCTbAER/yFy+9957R3zFh7+uXbv2a78Gk3hmZkbnzp07cdC/5eKZAo1hpJgYhKQqbPq1tTVdv37dWkOkg2H0roPGYADXpVIpU36SZD2baCbjxCORiEqlkhFrEIzodDra2dnRzZs3j+xZnazDXW6b5CuvvKKlpSWrU7tCRTCdQdlwgKiMoShGfdhV6KJkA++FRT82zlGS/R0OB4EpnxeLxYw06c4ikGQyvMDeONk333xTqVRK6+vrxvqOxWKGop49e3Zi6Aw6EAQiTI9jeBLBBipn7izraDSqer2ura0t3bt373Be4qdcx9pJSwejHE/Wp19EnpL+z0gqfpbr+vXrkqTLly9LknZ2dnThwoWJ0kowGNT9+/dtBq07ZcuVWHTrZe+9956uXLli5DNarECGIIVVq1Vjya6vr1t2DfOUST0n6//mgs2MJKh0QLJyHSlZpov0UKPl69KBOBKOkZYk4Gh+jlozjp9gFESIDNadAw4JLRqNqtFoqFKpGLmMe4HYGovFlE6nTR+81+spHo+bBCm1dVAD+EiSjAjm8/mMYyJNDtlgjUYj60EnuD6O69g76ZN1so564azPnDmj27dvW21ZkjGygaMZYJLJZCTJ6mfb29s2LB62bbvdtsHyXq9XmUxGuVzO5qX3ej3dv39fMzMz2tzc1GAw0H//938fzUM4WcdukUFLB7O3CfRcwRKY3W79WJI5VBTyOp2OERjb7baGw6HVveG8IAZFFs5kLJcgKR3Up1utlg2q4d9pEwUxotV2OBwqFosZcxsoXhoz1dEmR/4T1MCdECeNg42trS3riHDVKQlqUWaDHMpzPI7rxEmfrJP1Wy6Eb+ifXFtb0+rq6gSJxc2YIcD4fD4bjDAYDMwoYhiZwkXmQZaC+lM+nz+pO5+sTywU7NBwr9frn2BR8/d4PG7lGwJKd6oVAh90yhBc0iIlyeZc7+/v69q1awqFQrb/gaoJDnZ2dkzjgsze5/MpFArZoBggejpRqIWTDdOfLR0gBJQ6YWTPzMwY14N7hQ+Cg2awDVn/rwom3nnnncN8dZ9qnTjpk3WyfseFMQLqY4ZzJpMx5nWz2dSjR4+0vb09oXecTCatr3N/f9+yZ1fhiQEDx5HMcrKOfv3gBz/Qa6+9pkePHplWNq1JEKXok3YHxfT7fbVaLRsfiVOm57jVahkJzM3U3faoV155RcPhUPV6XXt7e9ra2rJxqtPT01pbWzPEiKwYdCgQCNjsb9jj6F5IY0ga+JmuCVjqrr44DpzAgECB3m06KSC4MdwDYhvEz+Ou0HfipE/WyfodF/PJGcpRq9WUSCRMMazX66lSqWhjY0PRaNTaBS9dumTGj2wZQYpgMGjqZaPRyCRJT9bJ+lULqdnNzU0tLS0ZDE0W6Q6MkGSQN/34nU5H4XBYkUjEgkFXXMdlXEtjYRC3LTYSiRjETlCQSCTk8/kUiUTMaVMPZ+pUKBSy63EzYL6n1+vZ+EkyaJd/QcAgyZw/dXZat/gM15lLMtSL1rXjvk6c9Mk6Wb/jQmgBQYnp6Wk1Gg1TXZqbm1M2mzX2KbUxekgRbyCbkWSDUZi+NTU1dez15U/W0S0Xph2NRmo0GopGo4rH46brPz09rUgkYnsOyJqWI+rN7mhHYO7H5ybQK51Kpay8w1hgWqWGw6HS6bSKxeLE1DecJJA7pZ9Wq2X69UDZ8XhckkzTAeY5Yk6gV66zpvUK4R8GZ9BuhnJgr9czvX6XXHtc14mTPlkn63dc29vbNsCFnk96MBFfoP+Zud+uNCJkG9oMpYNoHyY3EODJOlm/aS0uLtpsZMZKMoUKSBhNeGlcY0ZueW9vz3r/XRUyAktqwRDAyLYhPwJDo8sAKezhw4fK5/P6i7/4C/V6PbVaLUljlT9q6bR6eTweq1nzZ1jpqC3iYN2hGlwnZ2hqasr6nvv9vhqNhgUwkNTcMbDHfZ046ZN1sn6PxfxciDf9ft8OfrFY1O7urmUADDbAidMbSp0OPWT6OmdnZz8X2vMn63DW1atX9eyzz5qwDv3Frl42PAdUwwKBgMG/7hxq9ix/LxaLpg8wNTVljh94HQIX3Q3Us0+fPq0LFy58YiY2WS/kNurEQNOuiM/s7Kzm5ubs9wCPo5BGwEtwQZYej8cn5j/Mzc1pf39f1WpVpVLp2AzQ+E3r2I2qPFkn62lavV5PhULBasher1eFQsGINjjdSqVixs1lu0rj4SfdbtfqdLSo7OzsnAjQnKxPtWBrQ/ACien1etZtAOQtydjPkmwSldtLTIYKZM0oSkbi8rv4HHdsphtgurKkLsNcGqNG/Jxb/+Z6uH6GbxBoMF6y1WqZHC/fyz35/X6rUc/OzioQCCgcDhuC8DSsk0z6ZJ2s32Ntb29re3v7E+P/Wq2W1aljsZgNmc9ms9azKslqz/1+31TJOp2O/vmf//mI7+xkPY0L1cXZ2VlrbarX60okEtYOCNEqHo9PBIzu1+k8cNnQfr/f+BHnzp2T1+s1zexut6t8Pm9OcXZ21sas4ozJ1JErdYlcaIG7dWa3Tg2kjXAKAzy63a6q1aohBsFgcELBz+fzaWFhQZVKxaBxhFWelnXipE/WyfoMFjKE9Xpd6XTaMg8EJTKZjGkWw76dnp62mbdkJTMzM1a/Plkn63ddw+FQtVrNarlMdpPG0LXX6zVJThjXLtOamc60M7GXn3nmGe3t7Smfz2t1dXWiRkw3wuzsrHUzSLLPxNnu7u4qGAzadUqy9rDBYKBEImHkMEbxImyCvCgZP3Old3d3bQxvNBqdUF5Dg4B7qNVqKpVKh/k6fq914qRP1sn6DBZqYpJULpc/8fUzZ84oGo2aM6fmRj808B/tJifrZP0+66233tKVK1dUKpUUDAYVi8W0t7enbDYrSeYIGXkpjSftRSIRa3eiDuxOimIADENl0AeIx+NW80WYBCKXW/MulUpaXFycgMU7nY729vasjk4PtIsuQWCDZU73xGg0Mna4z+cz4tz09LSazaaVoQaDgdrtth49eqThcHhsdbp/1TqpSZ+sk3UIKxaLWdYyNTVlLSaoOsFqnZ2d1dWrV4/4ak/W52HVajW1Wi2VSiXl83ltbGxIkjlF1O3Qgy+Xy9rb2zP0RzpofSKTZeBMOBzW7u6uMbphUk9NTalSqUg6YIdLsr3v9XonGNYwt6k5u10Obn+3JCOVoTQmyQiYkNwgjfV6PRvmwZlDeOju3buH8wI+o3WSSZ+sk3UIiz7SVqulmZkZE1HodDpKJBIaDodKpVL6/ve/fyIBerI+k3X79u2Jv1+4cEGDwUChUMjqushrAglXq1VzfLRTuTXeQCCgQCCgZrOpSCSibDarZDKpdrs90V9dLpcVCARULpdtSIc05mCUy2WdPn3apm/5/X4bRczIShduR00MyHowGFi27GrnIzXabrcnyGOlUkn9fv+pJWEeSSb9D//wD2o2m/YfYhDJZPIoLudkPWXr29/+tu7cuaNGo6Fbt27pb//2b4/6kn7jQgrRHeUXDAYtg+h2u6pUKtbSdbJO1me9EAmJRCJWa/Z6vTafenV1VXt7eyoUChqNRqpUKiqVStrZ2VG1WjVoWxrXrL1er+bn57W9va1r167p1q1bNiBjYWFB8Xhc8/Pz9nsajYbeeOMN/fjHPzYp0263K5/Pp2q1qnK5rI2NDfu3ubk5eb1e7e7umq54uVxWqVRSo9Ew8hiOfH9/35TQhsOhms3m/2vv3kKa/MM4gH/NYcvNNY9pBVkZSVkmIdGZ6IBBGlGmQSQJ0cHoQoLsSq8Uugi76GAtyk4UFIRBaRKlCaWGeKpcReZ52XRzc/OQ9v4v4v39teM0dVt9P/CDPOzdMxk9e3+H50FLSwvKy8tRWFjo5L/+6DnlTjorKwtZWVni6/T0dKxZs+aHa3lE37LZbIiNjcWbN28QHR2N/Px8vHv3Ds+ePXN2aD8UFxcnagj7+fmhp6cHgYGBYtpv8uTJ6Onpwdu3b0XHLaKx1tTUhAULFohTB/IObrmO9eDgIEJCQmCz2dDY2IipU6eKxw4MDECtVkOr1YoqYIGBgTAajZg9ezba2trEJjClUomAgABxLltu2zqUh4cHysrKxNqz1WpFQEAAgoKCMH36dLFZzGw2i3KharUa06ZNQ1dXFz59+gS1Wg2VSgWLxSKahTQ1NUGSJLx+/RrNzc3idbmz395JHz16FLdv3x72vVOnTiE7O3vMgtizZw9yc3PH7HrkuubMmYOOjg5ERUUB+Folqb29HWvXrnX4GhkZGdDr9ZAkCWVlZXj69CmWL18+XiH/sdmzZ8Pb2xtKpVKcnzaZTDCZTGJDTkNDA548eeLsUOkvZrFY0Nraiv7+fjGtPHQ6W66YJydi+TiUXBHMarXCZrOJTV5yMRRPT0+EhIRAo9FApVJBo9FAkiTYbDZxpvlbhYWF8PLygtlshslkwqxZszBz5kyx9CPfZff394uSot3d3bDb7eL8tclkGtb4o6enB7W1tSgsLERzczMAuH2CBhxI0teuXUNMTIz4VOXp6YnExERcuXIFp0+fFv/ZfDuqqqocCmD16tUICgrCnTt3/uyVkFt4//49jh07hmvXrmHKlCm4dOkScnNzUVRUNKr3k1KpRHR0NF6+fDnBr8Rxp06dgkKhEJWgNBoNAIi1uPb2djx8+NDJUdK/oLGxEeXl5TCZTKIwibwzWqlUimIffn5+0Gq18PLygkajQUBAALRarbiOXLdbpVIhODgYAQEBCA0Nha+vL/r6+sQUtbwm/SOVlZX48OEDVqxYgdDQUFFZTKPRiI1tFosFg4ODsNlsMBqN6OrqQl9fHzQaDZRKpfiw0dnZOeyY2d/kt9PdBoMBxcXFiI+Ph06nQ0xMDIxGIyoqKlBRUYGUlJQ/CiApKQm3b9/+K9bi9Hq9s0NwCzqdDrGxsSgtLYUkSYiLiwMApKSkjPj9dO7cOVRVVaGgoGA8Qh0zQ6s8ydWXgP9LG04UvkdpcHAQ1dXV8PHxwfz588U6tTztLZ9Dlr+W71SHbuKSN2XJ55CBr7u55ZK2ZrMZbW1tog3k9u3bfxqPPO0ufwiQd4UbDAa0tbVBrVYjJCRkWC1xAKK5jV6vh8FgQGNj43j+2ZzGoTXp3NxcHDx4EDqdDrt378bVq1cdfoJVq1bhwYMHAICGhgZERESIn02ZMgXx8fHYunXrCMN2TSdPnnR2CG7jwoULuHfvHvbt2yeS10idOHECERERWLdu3RhHNz7kvr3d3d3DjozcunVrwmLge5RkVqsVL168gEKhQFhYGObOnSuqccmFdrRarfieXIJTnh5XKBRiPVguHCK3f6yvr3d4NrWtrU2shctT8MDXNXT5NITcPU6pVIrKZSaTCb29vaivr3eLblaj5dDu7rt372Lx4sVYuHAhtmzZguvXrwMAzp49O2yX9tAhb4ApKSkRtVKHJmgA2LZtGzo7O7kW949RqVTIzs6GTqdDRkaGODPsyPtJlpGRgc2bN2PTpk1u0W9Zrp0sF4iQa3X/bCqQaKIMDAygrq4ODQ0Nooyn3Hda7nPe398v6mb39vaKymHyXTfw//lro9E4ohmbvr4+mM1mUQdcoVDAbDajq6tL3DUPDg6KZhnyWnVPTw8MBoNoZPO38gAgOfKL58+fx7Jly2A0GrF+/foxefKCggI8f/4c6enpY3I9cg86nQ5qtRqJiYnIycmBVqtFQkKCw49PS0tDcnIyVq9ejY8fP45jpGPn8OHDsNlsYt1N7v7z7t075OfnOzs8IgAQGxzDw8MRFBQElUolCo5MmjQJdrsdFosFgYGBYsq7r68PFosF7e3tqK2thUKh+O7ONicnBwCwf//+757Ty8sLarUaoaGhUCqVsNvt4uTDly9fxK5uuTpfa2sr6uvr/4pNYY5wOEmvXLkSJSUl2Lt3Ly5fvvzHTzx9+nQ0NDQgPDzcrUq00Z+Ji4vDmTNnsGjRIphMJqhUKlRWViI9PR03btxw6BqSJIkCDLLMzMxhx/pcVVJSEoKDg0UDjvr6epdfT6d/14wZM+Dj4yPWrIGvRyDlHtPA117Ur169+uV1fpWk6dccPifd2NgIu90+ZruwW1tbWaP4H5SXl4e8vDzxtc1mw7x580Z0DfkTvDtSKBTo6urCuXPnnB0K0W+1tLQ4O4R/nkNJ2sPDA6mpqbh586ZbrP8RuaqLFy86OwQiciO/TdLe3t6iOHtMTMxExERERERwIEnb7Xb4+PhMRCxEREQ0BFtVEhERuSgmaSIiIhfFJE1E5ARRUVEoKiqC1WqFwWDAkSNHnB0SuSAmaSKiCebv74/8/Hzk5OTA398fYWFhbLJCP8QkTUQ0Qjt37hxWtra3txePHz92+PGpqakoKCjAjRs30N/fj+7ubtTV1Y1jxM6l1+vZ3GWUHK44RkRE3/Px8UFpaSmys7Ph6+uLtLS0n/6uXKf+0aNHqKmpQXR0NMLCwlBaWoqUlBQ0NTVNVNjkJpikiYhGycPDA3l5eWhqasKhQ4ccfpxer0dQUBA2btyImpoanDhxAkuXLsWqVavGMVpyR0zSRESjlJmZiRUrVmDDhg0YGBhw+HGVlZWoqKhAcnIyAMDPzw8dHR2YOnUqLBbLeIVLbohr0kREo5CQkIBdu3Zhx44dIkEfP378p+1Wh5ZUrq6uFm0YAQz7N9G3JA4ODg4Ox8eSJUuk9vZ2KTIyclSPX7dundTZ2SlFRkZKCoVCOnnypFRcXOz018XhksPpAXBwcHC41UhPT5c+f/4sWa1WMe7fvz+iaxw4cEBqbm6WOjs7pby8PGnmzJlOf10crje4Jk1EROSiuCZNRETkopikiYiIXBSTNBERkYtikiYiInJRTNJEREQuikmaiIjIRTFJExERuSgmaSIiIhfFJE1EROSimKSJiIhcFJM0ERGRi2KSJiIiclFM0kRERC7qP6hTVGwNdh0lAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "iR-yP8c-NanX",
- "colab_type": "text"
- },
- "source": [
- "Questions:\n",
- "1. What is the size of image (file)?\n",
- "2. That is the intensity distribution of voxels?"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "oHD0cZv9NmWg",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "a14bea50-ce47-4c51-b2ac-0703aa73a7d0"
- },
- "source": [
- "img_array = nilearn.image.get_data(img)\n",
- "img_array.shape"
- ],
- "execution_count": 10,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(260, 311, 260)"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 10
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "EMokM8qhKq_4",
- "colab_type": "text"
- },
- "source": [
- "#### 2. Defining training and target samples"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "Ng1IcCer9NSG",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "3b27c863-34b9-44b3-c775-3f37416e7f9f"
- },
- "source": [
- "X, y = np.load(data_dir + 'tensors.npy'), \\\n",
- "np.load(data_dir + 'labels.npy')\n",
- "X = X[:, np.newaxis, :, :, :]\n",
- "print(X.shape, y.shape)"
- ],
- "execution_count": 11,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "(1113, 1, 58, 70, 58) (1113,)\n"
- ],
- "name": "stdout"
- }
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "G-in4TXqOuzY",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "cc475860-ba6f-43d5-f34a-c327fda09234"
- },
- "source": [
- "sample_data = X[1,0,:,:,:]\n",
- "X[1,0,:,:,:].shape"
- ],
- "execution_count": 12,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(58, 70, 58)"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 12
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "aVv2Rd0GY5YZ",
- "colab_type": "text"
- },
- "source": [
- "**From the sourse article:**\n",
- "\n",
- "[The original data were too large](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full) to train the model and it would cause RESOURCE EXAUSTED problem while training due to the insufficient of GPU memory. The GPU we used in the experiment is NVIDIAN TITAN_XP with 12G memory each. To solve the problem, we scaled the size of FA image to [58 × 70 × 58]. This procedure may lead to a better classification result, since a smaller size of the input image can provide a larger receptive field to the CNN model. In order to perform the image scaling, “dipy” (http://nipy.org/dipy/) was used to read the .nii data of FA. Then “ndimage” in the SciPy (http://www.scipy.org) was used to reduce the size of the data. "
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "be_2ekP6PG2t",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 235
- },
- "outputId": "cf54fb05-5d9a-4105-8d9a-cddb15c6c5c1"
- },
- "source": [
- "sample_img = nilearn.image.new_img_like(img, sample_data)\n",
- "plotting.plot_anat(sample_img)"
- ],
- "execution_count": 13,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 13
- },
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2de4xV1fn+n2GEUREEvHATQRSvgIMKQjVfrUCrf2hta201JvifSW1MNU3UxraaNjVNGoKxtbFqra2JeEtK24hSFUVrQfEuAiI3h4sgXhBFBGT//uD3rPPsM++ZGXDmnH1mnk9ywmad2XuvvfbaZ7/vu95LA4AMxhhjjCkcvWrdAWOMMcbE+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXFL2ljjDGmoPglbYwxxhQUv6SNMcaYguKXtDHGGFNQ/JI2xhhjCopf0sYYY0xB8UvaGGOMKSh+SRtjjDEFxS9pY4wxpqD4JW2MMcYUFL+kjTHGdAnXXXcdrrvuulp3o645oNYdMMYY0z054YQTat2FuseatDHGVJnVq1dj6tSpte6G2UdWr16N7du3Y9u2bdi4cSPuvfde9O3bt0vP6Ze0McYY00EuvPBC9OvXD83NzZgwYQJuvPHGLj2fX9LGGGPMPrJp0yY88cQTaG5u7tLz+CVtjDHG7CPDhw/HBRdcgHfffbdLz+OXtDHGGNNB/vGPf+DTTz/FunXrsHnzZvzqV7/q0vP5JW2MMcZ0kIsvvhj9+/fHOeecgxNPPBGHH354l57PL2ljjDFmH1mwYAH++te/4ve//32Xnsdx0sYYUwN69+6Npqam9P/du3fjq6++qmGPOk5DQ0OrtizL2tynsbExbR900EEAgO3bt6e2PXv2dFLvqsesWbOwZs0ajB8/Hm+88UaXnMOatDHG1IC5c+dix44d6XPzzTfXuktmH9myZQv+9re/4Ze//GWXncOatDHGVJljjjmm1l0w+0F033784x936Tn9kjbGGFORAw4ovSaOOOIIAPl0nzRdr1ixIrW1tLQAKJm4+/XrhzPOOCN9P3r06NzfAcCGDRsA5E3gW7duBQB8/PHHqa0ezeJfB5u7jTHGmIJiTboTYJWXmTNn1rgnxuzFc9J0FHXoGjx4cNo+8sgjAQBDhgxJbTT3Dh06NLXR2Y3aMQCsW7cOADBw4EAAwLRp0zBq1Kj0/SGHHAIAOOyww1Ibj3nggQemti+++AIAsGTJktS2dOnStK1ad3fFL+lOwJVeTNHwnDSme9Cl5m5XeqlPalHpxRhjTGusSZuQCy+8EE899RQGDx6MJ554AjfeeCNuuummWnfLGNNJ9Oq1V0dTj+Xp06en7UGDBgHIO2r169cPAHDooYemtg8++AAA0KdPn9Q2YMAAACWns0GDBqXzAcBnn33Wqj90QNMMXjTFq5LQv3//tL1y5UoAwKeffpratm3bBgB1E3PeHnYcM21SrUovxhhjWmNN2rQJK708/fTTte6KMWY/oZaqGjAdtI477rhwH2rNBx98cKt9VCv+8ssvAeQ17nItds+ePbl9iB6bGrL2kVnMPv/889SmDmrjx48HkHcgo9Pa4sWLUxu1/XrEmrQJqXalF2OMMa3xS9qEVLvSizHGmNbY3G3aRCu9fPe73611d4wxHUQduSZMmAAAGDduXGqjeVpjlXft2pW2P/zwQwB5py3GN9PEDZTM4pqZjOZumrgPPPDAXPwzHcvUCax37965fQFg/fr1AErx0kDJoU37rv1hm5rAFyxYAKD9IiBFpMtf0vVc6cXspRqVXowxxrSmy1/Sc+fOzf3/N7/5DX7xi1909WlNJ6KVXi655JJad8cY0wYMWzr55JNT2+mnnw4gr4XSGUu1WYXff/LJJ6mNWmpUqlIdxzSLGVEtlhq2avvUxFWbZ85uOr4BpUxoALB582YAe5W/8n7oEt2pp54KAFizZk1q0+sqMl36knall/qkFpVejDHGtMaOY8YYY0xBseOYMcbUOeqUxZKQEydOTG0sdKHmZZqz1eFLHbAYr6xmY/6t+hVxe+fOnamNJmeauPfs2ZOLdaa5W+Ok6YCmpnT+nTqv0cFMj68mcu5/7LHHprbjjz8eQL44hy7F6nUXDWvSxhhjTEHxS9oYY4wpKDZ3G2NMHaIe1OrJPWXKFAB5T26arjU1544dOwDkTeCRuVtNzdxn48aNqY3xyOq9TW9rmp4bGhpy3t/02lYz9UknnQQAuZBdxlOr97Z+TxO5Hoee4NpvtqkJXLdpBi9iHLU1aWOMMaagWJM2xpg65KijjkrbZ555ZtqmtsyMYUDJkWvYsGGpjYUq1FFLi1vQSUy1y/fffz/3r6J/x20eu0+fPsl5DShZAdQawH3UkW3UqFEASho8kNekmQGN5Sl5Lv1Oj63x1izOAZQsA9Twi4Q1aWOMMaag+CVtjDHGFBSbu40xpo6giVgzA6qTFM3dGrfMesrqOHb00UcDyDuOqemb2+rwRUctNT/TaStKzcl/v/jii1waTpqshw4d2qrfGgdN07f2UfvDFKFq2ub4qAl806ZNAPJFN/Rame5069at4XlqiTVpY4wxpqBYk95HVBJtT9KiFKjOEZRui+jqb4wpPszSpY5Yms2Lv0tR8YrPPvsstVEb1mxlUeEM/f2ixqpaM4/TVsGKLMty4V3Uvrds2ZLa2ireERXnAErXqNo3+6OOczy37jty5Mi0zVCvf//736mtpaWl4vVUE2vSxhhjTEHpkZq0SpjcVq2YUqKGAnDtQwPgGYZAya+pqSmt2QDA1KlTAeSTCrzwwgsAgBUrVqS2aE3HmnbPI8pZrDmSo/J+pPzvNPQFyCd78Nwypn7okS9pY4ypJ1SAO+GEEwAAw4cPT20q4NP0q0oGzdQ06wIlAS4yL1c6N+OM1Wz87rvvAsg7ZdGRjabyQw45JBejzP6oAsN+R0JkpWXGtszzgwcPTm0sEqKmex0fmuqbm5tT24YNGwDkBeBaYHO3McYYU1C6vSZNCYzhBkApty0ADBkyBACwefPm1LZ8+XIAebd+5pUdM2ZMaqNjAqXTc889N5cFaNy4cQDyGXLopDF27NjURkcHSqQAsHLlyrStzh6me0ANQLULXSrhnFENiXNLQ28IQ0y4L+fkWWedBaCkFQDA2rVrAeRDdKi92BReTFTrO+644wCUHK0A4NNPP231t/37909t/FvVpKOyk6qxRlpqtORCbVj31VAmHksd3Rh6FYV/RZnL9NgKnw+dy6q9E2rf6rzGsDRgb4gYkB/n9iwM1cKatDHGGFNQ/JI2xhhjCkq3MnfTPKFxf0woP23atNSm5kLGHKpphA4Q0XE0sw9NLfy7ESNG5GLv2K7mJDow0Ftc+33iiSemNprcAWDx4sUAgHXr1rU6t6lPaObjkggAHHHEEWmbc0ZNmpw7aiLn36mTzPbt29Pc43KOzltuq4mU8aqVnHJoJlSzYlEyMvUE9PeJJmtdHuHcAErmXv1e44gJTbxqSta5RaL7rA5YNF1rcQ7OJ87DkSNH5szv0Xk4x/R8PI/2Uc3hNKureb3caa18f6Lzm8+Rjhn7qJnLaoE1aWOMMaagdCtNesSIEQCA6dOnpzZKkOqgEGWs0VAAFlBXJwJKr1FuW42TVg1XY1MJNXftA7dV8lOtmk5ES5YsSW2M0VZtiJKxnX+KRSTFUzOiExCQn4PcR50Oo+NEWk5TU1Oak1FYC8+jmg81HnUs0u+p5WhWqVWrVgHIazG1DlcxprvRrV7SxhjTU1ABXc3ZNNOqSZkKgCoRFLh030iZ0SUOKgJquub+aiqmyZlCpkbXACVhTk3JjLBR4ZDnUeFPt3k9qjy1pZip4qTHoRCrQjGXmmzuNsYYY0xI3WvSKi0xhllNxZSQGBsKAB9//HHaprSpjhk0/UUODJpVh/HNPMfOnTuTpKnf67EjBw7ur5JdlJJUYfyr9mfRokUAgHfeeSe12cGsulBiV9M0tQqV9ql16P3RfSjRq+RPjUbnZXlJQMI5xTmo2hDnls5FLhVxOabSPnSgBEqahj5bdG7UeFTtm83h+4f+HnBsVZPWuUVNVJcuOM/094n7q1asyyK8b5qnYfXq1QDyjoh0ltW28hjjhoaG3HEYo6yFQYj+pnE+6lKgopov4VhFMc9aYlOfPW7rM6j71xJr0sYYY0xBKYao0EFUsqH0N3HixNQWlVGjNKl5blWTplSqGgSlNpXeuH6j6xOUyihx7ty5M3T0UakykgipLanWpH9HyVilXEqtGk5GjXv+/Pmp7aWXXkrbdijrPHQuRmt/Og+Ya1k1V3U2JJoVjBYi1TyjQiycG2pR2rVrV25OlveXz4nONz4H2qZaR/RM8JmJ5mC03geUtG69Vs9LYypTVy9pY4zpSVCYo6AHlBQOdbCKltR0uYJKhpqcKZhpVEGUklPNz1ym0eWMpUuXAsjHanMphMrUypUrc9EpjOtX5YgCqwqCFDajqBrd1v7wGnVMuK3HjlKk6pjxejZu3JjaIvN8V2NztzHGGFNQCqtJU0KiQwsATJ48OW1TilTXfprS3nvvvdRGJzCVFiOHgPYSy9P0p5IopSpKnLt37w7DGaJjR9KgSnnRtpoQ6XihTmWUTkeNGpXali1blrYpEduZbP+haVudbbSoCu+ROktxjuq8Y0amaFkDKC3JqMmZx26rPB+w1zmIc5LzUZ16qL2ohsT+qrk7ykSl18B9NDMf0edAz03HM2bRA0qaimpDZi/Rsgjngd5z/Z7Pty7NcTtaClSNU4/Jv9V7zvuqc5DzQH9rqIXy3j/55JO53y8+MzpPoiUVzkHtd5QbQI/D/uqYsL/qOKdFlfhbrtd19tln564BAJ555hkA1XWAtCZtjDHGFJRCadJRYfMLLrggtanWHGnDlIa0zCNzF+vah2osqqkQSnIqsXF/dTrj+fh3O3bsyK1pRERZo3g+df7R64u+jxzQ2De9vu9///tp+8033wSQD9HSMA6Th/dA1wMZ3qdl91T7pHSuknZ0/6iZqjSv2jm1G50HzOwVlffTebVjx440J6lR67GJzm/2p1KoS/n5dH9dx4y0Lz0m2ydMmJDaeK2arz7K1mdMT6RQL2ljjOnpqCBExUSXtegEVskrnk5bVFC0Tc29NAergBdFmOhyRrRUxuOogsIlDB5vy5YtOeUhimWm8KnREuybCpSRc5u2sb9RNIU6fkXx2Cp8U4FrrwZ3V2NztzHGGFNQCqVJq3PX1KlTAeQdx1R6oeONSm+U/DQUoDyWGchLWJS6Imcchc4D2sdyqXLPnj2hubu9Mmnst5rk9XueR03zlDb17+jUpo5M2keGTxx77LGpbd68eQDyZvyejI7n6NGjAQCTJk1KbTQb63xSTYP7a9EJSvk6Dyid63zRexCZnTlv9Th0ttI5rX2j5hTNf3WIiZzSoj5E2c5UO2PfKmXZ43n0e46zmuS5ZKXLAT0lnlrH64wzzgCQL8TCZ1qdWDVMiPcwKl8ZaZc6ruq8x3mt9yrSINkfXTrTucXzqxYbaancJ8o7oHMsisH/8MMPW/VHy7zyPKrNq9WA3+szSGc7fb5pNaimk6M1aWOMMaag+CVtjDHGFJRCmLtpdtFFe5pY1IyjqQRpalPzBY8TedaqaUO9Yztq7ub+UZk0mvgOPPDAnMmaTgbtxUnr/kTPQ0cRNScx3lSPQ3OhmpBYdxpoHbsIlLIX2dy9F42tZOEAXTLgfNR7FaWU1ftHk62aDblsouX9dJtmSV3ioGlc7znNbuWOM5xTPI46yUSe40Tb9JhRyl2a9KNnp9Jcjkod0iypzzJ/CzStrZo0u3OhDl1SoIlYf0O4BKgmYDV9RzHvH330EYD8POC4V1oqiSIHoigBzgP9faLTGo89aNCg3P3jb5ouzUXzMvrd1XlZPs+1H9Hf6W+jFovh+Ojy0xFHHAEgP5d5/dWMirEmbYwxxhSUmmnSKn1TYznttNNSGyU61a5VeqHGQ2lH2bRpU9puKw66vB/lqFTFDF+UuICShEUprampKecwFDmyRQ5fUV/03DymSoGRhYDnUUlUnSc4pjqOjAFWBx3d7mnouDMnsUKnO3VuibKCKfxb1UIp5etcVG2A30eWIr2/PKb2+6uvvkpzknOiUnYqEmVxonOmnlP35bOpc5AWGdW+9LojZxz2LSqgc/rpp7c6NlCK+a9FLmVjqkkhzN3GGGP2okINi1KodzcFNxV0okQ5qlBQyYiW3vR8UbpiFR6jOucU8KJUuTRhn3baaanWOFCK+1Zhl0JapWIaRM3YUSx3lAKUwpz2MVpyZGplRdOr1qLGtM3dxhhjTEGpmSat0tmZZ54JABg7dmxqo4Sl8WjqWEMpSM10/F5rR1PiU4lNJShKZVFbFDOnJmdeA6U57R9QMhurpEoJUyU/nk+vRSVjSp1qSqcTnZpXadpUaVCdlTiWmr2ITk86zk888QSA7p+aUceYRM42Ooa8/zruKl1H2gCl9yimP5LmtT1yeNR9eD69lj179rSKcVaTPLf1fJx7lbQqPgv6HNHcreeOYrn1Wec8U0enKPsU+695CXRec/+333671TXUO7qkoFnDCOeRPrN0xAJK81U1QM4jHU9SSXPleEalI7WP/L2Nigtx3759++LUU09N3/OZiJZ4omciirXX/uh8IurQyW0dE4VjFs15fW5p0WhpaQn70xVYkzbGGGMKSs006UrFJAglJ5VYdC2C+6vjCNdqVOKmJKeSfZS5KFr7iLLhqAbMvqkmrI5ulMBUyqNEq1JeVNhcpVc6f0WZeFSa5vVHBRiAOCSMfWfWJ6Ak5WrIRHdB7+nEiRPTNjVIDfOLHP8oNVeyMnCeRCUdI2220hoXNZWOhgaWh06Vl6pUTaQtKmVSizRtzj21NHCfSuVQOUfVKsRnOApfrKSlMHxGfx/0mMZ0F+w4ZowxBYACmVZdmzJlCoA4llkFuKjWvDpOUThVAZ3blWLjeU5ti2KwqRRopA37QGHtk08+yaV4bkvoiwTKSstC7IeapKOlIuaL0DhxFdip2KmQyvMMHTo0tVEQrGR+7wps7jbGGGMKSs006Si5vzo/0AlL40TVtE1zoDpB8W8jSSzKpKNETjTlSeLLKTcf9+7dOxeXTLOxmjnZ70hiU4k16qOGD9A0GJWWU8lOx4zn1HNzHzWl87q7k7mb16mhLOPHj0/bHBM6MQKlOGG9LxxvvT+6vBBlBeM+kZaiDjiRQ4zOQR5b52pUOCHLslZZ7HQfnidyCNI+RM+EmsA5r3XJJYrB1uNwrKJloWjMKhUyoNZ20kknpbbFixcDqGxqLzq8h8cff3xq4++gOjxx3FVTVm24rfurS2/8PankVBvNCd4rHWNuR9qu5pCIiBwVtd9RcZroOdIlTo6V5oPgu0WdgfW3k/NMx5TjrL+70dh2NdakjTHGmIJSdU2a0tIxxxyT2rhWodIWJSRdx1Aph9KfahqUbqI1FCVqU0mNkpi28Ty69lGuARxwwAHhsbWPlBz3p+yeSqpRwXYeW8dJteHIaS0KQyoPJesORE5gep1RCTo6J3F9DYgzfCm8R5GTn2q7+n353wGl+xppFdHcUY2kqakp9SPSpDlHozYl0qCiv4syrpWHhJEo3Ir3Qect56pev2rx3B4zZkxqo+WDZS6BnlPe0nRf7DhmjDEFgMt1KjxG5l4KM2quVSEtSuFKoUaXD6MIgihfRFRUKBJ+ojwApFevXuHSXBSJokJdlEMiMqtHS4VRLgMdE1VgonhsKjNRkRu9R12dmtbmbmOMMaagVF2TpkSj5u4oDphSjEpaGo8ZEZnxOopKaitWrABQypsLlIp/qHmNhUEonY0cOTJ0BNJykcyQFB2nEpHps/w7/V7HSU2IjAFWiZdhCJH5MZKq6xVqElo0QiVgjpk6lnBsImk/cugC4qxJPI8ep73wl6hMYGS6pgOW3vOmpqY0D5nhrr2iMtSQVNtRxxsuAUVOh9ofLhfocdRMHTl1cSyjpSsNmYnQ34xTTjkFQD52upLj2dflzjvv7PRj8lqi/NKRY1j07CuR9qnHibLDRUS/AzpXI42b2/wtmTRpUjj/o3nZXm4AhedRB+JIk476rWMRafHl3+n3559/fmprb452hKuuuqrid9akjTHGmIJSdU2aoRPqMh85QTFUoFI4Bduj8A5ti7TCyJ1fJSjmot24cWNqe/nllwHkpfTm5mYA+fy0qjWznJ7uQ83n5JNPTm1RcoIoj7NKhgwp0NAMXr9qF7p2QkeoqIKNnrveNWn2Wx3kqM1pYgKVgCNNkm0aLkStWOdllJta71Xk0Mh1rihJBQCMGjUKQD5BBO9vpFVpv3ft2tVqza89DYFjpVqvPqMcq/Xr16c2JnbQ+cbrUQtOlOwhcpKLLAmqfalm39b16Ph0lSbdluazvzA8cPLkyamN46lrybwXeq/0Oed467VzHFVLpxOlPicRkYNh+XzTfgGl329aIJ9++uncfIocf6N14WhuKJwT+hvL+6/zJQqDjEr/6pjxWnUO8rmdO3duatP88V2BHceMMaZGqLDCJTBd/qJQqMs0fInpC0Vfdiyiod/zOPriiso8RqZvFYii2Gluq+DKlzSXgt5///2cgBAJc1EBGbZVEma5HaXXVcGGy1j6Ytbv2d9omUYFII5fe4JNZ2JztzHGGFNQqq5J08FFTWSUTtTVnRJdZFbR71U6oykjinVVqSlyTFBJjGaZqVOnpjZKWiw/qf1RaVGdkWiq1OIVLD2nEl1ElJdXTela0J1QuqsUChE5R0Rl7yKnpXoqA0itQkvj8Zo0y1iUUU6vc9OmTQDyTlmU7HWudtRxJMo8p6Y0LdXKJZcoC5m2MYxEY7n79OmTHMaoqeh84txR03UUQ3/00UenbS4TaDYsmrvV1Mj5pM+TPhPUiKICJVFWNB0zhc96FEetSwRdHR5jTFdjc7cxxtSIyH9GFQquG6tJmn4oqqCoqZlCo/pSUCBVHxYKMLpOq9EpFAqjBE4qPPHc2kYBl8LWp59+mqswF/khRUTr1CoA0rSvbTy3pkDlOGra5sjTXb3ESeTDU0l47Aps7jbGGGMKStU1aZrfNB6Vpm81/UXetgolLDU1UsqLHCEqJUSnpKdmTrapiZB9VEmMpkb2Yfny5bkCDjSbq2m/Uv3g8j7quTlmKhlS+o1KvUVpGoG4aEE0vpTk1SSvjitFh/efJl+gNLd0bqgGwbmjEjvN3DrGHNtK9yoyfUeFAzgv1bzMpRn9XvvIe6nepK+99lqr8/Xv3z9FD7zzzjsA8vOW95ce5ACwbNkyAKWIhPJtzuVJkyalNprDdZ7Q9E1tBshrZ5x7Oqa8Vn0GOS+1TTXMyGzOsVcNMzp2kYjyE2gb56COYTQHdd5xGUJ/Yzl2Gt3A8+jvU3ue3Dx3dK+0QFJUnEd/Q6jZRrHTOuej94CORRTRwu/1WeYSiI6Z1h+PojLaWnJVi0RXY03aGGOMKShV16Qp5ahWSCmms2IB1dGH0mIlSTpykiJRxh6VxKgFUWI7/PDDc1JetE90vkiCjIqElBdRAPLXT0m2UixgFGcbxQJy/HR9pp40aV6LxmWyTTVXlZqpdUSZxKKY6EqlKnkcHWMeUy0cnP9cUwNiDULPQ+2EJRmV8vhX9pMatM5lOiDq3GAhG3VAU+fE1atXA8hrENOmTQMAHHvssamNTpJ6/WvXrk3bnLeqnXCcI41O75eOBcdH5z/nrfYn6rcx9UQDgIpZKpz6bt9S33388cddmvpOf+SrkfpOf6Q7I/VdteA9UC9f3gu9P1Gd6PYS3bQnzEX1piOTa1SfWZ+JCL7MIlOizrE+ffokpyGNiy0/d/S8qfAcLYWoCZHn0Gsg+vKMnGyiBCfR2LdXYz2ayypUUWiKzleJ5cuXY+bMmR3++6+DCkozZswAkDdJ876q8B85XUVLLpEipIIQIwhUMNXx5DKb3j9u6xhzHzWvU7iaMmUKgL2plvVeUmiKfhvVUY1/p33UqAPOPT02rz96VnVOa6QO+x7Vqtb5zb+bPXt2alu3bl2r83QmNncbY4wxBaVNc3dnpb5Taem8884DkI8JpZlWnVsiKUY1DUpLmrqT59HjUCpVDUD7ExUJiMzLlCBVQ6B0Pm7cOAClwhwkcmqg9tKedh2FPaxZsya1sR9RFh817am2xL+NakirBE2T57x581Lbiy++2GqfokIN4dJLL01tjE9XjUQlf84nHS+OQ1QPXOdLFI6ix6GDijpT0cytzm3f+MY30nakISxcuBAA8Prrr6c23ksWl+C1ck7ScUznE7WJyOlQY561LjOvUa9r4sSJAICzzz47tUWx+q+++mrapnYWpWTVecnvo9wJ+rdqDuccfu+991LbggULABTX3B2VZdTfAc6D6LcoKr4ClCx7+psXpdXkb5D2QceJyxT6m8f7r+fj763OZX7P+zRkyJDQWqmaLZ9HdVjkMpv+XXvlNnnuyMpYyeEzCjdjiJo+/7ROVNOyaE3aGGOMKShVcRxT6YXOPOoww+9VQuJajUpQKmlTIlcJsa11R5UWVcJsaz08krQid3x+9+WXX+Y0tUhrZlvkOFZJk+b+qjVQytNjU4JWCVLXpSiB63nobKNrl1E4Qj0RJRxgm+YKjpwONSyDc1DvBaX0SpJ0pBUyF7Peq2gdTzVOOnJpWAstKTrHuC6s/fnyyy9bZSfTe85+RA5x+gzqdnRdUUGbSBvU/vKZUU2MfY+0fSUqAqP3kPdOk3jQqrJ8+fJWfTSmHnDGMWOMqREqmFAgU4dHCuaRo22koACx8MR9VEHhtiowulTw7LPPAsgLVNw+55xzUlsU81zu5JdlWa4tinyhUKzpfF966SUA+ZTIKlxGQmFbbbqvRgHxbzWNLB3LVJDm+Kjy09XY3G2MMcYUlKpo0lEoU+TwEZVR03AENVVSyomcJ6JE/WrOjrJ+aR8pEUaOB2qGo+TLti1btuSyOPE47TmqRY5jkRSokh/DcHTMaALU+OAo+1p7YWJR0Y16gvdDQ8g43yqFYNE0HknXOsY8ZlTzFigt40TLGVE9XdVc3njjjbS9dOlSAPlYdZrAVeOX4UgAABjpSURBVPPhPNBrbWpqSmMQZaeiNqGmfWpvqsXpeajJqXPQiSee2OpaOXeiQjRAHK7F8+j5ojwA+vzTRK7f89j6fLOtqLXRtf9LliwBkHdUoman85bjpNcRZa5Th1USjYP+zun3vG861ydMmACg5IhZvk95H5WOasD6DNKZkvHu5UT3MrI0cL7ocaLlPO135ATK4+i1dDXWpI0xxpiCUhVNWiUWhqGodkLtQx0+ojWL6JjqMBOFrUSl87Q/bWUka88JjOsS7GufPn3CkKgooYj2IcpDrPtEiQh4nuhaVKrWffi3Ub5jPR9DKlSirSeoPer6UuR8p/OEWpruE2WC4zjp/NXkCryXUV5ldcTi96pZqlZFSV2TXVCr1rnKe1Re2pT/p4at91c1UhJpoercyXHTrH8cAw3biZ5LnW/sj2rfUcnQqMSknrv8fHrMKPlGkbRnY/YFO44ZY0yNiARFJUr1S4FJlQgViig8RctakWlaj63pfylwqiPXMccckzseUBIoVbCiMsY+LFy4MCdcUgCk0xlQEsKiyACtY96e5395vxQVelXQpjCnx+Y4RwpTNYU+m7uNMcaYglIVTVqlLkoq69evT210flHzKk1gKg2qqZImRpX8aE5UsyKlN+2DSp00B0cOExFqxqTzBPt14okn5vrYVrnBKNNQ1Fbp3HQOiXIbq9NOeU7n8vOwPxoKQglU2+oJSvSaJY3jpMUXVBOhE1V076P88VEheKCkfeixqSGpRE4pXrPjaZgJNRbVNHgc3YeOXHrs3bt3p3nIeaJaA++5zg0+g+okpNfIuaWhJ9FSSVQOVdHno7w/0djrck1UdEavgdeo18r7anO3qVds7jbGmAJAoUfX6FXhIJFQr0JRJCBFHuEUvNQsrIISvfc15SyFOPUFiDz6WZ/8uOOOA7A3ikH9dXhdqhxRAFQ/jSgaRr+PImOitM4cWxVCNdqCf6tLDrwujZxgMQ2bu40xxhhTHU1aYz0ZZ6em7SheLTKbqamMx1RHgKgsJSUolfLUHEapTKUqSnlR/GBkciPlWXUonUUlClXKo3lWa/nqddPJQq8/igln2kg1m6opkmMe1ZOOUolGHrb1AO+RlnRctGgRgFIsKpD3yqbTSlTQRe8f44hVIteMRNxftaHIE5+RDGo+VueYyBmHZm6d87yXkckZKGkG+rxFyxn00I5qluvfquc0x0zborS37S3tRM8E57/eQ70uLgNoH3kcLUSjz1TR4XP77rvvpraTTjoJQP6ec05Ey3ZAXHSirTr2umSgy0Gct/pM8P5putqoBG551rMDDzwwPI4+O/xd1igf9k3j9/XZi9BzEs6tKFWwXoP+7vIataCN/rZWC2vSxhhjTEGpiiYdaYDaRslIpX1KhlG2Lt1HHcsoLakzGaWhKJ4YKElvKqXzPNqf8mIaQElKp4azcuXKJPkqeuxIy2O4gmaAirLlaH+o+asEHWk2uq1SK4kKo3Mf1VLqEb3nnBM6NzTbF+85i2EApVKMqsVQ4lYpXbXmKE6Y90XnDsdYnwPdZplAXZPk91FWJNWKV61alSxNLPsXhbCo5kqNW+egOqjxulQz5bOjc5BjpdqOPm9Rliv2J3pG9dj6/HP89bq5DqqadDUzQxnTFdhxzBhjCgAFt2eeeSa1UUiLkhKpUKfmYJqpVYDRhEuEQo8KPxpNQCFdlQwuG+ryIYXUqLpeZHoG4rrMFD5VEGTfNJGNCn38PnKI0+tnPyolM+ISgio1K1asAAC88sorqa0WQp/N3cYYY0xBqYomrc4xNKupxEapS01klBZVclFpMkqvSfObno+OAHocNfFGxTYiUyQlUJXOaJIcM2ZM+j9DDoCSJKrSK82J2kf2ITIv6ramX+Sx1QTOMY2KlwCl8VEJkpKo/h2XCFR6LWqBgn1Fw0D03vOaoxrLavbn3KlkhuV9jZZpdIx57qiYgp5TnWg4jyLHvw0bNqS2tWvX4rTTTssd8/nnn0/fM0fB2LFjUxvnrc6nl19+OW2zMEGUkaq5uTm1MW5bryt6xqLiNapt8bqirFlASbtTJytuqzZUj+iSA52W1Pk2KtwTOcuqgyx/t/SZ5pJZtIwIlO6LOktxmU5/v6IMZ/zd5X38/PPPc88e0XOzb6q56zHbQp8tvmNU2yeVfvu5v7ZxPun9qAXWpI0xxpiCUhVNWt316ayjGgLRQHJKYipxqzRJKVClZgaaK5TEKq0lRGFbPI5KlXSIUclu/PjxAEra2eTJk8P1Eu0jncRUa4rCI9oqwabH1vUbatJRxjWgpP1t3Lgxtek2oca+atWqNvtTj+h4aAgWtTidYxzj8mxeQFwUAoiLQPC+Rc5UOr+j9bm2MnQBpfmoJSQHDhyY5uTo0aMBAIsXL07fv/POOwDySRpYJlOfE9WaVSsrZ+HChWmbiS9oXQLyYxWF/bQV3qhalc7V5cuXA8g7/9Vrhjxj2sKOY8YYUyBUWKFANXz48NRGAUiFdo3vjSIMuK3H5vJaJDDpcaLcAdpGhSOqtMbz7d69O7eUQoFVzeYUyFTQ5XkiM7z2N6qxrspRJAhGSpEKppq6upbY3G2MMcYUlKpo0irRvPrqqwBKxSmA0sK8mvEi13uV+CipqXmO0pSavaIsWyqVUVJTp6zIaSWqN00zHiWyvn37thviwL7p+Wi6j+Ky9Vq135SMo8w/6oCmx4mKDVAyVvP7ypUrAZRM890JXVLRsWE5vmiMNU66PJQEyN9fOnxpG+eeHpv3X+PlOe5AaTkoOk5U57s83p3/Z6y3OlhFhVgiJ5uOomNKzU/7PXTo0LTNvkfjqPeD87GlpSW1aba4qIRjd4RzUJcrOB/VoVFzIETZ4aJcCxFRyUd1kuQ9igrM6G/fqFGjAJTm/ODBg3NzgsfUY0f3lN9Hv7/6t1Ee82hZSPsdZR9j2BWQt0TUEmvSxhhjTEGp+po0HT3mz5+f2r71rW8ByDuTUYKKnE6AknOXSmJ0slEJiQ4vqg2pxMc1EXXAorTFcoHaptIrpThKn42NjTkpkFp+VLBdNRtqs3r9eh5uq7RITUMlQ2plan1QaZCSqrZR2tQxo/ZSSXrtLqgVhpqdjntUxpNzR8MyVCvktrZRstf1Nz4Hqj3rfWF4lGrf0TyIsnU1Nja2qg4UhUF1BXzeXnrppdSmY8Hx0xBMPptqXeLzqG1tlZA1prtixzFjjCk4uqRAYVyVDRXCuK0CJ4v0RMsMkSOWosemohQ5YKkSVV5gozzemQKyHpuRFSqYRnkH9BoonEbZzlTopVKjAm6UNvi1114Lv68lNncbY4wxBaXqmjQlGXV1j7K90IytbWr6omSpjlM0F6sJnJKYOsZEpc4ic7cWy6BJOiqWwX937doVSphq5mQ8qpoDaV4+/fTTU5tKi23FlqoEybHS+Fc1Y0fOE9xfrz+Kne4uRJnVgJLjjZpheS/1/nHuVHJEJGoi1/lBGFKjf6eZndSxsq3jRNe1Z8+eVoVctOhENTQE7U8UCqRjz/nd3ZdXjNkfbO42xpiCo9EXVHA0dlpTbkZ+EfTt0URHFDQrmbupFKhQSJ+aKO2tmrRVoeI5Im/qKP2xRqewb5UKY/A42m8qayr0UXFRgVs94uk9rwpOUbC52xhjjCkoNdOk1QRGk5yaqSl1qcSmWXW4rV7Sw4YNAxBLYozfBPLpLilNqrcuJUIt/8Z40yjWT2P1tI+U5FjnFgCee+45APmCCDRzqvTJawFK6StVmmQ/1NTKNjVtqvRKxwyVJhctWgSgVEChvB/dDZXC1eRKE79K5PQ61pSYdErRuarHpDagTjRRmcAoTa0WZ+HfRtECkVm4krmb3uM654uGzdztoxonf08YiwzkY9GpVWtMNJ3IoqUZJboXUWauKMWtLteUH698iYbt0fzWJaAoJlz7GGUS47k0oidK8csCSUApzWwR56I1aWOMMaagFEKTnjdvHgBg5MiRqY0xyrrWEmk+qpFyW5P7cy1HnaE0k1YkOVE6e/LJJ1t9N2LEiLQ9btw4APlSkqpJsz//+c9/WrXpeanZvvnmm6lNNX+Oi44PJWfV9hl7q9YFlXjpbKc5aVmOsCfGoOq9Yty9tlGb1XHnHFRNWqGkHpWl1GNrSA1RbSjKpESriGr7/F4tPNu2bUtzknOvO1tHjOnO2HHMGGPqCCoeKoxrbXCaudVMzegWXf7isqBGNERx0lFqWl0yo9KjiheX1jROWgVbOrJFMdhq2o6S8ERCql5XVGmRTnS6bKCKUCQ0FwWbu40xxpiCUghNmo5j6v5O5wiV8lRSi4py0KVeixZQ0lJzd3vOATQ1qll4zpw5APL1hikZsobukiVLciZrOlJozdu2zq3fqWTHpO/q3EbJUU33NKXr36nzCI+j19UTzdwR1E6iVKE6xyjl61zUmGY6q6gWo2ZuQg1BncmiFLh6HJ4zinNWjWPJkiXJqYgOgd29EEVPgvdSHVI1UxaLxehSIX8nVAPmnNE0wpFmq3OQ32sbNVYWCtLv1WlSw8jYN12O43PS3nOgjmX8zY9Cq/Ra2A91kFVNushYkzbGGGMKSiE0aaLSPrUG1ULbg/uo5tJW2Ep7RMHwqqU++OCDAIAbbrgBwF7JVjOJdZaWSs1Jg+8pBarmR+cg1bSiIu5FyUlbRHTu8P6pBkBNupK1YtKkSQDyiSa4j2oDPLbOsajMqd5f7r906dLUxtCR6dOnp7Zly5bhm9/8JoD8Wp0xpv4o1EvaGGNMx1ABTCNRKECeeeaZqY0CoOZaiJzAVFGicKn7EDVJc9lPl+hoXqcQ+vnnn+ccwiiE6tIkl5dUMKU5XIVZ3YfnUee28usDSjHRzFMBFKdedHvY3G2MMcYUlG6lSVfDnKvHppMYzcyLFy/u0nOr5KwOY6SI2XLqGY6njuvbb7/d6u9UYj/hhBMA5LOHRVmeqC2oY2RUq1zPTVP8ggULUhsdYTSHwJIlS9Kc9JzoGag2/PzzzwPIa7aRMxmXwnQ5R3+/OEdVs+UxNbyJWqwu+1Ar5tw/8sgjc0tEXO7ROc/9dYkuKiqjczr6nsdh4SIAmDt3LoC841i9YE3aGGOMKSjdSpOuNpQ6dd2lWlhDKg5R3mDVSOjwFZUI1ZA+1SAYZqL3mSE3DKUDSutq6rCYZZnnhzHdBL+kjTGmG0FhkOUXgdJyyOTJk1MbTc0qPGoxGcb863INHcbUBE7HMU09S7M4Bc/GxsZc5ATbNQsZjxkV01ChUx3Z6BCnUUDMA6Gx4yzvWY/5AmzuNsYYYwqKNWljviZq2qb0ftRRR6U2mrR1OWT06NEA8lpKVIJPw01YLCMKHalHDcEY0z5+SRtjTDdETdJMeqMe1lOnTgVQikgA8j4SFAZVAKQJXAXKyExN4ZK+FRs3bkx90O+PPvro1BbVao/8fFQoZmTFwoULUxt9NrpL0iabu40xxpiCYk3amE6ERVUef/zx1HbyyScDyDu8UHvRVKGqsVDjeeihh1LbqlWruqDHpifAuaWFhlg0aPz48amtubk5bbNwjMY/MzWxaqn8Xud3uca9c+dOvPjii+l7FvWYMWNGamNstcZ8f/DBBwDyy0LqEMaIBy3b2V00aGJN2hhjjCko1qSN6USosaxbty61MTvcWWedldqoGURFNwDgqaeeAgC89dZbqc2xz8b0PPySNsaYHgjjml944YXU9vLLL6dtmqQ1lSidukaOHJna6GymTmcsaMFjPPLII8l0DZRSHC9atCi1MUWuprhl6mVt03hsrS3dXamJuXvIkCGYM2cO1q9fjyzLcjcc2Bugfs8992Dr1q3YuHEjrr322vRd79698fDDD2P16tXIsgznnHNOtbtvasxbb72Fbdu2pc+uXbvwz3/+M31/6qmnYvHixfj888+xePHilLfYGGPqjZpo0nv27MHjjz+OW2+9Ff/73/9afX/zzTdjzJgxGDlyJIYMGYL58+fj7bffxhNPPAFgbwL5WbNm4eGHH652100BGDt2bO7/q1atSnOhd+/emDNnDmbNmoU77rgDV111FebMmYMxY8Z0Wn3vjqBOYAxRGTx4cGpjUQJNBaoOMc8++yyA7ucEY4qHzlUt4sNt1YCJhlMx65cWmmH4Fuuab9iwIbc/HSMfe+yx1MZnQfvjJZ4OaNI/+9nP8Mgjj+TabrvtNsyaNWu/T7p582b86U9/yuUbVmbMmIFf//rX+OSTT7Bs2TLcdddduPLKKwHsXbe77bbb8N///tc/YHXI6NGj8eGHH2LChAkAgKFDh2Lz5s37bRH5v//7Pxx++OF49NFHAQDnnnsuDjjgAMyaNQs7d+7E7bffjoaGBpx33nmddg3GGFMt2tWk77//ftx888049NBDsXXrVjQ2NuJHP/oRLrjgAvzxj3/E5ZdfHu733nvv7ZeZccCAARg2bBhef/311Pb666/j4osv3udjmeKxatUqXH/99bj//vtxxhln4N5778V9992HZ599dr/m04wZM/Doo48myf2UU07BG2+8kfubN954A6ecckqyxFQbagPz589PbcxtrNr1vHnz0na9FKQ3xnQt7b6k33//fSxYsAA/+MEPcPfdd+P888/Hli1b8Morr+CVV17B1Vdf3akdYsydZsbZunVrckAoImr6Me1z991348ILL8SiRYuQZRkuuugiAMDVV1+9T/PpoIMOwiWXXJL2B/bOH507QPHnT1fgOWm6El06+jrLSDZnt0+HHMfuu+8+XHHFFQCAK664An//+987fIKzzz47OfhoOEklGMiuHoX9+/fPefQVjZkzZ2LmzJm17kZdcdddd2HcuHG4/fbb99tD83vf+x4++uijtH4L7J0/OneA4s+frsBz0pjuQ9bep6mpKfvoo4+yU045Jdu2bVs2YsSIDED2pz/9Kdu2bVv4eeutt9o9bmNjY5ZlWTZy5Mhc+/r167Np06al/99yyy3ZAw880Gr/lpaW7Jxzzmn3PP4U69O3b9/s3Xffze66665s3bp12cCBA/drPs2bNy+75ZZbcm3Tp0/PWlpacm1r1qzJvv3tb9f8uvXTq1evrFevXlljY2P61LpP/vjT2Z8777wzu/POO2vejzr/dOwP//znP2evv/569tRTT3XKiZuamrKDDz44y7IsO/7447Ompqb03a233po988wz2YABA7ITTjgh27BhQ+5Htk+fPllTU1PW0tKSTZ8+PbevP8X/3H333dns2bMzYO9D/OCDD+7zMYYPH57t2rUrGz16dK69d+/e2Zo1a7Jrrrkm69OnT3b11Vdna9asyXr37l3z69aPX9L+9ISPX9Kd8unYH5511llZlmXZlVde2SknjuB3ffr0ye65555s69at2fvvv59de+21uX1Xr17dat9ybdyfYn4uuuiinPbct2/fbMWKFdnll1++T8e54YYbsgULFoTfNTc3Z4sXL862b9+evfzyy1lzc3PNr9sff3rixy/pr/9p+P8b7TJixAgsW7YMQ4YM6XHre8YYY/adO++8EwBw1VVX1bgn9UuHHMcaGhpw3XXXYfbs2X5BG2OMMVWi3RCsgw8+GJs2bcLatWtx/vnnV6NPxhhjjEEHXtLbt2/vcTGmxhhjTBFwPWljjDGmoPglbYwxxhQUv6SNMaYAjBw5ElmW5cqw3nTTTa3+buDAgdi8eTOee+65GvTSVJualKo0xhgTM2DAgDYr/P3ud7/D0qVL0auXdayegO+yMcbsB5deemlO692xY0eu0llXMGXKFIwdOxb33ntvl57HFAe/pI0xZj946KGH0K9fP/Tr1w/Dhg3DqlWr8MADD+D666/Hxx9/XPHTHmvXrkVLSwv+8pe/4LDDDkvtvXr1wh/+8Af85Cc/wd4EjcVn+fLlrsjWCdQ87Zk//vjjT71+Ghoasn/961/ZHXfc8bWO07dv3+z000/PGhsbsyOPPDJ7+OGHs8cffzx9/9Of/jSdY8aMGdlzzz1X82v3pyqfmnfAH3/88aduP7/97W+zZ555JjvggAM6vM+IESNyVd6ivxk8eHCWZVl2yCGHZEOHDs1WrVqVct77Jd1zPnYcM8aY/eSHP/whLrvsMkycOBG7d+8GANx44434+c9/XnGffv36oaWlpd0kUTRp9+rVC5MmTcLQoUPx9ttvAwAOOuggHHTQQdi4cSOGDx+OPXv2dNIVmSJSc0nBH3/88afePs3NzdnmzZuzU089tVOON2nSpOz444/PGhoaskGDBmWzZ8/Onn766QzYWxlw8ODB6XPNNddkCxcuzAYPHlzzcfCnaz92HDPGmP3gO9/5DgYOHIjnn38+eXg/9thj+3280aNH4/HHH8e2bdvw1ltv4csvv8Rll10GANi5cyc2bdqUPlu3bsWuXbuwadOmzrocU1A6XKrSGGOMMdXFmrQxxhhTUPySNsYYYwqKX9LGGGNMQfFL2hhjjCkofkkbY4wxBcUvaWOMMaag+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXl/wECvy9cAjCijAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "tags": []
- }
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "R9ObKK2YQW2s",
- "colab_type": "text"
- },
- "source": [
- "#### 3. Defining Data Set"
- ]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "hjalzY4ZylGC",
- "colab": {}
- },
- "source": [
- "class MriData(torch.utils.data.Dataset):\n",
- " def __init__(self, X, y):\n",
- " super(MriData, self).__init__()\n",
- " self.X = torch.tensor(X, dtype=torch.float32)\n",
- " self.y = torch.tensor(y).long()\n",
- " \n",
- " def __len__(self):\n",
- " return self.X.shape[0]\n",
- " \n",
- " def __getitem__(self, idx):\n",
- " return self.X[idx], self.y[idx]"
- ],
- "execution_count": 14,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "8lv4i-TSQvcX",
- "colab_type": "text"
- },
- "source": [
- "#### 4. Defining the CNN model architecture\n",
- "\n",
- "[3D PCNN architecture](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full)\n",
- "![model](https://www.frontiersin.org/files/Articles/442577/fnins-13-00185-HTML/image_m/fnins-13-00185-g001.jpg)"
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "1IlGfuWsuot2"
+ },
+ "source": [
+ "3. Get the data. Add a shortcut to your Google Drive for `labels.npy` and `tensors.npy`. \n",
+ "\n",
+ "Shared link: https://drive.google.com/drive/folders/1Cq35zfhqJHlmhQjNlsDIeQ71ZsT2aghv?usp=sharing"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "WBxqm43mKUCl"
+ },
+ "outputs": [],
+ "source": [
+ "data_dir = '/content/drive/My Drive/Skoltech Neuroimaging/NeuroML2020/data/seminars/anat/'"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "5tJhdbkMKte1"
+ },
+ "source": [
+ "Let's watch the data. We will use `nilearn` package for the visualisation: \n",
+ "https://nilearn.github.io/modules/generated/nilearn.plotting.plot_anat.html#nilearn.plotting.plot_anat "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "CRiEcgFIK5gZ",
+ "outputId": "94cb16b6-fcd6-4d6a-fba1-a9e8b5131570"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[K |████████████████████████████████| 2.5MB 2.5MB/s \n",
+ "\u001b[?25h"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install --quiet --upgrade nilearn\n",
+ "import nilearn\n",
+ "from nilearn import plotting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ },
+ "colab_type": "code",
+ "id": "jsQ_-1WsMd0C",
+ "outputId": "9a272066-ac8e-44a3-f9d3-7d57e0788a84"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "cqFwgNpJHdDN",
- "colab_type": "text"
- },
- "source": [
- "At first check if we have GPU onborad:"
+ },
+ "execution_count": 9,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydSY9c53X+n5rneehq9sgmRVJTSA1WFFvQ30K8sBYxEiDfwUCW3mWT5AMEQbZZJcgiayNZOAnsGDAMx3FiQVEkW7I4NNnssbprnsf/ovE7/RZlW3YispvSfQBBEtlVdbvue8/wnOec45M0lwcPHjx48ODhwsF/3hfgwYMHDx48ePjl8Jy0Bw8ePHjwcEHhOWkPHjx48ODhgsJz0h48ePDgwcMFheekPXjw4MGDhwsKz0l78ODBgwcPFxSek/bgwYMHDx4uKDwn7cGDBw8ePFxQeE7agwcPHjx4uKDwnLQHDx48ePBwQeE5aQ8ePHjw4OGCwnPSHjx48ODBwwWF56Q9ePDgwYOHCwrPSXvw4MGDBw8XFJ6T9uDBgwcPHi4oPCftwYMHDx48XFB4TtqDBw8ePHi4oPCctAcPHjx48HBB4TlpDx48ePDwWPGtb31L3/rWt877Mp5KBM/7Ajx48ODBw+cb169fP+9LeGrhZdIePHjw4MHDBYXnpD148ODhCePevXv6/d///fO+DA+/Je7du6der6d2u639/X397d/+rRKJxGP9TM9Je/DgwYMHD78h/uAP/kCpVEq3bt3SSy+9pD/90z99rJ/nOWkPHjx48ODht8Th4aH+5V/+Rbdu3Xqsn+MJxzx48ODBwxPH1taWxuOxQqGQQqGQCoWCfvSjH533Zf3GWFlZ0dtvv61/+7d/e6yf4zlpDx48ePDwG+HWrVuaz+caDofy+/1KJpMaDoc6OjpSMBjUzs7Op77H1taW8vm8lpeXFQwGFY/HNRqNdHx8rNdee02tVkuS9OGHHz7uX+d/hW9/+9uaz+dKpVL63ve+pz//8z9/rJ/nOWkPHjx48PBr8cYbb2g+nyuZTMrv92s6nUqSZrOZRqORfD6fWq2WlpeXNRgMVK/XP/Ee4XBYW1tb2traUiKRUCQS0XQ6VbfblSRls1kVCgUNh0ONRiNNJhO1Wi0dHR090d/10/CHf/iH+t73vqc333xT//AP/6Bisahms/nYPs9z0h48ePDg4ddiMploeXlZs9lM0+lUwWBQk8lEgUBA0WhUgUBAiURC0+lU4/FY3W73E5lwLBbTc889J5/Pp/l8Lr/fr0AgoNlspuFwqNlsptlsJp/PJ7/fry996Us6OTnRnTt3dOfOnXP6zX81fvCDH+jv/u7v9Jd/+Zf6oz/6o8f2OZ6T9uDBg4dzQCgUUiQSsf+fTCaWoZ4XXnvtNQWDQZ2cnKjX6ykcDsvn86lUKikYDCoQCGg4HJqTlaT5fK5IJKJIJCKfz6dAICCfz6dgMKhoNCq/3694PK5gMGh/vrS0pMFgIEkaDof2en6+Wq2q3W5rNBopGAxqdXVV3W7XHHssFrNr+vGPf3xu39df//Vfa3t7W7/zO7+j995777F8hqfu9uDBg4dzwHe+8x0NBgP75y/+4i/O9XreeustXb58WRsbG3rxxRd1+fJlxWIxra2tKRKJaD6fKxQKKZVKaTabaTKZaDQaaTQaWY02Go0qEokoEAgom80qGo1aZixJfr/fMm8CABx+JpNRJpNRs9nUeDzWYDDQwcGBQqGQ8vm8OfBAIKCXX35ZV65cUaVS0SuvvKI//uM/Ppfv7Pj4WH//93+vP/uzP3tsn+Fl0h48ePDwhHH58uXzvoQFfP3rX9d0OpXf71e/39d8Plc+n1cgEFAqlVK/31c2mzVnG4vF1Ov1NJvNFA6HFQqFlE6nJUm9Xk+tVkvBYFCdTkfj8Vg+n08+n0+j0UjxeFzhcFiz2Uzj8VjhcFjSqQOfz+caDAYaDoc6Pj7WbDbT8vKyJFltOpfLSZIGg4GCwaBKpZLefffdJ/I9/bL79id/8ieP9TM9J/0ZggHyf/VXf3XOV+LBwy+Hd0Y9PIovf/nL6vV6qlQqmkwmikQi8vv9Go1GikQiGo/HyufzCofDVneORCIKh8Py+/2WHfv9fg2HQ00mE81mM3O4/X7fxGaz2UztdlvBYFDLy8uKRCLqdDqKRqMKhUIajUYaDAZqNBrKZDK6ceOG2u22ptOpstmsksmkSqWS5vO54vG4xuOxotGoXnzxRS0tLanZbOr9998/76/0M4XnpD9DeEPkPVx0eGfUg4sbN27I7/erVCppMBiYs41Go8pkMioWi5pOp/L5fAqHw0Z5S1Imk9F0OlU4HDba++TkxOhrFN7BYFDz+VzSabbc7XY1Ho+NIs/lcvb6QCAgSeaUe72eAoGABoOB8vm88vm85vO5gsGgstmsZrOZjo6O7L0qlYqy2awePnyo7e3tc/lOP2t4TtqDBw8evoC4cuWKNjc3LTum/zkYDGowGCgcDpvgSzpttwqFQvL5fJrNZvL7/QqFQur3+2q1WhqPx6bulk7rtcViUZPJRPP5XD6fz+jt2WymRqNhYjRJ8vl8mk6nikajyufz6na7qlQq6nQ6mkwmisVikk5buQqFgqRT8V02mzWnP5lMlM/nFQqFjG4/ODg4h2/3s8NjFY55Q+SfXpzHIHkPHjw8Prz11lt6/vnndevWLd26dUvT6VShUEjj8dhaofr9vobDoaTT2vJgMFCn09FoNLL2K0mWLbvCNxw9VDk/j1PHUeNMeR+EZTjsdDpt2TyUtqSFz3dBZh8MBk1BnkwmdePGDT377LOPfWzn44an7vbwK/GkB8l78ODh8SESiejGjRtaXV3V6uqqyuWyJpOJxuOxYrGYZrOZAoGA+v2+0daorHHYbq16Pp9bjVk6dbij0UiSrF0KBzwejzWZTExsJknj8ViNRsNeSy07n89rc3NTKysrNjLUbfmSZHXrbrerXq9ntDvv7fP5FAqFlEgktLS0pPX19Sf5VX+m8Jy0h0/Fkxok78GDh8eDt956S7FYTOFw2PqZ8/m8ptOpAoGARqORVlZWjMJOJBJqNBo6OjpSp9NRu922LBgxGZl4KBSyDBdHWS6Xlc1mFYlELGseDofa39/X8fGxOeVer2cqbgIA3jccDisYDBrNLsmy/Xq9btPKmE7G6+LxuPL5vFH10WhUq6ur5/bd/1/hOWkPnwoGyd++ffu8L8WDBw+/JV5++WWl02kFAgETXNE2RUmr1+up3+9bhi1JhULBpoFFo1GjoX0+n2KxmAKBgAKBgHK5nNLptCKRiNLptBKJhEajkfL5vGXq0WhUiURCzzzzjBKJhI6Pj43Grlar6nQ6CgaDVlKDHp9Op3Yd4XDYlOXD4dCU46jGmXqWyWQUDofVbDY1HA61u7t7YeeA/ybwnLSHX4lvf/vbarVaevjwoY6Ojh77IHkPHjx89kgmkzYnO5FIKBgMWm8yfy6dTjzz+/3mdBFrxWIxy4Z9Pp8kmVOEzg6FQgv/7/P5rJ7sZsS0TpVKJU2nU/V6Pc3nc6OsyaapT/t8PhuQIsn+HhEao0QDgYBdQyqVUrVald/v12Qy0WAwUKVSOYdv/rOBp+728CvxpAfJe/Dg4bPDG2+8YT3FklSpVEwolslk1O12lUqlTAUdDAZVq9WUTqdVLBat5kx7kySrD/d6PZv+FQgElMlkrMeZlqnJZKJ0Om3qcHe+d7/fVyQSUTAYtHryeDzWeDxWOp22LJvXbW5uant726jv2Wy20Jsdj8eVy+UUj8d1cHBgLV0+n09XrlyR3+9XKpXS9va2Dg8Pn/zN+D/Ac9IePhVPapC8Bw8ePjugdiZzRoUdCAQUiURULpd1dHRkk77a7bZms5kikYhisZjK5bJl2YlEQoFAwJZrIDTr9Xoaj8dqNpvqdDoLmTmgnoyjpE7NgJNgMGivY5JZIBCwv49EIgqFQrp8+bK63a729vYUDAbV7Xbl8/mUyWRUKBQUi8XU7/clyTJ5aPler6dUKqVMJuM56UdxEYfIe/jt8SQGyXvw4OGzQ6FQsE1VjPuUTqnqXC6nUCikpaWlBXU2dDYDQ8rlsvx+v1HWk8lEw+FQoVBI1WpV1WrVhGORSETdbteGm9RqNWulQp3NNDNod5/Pp8lkYjQ510vbViQSsSEnkUjE6t0EBKFQyLZzDQYD+Xw+JRIJJZNJU493Oh3L7Le2tnTt2jX5/X69//77ymazeuedd87tHv0meOw16Ys2RN7D/w5PYpC8Bw8ePjvgOHG8tCVBEeOIo9GovYbJYrw+Go3a38/n84U+6E6nY3Xg2Wymw8NDbW9v6xe/+IXq9bpqtZot2+AaaO/Cebo904wYlWQDTlB98xnT6dQCjHA4rGQyaUEILWPRaFSdTkeHh4caDoeaTqdqt9uKxWL2u0ynU8XjcWsZu8h4rJn0RRsi7+E3x3kMkvfgwcNnh3q9rmKxaFlwNps1ehmlNw6Q9qpUKmXrJiXZEoxQKKTJZGKZbK1WM7obZ16pVFSpVCw7TiQSJuzifVB1Q3FXq1VVKhUTf7n7pNmShUCMa4pGo7py5YrR6IPBwMaV+v1+7ezsaDAYaDQaWX93sVi0drFIJGIjUDudzrndn98UXk3agwcPHj6HoLTIWM1kMqlUKqVYLGZbqagN0/pEmxNZtt/vVywW03A4VDgcVrvdVjgcVr/f12w2UyqVssycvdBMMEsmk6rVajo5ObFrYpgJ1PR0OrXxoThZSbZ0QzodegJVPplMjCbvdDoL+6snk4mq1aparZaq1arVznO5nCaTiVZWVhSLxXT37l3L3hmmcpHhOWkPHjx4+Bzg9ddftzWO+/v7qlartrlqMpnYwgucXzQatQldLM/gz4fDoWW8zPMeDodKJBIaj8dW72aASCwWsww1GAyqWq0qk8no4ODAKGu0SKlUSj/96U+1tbWlXC6nRqOh4XCoTCZjwjKCBUmWvZNhk5Uz9YygYn9/X91uV91uV9ls1hZ7pFIplctlzWYzG6QSDoet/euiw3PSHjx48PA5wObmpjqdjvU601LV7/dVKBRsGYYk62Gmp1mSZdez2cwcHKKwQCBgoz2pQ1+6dEm9Xs/+HwFYt9tVMBhUu92W3+9XMpk0GhtRGa1hzWbTlN3D4dCmopHJuypvWq64Rhc+n8+yeXqmWQZSLBYVDAbVaDSstYufpT3sIuPiX6EHDx48ePi1ePvtt20ymHQ2wGQymWg0GunOnTvK5/PK5XKWEc/ncyUSCXNs0+nUatYouEejkTlWeqRHo5FisZg6nY6y2ayN95xOpzo8PLT+al6fzWbNuVIH3trass9g4AjLOFiBSZaM4pvaM21lfA7/zUhS6tn5fN4Wd/R6PbVaLZugtre3Z9dz0eE5aQ8ePHh4yhGPx205RTgcVqPRsHnbgUDAeoylUzEY08RwvlDJjNjkz6gb4+xwptSqB4OBZrOZTk5ObCWldCrmunv3rqnLUYVDZ/PeiMJQkUNnIxrjeoPBoFHeDD9xJ5SFw2Gtrq7aTPFkMmnBR6fT0c7Ojvr9vrrdrtrttubzufr9vpdJe/DgwYOHxw8c7GAwkCSVSiUb58l2KWjgdDptbVb0JrvbpmiLCofDlpUOBgMb8cn74aAPDw81m83U7XaN1k4kEtra2rLZ4Ai7ut2u8vm8otGoZfn0Vs/ncxWLRduaRc2ZHm+YAWrfCM3Y3JVOpy3z5vonk4n29vbse1paWlKpVLK+69lsppdfflnValU//OEPz+XefRo8J+3BgwcPTzlwjkwAm8/nisViRmGTXTJnmzGc9Be7GSwZKCpusmhX9Y3KutlsWgY9m81s8xROmwyfGjJrL8lgo9GotYMxHYx+bmrhfC4ZtST7DEk267vZbNrIULfnmvdDre7W3qVTFXw2m9WtW7f07rvvPulb96nwnLQHDx48POW4f/++crmc8vm8ZrOZ9TGn02mFQiHlcjlzZtKps6QVi6yaP5dkddxgMKjxeGwtWPP53BTcPp9P2WxWPp9PJycnisVilo2jHA8Gg1Z35u/a7fZCnToWi0nSgjPHMeNMeS07raPRqPr9vjl4HLAky8T5dz6fV7/ft8CCAS6oxxm0JUk3b97Uf//3fz+Zm/YbwnPSHjx48PCUY29vT/V6Xbu7u/L7/cpmsyoWi7YI4+TkROvr61YDRt09n89NQT2bzSz7fjRLjcfjkmT91r1ez2ra7G4Gs9nMJnl1Oh0TdJGxS1K321UikbDMlwwdWhznLp1t3mKaGEIz6GquCwEZY0Rx6IlEQolEQoPBwAISggiy7l6vp2QyqYcPHz6Bu/XbwXPSHjx48PCUolwuKxaLaWNjw3ZGs2Xq4OBA4/HY2pCOjo5sIhhiLeq3OEvqw/Q/40B9Pp/a7bbR18lkUq1WayFrDQQCarfbGgwGajQaJiIjy2aGdjwet/YnAgRJ5qCphUNxIxQjEIAGJ4DgZ9xebHq8R6OR7Y5wnT5bsghUQqGQ8vm8jo6OnvQt/FR4+6Q9ePDg4SlFMplULpezLVU4xlgspmw2q1wup2QyKUnW0oSSmyya+i/1ard3WjpTg0ciEZvF7VLnODkcubuJKhqNqtVqGVU+HA4lnWbSrVbrE1kzoz+pKeP8CRhwqpIWAgxGinItbg0bFTnXzrWgBKd3OhAIaGNj43Hfst8aXibtwYMHD08hXnvtNWWzWUmy7JPpYlC9KKQDgYDS6bTN08ZhkiW7TlGS/T3Tv/i5Xq9n+5tjsZi63a5l5DhRd0vW5cuXlc1m1Ww2FY/HVSwWNZlMFI1GlU6n7fq4Brf2zL7pXq9nQQGir9FoZNdKJt/tdm0sKap1fhdJttDDFY2heo9EIur3+0omkxdOQOY5aQ8ePHh4yvDyyy+rUCgok8lYdppMJk3BTdsUoitWRCKQenT4B21MODZeM5lMjDKn35nXQSkjUBuNRrp27Zplwz6fT3t7e1peXlY+n5ckXb9+XfF43FTjONxoNKrBYGBbq3w+n/r9vgncOp2Oba1KJpM24EQ6db6ow+n7pp9bkr03IJsmyECkNhwO7VouEjwn7cHD5wjr6+uazWYXUgDj4bMDaxrdedbUXumXRiSFI2WZBlQwr8P5+nw+y1ZjsZh6vZ5RxdSiodRdp+0OGuHv3H5tnDGiLgRg/DnO9tGtV61WS9Fo1DJjd3gJ7WI4VbL3cDisg4ODTzAE0tmqTYRzCOVGo5E5dCauXSRcrKvx4MHDb4XV1VVls1kVCgWjO2u1mpaWltTtdvXhhx+e9yV6eAyg9QhHE41GreZKJkq9lv9mRjY13k6no2QyaU4RgRZjPnlNIBBQr9dTv99XJpMxR4dTR/yFo8YJo/Lm/X0+n12DdLa7ms+Lx+NWZ6bfu9vtanl5Wf1+3zJcAgxq39JpDbvRaJhojTax+Xyu4+NjxeNx+zP6vlnhmc/nFwbBXLQd019oJ/3mm2+a0rDdbqter+vOnTv295ubm4pEIkqlUrZF5v79+/+rz1pdXVU8HrepPLPZTMvLy1pdXbXDdHJycmGn3nh4vOAcQBv+Oue6tbWlq1evyu/3K5PJmNgHQ0vdsd/vK5vN6sc//vET/E08PAlQi47FYspkMlajhd6GwpVk07nISMlCGZmJ8CoSiajZbCoajVqNGwEZ9e1Op2M7pwEKbwIASUab46xdCpz3Yt43CuzRaKTBYKCHDx/qzp07qlQqWl1dtYUcrVbLsnxauyTZPG5Als77E0RQp3bXcc7nc9spHY1GF9rELgq+kE76+eefVyqVUqlUsgPL4Pe1tTVTEgaDQZVKJctS5vP5/9pJS7KVbjw8S0tLdtjD4bAKhYJu3LjhZT9fMCwvL6tYLJpQptPpaGNj45eetZs3byqbzSqTyZgq1p3K5BojxEK/6r2k02ehXC6r3W7bJKn/+q//ety/sof/I9hoFY1G1e12zWbhsNjpDDWM6IsMstFoKBKJLAwSGY/HGo1GarfbKhQKSqVSJsYaDofqdru2G5oEhtfx+dTC+TcUuyTL8BkpCq0cCoXU6/XU7Xb14MEDHRwcqNvt6ujoSKlUSplMxhTikozixgmDRqNhn+Uqxvn/+XyuZDJpizrI2gOBgFKplF3jRdsx/YVz0mtra9ra2lqoO9D3l06nNRgMLJIsFAoql8tGgzz33HMaj8f62c9+9ivfPxqNamVlxWo2ZM5ErtlsVvP5XOl0emEAgHQakV6/fl3lclk/+MEPHs8X4OGJ4Pr160omkyaQQcX6zjvvLPzc1atXtba2pkqlYgaj2Wyq0WhoaWlJgUBAgUBAV65cUSqVUjweN5oQx4zBw3BDQ8bjcfn9fhWLxQUnHYlEdOvWLa2urtrmpEKhIOm0NeYb3/iGer2eqtWq6vW6Hjx48ES/Ow+fDlqXmLrFbmdEXlC2ULqMBkWABc3sztDmXJFtU38mK45EIjo6OjLHu76+bmIunDS1YRw1g0VITNiMJWlBLBaPx/Xzn//czikBA5+Ng6beTXAqndrvZrNpdpoecLJ2HDS/C2UCtz8bJmA+n1+4JOkL5aRXV1f10ksv2SFOJpMKhULqdrsaDAZKJBLmPLPZrNEqZBjtdltra2u/0kkjfIAep22g3++r2WwqlUrZQ8PMWlazSaeR4Gw2UyKRUKlUsnaEQCCgfD6vfD5vtNVgMPBozAuIq1evKhgMWr8lNB57dx9t7/D7/VpZWVEgEFA8HrdaHMakVCrp8uXLSqVSlh1hRHHMLjXpZj60maTTaWWzWVO1hkIhbW5u2nu4wh+o82QyqVQqpf39fc9JX0AcHx9reXnZFkq47VS0QbGligBxMBio3W6r0WgomUxqeXl5YasVlHEsFlMikVCn07E6MI53d3dX0+lUOzs7GgwGunbtms34dieA8RqX3UE4Rk93q9XSaDRSPB7Xd7/7XRsk4o4Spa5OAEtQyXsxZ5y/Z4f2cDhcCDok2e/iLg7hmpvN5sIzc5HwhXHSm5ubevbZZ00lSKZBlivJ6J+1tTVrcCcSw4D+OlDXWV1dld/v1/HxsU5OThZ6/5aWlham4VQqFRthRzRMFBqJRLS2tmbCEOk0go7H40qlUvra176m7373u4/3i/PwG+H5559XsVhUPp+3+4uBYsYx7SuTyUS7u7vWg0rmizGBzVlfX1elUjHxTSAQUCwWW2ibQQBEnyjnzK2tkblgxOgldVWu1PGgHvm8XC6nt956S9///vfP7bv18EmQ0bIXmix6Op0qEoloaWlJ8/lcqVTKKGkyRZIDV9EMxYtaezweK5vNmiOMx+MLwq14PK53331X9+/f140bN3T16lWj3zmfnU7HzpqkhZGg1IJbrZbeeecdy47RVTAIxX2eCCag78n2qTtDo5NR53K5hQEtnH2WbQyHQ3U6HU0mE3U6HcViMdVqtSd9Kz8VXwgnffXqVcXjcTucZBPc9Gg0ajtJMYJQI0SVCBx+laigXC5bloNiEgPYarU0GAysRsR18A+UDpGj+9nxeNwUmkzTkU4PfDwe16uvvqrxeHzhhsJ/0ZBMJk356oq4iNo5a5FIRJlMRru7uybkkWQOl3u8srKiQqFglCSBJNQhlB0GiWESrjDGXUOIU3fPHapdPhMjhsOHCUomk3rzzTe9EswFQrfbVS6XM9tArdltscpms0Y5j8dj9ft9TadTm89dr9ftzJGNE1SWSiV1u12l02lj7iSZM0TB3e/39cMf/lDb29t64YUXlMvlFn4GRzqZTIyqns/nOjg40O3bt3V0dGSZ9mg0slLgcDjUiy++aD3ZZODU1mEqO52OlXjc3yGZTFrgCdvAist2u23BMn3ZiOYuopO+WDK2x4RgMKjl5WXLbnDGUIVMv5FkO1ips+RyOctyiMauXr36ic9wl5lDKyJ6WF5eVjqdtgMlnTpZxAo8WNSNarWa1RKpZaPaTaVSymazZnhzuZwtc/dwfsjlchbgBQIBRaNRpVIpc77S2XjFaDRqRqTX69nMZCjuSqWipaUlc5pkMdB8MC6MNsSI8v8nJydmyCSp1+tZDy0OPJFILIxd7Pf7RpNGo1Fr6yIYiMfj+n//7/+d2/frYRGFQkHFYlGpVMqGmOCcw+GwMpmM9VFDgWPvOBc4Usp9OFPOGM4dWxUIBJRMJk0UJp1l3vv7+7p9+7YNB+HMEFQSvEKNP3z4UMfHxwvBI3T9dDrVtWvXrL2L3u1+v69Go7EQWPBazinXQ0KEyjsUCqnVatls8U6no263a3XtXq+nnZ0d+24uEj4XmfStW7dsO8tgMFC/37dxdQhv3N48pvK4h4emdgxaJBJRIpGwz0CFzbi9XweG00ejUWUyGU2nU6VSKW1vb9t1uVnxfD63z93f37cRehj90Whkwp54PK75fL4QPTKb18P5gS067kAIAjZ3AT1GjwUDZBDUDWFfJJkRcv8tnZ5FN+uhRDIajfTw4UOFQiGVSiW1223LlmezmVKplOkrms2maTOGw6G1bbn7gIPBoBKJhFHf8Xj8l3YflMtlra6uKhaLqd1uq9ls/p+6IDz8erz66qtaWVlZcHCSzDE/Sge787AZEIK2xa1jN5tN5fN5c5hk3LRLTSYTvfzyy7p7964+/vhj0/Mgwt3Z2VG1WtXS0pKuX7+uTqejYrG4UDfe3d3V7du3Va1WLaun//qZZ56xoLTdbtsYz2QyaSNKA4GAut2utX25dhAnjcqbXupEIqH9/X0rZ/Ic0VNNLbzdbqtarZ7DHf31eOqd9PXr17W+vm4UC6Pv2u22Hj58qNFoZL2nOEV2o0IpE31ls1ml02mjZojYqPcEAgGr7TyKUqkkSRbNooAkM4lGo7p+/boZRx4wqEWyIfbAQr/jzBEDuXNnJalararVaunatWvqdrva3d19Ml+8hwU0Gg1zdNTuXIoQQzaZTLS/v2/BIcaP85JKpUwzwZ8zAMJd4yfJjB96hk6no2w2q2Qyadk8zjsajapYLC7Q7rPZTPV6XUdHR3r22WcVDAY1GAyUTCZtChNnDqP3aEeCJL344otWT4Sq9PD48CgbKJ2puDl/nU7Hzh0Mnd/vV71eVyqVssDs+PhY0+lUy8vLKhQKdv9RY2Mr3XLfc889p0qloor26yYAACAASURBVO3tbdNAYPN8Pp8ODw/l8/m0tbWlRqOhfr9vbWG3b99Wq9VaUGdfu3ZNy8vLpvlpt9vKZDLqdDry+XzWm93v901EBqsJhd7pdKz8g4PnOVxdXdVkMlE6nTYNCO8Fa9TpdHT79u1zuJufjqfeSUPbMWcWAxYMBlWv11Wv120tmTtwnYNO/ZDWBRw2dQxJZnQwno+OjXvuuedMwEH25IqG+v2+vYbIl12qUIwILcjwE4mEZVocLOroPBQIMFzqHpUn/YwengwGg4FarZbK5fKCaAvqjeBNOtuxi/Pr9/uKxWJGSVKbI0Bzh1BIZ+03ZCecoWazqfX19QWBT7/f12g0UiwWUywWs6wLupDnwNVKYOwIEl0a9FHcuHHDnDqiIbc/1cNnD7fbhASAoJ4An8Cu2+0u2BeGNzUaDTUaDQvquHf8P9ksQivpNCGA+ZlMJioWi9rY2FCtVtNHH31kO5vn87k++OADYyzJiGkB4/VXr1614LHb7dqOa84t3TDuKFHsaL/fVy6XUzgc1tHRkRKJhD1T5XJZs9lMx8fHKpfLxqjSEy6diYQlWZnI5/Pp6tWrF85ZP/VOOpfL2QEjssLRXblyRXfv3lW1WlW/31c4HFY6nVaz2bR6M1EalCT0IS0HjNtDYEPGvbm5qfF4bNkJnyudth6gkoVaIjNBYEa0Sj2If2MMl5aWFt7P3e8aiUTsAX322WfNCUynU62tralarXpO+jFjeXlZmUxG6XRah4eHGgwGajabWltbU6fTUaFQsJozrTAMluBcMD2p1WrZGSSzRnNAawsBoDvfGOGLdGq0rly5otFoZL2z3W5Xx8fHCofDun79up0tAj+cPkEfFD0jGqHJCfwwsoVCwc7w+vq6er2e8vm8+v2+5vO5isXied6azz1werAoBEiU7WBoyIA5J8xpwJHi8LCfsVjMuk6gkSmtAHdiGc4zHo/r2rVrunfvngWjtEtNp9OFyWIMS8nlcsrlcsZQSrISEMnJeDxWKpWyLVjUunme2H0N3FJkKBRSOp02X0CJUZIJyAhIYVndQVMXCU+tk7506ZJSqZRisZjd3FwutzDPdTgc6tKlSwoEAqrVatrb2zM6EQNFNu1mxzhDSVazk2RBQDqdVjAY1Pb2tmKxmEWeZBHUk11FudtWhdiHbIgD3263JZ3tgqXn2lVt8np32g/0OxOm8vm8MpmMPvroI2/RwmMCvfQ4493dXY1GI+3v7yuTyajf7ysejyufzxsjgwEsl8tW9uj3+2q1Wrp69ara7badAXeRATSipIU2Pf6bsYl0LZAJY4g3NzcX6EFJVo8sFou6ffu2GUaMOjqO8XiscDisWq2mRqNhDrxUKpmSFwoSFikWi+ntt9/WaDTS8fHxQtnoIq0AfFrR6XS0vb1tu6LJbrvdrgm8EomERqORtSHBuNCDHI/HdXh4aMspsE3YU2rZg8HAmJx4PL5AeyPEpV1qY2ND+/v71pv94MEDPfPMM6ajmc9PN00lk0ltbm5a90Cr1bL6NMGidJqA0UeN05ZkzxZC3Hw+b4EmJU96nmEPeD+EwpJspSffzcbGxoWcCfBUOunNzU2trq6qWCwuTJUhKoMCQkCwtramVCql+/fvq9frKZ1Om4HkMEtaqN1IMqoGKpIDyaFBnY1y1hUMcaA44PzjRovUqwkaEIG5g06oNZHp00+YTqdNGMRDiCEcjUZKpVJ6+eWXtbm5qU6n4xnHzxhu4IUjPjk50f379/XKK69YrzF9qgRXo9FIa2trymazajQa6nQ61vqRzWbV7XaVTCbVbDYXFKtoGGjtcu97rVbT8vKyiXgYfBKPx7WxsaFwOGz/746P5LxjtAkyEZbhuPv9vmq1mprNpmazmUqlkpaXlyXJjCjPBNkN17K2tmaMlN/v1/LysqrVqv1u0+lUJycn2t7ePt8b+pTgjTfesI4TdAiwasViUb1ez8R+nNFIJKJsNmvZMTXiS5cuqdfrWXLTarWsrxinKWlhaQeZp6uzgMXEGe/v7xvVzplC28AITuwugQWONJlMWiCIvYvH4xbstVotG4nLd0CQIMl+D+z0eDy27wQmi5ZGGAnOYiAQ0ObmpgqFgn7yk5+czw3+JXjqnHSlUtGNGzesr1M6E1Lg+IBba0MB7W5vIYLCQFFzxkEiUEAAxM2EHnFrxhwWNr3wWY86YAbac3BdxS8H3zWYkhYm9tAXye9E/ZLsxxW4hcNhFYtFxWIxvfHGG97yjv8FnnvuOaN+J5OJUbo4XBSuxWJRs9lM9+/fV61Ws6yDPnwMBTqCbDarRCKhk5MT7e3tmVPDSUqyGjUiF+lsAxAsSq1WswwdVgaH6A56cClzt93FXRtILZNz72by7XbbGBzO3Wg0UjabXejNJXjgLHNmuQ7OJENYotGoyuWylpaWtLOzo729vfO83RcaN2/etF58dAm0X929e1fSqYC12WxqPB7bIJzpdLrQOsX9GgwGprTe2tqye4dNPD4+liQ7e+6eAXfGg9uStbKyomg0qvfee8/oY3f2hHs+6X6hpNLr9UxhjuiRiX3pdFq1Ws0Ettg7AlpJqtfrds4IUmi/Yld0MplUu91WOp22kag8n41GQ/F4/MKVCp+6PumbN28qFotZvSUUCpkjcmlpaXFuLXQMRpJ6CZmO2xI1nU4XDKPbkkAEN51OFY/HreUBBy5pIWoke3G3waDmpt5N5r6ysiJJZuC5freth4yZLC4ejyuRSFh7AuIKaP1YLKZyuaxSqaSvfOUrT/RePe144YUXtLS0pEqloo2NDa2vryudTptD6na7ajabVo7I5XJKp9O6e/eusSEPHjyws+T3+5XP522CXDwe16VLl3Tz5k3t7u7qww8/VDAYVK/Xs4wGdbc7q7ter2t3d1cPHjzQ7u6uMpmMGS/YnXQ6rWQyqWw2a5vcqMvhfMlMyuWyOWbOjGuwu92ulV5SqZRyudzC/HBKQv1+34KHXC6nYrGobDZrRhd6nvOM45jP5yqVSnr11Vf16quvnvNdv7hg+xR97pIsQchkMqrValbmoLbq6g/cITvYTumMAUR85uoeKK1wvlBDc17cGeDUn7mn3GtGK/MZpVLJKPP5fG7LXdLptNXNsV+SFuYJAChvzqx0pq2QZO2A1LvD4bB1X/AzMFywse53eZEQkPQX530RvwmuXbum3/u93zNaIxKJKJ1Om9Eka2m32+r1ehoOh+a0ccJQ4NDdqML5mUdnI9PgT/8o2SmqbW426tybN29qNpvpJz/5iUW7OFXo+Gg0+gkaye2B5bDwe7ltXLwXn83DRIAxn8+VyWTMYXPo+YxOp6NSqeRlK78Brl27ps3NTWWz2YWgL5lM6uTkZOF+QTP6/X4TkjGtiXPHmQmFQtavjOOeTqc2uObg4ECVSuUTbUw4NmrWiHugFJk+5S4ZgNrG2Q4GA12/fl3z+Vzvvvuu/H6/PvroI21ublpPrDsXGcHRgwcPTKBTqVSUSCRsPC0GGucwHA4XBqsQUFPvZDgP2bakhT7eZDKpy5cv2yAVsqQvOm7duqXl5WV75nO5nK2+JZgLhUJ2PmAAyWYRvpK1QkdLMqefyWTs3pycnJjTCoVCqtVqqlQqxuRhY1FjMyuchTLUiy9duqTZbKbnnntO8/lc//zP/6ylpSVls1mzn64Nz2QyZuvIwFutlpVaJFmAQDZP33Sr1bLZ3a1WS4lEwtoRKfkg3CRQDgaDVtKk7JlMJhUMBq1/+rzxVNDdW1tbKpfL1tTOgHZqYNLpQWu323YTpLMo06Vb2NpCtiCd3fREImEtK/F43KhNHCAOvdfrWaSZSCS0u7trmTTGFMoJoxcOh41+kmROVjpbo0bbA9EeGTqZO+9PsADFToDiRpU4Z/4MCuvjjz/W5uamVwP8NWAzFf31rkMJh8NaXV3VRx99pGg0qpOTExMwQrMxVOfu3bu6fv26jo+PTc3vllqkM4PQ7/dVKBQ0n5+OTEQhTVCKmCeXy1mdrlgsqlar2eQmdy+we+8fHXXIZzQaDTNO3W7X2v4kmcOmvQu6nOcOh0yLmPt5BLjRaFS1Ws36cnEwXD9nFcqUZ4MaNwp476yeLWqRZIGOJNOmMMXOLY3l83lJZxkjNtKd7V6pVOTz+ZTP5y245z5y3yeTiSqVinZ3d7W2tmbBKAFBJBIxtoXabzKZtIwd8Rp2i8CCUglYXl42waQkU3DDJJGN023A6FoSp2QyabacIJmzRQLGc0drGX92cnJi5U6eqYuCp4LuhtJ1pzRh8FzD4a43c3vfmEbjCh0kLRgbVzRGRs4B4mfINrgGsifqGWTOR0dH1vLlKhJxvAQZRIDUevi3JHsd14tx5+GE0oIBcOkt97vpdrsL6+yWlpYe8916+gE9zAMvyahmHDZZpCRbJCDJRCzUbWFC6Fdlqh2MD4MdyEBxmpRBUORyZoLBoAWdk8nE6O1+v7+wX9c1Zm4NUpKprvl5HCTXCxXK70xm0+12zci7w1moZ2MIeU4ZMEF7Ib83n+XSmW6HBZl8Pp//pYODvoigZECJCzuF0n5lZcX2jBcKBS0vL5vdGAwGqlarOj4+NnYQm8eZcieXdTodmz/hMjqIBd3tVpPJxKaYSVoo4yEKow7OZ1D+w5bxGgJZ7BksJiJG6Wy/AXaPLFg6G7vLeccmko23220Tt5HM7ezsWGLGOT45OVkIHs4bF+dKHsHrr7+uW7duKZ/P281zo3kcLREiBglnzI3kQOFoyRao/QUCAROyUEthRrarmoY+arValjE1Gg2bRdtoNOxzMDK1Wk337t3TRx99ZK0GvA/CD36erJrozu0ddAercJjczJmfdVuyaOlqtVoaj8eq1+uKRqO6ceOGV/f7FJTL5YWlFNLZ8A9XNMjZ29vbU6PRsPs6mUx0eHgoSZZxj0Yj252LZmE4HNrqQLQRKHYJsvr9vo26hV5kZC2lk42NDSUSCTPe0OKz2Uy1Ws3OPtcfCAT07LPPamtrS4PBQMfHxxYcuEpe6t+UhiqVijqdjg4PDxdqhAxnwfA1Gg0dHh5ahkNPKmsRmWzGvHBeR5lJkpV0GIf7RQdODVvkfk84Ws4ANiQej9voS86WdCa05b7Scx8IBEyISlAPEwh7SJmG8wej42bdLPLAxro9ypwBhJIMWiEBQkRLIMdnkDEDd7rfo4K2ZDKpXC5nIz/b7bYODg5sXgXlRPd5oGTDAKyLNGr5wtHdX/3qV40+hKLlxuKw3Oip1+stjL6jLkMriOukUU1T5yIbIjPghkEdcrgxjG6N+OTkxMQypVJJS0tLJsRgvJ4k24hFuxdRrHu4OCTNZtMcPA8Cjhy6nv5osn4yHjIi6B3qONCOHF5auN5++2195zvfOYc7fPHhji2E8YDOg+FIpVJ2tnjA+Yd7LZ0qTqEjuS/9ft+M2ZUrV9Tr9awfnox1Z2dHkUjEHJp0RkHzLJCx8HcYUToIqFcfHh4qEAgok8ksdAyUSiXN53NVq1Wrd9ZqNXtPspLl5WUTC/H5BCaRSMSEZJJsHCULa3AmnGGo9UwmY4EKz507AlWSBT1fZLz11ltqtVqSTr/DXC63UFoACKDoCICZ2d/fX7BlZMadTkfXrl2TdOrwmPdweHhoNpdzTbLCfzOJzC19JBIJG1Iym820s7NjQS51alpDj46O9OKLL6rVamk+n9uzxM4CHDe2kM/HKTMiGfuND6BEhP1cXV1VIBDQxx9/rPX19QXmxp1AyfcbDodt7sFFmjp2oZz0a6+9ZoYGJfTS0pIODw9VrVYtmqRORr+gdKbkJgOStHCIqZ0hfIAah4J2BWPQxBzS8Xhs9ZfZbKY7d+7o5OTE6hrUz6CuaYsg2+AzXbWuO8KUjIHpUmRqGHYOJ5GuW1tBcEFQw3u6tBOtDghC+B48/HL89Kc/Xfj/tbU1U25nMhlzwKzPg70g+8OxMj/+ww8/VD6fN6qaPn6Cy3K5rEajYT2d0G2z2cwoX5xcqVRaqOVBkUNtUreE5el0OmaQKf8wgGQ2O521TT0O0aIky7KWl5fNmRKohkIhm8v8i1/8wtYmQr26LWDuSFQCyvF4rHv37pmSmBahbDYrSZaJsQ3ujTfeUK/X0zvvvPOkjsCFQbvdtuC6XC6bM4ZVobRAIAjzI8lsIY4sFotZQIW2ATU1Ng/mA9tJVwv1ZtTPlCP6/b7a7baprbGTaDUQbaGfwaHCYvr9fmMtOdMEpyze2NvbWxA0ugJHv99vA006nY4NEqLMOZ1OtbW1pYODAy0vL5vdJUtHEY5/mM1OF9Fsbm5emEFQF8pJI94iSkwkEjYykbqeq45Gqc3Nxei5VOR0OrX6HkpXBAg4O7JVd6xoOBxWs9m0gwugRCQZ1ey2b9H/N5lMFtZIoiTHkbsTwzBU0llE7AobpLO6OLSRG8y4r3fBQAC2epFZSTJj7uHTMZ1OValUFobWuDU9amiMG4RqxNDs7+8rGAyqVCppOp0qnU7bfXDvMT/PNC96pBuNhn3mbDazLJTAADEORkySsUZk6XweZ522FhyoJNMySLLAgyDR1UO4y2rcdqpSqWTtZhg+HLGrLC4Wi6rX62o2m9aaiLBMkj1fgUDAVN6pVOpCzlV+3GDtJKwggXqtVjNHB33N7H+fz6dMJrPAQsTjcdvIx7mFFnazb+yiez7QFlBOqdVqymQyxkDCmtTrdeuZZpgIZ4AzQUBZr9eVz+eNLXy03IHux309VDyZPkEDQQDPHs9ps9m0qWYkZDCZvHehUDBR3vHxsZW1CDYuAi6Uk8YBTyYTZbNZm3tNXcOlu6XTXjgUqgwIIZvkgXeHKpDpkHVKsn48aomuw0f272ZLzP2ORqM6PDy0zJvon4eEujdN8zhkolu3do7gZmVlxT4zl8tJktHTGD1oGn6/R8U90qmxRSnM9zYajWz83mx2Onx+c3PTIluvLetXg+wVNTPUIMMWyKyDwdOlLogEQ6GQZcmbm5t2z2mVI4B0HWIul1O5XLYaHb389J+GQiHdu3fPtBqRSMQyTgRg6XRa9Xpdg8FABwcHeuWVV8zIuq2G2WxWe3t7Ns9+aWlJw+FQmUzGsieCVmrUUPrNZlOpVErr6+tqtVpaWlqychNUKXVMDDa/z2Aw0LVr17Szs6N6vW7CHih5RuISYPJMlsvlL5yTxjEThPMdwgDiVPhZgjeYFDpQ3Lozmapbj8Z+sCiIbJrPpsQGGwQdTUbLYB3pNPuHnkbpTwuqS1nz2dhrroffAcYRsRe2vNlsWpbMd0LyRfBIxg2DSZmFJMidxtZqtdRqtew1fG+XLl3SfH46Qe08caGcNA8kdCERIpSf2xvq1khYgOFmtmTfkhamgUmyhx/JvjtWjvYt+gMnk4kZPFYBXrlyxSK66XSqVqtlu4RHo5EJDzBu1DOhAHmo3OUJBA0MRyFr/mWZDXAfIr4LAhCcNw8bhtytib7wwgsm4iiXy97o0F8B6nvU10qlkkXlMCLhcNg2ruEEuSeoYn0+n/WEEoxSK5zNZmq32zZ0AcfEGWIVKhObPvjgA5VKJZXLZbVaLWNtqBefnJwYzR0Oh23yEgat1WrZbPlSqaRqtWoTwNhIRFaDkXZ7TanH53I59Xo9a6uCtmTAiSsug9HhWS0UCqrVaioWixYYhEIhq3cS1FIDdc/+FwWxWMw6W9yRrtgeOjdQznc6HVUqFdMQQGM3Gg0bXwujmM/ndXBwYGsh0UnwvTNe1s1kU6mURqOR2TMYPpTbR0dHun//vqLRqAqFgo0chaXENgWDQUvEsIc8Z2T3LA9B0xMMBq21ip/nfBEAE/DxvPp8Pj18+FCFQkHb29taX1+3SX+RSMT2R49GI1WrVQ0GA5VKJRteVK1W5fP5zjWJuVBOulqtWm15NpvZpBoyalqx8vm8er2e0TC0O2FM3J5ll87m7/L5vB0+Ikp3EwqGLBqNql6vWx8qi+35nFgsZnQ2h0WSarWa8vm8GVoOItkI1CEKRg49NRJUijgCMhOuC3qG6JQIGmUwdWnqNe6w+ZOTE7XbbdsBTBQ9m830+uuv68c//vGTv/HngBdeeMEYCZSvH3744S/92U6no7t37yoQCGhtbc1W/Elno18ZawhF6J5HlKL5fN4CMrKCk5OThSyGc9hoNKwvmgyBDoFAIKArV64YpZ7L5ezPeV/6WXkNinXpjH0hq5FkhoutVr1ezxwq2RLLa6gFUmNEgSudLadBud7r9YxWJaPi/E4mE5XLZW1ubi5QrQSmmUzGaq3j8dgEPl8kYN/IMqnjunYKgW00GtXy8rKazaa2t7c1Go106dIlffTRR3YWyIJhJaPRqNLptKrVqgVGBP8I92KxmDqdjlZXVy0blc5WZiIElM7Kfb1ez2rAsJz0MnMOSb6goOnXJrkgSUEg5rbbSrIEBxocEATyOcvLyzo8PFSxWFwo2bTbbUv+9vf3TfUdj8ctCNnc3Dx36vtCOelaraZwOGwGEJGVJDMaUH9snsKYuROgOGA+n8+GTEANoWR0ldU4MageahYYR2qAtFtR4+DP+HxU5BhGxoa6qnFaDNzFG2QobnsFP4Ojxmm7PdPQOTh/SeaseW9ab5i2htgJx4R6uVQqXZgJO48bb731lnq93oLaudvtqtVqmcFKpVKW3e3s7Ng529zcNMPitsPhwB6l56jRun3H0qmjY8gJ3QPuWcBZz+dzo7WpsU2nU6v3IRzkHM5mM3svHKnb1YDh43cgQ0LDQdmGAM6dBY8ICMo1kUiYIImAB7qboILgA9qWmd3QoIwk5fvieefa3V5eAmWcFMON3n///fM5SE8AbrmOHcvSmX4nnU4bm0cgH4/HrT+53W7r8uXL9t1yRnw+nzF56BiwiZwpN1NG3OW2ciEyy2azptvo9/vKZrMLWhuuEVuby+W0tbVl1LPbqQKjiI2jFzqbzRobA5NDTZ5gEqRSKWtd5JqXlpbsGUUdjpZjd3dX4XBYS0tLnxiAwhn9xS9+8cTu+aO4UE7are9JMvoYZ3V0dKRWq6V8Pm+ZK2MbcWD8fCKRsEyG6M6NkBjzSaQnnU114sCUSiUzoO4BoyneHX/YarXsvTDa1DH5TCaZBQIBayPDaPL+bgZGhozBdpkCjDA1HGrxriDOBXOdccR8JwjUCGK+COh2uyoUCibgIrBKJpOq1Wp66aWXzMjV63Wj+CqVioka+X75rskMcd7cZ84iQZ90msmi/CdYg2lJpVImnPL5fGo2myoUCna2OI98FvVbhGMwR+6YTzJ9d9odgVoqldLBwYHVgxFzzedztVot9Xo97e/vL0xIW11dNVrc7ajAaLvdEjgMgkNX5UsAgmKY79KdHe0OBFpaWjLmAOfl8/lULBZ1fHz8uXTWLGZxA3PuMyyQJBWLRRvF6Q5wIlFgM5R05qRg7lyGD8ecTqetzYnPhbXjM2FPKI/A8rlBWyaT0cnJib1HOBzWxsaGPR88K5IsCGGeBHbYte/YwEAgsLDtCxaJ55PvhrZHt/5OTZ5NdZRFOdMElQQzsE3nhQvlpNfW1qx3k8zRrdeORiMbnIAT5ot12wQ4TBwCV9WNI8fZEe27EnwMT7vd1ubmpi3E4PMkWY0Po0RmjaMjq8Cgupk2zpiDJ8nqNNDY/P5EoGRk1NzdqTxkHYgpoDLZWQz9Sn2aQ8r4xXA4rP39/QUV++cZfv/ZvG1XqxCLxZTP51UqlWxjFaUAImrOB4pl5lNT3+KcYEwYxEAfPRuy0DkgfqH/NZPJLIydlc6MF9ksY23JJjKZjJaXlxdUq5wxhF5k/ZIsKyPrZo7yaDRSoVAwB0pfP3QhJSayebZgMQrVDV56vZ6Oj49taQzBNJP5+K6pTUOtutdK+6AbEJVKpYXWRb67YrH4uXTS1GC5l26WC4vB+SUAwk7BPjItkbLBfD7XysqKJpOJMTmowwuFgmkWEomE3ZfV1VVjEbGZZO/5fF71et02wd27d09Xr17VwcHBQkadTCb1jW98wwb7wLIgckM5jlobB0otPZVK2dIMsnu3i4dnEmW7OwCGEgy20l30cXBwoPX1dUmygDqTyZjGJJlM6pVXXvlEa+aTwoVasHHz5k1r0YjFYrbJhw0+rqqQPmCcGpGgq7CWzmZYu/ULtxWK98KJc/MlLbwHG7AYi0iWxIPg9/v11a9+VfP5XP/5n/9pCxOITjmEUDgYZ1dQ5v6Dw+VzOIBuWxkPjHTal4hYBwEGDghjTt1yaWnJDiIRNzWqe/funcOdf7J45plnLEKHDqPHslKpmIMCqVTKBCScI7e0QZYhyYboYBzi8bjS6bQFYPR9uvQlRowAkx5OSXZ99FUz95hBEH7/2RxljB//dq8zHA6r3W7rlVde0Xw+13vvvWf1Ob4LgkqCDkl23dlsVrlczgIRnC7BJdeDyGd7e1vNZlPlctkEc5xl6YzGjcViajab1vcraWExDu1E0PvcH74PBFU+n0/Xrl1TPB4/dzXuZwlEUpxHgium18HgoI2p1+uaz+e2EQv2EG0Du5s586ibKd0REGFj+v3+wtx5zjU90pRL3Bn3m5ubFiwcHR3p4cOHevXVVxUMBvWjH/3Ing+YFQIJxLfQ4ASRzKogYEO344oSKc/QDeFmzv1+X0dHRxaI8Np6vb7Q2ksQm06nF1pk3Xa1bDb7xMuCFyp1wvlB20hacFyM6+QmU0t2aynSmTAGB4Rx4CDivDBSZL1k1IitoKhx9NB67oB6rtOlRAKBgDXyu0wAQYHbMuGKcCRZDRnj4/ZHcq3UqN3MF8NG1EgwA/2DU3BnANPfTTb+RVHPUquXzupvGH63Rz0cDisWiykWi9noQwIougxQ1/I6gjCcEN/veDzWeDw2EeKjc7LRPnDWOaMYX1gTDAfCRVdpi/F2W15cBoh77howMmi+Bz7LbSWkjU86pZzJph8dxcuzwUjUYrForAPXLJ3R7byvGyjye7ilK66L34nPks6CcOn0W30kNwAAIABJREFUuf+8zaZ310K6LWwE8JyHR9ubHj58aAtiIpGIDg4OLIDDznFv3YVFbh892StUNudkMBjo4cOHymQyajQaC4kAc8ILhYI5WQK52Wy2sFWuVqup3+9b5wkMC84We0s5Eucsne1VHw6HRs1jW5m01m63VavV7Gc//vhjHR8f6/j42M4MgTOdBy6djx3n9Y8uBHlSuFCZtHRqBHhAUek96lD5Qt32JQyb+wBzo6HmUFXjHN2hDDh7bh7UEcbKFWRVq1WNRiMdHR1pNBopl8spmUzq1q1bikQiOj4+tkiM9yVT4Jp4KHjIXEPL9UF5kgnx+RhFHhgoUKb/QDsiKMGZJJNJy+rIbPx+vy1/oCb6ee+ZxnghgqnX6zbUIBKJWI3MHcFKpH1ycqJYLGaUsCvI8fl8arVaikQiNjsbB4WRYklFKpWy18MSBQIBNRqNhcEN8/nZKFjOMucZOh3jgmjIZVAI8vjvGzduaDab6d1337WuiX6/by04ZOGcMTonCGKTyaR1PVDrZv53o9GwCVmSzCFAp+P8GR1JqyX1+ZOTE9Xr9QXxmLS4PIRef55TaHZ+X0na3NxUoVDQ7u7ukz5anznW19fNWRLcY1f4f1dESvBF2yUbqDgftFi5s69dMSsBE2UegncCemrFzAkgsOUaKfN0Oh3F43GbHf+Vr3xFfr9fDx48ML0DSm5q7mTMiMQIImANSDywoXQK8JxgHxFZugkSATavoUxKIEFrJDMwYBEe1Qrt7+9/Yqvc48aFqknPZjP9/Oc/1/LysrUG9Ho9c6bQLnxx0FxQ0Tg2Bj/QMI8x4yYzC9k9iJKMvoFGxhiQESOoWVpaMkEPU8nIorhORtlR9+h2uza6jqjx0Zpyr9ezdgOMkCSLYqlLuf2SiM/Iwmh9YdRjOBw2ypUH1q2FU2/nQF+6dOnJ3/gnDIIWnMPa2po5N0oXk8nEdAcYH3QQOzs7KpVKCofDlgkSHFYqFe3t7dmQEZwjXQm0y0DfZTIZc4a9Xm9B8OOOpOWzKcVgcPP5vKnSYWpcdS09xhhDjC51TtpnWMTi1hA5I65CHYNO/ZG2Pwz2lStXrEXN7/er2WzaukqeO8oA4/HYAiafz6dKpWJnn6ABBT7PB7+7G4C78wa4hxsbG5pMJo9tlOjf/M3fPJb3fRQoo92hJtgxnmOcMKwhARFBlDvkw+0ewc7h5NDyuJogbJ90tszDVd27dsr9Of4NE8TazLfeesvuG68hAeP88necQ7cjgesnKHE7YrhWtyzoXo/bMeM6dtc38L3wnrwXzwL0+GeNb37zm7/y7y6Ek97a2rK6Hg3x8/npQJJLly6Z0URV7X7J7mQm6mcIBqDo3EPB4XJpC5ysS+tBa5IBTSYTNZtN+f2ns2YZRh8Oh43yQRR2//59tVotm/pFnbvZbNqwkvn8dNwezt/tNeX3cHtOURnyoJBZkUUTHFDDKxQKZtwZBIHTJjPisx7th33ttdf0k5/85EkegSeK1dVV2/y0vLxszousjIcQw5BIJKx1D6FOu902xwcti0aC2vLq6qrq9boCgYCq1ao9/GQvtPy5ugS39kZUTysJwrJarWblFc4mjA0MFIHhdHo2Jc+l9mGSAoGArWXlszh/ZB44egwjFCBGzu3CQK2LIUUUhoOmjkxmA5PgDhwiMCJI4ed5thkLLMlYI3dpjd/vV6fT0dramlqt1lM7pcwtZ7i0v3tmpLPvgIwXZyPJavfu/eL1LnMIW4cDfzRJwAFzzrCPjwYO2EHXLrkjiPlc9z15PZ+J0+azXLEcgQnBBQ7UFYDisN334XO4Luyu6wsIBt3P4bWPliqfJC6Ek2Y0ZTKZVKFQMJEEm3bK5bLdeFe9jKHBeCBCcCNtaGYMI3APJ1G9O9iCqMw1WO122xx+NBo1QZFbp6b2S0uLW1sn2vf7/bp375453kKhYE6Tmjy0EgeO3w9KH2GYq+h1e6ChaDi8HEocAw+IS9liWAkWPq+o1WrmRDkXtGOhKpXO9BDMFYYOTCaTarfbFgTRx4mxZNEAmamkhc4Cgit66flzzux4PLYpUBhPzhyMilvumc1majQakk4zlkajoen0dOkKW7keNToYTq7ZFcVh+PhZgjdqgjhazlUoFLLpYc1mU8ViUa1Wy+Y04+ypw/MdsByEMhRBMYaSwIHvAEUwzxA1SXcRDi1DOJvV1dXH4qR/Xebzf8XXvvY1G1PJsx4MBo1C9vv91pZHMLO9va3V1VULNCVZDzOvJ3HBXjCyGKfFvaKzJRAImLKaMhnBVa/XUz6f197e3kJbUywWs5/pdDo2cvOb3/ymfD6f/umf/snaBglAaOVzW7KgvxGRuUNWeFbcBIrnwz27JHs8b5QG9/f3dfnyZeu84Dyy6nM8Huvo6MiCGLYejkYjNZtN3b9//7Hd+1+GC1GTLhaLqlQqunz5snK5nBKJhDKZjDKZjI6Pj82A4IwRo7iRt5thSlqI7B6t8ZJNcphctR/N7BwCbjqfV61W1e121ev1zFCheH3ttdcUDof18ccfW+sJYpfZ7HTy1E9/+lN98MEH2t7e1uHhoZ5//nklk0kblIIRQvHI9fHgYcQRX/BQYeAxom52nkqlTDTHAeZ1RIY8DAQkqJA/jwiHw3rttdfsTGHYcKrQt4hU+K5hKxifSUTvtsC4oj6ym2azaaM5eX8MB1kgtTFJCzVZAioCBrfdyRWskZF2u92FUYquc+/1erZL/Pvf/76q1arVod2BKzxDOFECQL4PqFAyEQxgMplUt9vVYDBQoVCw4NilRR9lkaSzrVcIdUKhkH0u3ylZEd83mRQBgKSFzIjvlemCJycnj/dQfYa4fv262Sk26iHUI4HhWZfOAntGrGJzCKIkWfBCYgBzSAbL/eXeTqdni2DQVcDISFooN7rUM//mNZPJRMfHx/ryl7+sQCCgO3fu2D1DVY0Ow2UZYQCksxo83wHDgsiAOcM8L8FgULVazRws5xf7hpIc+813Qm3cXaw0m81MZ0Lp8ElrHS5EJn3p0iVbKkAPHl8qtSVXdYsCUJJF1G7DO+CB5fBg1AD1XOq8GLJ3331Xa2trWlpaWohiY7GY1tbWNBqNrM81n8/rd3/3d018IEmVSkWBQMAGQ2Bw/vVf/1UHBwdm4K9cubKQmcTjcRsB6NasmazDg8fv6kaTLgvgPqQEKO5gFP6NyAJD6Pf7rQ7LA/J5xPLysjlCHIzrRAiMMILuxDhKF/SUPnz4UMvLyws1MZSmlEIikYiOjo5ULpcXRDhk6Di1VqulUqlk9DUME5oFBpkAglKyaFib69evW9DmLjJw6fpnn33WRplWq1Xt7OwsZM6ZTMZ6aMl60YRQf+bM0urDd8TWL7JnMjYCAJzNYDCwuj2O6NFSFgaZjFk6C5p4Tlw1O+Ihnp3xeHzuE6N+G9y8eVP1et0GKbnCQuYtEHyfnJwY87iysmJlAQLBXC5nto/3IBB1B45wH11BbTqdXhh7LMnKPjBPCLoikdMNewgEcbaUOAqFgiTZdRwfH6tYLFp5olQqmZ3jGijVoNx2leLRaFTtdtuum++EASUkOzwv/X7fBJDM3qdOzzPCc4guJBAI6Pj4WMFg0Orp4/HYnrUniXPLpK9fv25DCNjVK8nk8NSdXGqLNhIcjisycOsabr0EZ0WmBL2JM3MFBihdB4OB7t+/r3q9rmeeeWahRkHNN5vNWjsTasIXXnhBPt/pMHaWHmCUfvCDH1g/Ikpw5t1Cw9AHzmdxra5Sl79za5euYSMSdutQLpWP8eQhwrHw/9Dog8FADx48OIeT8fjx+uuvW+DH747QC7qNBQbQs5KsxxKH4GoiXKeEyIvMhO/+UV0BmUwikbA+TFTh0ul5ROTGQAr2TSNYQ5TGPuarV6+aQ5bOnh80DFevXpUk3b9/X/l8XrFYTBsbG9rY2NAzzzyjbDZrW7T8fr+Oj4/N2Lp0fDKZtOlW/I4EMeVy2a7ZnV3A2SJIJXM+Pj62lYUwANTJOZ/hcNieNZz5cDi0BSU8++1228bfUtNlnS3LFC4ySqWS1tfXLZmANSNwRABKYM93RGuqy+qgZZBkZQ/3/BLk8P7j8dhsAvcSloZ/k00T7HM2GMWJFoJAijrurVu35Pf7tb29bToOsnzpjE3BniEapMSIVoggw7Vj0tm8CVgjdBTSWXsqQ1MymYyi0ah1KtCLjdobsePq6upCC2W/31e1WtXly5efKMt4bunSfD7XpUuXFkQkGDuy5GQyaQpcDIF7Y9xJYS7V4VJefJbbq+kqVQHtBb1eT5VKReFwWA8ePNDu7q5KpZKNa6TOhlqblidXXcrnkXXcu3fPapSRSERra2tmoKG2fT6freAkM3ZrL/y+ZHXQf24d3hVPuO0a0tkhdh21JMv6+Fn+3p2F+3kDNUyXdanX6xqPxyoUCvYdEt1Ho1EzcGRtTHTCobkTjuij5qxIZ/3rMEKRSGTB6UPfMg+b89NsNtVut83ZJZNJm9RVKpUsw8RJkX27Z4Gz7s4Xl2QGFUMfCJyOGSX4YHBDq9VStVpVv983tgc1eDKZVLPZtMCaLIrOhv39fRtaQWDpGmeYIWqD6Dhgr1xq220X5NnnvRqNhonMKPEQ4HLPLjrW19e1sbHxiU4VwPmi9i6d3UtJxpLAhO3v79uGvpWVlYWhIyQAMBycXwKqRCJhQZhb44YmdoOHQqFg5QscIzoIkhL+260/z2ZnrVp8tjtjAEc7GJzujqafmro3rAn6DjbC4YDd8lOn09HS0pIt+HAX5CBK5Pet1Wq6evWqPaswTqFQSNeuXdN0OtWbb76pbrf7RKaQncvJffXVVy3yDwQC2tnZ0dHRkYlP6BnlMBF5S2dOB2OE8MtVd5NNS7KbRMTn0sFufYuMGrFGNptVJBLR3t6eHjx4oEuXLumZZ56xvr94PK5ms2niDCJAor7JZKL/+I//0NHR0ULN7Utf+pLV/qAyoZxdoYRLsUJzsbZOOs1q+J245lgsZtm6WyvFuPGgcC04B3fKEL3AriLz8wi3njednq53vHz5srUo4VTIVqgrM0yG1jrp1EGUSiVzupQsEHBR/6d2iMjM7X1vNBoWgPZ6PR0dHSmZTOrVV181ERFZ1MnJiQKBgDlI6SzjYuIZmackW+QBs4JDflSJTRBAF8JkMtGlS5e0urpqqxB/9rOf2TVLsoyXmiG0fLFYVLPZVC6XU71eVy6XW5inzDV0Oh0Vi0U7g81m04KJUqmk4+NjVSoVDYdDNZtNe65p07p9+7YqlYoymYzm87kZYVdzQZZ0kfHmm2/a8+eKFMfj06mGBGQ8sy4LxMAS6Uw9D42LY+Pv3O4X2CR3SYarfcBWwsrgrN2EqN/v2/IZ2BSCtEf1B2TV7gYvar30bzNjgGEoBF2cMzehwHbBKElnJU6eLbLocPhscRPzAUjaoLn5rovF4oIGA9YMe83Zikajev755/XBBx881rNxLk46HD5dbi+dRtIrKys2xUiSHTq3Ru3Wmxk44dZiOQBQu9xwsl7pbPwhBgln5mbkONDBYGBbkH7+85/rvffe089//nNdvnzZ6tJcHzU6Mq/3339f29vbC6KX2WymjY0No4rIFAqFgh2IWCxmQ0c6nY7Vf3CoRJo4Z4wrFA8CIJf6JkqEyuaQ83AgwpNkgjk3qPk8goeTIGY+n2t1dVXtdluVSsWUpPzMv//7v8vvP10Wsbq6qmw2q2azuXA2uTcuY0N2Ql8xM+bd7Jo+Y4KzQqGglZUVm1MsnZaAyIT39vZMXIVIzB2mMplMVK1WTczIs0Fb09e+9jXLKqfTqfXuY5j5b0k2RpHnLRqN6o033lAoFNL//M//GC0YCATMCcPY9Pt9JRIJM7j3799XNpvVpUuXdHR0ZH3jBNhumQYn1Gq17DnBIdE3Lp2e/5deesmeHwIf7AilimazqTt37jzRM/bbwufzqVwu239zz2AvUFsTjMHgkWW6SUw0GtXh4aFlvjzjiCFh/bAr6CP4/ulQ4b/b7bbVsNltTWLBUB5q2wQB2KJYLGbXTnDLZDJsLgEqC4kIGBB2IYTkXFarVa2srGhnZ8cCA0lm37DhsIydTsd2wEtnrW0kUwQI2FyEmZQKYbj43vgu5vO5zS14nDgXJ+2OT2SQQiaT0cOHDy2Dnc1mtj2HA0UWSeSEQSECJNJDkCOd9cZx89xsAgPrUmFLS0s6Pj62nx0MBqpUKnr48KE6nY4+/PBDvf/++zbW8JVXXrEl49VqVfP5XNvb2/YwuZNxyuWy0SYo2F11LDRTp9MxR+227kwmE52cnJhBkz7ZE/hotNhqtcxwQfsRoRJtxmIx5XI5i3ChwT5v+PrXv656va69vT2trq4utOHRKw69DVV69+5dZbNZXb582dqvqIFKstpZs9m08+pmE5w/aD5EYBjcbrer559/3uhxMhCCTCJ8SSb8Icgke2LcYaPRWKC0MVJkTNVqVY1GQ36/X//4j/+oeDyuUqmkZDIpv/907CErYNvttiaTiQ1LcdcCTiYT3bx50+p3rPIkw0bJHgyebqxiFSrjQuPx+MICEFpfoHbJGH2+03WKiDTr9bqSyaSWlpYsY6K2T5Difu84jadhHr3b1UHprdPpmEBqZeX/s3dmv3Gf1/l/ZobLcPadOyVqs2TLSxLHFhK3RdqmaZEW6HWBXhe9zlX/hQbobZG/oL1o0Ys2SBCnyFLHsRMvkq3NkrWQFIez7+Rw9t/F/D6H78hJEycWSbl8AcOSSA6/y/ue5TnPec7yBNIiyewDWabX6zWiVSqVktfrtSERvI9Wq6Xd3V35fD5lMhlzjmg9kLAQ9PB3HD6Ke27pTTroMsEmB4NBFQoF21MEYq1Wy8qT2MKlpSUrP7k6GDDzB4OBYrGY1adx7gQMw+HQkCzmorP3gbCZBgZJsVKpmIYB34+k7OOdFvV63cSC4vG4IWxTU1NGsKRU+STWkThpMj0gBEapwdBjo0qaqEMT2WAEpYOaTK83HheJkZLGrHGCARiBiK9zHdTyYIhjdGEEEhggg0fmI0mFQkFf/vKX1Wq1VKvVLEvlPtjAXq9Xi4uLtgGBkYhUCQja7fYEKxVnQcTrjsYks0BYgoCj3W5PGHogP7f3FCfB9VKPISqkZvp5WF/72te0sbEhr9drtV32HqUEGNCoO/GcyBSfe+45g495dyyIhPAVgP0I0gj0mKrlSiA2Gg0tLy8bIRKnzB4gcHOd/WAwsN/XarWUzWbNobJX2SvsAZfcxuJ78vm8zdPl58+dO2c/A3RPJwQ1cPZgOBzWxYsXlc1mVSgULPCBdSsdKPstLy8rm80azClNojfSQf2cNT09bX2pGHScM2gbGRefhQF129CO8/rqV786wSMIBALGFbh06ZIajYY5EmwUHApU5UKhkBGy2OOQACORiO7fv69MJmP7CkQPhJKgh75rN2t3gz0kX7E/qEKC1KF2h75FsVi0/ct5qNfrikajZsNrtdrEHqUrJpfLyev12mQ49iflu1/FuyHQ9nq9ev/99zUajfSlL33J7N/09LTK5bKRGBmQlE6nza9wftlTJCzsW1As7Mjn0knDZCbTpGcPFiYQBvUV4GKcDcaHDLHVallvK5/v8/m0ubmpVCpl0CUkBDYmgQAvi99J/Y2MaWZmRsvLyyZcD+yxuroqaayYxtg4/v3BgwcKhUJaWFhQOp02Aw38iTEGknbrKD6fz6AYMmPgbIKVWq1mNVDQhsXFRftsCFBkGeVy2YQNyMw5nGTWOCu3H/NpXq+99prq9boSiYQWFxcN/q3VambYcXw4if39fdM1h7iSTqfNWQFL8x4omUAuI8twW1wkGaxGjzXZjguvu8MIcEJcM1PKQqGQOcNgMKizZ8/qmWeeMTIPIigu/8Dv92tzc9McMcGma6QHg7Eudjgc1uuvv24tVXNzc3rxxRct4JRkmRi69Z1OR+vr6yYpe+fOHeNAZLNZO4MovJVKJRu0AMrAniUImJmZUblcnlDIu3Dhgs33JmCCI0IwCkzZ6XTUaDS0tbVlw26mp6ePZe+/i+hAVsK+gexI0tbWlu0zyHiSLFOmO8TthmHPkT2GQiEL+rvdrmko1Ot1DQYD4164RFScq9sJA8TNqNRms2lBLq1TZMrSgSMlyeLMuERfAiqg83A4bK1YbqDqahi4tWMCD1BSuEMEdSRJXA9SvAsLC5JkZE2WW/YhiHZbeClLPGlS4pHVpFEIImIExpAmHzaRnCuygLMG6mk0GvZz5XJZmUxmYgNT66XNyyWfuMaVDeDxHOgI1+t1OzCusMPq6qrOnTtnEObU1JT1zxaLRV25cmWix9HdZGT0jI5kk5LhSwcKVdRD3LolB2R+fl43btywWvz09LSWl5etVxUoZjAYGBGDGtL+/r5BX8BsQJZu/f9pX2QYlFhATh49eqSzZ89OtDvxnjh4Lvuaw847YZ+ASHg8HoP3MFAwQ6enx3OkC4WC1cguXbqk+fl5y+BdLfFEIqHNzU0r/UgHAwKAqx9vP+I6EIigp5nrvnz5sqElc3Nzev7557W1tWWkNO6n1WpNCKXs7e3pxz/+sYLBoCKRiJ5//nn7THqkySi434sXLxoZ7v79+7p79+6E8lUwGNS9e/eUSCQUi8XsjBSLRSUSCUM4gH1R5cO5z8zMWBDgTtGifZJ78Xg8Onfu3ASB7jg6aewKgcRwOJ4SRgCO4yZjq1ar1gFAsP/o0SPNz8+braTH3VVaHAwG+vDDD02ZjM93s2bKZG7CAzpHGx1DXehuAKEql8smgELNPBAIKJfLmdMkw3dbFGGkw1ink4fea66DM0UAyVnCUQO148RTqZSWlpY0HA6N10H9nWBjeXnZzhBJDQuuUSKRsGskuIfc1+l0rFT7pNaROGmiXdidkgzfJ0t+vL8XQhT/JsmiRPf73Ggag+u2mLBhcbaSzDiTZUIsoI2EIRRAjRj7arVqvc7uSqVSikajyuVyZuwxopBgqJXgoDlQGD1QBLKeQCBgRpkoF1gvFoup0WjYUAJpDM1QQnCJFWTrLooAIxdnQ9b4eVgEUBxQ4GgCERdCxGjwfDi8QOA8J7IFgqVGo6F6vT4B5VETxqEC25EdJBIJMyiuEY1EIpbR8rNk+6PRSLlcztTu3EEynCW/3694PG4/79YP2+22dResra3J6x3L09br9YmyDv3QLkER3sW7776r5557bkIZDEdJUEqmB3TdaDSUzWZN1ASnVCwWFYvFrK0LiJwgmpoimYpba5YOgm0MKzKUQLwwk/n544oO4XAkTagAejweraysqNvt2rzuubk5k3599OiRBTJwB1ZWViyAIfCnhEjSUygUzNa6SBCiHuwbzgcQODaaejmojVtOcxnVKOD1ej3jakiy+rfP57PhNdVq1VA/YHNJBnPT7gcDG7QV+Jkzxr81m02trKzI6x1LqLpCLsPhUJVKxYIakBu3VYzWMVAZbARkSO4lEAgY1+KJ7Q8dgZjJ+vq6bUyiX5xGvV5XuVw2Q2UX+v8PJM7d4/FoZ2dnQjAB4yLJKPJkQm7bkctcZPPRukLm41L9MezhcFiZTEarq6taW1vTgwcPrHYxPz+vhYUFuy42lStKwHXjCNHFJQPBAcDqdOvtZPpseFYikVAgEFAikVAwGLSebO4PlalSqaTd3V3rM6WOhPAGwUK329XW1tYTmx50mAtHBJmIvlu33gs3gPcMm9Tr9ermzZtWZsDZbGxsqNVq6dGjR7ZHpqenlUqllEwmtbW1NRGUdTodE3lA4nE4HNq1sTA0BAqj0cjeS7/f18bGht59910Vi0UzIJlMRslkUnt7exMwHOWNXC6ner2ujz/+2DL1V199Vc1mU7du3VIikVAikTBkCwfI72TfYeBnZmZUKBR07949FQoFU456XK9A0oSi3fr6uiFHCMbQb7u8vGxniIDaVRcjS8aZuKUvIG+eNUNslpeXbUYyAQ61xuM4bGN1ddXIWp1Ox54Rz5UMjyQFNIKsNxKJKJ/PK5PJ2DMfjUaKRCKWwGDzQG8I6LCXKL6RXZOkSAfTrQik6vW6qZFBjN3d3TUEye/3W4IwHA6Vz+f10ksvaWpqSnfu3JnoAHCzY+yVNHbk3LPbVuhyRyRNECPZx7RqYa8Jzvf29gx1JcgEdSIopwzgdm5QNkKHAFievb63t6dcLvfE9seROOn79+8b+QEoEugK4hcwL/UoFodyf3/farFsaL7GC/V4PBYFUvNDeadYLJpKDsQbF+5kwzIsA6INRr3T6WhpaUkff/yxDRe/dOmSgsGgGXcmAAHlE2WSkXO9OGY2GwaP3+sezrm5ORNqIADBsbDRe72esbXRIm82m+p2uyqXy0aKm5qaMrJdo9HQ9va2KpXKUyOh+JvW6urqREuGG4zMzMyoVCpZdgeKAOR448YNLS4uamlpySQMyQ6TyaQymYzJGfJeYI6WSiV7zslkUqFQSNFoVIFAwEhAFy5cmFBPYi9jaKQDck4ul9Obb76p4XAsJTs/P6+dnR1tb29blopSH6WNWCymaDSqM2fOKJFIGDHm8uXLmp6e1rVr16zckUwmDaXBAWKYEbshk6cDYTQaC63cv39/AqmiJIPRo1a6sLCgxcVFzczMKJ/Pa2pqSqurq5bZUbOWDkYKErhw3t12QUlmfN1+YabPubwTl3R6HJne8/Pz1jtOsCLJngn2j/dCBwZoIV0cs7OzlplKByQ8gjoyQFq3YrGYBekQY7FHDLmgK4F3iu0gq6WFzmVBw7jm8x4+fKhXX31Vo9FIP/zhD+2dASPPzs6q0WhMCEoxwpQ9haOWDura8CIkGc8DVECSyZRSawYtIxgm2HH5FpReXSlm9g+IEUgmZ6Jer3/+nLQ0VniiX5I6Bi+X+cfAX0B8tEZx8BqNxsRhJOJ0a7lAm0CeGGdIFjh0+gkxLNRNiNwYUwksRc3k7Nmz2tzcVD6f19e//nVNTU3OnMiCAAAgAElEQVRpc3PT4GteqkvWcJ0CcDRsReA54HA24+7uruLxuE3Igg2JTKIkqxfR+gIk3mg0zPBBFuH3urNUmZH9JOsrh7Xo58WwuYGbNEZINjc3jSjG90DwGgwGWlhYsAOP0XIZpgRS1AVBQuh3BeV49OiRKpWKSqWScSNAUjAslDgwALSXBAIBvffeewZz+nw+3bp1y95hpVLR2tqaotGoMpmMlpaWLBiFJUw2EAgE9Pzzz8vj8ejjjz/W/v6+dnZ2LEvFqAGVuroClFkwjMCNHo9HDx48mKgVEgiR+dLL7ff7tbCwoOnpaW1tbdkwjkAgYIEGjgqDDHJGFsd5cK8TZ9DpdGw+titSxM+Q+VQqlcPejv/runDhggUj2WxWOzs7arfbikajEwihq3XAmaX0FgqFVCwWjXzL1wlScdbYQNeO0QMPihiJRNRqtdRut5XJZMw2EwxR3yWgQ0AKxMjdI++8845KpZL++I//WLOzs3rjjTfMOeLoXERPkgWpwOZwQ+AFYd/dd+sG2ATN7vORDloYqe8D7+M/aDmj7IkkL/8mHXQEuXak2WxqZ2fnie2PI9fKow+SBwsDNRwOq9/vmw4vkCObgxfkNs9LB+pbRGSuk+YzJE3UnXlBHHyiVwyxJIM/IJkRFBCdcZB4udQCXciNTIHIDmgGaJBMC2chaULyEYIPv5Pojo0maQI9YDMRJW9tbZnuL1E49W6vd9wn+yRbCQ5zce/sFRANFzZNpVLWCrWwsKD9/X2Fw2FtbGxMiB8QULFHeB/Sgayly4fo9/tKJpPy+/02bpV3kEqljAh4//59ra+vWxYB+ZBFu182mzWpWnd85XA41Pz8vNbW1iTJAk+CN/gdGCkybVjbnU5H8XjchsPQS8s+xqjzDNlzZLggPyjd5XI5Q75c+Bq2Mp9HqahSqZgG/vb2tsHcnG0CGOmgjcslNFLz56wT+GAD3G4Jgna3veu4rO3tbQvSeX7NZlPpdNoyQK/Xa8kMfdI4btDD5eVl3bp1S6lUSul0ekLZCwQERFCSMZ5B4uLxuGWHZO/tdluVSmVCmQ4b4UqBgjDi+NLptN544w2l02lJB2pnsVhMDx48UCKRmICmsWOUCaWDrBabBvJDFu8Gcu5nkNy4QlfYW/YRiJWLxMABglFOhg1iQ6IlaUIa9UmTbD2SRr/ui9/5znee6C+XZKxPSRZdsXi40gHdHaMoTQ68J0Lie/l+4DccKk7RrQ8/TqHHuNAOw0uEGMEmIOvBOC8uLkqSNcm7hpzr5bP5OwGCe90uk929b2pUXINLZOJ+OGQ8Dw4pG5JNz6ZzSSo8R+o2T/Mim2L/8A5xcBxO/p29w2El66ZWzWe479U1AC7hBHiW9+jWUt39huPg5wi2+D6vdyzR6mZO/E6MK0ElBoO9wP1JB/DgaDQykYtKpSKPx2PXiUGjHMPvkWR77/HrZL9hvHDIPF+XNcvPs+fcmqTLKfH7/XZe3HPsPt/H3yvPodVqGWHObaXh8zDkv0ki9KOPPtI//dM//f6b8LdcKBHSjre1taXBYKDl5WWdOnXK7AXoWLfbtXaqXq83UYYrl8umhpfJZIwDQbkFeynJuAHYi+FwqFQqZU4YWVGQHaBv9/e5GSbnhhJaoVAwBvq3vvUtDYdDffvb31a329VXvvKVif5u6WB4BoEaZUxETVz77nZV8Psl2V7m8+gOICtnT/KzXH+1WrUghGfk6lmQxfO86Mdut9va2NjQtWvXntj+OPJMGkdHTQmn6D58DBeQFY7I/c+tVblGDkeL0XEzX9d5SgeOCkfG73UNEgbCrSc/HuFz3WwGt+fQNR7u97lBAPfE9+McOKz83w0euBeMoyQjdgCbcj1AkXy/+zwhUzztsqCuk5Im3weBDbU2d38AzfKz7ue478OtS/FueGcYOZ4ngRCH3oXMGDDgOnjqee4QAbdsIh1AgaBIZLmuI+Pn3Joc18UewYC5+x5H/fh18zPuNblQMo6as8NzY48+/md6tt19zJ+5T4Jq9+y4gSuL+6WD4Vc5dIzwcVvRaFTpdFrBYNCeK4IbELDgxyQSCStxuZ0gOEnKM2Sro9FoQpqTZ0v5AQIZSCEcAkhWLpzMtUkHDpCyh9d7oG6GPWHPugRJ7DyBEvdAVi9pwp7xf6/3QD8flBNbCSKIFKm7D3C2OH8+G/geO8c+cf0Fv1fSxPlx9x3B5pNc/6uT/ru/+7sn9otPnz6t4XCohYWFiRGBwITUWdyHjDhJMBjU3Nycqe7QW0kmyAZwp03hTBF8oAaEU5IODAgvktqwO8uVl8iGHgwGJo7x93//95Kk119/3WrgU1NTqlarymQyJm0IvAhBgXt3xeAHg4HJ4Ln1H2AnYHGiWg4pAcP169eVTCa1uLhoaAUHE2UiSaZhS73a4/Ho2rVrWllZ0c9+9rMn9v6f9Pr6178uSUZ+gSiCqluv17OeW+Ddra0tM5jsBZw2Pe2UEtwghmw2l8uZyAywGpE8hkiS9XBiSGZmZox4MjMznkFdKpXk9Xo1Pz+vcrms4fBgTi8ZTCgUUiQSUSKR0OrqqpEB3alT9LMSAP/1X/+1BoOBvvvd79p52NnZUTqd1rlz59RoNPTw4UMbHoOgCFkDNUyMK2M9n3/+eU1PTxu5zusdK7yBaJCls1e5z1/+8peq1Wqq1WpaWVlROp02h8B7ocQzGAwmhElgo2NcITzyztwe9+Fw3Ef90UcfHfJO/N/Xyy+/LEmGPsBpSCaTyuVyKpfLmp2dtYmBpVLJpnxJMiSEsla5XJbX69XCwoIe/v+xkEtLSxYQUXbBxoFc0FoE+iZpgmyLg+fd0dPPzzCalxYpOnSwrR6Px9CCYrGo/f1942zUajWzc24AzXsGNYAYy/22223F43Fz2PSEdzodK+cQ+Ln3AdcIUjDEWjeQdEm7lBPcDgaIy71ez5z3k1pHmklHIhETVe90Opqfn7foz4WFgRoymYwKhYIdOGpabCocNSxtFgQANgVRl0ugAiojewmFQhNtBWQaLokAdvTMzIyq1eqEA+dAuFkGwir8G0o9fL3dblv7FzXqWq2m2dlZGwQPuUOS1R2JDDlIMD+pyRPNum0pZD1utOvWcY771KDftF5//XX92Z/9maSDjJYIH1EIDFy321WpVLKMhQwZQzYYDLSzszORVbuEv7m5OW1tbalarWpmZsaCQFcVCeOIgaO9yT3k1P48nrGYDnCfS3hzmag+n8+cGwEEes4YEFpUJFldmBou9U1XBhJxBpi7Lu/CRRxoLwyFQjp9+rQSiYTV+mD6Pk464/yA4hAgo8bnPm/qgOxP3h33TxbFO6Cfdn5+XrlczmrPvV5PhULhE5n3cVm9Xs/kOiHv1Wo17e/vK5lMKp/PG4l0cXFxAn1hRCQQ/nB4IBMci8W0uLho4ko4nl6vZwM5eA/U7jkP0sF8BCDuVqtlPfwkH2SnLo9hMBirltVqNX3pS1/SxsaGSqWSJT2hUEjJZFLXr1/XV77yFQsg6c/3+/3WUsgZ4qyBCsJmJ/kgC+ceCd7wH+wd+rD39vasdEhiRNDjlgHxFSBYnGdq8dLB1LEnuY7ESb/22mvq98eC5oPBwLLjVCplUAxQGo4GdnMsFlM2m1U2m1UgEDACmMt2TiaTmp6eVr1et7YnXhizb3HisBJxxtQdqKH1+33LBu7du6czZ84ol8vZ1yKRiCqVygT70VUDotXBhWbYSPl83q6r0WhYBkSWy0EaDAbmYF3IBZIFUR0tVt1uV0tLS3ruuef0/vvv27OFbOEGBmhOoxDUaDS0uLhoIxCf5oWDAEbDqEAMYZoSMprr6+vmmDisGDYMDcNIpHEv59LSkj788ENj3fO+CZIIfGiRAQ7M5XKqVqtaX183edCVlRXt7OxYtt7r9bS0tKStra2JkYOQiDBkrvYxOsdkFtls1hygS3yD0T41NaWNjY0J0g+wfyAQ0OLioiEH8XhcwWBQpVJJ0WhUfr9fS0tLE9rGsGEJFHDc1Ol5/gSYjx490tTUlF588UWbuQ4KAcIDJE+rGExgECZprCb24osvqt/vm0xquVxWqVR64sSe32cRPGDzqLv6/X6Vy+UJQioMeJ4HAiTM/q5WqxP99kDRSLfS2sR5x8bhnAOBgILBoKF97BkcMeqEJAm9Xk/hcNhGVUrSo0eP7NoePnyoqakpLSwsWIC3u7tr349tQlZZkhHmQIVw2vAokDddWVkxqVtKeY/rYbhDhBgaI8mQUUlWb+b6geM5G/y8yxfyeDzWouWWhZ7UOhInzQPlxdF2hAFxlYFomg8Gg9rb2zOFMTYVxgXnR7SD3Kh08CIkWeEf0gURmiR7CUDDQGZEdolEQvl83rIIjEg+n1epVLIXyDVBeuh2u8rlclpbW1M8Hlej0bAMjs0EHEPtAynTaDSqWq1mUSybBiNMJOpGjahf/eQnP7HMxo0myfYx6hxEd1RbPB4/dtDgp11u9M0ho02Etg7aLRYWFgyhAdblmTFfORKJWMTNM7t27ZpNJsPgsFeuXbtmmQ9BnctWXlpaMmYvgWEikZhgWWezWT333HO6d++eQeI4UT4vn89bQEf5Z29vT+Fw2JApty7I/imXy5Jk2TP7r9VqmWEleJyenjbHSs/1/v6+yWxyXkKhkHVm4Lynp6dNUUoak0Vv3bqlmzdvanZ2Vs8884whN4zohBEuHUx7KpfLViIi0+v3+7p3757OnTtnMC7PIpFImC4z5Ry/33+sxlZ+8MEHmp+fn+DF8GwpJcD8R+4U59NqtQxinp2dnRihil0JBAJmZ4CQ3bLD48jFjRs3rC3Wbf3iGtiX/X7fgl1KKltbW9YhQUtrJBKxgIEz0+v1rNzj8Xhs+iEZeqlUskRld3dXy8vL6na7piLXbrf1zjvvaHl52fYxcscsly1O6YXuB5fPIR0MeXFr8CRAvBcQBpcQKWlCWOpJrSOTBXVbo8hmiSKBeJnBiyHFefp8PhsmATROJkvGkUwmzRmysRBIQJ+YegyO0WXm7u3tWdRGW9jc3Jyy2ewEfPzw4UObgMVhQXI0mUza/QJDuUQ3nCL3RT0HOMc1rkSW3AOkB7feR5QL4zMWiymZTFrLTSgUMuiMIIKsBTRCkjmJhYUFg96exgXhBUPDswKxoIRBGxIGwO/3TzgK0B72VDqd1scff2ws+C984Qu6c+eO0um0PU+QolQqpXw+r/v371s/KrAcmQ7QG3uvXC5raWlJPp9PzzzzjO7evavTp09rdXVVzWZTd+7csTJRvV5Xp9OxMY61Wk1bW1uan583shCKdi4h7qOPPrL3/vLLLxsMODU17rFvNptWy+92u5aNw79gD0LWgamdy+WsR5VWRYJXHCx107W1NVMdDAaDqlQq5qwxsqAOrVZLp06dUiKRkCRDjUARCKwkGSGQn/f5fBOw7HFbKHiBtGQyGUsy2CskFiAT+/v7JufK1xHaITsmoyQrdvuCR6ORcQZw3oPBwPrY4QwQ5BPkpFIpK9dMTU0Z+hEIBHT58mVT73KDIhBKj8ejl156yfg83Ecul7PgF7sG76HT6ejGjRsm+IItbTab+vjjj9Xr9XT+/Hk9evTIygZu5kvS5BLNQCwIArvdrprNpkmcQqDc3d39RHAtyf5MqeVJy4IemZPmAQEVQGaivgDcBxkFqcW5uTnNz8+r2+1aqxMPC7H34XBowzTQl8VINxoNc8b8ftdAuu0xZPlEtkSriFjQhI+hwqC7pDYcBUaO2jVRKI6SbAtnQe0I2J/P5trJEoFqOcwEPjMzMyb5ODMzo2QyaeUDJBlZPFd+nuw8GAw+1bA3WQLOBK4CxguiCpE0hp3lMvjdYffFYtFqc27mjNCOxzOeKoTTSyaTevDggTlFr9c70eZGX3Wn07GZ5D6fTysrK6pUKmq1WtrZ2dHMzIzOnz+vd999d6JWTBaLowwGgyoWi9aTDF+BPUS7EucLVAqjCEmGe3dV+FznybPibIFsuXOh3Tr+cDi0IJbPZvoS+5kMkHNDwDw7O2skKj57OBxqdXVV+Xzezq7XOx63iMPj97D3H++uOA4LeJUgUtKEEiMOU5K9Q3g6aMXDW8CuBoPBicBFknFtIBWS7YIwlUol+12VSkWrq6tKJBK2Bx48eKCNjQ2z2alUSqlUyvYgSRPa8jhIt/uhVqspnU5PQPsXL160Mh0cG/wA767RaJjEsdsGFovF9OGHHyqdTts8aEo/nH/pYGgHZ5qyIvV87IDb7kcg7zp4njGfcRgJzJHNk261WpqenrYIypW2Q91ra2vLJuUA5fCQk8mkTagC3qWGSEa4v79vTpsNw/+pS/BycHRsSLJ3aorSwYg+l4VILRj4aDAYWC0JQ4JjcDNtmLGuEeL+cdC5XO4TqlTAp279D0O0t7dnxvzUqVMaDAaKx+MTDfwzMzNGLKNG5PYBc92II8DqfRoXh57s2XXC8XhchULBiCw4IgwZhxcHDbmlWCyqVCqp3+8rnU4b3wAWMZnn3t6elpaWVCgUVKvVTKoSSJbWKTKbq1evanV1VZlMRs8995wZyqmpKb3yyisTJYrz58/bHgfa3t/fN4a5mw30+33TwacOCZJDzU+SZeTcI3VQao5kOJRicAYwcIfDoYrFopWCOMeQ8VzjKGmixCQdjD7k3ezt7alarerhw4d64YUXLOsjg/P5fCZOcuHCBd2/f99mVS8tLdnnYfA7nY4KhcIE8e64LJTW3L5e9zmBykHg8vl8dm5BJB/XQWBv8X+eGd8HrEvWiSb8/fv3NTs7q+XlZQ0GA73//vtqt9taWFgwnfZYLGaCIyyY0uzvaDRqNWwCZYJBumKw80DQ8Cz29/etLEXHCffZ6/XUbDa1vb2tVCplrWg3b97U6uqqaZBjY92zAGy/v79vIlnYfs5Co9FQoVBQo9GwZIdzjS9A8IQyzJNeR+KkERiBzQmuT7Qcj8ct28nlcgqFQkokEqZ3DeMxHA5bnRqyjqSJF4XDYdIODotmdJdEBgmN1gRJE4QbyDREuIxJW1paUqlUspfabrdNhICsgAw+EAhYGwWblSyWayBCG41GFkHizGnVAvpCrW13d1ebm5tKJBKan5+37I5pMkA3lAbI9Nj8bD4idOCqxcXFJyp591mur3/96+Yw2+223ZeLQLDffD6fTTBz+4YJltxMESnCcrmsra0txWIxc6S8v0ajYQz8XC5nusiSVCwW9eUvf9nqZwzhwJHAut7c3FS73dYf/dEfaXFx0QwKhoD/Lyws6MyZMxZggrQEAgHNz89bbQ2jlslkbDwqRpH9DZELY00PK99DvRGHR3BAxpvP5+3ZIidJkItuvKuxzzWAprlnDqSiUCio1WqpVqvpypUrqtfrisfjFjS4GgJwRvx+v/L5vGZmZnT79m2FQiGtra2ZQ6tUKmo2m08cmvy06xvf+IYhEdKB3CyOiZqvm0AA47rDhVziE04Y54y9w7FC4OPM43jfffddCzbJLoPBoBYXF01LGz18VPJgmJOISDKyLtk11yUd6DIwcAW0jgwZRAXC22AwUKVSMalm9Nmxszw3xlYmk8mJWjvPkKAORw3PiOeEzXXrzdKYD0HnB87cneZ2GMJPR+Kku92usTqfe+45IxOQXUBASKVSVsv1er3KZDLmMDFYOzs7Wl9ft8/AwQCtYaA3Nzd1+vRpNZtNyzCo41I/A8YgE4I9joNjzCDZCJ9PluPCzR6PR+Vy2ZwkG3p3d3eiab/T6RgU62bGtISNRiPL6IDN+VmyGTKQ2dlZk4iMRCI28YasEMhMkjkxtxWHLMXjGU/yIrt8Wtbj74HAikNPNI8DIwPEaeBIXEJhLBbT1taWcrmc9WUC08GSRSO+3W6bs4zFYvbMyQz39vYUjUb14MGDCaY177lQKOib3/ymwebU9Gi5AW1aXV2d2Otzc3OmCMW+B748deqUOp2OMpmMarWaITKxWExzc3MqFAoGD8LIXlhYMCe6vb1t9UuCTM5qq9WyNkMGO8RiMWsldDMgMjiMIfXxmZkZFYtFSTLiHj27dBngXIBAOQ9TU1PWYwv0nUgkVCqVlMvljARFduca3+Oy4vG4TVRj/0JqxU5BxuK8Uw6JRqMTMLkL8RKgYrtAHdifOCpYytvb25ZtYwMXFxeNX0AiRQaO+hn2rFAomPNyFb5c5nO329WdO3eMgb+zs2PZKdA2yQn3T6tZLBbT//zP/1jQil2empoytGdra8s6WVzuASUd94xLBwpnzK1mcEwsFtP8/Ly140qyM+/Wt6enp01+9e23335ie+RIdm2v1zPWH0QRarrSGMJD0k6SZQT8mRoxkDMGAgfJZnNrYWTmwCBEdkDSOCkyE5e9B8wIm5saIE6W+grRPQYXR8DP1Ot1i/wIEthw1KfJth4XGBkOhyY7SkbotquwufleiDLD4dDIXzwznjkQZrfbVTabNTGOYrFo18JzfxrW9773PUNnXMcMvO+WN9ySBe+M9wcygYHf2dkx1AUHhPEjM6CNj0gdNIYhBZImCDxAe7TElUolpdNpc6IEF9lsdmJ6EdkRDp99BxkSJjbG9/HRf9yjJCPEuaiTdNBKVSqV1Gw2JyRDydIwdIiL9Ho9gwhxoOxfV45yd3dX9Xrd5p8zyavRaJiWOKgRTgIHJMkCIfY8qEm73dbq6qp8Pp9WV1d14cIFa5XDsB5HqPvq1asmgENrD6gGtd1er6disWhBG0Q47AtZK+feTRzgwsAlIDiCGAk/gL0rjRMfAlp60Ala9/f3jSeBDd3b2zMBID6j1xuL5Dx8+FD379+3+0Kz4vr16+Y8QTpcrQfee71e14MHD/TLX/5SjUZDzWZTqVTKOlX4/ZLs+0ELOQtwNwjA6WAh6MtkMnbu+BxmOtBySfBBuZRES5KRGZ/UOvRM+tlnn9XCwoK9jFqtpmw2a8IGHGpX+i0Wi9kDwtBR54I9SK8czEUa9nG6q6urNhC+VCrZ5qW2gPOnHkP0/ejRo09M58EA8p/bTkAkRoZDdAhxi6wBpi+TkSD80GrAdbGRCVSIEAlEkOKbn5+X1+udmAu7v7+vYrFozHBpbOTcYIONjHgLZKNut2uw49O0eHY/+clP7N/+6I/+yKAxAqPHtbqJjHGA586d082bN62kgWGsVquKRCKKRqMqFot2wN2pPnNzc8YU5XcAF7KvPZ6DwSfxeFzr6+s6deqUms2m7SX2GZkVdWX6lXHMgUDAhg/gmMLhsInskGW6bYlu6QMYEKdaqVS0tbUlaQz3MR7VDSwJECVZdkvNGPJQNBpVu93W3bt3bX9J4yCgUChYvzNwJIgXc4CZfQ4iRP8uGbgbbJ0+fdpq7xA6z58/b1+v1+vqdru6cuWKstmsNjc3D2dD/oZ1+/Ztvfjii3adoA0EmATXbkLD/WOzyFwp1fCzkqyDhGDUdfDIv6JUBll0dnY8GjKXy2lpaWli8A8OzFUSkw7amSi7wWWhfZREiaTIRZDQ8AapZC+wV9fW1nT37l0ju7m97+wDSQY9nzlzRv1+39rRQLlcdvvKyorZfTewIFlyS0JudwJoAQEBnTRPch2qk4aMxAvw+XxKp9NqNpvWZyeNHzKRcywWs35B4FhquUT1QMYo0/D/brdrdQw2E/2xtJJQ76V2xhQkIBOuD0gEYw+ZgkwK0hf1IqBWDHyn09G1a9dUq9UUCAS0urpqBAmCDzIENpt7H4hWsOHJDoBaW62WUqmUwZJAZUCDLnFmMBhLDwLZgwSQiRE5r6ysqNMZz/jm3Rz39R//8R+f+DfXYUsHThvCXywWM2JJq9VSOp3W3bt31Wg07FnAco3H47p165YuXbpkPAhqt+VyWWtra9rY2DC4OhgMKhKJmPACmswLCwsmrhAOhzU/P68HDx5YzQtkh15nEI9UKmUs506no0QiYTB2KpUyh3jr1i3rD33++eeVz+cNonSz8VQqZecAeDsejyufz1u7I8gVzgC2balU0vnz5y2QJijmuTSbTY1GI1P6A3Kdm5uz2ma73TZjPDMzo+3tbas9A6OTKUH247zOzs4qnU5bFkmmJ8kCWjIi0Lbd3d1D6W39NItACGfgIn1uPzjOF5QLtPBx5jJoImRC1+Gxb1y+Du/XLf9VKhX1ej2trq5aLRxREBwZzhz0r9vtamdnR5VKRefPnzcbRGJB4FCr1bS8vDwBxYNSkdGSwJDpv/TSS7p69ao5yUajYe8RzgRBJ8+B/euSa909ApEWdJVn6yJKLGw7/280GoaaPWm08VCdNFENkWA4HLaIem5uToFAQLlczvrkUGqKRqNWY8Hw4fymp6dVKpWMcQgUgRMnQsVRY7jcvmivdyzBGY/HzXlTv11aWlKz2VSlUtEHH3ygtbU1+f1+JZNJ20SZTMZgUAxIOBxWNps1CPPnP//5xKxmNoJrNKvVqkGDtGLxtXA4bALzfA9wH4e1UqloMBgYE5RNCuRDxsHhoXca6JwMj3ojrG53fOLnYT3utB9fX/ziF9XpdHT+/Hn5fD7t7OxoenraAiCYoDiCbDarZDJpfw8EAtre3talS5ckjQ/7mTNnrC0lHA5rZWVF9Xpd169flyTrSfb5fMrlchbIYcj8fr8FaChEJRIJI/BARItEIvrFL36hWq1mBj6VSmk4HBrJC4SK9+yWSfr9vm7evGnI1XA4tH0OWXFzc9Ng64sXL1qdHXSIwBCiJwFLOBzW9PS0KU65tWKCpHQ6rd3dXUMMPB6PzXOn7JTJZAxxctne+/v7Jozh9t3i8CQZrHycViwWM+OPU6F8IGmChU1QAycFGJp7dLs2+Hfq0NJBu9zu7q69K2ksSev3+1UoFBQIBBSJRCaUF3HUBPL5fN7kVkEvsdG0uzWbTc3PzxvPRZIlIy6vxyXNYvshOhKchsNhPfvss7p+/boWFhYUiURUKBTsGUAYBeaXZEEN+5sFWVOSoY6UNSWZTYQHQICCbgXoKO/D3ZEhXVgAACAASURBVF9PYh2qkyYbpmbHS3VfGAePKI8MBec7PT1t9H5qV4hIUIMB6kVDmfYkRNfJNDEejzP63NryvXv37EW5PaCSrL7BSDZpfEii0ajV3SBg3blzR1/5ylfk9Xq1uLg4MQyBVjGeA0bHrV/ze4neJFkdiUiarIHn7NbXOcwuuxntcoQQJBlRr9lsWqYJqvF/ZQ2HQyWTSev7TaVSxjBG9YuhFxhAv99vkpl+v98MzNLSkh49emTObmVlRblczvZcIpEwhj4CPc1m05w+MDp1aTSKK5WKGSagxL29PW1sbBgjdWFhwXSsCQDJJmBnQ3Aja19YWNC1a9cm6r2oNXW7XeMrwJzd2trS+fPnJ54fbY+c9Wg0aoE1wYb7e4EgacsBkpVkkpYgb6ihYSzJ6igzkGUShFALB+odDofHrluBTI5gG4lebBDIGXCsJHNucC7cc+yWxcgi3Zasx5XHQHf8fr+Wl5eNEInqnCRzZIPBwMosqCTyefxeV8Y5l8tNZO8zMzNaXFy0JAo+AeUnPocAgkCDpC0ej+vdd981hIk2KLJb7LSkiRp+r9eztkMCR+wtZSh+v/vsXYKuJOvq4ez1+/0nXjo5VCd99uxZSZpo91lcXLSpKK6yEbVWamEIyY9GI62srEiSZRMYPGAT4A/gZhfScKEaV92m3+/b4SCC6vfHMo0PHjzQL37xi0/czze/+U0jXxAMkIHkcjnduXNHDx8+tO//4IMP9Oyzz1rG0Gq1JmBNolaMI6IoDHFIpVLWW02PJGpP4XDYsgeXfcvGJDPhdxH0cP0IH7gZOfDgccs8nvSihlur1az1r16va2FhQaPRSLlcTvPz81YHxtik02kLHFdWVjQajVQul9Xv9/XRRx+ZwWGPoPb0xhtvKBQKqdlsamdnR7Ozs+YYaWVCFwDOBjD36uqqcrmcKe199NFHmp+fN25EuVzWj370I125csW4Ff1+XxsbG1brxnkTnH7ta19TuVzW6dOn9fOf/1xXr1414qMkffzxx/as8vm8MpmM1fvJlqUD3gQ9uF6v1/p8aXehgwJkaWlpSZLMiNPTihPhnMINCQQCFtCORiM988wzVqJwe2Al2Wcdt0UmRrACwtBut/Xw4UPjHZw9e3biubjtVzwfgpvhcGgtc5S7EHgiwJmamlKhUFC5XFYoFLJ9CaxNayhBEESqXq9ndovnzr+B8EHwI2uHV3P37l0TWSKD5vu2t7fNeQaDQePxtNttu16/36/z58/r6tWrhlL2+33rjCGYQ9eAEiIthAQrPGuQRp4jzpmgid8PlwhUgeC43W4bOvqk1qE66bffflt/9Vd/ZQeMySqZTMZYxxi+ZDJprVA4D1o3MHb00eHcqKu67Tb0FVN/IGNG+hGyGjUtCDvAzaPRSJcuXTJY0l3f/e53J/7+N3/zN5Kkb3/727/y/u/fv6/Lly9rNBrZoACuDfF7pByTyaRlT/QQkg0lEgkzQKhaUYtymexzc3MTtUXIRCiQ8cxpQWu1WiZqwfOQpHfeeeez3AbHdl28eNGMDGL+zWbThjtAXMEgoOoGZ4DMAl7B6dOnVSwW5ff7tba2pn6/r0KhoNOnT2t7e1vNZlPnzp3T8vKygsGgNjY21Gg09Nprr5nxW1lZMZQlGo0aKzqRSKhSqZhC2dbWltWoqTG/8cYbksZsXYbSf+c735H0yXd68eJFjUYjhcNhXb582UZ2vvTSSwbtf//73/+Vz+3111+3P1++fFmJRMICl0QiYQab7A2CE21jlUrFECKCUPZ9rVabyJrX19clHZDx8vm81a8xrBheMkt+FrbxcVsgBQTo7EH2FWcWdIKzSVaNk6tWqxMtmthAyGFuOxTvg1owGSJIDq2cEAHJMF2mPHtdOpBi9fv9SqVSyuVyxtbGJrv3iBN1NSFIsEhS2AcukQzOA+gjnUIEkAQIEGjZA+wvfAdJCa2akgxxAc2krISWuNu6CRJ8GMTaQ2d3/+d//qdefvllG8XHZJfZ2VktLCyoWq1O1MyAZqUDdSOgOr7uDryYnj4YBOD1jgeFV6tVg1T4LLflQTpo03B7FN25uZ/Vcnui6UFk0yLKArzJRBjqU6FQSPfu3ZPf7zdFMTcwcXv6gGiWl5etvjM3N2ewODV0soxCoWDsWe57d3dXt27d+szu/bivbrertbU1rays6P3331cmk7GpQwSIkoxYNT8/r0qlolOnTlm0n8lkdPv2bV26dMkkYLe3t/XCCy+oWq0a4oJjyeVypgW+v7+vZ5991vSY2+22CoWCGT+gSjdryOVy2tnZsSldQMLpdPpT3Xs+n9f09FjH/Pvf/75OnTqlBw8eqFQqKRKJ/NbO7fr163r55ZdNscqdWoWwCMYaAij7cGpqSpVKRdKBWAp7O5lM2lnkexG4cFvhJJnD7nQ6qlQq9pkuAnCc1rVr1/Tqq68ahIoDLRaLWlhYMM4OPfAEcNhISaa6SF85kDXqedgHl4SG85Zk74EOGNTFsA9klW72DJ+B4C4Wi03MHpA0ocYoyTpvQPhc7oK7vyHwukkcTtTj8ejixYu6e/euBcQ4ZdjwaIhT32cfkZBh791SCPdZqVSMuc2zkTTh0OE5HUYCcyRiJhAKyGpduAV9bHR23Y2JGhbOmlYsohqiOZw17OZSqWQ1NbJrd9NgBInKIE/wb//2b//2md07Kldu24+r/Q1Zy0UEeAZEnY1GQ+vr6wYzuZEdxoko0RWuIBiAwUi/L+0YLoEI2Ptpnyv9aZarf4wBIYL3esfDJWq1mgWTyGdms1nNzs4qHo+r1WppdnZWpVLJ3jERN7VuVK9Go5GNpiRbZo+zjzGyIEqgJBAU4STwjpE7/LSwbrValTQO1iRZ7f13Wa7ICDVRSjRo4XP+3KCbbIfvR7ue0hUkSqBcYFlXwpUAnbar3d3dY+uc3YUKoNuWhh4DjpJzCcuechTnliyYWiq8CJ9vPHecCYBuaQOOASN80+m04vH4BArhZsPA8a5aIS14QOC0dbpqeQROqMMh8wqXgkmH09PTqlQqGg6HxtdhNCrOdGZmRufOndONGzesbImDHw6HKhQKxnmQDgRY3NYqsmxJE7wbuBG0qZLs8VnUvillHcY6EiftPjwis1qtpl6vZyxt+kp5SG5bgdtcT5TEoaUlC41lZj+7qkqumhNGAlIOZBrqzC5R7LNYr7zyil5//XUj14TDYSWTSZsFyz0SoaIIhkOOx+O6fv26PvzwQyPsEDkS9LgsRKYlSQdC/rATW62W9eVSzyKw6Xa7un379md678d5rays6Ny5cxbknD9/Xg8fPjRyHQHg3t6eTp06pXq9rmKxqC984QvWhlKpVBQMBnX69Glzcn6/X2fOnFE+nzdonJnP5XJZq6urevPNN63ViOwzmUwqHA4bPExUTxBFxvDlL3/ZREQwlA8fPjzScYxvvfWWnn32WXk8Hi0vL5vDRk0M4+2258CvcBm2OHUCSHdoBoY3n89rZ2dngnHPZ9y/f//InsGnXVevXtUzzzyjpaUly9IIaLgfiFQ8P2rA8HGAcqvVqsLhsOkskMC4BFCXbMfvYH54JpOxPYejxqnXajXrgeazKdVRJqNcifY8zrPf75sQCSNEXZSq3W4b6xyE0GVmk4wQNCwtLSmfz1sQjagQJDO0COiXpt2VbB8fgqIfugSURUmQ8A10G7Xbbb333nuHtjeOxElL4+w5EolMPBwcBoPkieI4yPS3seF4iGQ/bEJESdrttvL5vGKxmDmwfr+vUqkkn89nMMtodDDsolKpWN2k0+nohz/84Wd639/61rckjWuA6XRa+XzemJDVatUiYjIqDLff7zdmY7fb1Y0bN7Szs6MXXnjBenjZdDhhjJY0hmdgJHe7XduwZI27u7u6d++eGUpIJp+X9dprr9nzAGn46U9/al8ny0Cmkuk+5XJZly5dUi6Xsxqex+PR+vq6qtWq6vW6UqmUpIOJagRgwJEwvxFVgMC0sLCg9957zzJPWnFCoZD13dMzDduVNpn19XUtLS0pm80qk8lYC81gMNCVK1c0Pz+vRCLxKwmPh7Fu3rwpSdYKCNRI779rbPkzDpjA/XEIG6jRnVrU7/dNiY8aIk79aVsgaTwvV2CH880MANAvxGskTbRSkgkTsFMGJEN0e6sJ8GFMkzzNzs6qVqtZsEhfMu+mWCxqfX19QpWRrBOypcuOnpqaMq6RC9W72Tq8Bc4oMDTOl5ITNpvgGT/gzmLg56hBg9K4KA4Md6B9PleSXQvPkut21cYOYx2Jk8Yh0q8GZEFUuL29rXA4rGg0atkykTMvTTqYsUyk2O/3VavVrLj/4osvan5+Xr/4xS+Uy+W0trZmwh8wunFKSOH94Ac/OJRncPv2bd2+fVt/+qd/qk6nY/APxhkFKFpWQBYWFhZsSEcul5voxd3b2zOWuDvAo91uW/O/SziBZIHjXltbs58j+/68LDoEpIN+/a997WuampoyDWGyheXlZRNzQWiHuj4QJM/4gw8+sIEbBJGBQMBY2Kgura2tGWIUiUQ0OzurDz74wCBtOhVWVlasZ7rfH0+wAqojG11aWjIiYTqdNn6DJKtJv/TSSzp79uyROWkWPIhgMGgwrbsHIQW5bS58HxC321rFwASIkSBM1HKBzZ+0wMSTWPSQw/qnrZP7BZZGQ579SDbswtK0mbqBEdA3zpsuF2m8Z1dWVoyFTaZO7RhhFLg8CPvwXkA9EFXyeMb6/yj2UbJzGeYI25DdkpyEQiFtbW0pHo/bEIu1tTXL3N3edzgKBHsej8dEpiib0PrF/bCPKpXKBOGW/0uy2ewIWLFfmTh3mOtInLQ74JyDBszoynm6tWbqqbwM+t5cMgDGVJI582QyqeXlZRUKBSOZsfl3d3dNUYwa0GEvDFaj0TAIqN1uG7y3uLhodU2GKwwGA7333nuWpXGvbr83MD0serIMV4eZrE6StdEQmVKj/DysV199VdK4B5w9RPCCQafWRPAGL4KoGcPp6in7fD4tLS3ZTGSCzunpacuKG42GzYpGtc7n86lQKNgoR7KG6elpK3u4ko2UReASuLVaonw0i+nVpr/6qBf7ifPsEuBAe9yaKqUt9Az4GoaYAJyvs8gMXUncp23h5GiPpLUI6Bd983A4rNXV1Yl+Z4ZDAMtKB8/EZYXTssZgGARJzp07p3g8PsHLIADge12CKq2c2OqZmRmbBMho0/Pnz+v+/fum/AZcjL4De5drd2HoTCZjLaToNuArGCjDPZJ89Pt9m3wGSZHn4/KOaJEFuUGgBaU8tC5crQj2MKz7w1xH4qQHg7GwP9AUPdAcMklGBEkmk1YnoMeUSJFNLY0Zzdls1pjRGINgMKiLFy/qmWee0euvv249el6v13pMic6OgiTl9n9ub29bpsxBQ1UH4w1J6E/+5E+sZYJgJpVKWemA2hUQNy0KjGijHgVrlmyN7PppNHK/bt28eVNf/epXjZTHBB360EejkdLptPXoP3z40OpnyWTSRBR2d3etxso7oo4H87NYLFqr22g0MigR5/3w4UNtbm5OSNxiPJCa5b1StmCKFsaWrwOL045IMCaNFaToOT7K9cYbb+grX/mKJJmz5dkQeFPa6XQ6xguBO+IKe1CbJWiHOAWsKh3Utg8bkvws1tWrV3Xx4sUJBTH6kuv1uiqVihYXF20cIzYiEokYOxsnTCBDJ4lbz+d70ZFwe6TJPgOBgDwej+r1umq1mkHYyKuSJOHM2Xuu2lcmkzF5UJAAgln4Me1226SiIcnhkEulkh49eqQvfvGLGgwGphrJz4KcoAmxtram9fV1CwClg8SFGjskOoJt+A3033u9XsViMc3MzCgWixkSII33XSaTOXSJ5CNx0jS+03NKNsPLcSGWnZ0dpVIptdttG/WIMDt9ekBdfDa6qog5ABv/wR/8gd5//3172JCqMAwulH5Y60c/+pGk8Szk/f3xQIx0Oq3p6WltbGyYFCjQENEmh5Q6SigUMqEIGJMEPpKsoZ+ajItKELSQscP6/rysZrNp6AQDWRgAEY1GTUAEmc2lpSVrEcQI9ft9E+ogK5YOpkANh+PJPQjtYBhGo5E+/PBDlUqliWcKUxajlE6ntbi4aM4YMg2/i7KPJMu40a1GFAfuAgNXDmPW7W+zKpWKEonEhBqW207pEkRBKaRxoM4zpCUSh4OBr1arVuLCwHo8HqVSqaeKOMaCDc1zkWQOiUEn0oG0pdu7zLOlXcsNhvhMzrgb1FBCIFlx7Snnhkzc5/PZEBvKkJJM34E/uyODYUzzHt3Z0SAsbnsY8wPi8biV8UAMUYp0M2TuNZ1OW/sZNWjXsZOcwGfg72TLcJ8qlYqSyaRB8QTyXK9LwDuMdSSjKvP5vE1jkjTRt4dEnasWRJ9zLpezfji+HyYkhX82AUxEZBSpv3zjG9/QF77wBa2trdmEIMTkj9IxucHFjRs3LNtC8YZeSSawUGOi97vVatl/GHUgXYydC3tNTU0Zix0ChiRr3qdN6POyrl69atPJJFn2Sjteq9Uyqc1AIKBsNmsiHEwqm5mZ0f3791UqlazuHI1GlUgkFIvFjBiD4717965+/OMfK5fLGUGHehr96pR8MpmMoRpTU1OWmWCcyAwIYnnnlDW4L+Bin8/3xJWQftt1+/Ztlctl5XK5CbIQWRd/hswIrOpK7botiwjMNJtNVatVZbNZq+0jiXvUtfjfdV2/ft2yN949+3NxcdHePbAtATswbLVaVaVSMadCLdhV2QLGZh+iUwH6QKlN0gSTm3Yo+tYpN9BdEolEdP78eT3//PP2zgiMQVCYGOg6b+wRU/m4FnhJsMR5FkxHo3NHGiOpFy9eVCQSscACMRRQAvaVW++HcIatBJktFAoWMFAiJes+7OD3SJw0sCOFfOlg5rMkg2F4eER46LzCyJbGRouInCk7TM5isgubgZGQRJ309HH4s9nsUTwOSeMxawQXRLYQKlyNWSaCEXRgvBmIQR0FOBfjTeYMagF5KZlMmhgMWTnv5/O0EEugtovjoxZarVbNmEBuwtli5Gj3oB8UJEM66GvvdscjPt12OgJAfp872IAyTiqVsgBsNBrZ+4Etyx6WDoazEHRRU6OdpVqtWt3xuCzKKKAaOBi3Jo3jIPPBMEsH7TfUS3d3d03SkvcAmvS0jVd9fO3t7Rm6II0Dr3g8bnuKTJKpU6VSyaBc2rFAY9zsERSI/0B7KDlgZ9h39JnjcEl28vn8BK9geno85IizJclGje7s7Eyw7ZnPzL6XDgSefD6fOVQmp83Pz9sIVOZJz8zMWIsj90f7JD7C5/NZ0AEiQSaeSqVs3Gw8HlcsFlM0GjVHXC6X5fF4VC6X1Ww2LRDiXRx2Jn0kcHen09Fbb72ly5cvG7tOks2EBj7EUfF14GBYhS7UQT2jXC6b3CiKTclk0tpT3AEePp/PiAx83lEtMglXGtHj8SiZTBpRgw3MgZQOYLFsNms/R80fI0hPLeMCB4OBsZU7nY4pYREAPY0w4W9aDJufnZ01cgwCCgQzhULB5tWGQiEVi8WJPTIcjqUo2Y/MS2aPSbJ6YrFY1NLSknK5nBFgIKZRcwURisVikg6IPgRRQICULZDSJMOGlR8Oh20aFlr2Dx8+PFbkv42NDUnS5uam/vIv/1IPHz60rIngiP0PWuAqV0H2GwwGun37tqFOrFarpe3t7SO5t896AbHyrqUD5IcAb3d3V9VqVadOnTLngwN027bcFjcQS5IT9hG2Bgfr8XhULBbt9xEUwQmirCLJHCZOEqjc7/dra2tLXq9XDx48MLgeB0dwLMnIlQQDbo82SZdb656bmzPi7P7+vlKplM6cOWPEyWazadA+gZ3bgguHA54DAQ3X5fF41Gq1TGQIMhuyvvB7DmsdWZ+0NIa9YeFFIhGrpxIdSQfygNSq6ClmE7pEiFqtplOnTimXy9nXIPwQfe7u7ppBg3hC3+pR6vp+8MEHOnXqlEKhkHZ3d7W9va2VlZVPSNpBDKlUKgaxotiWz+eNSezOZsXRSLK6n1t3dg8yes+fx3Xr1i2trq5OtO6Uy2X7OyUYkATKDel02uYlUxoYDAaWtS0uLprcJaSWWCymSqWi559/XrVaTdeuXZPH4zE4OxQKqVKpWJ0VQiSBGORHgis06xGoIOBA7x0SGkHr22+/fWzJf//1X/9lfz537txE94YLy7q91YFA4KmFsD/ton5LBooNoMWUrI6AjOdH+UrSRCnBVWLkebKPcGAgeDx/MmVsJ4pkDNxBtARJTv4NfQrpYMAK9wODG4liUFIEqhj802q1TFvA4/Eom81a8gbiyZkh0EPzAiQGX+IKQZGEEZBQ+qMMJY1RDBBZrhln3u/3j6SEdKROulgsqlgs6sKFCyoWi5qfnzcnLcma0KkNwDgkwqLlAGbecDhUrVYzGNgdeE52DQTIC41EItra2joWUfjGxoZlHJKUSqXsAKbTaRO26Ha7SqfT8nq9JuMIGSoSiUz0/JKhTE1N2exu6tNAvu5G/Dyv3d1dbW5u6tKlS9aG1ul0rE4GiWRlZcV6K+E6YNyI0NG05plLsswWY+aKcaRSKcv+kBil5ri4uGhkl6mpKTUaDcXjcSPjzMzMqF6vm+PmGpC65X2TQfX7fb355ptH+ah/6/U0SHYe9rp9+7YuX75sLXrYKmqy6Mmzv6amppRIJCzAkw4ma2ErQWMI8oPBoOknAHmTISNRS7bu9Xr1wgsvmEMdDAYqFosqFArKZDJmc0iU4Bb1+32l02krL0H+c9uhCFZJnEBWCVIk2VxxaSyC9fbbbxsXx+/368KFC3Z2QEgpl0qTwYLH47GBLpIsaw4Gg1Z/huiYy+VsxGq1WtVbb7112FthfP1H8lsfW5lMxnqcIUfxEHu9nm0E+uGI9nAu1O2IjmD4kR0Bo8Po5QVSuziuzoleXbcdBwhU0sTUpV6vNyHi4CIRkD44TJDxgsGgwVMej+dYBCpPcsHqZNKO3+9XtVqd0BimHYUAhr2YyWQ0NTVlyl6UU9wsR5rsTXXbVSD6wYHg67u7uzbVzOfz2TxljO9gMDBZw3A4bOx/7ocMmmDUHQxwsp7edf36dV2+fFnhcNiQBRBGt3bLjAG379yFrkFXEHBKJpOWBbuCTo+rN05PT+vmzZuKx+NWcns8Y+bMgNYRnEoy5Tx3sBFBLNfD3gWCz+VyFkjQgy2Ny6DvvvuuNjc3DXamXTIej2t5eXni2cHpwSnjuNEekGT2cjAY2Dmt1WpWagFxdFUJj2odCXHs8fXGG2/ovffe00cffaRarWYjyPx+v06fPm2ZTCAQMIauKxUKw5tpN8FgUPF43DIc2N8IgjAtxefzaWNj49gymX/4wx8aRIWeNuQG2LvusyB4wSFwIHq9nmXlbE5akSBQZLPZYznG77NcRMTvvPOO3nrrLVOt2tjYMGUhGKYQ82jt4OCHQiFDM7rdri5cuCBJpsAEqxQVO+A0xlrW63W1Wi0ra4xGIxOsoW4myXqhXYEdSGyQe4AeEe/w+/2KxWK6e/fuoT/bk/XZr+vXr5teBME2/0kHGSKJBtkqGTL9zZTzHh8aAapDlwjiIhCumMDltngRJPR6PRWLRVPpgliWSqUUi8WUSqV09uxZhcPhCeERIHTQH0h/aBdUKhUjZoJm5XI5bWxsWDIxNzenubk5LSwsaHV11RI2V2uc4EOSkcFoG/N4PDa1KxqNms9xmfJHIf/569axcNLuWlhY0PT0tBYXF7W4uGj1WEkG/VFLLBaLlkX7fD7rL2ZE3WAwsOlAtAIwfKPX6+nWrVvHniTFIXFnGOMAaCHikBIhDwYDmyIGVARK4fb6+f1+hcNhFQqF/1PDNFgw5WdnZ5XL5eT1eq2fGdQGyK/ZbNrEoFAopKmpKcXjcWOOxuNxDYdDm3JG3zXSgkBsoDr0Xs/Pz09kJvS2hsNhBQIBi+7hFPD+cchIFkIalPS55hX8X1vUc91s2q2tgrZIMq150CEIpsPhUOVyeaJX2SVVuTVbnPBwODSGtSu9KY2DxXK5rGg0amNVsc04WOrNtJDiSPkcggNU9HCKECa5JtBRl9UOPyMajZqCH/oOZN/ufTGrQNKEWiAkNEh0riY8cx+OwzoWcLe73nrrLX3xi1+0OjIiEh6Pxx7mcDg0uIOoDEhldnbWoiY24mHpcT+J9dOf/lRXrlxRt9tVLBaz2iR1m+FwqGw2axAS0qKMvgsEAjp37twE4WE4HOonP/nJUd3SsVlAWc8++6zq9boFc/Q/U4NziSWzs7M2dUmSOUqQCXSVKbWMRiNdvXrVBtw/evRIgUDAYOlz585JksGPtCVCYEsmkxZwPV7e4c+0Gvr9fv3jP/7j0TzMk/VEVi6XMwY39VqyRPYgTmt7e9sQQrJJyjtLS0s2HIa9QuZJpizJsmlKMfx9ZmZGtVpN+Xze+vrJosmEaevimqiFu10zIFCUgPg7NXdQ0NFoZMgR2g9uu5jf79f8/Lz1xUsHAQ11eAJt2lgrlYq1NhJco7xIeYszW6vVdOfOncN81b92HTsnLY1fJG0q1DtQ2gGaYWIWkRebkr5pagpHocf9WS+iPkhCj6uGzc7OmkNGnccly0mydgJmtZ6sgxWPx1WpVIyZzb6C2UrPuSRjwQaDQdujkib61lEQK5VKJjlKH7t0QDCLx+P2bkGIqBOCmmDo3DY8tJQx2IVCQaurq0okEkf2DE/Wk1mQSf/wD//QiLA4WPYiwSFkL8ixyWRSgUDAnJBLtnIzZrfdFedJFwNOvFQqWXZNbztQNZ8ryTJjyFuMUZUOynHA4wiTwD5fXl62vU+XgnTA8wA5QEwF9je2H41z5E9ZOHVY7XQT0RVEqQmfQTvfceEqHUsnff36db322msGr3S7XcsmqC/QDgN5x+/3W5/lv/zLvxzxHXy262c/+5n+/M//3PRtqYlCgOLA1et1YwbH43ENXtFOdAAAFy1JREFUBgNtb28b3M0GZ/OfrPGKRCJaWVmxZ4VQAvDa0tKSaaiTXfMsq9WqQdAgPPv7+9ZLiWGVxv2gsVhswohQWyYj4L0ihQtEiPTrzMyMms2mscv39/e1sLCgRqOhGzduHM0DPFlPfG1vb2t5eXlCgxuxI84/mgc+n0+pVMocrSsXCgwsaUKjwlWso6MB+U5ga/Y5TO5QKGQO2T0TMzMzVjJyh6hIsjIPe5uEA4lmnCXXgJ13RW78fr8NnpE00Z3CeXFr7Vy/yw9h7CswOW2psMR3dnaO4C3/6nUsnbQ0rqtduHDBIF6yZeAc6hluOwtZ5udxUZt0+w3RLMZRMze7UqnYIXXrQdlsdmKy08kar+9973sTf89kMtZzT50akRPaXXDOEMBAbFqtlsFllCjYk5lMxgzBvXv3lEwmrdtgOBzauwkGg6rX64pEIjY8AmGafD5vtTuMbLfb1b/+678e+nM7WYe37t27Z+UNaSxuwghPxHPm5uZsOpYkQxRd2V/q0EDCrpwyzlPSBBkLBTBXl4IuEdjekiZIaThA/k5pbmpqypyudOBgye7dThVIckDrZMtwNyCJMQUMMhrIEwEBTG93NrTf71etVrOggr/3er0ja7X6devYOmlJqtfrWl9ft5cOeQYdZSJEHHS73da///u/H/FVP5n16zbOiy++qH5/PFoxHo/r3r17CgQC+vjjj61OBGSVTqf19ttvH/KVP31rNBpZ+YD2QIKebDY7QZiBSIZqE0aHwTG0lLi91swDJxPGUEYiEWvxYi4ymRAZPH2z1BdLpZI++OCDo35kJ+sQ1v379031KxqN6s6dO4pEIgqFQjbDmYAwFApNaHZDSHQFP9iv/J22RPrzsbO095H1SjIyKw64XC4beYygcjQaaWFhwaD46elplctl66Ag6XAdK86b80f/MqU87o3xlpLM/uPkuRege0Z8ElgHg0HrtoAQSrvYUapO/rp1rJ00GrG9Xs9etCTbAER/yFy+9957R3zFh7+uXbv2a78Gk3hmZkbnzp07cdC/5eKZAo1hpJgYhKQqbPq1tTVdv37dWkOkg2H0roPGYADXpVIpU36SZD2baCbjxCORiEqlkhFrEIzodDra2dnRzZs3j+xZnazDXW6b5CuvvKKlpSWrU7tCRTCdQdlwgKiMoShGfdhV6KJkA++FRT82zlGS/R0OB4EpnxeLxYw06c4ikGQyvMDeONk333xTqVRK6+vrxvqOxWKGop49e3Zi6Aw6EAQiTI9jeBLBBipn7izraDSqer2ura0t3bt373Be4qdcx9pJSwejHE/Wp19EnpL+z0gqfpbr+vXrkqTLly9LknZ2dnThwoWJ0kowGNT9+/dtBq07ZcuVWHTrZe+9956uXLli5DNarECGIIVVq1Vjya6vr1t2DfOUST0n6//mgs2MJKh0QLJyHSlZpov0UKPl69KBOBKOkZYk4Gh+jlozjp9gFESIDNadAw4JLRqNqtFoqFKpGLmMe4HYGovFlE6nTR+81+spHo+bBCm1dVAD+EiSjAjm8/mMYyJNDtlgjUYj60EnuD6O69g76ZN1so564azPnDmj27dvW21ZkjGygaMZYJLJZCTJ6mfb29s2LB62bbvdtsHyXq9XmUxGuVzO5qX3ej3dv39fMzMz2tzc1GAw0H//938fzUM4WcdukUFLB7O3CfRcwRKY3W79WJI5VBTyOp2OERjb7baGw6HVveG8IAZFFs5kLJcgKR3Up1utlg2q4d9pEwUxotV2OBwqFosZcxsoXhoz1dEmR/4T1MCdECeNg42trS3riHDVKQlqUWaDHMpzPI7rxEmfrJP1Wy6Eb+ifXFtb0+rq6gSJxc2YIcD4fD4bjDAYDMwoYhiZwkXmQZaC+lM+nz+pO5+sTywU7NBwr9frn2BR8/d4PG7lGwJKd6oVAh90yhBc0iIlyeZc7+/v69q1awqFQrb/gaoJDnZ2dkzjgsze5/MpFArZoBggejpRqIWTDdOfLR0gBJQ6YWTPzMwY14N7hQ+Cg2awDVn/rwom3nnnncN8dZ9qnTjpk3WyfseFMQLqY4ZzJpMx5nWz2dSjR4+0vb09oXecTCatr3N/f9+yZ1fhiQEDx5HMcrKOfv3gBz/Qa6+9pkePHplWNq1JEKXok3YHxfT7fbVaLRsfiVOm57jVahkJzM3U3faoV155RcPhUPV6XXt7e9ra2rJxqtPT01pbWzPEiKwYdCgQCNjsb9jj6F5IY0ga+JmuCVjqrr44DpzAgECB3m06KSC4MdwDYhvEz+Ou0HfipE/WyfodF/PJGcpRq9WUSCRMMazX66lSqWhjY0PRaNTaBS9dumTGj2wZQYpgMGjqZaPRyCRJT9bJ+lULqdnNzU0tLS0ZDE0W6Q6MkGSQN/34nU5H4XBYkUjEgkFXXMdlXEtjYRC3LTYSiRjETlCQSCTk8/kUiUTMaVMPZ+pUKBSy63EzYL6n1+vZ+EkyaJd/QcAgyZw/dXZat/gM15lLMtSL1rXjvk6c9Mk6Wb/jQmgBQYnp6Wk1Gg1TXZqbm1M2mzX2KbUxekgRbyCbkWSDUZi+NTU1dez15U/W0S0Xph2NRmo0GopGo4rH46brPz09rUgkYnsOyJqWI+rN7mhHYO7H5ybQK51Kpay8w1hgWqWGw6HS6bSKxeLE1DecJJA7pZ9Wq2X69UDZ8XhckkzTAeY5Yk6gV66zpvUK4R8GZ9BuhnJgr9czvX6XXHtc14mTPlkn63dc29vbNsCFnk96MBFfoP+Zud+uNCJkG9oMpYNoHyY3EODJOlm/aS0uLtpsZMZKMoUKSBhNeGlcY0ZueW9vz3r/XRUyAktqwRDAyLYhPwJDo8sAKezhw4fK5/P6i7/4C/V6PbVaLUljlT9q6bR6eTweq1nzZ1jpqC3iYN2hGlwnZ2hqasr6nvv9vhqNhgUwkNTcMbDHfZ046ZN1sn6PxfxciDf9ft8OfrFY1O7urmUADDbAidMbSp0OPWT6OmdnZz8X2vMn63DW1atX9eyzz5qwDv3Frl42PAdUwwKBgMG/7hxq9ix/LxaLpg8wNTVljh94HQIX3Q3Us0+fPq0LFy58YiY2WS/kNurEQNOuiM/s7Kzm5ubs9wCPo5BGwEtwQZYej8cn5j/Mzc1pf39f1WpVpVLp2AzQ+E3r2I2qPFkn62lavV5PhULBasher1eFQsGINjjdSqVixs1lu0rj4SfdbtfqdLSo7OzsnAjQnKxPtWBrQ/ACien1etZtAOQtydjPkmwSldtLTIYKZM0oSkbi8rv4HHdsphtgurKkLsNcGqNG/Jxb/+Z6uH6GbxBoMF6y1WqZHC/fyz35/X6rUc/OzioQCCgcDhuC8DSsk0z6ZJ2s32Ntb29re3v7E+P/Wq2W1aljsZgNmc9ms9azKslqz/1+31TJOp2O/vmf//mI7+xkPY0L1cXZ2VlrbarX60okEtYOCNEqHo9PBIzu1+k8cNnQfr/f+BHnzp2T1+s1zexut6t8Pm9OcXZ21sas4ozJ1JErdYlcaIG7dWa3Tg2kjXAKAzy63a6q1aohBsFgcELBz+fzaWFhQZVKxaBxhFWelnXipE/WyfoMFjKE9Xpd6XTaMg8EJTKZjGkWw76dnp62mbdkJTMzM1a/Plkn63ddw+FQtVrNarlMdpPG0LXX6zVJThjXLtOamc60M7GXn3nmGe3t7Smfz2t1dXWiRkw3wuzsrHUzSLLPxNnu7u4qGAzadUqy9rDBYKBEImHkMEbxImyCvCgZP3Old3d3bQxvNBqdUF5Dg4B7qNVqKpVKh/k6fq914qRP1sn6DBZqYpJULpc/8fUzZ84oGo2aM6fmRj808B/tJifrZP0+66233tKVK1dUKpUUDAYVi8W0t7enbDYrSeYIGXkpjSftRSIRa3eiDuxOimIADENl0AeIx+NW80WYBCKXW/MulUpaXFycgMU7nY729vasjk4PtIsuQWCDZU73xGg0Mna4z+cz4tz09LSazaaVoQaDgdrtth49eqThcHhsdbp/1TqpSZ+sk3UIKxaLWdYyNTVlLSaoOsFqnZ2d1dWrV4/4ak/W52HVajW1Wi2VSiXl83ltbGxIkjlF1O3Qgy+Xy9rb2zP0RzpofSKTZeBMOBzW7u6uMbphUk9NTalSqUg6YIdLsr3v9XonGNYwt6k5u10Obn+3JCOVoTQmyQiYkNwgjfV6PRvmwZlDeOju3buH8wI+o3WSSZ+sk3UIiz7SVqulmZkZE1HodDpKJBIaDodKpVL6/ve/fyIBerI+k3X79u2Jv1+4cEGDwUChUMjqushrAglXq1VzfLRTuTXeQCCgQCCgZrOpSCSibDarZDKpdrs90V9dLpcVCARULpdtSIc05mCUy2WdPn3apm/5/X4bRczIShduR00MyHowGFi27GrnIzXabrcnyGOlUkn9fv+pJWEeSSb9D//wD2o2m/YfYhDJZPIoLudkPWXr29/+tu7cuaNGo6Fbt27pb//2b4/6kn7jQgrRHeUXDAYtg+h2u6pUKtbSdbJO1me9EAmJRCJWa/Z6vTafenV1VXt7eyoUChqNRqpUKiqVStrZ2VG1WjVoWxrXrL1er+bn57W9va1r167p1q1bNiBjYWFB8Xhc8/Pz9nsajYbeeOMN/fjHPzYp0263K5/Pp2q1qnK5rI2NDfu3ubk5eb1e7e7umq54uVxWqVRSo9Ew8hiOfH9/35TQhsOhms3m/2vv3kKa/MM4gH/NYcvNNY9pBVkZSVkmIdGZ6IBBGlGmQSQJ0cHoQoLsSq8Uugi76GAtyk4UFIRBaRKlCaWGeKpcReZ52XRzc/OQ9v4v4v39teM0dVt9P/CDPOzdMxk9e3+H50FLSwvKy8tRWFjo5L/+6DnlTjorKwtZWVni6/T0dKxZs+aHa3lE37LZbIiNjcWbN28QHR2N/Px8vHv3Ds+ePXN2aD8UFxcnagj7+fmhp6cHgYGBYtpv8uTJ6Onpwdu3b0XHLaKx1tTUhAULFohTB/IObrmO9eDgIEJCQmCz2dDY2IipU6eKxw4MDECtVkOr1YoqYIGBgTAajZg9ezba2trEJjClUomAgABxLltu2zqUh4cHysrKxNqz1WpFQEAAgoKCMH36dLFZzGw2i3KharUa06ZNQ1dXFz59+gS1Wg2VSgWLxSKahTQ1NUGSJLx+/RrNzc3idbmz395JHz16FLdv3x72vVOnTiE7O3vMgtizZw9yc3PH7HrkuubMmYOOjg5ERUUB+Folqb29HWvXrnX4GhkZGdDr9ZAkCWVlZXj69CmWL18+XiH/sdmzZ8Pb2xtKpVKcnzaZTDCZTGJDTkNDA548eeLsUOkvZrFY0Nraiv7+fjGtPHQ6W66YJydi+TiUXBHMarXCZrOJTV5yMRRPT0+EhIRAo9FApVJBo9FAkiTYbDZxpvlbhYWF8PLygtlshslkwqxZszBz5kyx9CPfZff394uSot3d3bDb7eL8tclkGtb4o6enB7W1tSgsLERzczMAuH2CBhxI0teuXUNMTIz4VOXp6YnExERcuXIFp0+fFv/ZfDuqqqocCmD16tUICgrCnTt3/uyVkFt4//49jh07hmvXrmHKlCm4dOkScnNzUVRUNKr3k1KpRHR0NF6+fDnBr8Rxp06dgkKhEJWgNBoNAIi1uPb2djx8+NDJUdK/oLGxEeXl5TCZTKIwibwzWqlUimIffn5+0Gq18PLygkajQUBAALRarbiOXLdbpVIhODgYAQEBCA0Nha+vL/r6+sQUtbwm/SOVlZX48OEDVqxYgdDQUFFZTKPRiI1tFosFg4ODsNlsMBqN6OrqQl9fHzQaDZRKpfiw0dnZOeyY2d/kt9PdBoMBxcXFiI+Ph06nQ0xMDIxGIyoqKlBRUYGUlJQ/CiApKQm3b9/+K9bi9Hq9s0NwCzqdDrGxsSgtLYUkSYiLiwMApKSkjPj9dO7cOVRVVaGgoGA8Qh0zQ6s8ydWXgP9LG04UvkdpcHAQ1dXV8PHxwfz588U6tTztLZ9Dlr+W71SHbuKSN2XJ55CBr7u55ZK2ZrMZbW1tog3k9u3bfxqPPO0ufwiQd4UbDAa0tbVBrVYjJCRkWC1xAKK5jV6vh8FgQGNj43j+2ZzGoTXp3NxcHDx4EDqdDrt378bVq1cdfoJVq1bhwYMHAICGhgZERESIn02ZMgXx8fHYunXrCMN2TSdPnnR2CG7jwoULuHfvHvbt2yeS10idOHECERERWLdu3RhHNz7kvr3d3d3DjozcunVrwmLge5RkVqsVL168gEKhQFhYGObOnSuqccmFdrRarfieXIJTnh5XKBRiPVguHCK3f6yvr3d4NrWtrU2shctT8MDXNXT5NITcPU6pVIrKZSaTCb29vaivr3eLblaj5dDu7rt372Lx4sVYuHAhtmzZguvXrwMAzp49O2yX9tAhb4ApKSkRtVKHJmgA2LZtGzo7O7kW949RqVTIzs6GTqdDRkaGODPsyPtJlpGRgc2bN2PTpk1u0W9Zrp0sF4iQa3X/bCqQaKIMDAygrq4ODQ0Nooyn3Hda7nPe398v6mb39vaKymHyXTfw//lro9E4ohmbvr4+mM1mUQdcoVDAbDajq6tL3DUPDg6KZhnyWnVPTw8MBoNoZPO38gAgOfKL58+fx7Jly2A0GrF+/foxefKCggI8f/4c6enpY3I9cg86nQ5qtRqJiYnIycmBVqtFQkKCw49PS0tDcnIyVq9ejY8fP45jpGPn8OHDsNlsYt1N7v7z7t075OfnOzs8IgAQGxzDw8MRFBQElUolCo5MmjQJdrsdFosFgYGBYsq7r68PFosF7e3tqK2thUKh+O7ONicnBwCwf//+757Ty8sLarUaoaGhUCqVsNvt4uTDly9fxK5uuTpfa2sr6uvr/4pNYY5wOEmvXLkSJSUl2Lt3Ly5fvvzHTzx9+nQ0NDQgPDzcrUq00Z+Ji4vDmTNnsGjRIphMJqhUKlRWViI9PR03btxw6BqSJIkCDLLMzMxhx/pcVVJSEoKDg0UDjvr6epdfT6d/14wZM+Dj4yPWrIGvRyDlHtPA117Ur169+uV1fpWk6dccPifd2NgIu90+ZruwW1tbWaP4H5SXl4e8vDzxtc1mw7x580Z0DfkTvDtSKBTo6urCuXPnnB0K0W+1tLQ4O4R/nkNJ2sPDA6mpqbh586ZbrP8RuaqLFy86OwQiciO/TdLe3t6iOHtMTMxExERERERwIEnb7Xb4+PhMRCxEREQ0BFtVEhERuSgmaSIiIhfFJE1E5ARRUVEoKiqC1WqFwWDAkSNHnB0SuSAmaSKiCebv74/8/Hzk5OTA398fYWFhbLJCP8QkTUQ0Qjt37hxWtra3txePHz92+PGpqakoKCjAjRs30N/fj+7ubtTV1Y1jxM6l1+vZ3GWUHK44RkRE3/Px8UFpaSmys7Ph6+uLtLS0n/6uXKf+0aNHqKmpQXR0NMLCwlBaWoqUlBQ0NTVNVNjkJpikiYhGycPDA3l5eWhqasKhQ4ccfpxer0dQUBA2btyImpoanDhxAkuXLsWqVavGMVpyR0zSRESjlJmZiRUrVmDDhg0YGBhw+HGVlZWoqKhAcnIyAMDPzw8dHR2YOnUqLBbLeIVLbohr0kREo5CQkIBdu3Zhx44dIkEfP378p+1Wh5ZUrq6uFm0YAQz7N9G3JA4ODg4Ox8eSJUuk9vZ2KTIyclSPX7dundTZ2SlFRkZKCoVCOnnypFRcXOz018XhksPpAXBwcHC41UhPT5c+f/4sWa1WMe7fvz+iaxw4cEBqbm6WOjs7pby8PGnmzJlOf10crje4Jk1EROSiuCZNRETkopikiYiIXBSTNBERkYtikiYiInJRTNJEREQuikmaiIjIRTFJExERuSgmaSIiIhfFJE1EROSimKSJiIhcFJM0ERGRi2KSJiIiclFM0kRERC7qP6hTVGwNdh0lAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "mvbAGRRAHS63",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "371a6856-9f5c-4688-f210-6066f488abb4"
- },
- "source": [
- " torch.cuda.is_available()"
- ],
- "execution_count": 18,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "metadata": {
- "tags": []
- },
- "execution_count": 18
- }
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "img = nilearn.image.load_img(data_dir +'100408.nii')\n",
+ "plotting.plot_anat(img)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "iR-yP8c-NanX"
+ },
+ "source": [
+ "Questions:\n",
+ "1. What is the size of image (file)?\n",
+ "2. That is the intensity distribution of voxels?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "oHD0cZv9NmWg",
+ "outputId": "a14bea50-ce47-4c51-b2ac-0703aa73a7d0"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(260, 311, 260)"
]
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "jX-W0Nv_HaLG",
- "colab_type": "code",
- "colab": {}
- },
- "source": [
- "if torch.cuda.is_available():\n",
- " device = torch.device(\"cuda\")\n",
- "else:\n",
- " device = torch.device(\"cpu\")"
- ],
- "execution_count": 19,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "id": "vvoEO3-oQxfV",
- "colab_type": "code",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 485
- },
- "outputId": "30a6b67d-2c69-4db9-a725-1a518841f82d"
- },
- "source": [
- "## Hidden layers 1, 2 and 3\n",
- "hidden = lambda c_in, c_out: nn.Sequential(\n",
- " nn.Conv3d(c_in, c_out, (3,3,3)), # Convolutional layer\n",
- " nn.BatchNorm3d(c_out), # Batch Normalization layer\n",
- " nn.ReLU(), # Activational layer\n",
- " nn.MaxPool3d(2) # Pooling layer\n",
- ")\n",
- "\n",
- "class MriNet(nn.Module):\n",
- " def __init__(self, c):\n",
- " super(MriNet, self).__init__()\n",
- " self.hidden1 = hidden(1, c)\n",
- " self.hidden2 = hidden(c, 2*c)\n",
- " self.hidden3 = hidden(2*c, 4*c)\n",
- " self.linear = nn.Linear(128*5*7*5, 2)\n",
- " self.flatten = nn.Flatten()\n",
- "\n",
- " def forward(self, x):\n",
- " x = self.hidden1(x)\n",
- " x = self.hidden2(x)\n",
- " x = self.hidden3(x)\n",
- " x = self.flatten(x)\n",
- " x = self.linear(x)\n",
- " x = F.log_softmax(x, dim=1)\n",
- " return x\n",
- "\n",
- "torch.manual_seed(1)\n",
- "np.random.seed(1)\n",
- "\n",
- "c = 32\n",
- "model = MriNet(c).to(device)\n",
- "summary(model, (1, 58, 70, 58))"
- ],
- "execution_count": 20,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "----------------------------------------------------------------\n",
- " Layer (type) Output Shape Param #\n",
- "================================================================\n",
- " Conv3d-1 [-1, 32, 56, 68, 56] 896\n",
- " BatchNorm3d-2 [-1, 32, 56, 68, 56] 64\n",
- " ReLU-3 [-1, 32, 56, 68, 56] 0\n",
- " MaxPool3d-4 [-1, 32, 28, 34, 28] 0\n",
- " Conv3d-5 [-1, 64, 26, 32, 26] 55,360\n",
- " BatchNorm3d-6 [-1, 64, 26, 32, 26] 128\n",
- " ReLU-7 [-1, 64, 26, 32, 26] 0\n",
- " MaxPool3d-8 [-1, 64, 13, 16, 13] 0\n",
- " Conv3d-9 [-1, 128, 11, 14, 11] 221,312\n",
- " BatchNorm3d-10 [-1, 128, 11, 14, 11] 256\n",
- " ReLU-11 [-1, 128, 11, 14, 11] 0\n",
- " MaxPool3d-12 [-1, 128, 5, 7, 5] 0\n",
- " Flatten-13 [-1, 22400] 0\n",
- " Linear-14 [-1, 2] 44,802\n",
- "================================================================\n",
- "Total params: 322,818\n",
- "Trainable params: 322,818\n",
- "Non-trainable params: 0\n",
- "----------------------------------------------------------------\n",
- "Input size (MB): 0.90\n",
- "Forward/backward pass size (MB): 201.01\n",
- "Params size (MB): 1.23\n",
- "Estimated Total Size (MB): 203.14\n",
- "----------------------------------------------------------------\n"
- ],
- "name": "stdout"
- }
+ },
+ "execution_count": 10,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "img_array = nilearn.image.get_data(img)\n",
+ "img_array.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "EMokM8qhKq_4"
+ },
+ "source": [
+ "#### 2. Defining training and target samples"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "Ng1IcCer9NSG",
+ "outputId": "3b27c863-34b9-44b3-c775-3f37416e7f9f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(1113, 1, 58, 70, 58) (1113,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "X, y = np.load(data_dir + 'tensors.npy'), \\\n",
+ "np.load(data_dir + 'labels.npy')\n",
+ "X = X[:, np.newaxis, :, :, :]\n",
+ "print(X.shape, y.shape)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "G-in4TXqOuzY",
+ "outputId": "cc475860-ba6f-43d5-f34a-c327fda09234"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(58, 70, 58)"
]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "wUtTLI4ZwhDi"
- },
- "source": [
- "#### 5. Training the model"
+ },
+ "execution_count": 12,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sample_data = X[1,0,:,:,:]\n",
+ "X[1,0,:,:,:].shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "aVv2Rd0GY5YZ"
+ },
+ "source": [
+ "**From the sourse article:**\n",
+ "\n",
+ "[The original data were too large](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full) to train the model and it would cause RESOURCE EXAUSTED problem while training due to the insufficient of GPU memory. The GPU we used in the experiment is NVIDIAN TITAN_XP with 12G memory each. To solve the problem, we scaled the size of FA image to [58 × 70 × 58]. This procedure may lead to a better classification result, since a smaller size of the input image can provide a larger receptive field to the CNN model. In order to perform the image scaling, “dipy” (http://nipy.org/dipy/) was used to read the .nii data of FA. Then “ndimage” in the SciPy (http://www.scipy.org) was used to reduce the size of the data. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 235
+ },
+ "colab_type": "code",
+ "id": "be_2ekP6PG2t",
+ "outputId": "cf54fb05-5d9a-4105-8d9a-cddb15c6c5c1"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "yUZGw-ETwKA5",
- "colab": {}
- },
- "source": [
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42) \n",
- "#del X, y #deleting for freeing space on disc\n",
- "\n",
- "train_dataset = MriData(X_train, y_train)\n",
- "test_dataset = MriData(X_test, y_test)\n",
- "#del X_train, X_test, y_train, y_test #deleting for freeing space on disc"
- ],
- "execution_count": 16,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "BttsN8kG3YyG",
- "colab": {}
- },
- "source": [
- "train_dataset = MriData(X_train, y_train)\n",
- "test_dataset = MriData(X_test, y_test)\n",
- "train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
- "val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) "
- ],
- "execution_count": 17,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "Ry5Deo3uYufS",
- "colab": {}
- },
- "source": [
- "CHECKPOINTS_DIR = data_dir +'/checkpoints'\n",
- "\n",
- "criterion = nn.NLLLoss().to(device)\n",
- "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
- "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)"
- ],
- "execution_count": 22,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "InIC1EMOZRHs",
- "colab": {}
- },
- "source": [
- "# timing\n",
- "from tqdm import tqdm\n",
- "\n",
- "def get_accuracy(net, data_loader):\n",
- " net.eval()\n",
- " correct = 0\n",
- " for data, target in data_loader:\n",
- " data = data.to(device)\n",
- " target = target.to(device)\n",
- "\n",
- " out = net(data)\n",
- " pred = out.data.max(1)[1] # get the index of the max log-probability\n",
- " correct += pred.eq(target.data).cpu().sum()\n",
- " del data, target\n",
- " accuracy = 100. * correct / len(data_loader.dataset)\n",
- " return accuracy.item()\n",
- "\n",
- "def get_loss(net, data_loader):\n",
- " net.eval()\n",
- " loss = 0 \n",
- " for data, target in data_loader:\n",
- " data = data.to(device)\n",
- " target = target.to(device)\n",
- "\n",
- " out = net(data)\n",
- " loss += criterion(out, target).item()*len(data)\n",
- "\n",
- " del data, target, out \n",
- "\n",
- " return loss / len(data_loader.dataset)\n",
- "\n",
- "\n",
- "def train(epochs, net, criterion, optimizer, train_loader, val_loader, scheduler=None, verbose=True, save=False):\n",
- " best_val_loss = 100_000\n",
- " best_model = None\n",
- " train_loss_list = []\n",
- " val_loss_list = []\n",
- " train_acc_list = []\n",
- " val_acc_list = []\n",
- "\n",
- " train_loss_list.append(get_loss(net, train_loader))\n",
- " val_loss_list.append(get_loss(net, val_loader))\n",
- " train_acc_list.append(get_accuracy(net, train_loader))\n",
- " val_acc_list.append(get_accuracy(net, val_loader))\n",
- " if verbose:\n",
- " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(0, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
- "\n",
- " net.to(device)\n",
- " for epoch in tqdm(range(1, epochs+1)):\n",
- " net.train()\n",
- " for X, y in train_loader:\n",
- " # Perform one step of minibatch stochastic gradient descent\n",
- " X, y = X.to(device), y.to(device)\n",
- " optimizer.zero_grad()\n",
- " out = net(X)\n",
- " loss = criterion(out, y)\n",
- " loss.backward()\n",
- " optimizer.step()\n",
- " del X, y, out, loss #freeing gpu space\n",
- " \n",
- " \n",
- " # define NN evaluation, i.e. turn off dropouts, batchnorms, etc.\n",
- " net.eval()\n",
- " for X, y in val_loader:\n",
- " # Compute the validation loss\n",
- " X, y = X.to(device), y.to(device)\n",
- " out = net(X)\n",
- " del X, y, out #freeing gpu space\n",
- " \n",
- " if scheduler is not None:\n",
- " scheduler.step()\n",
- " \n",
- " \n",
- " train_loss_list.append(get_loss(net, train_loader))\n",
- " val_loss_list.append(get_loss(net, val_loader))\n",
- " train_acc_list.append(get_accuracy(net, train_loader))\n",
- " val_acc_list.append(get_accuracy(net, val_loader))\n",
- "\n",
- " if save and val_loss_list[-1] < best_val_loss:\n",
- " torch.save(net.state_dict(), CHECKPOINTS_DIR+'best_model')\n",
- " freq = 1\n",
- " if verbose and epoch%freq==0:\n",
- " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(epoch, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
- " \n",
- " return train_loss_list, val_loss_list, train_acc_list, val_acc_list "
- ],
- "execution_count": 23,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "2UznBfFtRtQS",
- "colab_type": "text"
- },
- "source": [
- "##### Training first **20 epochs**:\n"
+ },
+ "execution_count": 13,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2de4xV1fn+n2GEUREEvHATQRSvgIMKQjVfrUCrf2hta201JvifSW1MNU3UxraaNjVNGoKxtbFqra2JeEtK24hSFUVrQfEuAiI3h4sgXhBFBGT//uD3rPPsM++ZGXDmnH1mnk9ywmad2XuvvfbaZ7/vu95LA4AMxhhjjCkcvWrdAWOMMcbE+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXFL2ljjDGmoPglbYwxxhQUv6SNMcaYguKXtDHGGFNQ/JI2xhhjCopf0sYYY0xB8UvaGGOMKSh+SRtjjDEFxS9pY4wxpqD4JW2MMcYUFL+kjTHGdAnXXXcdrrvuulp3o645oNYdMMYY0z054YQTat2FuseatDHGVJnVq1dj6tSpte6G2UdWr16N7du3Y9u2bdi4cSPuvfde9O3bt0vP6Ze0McYY00EuvPBC9OvXD83NzZgwYQJuvPHGLj2fX9LGGGPMPrJp0yY88cQTaG5u7tLz+CVtjDHG7CPDhw/HBRdcgHfffbdLz+OXtDHGGNNB/vGPf+DTTz/FunXrsHnzZvzqV7/q0vP5JW2MMcZ0kIsvvhj9+/fHOeecgxNPPBGHH354l57PL2ljjDFmH1mwYAH++te/4ve//32Xnsdx0sYYUwN69+6Npqam9P/du3fjq6++qmGPOk5DQ0OrtizL2tynsbExbR900EEAgO3bt6e2PXv2dFLvqsesWbOwZs0ajB8/Hm+88UaXnMOatDHG1IC5c+dix44d6XPzzTfXuktmH9myZQv+9re/4Ze//GWXncOatDHGVJljjjmm1l0w+0F033784x936Tn9kjbGGFORAw4ovSaOOOIIAPl0nzRdr1ixIrW1tLQAKJm4+/XrhzPOOCN9P3r06NzfAcCGDRsA5E3gW7duBQB8/PHHqa0ezeJfB5u7jTHGmIJiTboTYJWXmTNn1rgnxuzFc9J0FHXoGjx4cNo+8sgjAQBDhgxJbTT3Dh06NLXR2Y3aMQCsW7cOADBw4EAAwLRp0zBq1Kj0/SGHHAIAOOyww1Ibj3nggQemti+++AIAsGTJktS2dOnStK1ad3fFL+lOwJVeTNHwnDSme9Cl5m5XeqlPalHpxRhjTGusSZuQCy+8EE899RQGDx6MJ554AjfeeCNuuummWnfLGNNJ9Oq1V0dTj+Xp06en7UGDBgHIO2r169cPAHDooYemtg8++AAA0KdPn9Q2YMAAACWns0GDBqXzAcBnn33Wqj90QNMMXjTFq5LQv3//tL1y5UoAwKeffpratm3bBgB1E3PeHnYcM21SrUovxhhjWmNN2rQJK708/fTTte6KMWY/oZaqGjAdtI477rhwH2rNBx98cKt9VCv+8ssvAeQ17nItds+ePbl9iB6bGrL2kVnMPv/889SmDmrjx48HkHcgo9Pa4sWLUxu1/XrEmrQJqXalF2OMMa3xS9qEVLvSizHGmNbY3G3aRCu9fPe73611d4wxHUQduSZMmAAAGDduXGqjeVpjlXft2pW2P/zwQwB5py3GN9PEDZTM4pqZjOZumrgPPPDAXPwzHcvUCax37965fQFg/fr1AErx0kDJoU37rv1hm5rAFyxYAKD9IiBFpMtf0vVc6cXspRqVXowxxrSmy1/Sc+fOzf3/N7/5DX7xi1909WlNJ6KVXi655JJad8cY0wYMWzr55JNT2+mnnw4gr4XSGUu1WYXff/LJJ6mNWmpUqlIdxzSLGVEtlhq2avvUxFWbZ85uOr4BpUxoALB582YAe5W/8n7oEt2pp54KAFizZk1q0+sqMl36knall/qkFpVejDHGtMaOY8YYY0xBseOYMcbUOeqUxZKQEydOTG0sdKHmZZqz1eFLHbAYr6xmY/6t+hVxe+fOnamNJmeauPfs2ZOLdaa5W+Ok6YCmpnT+nTqv0cFMj68mcu5/7LHHprbjjz8eQL44hy7F6nUXDWvSxhhjTEHxS9oYY4wpKDZ3G2NMHaIe1OrJPWXKFAB5T26arjU1544dOwDkTeCRuVtNzdxn48aNqY3xyOq9TW9rmp4bGhpy3t/02lYz9UknnQQAuZBdxlOr97Z+TxO5Hoee4NpvtqkJXLdpBi9iHLU1aWOMMaagWJM2xpg65KijjkrbZ555ZtqmtsyMYUDJkWvYsGGpjYUq1FFLi1vQSUy1y/fffz/3r6J/x20eu0+fPsl5DShZAdQawH3UkW3UqFEASho8kNekmQGN5Sl5Lv1Oj63x1izOAZQsA9Twi4Q1aWOMMaag+CVtjDHGFBSbu40xpo6giVgzA6qTFM3dGrfMesrqOHb00UcDyDuOqemb2+rwRUctNT/TaStKzcl/v/jii1waTpqshw4d2qrfGgdN07f2UfvDFKFq2ub4qAl806ZNAPJFN/Rame5069at4XlqiTVpY4wxpqBYk95HVBJtT9KiFKjOEZRui+jqb4wpPszSpY5Yms2Lv0tR8YrPPvsstVEb1mxlUeEM/f2ixqpaM4/TVsGKLMty4V3Uvrds2ZLa2ireERXnAErXqNo3+6OOczy37jty5Mi0zVCvf//736mtpaWl4vVUE2vSxhhjTEHpkZq0SpjcVq2YUqKGAnDtQwPgGYZAya+pqSmt2QDA1KlTAeSTCrzwwgsAgBUrVqS2aE3HmnbPI8pZrDmSo/J+pPzvNPQFyCd78Nwypn7okS9pY4ypJ1SAO+GEEwAAw4cPT20q4NP0q0oGzdQ06wIlAS4yL1c6N+OM1Wz87rvvAsg7ZdGRjabyQw45JBejzP6oAsN+R0JkpWXGtszzgwcPTm0sEqKmex0fmuqbm5tT24YNGwDkBeBaYHO3McYYU1C6vSZNCYzhBkApty0ADBkyBACwefPm1LZ8+XIAebd+5pUdM2ZMaqNjAqXTc889N5cFaNy4cQDyGXLopDF27NjURkcHSqQAsHLlyrStzh6me0ANQLULXSrhnFENiXNLQ28IQ0y4L+fkWWedBaCkFQDA2rVrAeRDdKi92BReTFTrO+644wCUHK0A4NNPP231t/37909t/FvVpKOyk6qxRlpqtORCbVj31VAmHksd3Rh6FYV/RZnL9NgKnw+dy6q9E2rf6rzGsDRgb4gYkB/n9iwM1cKatDHGGFNQ/JI2xhhjCkq3MnfTPKFxf0woP23atNSm5kLGHKpphA4Q0XE0sw9NLfy7ESNG5GLv2K7mJDow0Ftc+33iiSemNprcAWDx4sUAgHXr1rU6t6lPaObjkggAHHHEEWmbc0ZNmpw7aiLn36mTzPbt29Pc43KOzltuq4mU8aqVnHJoJlSzYlEyMvUE9PeJJmtdHuHcAErmXv1e44gJTbxqSta5RaL7rA5YNF1rcQ7OJ87DkSNH5szv0Xk4x/R8PI/2Uc3hNKureb3caa18f6Lzm8+Rjhn7qJnLaoE1aWOMMaagdCtNesSIEQCA6dOnpzZKkOqgEGWs0VAAFlBXJwJKr1FuW42TVg1XY1MJNXftA7dV8lOtmk5ES5YsSW2M0VZtiJKxnX+KRSTFUzOiExCQn4PcR50Oo+NEWk5TU1Oak1FYC8+jmg81HnUs0u+p5WhWqVWrVgHIazG1DlcxprvRrV7SxhjTU1ABXc3ZNNOqSZkKgCoRFLh030iZ0SUOKgJquub+aiqmyZlCpkbXACVhTk3JjLBR4ZDnUeFPt3k9qjy1pZip4qTHoRCrQjGXmmzuNsYYY0xI3WvSKi0xhllNxZSQGBsKAB9//HHaprSpjhk0/UUODJpVh/HNPMfOnTuTpKnf67EjBw7ur5JdlJJUYfyr9mfRokUAgHfeeSe12cGsulBiV9M0tQqV9ql16P3RfSjRq+RPjUbnZXlJQMI5xTmo2hDnls5FLhVxOabSPnSgBEqahj5bdG7UeFTtm83h+4f+HnBsVZPWuUVNVJcuOM/094n7q1asyyK8b5qnYfXq1QDyjoh0ltW28hjjhoaG3HEYo6yFQYj+pnE+6lKgopov4VhFMc9aYlOfPW7rM6j71xJr0sYYY0xBKYao0EFUsqH0N3HixNQWlVGjNKl5blWTplSqGgSlNpXeuH6j6xOUyihx7ty5M3T0UakykgipLanWpH9HyVilXEqtGk5GjXv+/Pmp7aWXXkrbdijrPHQuRmt/Og+Ya1k1V3U2JJoVjBYi1TyjQiycG2pR2rVrV25OlveXz4nONz4H2qZaR/RM8JmJ5mC03geUtG69Vs9LYypTVy9pY4zpSVCYo6AHlBQOdbCKltR0uYJKhpqcKZhpVEGUklPNz1ym0eWMpUuXAsjHanMphMrUypUrc9EpjOtX5YgCqwqCFDajqBrd1v7wGnVMuK3HjlKk6pjxejZu3JjaIvN8V2NztzHGGFNQCqtJU0KiQwsATJ48OW1TilTXfprS3nvvvdRGJzCVFiOHgPYSy9P0p5IopSpKnLt37w7DGaJjR9KgSnnRtpoQ6XihTmWUTkeNGpXali1blrYpEduZbP+haVudbbSoCu+ROktxjuq8Y0amaFkDKC3JqMmZx26rPB+w1zmIc5LzUZ16qL2ohsT+qrk7ykSl18B9NDMf0edAz03HM2bRA0qaimpDZi/Rsgjngd5z/Z7Pty7NcTtaClSNU4/Jv9V7zvuqc5DzQH9rqIXy3j/55JO53y8+MzpPoiUVzkHtd5QbQI/D/uqYsL/qOKdFlfhbrtd19tln564BAJ555hkA1XWAtCZtjDHGFJRCadJRYfMLLrggtanWHGnDlIa0zCNzF+vah2osqqkQSnIqsXF/dTrj+fh3O3bsyK1pRERZo3g+df7R64u+jxzQ2De9vu9///tp+8033wSQD9HSMA6Th/dA1wMZ3qdl91T7pHSuknZ0/6iZqjSv2jm1G50HzOwVlffTebVjx440J6lR67GJzm/2p1KoS/n5dH9dx4y0Lz0m2ydMmJDaeK2arz7K1mdMT6RQL2ljjOnpqCBExUSXtegEVskrnk5bVFC0Tc29NAergBdFmOhyRrRUxuOogsIlDB5vy5YtOeUhimWm8KnREuybCpSRc5u2sb9RNIU6fkXx2Cp8U4FrrwZ3V2NztzHGGFNQCqVJq3PX1KlTAeQdx1R6oeONSm+U/DQUoDyWGchLWJS6Imcchc4D2sdyqXLPnj2hubu9Mmnst5rk9XueR03zlDb17+jUpo5M2keGTxx77LGpbd68eQDyZvyejI7n6NGjAQCTJk1KbTQb63xSTYP7a9EJSvk6Dyid63zRexCZnTlv9Th0ttI5rX2j5hTNf3WIiZzSoj5E2c5UO2PfKmXZ43n0e46zmuS5ZKXLAT0lnlrH64wzzgCQL8TCZ1qdWDVMiPcwKl8ZaZc6ruq8x3mt9yrSINkfXTrTucXzqxYbaancJ8o7oHMsisH/8MMPW/VHy7zyPKrNq9WA3+szSGc7fb5pNaimk6M1aWOMMaag+CVtjDHGFJRCmLtpdtFFe5pY1IyjqQRpalPzBY8TedaqaUO9Yztq7ub+UZk0mvgOPPDAnMmaTgbtxUnr/kTPQ0cRNScx3lSPQ3OhmpBYdxpoHbsIlLIX2dy9F42tZOEAXTLgfNR7FaWU1ftHk62aDblsouX9dJtmSV3ioGlc7znNbuWOM5xTPI46yUSe40Tb9JhRyl2a9KNnp9Jcjkod0iypzzJ/CzStrZo0u3OhDl1SoIlYf0O4BKgmYDV9RzHvH330EYD8POC4V1oqiSIHoigBzgP9faLTGo89aNCg3P3jb5ouzUXzMvrd1XlZPs+1H9Hf6W+jFovh+Ojy0xFHHAEgP5d5/dWMirEmbYwxxhSUmmnSKn1TYznttNNSGyU61a5VeqHGQ2lH2bRpU9puKw66vB/lqFTFDF+UuICShEUprampKecwFDmyRQ5fUV/03DymSoGRhYDnUUlUnSc4pjqOjAFWBx3d7mnouDMnsUKnO3VuibKCKfxb1UIp5etcVG2A30eWIr2/PKb2+6uvvkpzknOiUnYqEmVxonOmnlP35bOpc5AWGdW+9LojZxz2LSqgc/rpp7c6NlCK+a9FLmVjqkkhzN3GGGP2okINi1KodzcFNxV0okQ5qlBQyYiW3vR8UbpiFR6jOucU8KJUuTRhn3baaanWOFCK+1Zhl0JapWIaRM3YUSx3lAKUwpz2MVpyZGplRdOr1qLGtM3dxhhjTEGpmSat0tmZZ54JABg7dmxqo4Sl8WjqWEMpSM10/F5rR1PiU4lNJShKZVFbFDOnJmdeA6U57R9QMhurpEoJUyU/nk+vRSVjSp1qSqcTnZpXadpUaVCdlTiWmr2ITk86zk888QSA7p+aUceYRM42Ooa8/zruKl1H2gCl9yimP5LmtT1yeNR9eD69lj179rSKcVaTPLf1fJx7lbQqPgv6HNHcreeOYrn1Wec8U0enKPsU+695CXRec/+333671TXUO7qkoFnDCOeRPrN0xAJK81U1QM4jHU9SSXPleEalI7WP/L2Nigtx3759++LUU09N3/OZiJZ4omciirXX/uh8IurQyW0dE4VjFs15fW5p0WhpaQn70xVYkzbGGGMKSs006UrFJAglJ5VYdC2C+6vjCNdqVOKmJKeSfZS5KFr7iLLhqAbMvqkmrI5ulMBUyqNEq1JeVNhcpVc6f0WZeFSa5vVHBRiAOCSMfWfWJ6Ak5WrIRHdB7+nEiRPTNjVIDfOLHP8oNVeyMnCeRCUdI2220hoXNZWOhgaWh06Vl6pUTaQtKmVSizRtzj21NHCfSuVQOUfVKsRnOApfrKSlMHxGfx/0mMZ0F+w4ZowxBYACmVZdmzJlCoA4llkFuKjWvDpOUThVAZ3blWLjeU5ti2KwqRRopA37QGHtk08+yaV4bkvoiwTKSstC7IeapKOlIuaL0DhxFdip2KmQyvMMHTo0tVEQrGR+7wps7jbGGGMKSs006Si5vzo/0AlL40TVtE1zoDpB8W8jSSzKpKNETjTlSeLLKTcf9+7dOxeXTLOxmjnZ70hiU4k16qOGD9A0GJWWU8lOx4zn1HNzHzWl87q7k7mb16mhLOPHj0/bHBM6MQKlOGG9LxxvvT+6vBBlBeM+kZaiDjiRQ4zOQR5b52pUOCHLslZZ7HQfnidyCNI+RM+EmsA5r3XJJYrB1uNwrKJloWjMKhUyoNZ20kknpbbFixcDqGxqLzq8h8cff3xq4++gOjxx3FVTVm24rfurS2/8PankVBvNCd4rHWNuR9qu5pCIiBwVtd9RcZroOdIlTo6V5oPgu0WdgfW3k/NMx5TjrL+70dh2NdakjTHGmIJSdU2a0tIxxxyT2rhWodIWJSRdx1Aph9KfahqUbqI1FCVqU0mNkpi28Ty69lGuARxwwAHhsbWPlBz3p+yeSqpRwXYeW8dJteHIaS0KQyoPJesORE5gep1RCTo6J3F9DYgzfCm8R5GTn2q7+n353wGl+xppFdHcUY2kqakp9SPSpDlHozYl0qCiv4syrpWHhJEo3Ir3Qect56pev2rx3B4zZkxqo+WDZS6BnlPe0nRf7DhmjDEFgMt1KjxG5l4KM2quVSEtSuFKoUaXD6MIgihfRFRUKBJ+ojwApFevXuHSXBSJokJdlEMiMqtHS4VRLgMdE1VgonhsKjNRkRu9R12dmtbmbmOMMaagVF2TpkSj5u4oDphSjEpaGo8ZEZnxOopKaitWrABQypsLlIp/qHmNhUEonY0cOTJ0BNJykcyQFB2nEpHps/w7/V7HSU2IjAFWiZdhCJH5MZKq6xVqElo0QiVgjpk6lnBsImk/cugC4qxJPI8ep73wl6hMYGS6pgOW3vOmpqY0D5nhrr2iMtSQVNtRxxsuAUVOh9ofLhfocdRMHTl1cSyjpSsNmYnQ34xTTjkFQD52upLj2dflzjvv7PRj8lqi/NKRY1j07CuR9qnHibLDRUS/AzpXI42b2/wtmTRpUjj/o3nZXm4AhedRB+JIk476rWMRafHl3+n3559/fmprb452hKuuuqrid9akjTHGmIJSdU2aoRPqMh85QTFUoFI4Bduj8A5ti7TCyJ1fJSjmot24cWNqe/nllwHkpfTm5mYA+fy0qjWznJ7uQ83n5JNPTm1RcoIoj7NKhgwp0NAMXr9qF7p2QkeoqIKNnrveNWn2Wx3kqM1pYgKVgCNNkm0aLkStWOdllJta71Xk0Mh1rihJBQCMGjUKQD5BBO9vpFVpv3ft2tVqza89DYFjpVqvPqMcq/Xr16c2JnbQ+cbrUQtOlOwhcpKLLAmqfalm39b16Ph0lSbdluazvzA8cPLkyamN46lrybwXeq/0Oed467VzHFVLpxOlPicRkYNh+XzTfgGl329aIJ9++uncfIocf6N14WhuKJwT+hvL+6/zJQqDjEr/6pjxWnUO8rmdO3duatP88V2BHceMMaZGqLDCJTBd/qJQqMs0fInpC0Vfdiyiod/zOPriiso8RqZvFYii2Gluq+DKlzSXgt5///2cgBAJc1EBGbZVEma5HaXXVcGGy1j6Ytbv2d9omUYFII5fe4JNZ2JztzHGGFNQqq5J08FFTWSUTtTVnRJdZFbR71U6oykjinVVqSlyTFBJjGaZqVOnpjZKWiw/qf1RaVGdkWiq1OIVLD2nEl1ElJdXTela0J1QuqsUChE5R0Rl7yKnpXoqA0itQkvj8Zo0y1iUUU6vc9OmTQDyTlmU7HWudtRxJMo8p6Y0LdXKJZcoC5m2MYxEY7n79OmTHMaoqeh84txR03UUQ3/00UenbS4TaDYsmrvV1Mj5pM+TPhPUiKICJVFWNB0zhc96FEetSwRdHR5jTFdjc7cxxtSIyH9GFQquG6tJmn4oqqCoqZlCo/pSUCBVHxYKMLpOq9EpFAqjBE4qPPHc2kYBl8LWp59+mqswF/khRUTr1CoA0rSvbTy3pkDlOGra5sjTXb3ESeTDU0l47Aps7jbGGGMKStU1aZrfNB6Vpm81/UXetgolLDU1UsqLHCEqJUSnpKdmTrapiZB9VEmMpkb2Yfny5bkCDjSbq2m/Uv3g8j7quTlmKhlS+o1KvUVpGoG4aEE0vpTk1SSvjitFh/efJl+gNLd0bqgGwbmjEjvN3DrGHNtK9yoyfUeFAzgv1bzMpRn9XvvIe6nepK+99lqr8/Xv3z9FD7zzzjsA8vOW95ce5ACwbNkyAKWIhPJtzuVJkyalNprDdZ7Q9E1tBshrZ5x7Oqa8Vn0GOS+1TTXMyGzOsVcNMzp2kYjyE2gb56COYTQHdd5xGUJ/Yzl2Gt3A8+jvU3ue3Dx3dK+0QFJUnEd/Q6jZRrHTOuej94CORRTRwu/1WeYSiI6Z1h+PojLaWnJVi0RXY03aGGOMKShV16Qp5ahWSCmms2IB1dGH0mIlSTpykiJRxh6VxKgFUWI7/PDDc1JetE90vkiCjIqElBdRAPLXT0m2UixgFGcbxQJy/HR9pp40aV6LxmWyTTVXlZqpdUSZxKKY6EqlKnkcHWMeUy0cnP9cUwNiDULPQ+2EJRmV8vhX9pMatM5lOiDq3GAhG3VAU+fE1atXA8hrENOmTQMAHHvssamNTpJ6/WvXrk3bnLeqnXCcI41O75eOBcdH5z/nrfYn6rcx9UQDgIpZKpz6bt9S33388cddmvpOf+SrkfpOf6Q7I/VdteA9UC9f3gu9P1Gd6PYS3bQnzEX1piOTa1SfWZ+JCL7MIlOizrE+ffokpyGNiy0/d/S8qfAcLYWoCZHn0Gsg+vKMnGyiBCfR2LdXYz2ayypUUWiKzleJ5cuXY+bMmR3++6+DCkozZswAkDdJ876q8B85XUVLLpEipIIQIwhUMNXx5DKb3j9u6xhzHzWvU7iaMmUKgL2plvVeUmiKfhvVUY1/p33UqAPOPT02rz96VnVOa6QO+x7Vqtb5zb+bPXt2alu3bl2r83QmNncbY4wxBaVNc3dnpb5Taem8884DkI8JpZlWnVsiKUY1DUpLmrqT59HjUCpVDUD7ExUJiMzLlCBVQ6B0Pm7cOAClwhwkcmqg9tKedh2FPaxZsya1sR9RFh817am2xL+NakirBE2T57x581Lbiy++2GqfokIN4dJLL01tjE9XjUQlf84nHS+OQ1QPXOdLFI6ix6GDijpT0cytzm3f+MY30nakISxcuBAA8Prrr6c23ksWl+C1ck7ScUznE7WJyOlQY561LjOvUa9r4sSJAICzzz47tUWx+q+++mrapnYWpWTVecnvo9wJ+rdqDuccfu+991LbggULABTX3B2VZdTfAc6D6LcoKr4ClCx7+psXpdXkb5D2QceJyxT6m8f7r+fj763OZX7P+zRkyJDQWqmaLZ9HdVjkMpv+XXvlNnnuyMpYyeEzCjdjiJo+/7ROVNOyaE3aGGOMKShVcRxT6YXOPOoww+9VQuJajUpQKmlTIlcJsa11R5UWVcJsaz08krQid3x+9+WXX+Y0tUhrZlvkOFZJk+b+qjVQytNjU4JWCVLXpSiB63nobKNrl1E4Qj0RJRxgm+YKjpwONSyDc1DvBaX0SpJ0pBUyF7Peq2gdTzVOOnJpWAstKTrHuC6s/fnyyy9bZSfTe85+RA5x+gzqdnRdUUGbSBvU/vKZUU2MfY+0fSUqAqP3kPdOk3jQqrJ8+fJWfTSmHnDGMWOMqREqmFAgU4dHCuaRo22koACx8MR9VEHhtiowulTw7LPPAsgLVNw+55xzUlsU81zu5JdlWa4tinyhUKzpfF966SUA+ZTIKlxGQmFbbbqvRgHxbzWNLB3LVJDm+Kjy09XY3G2MMcYUlKpo0lEoU+TwEZVR03AENVVSyomcJ6JE/WrOjrJ+aR8pEUaOB2qGo+TLti1btuSyOPE47TmqRY5jkRSokh/DcHTMaALU+OAo+1p7YWJR0Y16gvdDQ8g43yqFYNE0HknXOsY8ZlTzFigt40TLGVE9XdVc3njjjbS9dOlSAPlYdZrAVeOX4UgAABjpSURBVPPhPNBrbWpqSmMQZaeiNqGmfWpvqsXpeajJqXPQiSee2OpaOXeiQjRAHK7F8+j5ojwA+vzTRK7f89j6fLOtqLXRtf9LliwBkHdUoman85bjpNcRZa5Th1USjYP+zun3vG861ydMmACg5IhZvk95H5WOasD6DNKZkvHu5UT3MrI0cL7ocaLlPO135ATK4+i1dDXWpI0xxpiCUhVNWiUWhqGodkLtQx0+ojWL6JjqMBOFrUSl87Q/bWUka88JjOsS7GufPn3CkKgooYj2IcpDrPtEiQh4nuhaVKrWffi3Ub5jPR9DKlSirSeoPer6UuR8p/OEWpruE2WC4zjp/NXkCryXUV5ldcTi96pZqlZFSV2TXVCr1rnKe1Re2pT/p4at91c1UhJpoercyXHTrH8cAw3biZ5LnW/sj2rfUcnQqMSknrv8fHrMKPlGkbRnY/YFO44ZY0yNiARFJUr1S4FJlQgViig8RctakWlaj63pfylwqiPXMccckzseUBIoVbCiMsY+LFy4MCdcUgCk0xlQEsKiyACtY96e5395vxQVelXQpjCnx+Y4RwpTNYU+m7uNMcaYglIVTVqlLkoq69evT210flHzKk1gKg2qqZImRpX8aE5UsyKlN+2DSp00B0cOExFqxqTzBPt14okn5vrYVrnBKNNQ1Fbp3HQOiXIbq9NOeU7n8vOwPxoKQglU2+oJSvSaJY3jpMUXVBOhE1V076P88VEheKCkfeixqSGpRE4pXrPjaZgJNRbVNHgc3YeOXHrs3bt3p3nIeaJaA++5zg0+g+okpNfIuaWhJ9FSSVQOVdHno7w/0djrck1UdEavgdeo18r7anO3qVds7jbGmAJAoUfX6FXhIJFQr0JRJCBFHuEUvNQsrIISvfc15SyFOPUFiDz6WZ/8uOOOA7A3ikH9dXhdqhxRAFQ/jSgaRr+PImOitM4cWxVCNdqCf6tLDrwujZxgMQ2bu40xxhhTHU1aYz0ZZ6em7SheLTKbqamMx1RHgKgsJSUolfLUHEapTKUqSnlR/GBkciPlWXUonUUlClXKo3lWa/nqddPJQq8/igln2kg1m6opkmMe1ZOOUolGHrb1AO+RlnRctGgRgFIsKpD3yqbTSlTQRe8f44hVIteMRNxftaHIE5+RDGo+VueYyBmHZm6d87yXkckZKGkG+rxFyxn00I5qluvfquc0x0zborS37S3tRM8E57/eQ70uLgNoH3kcLUSjz1TR4XP77rvvpraTTjoJQP6ec05Ey3ZAXHSirTr2umSgy0Gct/pM8P5putqoBG551rMDDzwwPI4+O/xd1igf9k3j9/XZi9BzEs6tKFWwXoP+7vIataCN/rZWC2vSxhhjTEGpiiYdaYDaRslIpX1KhlG2Lt1HHcsoLakzGaWhKJ4YKElvKqXzPNqf8mIaQElKp4azcuXKJPkqeuxIy2O4gmaAirLlaH+o+asEHWk2uq1SK4kKo3Mf1VLqEb3nnBM6NzTbF+85i2EApVKMqsVQ4lYpXbXmKE6Y90XnDsdYnwPdZplAXZPk91FWJNWKV61alSxNLPsXhbCo5kqNW+egOqjxulQz5bOjc5BjpdqOPm9Rliv2J3pG9dj6/HP89bq5DqqadDUzQxnTFdhxzBhjCgAFt2eeeSa1UUiLkhKpUKfmYJqpVYDRhEuEQo8KPxpNQCFdlQwuG+ryIYXUqLpeZHoG4rrMFD5VEGTfNJGNCn38PnKI0+tnPyolM+ISgio1K1asAAC88sorqa0WQp/N3cYYY0xBqYomrc4xNKupxEapS01klBZVclFpMkqvSfObno+OAHocNfFGxTYiUyQlUJXOaJIcM2ZM+j9DDoCSJKrSK82J2kf2ITIv6ramX+Sx1QTOMY2KlwCl8VEJkpKo/h2XCFR6LWqBgn1Fw0D03vOaoxrLavbn3KlkhuV9jZZpdIx57qiYgp5TnWg4jyLHvw0bNqS2tWvX4rTTTssd8/nnn0/fM0fB2LFjUxvnrc6nl19+OW2zMEGUkaq5uTm1MW5bryt6xqLiNapt8bqirFlASbtTJytuqzZUj+iSA52W1Pk2KtwTOcuqgyx/t/SZ5pJZtIwIlO6LOktxmU5/v6IMZ/zd5X38/PPPc88e0XOzb6q56zHbQp8tvmNU2yeVfvu5v7ZxPun9qAXWpI0xxpiCUhVNWt316ayjGgLRQHJKYipxqzRJKVClZgaaK5TEKq0lRGFbPI5KlXSIUclu/PjxAEra2eTJk8P1Eu0jncRUa4rCI9oqwabH1vUbatJRxjWgpP1t3Lgxtek2oca+atWqNvtTj+h4aAgWtTidYxzj8mxeQFwUAoiLQPC+Rc5UOr+j9bm2MnQBpfmoJSQHDhyY5uTo0aMBAIsXL07fv/POOwDySRpYJlOfE9WaVSsrZ+HChWmbiS9oXQLyYxWF/bQV3qhalc7V5cuXA8g7/9Vrhjxj2sKOY8YYUyBUWKFANXz48NRGAUiFdo3vjSIMuK3H5vJaJDDpcaLcAdpGhSOqtMbz7d69O7eUQoFVzeYUyFTQ5XkiM7z2N6qxrspRJAhGSpEKppq6upbY3G2MMcYUlKpo0irRvPrqqwBKxSmA0sK8mvEi13uV+CipqXmO0pSavaIsWyqVUVJTp6zIaSWqN00zHiWyvn37thviwL7p+Wi6j+Ky9Vq135SMo8w/6oCmx4mKDVAyVvP7ypUrAZRM890JXVLRsWE5vmiMNU66PJQEyN9fOnxpG+eeHpv3X+PlOe5AaTkoOk5U57s83p3/Z6y3OlhFhVgiJ5uOomNKzU/7PXTo0LTNvkfjqPeD87GlpSW1aba4qIRjd4RzUJcrOB/VoVFzIETZ4aJcCxFRyUd1kuQ9igrM6G/fqFGjAJTm/ODBg3NzgsfUY0f3lN9Hv7/6t1Ee82hZSPsdZR9j2BWQt0TUEmvSxhhjTEGp+po0HT3mz5+f2r71rW8ByDuTUYKKnE6AknOXSmJ0slEJiQ4vqg2pxMc1EXXAorTFcoHaptIrpThKn42NjTkpkFp+VLBdNRtqs3r9eh5uq7RITUMlQ2plan1QaZCSqrZR2tQxo/ZSSXrtLqgVhpqdjntUxpNzR8MyVCvktrZRstf1Nz4Hqj3rfWF4lGrf0TyIsnU1Nja2qg4UhUF1BXzeXnrppdSmY8Hx0xBMPptqXeLzqG1tlZA1prtixzFjjCk4uqRAYVyVDRXCuK0CJ4v0RMsMkSOWosemohQ5YKkSVV5gozzemQKyHpuRFSqYRnkH9BoonEbZzlTopVKjAm6UNvi1114Lv68lNncbY4wxBaXqmjQlGXV1j7K90IytbWr6omSpjlM0F6sJnJKYOsZEpc4ic7cWy6BJOiqWwX937doVSphq5mQ8qpoDaV4+/fTTU5tKi23FlqoEybHS+Fc1Y0fOE9xfrz+Kne4uRJnVgJLjjZpheS/1/nHuVHJEJGoi1/lBGFKjf6eZndSxsq3jRNe1Z8+eVoVctOhENTQE7U8UCqRjz/nd3ZdXjNkfbO42xpiCo9EXVHA0dlpTbkZ+EfTt0URHFDQrmbupFKhQSJ+aKO2tmrRVoeI5Im/qKP2xRqewb5UKY/A42m8qayr0UXFRgVs94uk9rwpOUbC52xhjjCkoNdOk1QRGk5yaqSl1qcSmWXW4rV7Sw4YNAxBLYozfBPLpLilNqrcuJUIt/8Z40yjWT2P1tI+U5FjnFgCee+45APmCCDRzqvTJawFK6StVmmQ/1NTKNjVtqvRKxwyVJhctWgSgVEChvB/dDZXC1eRKE79K5PQ61pSYdErRuarHpDagTjRRmcAoTa0WZ+HfRtECkVm4krmb3uM654uGzdztoxonf08YiwzkY9GpVWtMNJ3IoqUZJboXUWauKMWtLteUH698iYbt0fzWJaAoJlz7GGUS47k0oidK8csCSUApzWwR56I1aWOMMaagFEKTnjdvHgBg5MiRqY0xyrrWEmk+qpFyW5P7cy1HnaE0k1YkOVE6e/LJJ1t9N2LEiLQ9btw4APlSkqpJsz//+c9/WrXpeanZvvnmm6lNNX+Oi44PJWfV9hl7q9YFlXjpbKc5aVmOsCfGoOq9Yty9tlGb1XHnHFRNWqGkHpWl1GNrSA1RbSjKpESriGr7/F4tPNu2bUtzknOvO1tHjOnO2HHMGGPqCCoeKoxrbXCaudVMzegWXf7isqBGNERx0lFqWl0yo9KjiheX1jROWgVbOrJFMdhq2o6S8ERCql5XVGmRTnS6bKCKUCQ0FwWbu40xxpiCUghNmo5j6v5O5wiV8lRSi4py0KVeixZQ0lJzd3vOATQ1qll4zpw5APL1hikZsobukiVLciZrOlJozdu2zq3fqWTHpO/q3EbJUU33NKXr36nzCI+j19UTzdwR1E6iVKE6xyjl61zUmGY6q6gWo2ZuQg1BncmiFLh6HJ4zinNWjWPJkiXJqYgOgd29EEVPgvdSHVI1UxaLxehSIX8nVAPmnNE0wpFmq3OQ32sbNVYWCtLv1WlSw8jYN12O43PS3nOgjmX8zY9Cq/Ra2A91kFVNushYkzbGGGMKSiE0aaLSPrUG1ULbg/uo5tJW2Ep7RMHwqqU++OCDAIAbbrgBwF7JVjOJdZaWSs1Jg+8pBarmR+cg1bSiIu5FyUlbRHTu8P6pBkBNupK1YtKkSQDyiSa4j2oDPLbOsajMqd5f7r906dLUxtCR6dOnp7Zly5bhm9/8JoD8Wp0xpv4o1EvaGGNMx1ABTCNRKECeeeaZqY0CoOZaiJzAVFGicKn7EDVJc9lPl+hoXqcQ+vnnn+ccwiiE6tIkl5dUMKU5XIVZ3YfnUee28usDSjHRzFMBFKdedHvY3G2MMcYUlG6lSVfDnKvHppMYzcyLFy/u0nOr5KwOY6SI2XLqGY6njuvbb7/d6u9UYj/hhBMA5LOHRVmeqC2oY2RUq1zPTVP8ggULUhsdYTSHwJIlS9Kc9JzoGag2/PzzzwPIa7aRMxmXwnQ5R3+/OEdVs+UxNbyJWqwu+1Ar5tw/8sgjc0tEXO7ROc/9dYkuKiqjczr6nsdh4SIAmDt3LoC841i9YE3aGGOMKSjdSpOuNpQ6dd2lWlhDKg5R3mDVSOjwFZUI1ZA+1SAYZqL3mSE3DKUDSutq6rCYZZnnhzHdBL+kjTGmG0FhkOUXgdJyyOTJk1MbTc0qPGoxGcb863INHcbUBE7HMU09S7M4Bc/GxsZc5ATbNQsZjxkV01ChUx3Z6BCnUUDMA6Gx4yzvWY/5AmzuNsYYYwqKNWljviZq2qb0ftRRR6U2mrR1OWT06NEA8lpKVIJPw01YLCMKHalHDcEY0z5+SRtjTDdETdJMeqMe1lOnTgVQikgA8j4SFAZVAKQJXAXKyExN4ZK+FRs3bkx90O+PPvro1BbVao/8fFQoZmTFwoULUxt9NrpL0iabu40xxpiCYk3amE6ERVUef/zx1HbyyScDyDu8UHvRVKGqsVDjeeihh1LbqlWruqDHpifAuaWFhlg0aPz48amtubk5bbNwjMY/MzWxaqn8Xud3uca9c+dOvPjii+l7FvWYMWNGamNstcZ8f/DBBwDyy0LqEMaIBy3b2V00aGJN2hhjjCko1qSN6USosaxbty61MTvcWWedldqoGURFNwDgqaeeAgC89dZbqc2xz8b0PPySNsaYHgjjml944YXU9vLLL6dtmqQ1lSidukaOHJna6GymTmcsaMFjPPLII8l0DZRSHC9atCi1MUWuprhl6mVt03hsrS3dXamJuXvIkCGYM2cO1q9fjyzLcjcc2Bugfs8992Dr1q3YuHEjrr322vRd79698fDDD2P16tXIsgznnHNOtbtvasxbb72Fbdu2pc+uXbvwz3/+M31/6qmnYvHixfj888+xePHilLfYGGPqjZpo0nv27MHjjz+OW2+9Ff/73/9afX/zzTdjzJgxGDlyJIYMGYL58+fj7bffxhNPPAFgbwL5WbNm4eGHH652100BGDt2bO7/q1atSnOhd+/emDNnDmbNmoU77rgDV111FebMmYMxY8Z0Wn3vjqBOYAxRGTx4cGpjUQJNBaoOMc8++yyA7ucEY4qHzlUt4sNt1YCJhlMx65cWmmH4Fuuab9iwIbc/HSMfe+yx1MZnQfvjJZ4OaNI/+9nP8Mgjj+TabrvtNsyaNWu/T7p582b86U9/yuUbVmbMmIFf//rX+OSTT7Bs2TLcdddduPLKKwHsXbe77bbb8N///tc/YHXI6NGj8eGHH2LChAkAgKFDh2Lz5s37bRH5v//7Pxx++OF49NFHAQDnnnsuDjjgAMyaNQs7d+7E7bffjoaGBpx33nmddg3GGFMt2tWk77//ftx888049NBDsXXrVjQ2NuJHP/oRLrjgAvzxj3/E5ZdfHu733nvv7ZeZccCAARg2bBhef/311Pb666/j4osv3udjmeKxatUqXH/99bj//vtxxhln4N5778V9992HZ599dr/m04wZM/Doo48myf2UU07BG2+8kfubN954A6ecckqyxFQbagPz589PbcxtrNr1vHnz0na9FKQ3xnQt7b6k33//fSxYsAA/+MEPcPfdd+P888/Hli1b8Morr+CVV17B1Vdf3akdYsydZsbZunVrckAoImr6Me1z991348ILL8SiRYuQZRkuuugiAMDVV1+9T/PpoIMOwiWXXJL2B/bOH507QPHnT1fgOWm6El06+jrLSDZnt0+HHMfuu+8+XHHFFQCAK664An//+987fIKzzz47OfhoOEklGMiuHoX9+/fPefQVjZkzZ2LmzJm17kZdcdddd2HcuHG4/fbb99tD83vf+x4++uijtH4L7J0/OneA4s+frsBz0pjuQ9bep6mpKfvoo4+yU045Jdu2bVs2YsSIDED2pz/9Kdu2bVv4eeutt9o9bmNjY5ZlWTZy5Mhc+/r167Np06al/99yyy3ZAw880Gr/lpaW7Jxzzmn3PP4U69O3b9/s3Xffze66665s3bp12cCBA/drPs2bNy+75ZZbcm3Tp0/PWlpacm1r1qzJvv3tb9f8uvXTq1evrFevXlljY2P61LpP/vjT2Z8777wzu/POO2vejzr/dOwP//znP2evv/569tRTT3XKiZuamrKDDz44y7IsO/7447Ompqb03a233po988wz2YABA7ITTjgh27BhQ+5Htk+fPllTU1PW0tKSTZ8+PbevP8X/3H333dns2bMzYO9D/OCDD+7zMYYPH57t2rUrGz16dK69d+/e2Zo1a7Jrrrkm69OnT3b11Vdna9asyXr37l3z69aPX9L+9ISPX9Kd8unYH5511llZlmXZlVde2SknjuB3ffr0ye65555s69at2fvvv59de+21uX1Xr17dat9ybdyfYn4uuuiinPbct2/fbMWKFdnll1++T8e54YYbsgULFoTfNTc3Z4sXL862b9+evfzyy1lzc3PNr9sff3rixy/pr/9p+P8b7TJixAgsW7YMQ4YM6XHre8YYY/adO++8EwBw1VVX1bgn9UuHHMcaGhpw3XXXYfbs2X5BG2OMMVWi3RCsgw8+GJs2bcLatWtx/vnnV6NPxhhjjEEHXtLbt2/vcTGmxhhjTBFwPWljjDGmoPglbYwxxhQUv6SNMaYAjBw5ElmW5cqw3nTTTa3+buDAgdi8eTOee+65GvTSVJualKo0xhgTM2DAgDYr/P3ud7/D0qVL0auXdayegO+yMcbsB5deemlO692xY0eu0llXMGXKFIwdOxb33ntvl57HFAe/pI0xZj946KGH0K9fP/Tr1w/Dhg3DqlWr8MADD+D666/Hxx9/XPHTHmvXrkVLSwv+8pe/4LDDDkvtvXr1wh/+8Af85Cc/wd4EjcVn+fLlrsjWCdQ87Zk//vjjT71+Ghoasn/961/ZHXfc8bWO07dv3+z000/PGhsbsyOPPDJ7+OGHs8cffzx9/9Of/jSdY8aMGdlzzz1X82v3pyqfmnfAH3/88aduP7/97W+zZ555JjvggAM6vM+IESNyVd6ivxk8eHCWZVl2yCGHZEOHDs1WrVqVct77Jd1zPnYcM8aY/eSHP/whLrvsMkycOBG7d+8GANx44434+c9/XnGffv36oaWlpd0kUTRp9+rVC5MmTcLQoUPx9ttvAwAOOuggHHTQQdi4cSOGDx+OPXv2dNIVmSJSc0nBH3/88afePs3NzdnmzZuzU089tVOON2nSpOz444/PGhoaskGDBmWzZ8/Onn766QzYWxlw8ODB6XPNNddkCxcuzAYPHlzzcfCnaz92HDPGmP3gO9/5DgYOHIjnn38+eXg/9thj+3280aNH4/HHH8e2bdvw1ltv4csvv8Rll10GANi5cyc2bdqUPlu3bsWuXbuwadOmzrocU1A6XKrSGGOMMdXFmrQxxhhTUPySNsYYYwqKX9LGGGNMQfFL2hhjjCkofkkbY4wxBcUvaWOMMaag+CVtjDHGFBS/pI0xxpiC4pe0McYYU1D8kjbGGGMKil/SxhhjTEHxS9oYY4wpKH5JG2OMMQXl/wECvy9cAjCijAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
]
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "ETQqxi4CeFgm",
- "colab": {}
- },
- "source": [
- "# training will take ~3 min\n",
- "torch.manual_seed(1)\n",
- "np.random.seed(1)\n",
- "EPOCHS = 20\n",
- "\n",
- "train_loss_list, val_loss_list, train_acc_list, val_acc_list = train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False) "
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "AgbxRc1RsPEl",
- "colab": {}
- },
- "source": [
- "plt.figure(figsize=(20,8))\n",
- "\n",
- "plt.subplot(1, 2, 1)\n",
- "plt.title('Loss history', fontsize=18)\n",
- "plt.plot(train_loss_list[1:], label='Train')\n",
- "plt.plot(val_loss_list[1:], label='Validation')\n",
- "plt.xlabel('# of epoch', fontsize=16)\n",
- "plt.ylabel('Loss', fontsize=16)\n",
- "plt.legend(fontsize=16)\n",
- "plt.grid()\n",
- "\n",
- "plt.subplot(1, 2, 2)\n",
- "plt.title('Accuracy history', fontsize=18)\n",
- "plt.plot(train_acc_list, label='Train')\n",
- "plt.plot(val_acc_list, label='Validation')\n",
- "plt.xlabel('# of epoch', fontsize=16)\n",
- "plt.ylabel('Accuracy', fontsize=16)\n",
- "plt.legend(fontsize=16)\n",
- "plt.grid()"
- ],
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "OT1c6OQmwvRV"
- },
- "source": [
- "##### K-Fold model validation:"
+ },
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sample_img = nilearn.image.new_img_like(img, sample_data)\n",
+ "plotting.plot_anat(sample_img)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "R9ObKK2YQW2s"
+ },
+ "source": [
+ "#### 3. Defining Data Set"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "hjalzY4ZylGC"
+ },
+ "outputs": [],
+ "source": [
+ "class MriData(torch.utils.data.Dataset):\n",
+ " def __init__(self, X, y):\n",
+ " super(MriData, self).__init__()\n",
+ " self.X = torch.tensor(X, dtype=torch.float32)\n",
+ " self.y = torch.tensor(y).long()\n",
+ " \n",
+ " def __len__(self):\n",
+ " return self.X.shape[0]\n",
+ " \n",
+ " def __getitem__(self, idx):\n",
+ " return self.X[idx], self.y[idx]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "8lv4i-TSQvcX"
+ },
+ "source": [
+ "#### 4. Defining the CNN model architecture\n",
+ "\n",
+ "[3D PCNN architecture](https://www.frontiersin.org/articles/10.3389/fnins.2019.00185/full)\n",
+ "![model](https://www.frontiersin.org/files/Articles/442577/fnins-13-00185-HTML/image_m/fnins-13-00185-g001.jpg)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "cqFwgNpJHdDN"
+ },
+ "source": [
+ "At first check if we have GPU onborad:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "mvbAGRRAHS63",
+ "outputId": "371a6856-9f5c-4688-f210-6066f488abb4"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "True"
]
+ },
+ "execution_count": 18,
+ "metadata": {
+ "tags": []
+ },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ " torch.cuda.is_available()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "jX-W0Nv_HaLG"
+ },
+ "outputs": [],
+ "source": [
+ "if torch.cuda.is_available():\n",
+ " device = torch.device(\"cuda\")\n",
+ "else:\n",
+ " device = torch.device(\"cpu\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 485
+ },
+ "colab_type": "code",
+ "id": "vvoEO3-oQxfV",
+ "outputId": "30a6b67d-2c69-4db9-a725-1a518841f82d"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "----------------------------------------------------------------\n",
+ " Layer (type) Output Shape Param #\n",
+ "================================================================\n",
+ " Conv3d-1 [-1, 32, 56, 68, 56] 896\n",
+ " BatchNorm3d-2 [-1, 32, 56, 68, 56] 64\n",
+ " ReLU-3 [-1, 32, 56, 68, 56] 0\n",
+ " MaxPool3d-4 [-1, 32, 28, 34, 28] 0\n",
+ " Conv3d-5 [-1, 64, 26, 32, 26] 55,360\n",
+ " BatchNorm3d-6 [-1, 64, 26, 32, 26] 128\n",
+ " ReLU-7 [-1, 64, 26, 32, 26] 0\n",
+ " MaxPool3d-8 [-1, 64, 13, 16, 13] 0\n",
+ " Conv3d-9 [-1, 128, 11, 14, 11] 221,312\n",
+ " BatchNorm3d-10 [-1, 128, 11, 14, 11] 256\n",
+ " ReLU-11 [-1, 128, 11, 14, 11] 0\n",
+ " MaxPool3d-12 [-1, 128, 5, 7, 5] 0\n",
+ " Flatten-13 [-1, 22400] 0\n",
+ " Linear-14 [-1, 2] 44,802\n",
+ "================================================================\n",
+ "Total params: 322,818\n",
+ "Trainable params: 322,818\n",
+ "Non-trainable params: 0\n",
+ "----------------------------------------------------------------\n",
+ "Input size (MB): 0.90\n",
+ "Forward/backward pass size (MB): 201.01\n",
+ "Params size (MB): 1.23\n",
+ "Estimated Total Size (MB): 203.14\n",
+ "----------------------------------------------------------------\n"
+ ]
+ }
+ ],
+ "source": [
+ "## Hidden layers 1, 2 and 3\n",
+ "hidden = lambda c_in, c_out: nn.Sequential(\n",
+ " nn.Conv3d(c_in, c_out, (3,3,3)), # Convolutional layer\n",
+ " nn.BatchNorm3d(c_out), # Batch Normalization layer\n",
+ " nn.ReLU(), # Activational layer\n",
+ " nn.MaxPool3d(2) # Pooling layer\n",
+ ")\n",
+ "\n",
+ "class MriNet(nn.Module):\n",
+ " def __init__(self, c):\n",
+ " super(MriNet, self).__init__()\n",
+ " self.hidden1 = hidden(1, c)\n",
+ " self.hidden2 = hidden(c, 2*c)\n",
+ " self.hidden3 = hidden(2*c, 4*c)\n",
+ " self.linear = nn.Linear(128*5*7*5, 2)\n",
+ " self.flatten = nn.Flatten()\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.hidden1(x)\n",
+ " x = self.hidden2(x)\n",
+ " x = self.hidden3(x)\n",
+ " x = self.flatten(x)\n",
+ " x = self.linear(x)\n",
+ " x = F.log_softmax(x, dim=1)\n",
+ " return x\n",
+ "\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "\n",
+ "c = 32\n",
+ "model = MriNet(c).to(device)\n",
+ "summary(model, (1, 58, 70, 58))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "wUtTLI4ZwhDi"
+ },
+ "source": [
+ "#### 5. Training the model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "yUZGw-ETwKA5"
+ },
+ "outputs": [],
+ "source": [
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42) \n",
+ "#del X, y #deleting for freeing space on disc\n",
+ "\n",
+ "train_dataset = MriData(X_train, y_train)\n",
+ "test_dataset = MriData(X_test, y_test)\n",
+ "#del X_train, X_test, y_train, y_test #deleting for freeing space on disc"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "BttsN8kG3YyG"
+ },
+ "outputs": [],
+ "source": [
+ "train_dataset = MriData(X_train, y_train)\n",
+ "test_dataset = MriData(X_test, y_test)\n",
+ "train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ "val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "Ry5Deo3uYufS"
+ },
+ "outputs": [],
+ "source": [
+ "CHECKPOINTS_DIR = data_dir +'/checkpoints'\n",
+ "\n",
+ "criterion = nn.NLLLoss().to(device)\n",
+ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "InIC1EMOZRHs"
+ },
+ "outputs": [],
+ "source": [
+ "# timing\n",
+ "from tqdm import tqdm\n",
+ "\n",
+ "def get_accuracy(net, data_loader):\n",
+ " net.eval()\n",
+ " correct = 0\n",
+ " for data, target in data_loader:\n",
+ " data = data.to(device)\n",
+ " target = target.to(device)\n",
+ "\n",
+ " out = net(data)\n",
+ " pred = out.data.max(1)[1] # get the index of the max log-probability\n",
+ " correct += pred.eq(target.data).cpu().sum()\n",
+ " del data, target\n",
+ " accuracy = 100. * correct / len(data_loader.dataset)\n",
+ " return accuracy.item()\n",
+ "\n",
+ "def get_loss(net, data_loader):\n",
+ " net.eval()\n",
+ " loss = 0 \n",
+ " for data, target in data_loader:\n",
+ " data = data.to(device)\n",
+ " target = target.to(device)\n",
+ "\n",
+ " out = net(data)\n",
+ " loss += criterion(out, target).item()*len(data)\n",
+ "\n",
+ " del data, target, out \n",
+ "\n",
+ " return loss / len(data_loader.dataset)\n",
+ "\n",
+ "\n",
+ "def train(epochs, net, criterion, optimizer, train_loader, val_loader, scheduler=None, verbose=True, save=False):\n",
+ " best_val_loss = 100_000\n",
+ " best_model = None\n",
+ " train_loss_list = []\n",
+ " val_loss_list = []\n",
+ " train_acc_list = []\n",
+ " val_acc_list = []\n",
+ "\n",
+ " train_loss_list.append(get_loss(net, train_loader))\n",
+ " val_loss_list.append(get_loss(net, val_loader))\n",
+ " train_acc_list.append(get_accuracy(net, train_loader))\n",
+ " val_acc_list.append(get_accuracy(net, val_loader))\n",
+ " if verbose:\n",
+ " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(0, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
+ "\n",
+ " net.to(device)\n",
+ " for epoch in tqdm(range(1, epochs+1)):\n",
+ " net.train()\n",
+ " for X, y in train_loader:\n",
+ " # Perform one step of minibatch stochastic gradient descent\n",
+ " X, y = X.to(device), y.to(device)\n",
+ " optimizer.zero_grad()\n",
+ " out = net(X)\n",
+ " loss = criterion(out, y)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ " del X, y, out, loss #freeing gpu space\n",
+ " \n",
+ " \n",
+ " # define NN evaluation, i.e. turn off dropouts, batchnorms, etc.\n",
+ " net.eval()\n",
+ " for X, y in val_loader:\n",
+ " # Compute the validation loss\n",
+ " X, y = X.to(device), y.to(device)\n",
+ " out = net(X)\n",
+ " del X, y, out #freeing gpu space\n",
+ " \n",
+ " if scheduler is not None:\n",
+ " scheduler.step()\n",
+ " \n",
+ " \n",
+ " train_loss_list.append(get_loss(net, train_loader))\n",
+ " val_loss_list.append(get_loss(net, val_loader))\n",
+ " train_acc_list.append(get_accuracy(net, train_loader))\n",
+ " val_acc_list.append(get_accuracy(net, val_loader))\n",
+ "\n",
+ " if save and val_loss_list[-1] < best_val_loss:\n",
+ " torch.save(net.state_dict(), CHECKPOINTS_DIR+'best_model')\n",
+ " freq = 1\n",
+ " if verbose and epoch%freq==0:\n",
+ " print('Epoch {:02d}/{} || Loss: Train {:.4f} | Validation {:.4f}'.format(epoch, epochs, train_loss_list[-1], val_loss_list[-1]))\n",
+ " \n",
+ " return train_loss_list, val_loss_list, train_acc_list, val_acc_list "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "2UznBfFtRtQS"
+ },
+ "source": [
+ "##### Training first **20 epochs**:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "ETQqxi4CeFgm"
+ },
+ "outputs": [],
+ "source": [
+ "# training will take ~3 min\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "EPOCHS = 20\n",
+ "\n",
+ "train_loss_list, val_loss_list, train_acc_list, val_acc_list = train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "AgbxRc1RsPEl"
+ },
+ "outputs": [],
+ "source": [
+ "plt.figure(figsize=(20,8))\n",
+ "\n",
+ "plt.subplot(1, 2, 1)\n",
+ "plt.title('Loss history', fontsize=18)\n",
+ "plt.plot(train_loss_list[1:], label='Train')\n",
+ "plt.plot(val_loss_list[1:], label='Validation')\n",
+ "plt.xlabel('# of epoch', fontsize=16)\n",
+ "plt.ylabel('Loss', fontsize=16)\n",
+ "plt.legend(fontsize=16)\n",
+ "plt.grid()\n",
+ "\n",
+ "plt.subplot(1, 2, 2)\n",
+ "plt.title('Accuracy history', fontsize=18)\n",
+ "plt.plot(train_acc_list, label='Train')\n",
+ "plt.plot(val_acc_list, label='Validation')\n",
+ "plt.xlabel('# of epoch', fontsize=16)\n",
+ "plt.ylabel('Accuracy', fontsize=16)\n",
+ "plt.legend(fontsize=16)\n",
+ "plt.grid()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "OT1c6OQmwvRV"
+ },
+ "source": [
+ "##### K-Fold model validation:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Sody3ciZTAcy"
+ },
+ "source": [
+ "Questions:\n",
+ "1. What is the purpose of K-Fold in that experiment setting?\n",
+ "2. Can we afford cross-validation in regular DL?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 121
},
+ "colab_type": "code",
+ "id": "kwwuFwsH2Ifa",
+ "outputId": "c0bc9da8-5ea6-4ef8-fdcd-8a4ca7735109"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "metadata": {
- "id": "Sody3ciZTAcy",
- "colab_type": "text"
- },
- "source": [
- "Questions:\n",
- "1. What is the purpose of K-Fold in that experiment setting?\n",
- "2. Can we afford cross-validation in regular DL?"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Doing 0 split\n"
+ ]
},
{
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "kwwuFwsH2Ifa",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 121
- },
- "outputId": "c0bc9da8-5ea6-4ef8-fdcd-8a4ca7735109"
- },
- "source": [
- "# execute for ~ 5 min\n",
- "skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)\n",
- "cross_vall_acc_list = []\n",
- "j = 0\n",
- "\n",
- "for train_index, test_index in skf.split(X, y):\n",
- " print('Doing {} split'.format(j))\n",
- " j += 1\n",
- "\n",
- " X_train, X_test = X[train_index], X[test_index]\n",
- " y_train, y_test = y[train_index], y[test_index]\n",
- " train_dataset = MriData(X_train, y_train)\n",
- " test_dataset = MriData(X_test, y_test)\n",
- " train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
- " val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) \n",
- " \n",
- " torch.manual_seed(1)\n",
- " np.random.seed(1)\n",
- "\n",
- " c = 32\n",
- " model = MriNet(c).to(device)\n",
- " criterion = nn.NLLLoss().to(device)\n",
- " optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
- " scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
- "\n",
- " train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False, verbose=False) \n",
- " cross_vall_acc_list.append(get_accuracy(model, val_loader))\n"
- ],
- "execution_count": 26,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- "Doing 0 split\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "100%|██████████| 20/20 [03:20<00:00, 10.04s/it]\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "stream",
- "text": [
- "Doing 1 split\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
- ],
- "name": "stderr"
- },
- {
- "output_type": "stream",
- "text": [
- "Doing 2 split\n"
- ],
- "name": "stdout"
- },
- {
- "output_type": "stream",
- "text": [
- "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
- ],
- "name": "stderr"
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.04s/it]\n"
+ ]
},
{
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "RKbs0w6HwynW",
- "colab": {}
- },
- "source": [
- "print('Average cross-validation accuracy (3-folds):', sum(cross_vall_acc_list)/len(cross_vall_acc_list))"
- ],
- "execution_count": null,
- "outputs": []
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Doing 1 split\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "colab_type": "text",
- "id": "QLX_sxmGsgI2"
- },
- "source": [
- "#### Model save\n"
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
+ ]
},
{
- "cell_type": "code",
- "metadata": {
- "colab_type": "code",
- "id": "bSiiJhZZsf3u",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "outputId": "26b6ea06-13c7-436b-b4cb-a8243e34cef8"
- },
- "source": [
- "# Training model on whole data and saving it\n",
- "dataset = MriData(X, y)\n",
- "loader = torch.utils.data.DataLoader(dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
- "\n",
- "torch.manual_seed(1)\n",
- "np.random.seed(1)\n",
- "\n",
- "model = MriNet(c).to(device)\n",
- "criterion = nn.NLLLoss().to(device)\n",
- "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
- "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
- "\n",
- "train(EPOCHS, model, criterion, optimizer, loader, loader, scheduler=scheduler, save=True, verbose=False) \n",
- "pass"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "text": [
- " 25%|██▌ | 5/20 [01:31<04:33, 18.23s/it]"
- ],
- "name": "stderr"
- }
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Doing 2 split\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "id": "Xmw3OAG7Z9p4",
- "colab_type": "text"
- },
- "source": [
- "## What else?\n",
- "\n",
- "MRI classifcation model interpretation \n",
- "\n",
- "Visit: https://github.com/kondratevakate/InterpretableNeuroDL\n",
- "\n",
- "Meaningfull perturbations on MEN brains prediction:\n",
- "![img](https://github.com/kondratevakate/InterpretableNeuroDL/raw/master/image/man.png)"
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 20/20 [03:20<00:00, 10.03s/it]\n"
+ ]
}
- ]
-}
\ No newline at end of file
+ ],
+ "source": [
+ "# execute for ~ 5 min\n",
+ "skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)\n",
+ "cross_vall_acc_list = []\n",
+ "j = 0\n",
+ "\n",
+ "for train_index, test_index in skf.split(X, y):\n",
+ " print('Doing {} split'.format(j))\n",
+ " j += 1\n",
+ "\n",
+ " X_train, X_test = X[train_index], X[test_index]\n",
+ " y_train, y_test = y[train_index], y[test_index]\n",
+ " train_dataset = MriData(X_train, y_train)\n",
+ " test_dataset = MriData(X_test, y_test)\n",
+ " train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ " val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=28, shuffle=False) \n",
+ " \n",
+ " torch.manual_seed(1)\n",
+ " np.random.seed(1)\n",
+ "\n",
+ " c = 32\n",
+ " model = MriNet(c).to(device)\n",
+ " criterion = nn.NLLLoss().to(device)\n",
+ " optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ " scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
+ "\n",
+ " train(EPOCHS, model, criterion, optimizer, train_loader, val_loader, scheduler=scheduler, save=False, verbose=False) \n",
+ " cross_vall_acc_list.append(get_accuracy(model, val_loader))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {},
+ "colab_type": "code",
+ "id": "RKbs0w6HwynW"
+ },
+ "outputs": [],
+ "source": [
+ "print('Average cross-validation accuracy (3-folds):', sum(cross_vall_acc_list)/len(cross_vall_acc_list))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "QLX_sxmGsgI2"
+ },
+ "source": [
+ "#### Model save\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 35
+ },
+ "colab_type": "code",
+ "id": "bSiiJhZZsf3u",
+ "outputId": "26b6ea06-13c7-436b-b4cb-a8243e34cef8"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 25%|██▌ | 5/20 [01:31<04:33, 18.23s/it]"
+ ]
+ }
+ ],
+ "source": [
+ "# Training model on whole data and saving it\n",
+ "dataset = MriData(X, y)\n",
+ "loader = torch.utils.data.DataLoader(dataset, batch_size=45, shuffle=True) #45 - recommended value for batchsize\n",
+ "\n",
+ "torch.manual_seed(1)\n",
+ "np.random.seed(1)\n",
+ "\n",
+ "model = MriNet(c).to(device)\n",
+ "criterion = nn.NLLLoss().to(device)\n",
+ "optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)\n",
+ "scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[5, 15], gamma=0.1)\n",
+ "\n",
+ "train(EPOCHS, model, criterion, optimizer, loader, loader, scheduler=scheduler, save=True, verbose=False) \n",
+ "pass"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "Xmw3OAG7Z9p4"
+ },
+ "source": [
+ "## What else?\n",
+ "\n",
+ "MRI classifcation model interpretation \n",
+ "\n",
+ "Visit: https://github.com/kondratevakate/InterpretableNeuroDL\n",
+ "\n",
+ "Meaningfull perturbations on MEN brains prediction:\n",
+ "![img](https://github.com/kondratevakate/InterpretableNeuroDL/raw/master/image/man.png)"
+ ]
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "collapsed_sections": [],
+ "machine_shape": "hm",
+ "name": "mri_3DCNN.ipynb",
+ "provenance": [],
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/seminar6/seminar6_part1_ROI_time_series.ipynb b/seminar6/seminar6_part1_ROI_time_series.ipynb
new file mode 100644
index 0000000..32cebe4
--- /dev/null
+++ b/seminar6/seminar6_part1_ROI_time_series.ipynb
@@ -0,0 +1,1401 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.7"
+ },
+ "colab": {
+ "name": "seminar6_part1_ROI_time_series.ipynb",
+ "provenance": [],
+ "collapsed_sections": [
+ "hqZksnfwt34o"
+ ]
+ },
+ "accelerator": "GPU"
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TZIZlv5Hs2e-"
+ },
+ "source": [
+ "\n",
+ "\n",
+ "# **Seminar 6: Deep Learning for fMRI**\n",
+ "\n",
+ "## **Classification of ROI time series**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "t6ojrwUYmCXH"
+ },
+ "source": [
+ "#### Introduction\n",
+ "In this notebook we will work with time series for brain region of interest (ROIs) obtained from fMRI.\n",
+ "\n",
+ "**We will train a network for detection of Autistm Spectrum Disorder (ASD) based on the ROI time series data of the patient.**\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "PPx5Ba3ks2fA"
+ },
+ "source": [
+ "import os\n",
+ "import time\n",
+ "from tqdm import tqdm\n",
+ "import nibabel as nib\n",
+ "\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from IPython.display import clear_output\n",
+ "\n",
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "from sklearn.model_selection import StratifiedKFold, train_test_split\n",
+ "from sklearn.metrics import roc_auc_score\n",
+ "\n",
+ "import torch\n",
+ "import torch.nn as nn\n",
+ "import torch.nn.functional as F\n",
+ "import torch.utils.data as data\n",
+ "import torchvision\n",
+ "import torchvision.transforms as transforms"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "7MjR5PKZJpsm",
+ "outputId": "a0270cbd-acb6-4d95-d057-80e6ede3744c",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 373
+ }
+ },
+ "source": [
+ "# check if gpu is available\n",
+ "!nvidia-smi"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Fri Oct 2 09:38:32 2020 \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| NVIDIA-SMI 455.23.05 Driver Version: 418.67 CUDA Version: 10.1 |\n",
+ "|-------------------------------+----------------------+----------------------+\n",
+ "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
+ "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
+ "| | | MIG M. |\n",
+ "|===============================+======================+======================|\n",
+ "| 0 Tesla V100-SXM2... Off | 00000000:00:04.0 Off | 0 |\n",
+ "| N/A 35C P0 23W / 300W | 0MiB / 16130MiB | 0% Default |\n",
+ "| | | ERR! |\n",
+ "+-------------------------------+----------------------+----------------------+\n",
+ " \n",
+ "+-----------------------------------------------------------------------------+\n",
+ "| Processes: |\n",
+ "| GPU GI CI PID Type Process name GPU Memory |\n",
+ "| ID ID Usage |\n",
+ "|=============================================================================|\n",
+ "| No running processes found |\n",
+ "+-----------------------------------------------------------------------------+\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "OpRdaVYgJtfI",
+ "outputId": "b7df6521-9a79-4a2f-8ece-08c09abc0c6a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 50
+ }
+ },
+ "source": [
+ "use_cuda = torch.cuda.is_available()\n",
+ "print(\"Torch version:\", torch.__version__)\n",
+ "if use_cuda:\n",
+ " print(\"Using GPU\")\n",
+ "else:\n",
+ " print(\"Not using GPU\")\n",
+ "device = 0"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Torch version: 1.6.0+cu101\n",
+ "Using GPU\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Tet0P_HVm5vN"
+ },
+ "source": [
+ "Mounting Google Drive to Collab Notebook. You should go with the link and enter your personal authorization code:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "mZkNPQnzvCHM",
+ "outputId": "ebda7124-02d7-46ee-ad45-d765f9f5cb5d",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 34
+ }
+ },
+ "source": [
+ "from google.colab import drive\n",
+ "drive.mount('/content/drive')"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Mounted at /content/drive\n"
+ ],
+ "name": "stdout"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_UuUV9s8nDUK"
+ },
+ "source": [
+ "Get the data. Add a shortcut to your Google Drive.\n",
+ "\n",
+ "Shared link: https://drive.google.com/drive/folders/1_63qnHOCUEzOUmUWhcmTXulmQMmJglwT?usp=sharing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hv4_SZyhqCzi"
+ },
+ "source": [
+ "Here we have time series data of more than **800** participants. Around half of them have ASD, the others are healthy. The diagnosis is labelled in **\"DX_GROUP\"** column.\n",
+ "\n",
+ "You may also see that data collection is composed of smaller datasets provided from several different medical centers and research institutes (see the **\"SOURCE\"** column)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "VN6gWzYzn_QR",
+ "outputId": "dd168723-59bb-402a-b6e5-b11ed1a4a6b8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 568
+ }
+ },
+ "source": [
+ "folder_path = '/content/drive/My Drive/NeuroML/func_ABIDE/abide_ts'\n",
+ "targets_path = '/content/drive/My Drive/NeuroML/func_ABIDE/ABIDE1CPAC_targets.csv'\n",
+ "\n",
+ "# look at the target distribution\n",
+ "targets_df = pd.read_csv(targets_path)\n",
+ "display(targets_df.head())\n",
+ "display(targets_df[\"DX_GROUP\"].value_counts())\n",
+ "display(targets_df[\"SOURCE\"].value_counts())"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " SITE_ID | \n",
+ " SUB_ID | \n",
+ " DX_GROUP | \n",
+ " DSM_IV_TR | \n",
+ " AGE_AT_SCAN | \n",
+ " SEX | \n",
+ " HANDEDNESS_CATEGORY | \n",
+ " HANDEDNESS_SCORES | \n",
+ " FIQ | \n",
+ " VIQ | \n",
+ " PIQ | \n",
+ " FIQ_TEST_TYPE | \n",
+ " VIQ_TEST_TYPE | \n",
+ " PIQ_TEST_TYPE | \n",
+ " ADI_R_SOCIAL_TOTAL_A | \n",
+ " ADI_R_VERBAL_TOTAL_BV | \n",
+ " ADI_RRB_TOTAL_C | \n",
+ " ADI_R_ONSET_TOTAL_D | \n",
+ " ADI_R_RSRCH_RELIABLE | \n",
+ " ADOS_MODULE | \n",
+ " ADOS_TOTAL | \n",
+ " ADOS_COMM | \n",
+ " ADOS_SOCIAL | \n",
+ " ADOS_STEREO_BEHAV | \n",
+ " ADOS_RSRCH_RELIABLE | \n",
+ " ADOS_GOTHAM_SOCAFFECT | \n",
+ " ADOS_GOTHAM_RRB | \n",
+ " ADOS_GOTHAM_TOTAL | \n",
+ " ADOS_GOTHAM_SEVERITY | \n",
+ " SRS_VERSION | \n",
+ " SRS_RAW_TOTAL | \n",
+ " SRS_AWARENESS | \n",
+ " SRS_COGNITION | \n",
+ " SRS_COMMUNICATION | \n",
+ " SRS_MOTIVATION | \n",
+ " SRS_MANNERISMS | \n",
+ " SCQ_TOTAL | \n",
+ " AQ_TOTAL | \n",
+ " COMORBIDITY | \n",
+ " CURRENT_MED_STATUS | \n",
+ " MEDICATION_NAME | \n",
+ " OFF_STIMULANTS_AT_SCAN | \n",
+ " VINELAND_RECEPTIVE_V_SCALED | \n",
+ " VINELAND_EXPRESSIVE_V_SCALED | \n",
+ " VINELAND_WRITTEN_V_SCALED | \n",
+ " VINELAND_COMMUNICATION_STANDARD | \n",
+ " VINELAND_PERSONAL_V_SCALED | \n",
+ " VINELAND_DOMESTIC_V_SCALED | \n",
+ " VINELAND_COMMUNITY_V_SCALED | \n",
+ " VINELAND_DAILYLVNG_STANDARD | \n",
+ " VINELAND_INTERPERSONAL_V_SCALED | \n",
+ " VINELAND_PLAY_V_SCALED | \n",
+ " VINELAND_COPING_V_SCALED | \n",
+ " VINELAND_SOCIAL_STANDARD | \n",
+ " VINELAND_SUM_SCORES | \n",
+ " VINELAND_ABC_STANDARD | \n",
+ " VINELAND_INFORMANT | \n",
+ " WISC_IV_VCI | \n",
+ " WISC_IV_PRI | \n",
+ " WISC_IV_WMI | \n",
+ " WISC_IV_PSI | \n",
+ " WISC_IV_SIM_SCALED | \n",
+ " WISC_IV_VOCAB_SCALED | \n",
+ " WISC_IV_INFO_SCALED | \n",
+ " WISC_IV_BLK_DSN_SCALED | \n",
+ " WISC_IV_PIC_CON_SCALED | \n",
+ " WISC_IV_MATRIX_SCALED | \n",
+ " WISC_IV_DIGIT_SPAN_SCALED | \n",
+ " WISC_IV_LET_NUM_SCALED | \n",
+ " WISC_IV_CODING_SCALED | \n",
+ " WISC_IV_SYM_SCALED | \n",
+ " EYE_STATUS_AT_SCAN | \n",
+ " AGE_AT_MPRAGE | \n",
+ " BMI | \n",
+ " participant_id | \n",
+ " AGE_GROUP | \n",
+ " SOURCE | \n",
+ " DX_GROUP_CPAC | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " CALTECH | \n",
+ " 51456 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " 55.4 | \n",
+ " 1 | \n",
+ " R | \n",
+ " NaN | \n",
+ " 126.0 | \n",
+ " 118.0 | \n",
+ " 128.0 | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " -9999.0 | \n",
+ " -9999.0 | \n",
+ " -9999.0 | \n",
+ " -9999.0 | \n",
+ " NaN | \n",
+ " 4.0 | \n",
+ " 9.0 | \n",
+ " 2.0 | \n",
+ " 7.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " sub-0051456 | \n",
+ " 30-65 | \n",
+ " CALTECH | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " CALTECH | \n",
+ " 51457 | \n",
+ " 1 | \n",
+ " 4 | \n",
+ " 22.9 | \n",
+ " 1 | \n",
+ " Ambi | \n",
+ " NaN | \n",
+ " 107.0 | \n",
+ " 119.0 | \n",
+ " 93.0 | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " 23.0 | \n",
+ " 17.0 | \n",
+ " 5.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 4.0 | \n",
+ " 8.0 | \n",
+ " 3.0 | \n",
+ " 5.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " sub-0051457 | \n",
+ " 20-30 | \n",
+ " CALTECH | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " CALTECH | \n",
+ " 51458 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 39.2 | \n",
+ " 1 | \n",
+ " R | \n",
+ " NaN | \n",
+ " 93.0 | \n",
+ " 80.0 | \n",
+ " 108.0 | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " 13.0 | \n",
+ " 18.0 | \n",
+ " 7.0 | \n",
+ " 4.0 | \n",
+ " 1.0 | \n",
+ " 4.0 | \n",
+ " 20.0 | \n",
+ " 6.0 | \n",
+ " 14.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " sub-0051458 | \n",
+ " 30-65 | \n",
+ " CALTECH | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " CALTECH | \n",
+ " 51459 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 22.8 | \n",
+ " 1 | \n",
+ " R | \n",
+ " NaN | \n",
+ " 106.0 | \n",
+ " 94.0 | \n",
+ " 118.0 | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " 12.0 | \n",
+ " 12.0 | \n",
+ " 2.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " 4.0 | \n",
+ " 12.0 | \n",
+ " 4.0 | \n",
+ " 8.0 | \n",
+ " 0.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " sub-0051459 | \n",
+ " 20-30 | \n",
+ " CALTECH | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " CALTECH | \n",
+ " 51460 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 34.6 | \n",
+ " 2 | \n",
+ " Ambi | \n",
+ " NaN | \n",
+ " 133.0 | \n",
+ " 135.0 | \n",
+ " 122.0 | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " WASI | \n",
+ " 21.0 | \n",
+ " 11.0 | \n",
+ " 6.0 | \n",
+ " 3.0 | \n",
+ " 1.0 | \n",
+ " 4.0 | \n",
+ " 13.0 | \n",
+ " 4.0 | \n",
+ " 9.0 | \n",
+ " 1.0 | \n",
+ " 1.0 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 2 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " sub-0051460 | \n",
+ " 30-65 | \n",
+ " CALTECH | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " SITE_ID SUB_ID DX_GROUP ... AGE_GROUP SOURCE DX_GROUP_CPAC\n",
+ "0 CALTECH 51456 1 ... 30-65 CALTECH NaN\n",
+ "1 CALTECH 51457 1 ... 20-30 CALTECH NaN\n",
+ "2 CALTECH 51458 1 ... 30-65 CALTECH NaN\n",
+ "3 CALTECH 51459 1 ... 20-30 CALTECH NaN\n",
+ "4 CALTECH 51460 1 ... 30-65 CALTECH NaN\n",
+ "\n",
+ "[5 rows x 78 columns]"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "2 572\n",
+ "1 539\n",
+ "Name: DX_GROUP, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "NYU 184\n",
+ "UM 145\n",
+ "UCLA 109\n",
+ "USM 101\n",
+ "LEUVEN 64\n",
+ "PITT 57\n",
+ "MAX 57\n",
+ "YALE 56\n",
+ "KKI 55\n",
+ "TRINITY 49\n",
+ "STANFORD 40\n",
+ "CALTECH 38\n",
+ "SDSU 36\n",
+ "OLIN 36\n",
+ "SBL 30\n",
+ "CMU 27\n",
+ "OHSU 27\n",
+ "Name: SOURCE, dtype: int64"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "hqZksnfwt34o"
+ },
+ "source": [
+ "### Dataset for loading ROI time series data\n",
+ "\n",
+ "Here is the Dataset class that you can use to load time series data for training. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "0RzbAAkDs2fT"
+ },
+ "source": [
+ "class ROIDataset(data.Dataset):\n",
+ " def __init__(self, folder_path, labels_path, \n",
+ " target=None, encode_target=False,\n",
+ " roi_file_suffix=\"\",\n",
+ " get_patient_id=lambda p: \"sub-\" + p.split(\"_\")[-3],\n",
+ " start_pos=0, seq_len=None,\n",
+ " transform=None,\n",
+ " source_col=\"SOURCE\", use_sources=[],\n",
+ " ):\n",
+ " self.roi_paths = {\n",
+ " \"participant_id\" : [],\n",
+ " \"path\" : [],\n",
+ " }\n",
+ " \n",
+ " self.folder_path = folder_path\n",
+ " self.labels = pd.read_csv(labels_path)\n",
+ " self.target = None\n",
+ " \n",
+ " self.roi_file_suffix = roi_file_suffix\n",
+ " self.get_patient_id = get_patient_id\n",
+ " \n",
+ " self.start_pos = start_pos\n",
+ " self.seq_len = seq_len\n",
+ " self.transform = transform\n",
+ " self.source_col = source_col\n",
+ " self.use_sources = use_sources\n",
+ " \n",
+ " for participant_file in os.listdir(self.folder_path):\n",
+ " if self.roi_file_suffix in participant_file:\n",
+ " participant_id = self.get_patient_id(participant_file)\n",
+ " self.roi_paths[\"participant_id\"].append(participant_id)\n",
+ " participant_path = os.path.join(self.folder_path, participant_file)\n",
+ " self.roi_paths[\"path\"].append(participant_path)\n",
+ " self.roi_paths = pd.DataFrame(self.roi_paths)\n",
+ " \n",
+ " self.labels = self.labels.merge(self.roi_paths, on=\"participant_id\")\n",
+ " self.roi_ts = self.labels.path.tolist()\n",
+ " print(f\"{len(self.roi_ts)} ROI time series files found.\")\n",
+ "\n",
+ " self.roi_ts = [pd.read_csv(f, sep=\"\\t\").values.T for f in tqdm(self.roi_ts)]\n",
+ " self.target = self.set_target(target, encode_target)\n",
+ " \n",
+ " def set_target(self, target=None, encode_target=False):\n",
+ " if target is not None:\n",
+ " self.target = self.labels[target].copy()\n",
+ " if (self.source_col is not None) and self.use_sources:\n",
+ " # preserve only targets for objects from sources of interest\n",
+ " null_idx = ~self.labels[self.source_col].isin(self.use_sources)\n",
+ " self.target[null_idx] = np.nan\n",
+ " if encode_target:\n",
+ " enc = LabelEncoder()\n",
+ " idx = self.target.notnull()\n",
+ " self.target[idx] = enc.fit_transform(self.target[idx])\n",
+ " return self.target\n",
+ " \n",
+ " def get_time_series(self, roi, start_pos=None, seq_len=None):\n",
+ " if seq_len is None:\n",
+ " seq_len = roi.shape[-1]\n",
+ " if seq_len > roi.shape[-1]:\n",
+ " n_repeats = seq_len // roi.shape[-1] + 1 # add copies of roi values from the very beginning \n",
+ " roi = np.concatenate([roi] * n_repeats, axis=-1)[:, :seq_len]\n",
+ " if start_pos is None:\n",
+ " if roi.shape[-1] - seq_len == 0:\n",
+ " start_pos = 0\n",
+ " else:\n",
+ " start_pos = np.random.choice(roi.shape[-1] - seq_len)\n",
+ " return roi[:, start_pos:start_pos + seq_len]\n",
+ " \n",
+ " def __getitem__(self, index):\n",
+ " if (self.source_col is not None) and self.use_sources:\n",
+ " s = self.labels[self.source_col][index]\n",
+ " if s not in self.use_sources:\n",
+ " return None\n",
+ " \n",
+ " roi = self.get_time_series(self.roi_ts[index], self.start_pos, self.seq_len)\n",
+ " if self.transform is not None:\n",
+ " roi = self.transform(roi)\n",
+ " \n",
+ " return roi if (self.target is None) else (roi, self.target[index])\n",
+ " \n",
+ " def __len__(self):\n",
+ " return len(self.roi_ts)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "RTTZBbJwd_nt"
+ },
+ "source": [
+ "# transforms (just convert data to torch.Tensor for training)\n",
+ "class ToTensor(object):\n",
+ " def __call__(self, data):\n",
+ " return torch.FloatTensor(data)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "0pBPMqehr18a"
+ },
+ "source": [
+ "Data from different acqusition sites may have some differences. At least, they have various time series length.\n",
+ "\n",
+ "It is possible to load data from only a part of sources by indicating them in the `use_source` argument and train several models separately. However, for now, we will trim all time series to a fixed length of **256** time steps from start (`start_pos=0`, `seq_len=256`) and try to train the model on the entire dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "R-zX15t1s2fY",
+ "outputId": "3ae0ff1f-5de8-4229-f020-d9783cd440b8",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 50
+ }
+ },
+ "source": [
+ "dataset = ROIDataset(folder_path=folder_path, \n",
+ " labels_path=targets_path, \n",
+ " target=\"DX_GROUP\",\n",
+ " start_pos=0, seq_len=256,\n",
+ " source_col=\"SOURCE\")"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "\r 0%| | 0/883 [00:00, ?it/s]"
+ ],
+ "name": "stderr"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "883 ROI time series files found.\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 883/883 [09:52<00:00, 1.49it/s]\n"
+ ],
+ "name": "stderr"
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "30S1hPYbtOCb"
+ },
+ "source": [
+ "Look at the data (time series for several first ROIs on one patient)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "sK5oe5BCSsAQ",
+ "outputId": "5fc0ad95-2367-4558-fbdc-782b4d127437",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 358
+ }
+ },
+ "source": [
+ "ts = dataset[0][0]\n",
+ "print(ts.shape)\n",
+ "n_steps = ts.shape[1]\n",
+ "n_rois = 4\n",
+ "\n",
+ "plt.figure(figsize=(16, 8))\n",
+ "plt.title(f\"First {n_rois} time series\")\n",
+ "plt.hlines(0, -2, n_steps + 2, linewidth=1.0, linestyles=\"dotted\")\n",
+ "plt.plot(ts[:n_rois, :].transpose())\n",
+ "plt.show()"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "(200, 256)\n"
+ ],
+ "name": "stdout"
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAHiCAYAAAAUFrqGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZhkeVnn+/3FmpGRey1ZW0PvNNBgKz2Cijq4oCCOjijjgIiol8e5XEevM+oMM9dnxhV13PFeUXBklEGwAdkaARtpmlW6aeiq7qa36q2qsqoyszIz9nPinPO7f/zO78R24iyxZOSJ+H6ep56oyIiMOJUVed7zfd/v+75CSglCCCGEEEIIIWSSpCZ9AIQQQgghhBBCCMUpIYQQQgghhJCJQ3FKCCGEEEIIIWTiUJwSQgghhBBCCJk4FKeEEEIIIYQQQiYOxSkhhBBCCCGEkIlDcUoIISTxCCEqQohrJ30cfggh3iSEeNukjyMOQojXCCE+PunjIIQQMlsI7jklhBCSFIQQTwBYB2C3fflGKeWFAV/vXwL4GynlqQjPzQH4KoDFfs+P83qEEEII6YSVU0IIIUnj+6WUC21/AoWpECI9ovf9RQCbI3qtA4sQIjPpYyCEEDKbUJwSQghJPEIIKYS43v37Xwkh/j8hxO1CiCqAlwghXi6EeEAIURZCnBdC/EchRBHARwGccG3BFSHEiT6vfw2AHwPwWwHH4Pt6Qoj/JoT4G/c5V7vH+nohxNNCiB0hxM8IIf6FEOI+IcSuEOItXa/7k0KIB93nfkwI8cw+7z8nhPgbIcS2+zpfEkKsu48tCyHeLoTYcP/9v65FuxDiJ4QQnxVC/IEQYhvAf3O/9pm2175JCPEJIcQVIcRDQohXtT3W87MN/x8jhBBCemF2lBBCyDTyagAvB/AKADkAjwN4lZTyLiHEKoBrpJRVIcTLEM2G+ycA3gSg3u8J/V5PCOH39BcCuAHAtwH4IIB/APBdALIA7hVC/J2U8k4hxA+47/v9AB4B8J8AvAvAN/u85usALAO4CoAB4Ja24/0rAJcBXA+gCODDAJ4G8Na24/lbKMt0FsC/aTv+IoBPAPgVAC8D8DwAnxBCnJFSPgDg7ej62fb7GRFCCCFBsHJKCCEkafy9WxncFUL8fZ/nfEBK+VkppSOlbABoAniOEGJJSrkjpfxy1DcTQvxrAGkp5ftHcfAuvyalbEgpPw6gCuBdUsrLUsrzAO4C8PXu834GwG9JKR+UUloAfhPALX2qp00AhwBcL6W0pZT3SClLbvX05QB+XkpZlVJeBvAHAH607XsvSCn/REppSSm7BfgrADwhpfyf7uP3AngvgB9pe9+BfraEEEJIOxSnhBBCksYPSilX3D8/2Oc5T3fdfyWUQHtSCHGnEOKboryRWzX8HQD/fvDD9eVS29/rPvcX3L8/E8AfaTEO4AoAAeCkz2v+NYCPAfhbIcQFIcTvCCGy7mtkAWy0vc5bARxt+97un1c7zwTwwraEwC6A1wA45j4+0M+WEEII6Ya2XkIIIdNIxyh6KeWXAPyAK9b+LwDvgbK/ho2svwHA1QDucu25OQDLQoiLAF4kpXwi6H1HwNMAfkNK+c6wJ0opmwD+O4D/LoS4GsDtAB5ybw0Ah93qq++3hxzDnVLK7+7zvv1+toQQQkgsWDklhBAy1Qghcu7ezmVXwJUAOO7DlwAcEkIs9/n2M1BC6xb3z0+733ML/KuNYa8Xlz8D8J+FEM91/y3LQogf8XuiEOIlQojnuYOOSlB2W0dKuQHg4wB+TwixJIRICSGuE0J8e8Rj+DCAG4UQrxVCZN0//0II8eyQny0hhBASC4pTQgghs8BrATwhhChB9XG+BgCklF+DGjB01rWsdkzrdXssL+o/ULZax71vd71H6OvFxe1z/W0oq24JSiy/rM/TjwG4DUogPgjgTiirLwD8OFTV9wEAO+7zjkc8hjKAl0L1qF4AcNE9prz7FN+fLSGEEBIXIeWoHUiEEEIIIYQQQkg8WDklhBBCCCGEEDJxKE4JIYQQQgghhEwcilNCCCGEEEIIIROH4pQQQgghhBBCyMShOCWEEEIIIYQQMnEykz6Adg4fPiyvvvrqSR8GIYQQQgghhJAxcM8992xJKY/4PXagxOnVV1+Nu+++e9KHQQghhBBCCCFkDAghnuz3GG29hBBCCCGEEEImDsUpIYQQQgghhJCJQ3FKCCGEEEIIIWTiUJwSQgghhBBCCJk4FKeEEEIIIYQQQiYOxSkhhBBCCCGEkIlDcUoIIYQQQgghZOJQnBJCCCGEEEIImTgUp4QQQgghhBBCJg7FKSGEEEIIIYSQiUNxSgghhBBCCCFk4lCcEkIIIYQQQgiZOBSnhBBCCCGEEEImDsUpIYQQQgghhJCJQ3FKCCGEEEIIIWTiUJwSQgghhBBCCJk4FKeEEEIIIYQQQiYOxSkhg/DXPwTc8WuTPgpCCCHk4GBWgd+9AXjkE5M+EkJIQqE4JWQQLp0BLtw76aMghBBCDg6VS0D1MnDhK5M+EkJIQqE4JWQQjDJQ3Zz0URBCCCEHB6OsbhkfCSEDQnFKSFxsC2jWGHwJIYSQdjxxenmyx0EISSwUp4TExayo2+om4DiTPRZCCCHkoGC48bHC5C0hZDAoTgmJi84MOxbQ2J3ssRBCCCEHBdp6CSFDQnFKSFx08AUYgAkhhBCNUVK3tPUSQgaE4pSQuGhbLwBUGIAJIYQQAK34WN8B7OZkj4UQkkgoTgmJi84MA8wOE0IIIRo6iwghQ0JxSkhcjLbKaXVrcsdBCCGEHCQoTgkhQ0JxSkhc2oMvbb2EEEKIoj15y4m9hJABoDglJC5anGbmaOslhBBCNEZJxUaA8ZEQMhAUp4TERQ98WL2atl5CCCFEY5SB1WvU32nrJYQMAMUpIXExSkB2Hlg8TlsvIYQQojErwOIxIFNgfCSEDATFKSFxMcpAbgEoHqFtiRBCCNEYZSC/6MZHVk4JIfGhOCUkLkZFBd+Fo7T1EkIIIRqjDOSXgAWKU0LIYFCcEhKX9sxws9Y5nZAQQgiZVXTytniU03oJIQNBcUpIXNrFKUBrLyGEECKlmsmQXwCKhxkbCSEDQXFKSFzMcsvWC9DaS2aePWMPP/3xn8b5yvlJHwohZFKYVQCys+3FcSZ9VIRMlPs278PP3vGzsBxr0oeSGChOCYlLd+WUEwnJjHP/1v344sYXcXrz9KQPJblICXzy14FL90/6SAgZDL1mTdt6pQ3UdyZ7TIRMmE+f+zQ+de5TuNK4MulDSQwUp4TERU/r9SqnFKdkttm48hAAoLZx74SPJMFUt4BP/y5wzzsmfSSEDIZRVre5RTUQCWB8JDPPxsUvAwBqO09O+EiSA8UpIXHRAx/mD6v7tPWSGefCthKn1fveBTTrEz6ahFJyLdEbX53scRAyKEZJ3XbMZOBQJDLbbJSeBgBUP/M7Ez6S5EBxSkgcLAOwDTXwIZMD5lZo6yUzz8XaJQBArbGjqn8kPlqcXrwPcOzJHgshg6An1+cXlK0XYHwkM89GUzkKao/fCTzyiQkfTTKgOCUkDl7wXVK3C0dpWyIzz0ZduQeqSyeAz/4xcPlrEz6iBFK6oG6bNWD70ckeCyGDoG29HQMDWTkls4sjHVy0awCA2vIp4CO/AJi1CR/VwYfilJA4mG3BF1DWJdp6yYxzwVBDT2pXf7Oqmnz45zmlMy5751p/p7WXJJF2cTq3Aog0xSmZabbqW7AgAQC1F7wW2H0K+DTtvWFQnBISB2/gw4K6LR6hbYnMNLZj45JrW6qnM8B3/yrw1OeBr31owkeWMErngaVTQGaO4pQkEz2tN7cIpFKMj2Tm2ahueH+vrlwF3PIa4HN/Auxx7VoQFKeExMFoG5UP0NZLZp7txjYsqCpp1TaB5/+oemDzoQkeVQIpXQBWngGs30xxSpJJ+0AkQE3sZeWUzDDt4rTWrAFf96OAYwFXHpvgUR18KE4JiYNnW3J7TotHgcYeYJmTOyZCJsiFygXv7zWrrgaF5ZeA2vYEjyqB7J0Dlk8Cx79OiVPaoknSMMpAKgtk8up+8SjFKZlpNipt4tSqAfOH3DuMj0FQnBISBy8zrG29ep0MAzCZTS5WLwIAjtgSVauqvjh/iL3YcXAcoLwBLJ0ATtyizjM7j0/6qAiJh1FRsVEIdb94BKgwNpLZZaO6gUUJzCGlKqdcQRgJilNC4mD62HoBWnvJzHKhqiqn18q0Cr6AEqfMDEentgXYpuo5Pf516mu09pKkYZRbsRFwbb2XASknd0yETJCNygaO2Q7mRdqtnK6pB2pXJntgBxyKU0LiYHRP69XilFkwMptsVDawiBTWRbYlTouHZ0acvuP+d+BvHvib4V5E7zhdPgkcebayRlKckqRhlFstL4CKj1ajldQlZMbYqG7gRNPCfCqLarMKpLPA3PLMxMdBoTglJA5anGaL6lbbejmRkMwoF6sXcVymUEjnVWYYmKnK6d8/+vf46BMfHe5F9OTGpROqZ3f9OcDGV4Y/OEL2E7PcmmQPKFsvwPhIZpaN6gaONQ3Mp3JdziIWNIKgOCUkDkalNSYfoK2XzDwXqhdw3JYopvMqMwy0xOkM2Pm26lso6/3Hg6Irp0un1K0eijQDPz8yRfjZegHOZCAzSbVZRcks4bhloZiea5vJMDvOokGhOCUkDkapM/jmiqqKSlsvmVE2qhs4blmYzxTQdJpo2k0lTq0GYFYnfXhjxbRN7Bq7qAxrWyydB9K51iTH47cA9R1g7+nhD5KQ/aJbnHptLxSnZPbQk3pPWDbmM3OoN+vqgflDQJXiNAiKU0LiYJRbk3o1xcO0LZGZpGJWUDbLOG42MJ+ZB+COy9d29ynPDm/W1UX30JXTvfPK0qsdGcdvUbfsOyVJQk/r1dDWS2YYveNUJW/nW86i4uy0vQwKxSkhcTArnZlhQFl7aeslM4gOvicaNRTdXjM1Ll/vcptuR8FmTYnTht1QFeNBKV0Alk627q8/BxBp4AL7TkmC6BmIxFVrZHZpiVMb89mFrpkMW2zbCIDilJA4dNuWAHXfrE3meAiZIDr4HrOamNfi1Grb5Tbl4/Iv11pJqXJziOpp6VynOM0W1H3di0rIQcexgWa1Mz6ms0B2furt/YT4sVHdQEakcNi2MZ9baJvJcFitDuMU676MTJwKIdJCiHuFEB92718jhPiiEOJRIcS7hRC5Ub0XIRPD6JpGCKi1D7Y5meMhZIJcrF4E4GaGc6piUm1WW7vcprwXW9t6AQzed+o4QGlD2XrbKayovlNCkoD+/PvGxyFcBYQklI3qBtazS0gDKOYXOyunwNTHx2EYZeX05wA82Hb/twH8gZTyegA7AH5qhO9FyGQwKp22JUBlhxl8yQxyoXIBGZHBEdvG/NwKgBnrOa21xOnAldPqJuA0geVTnV8vrFKckuTQvQNck2bylswmG5UNHM+q34f5/DIsx1LtH8XZcBYNw0jEqRDiFIDvA/A2974A8B0AbnOf8g4APziK9yJkohil3oFI6RyDL5lJNqobWJ9bRQpAcW4VgFs5zS+pism095y2VU4HHopUOqdu2229AMUpSRaeOGV8JARwJ9mnCgCA+fb4OCMzGYZhVJXTPwTwSwAc9/4hALtSSsu9fw7ASb9vJCQxSOnfc5rOqsoHITPGxepFnMipiqkOvrVmDRCitet0irlcu4xCRl18DGzrLV1Qtz22XopTkiAM9/Pf4yzKAI7V+3xCphjLsXC5dhnHU3kAbfHRah8YON3xcRiGFqdCiFcAuCylvGfA73+DEOJuIcTdm5uc6EYOMFYDkHYf2xLFKZk9LlQvtGxLBRVw69bs7HLbrG3i6qWrAQxROd1zhx752np3OdGRJAOjpG574iMrp2T22KxtwpY2jiMFZArewMCOyil7TvsyisrptwD4V0KIJwD8LZSd948ArAghMu5zTgHwHTsopfxzKeWtUspbjxw5MoLDIWRMaNtS98AHBt/EU2ty2nJcdGb4WFpVDovuhN7WRMK1qc8Mb9Y3ce3KtQCGsfWeB9L51gWLprCiHBmcdEqSAOPjVGI5FgzbmPRhJA5vjYwNIL+IYrYIwK2c5hfdtpfpjo/DMLQ4lVL+ZynlKSnl1QB+FMAnpZSvAfBPAH7YfdrrAHxg2PciZKJ4PTXdtqUcK6cJ5vMXPo9v/dtvxXadgSIOl2uX4UgHJ4SyLc3Nq+SiN5GweHiqg2/DaqBkllqV00EHIpXOK0uvEJ1fLygbGK29JBFoW7uvs4i23qTy1vveild/5NWTPozEcaGq2jWO28ptN5+ZB+Amb4WY+vg4LOPcc/rLAH5BCPEoVA/q28f4XoSMn37TCFMZitMEc3bvLEzHxKXapUkfSqLwMsNQBpnU3BLmM/NtldNDUz3wQQ9DOlY8hoXswuA9p3vne4chARSnJFn0jY+c1ptkzu6exVOlpyZ9GIlDr1k7ZjY7Kqf1ZlvbC8VpXzLhT4mOlPJTAD7l/v0sgG8c5esTMlE4jXAq2TV2AbTZUUkkrjTUGPxDjqMSNJk5zGfnWxbp+cOqZ9K21FCUKUOvkTlSOIKF3MIQtt4LwDO/qffrFKckSfRdJcP4mGR2jV007AaaThPZVHbSh5MYtuvbKGaLmG9UOyunVnvyluK0H+OsnBIyXfS1LeVUbxgHlySS3YYSpwNXvmYU3YeUbzbU74QQKGaLbeL0EAA5teJKV06PzB/BQnZAcerYQPkCK6ck+RhlIDOnbLztcGBgotHJW85liIdpm8in896Gh/msEqcd8ZEDkfpCcUpIVPr2nLrBmOPyE8mesQcAqDQpTuPQdC8482bdS9jMZ+bbek6ne1y+rpweLRzFUm5psM9PdVOdN7rXyAAUpyRZ+K1ZA1rJW5JItDhlfIyH6ZjIpXNqinWbOPUcWuw5DYTilJCo6FH5PdMIXXFK61Ii2THUxT8zw/HQldNsswbkXHGa7eo5Baa27/Ry/TKyqSyW88uD23p15rzoM6me4pQkCaPcGxsBt3LK2JhEpJSes4htL/EwbAO5VE457vKLmEvPISVSreTt/CGgsUtXQR8oTgmJihFg6wUYgBMKK6eDYbqf97xZ9a+cuqtlpjU7vFnbxNH5oxBCYDG3OJg47dcqAADZgloxQ3FKkoB7Ed4Dbb2JpW7VYTrqPE9xGo+m3XQrp8pRIIRQ8bGj7QU8v/eB4pSQqBhlQKTVRWM7XuWUtt4koiunDL7x0BctOaN1Udo5EGm6F41v1jZxuKAE+EJ2YbBVMv1aBTSFVZVdJ+SgY5T9P8dctZZYtKUX4EyGuJiOiZyeVO06CjqTt9MdH4eF4pSQqBhlNam3ex9hirbeJMPK6WDoymmurdesdyASgNqVSRze2Nmsq8opACzmFlExK5Bxh6LpVgG/ihOgxCkz6yQJGKXeSfaAu0qG4jSJtItTJm/jYdgG8iKt7rhJm47kbXG6nUXDQnFKSFTMSv/MMEBxmkAaVgN1S+0dY/CNh2mbyKayEEbVuyjtyAxncur3ZUp7TjdrmzhSUL2ii7lF2NL2PkuR8VoFfC7qAVecsnJKEoARZOtlbEwiHZVTJm9j0bSbyAlXYuVnbybDsFCcEhIVd+paD56tl9nhpEHb0uAYttE2Kr8tM2zVWhXEKd3lVmvWUG6WcWReidOFrBKXsftO++2G1LBySpJC0LReitNEsttg5XRQDNtADp3itJgtzsxMhmGhOCUkKn2nEbqVU47LTxza0gsw+Mal6TRVT02zcyCSIx007IZ60pSK0626ynZrW+9STonz2NUFLU79zisAxSlJDkHxkWvWEgkrp4NjOiZy+k67s8hre1lTt1Pa9jIsFKeERCXItgQwO5xA9DCkQqbA4BsTwzaQ05/9tsww0LXLbQoHPlyuXQaA1kCk3ICVU7MCZItAKu3/eGGF4pQcfCwTsI0+bS8ZxsaEopO3hUyBzqKYmLaJnB5B0D4wUFdO01lgbnkq4+MooDglJCp9bUu09SYVnRk+tXiKldOYmLaJnMioO3oaobtovN50ey/nD01lZtirnBZaA5GAQWy9fVoFNIVVoFkDmo2BjpOQfSFoJRJtvYllx9jBYm4RS7klxseYdIpTt+0lM9/5c5xSZ9EooDglJCp6Wm83HIiUWPYaKjN8cuEkK6cxUeJUTyNs2XoBoGq1DX2obQFxp9gecHTlVPecLmYHFaeV/sOQAFU5BbhOhhxsvKnTfeKjdADH3t9jIkOza+xiJb+CYrbI+BgTwzaQl46647dqDVB9pxyI5AvFKSFR6TetN8XKaVLRtt4TxRPMDMfEdMy2aYStgUgAOtfJWA1V/ZsiNuubyKfzXq+ptvUO1HMaVjkFaO0lBxsjoHKact0VjI+JY7ehxOlCdoHxMSZNu4mcTsi48UEPRHK0aGXltC8Up4REQUp34EOx9zGvcsrgmzT2jD0sZBewMreCulWHxcEdkTFsA/muaYS6cur11ehdblPWV3O5dhlHCkcg3J3Hg9t6o4pTVk7JAUbbegPjI51FSYOV08ExbMMVp8L7vdDxsWG5bRrFQ0CV4tQPilNCotCsA5B9phFyIFJS2TF2sJxf9laBMDscnabdRA5KnGk7X89AJG+X23QF4M36pmfpBYC59BwyIjPYQKQcK6ck4XjitE/PKcDkbQLZM/ZU5TS3gKrJ2BgVKaVyFtm2chW5SUzf+Fjbnrq2l1FAcUpIFLyBD1wlM03ozDDFaXwM20DWZxoh0GXrBaZPnNY2vUm9ACCEwGJucQBbb4SBSADFKTnYGEHx0U3eMj4mjh1jBytzrJzGpel+1nN2s+P8XsgUALQ5i+YPqSnXnITcQ2bSB0BIIvAyw0GVUwbfpLHX2POCL8BdbnEwHRN5uOpUr5LJqJ9jR/AFpk6clswSVvOrHV9byC2gZJbivVDoQCSKU5IAdFXN19ZLZ1ESMW0TdauOlfwKpJRM3MbAdD/rOdvsEKf6OqOVvHUTnLXt4CTlDMLKKSFRYPCdSnaMHVZOB8S0TeQcd7BDLqRyOmU9pxWzgmLXuWAxtxhvF6DuYw+6KMkvASJNcUoONl58DJpmz+RtktBr1nTPabVZbQ3yIYEYtgEAyFlmR/JRx8eethf2nfZAcUpIFALFKQc+JJU9Yw+r+VVPaHDReHTUHjcHyBSAtDLhZFNZZESmFXznltU06ykal9+0mzAd06sSaxazi/F6Ti1DWR2DxKkQ6mdIcUoOMoEDkZi8TSI7DXXO0clbCYm6VZ/wUSUDbevNW52V074DA6coPo4KilNCohBk6/VWyXDSa5Jo2k1UmhUORBoQVTm1O4KvEELtctPBVwigeASobE7oKEeP/owsdJ0LFnIL8WzhQUNk2imsUpySg41ZBUQKyMz1PsZVa4lkz1A7wFfyK0zexkTberNWI9jWW3SH6lUu7+vxJQGKU0KiQFvv1LFntgVf9pzGxrRN5G27p/I3n53vFPmL60Dl4j4f3fioWurfprPgmsVczMqp4fanhvUaUZySg45ZVYlbdyppB7T1JhK9A3xljm0vcdG23nyzHlw5XVhXt1MUH0cFxSkhUTC4x23a2G24PTUMvgNhOiaydq8ttZgpdtq/FtaB8qV9PrrxoasHPZXT7EJMcaonnFKckoRj9tkBDjB5m1A6KqdM3sbCdNyBSGa9wxnT03OanVNtG6yc9kBxSkgUvMqp3x432paSiJcZzq94QYPBNxpSShi2gbyPOJ3PzrdsS4ASp5XpEac6693dc7qUW0LNqsFyItr7DVfIBk3rBZQ4dRMphBxIdOXUDyZvE0n7QCSdvGV8jIY3rdesdVZOuwcGAsDCMaDMymk3FKeERCFo4EMqrfptuMctUbRnhlMipXa5sacmElqA5boGPgB+tt5jQHVzanqy9Weke1qvrqRGrr574pSVU5JwzGp45ZTxMVHsNHYwn5lHLp3zKqd0FkXDE6eQHef3bCqLXCrntYYAcNtepid5OyooTgmJgllVKx0yef/H0zlmhhNGe+UUgDcun4TTGpVv9IrTTNtAJMDtq5FKoE4B+sKiZ1qv66qIbO2NMxCpsQc4dqzjJGTfCKyc0lmURPaMPS826sQbk7fR8HpOHRnBWcTKqR8Up4REIWjgA+CKUwbfJNFeOQVUzyBtS9Hwemp8xGmPyF88pm6nZOhD1fSf1ruYjSlO4wxEApRAJeQgYlYCKqe09SaRXWMXK3Ot2AiwchqVpnst2F05BVR87BCnunIq5X4e4oGH4pSQKAQFX0BlhylOE8VuYxeFTAFz7vqDhewCg29EtG0p32z0VEzmM/O9A5GAqRmKpD8jun9I41UXoiY4Itt61QUirb3kwBJo6+W03iSya+x6iVvOZIiH5yySveK0kCn0OousRitZSQBQnBISjaDgC6hdbswMJ4odYwfL+WXvfjFbZPCNiLfHrc9ApA6R743Lny5xOrSt16gAEMHnFaBVOaU4JQeVoPiYyqhbitNE0S5Os6ks5tJzTN5GxHMW+YhTX1svMDXJ21FBcUpIFEIrp7T1Jo32nhpAVb60ZZME4/XUSAnklzoem8/Ow7CN1tTaKRSnhUwB6VS64+vxbb1ldeHSr1VAQ3FKDjpGhdN6p4zdxm5HfGTyNjqes8hHnBYzxd6BSMDUtL2MCopTQqJgVoPtd2lWTpPGjrHD4Dsgrcwwelah6EXjnrU3kwMKa1Mz9KHSrHjTK9vRldPInyGzHG7pBShOycFGSpW87bcSieI0cViOhXKzzOTtgHjOIil7215YOY0ExSkhUYjSc8pR+Ymip3LKntPI9BuVD8B/7cDisampnNaaNV9xqlfLlMyIvUNGuX+1qR2KU3KQadYByICeU9fWG3X/L5k43rDAOSZvB6HVc4oeZ5HvQCSAldMuKE4JiUJYzykHIiWOXWO3p+e02qzCkc4EjyoZeOLUr6fGrZx2Dn04OvWV02wqi0KmEH3dghGxcqovEOu7MY6SkH1CV9No650adg11rmHydjA6e047fy96BiLll4DM3NQkb0cFxSkhUQgVp9xzmiRsx0bJKGF1btX72kJ2ARKyc9Is8aVjGmHOv3LaY12akuBbbVZ9xSmg+k6jT+sNsEK2k2rPue4AACAASURBVM6oCxhWTslBxNvXy1Uy04KfOGXlNDqmbSIDgXQ6B2TyHY/1rFoTQs1loK23A4pTQqIQtGQcoDhNGCWzBAnZGXzdiysuGg9H73HLSwnkOleq6LUD07rLLUicLuQW4g9EisLcCsUpOZh4lVNO650WWDkdDtM2kRMpoGvdGKCcRU2n6cVQAG7by3Q4i0YFxSkhYeiBD4GrZDKAzZ6apLBjqAv97uALcNF4FLRtKStlT2ZY23o718kcU8mbKRBYgZXT3GJ0cWpWevqR+lJYAepXIh4hIftIWOVUCHfVGsVpUthtsHI6DKZtIoeUsut24SVvu3edsnLaAcUpIWE064B0WDmdIryBD13BF+Ci8Sh0rJLpCsC+wXdxetbJVJtVL5HRTbzKaSnaQCQAmFsGGlzSTg4gnjgNmmbP+JgkvMrpXO+0XjkF7pdxYzomchA9iVugT9sLK6c9UJwSEkaYbQlg8E0YfplhLTgoTsPpGIjULU59K6euOJ2CoUjVZtUT4N1E7jmVMqatd1mJWUIOGpHiIyunSWLX2EU+nUchU/C+VswWYUnLS0yS/qjKKfwrp77x8SjQ2AOajf05wARAcUpIGF5mOKhymuGo/AThlxn2XYFCfOkUp1223mzXnlOgtcst4ZXTpt2E6Zh9K6dzmTk0rAgXGNqNEUecNvZiHCkh+0RUccpVa4lh19jtSNwCTN7GwbAN5PtUTv1tvdMRH0cJxSkhYbByOnX4DnzIsec0Kq1R+QDSnQF4zs0Wd4i0xemonOrPRr+e01wqh2aUi3DDtf5GmdYLqN5U2nrJQSRslQzA+Jgw/MSprx2V+NK0myo2+ojTubSKjx0V6EWK024oTgkJg+J06tAiQ1tsAA5EioO3SgYp5RpoI5vKIpPKdFZO84tAtghULu/nYY4cXTXoK07TOa+qHIh2Y0QdiDS3BJhlwLGjPZ+Q/SJsIBJAW2/CqDVrPec4Vk6jY9iGb8sLAM8q3eksmo7k7SihOCUkjEi2XgbfkfH4p4H/9YNjnX7csBooZAoQQnhf03YbrpIJp2k31R43n+ALAIV0AQ27y966uJ74oQ9hldNsOhtNnOr+0TgDkdq/j5CDglkFIIBsof9zmLwdHZ97C/Cx/zLWt9DxsR06i6JjOqZvywvQchZ1iFNWTnugOCUkjCiZYY7KHx2P3gGc/SegvDG2t6hb9Z7gm01lMZeeY/CNgGEbao+bT/AFVHa4I/gCUzEuP4qt13TM8ImWnq03Ys+prrDS2ksOGkZFJVnaEn09MD6Ojgc/BNz/92N9i5pV64mP3jR7Jm9DMW0TOelEr5zOHwJEiuK0DYpTQsLQtt6g/rB0jsF3VJTOq9sxWkAbdsPr/WiHu9yioaYRCt/gC6jssK84nfLKaS6dA4DwvlND23qjDkRyxSkrp+SgYVbCe6fpLBodpfNKxIxxpUvDangVPg1tvdExbRM5xwmsnHbMZEilgeJR2nrboDglJIxIAx+ytC2Nij0tTsd3oq5b9Z7gCyjrEoNvOGqPW//Kqe/U2sVjU1M57TetN+8Ohwq19satnGpbLyf2koOGWQ12FQG09Y4KxwZKF9Tk4/rO2N7GLz5ymn10DNtA3gnuOe2Nj+usnLZBcUpIGJEHPjD4joTSOXU7xiyin60XUAOSGHzDCdrjBgTYes1yK9mTQEJ7TlNZAK1pxn3RFVDaeknSiSROWTkdCZVLgHSHoo0xPjbs3p5Tz9bL5G0oTaeJnGMHTuvtjY/HWDltg+KUkDDMquoH6HMhDkBlhqUNOM7+Hdc04jhAye01Haet18e2BLiV0zH31DQvX8bF3/xN2JXkijQ1jRDxK6dAorPDUab1AhEqp1GGrLXDgUjkoGJWwz/H3HM6GkoXWn8f03lUSqniY1fbSz6dR0Zkxp68rX/1q9j80z8d63uMG8M2kHVs32vGdCqNXCqHut0lTlk57YDilJAwdPANGviQVhUTBuAhqW62foZjtvX6VU6L2WL/4HvxzNCVK2lZOP8Lv4Cd//XXqN9771CvNUmadhN5IGbl9Ki6TbC1V+/4a19B1I7XcxpWJTLKgEgHTzhth7ZeclAxK7T17hd751p/H5OQaTpN2NLuiY9CCBRzRf/krZTAU18Yug+2efkynv4/34itP3kLnFpy96matom8Y6nPvQ+FbAH1po+zqLrJdWEuFKeEhBE1+AIMwMNSag++462c+onThWyfntNmHXjbdwJffOtQ77v5x3+C+t33AADs3d2hXmuSGLaBbJ9R+UCfVTILunKaXOtSpVlBIVNAOpX2fTyXciunobbeirL0BiW82qGtlxxUIvecMnE7NHpYIDA2caqTiv3io2/y9qnPA3/5PcATnxn4faVl4cJ/+I+wt7cBJDs+mraJnG31HxiYnvOJj+uAdIDq1j4c4cGH4pSQMIwI4tTtNWMAHhI9DKl4ZOw9p/2m9foG38sPAFZjqAuCyp13YvvP/xyL3/M9AAB758rArzVpTMd0Bz70t/X2VE61rTfBldNqs9rX0guoPaeAEu+BGOXo/aYAkMmpCx2DlVNywIiSvE1lGBtHwd55IFMAssWxnUf1eduv7aXvNPvzX1a3Q8THzbe8BbUvfcmLj9aV8Q18GjdBe04BJfz7t70kN3k7SihOCQkjak8NwAA8LDozfOIbxtp/4TfwAWhVTnv2VF48437jYOKgeekSLvzSLyN/00048ebfAlIpWDvJDb5NuxkafHvEaWFNXaQmOPhWm9W+k3qBtspp6LTeUjxxCihrL2295KBhVoFcyGeZtt7RUDoHLJ90+xPHcx7VoilW5fTScPGx8tnPYvvP3orlH34l1l73OgCAndD4aDkWHOkgB/9pvUC/tpfkJ29HCcUpIWFEEqe09Y6EvXPqhH702crWO6YBU0GrZCzH6rVlXjytbgcNvp+6E/beHk781m8iVSggvbKS2OAL6IFI/gMfgD4DkVIpZV1KcPCtNquYz/r3mwKtVTKhe07NSnxxml+irZccLKSM0XPKxO3Q7J0Hlk66O6PH0/ai7aaxKqdDJm9LH/wg0qurOPZf/yvSqysAAHs3mfFRJybDnEW+q2SARCdvRwnFKSFhsOd0/yhdAJZOAIvHx7bLTU8j7DcQCUDv0IchM8NORb1e9qpnAADSq6uwdxLcU+P0XzIOqODbdJqwHKvzgZVnAFce24cjHA+hldOo03qNcvRJvZq5JVZOycHCaqg+uUirZBgbh6Z0AVg+5Sb5xiNivJ7TdMTKqWUCm19Tfx/w/GRXqsgcPYrU3Bwyq6vqawlN3upzfzagcjqXnvOZ1ntctYdtJzc+jhKKU0LCiDTwIaNuuy/GSTxKOjPsTnYdQxbRsA1ISP/KqSs8OgKwlMCl+9XfBxWnVSVOU/Mq4KdXV2BfSXDPqW0i32dUPtCaZtuTHV6/Wf0sE7pyKaxyqntOw8XpAJXTuWWukiEHC72zmKtkxo9tqXjoVU7HPBDJZ5K477TerYda/7dDJG9TRXWNlVpaAtJpWAmNj3reQD5u20s6Cxy5qZUIn3EoTgkJI+o0QoDZ4WHZO68yw2PciRnUU+O7aHz3SSUKUtkhxGkVqfl5iJQ65WZW1xJrWwKU+Oq3xw1oLRrvmUh47GblRNh9YsxHOB4qzUq0ntPQab1lIB+zckpbLzloePt6aesdO+UNVaXWPadGCTBHv25Fx0e/gYG+lVNt6R02PrriVKRSbttLMp1F+tyv9oDHaHsBVHy8SHEKUJwSEo5ZYc/pfuDYKgDrzDAwlv7EsFH5QFflVAeLky8Y3LZUrSK10PoMpVdXYSU0+AIqO5y3rf6ZYTfr3rPLbf156jahAbjWrAVO641l69XrYaJCWy85aBhRxSltvUOjhwUunWpby7W/8bGYLaJhNzp76i+dAdJ5YP05w4nThdZnKL2a3JkM+tyvBgbGGIgEKGdR5SLXyYDilJBg9MCHsCpHyrX12rT1Dkz5IiBt1XO6ML7hALrXwy8znHfFVkdW8+JpAAJ4xouAZnWgCoBTaWWGAd1zugOZUHtr09Y9p8GV056+mqPPBkSqZZNOGJVmJVicRpnW6ziDDUSirZccNLStNzQ+ZtV5s3sKOonOnrsDvCM+js9Z5Nf2os/rHee3i6fVeX3+0EhsvQCQWVlNbNtLpzjN+T7Hd5UMoCqnQGsA4wxDcUqmjr8885e4/ezto3mxyAMfWDkdGp0ZXj6lLnZyC2OZSBi0x83XlnnpDHDoenVRAAxkrWy3LQEqMwzbhlMux36tg4ARssdN/2x7AnBuHli7LpF9NaZtouk0o1VOg2y9zSoAGX8gUn5ZnY+skB2qhPTBdmz8ymd/BQ9deWg0L+jZeqM4i6Ryx5DB8OLjybbJrvtbOe3pqZdSncuPPW+oVVdOtYp0V/LWSmjbS2fPaUxbr3YWJTA+jhqKUzJ1/O8H/zc+fPbDo3mxyAMfKE6HxrMtnVS3Y5pIGNRzmk2p4Ntsr45ePK0ymnPL7gvEt+N2i9PM2hqAZE4k7Njjlu4/8AGAv3Xp2M2JzAxrq/fQtl5thRykcgqw75QMzKXaJbz/0ffjrvN3jeYFvfgYwdYLMD4OQ+mC2ic7tzzWnZh6TkBQfPTOb+WLQG17KHEqHQdOrdaZvF1bS2zPqbY8h+0Bt6TVeZ0BAMVDampvQtteRgnFKZkqHOlgu76NPWNEvVmRBz7o4MuhDwOz15YZBsY2kTBInGpx4fXUNEpqINJ6uziN/9lyfHpOAcBKoDiNssdN/2z9s8M3q59pwkRWHHEauOfUcKvlscWp26NKay8ZkM36JgBgd4AEmy+RxSmTt0Ozd64VG+cPASI9nrYXq46USHlCtJ2e85tOMur4OEhsrKkEZqrYHh9XYO/uJrLtRVdOg3pO+7a9AO5Ee4pTilMyVewZe7CkhT1zVOI0ZmaY4/IHp3QeyBaBObWEG4vjEadBtqWeypfujdSZYWAgcaB6alorSNIryd3lFmWPW3DlVFuXktV3qsVp0LTensqCH4OKUz1AiUORyIBs1dWgldHFx6i2Xh0fOZNhYPSaNQBIpdS6tTHFx7n0HIQQPY/1tL1c0uL0uSo+2gbQ9ElIBuCtWWt3Fq2uqraXUvIScZ09pzEHBgLKWbT5kNofO8NQnJKpQmeGR1c5ZWZ439g7p/o6dVBcODbWab1+PaeeuNDBtzszDAxeOe3qqQGSKU47M8PBPad9JxICicsOa3EatOc0JVLIpDLB4tR0xWncntMhPn+EAMBWzRWn+x4faesdmr3zrbkHgNv2Mh5nkV/iFmirnGqH2MUzwPIzgMLKwMlbp6o+Q37xMcnOoiiV055Va4CKj05T7Y+dYShOyVShM8MlswRHRrSEmDXg9G3+kwSNiBeStPUOT+l8y7YEqMywWW5dAI0IT5z6TOvtrZyeBgqr6qJgSHGa7ug5Ta441cI9H7THLSj4Lp1QP9OE9Z3q3bdBlVNAVRe0gPdF25nnBlglA9DWSwZmqzGAON15Ejj7Kf/HzAoAAQQkbAAweTsslgFUL6thgZqF9bHZev0St4BffDzTmjCrHU8x46O/ONUzGZLXd9raczpg28uxZK9bGxUUp2Sq2K5vA1C9p2Uz4iTUL/4Z8N6fAi4/0PtY1IFIKWaGh2bvvNrhplkczy43r+c0GzAQyWnLDK/frKq5A4pTxzQhm82OnlNRKEDk81OQGR5gIJIQieyrqTXVwvugnlMAyKfzEXtOY4pTz9ZLcUoGw7P1xhGnt/8i8O7X+idvzaqKjT4W0A5STN4ORemCul1qS94uro9lmn1Q5TTjrswzHRNo1oHtR1tOmEHjoxanCz7OogRO7G05izBY28vader7EhYfRw3FKZkqtK0XAEpRKgxSAve9W/1958nex2Pbehl8B8JuKhHaXTkFRm5d8qYRpgMGItlNtbP28gOtTGZuQe3oHDT4zrc+Q0IItev0SvKCbyTbUr9VMppjzwMuPZCo1RK6chomTrPpbEjPqXteGnhaL229ZDA8W2/UntPqFvDoP6rPbN3nXGVWwmMjQGfRsGhx2hEf14Hq5sjPoXW73t/Wm2obiHT5AbVm71i3OI1X7XQqfj2nqgqbxF2n3sBA2X+afWDbSzqj9sYmzFk0aihOyVShM8MAsGtEOElePA1sfk39XS+5bifuwAcG38EobwCQnZnhhfFUTutWHRmR8Xa2tZMSKWRERmWGyxtqr+ThG9WDuno6AtsSoLLDSbT1RplGmBIpzKX77HIDVLbdqgNXzo7rMEdOlGm9gLqAC9xzOnDl1BWztPWSAdHxcdfYhfSrhHZz5n2AdMWPb3ysRhSntPUOhbdmrcvWKx2VQBgh9WZEW++2e+4+/Cx1O2TltHvPKZDwnlORUYOrfAi09QItZ1GU39EpheKUTBU6MwxEzA7f925lOUrngL2neh/nQKT9oXuNDDBWW2+/4Au0Vb70JL32xMQIxWkmoeJUW1bzAbZeQGWHa1bN/0GdbU9QdtgbiJQJ7q/LpXPBldPGnurRS2fiHUAqrfYc0tZLBkQ7iyzH8q/adHPfu1vnv72nex+PLU6ZvB0InRhoH4jkxcfR9p027IgDkdw2B+//f0BxavvEx9T8PMTcXDJ7TrU47VM1BUIqp4ByFtW2x7LnPSlQnJKpYquxhbU51Uwf2lfj2GoQ0g0vBZav6p8ZhgB8+hM74CqZ4fAyw23itLAGpDIjP0EHDXwAVN+paZuqagoA2bbnDiNOFzqr7+nVVVgJ7KnxVslEEKd9M8NHblL/twnqq6k0KyhkCkin0oHPy6VzvcvV2zHK8aummgF3Ce4HT5WeilaNIxPBkQ62G9vR4+P2Y8D5u4Fbf1Ld71s5jTB1WidiGB8Ho3Re/e7n237WC+vqdtRtL1bDd1gg0DXN3nKHvulro6F7TnvjYxKTt6ZjIgUgExAbdUuR78BAILET7UcJxSmZKrbqW7h2+VoAEWy9j39aZR2f/yo1BW/XLzNc4cCH/cDLDLeJ01QKKB4d+dCHutW/pwZwxYXTbAXfzJDi1Oup6ay4JbXnVNt6wyqnhUyhf2Y4k1d26QRNJKw1a6GTeoEI03qNUvx+U83c0oG09X7m/Gfwfe//Pnzx4hcnfSikDyWjBMuxosfH+94DQAAv/Bl1Dtz1cRYZZdp694PuYYFAS5yOoe2lr623vedUJx51DMjMqf/n2PGxCqRSEHOd75leXUlsz2keqb4tL0DIQCRA7Y0FEuUsGjUUp2Sq2Kpt4bqV6wBEGIh0+u9UBePG7wVW+lVOK53Zyn6kUqoSxOA7GOUNZVnsXq+xOPpx+WG23lxKi1M3cLQLsJH2nK7AKZchm8lKaHSOyu//c5xLz/XPDANKnF55bNSHNzYqzUpovyng2sKDek4bpfhrZDT5pQNXOZVS4q1ffSsA4Im9JyZ7MKQv2tKr42Ng24uUwOn3ANd8m2q1WD7Vv3IaJT7S1jsc5Qudll6gTZyOPj72S97qOQ0dziIdA4aYyZAqFiG6CgCZleQ6i7IQoa4iIECcFlbUzI0ExcdRQ3FKJsY7H3wnfv/u3x/Z6zWsBsrNMtbn17GYXQwOvmYNeOCDwHN+QNk2l69SJ3mrq+IRtacGUAGY4nQw6rtq92U3Y1g0HqVyqoKvrpy2PXcIcZrusi1l1txdbrvJ6quJskoGUNnhvrZeoHXBmxAraLVZjSRO8+l8BFvvoJXTg2frvfvS3fjK5lcAABers9sjNWp+5bO/go+c/cjIXk8PQ7p+5XoAIbbe8/eoYWXP/zfq/vKpIXtOuWptKPziY3ZOnQ/2MT52DESyGoBIt/5vgcHF6UJvgiO9tpbInlPDNpCHCEzc5tN5CIho8XFGoTglE+NTT38Ktz1828j6lHTwPVw4jKX8UrBt6eF/AMxyW/C9St3q3kdNHHGayqr1IyQ+Rp9q0sL66Aci2Q3fNTIabyBSt20JUIvG4w588BmVDyR3ImFLnCLUuhQ4dGX5KvUzrm2P+AjHQ1RxGj6ttzREz+nBs/W+7fTbcGjuEI4UjuBijeJ0VHzk7Edw++O3j+z1dHz0KqdB4vS+96jf7Wd/v7ofNJMhSs8p216Go298PDbS+OhIJ3ggUoet1+g9/w/Y9tLd8gIkt+e06TSRC6mcCiEwl5kLiY8Up4RMhJJZQrlZHlm2vV2cLueXg4Pv9qPq9hnfpG6X3X6O7r7TqMEXUBlEZoYHo1FqDVRoZ/GY2uU2QtEfOq035doym122JUAdo1mJdTx9bb0r7qLxhPWddvScarueD5GCL5CYABxVnIbvOR1iIFJ+6UBN6z2zdQafu/A5/PhzfxxXLV6FS9XRJpJmlYbVgOmYeHjn4ZG9Zixxuv2IGsqiBdHyVUoENdsqPVLG2HNKW+/ASBkQH0ebvNXn9n7xscPW26z3CrAhbL3deG0vZrKuqQzbQA4IFKdAVGfR+cQ4i0YNxSmZGDo4PrL7yEheb7uuKjCHC4exkl8J7jlt1lTA1FMEV9zKafeFctTgC9DWOwyNPf8L9oWjAKQSqCMi1Nbr9Zz2mdYLxKpeOdUaRD4PkelcHaIrp3bC+mq0ZTWXzgcOCguvnLrDr6ZMnIavkhmi51Rf/B2QC5a/uO8vsJhbxKtufBXWi+u09Y4IHRsvVi+iZI4mGbFV30IhU8BqfhWFTCFYnDbrQK6tmrXi4yyyDLUDlbbe8WJW1c/ZNz6uj3SavT5fh03r9Sqn3VsMBhSnaR9xmtHOogS2vYS1vABR4uMpNfeilryhUKOA4pRMDC0eR5Ud1gMfDhcOYzm3HGzrbdY7T6x6Smx3X02sntMMM8ODYuz5X7AXj6jb2ugWjYetkvFWgXQPfABaFwiN6AGzX09NZs0VpwmzLunsei6gagqErJIBWlb6aROnqQBx6jiqnWCYab3Sbu0YnCBnd8/ik09/Eq959muwkFvAseIxXKpdgiOdSR9a4mmfl/DIzmiSt5v1TRyaOwQhBJZyIW0vzZraxavxXA5t8dHbAR5lIBLF6cDoRGi/+DjCtgh9vu6XvE2JFDKpTKvtpVuADTCwzalVkSr69JyuujMZEtZ3atqmO8m+/zUGEGFgoN/v3AxBcUomgu3YKDfLAICHr4xGnG7Vt5ASKazNrWEpvxQ8EKlZ7wy+mbzq3+g+ERgxK6fc4zYY/WxL+iLeqIzurQJ6agC/nlOfymmMAKx6anxsSysrABLYc6r3uAUsGQciBN/5Q+pnW0qGOI06rTeXDug5NdU5byhbL3AgrL16bcwPXf9DAID1+XU0nSauNGYz0z9K2l0/o0rebte3cWReJfuW88sh8bHRmbz1SyTpz3IcW6/DmQyx0b/r/eKjWVFJr1G8VYg4Bdp66q1G57BAfYyxZzL0s/UmM3lrOmboDnAgRttL9xyUGYHilEyEsg5sGJ2td6u+hdX8KtKptGfr7ZvFb9Z7M1t+u07NqlpxEgXaegdDyv5DYvTXjHLvYwNSb4ZUTtuDLzC8OO3TUyOyWaQWFxPXc2raJnIhe9yAlm2p78AzIZRjIQGV05KpdkSu5n0mSncRaOvVn+NhpvUCB2Ji72O7j2EhqyqmALzbSzX2nQ7LuCqnhwuHASBC20u9U3gsnQQgOuMjK6f7g/5/ygckb83RJG89W2+Is6hv5XRuWX29GZCU7CKo5xQA7J1kJbsM20DOcSLHx74sJWsmw6ihOCUTQQffE8UTeHzv8f4Xc806cPq2SD1WW/WtjsywhOwQwZ2v22VbAnp3ncYZ+AC4A5FYOY2NWQGk429b8oLvaMSp7dgwHTN4Wm8q27ZKRvSOygcGEKe90wiBZE4kVOI0eBohoIKvIx3Vn9SPhEwkPFdWx3jV4lWhzw2c1tsIsOhFYYCe53Fxdu8srlu5zttPqMUp+06HRwvHE8UTwZXTvXPAo3dEes2t+pYnTpfzYW0vtc7KaSanhtN1VE7jiFM9EIniNDY61gTGx9GK00BnUSobPK0XiHx+klL2FaeZhE6zb9pN5B0nUuU0sO2leBhI52nrJWQ/0cH31mO3wpY2zu6d9X/iXb8HvPengEtnQl9zq76FQ4VDAFTwBQImEnb3nAKtC2VtkYkz8AFwV8lQnMZGX7D7VU71hc+IKqfaZhq257TpNFufkfahPwOK07RPTw2gAnDSxKmaRhi8xw1o/YzDx+UffNuSFqcnF0+GPjeXzsFyLH/XhjE9tt7Hdh/zJr8CwLF5itNRoYcg3XrsVjyy80h/B9D7fwZ4z4+Hvp5hGyibZU+cLuWWwgci+cbHp1r3tSCKEh+9VTK09cZGx5p9iI9RK6dNW8fHbnGqqp1R46M0DMC2/fecrujKafLiY1ZGq5wGilMh1NDABMTHcTC0OBVCXCWE+CchxANCiPuFED/nfn1NCPEJIcQj7m24H4okiq36Fn7507+M3RjDYTS6cnrr+q0A+liX6rvAF9+q/h6h6X+zvonDcy3bEhBXnD4DsI3W8B0v+EZdJUNb70AYIT01wGSCr2X425aAWOLUrvr3nAKqcmolbVqv00QeiJQZBiKI0/LGRJM6UgY4LFzOVVxxuhBNnALwrxgbAYmYKHifv8kOCdlp7OBK4wquXb7W+9rq3CqyqSzXybjcffFuvPmf3zzQHu89Yw9pkcYtR29BzarhQuVC75Oe/DzwxF0qTllG4Ou1r1kDVHzcM/f8j01Kf2dR965TI444TQMQjI+DEBgfR9v2EiV5661aC6qcRoyPjrcDvNdZJLJZpJaWkjkQybaHn9YLJMZZNA5GUTm1APwHKeVzALwIwBuFEM8B8J8A3CGlvAHAHe59MkV8+dKXcfvjt+O9j7w39vdq0fi8w89DLpXzty7985+3Tsz14BOUIx1cqV/xbL1LOXXS7jv0wTf4du06fVoN/MDh64P/MRraegcjyLbkZYZHY1uKMvChFXwbvcE3twCIVMzKaS1QnCat51RlhhE+jdB9PHSXGyRQ0WYcogAAIABJREFU8rn43ifuPHcnvu1vvw1fuvilvs85Vz6HlfwKFiP0n+t1C/Wty6jdfXfng0Gf9Sjo7xuzrVdKGSiqtNOlvXKaEimsz6/jYo2VUwC446k78M4H34mvbH4l9vfuGXtYyi3hxtUbAfQZivTp32n9PSQ+dovT5fwyLMfyvzi2DAAy3Fn09BdVRXT1meH/ICGYvB2UQFvviJ1FOj4GtL2E9pwCkZNn/XaAa9KrK7CvJKvn1LRN5BxLWXIDCB0YCPQmhGaIocWplHJDSvll9+9lAA8COAngBwC8w33aOwD84LDvRQ4WutrwvkfeFzs7rG1La4U1XLdyXW/ltFECPv+nwPGvc+8Hi4FdYxeWtDqCr/66L1ajN/h6u05dcfrAB4DCKnD1t0b7R6WzDL6D0AgY+JBKKUG4z5XTVvDtel4qFXtcfr9VMkCr53SQ6sqkUKPyESkzDIRUTvUKpwlOJHyy9CQsaeFNn3lTX6fFufI5nFo4Fen1dOV093++A0+9/ichbbv14LADkfbJ1vurX/hV/Lt//Hd9H39s9zEAwHXL13V8/VjxGCunLjrG3fbwbQN973J+GTes3ADAx1l07m7gsU9Gjo9btV5xCvSJj3pNUc9Mhmeo+FbdVNXVBz4IXPcS/4qeH0zeDkajBIh07/8HMBlnUdi0XiB65dQVp+k+8TGzspq4PeCmYyIX0dYbWjldOglULs7k781Ie06FEFcD+HoAXwSwLqXccB+6CGB9lO9FJo8Wp0+Vn8Ldl+4OeXYn+iJwKbeEG1Zv6M0Mf+ltKvv20l9X90MycX62pfb36aF74APQuVfKMoCHPgrc9H2dA3GC4CqZwQja4wYocTqigUhRK6dq4IOPOAVijcuXlgVZr/fNDGfWViENA7IeEqQOECr4hu9x09n34F1uk991ut3YRlqksVXbwq994dd8EwXnKudwajGiOE0pcWo9+SRkswm7fYn8sLbeXFFdqI55Wu9nzn8GX9j4AqrNqu/jj+0+hvnMvDcESXOseIw9py46Pn78iY+H2sa72TP2sJRfwnx2HlctXtUbH+/8HZU4ffH/re5HjI9HCq2Bgfp9etBOh+5+wvb4eOFe1X/6nBg1h3SW8XEQjJKKje2zDzTaWbSfA5HSWVi2FVI5jXZ+sj1bb5/K6doarATaenMxVskEJqaXT6lhkeWN/s+ZUkYmToUQCwDeC+DnpZQdaV2pfvq+/wNCiDcIIe4WQty9ubk5qsMhw2AZwJferqbkBlAyS0iJFBZzi7Gzw3vGHorZIjKpDG5cvRGb9U3sNNwMmVkFPv8W4LrvVFVLkY5tW9L2u77j8v16TudW1NqYvXPA2U+poBA3+M5ghmtoPNtSnwx8fnHkmeEoA5GkWfcPMDHEqVNTVYggWy8AWAmy9qrgGz6NsJCNMhDJrZxOcCLhTmMHhwuH8cavfyM+9sTH8KGzH+p43HIsbFQ2ootTt3JqnVcXFNZ2W7+8UVa28KhD1roRQl2ojtHWu1XfwsXqRdjSxr2X7/V9zmN7j+Ha5Wu9Sb2a9fl1XK5dhu3Yvt83FVS3gDt/F3i6vw0cUOJ0Jb+Cht3A7Wdvj/UWe+ae15pyw0pX8vbCV4BHPga86I2tdRNh8bGxBQGB1Tl1vlnOLXvv00PT/X316zkF1O/qAx8AUhngWS+L/o+irXcw+u0AB0becxqrctr0Sd4OWDkNbntJmq3XQD5K8ta9BjHsgH7x5dldJzMScSqEyEIJ03dKKd/nfvmSEOK4+/hxAJf9vldK+edSylullLceOXJkFIdDBsVuAve8A/jjbwA+8gvAx/+fwKeXzTIWc4t4xbWvwD8++Y/B0/+6KJklL0DesNplXTrzPjUA6dt+UV2MFVbCbUtd4jSTymAxu9jf1tus9wZfIVq7Th/4gLKZXvPtkf9Nsx58t+pbg9lTg6YRAq44HVHPqVvFm0sHB18AaNo+1m8gnjj1gm//VTJAzImET/8zcCZ+n/eoiJwZTkcYiJQrqgrQBCcSXmlcwdrcGl7/3NfjBesvwG984Tc6rKmXapdgSSuerVdKSFecdvQUN0rq8+xXBYlKfmmstt4zW63J6Hdf9HfEnN0929FvqjlWPAZLWrjSSNYFZSTqO8Advwb84fOBf/p14Av/b+DTS2YJtxy9Bc9afVbsuQwlo+RVN29cuxFPlZ9q9W7/81+oz8AL36BiIxB6PtqsbWJ1bhWZVAZAVFtvH2eRjo/XfDswvxb9H5XOzWzy1pEOtuvhQx19aewFxMbR95xmU1nvc+JHNp1ttb10V9ezBdWHHDk+hiVvV+K3vZy+TdneJ4Dt2LCkjWzEyikQYWAgMJMTe0cxrVcAeDuAB6WUv9/20AcBvM79++sAfGDY9yJj5rafBD7074HFdeDGl7le9/6j30tmCYvZRbzyhlfCdEx8+OyHI79VR/DtHvqw84SqLlz1QnV/biW2bQlQAdg3M+xNI/QRHitXAVfOAl/7MHDTy9V+t6jM6CoZRzr4w3v+EC95z0vwxYvuEKkHPgjUIl6gGiWVhff7/wBUAN7nnlMAMP1sS8BA4rRfT40nTuP01Xz2j4D3vQG48nj07xkhpm0i74RPI4w0EAmY+ETCK3UlTtOpNN70wjehZtXwuQuf8x7Xa2Ti2HoX6gDcCy/7SlfldFBLrybG528QTm+dRlqkcePqjb7tGnvGHjbrm33FKTCF62QsA/izbwXu+h/AjS8Fjj43dIhX2SxjKbeEV974Sjx45UE8sP1A5LfbM/e85O2NqzfCkQ4e21N9vth5Ali/WX0OvNUdwfFxu77dERt124uvs8irnHadjwsr6rP70EeBnceB5/xA5H8PAHWOn8Hkbdks4413vBHfddt3oWJWAMsEvvru1mCpMIyAymkmr0T/CKf1BsVGwK2c2qayaHc/V4jBkrf9ek7X1iBNE9J1IEXio78EvPenJ3Itpvdbx6mcBsbHpck7iybFKCqn3wLgtQC+QwjxFffPywG8GcB3CyEeAfBd7n1yUKnvAg/dDnzjG4CfvgO48XuU173S/yKjbJaxlF/Cs9aehZsP3YzbHr4tcoar3bZ0uHAYa3NreGTXrZxWN4H5w2r4DKBOdiG2pc3aJgqZAubbqqHL+WX/aq5tqn+bnxhaPgVsPqhOrnGD7wzaeqvNKn7un34Obz/zdgDq/wG1K8B7Xgvc/fZoL9IoqYueftWk/NK+2np11ti06n16TsMr+RonpKcmM0jltHIJcCzg078b/XtGiGmbyDrRBj4AIZlhYOITCXXlFACuX7kei9lFnN467T0eW5ymc1hvO11Z221JGqM0GnE6Rlvv/Vv34/qV6/Hiky/G/Vv3o9bsvDB8fE8lRQLF6bRN7H3iLnWB+MN/CfzIXwHHnhc6xEuL05df83Lk03m89+Fo1VPbsb3YCqB3KFJ1Eygqh5AnWsLiY33TcxUB8F7bNz72G4gEqPj41OdUq81Nr4j07/GYwcrpU6Wn8GO3/xg+c/4zsBxLJcsfuwN4/xvUzzEKjZBzxojbXoIm9QKqctrUVtRhk7dhPacrbttL1L5Tu6lcdzuPA199V7TvGSGmm3zJjWpgYH7BdRbR1hsbKeVnpJRCSvl8KeUt7p/bpZTbUsrvlFLeIKX8LinlFPp8pojH7lAXvDf/sBIJ3hTN/tlhbesFgB+68Yfw6O6juH/7/khvVzJKXoAElLX34Stu5bS6BRTbLN4RbL3b9e2O4AsEiNN+PTVAq68mtwhc+5LQf0cHM2brLZklvPajr8Vd5+7CG57/BgDuiVZXTC9/LdoLBWWGgbEMRIpSOW3a5tADkewIPTUAYMXpq6lcAiBU8N1+LPr3jQjDNiJVTiNlhgF1rplg8N0xdjxxmhIp3Hz45g5r67nKOWREBuvz0Wb65dI5HN1tJemsjsppafBJvZox2nqllDizfQY3H74Zt67fCkta+OrmVzueoyf1tu841eif0dRVTh/+mIoXz/o+dX/phBpS0qe31nZsVJoVLOWWsJxfxkuf+VJ85PGPBPeXuVSa6oJdV06vWrwKc+m5lrOoutmKj5mcOq4IzqJDhUPe/Xw6j0Km0MfW26dyCrTi49UvBoqHeh8PYsbE6YPbD+LVt78a241t/Nub/i0AoN6sq+sbALj8YLQXihQfRzcQqdDPwaTfLpVTsRHondYLDFY5nQ9re4kYH6t6bo1QfeHW/l6PtcRpeOXUa3uxwyb2zuau05FO6yUJ5uGPAYU14NSt6r43qKT/L4XODAPAi469CEDrwiWMPXPPs/UCwDVL1+DJ0pPqTntmGIhk692sb3bYloAI4tTv5KGD77Ne1ttPEcaMVU6/tPElPLLzCN78rW/G65/7egBQVRb9f7X1ULQXauwF730cYWZYC6X5jH8wBFo9p6bts2QcUMHXrARa3jVhAx9Si4tAOh190biUQGUTeP6r1B61T+2/IcV03D1uUfechu5yOwUYe2Nfj+JHrVlD3apjrdDqnbv58M14eOdhL6N9rnwOxxeOB/ZhtZNNZXHUPe2kikXY7ZXTRmnwHaeaMdp6z5XPYc/Yw82Hb8bXH/16pEQK91y6p+M5j+09hrn0HE4snOj5/pX8CvLp/HStk5ESePgfgGv/ZSsmLJ9UydyK7ygNT2Dq5O0Lj78Q1WYVl6v+z29HxywdH9OpNJ659EwVH20LqF/pTN6GxEfd7xg9PrqVUz/hoXvg4rqKACA9W7beD5/9MOrNOt718nfhxSdfDACoWe3x0Wd3rR+h8XF0zqKG1QicxwC4q9YcLU6Hb3sR8/MQKX8pkl5V9vPIziL9+/iCn1DTpO/962jfNyL0z0WJ0+CWsFhtLxNctTYpKE6JCniPfBy44aVAKq2+tuReeARUTktmyQu+ugqqd7sFIaX0loxritliK4NU3QQWjra+IYKttzszDKjMs/80wgDb0pFnqdvn/XDov6OHGRuVX7PUz/E5h57TaVHR/1dbj/StLHQQaltaUAORRrALVAuOfMCCbK9yahn+CQqdxY5grfQGPvTpqRGplLfrNBJmBbDqwPpzgW/8P4DTfwdsRkwCjAjTNiINRMqlckiJVI8ttAd9wTuBAKwH96zmV72vPf/I82FLG1+7oir/cXacAuqztb4rYa8sInvyZFfltDx85XSM03q1nfnmwzdjIbeAZ689u6fv9OzuWVyzfA1SovfyQQih1slMk6338oPA7lOq1UUT4izScVDHRy00o8TH9jVrmmK2qC5ia+5naaFdnAbHxz1jr2MHuKZ/fNSrZHzE6ZGbVFIsrqUXmLlVa3WrjsXcIq5auspLhnbEx80IziLHCe9TH/FMhrCe02wqC1Mn4YcdGFirIt0ncQuonlMghjjVldNbXg2c+kbgrt9rfZ73Ae2MiNNzGt72coo9p2RGOfclNYnwWd/b+trcCpAtBl4wtldOF3OLEBCRJvY27AaaTrOjcprP5GE5llpB0G5bAlq23gBx0s/WWzJKvWsNgmxLx58P/OyXOy9EojJjtt724ULpVBr5dL4zM2w1gN0nw18ozLaUX1QXNVa4JS70mO06cqkc0joJ40Orchpg6wVCq/lAeE8NAGTciYSR0Jnh4lHgW35eTbv91G9F+94R0ZrWGxx8hRCYS89Fq5wCE7EuaXHanti6+fDNAID7Nu8DEG/HKaBtvYB1bA3ptbXOyukoek51pSTqQJUYnNk+g7n0nNdPeuv6rTi9ebrDjvrY3mO+/aaaY/NTtuv04X9Qtze0i1OdvPWPj3qvabc4jRIftYDtiI/pvPo90pXXGG0v3ZPsNaGVU7/k7Qt+AvjZu9XQxLjMmK23Xehpq2yHsyhKUtEsA5D76iwKmscAjLZyalcqgbHRa3uJHR+PAN/xX9Tv55ffEe17R0DT/XxHSd5GbntZPql+niP6P04KFKdEBd9UBrjuO1pfE0IF4D7B17RNNOyGF3xTIoWl/FKk4OvZlnKt4KutJEZjV1WHum29TrMVNH2oW3UUs50nuZX8CiSkZ7HyCOo5BYBD/S+8Aknn1KClad7x14Y+qeqT7Hxm3s0MtwWSzQjWpaA9boDq/wVG0ldTb4b31GTTWfV2jtk/+AKRAnCYrRdQQx+suD01C0dUz9ctrwEe/NBIqspRibpKBlCfjSi2pdO5HD705MdHdITR0eJU95wC6iL+RPEEzmydQdksY9fYjSdOUzms70oYx1aRWVsbQ+V0GYAcS/X0zNYZ3LR2E7Ip9Ttw67FbYTqmJ9QrZgUXqxcDxel6cX3KxOnHgOO3AEvHW19bCq72a3Gqk7eBe0W78CqnbUmMfCavkmX69z+GrVcnEee74l34TAaf82QmB6w8I/Tf4Es6O1PJ23ah51s5rVzqjJW+L+L+ju9jz2mUymnTcVtahpzJ4FSrgbHRa3uJugdcJ28WjqpVR8eerzYH7BM6iZcdaeX0KvxDcR73PnHHSI4xKVCcEhV8n/nNvSfA5ZN9bUvdmWFABeJBg6+2Uhpl9/2KXbYloK91yXIsWNLyXsM7/H7Z6n573IZF96TNSADuXstSyBQ6M8NANOtS0B43oHUxP4KL8YYd3lOjL8ybjtV/4AMQXZxmMhC5/v0nytYbsee04vbyFV3b++ozVe/bGFeLtKP3uEWpnALqsxEWfO9rbOKnjh/Fb298clSHGZmdhrroaRengKqent46jfMVJT7i2HozjsDhPcA4uoz0oUOtyqnl7gYcuufU/f4Ri1PLsfDg9oNe5RgAvmH9GyAgPGvv2b2zAIDrlgPE6fw6tupbsJzwnuwDT3UbOPfPwI3f2/n1+TX1+Y9YOQ2cjtuFjqHttt58Oq+SPHqYTnd8rPd/Xc9q2NXKMJA4HYbUbInTulX3BIi+7XAWAeHJ27Ad4MBoK6d2tMqpJW04QH9xajUi2Wmdai1QnAoh4rW9VC4rx1+uqAosq89sWeH3AT0QKYqtN9KeUwDvqTyKXzx6GH/50LtHc5AJgeJ01tl5Qq1OufFlvY8tney7/NdPnC7nliP11Hi2Jb/KaUUtru+xLQF9L8C9E4JP8AV8Fo1bAT01w6DF8YxYlxp2A5lUxhNz89n5VmY4UwAWj4cPfXBsZV0Ksy0B/z97bx5lSXbWB/5ie3tuLyurKmvvru6qXqoltYSEuiVAgAVGAzMYGeQBYzz/jMwijLHHhqPBDD5jMR7rHAzCYoyMsI1B2IaDASNoLagltbpVarW6papWd1V17UtWbi8z3xZ7xPxx48Z7EXFvxI23VWZn/s7pk11ZLzNf5YsX3/2+3/KNpACLypYAwJIwEuZUqVYh8dbkAFDqOYsvANQCWR0N8plQAY4EPqT4dimymNMLjQv4yb/+GeiyDP0e+NHWDfJ7myvNRT7/hoU34Hb7dsgY5mFOlbUNKD7Q3T8Ndb4Or92GZ1m9ZnIUq2SAkQdIXd68DMM1Is3pdIGsCnvq6lP48PMfxoe/+mEA7DUyFAerB+H6bign3dF47dNEDRO3eVBlEac+0hpHG0z6Uag+msn6WFSKpMkMmdM+ZVGGrJdbHwukOU2sf7O75L2dYn0YCIomFCL3ekF/c0pZ67A+1oOk66zQQHrPmJCst/858xBmMkhIt70IZTJ0uHkMFOrcnPge8PZKNK+kXL8nzamIskgkEOkvrvwF/u+LfwAA0AXuHa8n7DWnux0XnyIfWR7L6UNkzymjoMSLL9DzeGYhLL4xzykAGG2GpyZj0XhWc8pnTvmJrQNhlzWn8Z1oZbXcmwyXZ4F9p7KZU1pUswIfABKKNCSEiq9Mi6+U4TkVaU7TPTVAwJxubsIX8RB2VgFIQCXwSFaC5jRLHjYi9CbDEJb18ibDN5o38P5Pvx8ltYQf9Mqw4Cf94WNGw2igrJYT1wRt0P7y6l8CyNecyndIA9HZV4NCAz0ajdE1p/TrR8yW0/U5j+17LPL5bzv8bbi8dRl/eOEPsWlu4gfu/4HU30e46/T1IO29+FdkELT4puTfTYsriwpKAWW1LMycVtRKaC8AyPA2bE5ltVcTAfL/5hbXTkKZ07iyaLY4C8d3wmC7ELY++sEtsCszGfpVRUCf5/TgY2SAm+U7pQOoYoqstzhFzjQjuHfqji6sLLIgcYa36WRCP7wMzylA6qOw57QTa04rdZJuPSHbSzStdzhZ79M3n8YHn/kg3rL/zXizYUK3O6N9stsce83pbsfFvwLmH2T7LKcPk6lxO3nIiHtqAIh7ThmypZA5DQMf+j2n6bJeXvHl+nxC2VLOVTFZoIeJXVKA4yxkz3O6SQrUwkNEtpRWGEwBT82ImdMsT02POZXS03oFmCs3w1MDkMkwPA/ulkCz0V4hjakSSMhpk9oV9KwOiTx73IB0We+vvfBrsDwLH3v3x/BAibzfM8OTRoyG0UhIegHg4frDUCQFLyy/gKnCVORelYk7RHrd3l+BOk9eH2d9vc8/tj1lvefWzmG6MI2jU0cjn/+Zx38GX3jfF/D8jz2PP/vBP8OHvu1DzKReirA53emJva4NvPZZMrhlrbqYPpSa1itLcsTnyZXRxrBlbkUsLwAZ3obNaXWBMLcUGUxV7uGts9ecjgL9EllN1qDJWq8+luvAvgcFhreTr4/iyiKJn9YLCNVH4jlNJwmUuTlxz2k7FqZZmSe2lwmFCYVnUYHhrSZrUCWVW/N++dlfxqm5U/jId/8mZuQCjCxv6usMe83pboZjAte+RFbIsJASlz+M55TFnIae0y4j8KG8U5jT3dWcdp1upNHreU63yGu2cJpIdlPWEYXT1bQD+ygDkdxs5jScDPOY00INkGRhWW+WbKm3aFzAdxpfs1QO5Kj3QtYrGojEKb6327fxpoU34f7Z+1Eukvd4ZjjEiNHQG5gvzSc+X9EqeGD2Afjwc/lNAcC9fQeODLRmCjHmlKoEhg1EovfD0TanFxoX8PD8wwkJuizJmCvNpUrT+0FTYdf1ycnpxoLbL5Dm4IF3s/9++jDQusNkrFpWC1OFqUgTL1wfrWZE0gsEsl7HJJ7TajR1N6yPOYe3tAFO2F7Gxpyqu0ZVBCRZyEgmA62Pop7T1PoY1Jch66PjObA9WygQCaDKojTbi0CafacDJbM+5kizjzOnk7a95PCcAnzbi+7oaBgNfM+J70GtUENZKd4T28u9xF5zuptx+2uAa5IwJBZmguaUseIhvscNIM1gy2rB89PliVvWFlRZjTQJIXPabZCmsdDHNmXIRLjFt8AJoRhX4AP9+a+HIBABxKesZa0cY06DnbFp02FDQOo4wkAkIdmSklF8ZZk8XyHZUjZzqswFDYyIr6a9EpsMU1nvNmVOFT5zuq6vhytcSkHStm5l7EQdMTbMDSZzCgCPLRB5ax5JLwDYt25hdVaCBSfKnG5zWe+WtcVs1PMikky6k3H9WfKRVx+nD5F7PfWB9qFpNTGlRYcQeWwvM8Vkc+r4DpxO7P0PZNpeeIFIs8FAiFkfRz24BXbdntOEskirEN+g5/Tq49aNdLuKaCASMDQ7GE/f56HnOR3O9uJbFnzLylYW1etwt7bguxmyZdcmCqJqTNYLTKw+2h5dJYNeQGYKeMoiOtij9+OyUoDh744tEBR7zeluxo2g+B57gv334S43MeZ0pjADz/eSq1ti2DK3MF2YjkziQ8+p0UhOhrNkvV5QfOVo8VVkBVOFKX5zmnETzo1dxpzGY+craiXqOV14iPxFWiiSUODD6DynhmNkrpIJ95xK4F8jJcHmVEDWq8yRQ6LQdLi93AtDAogXSVImLustCjKnJbXEnAx7voeG0WMty8H0X58w29bQG4kwJArqvczdnN68hbU5BbZrQ6mTf5+7PkrmlMp6R9ucdu1uYt3IICgqRUiQdn5zeuM54puP1yOKGf46GcqcRh4uGBhI62M/eraXNUZzmt4MpAUiASzbS3dP1jsCxPMNymoZXVrvyrPAvmB4u36J/03MJvm9pVmQwuZ0uPpIFS6imQwWNxBJbHjmCqxZA8iqNXge3GbGe6ezBsCPeU6p7WUymQwRokRAacJtToOgPjq8LSsl6Bj9XuvtjL3mdDfj+nPkBlnlTMtLs2SCymhOm1YTmqxFWCjRReNNKzkZpt/HMjaTxVdWAqYqn6wXINPhpGypS274SvZkKxfk3dWcJphTGn6jb5Brp7qPyGpEmNP+gI84tCoAaSS+ERHmNOKp4TVghSkhGZVIc6rSReMNgQYzLuuVZSLtnbBsSWSPG8CXLTXNJhzf6TGnATNgTGjCDQC+73M9pwDwxoU3AgBOTJ/I9X3tmzfRqGuwXAtytQKpWCS7TkV2FopALZLf/Yhlvbqjh6znMJAkKTUIa0fAc4EbZ/mDW6A3vGUk9rasVqLBFPWcsuojHd6a+nqyPg4o650N7rlb8SZiXLJeeffIej3fg+mayUyGYKgfZjIA6aFIWTvAgZEpi3Q7uhqOh3APeJrtBQCs9AAfr0NUMiKBSIDA8LZ/xynFPZL1xt9rPPDqY8ic0vqolDDZNIZ7j73mdLfCc4GbZ4HjKcVXkoJEwqSsl06G+9nPMC4/4ya5ZW4lPDX0zWyYW8niCwSLxvPJeoEgLj8xGTbGNxkGdk1cfpw5pZ4a32r3vJALD2UUXwHZkiyPLC4/T+CDDU7xBYjsPKP4AtRzKlp8Mzw6ZpsMVuLvD5pIOAGEEsEcnlNWk0LXjFB/Yjl4/XVjcs1p0yINMq85PTl7Eh/7no/h++//fuHv6bZacLe2sFHXYLom2dM3Xw+YUyrrHZI5BYRl5aLwfI80pyOSc+745nTlm4SZ5kl6gcxMhjhzOl3IDgz0fZ8diBQMXk3HYCiLxDIZKOPV/3wAHnM6JlnvLmlOacORrI/BQLM8B9TvIw176vA2Ywc4MDJZr+7q4fNMQ4855TWnQb3LbE4pcyqayZDRnLZpXsm9k/X2iBKxsE0ec0rrY6gsUstwJMDeJe8fYK853b1Yfpkclo6/I/1xnEQTF4ZlAAAgAElEQVRC3mQYYBS7GFjFN5QtmS22jKo0w50MpzGnTJ+P3R29pBfYdbLe+MLuilaBDx+mJPWm+QunSfHlJfbSw1pWgmmhRsKVhn3OAs1pJPCBJ6cSaE593xdiTuVyGVK5PNhkGCDSpUnJenNE5QO9QKS4Dz2ULdHiG0hrDYEQjVGhETTC9TK7OQWAty++XXgKDhC/KQBszpfC35U6VyfMqdkk+yMFmvpMlKZHmtZrOAZ8+CNhToHXQXN6/TnyMa05rcyT15MxvG1azUSNmy5Ow/Ks1L2GhmvA8qxEbaW1zZCl/LJez4Iqq1Bie0u5621sXei9nRvUczqhtR73EvTaT3hOqaWoPEvOC/MPpIcimU2x2ggMHYgUNtSimQyKxk6xlhVyvsp4Pl6H/H225zQvc9q/hnCGhBdOuD6qag7mlBEYGK+PpXBP7mQzGe4l9prT3YobQfFNky0BxFfDkS0lPDVBc5rFnDLTCKnn1G6zmdPybPZkmHGIrGrVpAd2nHvcgF3TnOp20lMDAF1J6k3zF04TmW9njf1NDMEDewZz+vHzHw/3NPJguzYc3xFOI+ROhgGx5rTbBXwfSkbxBQQTCVmTYSBYNH4vApHEPKdActF4XLZEm1N9gs3phkF+3/UivznNC+vmTQBAa18lnHL3mNPWaFhTgBy6RijrpbsuswY3ouB5jXcMbjwLTB8BZo/xHyNJqcNbViASkG57YSXZA33DW4nRnBaqhIFLkfWyBrcAUNNq6MT3J9rGmJhTOrx9/bM/tDlNMKcBOxnWx6xd4EZzaObUdE38q6/8K2xm3FtZz5mFkDlNu/8L1EdP1HNKbS+Z9ZGuIey3vSjkdz0hWa/pmihCgiR4Hy0r7CHeur6O6cJ0OAjoZTJMTll0r7HXnO5WXH8WmDkKzB5Nf9z0IbLnNCZVTWtOMz2nZnKqHHpOfZ8j653JlPWyCnBVqzKK77hkS7un+ALJtSxhSqccY04BYI0j7TUFPDUACUXiBD44noN/88K/wSde/UTm8wWyD+CSJEGTFH7gAxAwuemTYdHABwBQZ+fgbGQUnjbZnxmZDANAZe4epPVCrDkN3tfx6TCdDFNZbylgL3WBwJhRQYQ5zQv7JmHRWvsqvSl6fZ74iQ0BFkQUI5b1UkZnVLLecOfxToTvE+Y0zfJCMXMk0Zzarg3d0ZmBSEC6soi1Axzo85xKUlJZRIeBKcNbXnPKr497yqJhwEq+ragV6MFZpVcfHwI2rpK1fiyI1MeMQKTza+fxn1/5z/jMjc8IPecs9URoe0lTlIyyOZ0NAgOzdp22V8i5rhiTCU/Q9mK7NgpIyaqIgTfEaxiNsDYCQDm4lxg7fT1XDuw1p7sRvk+Y0yzWFCC+Gt8jDWofmlYzUUC5HpY+uJ6Llt3ie05ZsiWAFN8BZL1VrUp2i/VjbMxpUHx3SVx+Yo+bRplTuW8ynLFOxtgSO7CnMKeb5iZ8+LjQSPG2QjzwAQAKkjI0cxoW34w9bkCwaDzLcxrKlg5EP09lvROQy0U8p5wDbz/o4SxegNf0NaiyGt4zygGDqk9oWTrQ15xyPKeDwLp1E8rMDPxaObwvKfN1uI0GfGNrhMzpaGW9lDnNOpg6Gxto/tVTmd9vR8t6N66SeidUHw8llEUtO5lkD/T2iqYNb+nfsVbJABzmFMgc3vKk6RWtwmhOx6ws2gX1kSXrJcypRWSm9NpYOE3OV+uvsb+RSH1UNFKnOPcDep/LrI+CzGmoLEptTrOHt7Q+KhmZDLlsL3HLCzBR24vpmkFzKiaLT8tkoKoiACgHdVKf0L9jO2CvOd2NaFwhLIzIZJgT+tC0moniSz0sabJeuoImzpyqsgpVktmTYSBV1ksPzFQC0Y+KRtab+P0H9z1Z79CwPRuO52Qzp9OHSKFa4xVfAdkSkFrsqDzz8tbl1MAAyt5leWoAQJNk/h43QKw5bYszp0q9LijrlYBK7P1RrpN9xQIBTcMi3OMmyUJp1/T6iBfgdX0d9VI9DFQrBf8mPWMN1ShB2du5InuVzCBw1xtQFvahoBTC5lStz8M3TXgtwWtdBCnNyCAQbU7XP/bvcfvnfg7uZvogZUc3pyJ+U4rpQ0DrDuD1PNWsNWtAjzlNWydD/y5he6GeU4nx/gfI/TZF1hsPQ6JIMKe+v6csGgFYa1kqWgW675D3LvVq7nuQfFzjrJMxmmRdWBYE6uOFjRE1pzStN+3+L1QfxTynAEm0z66PK0nLCzBx24uoqghI33Pav3P6XgQG3mvsNae7EaHfVLD4ApFdbr7vM2W9QJBIOIBsCQCKkkaKL485tbuAk2z8smS9NIkyhDOmJePyLiq+nDRCIOY5lSRgahFoLbG/kUjgA0AO9RxWjRZfx3NwZetK5nMWCX0pQM4ORHJ0knrNQcicVkbkOe2sEIlS/FAwwUTC3iBIvPgCDM+pES2+pco+SL4PYwINNkVDb2CqMMUcag0Kr92GUptCQS5EmFMAcDcEkjdFUZwerec0UJdkyXo7X/wigOy1R7xD147AjWdJmipVfaRh+jDgOT1VA/i+UZFMBvp33LRerQwUGK9RhqyXx5xW1Wo4mAAQyEv9Ma2S2T2y3rDRU6L10YEPu1+mS4f/ragyDQCxUtmdoZVFlDm9uHExEUzXj7x7Tm015b5ZqJDzWgry2F6UuTk4m1n1cZXDnE5O1mu5FgrA0LLedWM9Iust0UwGfTL7WrcD9prT3Yjrz5Fp0oJA8Z0Jbp590iXTNWF7Nrs5LabH5fNkSwBQlGQipeTJlgAmW5Aq61XJjS9SgG09fan1oNjtnhqaKCfLPeYUAKYO9vySiW+Ux3PKKb5mr/C82uCHS4hOhgHCnFqSxJeu0rj8lALsdcVlvercHLx2G56Vcu3wJsPhovHxF+Dee008jRCIvf9AJsP9xVdSVJT8yaYRbpgbkQZ5FHDbbci1GjRF63lO58nPcLYED5oiKM2Q4QhjWDcIRAKR7OVlmJcIw+NmNKc7njk99gQ7iTSOUFnUq4885jS0vYjUxxhzSu9ZJu/6yZD18jynCVkvvZ/tKYuGAjOtNxiKdst9r225Tpr2NqM5pUOMITMZ6PC2Y3dwu5UMt4w/Z+E94KnMaU3I9iIVi5C07OGgMjcn5jllnR0rE2ROPUs4yR4g14flWXD7hty6o6Njd6Ky3mA1ny6wJ/n1gr3mdDfixrOk+PbtKOWiNEtYxj5ZbyjNZbCfM4X0ReOhbInVnEJKly0BzOlwyObIbFkvgGQBHtceN2BXMKc8Tw0AdNVY+u7UQT5zKrLHDehNhhm+ykYwFZUgpUqX8jSnBUiw0qSrArvceoEP2dea0K7T9koyDAmY6KLxXjK2+B43gJ3W2198AaDMeNw40TAaI/WbAoQ5ladqKCrFHnNaD5jTVme0ab3AyHynIsxp55lnwv/PYk53bHPaWgYal8X8pkBveNtXH5s2eU3iab1VrQpFUlKVRU2rCUVSUNWibFLInPKunxRZb65AJPr+G2sg0ut/DzgvrRcA9P56J8skQ4DFnIrsAKdIURY1jAYkkLNeWn1kqaFYCJlTOUvWm+05FWFNAZrJkNKcug6pfyzmtFwngzxr/INP0zWFk+wBktYLRAMDwyT7fmVR0JwaI8wZ2O7Ya053G/RN4jk9+laxx0sSmQ737XKjDSazOS3OpHpqaOPKlPUCMNUiuyEIF42zmdOiUgz9a/2gRT7anO55TpnYuA40OU1kDGmTYT0uO6sdIIc+VmCPcFrvFOC75LWLP21zAxIkPFR/KDX0gcX28lCABCu2FzD6ALpbLqU5zeGpUeaCBiZNutThMadU1jt+yQ9lA7Uce9yAaPH1fA8No5FgLcuQoTN2vo0LDX0MzWmrBaVWQ0EuhP7ckDltmaOV9QIj853S93Oa5L39zDOQyuT1fN0yp0svkY9H3yb2+OmksojHnEqSxN673YctcwvThelELQs9p0XOvYTKehn32LRApERgIL2/jnV4u0Pr491zwr7+NGVRtxRT0kwdZDenIXMqOrxlX1cbxgYeqj8EWZJTlUWGY6CklCBL6W1ByJxmNqfZmQyizalaz2hOu2sAOJseJmh7sV0bRS8fcwpEMxnCHacR5jTIZBjBrvedgr3mdLdh4yr5OP+A+NfEdrnxii8AoeJLHxdHyfNhapyJE21gGNPhrOILsJrTcRTf4Ga9U5nT//YTwCf/idBDUyfD8eZ0apFMLuMHadcmLLZoIBLAnMZuGBuYKc7gkflHcGHjQjT8KuM586D5gJ3anFLmlD8dDtMIBfecAhmLxturyaReoE/WO37mlKYR5tnjBkSLb9NswvGdBHNaggx9ggfXcTCnbqcDuTYVCUQKmVNDGm1aLzA65tRJZ059x0Hn2ecw9Tf+BgAx5tTxnLBB3zFoBJ510fpYmSfSfwFZLyCWycBUFVHmtMB535VmiPeVYTNIY04rWgWGa8DxAjZzrLLeHWx7MZrAb38n8NWPCz08TVmUrI+c5pR6yocMDGyYDRysHsSJ6ROpzGnX6YrVRprWmyZ7F0yzz8Ocep0O3/ZCd5xug/qo+W4uzykQa051RnMaqAmNeLL26xh7zeluQyNoTufuE/+amSORyTBlRgcpvmmsa9FzYfK8bBmy3jTZEtCTrfXSCPei8iNwHWD5m3z5bQzMNELqqYn7eacOko9x36mRx1NDD+PJyWHDaGCuNIfT9dPYMrew3GX7W+lzFgtEAuys4gukFmC30wEkCVIl++epVNbLO/RbHRKOwZL1UlXBBHw1tmujCKl3rWeAJeuN7zilKMsqdG8yB1fXc7FpbmKuNLqkXt9x4He7kGtVaHLPcyoXCpCrVTimPFrPKTAy5rRrdyFB4vrN9HPn4G1tYeq7vhNyrZbp/2IdunYEGlfJmo+KoBdZkoLhbV99NJtQZZWp0MjKZGDtAAdIWCAQBCKxQOtj3uFtPJMhZE7HuWptB8p61y6Sus5qIhlgBgYG760uS1nE8pzS97aosiglMLBequP03OlMZZGIqkgNGNP04W2NnLMyAgOFm9NZanvh3HfCNWscWS8wmUwGz0LR84SZ07T6yEzrnWCa/b3GXnO620Anw3MnxL+mtj+SRpjFnJquyfWObZlbqGrV8AbXj6LrwFQ4Nzx6AGdIF7MmwwDQpm9q1yZ7xfZkvVFsXifrSASloaydoZqiQfUBPS75pM1pvLDTQ5qQbClgThkFeMPYwFxxDg/VHwLA3+cmGvgAAJrvE88pDwKyXl83IJXLTLl5HNRz6vCKL50Ms2S9ihrsAZ5MIJIGDCVbWtPXACAh6y1JKlm1MAHQ3bijZE5DpnwqypwCgDI3DdeQxyDrHR1zWlb512rnmS8BsozqE0+QtUcCzCkwWQ/xSNC4AtRPiOUxUNQO9N6fIPWRJc0FsjMZtqwt5uBWsVpQfZ/YXlgoDTe87dD7WMic7sl6I6B7ukXro6OjqBQjEtlK4PvU4+qwqUXyfR0z+vlcsl52IJLne9g0NklzWj+Npc4S9/rTHV2IOZUkCQXfz2ZOgfTAQMOAXBY7h/UyGXj1cZV8ZMp6gzozofpY8MSZU9Z9klUfNVmD4vvQMxKQX0/Ya053GzaukmJazE4QDVGokWlnkAyZFohEP8fznTatZiKJkKLoWDB407gUpkBkMhzKeumbW1CWmAvyDpb1rgYNneB0kRc7X/Z9dOOrOWqc5jSPbInKITnM6Xx5HqfmTgHghz7kCkTyQdJ6uQ8QkPUaOuSSWBOnzFJZLycQqRMUX9ZkGAgSCScjWyr60shlSwBQVoowfP6kfZSg6xXq5dE1p26LeoxrieZUnanBMZQR7jkdsazX7qaGIbWf+SLKjz0GZXYW6twcnA2x5nTHMacbV4H6/fm+pliLHMJ5a9YAsUwGlqwXnVWUfB8mb+1RRpp9ZnMa1sfg9RIcPuXCTl4lk7M+6o6erI1BEFQ3MbwNpKjc+iioLHL0RNhUy2rB8Z1QWQSQlTIsGK4hNLgFSH20U4e32coiX9chl8V+nlofgjmtTJA5pc2p4Ko1pudUX8dMcSay4kySJJQgQd9pw74hsNec7jY0ruWT9AIJv1+arJcWVt50rmk22cXXtVFyLZi8hkArkYLJmAyLFN9Q1jtO2ZIkkQK8I4tvMBk2tlKlOBShp0aJ/h4rng89HmhFi29cupRnMpzhOZ0rzqGqVXF06ig39MFwDEiQuNdK5Mf5nmBzms6cijankqpCnpnhM1JUEs2aDAMTWzSeNypflVVossYOfIgzp0oBesoevlGCNqejXCXjdYLmdIo0p67vhisClKky3O0s63W6XLm7s7EB49x5VL/t2wAgYE7TGaQwHG0nNaeeS0LhctfHqL+uaTcTSb0UWZkM3OFtZxVFz4fBSw8fUNYbptk7k2ROd/DwNgdzGh+CVoLhvh4fMEwtko9x28tA9TE6vKX3ublStrJIVNYLgDCnqfVRIDDQMCCV8jGnXK97e4UQDgUG6RIk3U6mOc2Z1stoTllhgQBQhgTDNROff71irzndbdi4CtQHKL5AeKNpWS2UlBKz4GXtcuPJltBdR9H3kfrWK7Hj8rdN8QVIAd6JxXeNTlN9oQMvK/ABro2y56Irx4pWcYoUjcRkOI+nhu05jXsHT8+d5k6G6YFBRGar+R7sURRfQdkSAKizs/y03nbKZBgg0qVJyZZyFF8A2F/Zj1utXtr3ur4OVVYT3rqyUoIBH/DG36CGh7bi6DynXotcmzStF+ilG6tTReI5HVUg0ohlvbqtc5nT7nPPAZ6H2jvfAQBQ5rNlvTvSc9q8TXyFuetjdKdjy+Qzp9OFabTsVi+AqA+u5xJJMItdD5hTboJ4iqw3bXhb08h9rMecTmKVzE6sj/maU8NNNnrl4Hfbjb+GNR5zukXOKTy2vB8cZRHdcVov1rGvvA/1Uj1VWSTUnPo+VOHh7YiURVmr1uiaNdZzUjTCPk+kPpoo5hje7q+Qen6rHa2PcVURAJSgQN9rTvfwuoStkwKcezIcHFr6mtM02RIAbijSprnJZk7bK0FzmnIw5SwaT/PUyJKMilpJypbGUXwBciPcicV3tY9tFCjATImssYWK70FnFQjWLreBZL3Rw/iWtQUffq85rZ/GjeaN6HqEvucsPBn2PNhpPaxo8c3RnCpzc3zPaSfFUwNMbNF4rzkVl/09tu8xnF87H/55TV9DvVRPrCwoaxXospS5H28UGIusl64OCjynQG8vrFLV4JoyfC2HnSINskKaohGm9fKY0+5LL0GqVFB67DEAgDpXh7O5yU3FBvoYAcbqp22LMI8hZ33UKpFrtmmxQ42AXn1sMVZCUEXSbHE2+YXtVRR8n+wBZ4HDpPu+L5Rm31MW7XlOE7C6hFEH8jGnMYlsJXgv6HGvJi+TQXQHOJDZnNL6mLZuTdRzCs9BwfczhreCyqKKIHM6Q67vVFkvK6mXojI3sT3gWo7h7f7Kfuyv7Me5tXPh59b0Newr7Us8lgQG7sCz5YDYa053E+gNNq+nJsYSNa0mm/1Er/jypEu8qVAoW0rznJVnuZNhXvEFYrvcxrnHDQia0x1WfD0PWL3YO5Rxlrn3gymR1TdR9nx0wTi0Th1MkS2JMKc0ECnauDSCaSgNtjk9dxo+fCZ7mmd1iOZ5SH0VlQLxGKcV3674ZBgI5JJpk+FynT9Fn5Ss17WCybA4c3pm3xnc6dwJgx7WjXW2bEmrkMM3J3VylNg0ye+Z538fBF6/55Quqqe7Tosu4EtwHbGUYyFwhnWDoGt3UeYM7LytJtTZWUhBWJ1SrwO2HTLFLITNqbuTmtMgyT53fYzKetOGt2mZDKEXmyU1p55T1r0V4K5aczwHPvzMwMCJDG93KnO6fgmAT+qjvsHe1x0DSyJbMNqQfR/deFNX2QdICtv2ImoD4NRHaqHor4+vbb7GXPEkXB9tPchkSHlMhrLI9314ui4s65VUFcrMTHogEisskGJC9dH0rFzMKZAc3q4b7DNyWVZhTCgwcDtgrzndTaA7TgeW9ZIbXypzGhz2WMXXdm00rSb7BthZI8xp2mSIJ+v1TBRl/mG5qlV7xdcZN3Na2HmrZJq3yZqSY0+QPwsypwmJrLGJiu9DZ7HfUweTa2pC5lRA6qhVAElOTobNQLYUXFNpvprlznIoo8lCwXNh8Q6CAJEPZexyyyvrVeZm+XLJzgpf0gsQ5tTu9GR5Y4LlWdByROUDpPgCwMtrLwMgh/D4GhkAKGtV6LIMb0QNVxraVhtVrQolbR1CTlDPqRJ4ToEecyqDXLeeMcJ7Q3F6ZM2p7uhc5tTttCHXeoxvGE6SIu3dkYFIG1fJ/Xv6UL6vK9TIQLIvMDBTWcSwvYRsPrM+rqIoKTA8jqxPVoh0MTa8NQMZYO5ApLGuktlh9XE1GHQee4I894z9nQBbpSOZW+z6KMuBsoixak2YOWXbXuLM6en6adiejatbVyOPs1wLDaMhVh8d4qtMfRWzlEW2DbiucCASQJVFafWRoyoCJmJ78X0ftueg4CP38PZ68zq2zC0YjoGO3eE0p4WJpdlvB+w1p7sJg+w4BRISjabV5BbfqlaFIinM4htvJCKgnhrP5svFyrPMw5jt2qkhNxVtT9abChr2cOzt5KNAc8oMT9A3UfY8dFk30NpBUnz7X1tjC9CqYp4aSSL7B2PFrj/wAQAOVg9iqjDF9NWsdFdyNad2WnMKpC4+BwA/h6cGILtO3Y0N9vXfXuVLeoFeIuGYCzBJ6xWPygfIwECRlFC6xJsMl4J7ijkBb1DbbocH836YV67i+o//PdjL7F25aXADJlGu1cKkRdocyA4ZxHj6CJu10vREZL1epxNpTpU6udaclFCkHdmcNq4Cs8dJo5cH4dqMDkzXhOVZXGVRWiZDZnMqa5EE6ATKSSadep4zZb1On6xXKeb/HYhgp8p6V18lzOaRt5A/Cw5v2fXRh85Sh00dYAxvt8RURQA3EGnD3EBN6w3LTs+RxN748HalSzINDlRSpLEUjkECkdLqY4as1zPIEFXKoyyam2MrizwX6KylM6cTSLMP32sDMKcAGd7ywgIBoKQUYfieEHP/esBeczpOvPwnwG+9IxHvfc/QuEImbJWcPquYRCNtMixJEqYL7EXjqQmZnVUUgj1gJs/0XUpOhunjs2S9iVUy42ROd1rxpWEPIXOa3Rwwiy9lTlmT8akDhNnrn+yaW/nSSxmLxsPAh+BAJ0kS7pu+DzdaNyKPczwHa8aaWPEFoHm2QHOawZzqBqSck2HftuF1GLvMzGYvkZOFCS0at1wLBTdfc1rRKjg5exLn187D8z00dE4aYXBw1/Xxe4M6dicMg6HwPQ9L//yX0H3+eegvvpT7e3rtDqCqkEqlXiASZU5t8rowX9tBMUpZr8NfJeO1O5BrvUZemSPXmpuyTiYMRErznD71QeC///QAz3ZMaAwQFghEDuLUzpKW1guwMxlCCSbLB91ZQ1Eppu+NLc0klEX0+uMNbwtyAaqkRoe32hjWyAA7N6137QKRetOVaIL1MeHfNDZRgYQua2Aztci2vQjLetme04bRCAe3AHB8+jgkSLjZuhl5XN7mVIWfXh8zZL2eTq5jWVDWC9DmlDEYsNoA/Oz62BXzCw8K+l7L25w+Mv8IAODc2rnejlMWc6qWSJ7HTvLxD4G95nScuHEWWD4PbN3IfuwkQJN68ywYByKTYSC9OQX4u9yoP5DpOdUbKAWHI35zOkukLrE0z7RAJIDsOu1NhsfMnMo7kTl9lcheqNdKhDllpBFC3yCeU9brx4rLzyNbAoJF4+yo/P6QrcXaIu52ov6dNX0Nnu+JM6euAwc+vLTVJgKy3nzFNzj0sxJ7zVb672pCi8Yt14Tm55P1AmQ6fG7tHLbMLTi+w2ZOi5NrTttWG7XY2oHNP/5j6F99AQBgLy2xviwVXqsFpVqFJPW82NTbJVvk3+TpI2xOi9MjS+vt2l1uWJjXbkOu9ppTKuvlrnWA4CqZa88Ar316gGc7Bvj+YDtOgUhzGu4AzwhEYmUyNIwGZElmByLpDRSVIr82AkF9ZMt6ecNbSZJiyqLu+PIYwj3gO2x4u3oBWDjdW0kyjLIIMvs9UWMxp3lkvZxMhpiPVFM0LJQXsNSJ/qzlLqnLYrLegDlNY/AyZL2+QX4HuWS9dU5zSs8EafagyjxhlZ3xXXvhe833gfgu2xRMFaZw38x9OL92nrsDHADKahAYOIFMhu2AveZ0nKAG9/Ur9/Z5UDSu5pf0ApHi6/s+ibvnyJYAcJnTuDk/An0TxeBAw50Ol2cB+AkpW1YgUqL4AmMORNppzelFYOEhQFGDyPXs4tt1usmF3cYmSet1Ga8fKy5//TVg9pj482Qwpw2jQRZWyz1p8GJ1EUvtpUhjmWsyDEAL1A6pMrrYCok4yJLxfJ5TgOPlM5sZxZcyp2OWLg0QiAQQX03TauKlFcJIMj2nwToMg6GOGDXizKmzuoqVf/1hVN76VsiVCuylO7m/p9dpQ54irxGV9VquBZgtyD65bv1tKOu1XRu2Z/Nlve02FIasN23XqaZoUCUVButeQNFeJv9th8NWZ40cpAeqj70dzGk7wPs/z2RO9XXMFecSKdYAAH0DJbWU3pwybC9ZnlMgnslgjFdVBOys+uhYRHGWsznlMqey2huU92Nqkdy7afOkbxIfpWh9LLCZ0w1jI8KcAsDB2kEstaPNKa2P+9OksRSOSQKR0jYrZAQGhrLePKvWgjT7hO1FqDmlr934hrd2cF3nDUQCesPbkDllyXrVCmFOR2Tl2O7Ya07HCWpwX3/t3j4PgEiLN28MJlvSes2p7uhwfTe9OS1OM4tvqqdG3wiZU25DEMblJ6fDwsV37J7THSbr9X3CnO47Rf5cnhWfDMd/h/omypIKx3PCG3WIeFy+1SE/9/CbxZ8rR9Yb31W5WF2E5Vnh9Qb0NadVgebUdVDwiJvrWm4AACAASURBVC+I+kiYiK2Q6EeYRphjMqyGu9xiv3/fD5jTlOI7MVmvmVu2BPR8NU/fehoAu/jS5lTn7EgeJVp2K+I5Xf7V/we+ruPgr/wK1EOLcAZgTt1WLzgosue0eQeySg5UXncMst4hPUj0sMyV9XY6kKu95lQulSBVKnAb6YOQslrmM6ee29vdu345/5MeNQYNCwT6hrfdkDnlNaearKGqVbnMKVPS6/vB8DajOR1A1gsw0uzHObgFdlZz2rgCeA6wT7w59X2foyzaJKE2TFlvUJc6wXvizovko2h9VFTyusWuqw1jI3HeOlQ9hDud6PBtubuMslrmytEjsHUSiJS2WUGSyLmR15wG98Fcw9vZOZIS3ol9T5HmdAL1kb4386ySoTiz7wzWjXW8vE5CA9m2lxoMSd5rTvcwAlDmtLENim/zFkmaG2QyrKjkMCowGQYCWS/jDbRurKMgF5hBJDA2UQgm0NxpO1003leAPd+D7dk5PKfB9xbcd5kbO405ba+QZn+BpNyiPCc+GWYxp8HnEtNh2pzS98TS1wHfAw7laE4ZAUQbJqP41kjaZv90OK9sSQsO/OnMaZXswGPAt23A8/LJemnQTLw5tbvkdyXCnI5d1kv3nOYrvidnT6KklPD5m58HwJEtBZ/TJ1B8O1aPOe2+8AKan/wk5v/B+1G8/z5oi4dgL93N+A5J9DOMkbTerVuQwuZ0hMxpcZocnIf0INHDMos59V0XXrcbCUQCAhYjhTkFMprT7jpAD7fboT4OuuMUiHpORepjgWN74a3ysLuAZ6OoVWA6g8l6+5UlcVS0Ctp2u/ezxmZ5UUji+k4a3tL93wune57GjPpoeRY832NnMihF5g7u0M9Kh7d3vkY+Hnpc/LnG6qPv++zhbWB76VcWLXeWcaByIJq+z4NjQvN9WGnNKZBqe/EN6jnNt2oNYAxvab24x7YXOsgelDkFgM/f/DxRgjFCIktaDZYswZ1Amv12wF5zOi74fh9zuh2K74A73Ci0Sq7iy2ROdTIZZt4A9c1eWidvOkyLQ9+bMzShZ8h6TdeE4zlBGmGBNNzjwE7bc0rDkBZIip9oc8r11Ggcr1lxmgwEaPG9HRTfXMzpdFLWqzcSsqXFKvG39k+Hl7vL0GQtUaiZCKLyARKkxEVa8dUH8NRQ5jR+6BeZDKtFcjgZM3NqetZAzKkqq3hk/pH0NEJ67Vjjl3n2p/Xq50iK8NyP/igAQFtcHMhz6rZbPeY0uB/Zrk2YUyVoTkct6wWGnqTTwzKLOQ0Zjmp0oKjU66mrZAASisQNRIrI+7eB7aVxFYAEzB3P/7V9st7Qc5qiLJopznADA3mqIgAoatV0mXR5ltS3Pl+dkKxXjTOnY2pOgZ2nLFq7CEAiyiKtTGpYRn2ktiRmfVRLHOY01pze/ho5q5UF6hVFTFnUtJpwfCdxTS1WF2F7duhvBPIl2dPhbSpzCqTWRxqIJLrnFEixvQjJesdve4kGIuUb3p6aOwVN1rg7wAGgEvz7jAmk2W8H7DWn44LZCgOEtsVkeBjZEhD667ICH+jftawWXC9682oY7JROAES2FIRFcD2nYSJd7zAmWnyBYJebrY+PNQV23p7T1VhzWhFbVs321GyhEl9NQCFJQVw+Lb4vADNH03d3xlGsJQIfNsykp2axRprT/lAkWnzFJsM6ChBhTvme015Uvvi1JtdqUGZmYF2NHdbD4psRjjHmReN0j1sx5x43ijP7zgAgjSrr/kEPc8aYPYiu56LrdMMBm7O8AqlYhDJLDj/aoUW46+vhaygKr90JPadU1mu6JtC83Sfrzd6RKIxSclg3CEJZL4M59drk/daf1guQcBLuzsEAqcxpf3O6XerjzJGBrmtWIFLa8DYtzZ5ZHwOlUKkwBduzE3U1BGPXpaisN5LJMPb6uE22F4hg9VVg9ihQCN4blezUV3rNR5RFvg8YmyirFY7nNKYsuv014PBb8j3XWH2M7zilOFQNlEV9oUgr3RXhPIYwEIl3HVKkMqf5h7eFo0cBkHVfEWwTWe+gab0AGWbSHe2sPAYAKAXnY32vOd3DUKCppHMniNdzjClhQmhcJfvLpnIuGKcoVCOT4SzmFED4WIp1Y509GXZtwGqFbz5uQ0CLZp+0SbT4AgFDME7ZEhBMhndYc1qc7qXpDsucBiwCkzGZWozKlvJIlgBSfKxW6LHzfA+b5mbimprSplDVqrjT7mNOA9mSEBwTWmDjy5b1tpmev0GYU0mSUDpzBvr5l6N/EcqWMvxAlfp4Ax+CocsgxRfoSZfqpToz9KW3fmSEDRwD9HBI7wvOygrUAz1Jm3qQHBSdu/mkvV6rFTZxoazXs4DmbUhT+yEVCqMNRKLNyJCJvanMaeDvUhKy3npqIBIQNKcu599LD+FzJ7aPsmjuxGBfSxuXoDktKsXUesTKZDAcAx27w0myD5jToOZyffD0Pdk33M1K6wWCwECnf5XMOOvjDlMW0bBACoH6SJvTSH20OoDnoKJV2AOb6gKRPLfuBv/dyWd5ARLKIt5e+YNVcn+jyiLP93IzpwUfsPyMc07a8JauksnhOS2cOAGpUoFx/nz0L/IwpxOQ9RaGHN7yCJwwk0HgfPZ6wF5zOi7QQ/jxdxC/2Ma1e/p00LhCJEvygC95MAWjst5pLV22BCDhq+HKloLJfyGQ7XKlS/QNn7P4Vgsx5nScxVdWd1jxfZWwppRRLM8R35KXksSHlD2ngZyNOR2uHSCH0m6DvB/ySHoBUux8L0xc3jK34Ple4pqSJIkk9sYmw/mKb8CcpgUiFarEN8fwgQ2yZBwASmfOwLx0KcraiRRfYOyLxqNR+YMV36muj0Ng76MLmVPWtTNCtANfFvWcOsvLUPcvhH+vLZIBXl5pL/GcBsxpxHN6G5g5DLlcHq3nNJT1DsecpnlOe8xptDlV5omsN5Gc2Yd05jQY3h57cnsEBjauDK4q0qKe07TBLcDOZEgNCwx8pMVgGMH1nTKaU5HhbU2rRTMZxhWIBASr1nZIffRcIuulqiIgV3MaURYFr2G5MAXTNZPst6wA1f3k3DiI5QUImsFec0qvqQRzGmQy3A0GRA2jAcd3ctdHO4sBp8NbBryAOc2T1ispCkqPPMxvTmOrwSLQyuS6ngBzOojnFCDD231bPuY51qPSBAMDtwP2mtNxgTKnx58kH++1dGnj2uB+UyBsTikbGt8R2I9w0Xjfm8j3/dBzmkBwsy8F/gqu53TA4hvKep3OePe4ATuPOV1/rZfUC5Di63upPjbP9/hphEGiMtdX01ruC3vIOxmOxuWHxZdxMz9UOxQ2p77v55Mt2aKBSPxF47QJkcv5rrXSmUcBx4F54ULvk6LN6ZhlvRHZUsr7jQXf91H5i2fwW//WxQ/9GbuBpteTzpP1jwg0/IUOrezVFWj7e9eGdoioCPKEInmmCd+2E2m9tmcDzdvA9GFI1cro03qBkcl6E+nbANw2ubbjnlO1XodvWfA6/H9PieevA8iQqjQL7H+YsBn3kg0wW0B3bfD6qBbIfT9QFvWvKGKBZjL0N/ZZSfYAUCyJDm979VNoeBuk9fq+PyFl0Q6R9W7dBFwzVh+z0+yZntNAml2hu5x5ib3tZWJ5kRTg4BvyPd+Y55R3TU0VpjClTYXMaa4ke4DUR/iwsuxLIpkMOYe35UfPwHj1VfhO3zVktkgtlpWML55MfdQGqI+eaeL0f3wGH/2oi0e/xF5jVg6GXnvN6R6GQ8icBs3pvZQu+f7gO04pAokGlYAxE3cD0DCIfulSx+7A8qxUT00x0NpzPadacCOzczKnWh9zOs49bsDOCnzwXFIMp/uk3gJx+fT1iUyGA2l2JWgUub4aqwVc/SIACTj0pnzPl9eclpLN6WJ1MZT1Nq0mDNcYiDm10wpwyqLxQTw1AFA+Q6Q9+st90l5h5nR+vLKlASfDzsYGbv/sz2L5//oVaJKKU5wVotSjNe7mlLJEU9oUfN+Hs0xkvRTqgQOAJOXadRoyjFOMtN7mHWD6MORyZbSBSKOW9aYxp9UYczpHkzP511tZLacHIk0dBOZPkj/fy1AkGhY4VH0kB/GO00mtjQCR9TqeE2lQ0ptTWh8zhre0rvV9X5FMhopWgeu75LETkfWmJA5vJ9AzXLw+DiLrpcxpkQwYuLtOW0tkeLv/kZ5cXBTFWlTWa7BlvUB01+lyhxApeTynmu/D8z2+/xkQDETKryzyTRPm5b7zdNYOcIox217C95qk5FIompcu4doP/wjc//pn8FQZDy+xm+xQWTSBwMDtgL3mdFxo3yUHuLn7yA3tXjKnnVUSzjSobAnoFV+7A1VWU5tBGnbSz5wKTYaDuG++55TvqRH3nI67+Ko7hzntNghL2r94W6Q5dRmT4YC9KQfMOPNQSuPyL/wlsO/BHvMjilhzmlZ8F6uLaFpNdOxOb42MyIJxINqcpr2WfUEocQwSiAQQv6NSr8M4z2pOMwKRKnXyOoyJmaAS57x73G78xN9H6+nPY/8/+2dYeP8/gHxnhckgKrKCImTo3ngPryFzqlXhNZvwDQPq/t61IRcKUPftyyXr9VrkNaLeTLoKwDJb5PA0fQhypQJPHwNzOmxaL2VOGUE4Pc9pMhAJYCRn9qGslvksX3s5aE4fIH++l/Vx2LBAIDK8zWpOaSZDf32kyanc+igpYSYDX1mUZE7zZDJ0rPYElEU7aNUa3cMbr4/6RupuYTZzSmpV6BtkMae1IDDwzovA4Zx5DEDAnEYDkapalXlWO1TtKYsocyo+vDWJrxJZtpe0wEAdUrEIKafNrHTmUQCISnuzdoBTjNn20tscIV4b7eUVXP2R98FZX8fR3/53mHrb2yFfucl8bKgs4kilX2/Ya07HhdZdcrORJKB+8t76araCi3322ODfI2hOu86AxTdlhUToqakQ3xf3QKMUAEi5iy8N+iCe0zHLlmRt56T10oXftZ7fTqQ5ZaYRUtlShbDf7MlwMJldu5Bf0gvkbk4BsuuUFt+DlYNiPycIfAAEii/Abk4HCEQCaCjSo7Hi24z+PB6oZH5MEslwEJSDOXU3N2FevIiFD3wA8//b30fx9CnA92G+xr4fliQF+pjfP/2eU2eFXBvagejBTF1chHNHvDl1W9SbSa5RVVIhQYJJ1zXMHAk8pyNsTgtVIv8bVtabxpx2KHOalPUCgJPRnKam9dYOkhAiSb7H9fEW+Th0fWyja3eZwVL9CG0vVrI+cj2n5TkUg/dcHs9pHmVR19gE4PcUSuOArO2ctN6wPsaaU8owc0BrX0RZROtjEHjF3HU6dZAQCfrG4PXRNcPwzYbR4K5OO1g9GMp6l7vLUCSFv0khDkdHQSKr+AYPDDRyS3oBoHD8OORaDfogzemkbC+MHaU8GC+fh6/rOPIbv47at387iqdOwbx8Gb6bZKRD5pR17bwOsdecjgtUtgQQ6dK9lC01A3kaTWQdBH3MKesQ04/Z4iwKciESSNMI5BSpntOgCHAnw5JECvCAxXcigUg7yVPDmwwDQrLeiEctkJqEzCnTU9N3/eUNe+h/bsH0k7Lxs6VkwA4NfVjqLIWypbx73ADA3trkh76kynrzLxmnKJ85A/O113oSULNFrnuVf42TLxzNahEeKIucJxDJun4dAFB8gDBkpdMkXMS8eJH5+LKswfDszECuYUCZ01qhBnuZvAf6mVMg/67TsIkLGEZJklBUirDp+2iaBCL5owxEkiRyKBtW1ut0ockac/G722Y3p0rQnKYl9tLmNPH+8f2AOT1ArqOZI/fW9tK8Q5LgGfcRYeSoj1Q+2Z8m3jAaKKtldmOrbwDl2XAAy/ecJm0vlmtBkRSoMn+vd5jJEDTIe8xpgPYqAAmo9K32COsjv8lhKouCGlEOvj511ykwsvrIPG+B1MeW1ULbamO5u4x95X1QsjybFI6JQvBYczOl2csIDJQq+a8zSZZRevTRpLJIqDmdHVttBPrSehXxmm9dC+rjSWJvKJ4+Dd80YV2/kXhsmGbvjDfNfrtgrzkdF9rLhDkFiHSpeSt12jZWNINDVr93Ii8KVcDuoGtne2oUWcGJmRO4vNk7cKROhoOpolreB1mS+Z5TgBxm8gYi9e/eHLtsaQel9XZWycfIZDibfQs9NUpf8Q0ORMVCDbIksyfDtT5PyyCTYXr9tsj13DAamCpMQZOTh2oal7/U6TGnC+WFxOOYCAIf5lo+Dv3oL6H1mc+wH5cm66WemhxphBSlM2cAz4PxyqvkE6LFd0QBOTxE03rFCjBtTgsnjgMAtCNHyDoATnNakjXoktTbET0GUM9pP3Pa7zkFgub07t3UNNp+uFTWO9V7nTRFg0XVI9OHIFdH7DkFyGs+rKw3he3zOh1IpRIkLfoeU+cCWW+G59TzvaT6QN8g90gq86+fvLey3uYdYHqxl1g+CApVwO4KKYvumyHy4StbvYE1N8keIPWxPBfWuDyBgaZrpg5ugT5lUVCH91bJBOisECmo0tfYi9RHm5HWG3yukuY5pe8HtUQ8p3kxfZh8bJGhx4axgXqRfU2FyqKgPgr7TQHA1qHJGr7loof17/6fYS8vsx+XoizyDX2gwS1ApL3mq6/Ct4LrKE99NLZSJdnDoGcxyxgi98G6fh3K7Gy4Y7t46kHyvRj1cVKBgdsFe83puNBa7k3CaAogDV4YBr4PLH2d7KcUfi53iJymwl7uKwS6jsVsZcqWAODkzMlE8QXYyaowNoHCFCRVQ1EppktFBmBOC3IBqqROaJXMDpL1hsxp/2Q4YA9EmtP+yXDwOUmr8OV85TmSYierwMHH8j/f0iwZLARKgA1zg3ugWygvQJVU3GnfwXJ3GfOleSYzxETgOX3jVR+y5cC8dIn9uNTmlBw+8uxxoyg9SkKRQmlv7uZ0M/fPFEF0j5tYAbauXQNkGYUjRwCQyXfxgQdgXuAwp0oRhixHgj1GDcqcVrQKnBVysFIXooML7dAifF2Huyn2u/Roqm3fypWCXIBlNgFIwNQipFHLegGyTmYEab08ts9rdxJrZABAqlQgFYtwMphTgOE/p0EzVOZPlUWjODS6NnDtS71VNSJoLQ2+/5uiUAOsNjoCw9taoYYDlQOR4W1Db/BllfoGUJoNm508nlPTNVMHt0CfssikzemYV8nsFFlve4XsH+3HoJkMVG2U5jml74eDbyBNfF7Q4W2z15yywgIBRnMqmtQLkD3gsoa3XvIBx4F19Rr7cSnKIq+rQ8ppeaEonzkD37Zh0LpstrLzGABSHz17bCQRVRZpOfIYrGvXUDh+PPxz8eRJQJZhXkye73vM6V5zuodBYetk91ytr/gCw/lq1i8Dn/o/gV9/I/Dvvh34gx8R/9rmEpFUDrrjFAhvNF27HcqA0nD/7P243b4dMmgNo4HpwjS7QQhkSwBhQLmyJSBgTvs8p142cypJEipahXjNxr3HTdFIyFBail0arj87Vl9EBJ0VIkPul7MpGlCYEvOcRibDwWumlVBROYvGJYkU4AOPDuZrkiRSgJu3AQTFl+OpUWQFB6oHiKy3uywu6QWCwAcfj10jh2XnbtZkmCHrpcxpMf8+UO3AfqgLCzBeHrQ5HQ9zGlklwwjPYX7NtevQDh+GVOg1s8VTD8K8eJHJSpaVEmFOh5SqpqFttVHVqpAlGc7KCpSZmcQUX10khzdHUNpLA5EizalSIIFItf2AWhh9Wi8AFGeG/l3pjp7SnLYhV5N/J0kSlHod7jo/YCT0SMXv58F+xQhzam4BnbX8T57i2peA//5TwIcfBP7De4DP/LL41zbvDKcqAoBCFY7VhumaYsPb2ZPR5jSNOTU2gfJsOIDN4zm1PTuTOU02p9s0MNDzgAt/NVbJfwSd1YGaU93RoUpqVNFj64BaCq8Ntuc0sL0MIukFesxp8w5Z3Wc2uM1paHtpD1IfDRQkFWdofVzmrNzKCAyUc4YFUpTO0OFtIO0VTeudgLJIBSAL1kaAMKeFEyfCP8ulEgrHjzOVRTTjwxhzYOB2wV5zOg6Ek+HgZlMPmtNhpEt//g+BL/8WSTm9/zuBzRviN/nmbSJbGgbBQbxjt4WLLwBcbRK2uGE0MF/mTYY3I80pdzIMkMLZN/kSkfUCdJfbBAKRaPM9SAFurwD/4X8CXvjd0T4n7s8Lim9czpYRl89MI6TNqFpGWS2ziy8APPEB4B3/cPDnPH0onAynHuhApsODTYZ1aB7C4msPWHylUil3GiFF6cwZ6GHxzTEZBsbfnEISnuxb169HJsMAUDp1Cu7GBty1ZDNS1sqkOR0zc0oP5HZsjQyFdpDuOhVsTgPPqRJrTm27Ex4aSVrvDpP1tttQquwgLnVuDk6GrBdgSBgpqxlmMgyZ2Ot5wO/9LeCVPwce/B6yl1LUw+r7hDkduj5WU4Ol4rh/5n5ca16D55NGK70+bgDlufBwyl8lw5b1ijOnwXW0XVetXfgk8In3ATe/PNrnxEN7JWp5AYQzGRLJ144BqKU+aSYnzf5t7wce/7uDPd/KPPn9Nm+jZbfgeA63Pu4r74Mqq7i0eQkdu5NP1usYKLdULASXi505vGXIevXBZb3akSOQZ2aIssj3t8/w1rNQ9CXh94+n63Du3g0tLxTFU6dgXkyqtSRJQllSoLv22KTJ2wl7zek4EJctlaZJ6MwwoQ+dVeD0e4C/+8fAmR8i7FzzTvbXAYFsafjiC0AoKh8gxRcArmwSae+6vp7iqdkI2buSWuJPhoEEcyoi6wVIAe7YbWLQz7GjMTfotHQQae+Vp8nrmsGEnF06iz+59Cf5v38cHYZsCchcNJ7JnGoc5hQAvvV/B868d9BnTA76fc0pbzIMkOnwQJ4axwS2FMx1AF+W+MwpPdCP2FMDEF+NdeUK3HZnW02GgeC9JuDP832f2ZwWT5Gl9szpsFqBLktDN1xp6Ngd1DRycHKWlxNhSACR9QKALZjY67baCW+mJmswHT1k5eRKGbDtnldqFBiBrDeVOe2wZb0ACUVKC0TqydDist7gd9ofGAgMXh/NLZJS+q5fBH7ot4Ejb+0l8Gahu06apWFlvVoV3eDfKVQfZ++H7uhY6izB8z3+oM1zST0o5QhEimUyZDWnoeeU7k/MwfzkxjCy3sufJR8z6uMfXfwjPH/3+cF+Rj86q9GwQECYOS3FzxiBnYi+z5ieU1kG3vP/DmZ5AfqURXdSk+wBQJZkHKwcxDdWvwEgR1ggADgGKsECCF+RBZhThqzXMAbKYwCCJu3RR6G/fJ6QDb63Leqj5VooAOJ5DDfILzFZHx+EffMm0wJSljTokn/v8msmiL3mdByIy5YAUoAbQyT2BtNTAMDMUfJxi70PKQLfJ7LeEciWAKCTcpDpx7GpY1AlNfSdZsuWyL8tkznleE5FCnBYfMct6wUGY05fC4pvWnMO4CMvfgT/8uy/TA+OEkFnNTkZBkbCnHKb02ExfQhoLcFzbWyZW6nM6cHqQax0V7BpbuYuvvYyuUYabzwO5y6n+MoyoFXZxVcfvPgCxFcD34f5yjfFJ8Nahfh5x8ycZr3XKNz1dXjtNrc5ZU2Hy4UqdGnMnlOrjVow1XdWVqAeSF4bSr0OqVCAfVeQOW23E01cQSnAcgySRoue/3ik7GlxeiRpvWXOtN9NbU7nMvecAgzPaXuZWAfo4XX2GFmJMyhzSu9V/fWxtRSu1EgFHfCOgDnt5GhOT86Qhvzy5mU0zSZc3+WskdkC4BPmNDj0cjMZFLbnNDMQiTZMgRd7W8p6fb+vPvLrnu7o+NDZD+E3X/zNAZ9gAKtL7uu12PBWK5Pfc0ZzymNOuQObUSEY3tLmNG14u1hbxIUN4m3MbXu56WB9CvCOH05hTtOURfpAeQwUpUcfhXnxErxmYCsQak7Hm2ZvuRbJYxB8/1jXrgEANFZ95KxbKysFGGNWFm0X7DWn40BctgREdp36wYUnmgQJ3480p3/VvYHfmp0GNgWaU7NJki+Hbk4DWa9rCBVfTdFwbPpY6KtJTyPcEJf1xprTUGooZzCnahVdaxLFd8Dm1PeBy39N/j+lcLWtNs6vnYfpmvjaytcGfJL0mzEmwwC5zlJ8r8xApJjnlDkZHgWmDwGeg+bGVbi+m86cVg+Fsrl8aYQGjJUi7s4CG6cOwN3a4jcUwQqJOLxhmdNHybJx/dx58eZUknqJhGNAb49bzqTe+05EPq/W61AW9jETCUtabezFlzKnvuPAWVtjMqeSJEFbXBT3nLZbEUkvABQlBbbvhvdeujphpM0plfUO4cPr2t3kYToA8Zyy7/fqXB3OhkAgUoI5vdtTFQHknjl3PKyPnmmG144QYs3pbxrX8FSlFHrTU0FZXOrXGxSFKrqBmiCPsujq1tUwLJC74xSIeE65Q0lZJo1T3zBARNaryipKSokoi4AxD28HlPU2rgCbwTWRMrx9cflF2J6Nr69+PdxnPBBokn28PkqSUH3kMaeyJKfbXoZFkMkQBlCmNafVxbA+Cu8AB+BbXajXTZw7IcFdmOUPb1OaU183cu8A70fpzBnAcWC+TJjf7WB7MV1zsCT74ycin09bt1ZSitDHHBi4XbDXnI4D7buEwejfMTV/P9Beht9uYOkXfgFXvv8HsPYRweme3SU39KD4/n+X/xh/MD0lxpyOYscpABSqsAE4vitUfAHiO72ydQWO52DT3GSnEfp+GJUPiAQiJZnTglyAlCEzJLLe4CY57jRCIL+sd/nl3tLvlOL71eWvwvVJ2NKzt58d5BkS+H7AnLJkvenMqe4Gst7+JmVI5vR68zqevvl09gODQ2Rrgww9pgr8pm2x1rvm80yGfbOL7l0F37xPRWeOHLAdblx+JaX4Dj4EUfftQ/HBB7H667+Oxtdt+BqbvUpgnM0pTesV3XF6jRbf44m/Kz14ih2XX5weu6yXek6d9QbgedAYnlMAUA8tist6Wcyp78OS0POcloPmdJSJvaVp+yGhGQAAIABJREFUAH64Z3gQpKf1tsPdrXEo9Tp8Xec22/xApOWoqggIhrdX4Kyu4vqP/hguf9970P7iF8X+AX3NacNo4GMrz+EvalXB+hg0sCOojx2Z1CARZdFsaRbzpXlc3rzcW7OWsgMc5TlosgZFUgSGt32Bga6VyZwCgbKINkxjT7MfQNZLB7dA6vD2y3eJH9X1XZy9ezb/z6FgrVmjyKqPKcwpgIHq4/N3n8c317+Z/cBA1tsO7gfTGr9po6FIALBQEVyzBsC8q0PSPZw7LsGZn0lZJZMh6x0wEAkAyo+/CVKhgFsf/BDaS8VtkWZvezaKvi8c9mhdvwZlYR+U2P01bd1aGBg4xvq4XbDXnI4DrWDHaX8YyswxuJaEG+//SWz96Z+h+PDDWPvoR9H8y7/M/n59BepG8wYub13FpqLA3hSYLoeypeFlvZ3g3yMSiASQfW43Wzex3CU3L2bgg60Tv1AguSiqxVyeUxFPDRA0p84Eim8fc+rbNv/GHQctvqXZVNnS2aWzKCklPL7/cTy7NERzqm+QBprHnOobXNO97ugoyIXo0m7bACQZUDRUtEruyfDvnPsd/NMv/NNsNUFwHXe2yJLqWkrTRuPygXzMqXF9HZ4t4cL9RbRnycEuNfSB8W/1dH0oWS8AHP2df4/K296K5RdquPHRZ8TCeSbBnAon9V4DVBXaoeS9p3jqFFGPuNFU63JxBoYkwR9zWi/ZcRqskWEwpwAJRRIORGq1IU9Fr0XNdWFJUl8gUiDr7Y5Y1gsMJe3N2nMaZ4Qp1HnSTPGkvbRJy2ROAWD2KMybS7j2d/5XmFeuoHD0KG7/o5+HeVlA6kv3c5bn8IVbX4AHH+uKIuY7bS6R+1Yth7KChUItd328f/Z+XN66HLJczOEt/beV8qTZ5wtEAsh9lMqSx78HnAxu3XYnlXmP4PLnerLMlPPB2aWzeMPCG1BRK3juznODP89wzRpveMtvcAzHYDCnRnjuGERZ9C+e+xf4jRd/I/uB04cB10I7GHRXC3wigdbHmeJM8vmmoHOdXF/nT0iw5qeIfYPlo6c/m1Mfh1EWafv34/jv/z7kchE3Pz+Pux/702xFSnivHF991HwvV5I9a3Cbtm6tpJbGHhi4XbDXnI4D7buJYufowPXP7kP3pZex+Ku/ihP/5Q9RfvObcecXfpFI99LQ15x+7ubnwk83RJrTMHxiyMmwlm8yDBBfjed7+NoykZ+my5YIc1pSSjDTorJjab2mawrtryTN6SSKbzCl9hysf/x38dp3vAvX/95PoPnpT8N3UibGlz8LLDwMzB7tSWQZ+PLSl/H4/sfxrqPvwqWNS1jprgz2PNMmw5U6CY7i3AANx0h61ByD3JQlaaDJ8M3WTeiO3mO3eQgO+p1g0Xgaix9pTnOk9XYukd/N5ZNlNGfI65ka+sCcDA9XfAFSgI/+2odw8K2b0K+uYumDH8z+oozmtGk18X1//H341LVP5X4+YXMqPBm+jsKRI5BUNfF3xVOn4JsmrOs3Ip8vaxV4kgTLHM8BAiDMaa1Qg7NC3jvqfva1oS0uwllZgW9nqyC8djvRxBVcmzSnM720XgDw9VEypwEbMOAk3fM9biCSZ1nwLQsyJ61XmSP3bGeDfVAP/XX9nlPfZzKn+pKFa/9DhWcYOP6f/iOO/e7HIRWLuPmTP5XdwPTXxxukPq4ripjtpXWHDOiU5DWaC4UqurK4rBcg0t4rm1ewrgfMKas+xiTLJbWUvgdcS9pesiwv9Dl36deNO603UBXd/sc/j0vf/h24/U/+D+hf/zr/a1wbuPoF4NT3kj9zwmC2zC28sv4K3nn4nXjbwbfhS7e/NPjzpComXn3MzZzqPeZUKyd92ClwPRe32rew2l3NfnAwvO0GuSciw9tclhcAnVsupIUyNqYkmPM9734CnMBA37YB2x54zylF+bEzuO9ffwD1021s/PnnsP47H0//Aq1EXoOU+viN1W/gO/7Ld+BWSzBQrQ+ma6LoeTmYU3ZzCvDXrZW1KowxK4u2C/aa03GgdTfRDK7+18/CbKk4+is/jdm/9YOQCwUc+chvQJ2fx62f/mk4qyk3nr4C9dc3evKWtbaAp6Y5oua0UEVHIpdLHlkvQKSoQFbxJVPRglLIndYrypx2HQM+MNiOTVHIwSHHtdD54heh7t8P69ZN3P7Az+LK//KDJH01DqsLXH8OOPldpMHjMKdr+hpe23wN37r4rXjy0JMAMPh0OGsyDHALsO7oUUkvEHhqyOcGmQzfapNisKpnFOAgLr/TJtd12rVYUkuol+qoalXhaxYAOpc3UdynwJwqojlDXs/U0AeOrHfY4gsAktXC3Mku5t79Leh+9QV4ZsaOs4zm9E8u/QlutW/hy0v51zFYngXVF9/jFt/h1o9eKFJ0OhxKQcckvXI9F12ni5pWC1UNGiMQCQgSe32fffCKf992G3ItKi0rOAZsSQrvvWEg0shlvRiYDTAcAz58Jtvndch1zfOcKrPknu1usV8rpufUbBImpS+Pwfc8LP3hi5BVDyd+//dQfuwxaIcO4chvfgTO0hJu/9w/SjDsEQT3KUMr4bklcj9cUxX4QsqiEYQFAoHnNH99bNttXNi4AAkSZouzyQf1eU4BUh9Tg/BYthdRWa87geZU1gDXhmdZ6H75LArHj6H99NO49r6/g9s//4/ZX3PreSJbP/0e8mfO+eArd78CHz7evvh2PHHoCdxq38LNpsCAgoU29ZzmT7M3XANlJfY7HII5XemuwPEcrOkCe4CDa7ndXYUqq6mvPW1Oc1leLAvdu4D2IGH5zbmgOWX5TmWFNKix4S2tYYPuOY38CBg48HgTpUdPo/OsgJIsoz5+/PzH0TAaeHHlxdzPxXItFDyxbRBuuw13bY1bH3nr1kpaZeyBgdsFe83pOBCTLdlLS9h86hnM3t9F7cyx8PPq/DyOfPTfwllZwdaf/in/+wU3wg1FwUurL4WNybq+lr3vqHmbHOiHbci0MrpyvuJ7fPo4ZEkOY93ZzWmSOc3jORWV9Va0Clx4MCXxPVQDIWBxPb0D/RvfwPR73oMHPvUpHPjnvwTr8mV0v8Lwwdx4lkibT35XQpbVj7NL5Gvfvvh2nJo7hfnSPL50Z8DpcGfw5pS/x418rqyWYbomXC/lQNkHy7Ww3CGNQmYBDuLyqWwpbTIMkAKcp/h6ug79ZhfVE2UUlAJ01YM8M5PBnI52yXgEQRGqvPFh+JYF/cWX0h+fUnxdz8UnXv0EAIRBZbmeimuiCEmo+PqeB+vGDf5k+IGTgCwnmlM69NDHNBmmh8KqVoWzvAIoCpQ6O6hNXRTfdcpM622vwFSL4T1BGktaL/VRDfb7or8PJnPaJodKblrvDPnZ7maO5pQRFtj6zGdg3t7A/je0UNg/E36+8vjj2P+Lv4Du2bPQv/4N/j9C3wAKU/jyygvQHR1PHnoSpiShvXWD/zUUzTsjak5rAymLAOInnCvNRW0SFPQeTFetKaUMz+ngw9uOZxFmk/U8RoVA1mucOwffNLH/534ODzz9NGbe+0NofvKTbJb88l+TNOf730WaW44q5+zSWVTUCs7sO4N3HH4HAAxXH4sz5PcZR5bn1NYZyiJ9YM/pzRZpsBtGA3ZWlkWgLGrr69m1sZafOdW/8Q34joTSQ+T9q9fJvzPP8NYP7n/U5jAUgvpYfetboZ87lz34S6mPt1q3QvJnkPpouYZwIFIvDInHnLLXrZUL03tpvXsYEI4F6I2IbGn9Yx8DIGHfw23AjE6RSg89BO3YsXRZS3Aj/PzmBXi+hx8+9cMAgDW4QCfjMN9aGn6HGwBIEroFUnRFPTUltYQjtSPhzZUZ+GAkPTWigQ9uqwXTMYQmw+GicUmaiKzX+OZF+JaFytveCklVMfve90IqFtE9+5Xk11z+HElZPP4kaZxTmtOpwhQeqj8EWZLxxKEn8OU7Xw4T93jwPQ/NT38abqvvhtbOCHwAUpnTRHPaz5xqHK8ZAPvuXVg3o9Ps2+3b8AmnLShdOoyOTnxaWYOSHz71w3jf6fdlf88AxiuvwHd9VE5MoSAXYHs2tAMH0j2nDFmvr+tDpRGGoM3p428AZBndrzCun36kFN+nbz2N2+3bWKwu4rXNHGnhAcgeN7HAB2dlBb6uJxaMU8ilEgrHj8O8xGZOu2NqTqlsnHhOV6AuLEBS2IdxTbA59T2PyHr7PafNJRQ667DU3r1JrpBrdaSe0yFlvVRemMqc8gKRQuaUfb0psoKCXAgD1AD0rVkjB2Lf87D20d9CYbGO6WN64r00/e53k+eZVR8Dy0tNq+FvnvibAIC1lkha753hVUVAqCySIHGTj+O4f5Yk9t5s3UxJst8kQ7/gPZftOe3ZXtxmUzgQqapW0fWs8Q5ugVDW232eqKnKb3kLlFoVs+/92wCA7vOM/aSX/xo48i2EsdTKXOb07NJZvOXAW6DJGo5NHcPh2mE8eyebTXPbHTSf+hT8/sTr9go7LBAg9dHRufJi3WUpiwwhZZH52muJBp2qigCEEnAuqguArKJrbmXWxqJSxI8/8uP43hPfm/49+9D9GmEUKw+R9Vi9wEDx4a1nkOtXGtL2AiC871WeeBKwbXRfzGA8U+rjJ179BGRJxv7y/sGaUydI6xV4D9E1MvGkXgreurVyoTb2wMDtgr3mdNRo08kwKb723bvY/G9/hNkf+D5oVZeZqlh+0xvRfekl/mExaBI+t/oCDlQO4J2H3wkg8NVkTYebd4bf4Rag03dzFQWNzNdkDVMaI1Etr6dGLQGOjtZnP4uLTzyJB794Q3gyDICwv2OVLREZaOellwFJQuXNbyafLhZRftOb0Hme0Vy89lng+BMk+TU2+abwfR9nl87iWw9+azhhf/LQk9gwN/BK45XUp9R66inc/sDP4uZP/mRYGNBZIdNo1sAgbE7ZQScizCnAbk5v/dRP4/K7vwdXf+R9aPyn34O7uRnxd2TKegFg+hA6JhlqZBXg9556L37s4R/L/p4BaCqvNl8leypdC+rBA+lx+RzmdNhAJABhc6rU96P0yCPosJj3fpRmyMGJcQ39/iu/j8XqIn78kR9H02qKycT6EO5xEzh8h0m9HNkSABQffBDmpeguN+pTNIZZA5GCVnD/rRVqcJaXuWFIAElMBgBnLf1A6HV1wPej3sxLT6HgA5bUa3x7gUjjl/X6loWt//EX6XJYiDGnCk/WO01+No85BYIAD5vPnLY++1mYr76KfX/7uyHJSAxv1YUFaIcPZzanbnkGT998Gu88/E4c/P/Ze+9wOerz7P8zszNbT+9d7UggkDgSko7AICM62MYBjMG4JHld4jhO4jc2tmPHJHYc23GJjR3juIFNMB1TTDMgQBQ11HuXTm+7p27fmZ15/5iZrbN79mDxu/LLxfOPLm07s7Mz3+d7P/f93I/P+OzxyFjxETuJiHHezkR+NHtOvaI8q3O8FbXuWiqcxjksZQY4GIaBxfOjkT/GfnQHx951EQ2DkZKVRWFNfXsLt5By641s345r8WIks2/Zs+xcBI+HyJs54DQyAYO7DFURFFQWjYRH6Jnp4YLmCwBjFNS7Wt7FmyNvzso2+n/0IwY/9znGvvu99B4sXGDMGry14q0aTefHAj2nyZkZTt1wI8fXvZv+T/810888g64oWflx1jVbdEB5M6FEsCSF25fWfIkLWy6c9XWprzEyhChruCuNwlTMJSD6fLMUb3PAqcWcnillkeTGu7obJMm++J8ZBcBpRInw+PHHuXLelaxsXMmJqfwZo7NFIhk33HrnxJx22D4v1dTgqKsjfiIfnMbekfW+E28pLHBqMqfjv/wVuq5T+1efMh6P52+6PF1dJP0B1KEh+8+MThKTXGwZ2cb69vW4JTflkpdAKaYPweEzUxkmDU7n0r+3sGohFxzWWBost0/aUfuemoJAXXIRHnUy+A+fB1Vl8c6RkivDACHx7WZODQlfZN8RXEuWpNgFAG/3GuKHj5Ccyah6hQPgP2xIlsBY2GwS10BwgKHwEGub16Yes5KKbd+prsPQboOZ+K+f46ipIbpzF0Nf/KKxYQ2Nga8u21HailJ6Tm3nuKVlS0BedVjXNOInTuDp6kJPJBj99rcZ+Lu/n1tlGAxZrwkySmXxSw3VbyR/qdKHLMqGA19jU3G7/Izk+9sDv+XzGz9vuhGeOXCKqwLv2m5ie/cVl4WmBo1nV1aPThxl+8h2bj37VpZUG1XZuSbghJYwK8N/umwJwLlgAYmBgSzDoVRhYzZjrLcYWcypf6xgvymAWF4OslzQjdYKLRQ0X58BTo/+Eaez3Jhzan1eStZ7BsFpAQfK4IYNDN12GzPPPFP07VYByQ6cJmeR9QpOJ6LXi1aAOQUbCWMGc6rrOoGf/RfyvA4qLjdkmHYqBE9XF9E9ReTs0Un2e7xMxCa4tP1S6jxGUSEgaGnjN7tImQWeoZ5TUcQnzm7OZ4UgCHSWL+TqHRpNeoGRH9GpVG4Ekzmdped0fOs447/4BagqKw/NQdarq/8fMKcSugaRXbvwrlmTelhwOvGuXJnPnPZuAnRYeKnxf8ltaxho9dBn5sd3tbyLsBJmn99GEh4Pgf8Yqt/P1COP4KirY+Kee5i4+zfG87Mxp2CbHxVNQdXUAm696fxox5wmentBUSi76CJiR44w9IXb8N95Z3bxtkRTpLDZV3+mQ/WPIbmTyOYeMKElkJqaZinepu/pL2z8Ak8deATgzCmLXOWIPh+eZcvesrLoyZNPElSCfGTpR1hUtYjB0OCcTR0Nt97SmFOltxepubmoaaJr/nwSp3uyHvNIHqKigBZ9+wwD/6fEO+D0TEfQvEnLG1FGR5l65BGqbrgB5/xOQLBPvitWAEWkS9FJtlbUEFVjXNZuVBBrPXUEHGLxWW5q3EjOf+qAcTMipkRtLuB0iVrH/31S431vFKj2RicNBs/cZLkdbnT0gtXO6GCQgddrkNtaqPrgB2k7OUNFfPYeGQvEhN925lRGT0L08Mms5Avg6+4GXSeyY2f6wcgEww4HeoUhk8mdU2eFZfSRmXzrPHWcXXO2vSvh6dfgl+sJPfIL4seO0fjlL9H4la8QfHEDI9/8JnporHBl2F1FIuggeuS47dPRZPE5boVGSKijo+iJBJU33sjCJx6n5hMfJ7JrF0OBHlwOFy2+lhKZ01bCaPgkL6JwZpcwNRAAERzlZcgOGUVTkJoai9jllxnfPWk4MW8a2sSb/ZtBVc9Q8jVBpqscX3c3uqIU36gXGDR+3+H78Egeblx8Y8qobK7SpUQyYbgRlsKc9vYiuFxITYWHuzsXzAdVJdGf3nylDJHmaKhVaoQUY/31yT6U0TGk+sLgVBAEpOpq1MnZwKnJMFogTonCqY04axcRT8ZThTbB7QZBSPVcnZGQ3UZLQI7My+pVmrjnv4vKt62RT3k9cmTKegtvch1VVUWZ0zxwGhwx1gl3JaGXXyZ++DB1n/kMgteSJ9spi1agjoygFNoARyd5WdKQBImL2y5OgdPx2fKjNeP0DBkihQUBrzA31991p5x84kWNZXsLbDajOczpLG0vUwdCjL0WpPyaa3CvXMH5J5Ilt71E0Ui+3eBUlIlNyujRKN41q7Oe8nZ3Ez96NEvWqofHGXE4oDIzP+aD023D26hx17C4enHqsbXNa3EIDvv8uOVO+MW7Gb/71+iqyrx7/5vya69h7PvfZ/oPfzCURUWY08iYE2XgdN5TVuEgKz/qehZz6pW8tsDHci5v+OJtdL78Ep7zzye8eQsDoYGUAq1kZVEyPqd9WqmhBgJIbg1J9iAKIkrSbHspoXir6zqvDrzKsRFjOsWfMuc0FSY4BeP6iR44kFq3bMMGnGq6xv2H72dZ7TK66rvorOpER+fU9Km5HcpcmNMCY2Qyw7lgAYnT2ddYSln0NrrZ/0+Jd8DpmQ6rMlzezOTvfoeuadR++tOGkYuzzJY5dS9ZguB2Eym06YxMsNHroUwuY02TAXjqvA2My87is9wsoHyGZL0RyagKz4Wtmr+5B1GHZn+BMSqxKWPBMFlVq8pr11ejTk7S/8OncDg1On7yPSpvuAGHBouOzq6/T8l6BaHkOVRvKRwy0UkZPa7kgVP3eechOJ1Z1b1XhjZxVUcrvwmYj5my5dzYNryNBm8D8yvmZz3e3dTNXv/e/A3oxCl0HQK/fRC5rY2K976Xmj//GLWf+iRTDz7E5KbegpVhdTpEz0v19P3wubQMOCOiSiHmNFvWmzvrNFfK4l21GpJJEocO01bWRr23vvTkK4r4SmAE5hpqIIDk0RGcbpyik4SWQDYBlq1ra2qWm5EQB4IDJCLGPT7X5BuMKTy+ewB/MGPzmWJOy/GsWgUOB+Fi1WEbcDodn+aZU89w3cLrqHRVUuuupcpVNXfm1JrjVgpz2tODs6MdwY6ZN8O1YIH52nQCLiYJPxORAqdJCW1mBqmxuBmIo6aG5HhxcGr1covlZtvC6ddAjeKqOwsdHVUz1j5BEBA9HrTwGQbe7oq8DVfCnA8aO3iQaJE+rOKyXsuttzA4FasqSU7NhTkdNSS9gsD4XXcjd3RQ+b73GbkRChRvuwAKmyJFJnhFC7K6aTUVzgoqXZVIgsNseykGTk3m9EyAU8lDWBTxznFLde5WY1NfP1Lgeo9OptUQFDdEiuzcyfCTvfjaRVq+913c69/NglEon5zF4ZuM/Ph2OtkDOJxExgyw7F2dC06NfBnZsSP12B3Dr3BVews7J83edBtwarW8dDd1ZxUry53lnFN7Dnv9NkX/iVOo4RiTDzxExXveg2vBAlq++128a9cy9NV/IjoUsfdjACLHRuh9pZah7/4i7zlbcGoVmzOY06gazfOKSPT2gCAgt7cjOBx4z19J/PBhRib76ao37oHSlEWthDXlbQGnycA4kkcDyZ3yZJidOTXWkUA0QDwZJxIyig9zLd4OTUV5dOcAajLjvGWC07XdoKqpvljbsMBpxn5p69BWemZ6+Mg5H0EQhLdevNUUo+2lxJ7TUsBpcnIyq/iXKt6+03P6Tsw5giMgiOiuaqafeJKySy7B2WYyl64y255TQZZxLzu3CHM6xWFJoKu+KzXTs9ZTa4DTYrLeP0G25P/Pn9L3iU9m9SyFHRKSTklz08BIGs7nXjeOdzSabThgRXQyS7ZkgR67vprYgQMkg1GauqeRayvwdJ1HyCey8EDxzSNkGCI55D99pl2xcMhExgzQ5F29Kuspq+/UAqeBaIB/OfhLAH499CrT8WlzTl32ZiKejLNpaBPrWtflSaMbvY0omkJQybmugiOER13ETo9R+6lPpWZN1n/+83gvvAD/GzOoVJMbuqYx9JWvkoyLaFGF4Isv5r0mlizUc1rcEMmqDDs7DHDqOW+58f9jfbSVt1HnqSMQKc0uPywI+ITSJXSlhhrwI7k1kA23XiWpIDWa4NQuAVvgNBEmqSUZCY/gMuswpSbf3vEwX//DQS78zsv8w0N7+clLGYx1PGj0MUtuHGVluM89t3hfTQqcphPakYkjJLQEV843zGWsBPxWKsPOOTCnxfpNwUi+QFZ1ODUbU40V7xd8ixEywY932rjHpCKyXgCpproEWW8OiDv6HDjLcNWZjosZhTbB6z2zbr1gqE5yZNzx4yfwrVuHWFHBxD3/XfCtJbn1Fug5BZCqqgoaIoGxmcoqNAZHoKyJ+OnTRHftovqWm421yWWeO7vi7dlnIzid9ooBXScam6JHi7C60QA7oiBS466eve3FnJX8Vtpe+j75KcZ+/OP0A6JIxCHhm8OWShkdpXKPcQ9WDhXoIYvlyHqlwsxp6HUj17ZdoSE6nUjrjP7Lut2zj9RJKYuk0nL7Ww6HTMTvwjmvA6k+uzjqWbbMKNKbfafbR7bzm4ld6ILAjw/+2ijAyvngdH9gP/6oP+XFkRmN3kYmYjb3b3CYyWNl6LF4quXKGu/nKC9jdFclurcu723JqSkGv30nAJF9J0gMZJMDVs7LBqfm/W4xp+a5zpVnK319SE1NiC5j/+Befh66olDRP8n8yvlUu6pLL94KzEliXmqo4xM43EmQ3cgOs+2lqRHV77efB51hGDhojj6Mh421SizRk2FHzwR/c99O1n3vFW57ZC/P7M8wqIsHU6o778qVIMv2ExGscFcac3YzWqf2BvYiIHB5x+UAdJR3IIvyWwSnszOnyakpktPTJeRH4/l4Zn603OxtcMT/tngHnJ7pCI2Ct47w1m2ofj+VN1yffq4AcwrgXbGC2KHD9nMMo5OMCTqNvnSVv85TR0AUihsizZjJ9y0wp9NPPEF40yYmH3ww9VhYdOCFkg0fort2ofb1M7a4FimRRBm0cU/MkS1ZEiS7vhrr/a4KBdQ4gsPBoSUe2g8UWBgzIgVO5TPPtmWFKBPxO3G21SPV1uY97e3uJnb4MOr0NLdvup1IMs73xgKEkjF+c+A36Z7TjMrepsFNhJUwV827Ku/zqt3GuZuM5fS/BIcYP1iG5CPrGhQEgcZ//AqaohN4NV+KM/Hbewi//jqNl/iQq51MPfxI3msKzznNYU5zpJmJvl4EpzMl9ZTq6pBaWqg9NZ4CpyXLekWRMjKuwwO/h/G5O+zlhuoPILmTILlShkhyk2VuZiNdSjE+YUYjo6i6isu8FEtxIxycinL1Ha9x37ZerljawJr51Ww4PJpmwq3KsHnP+dZ2F7fMt2FOe2eMzWkm695Z1Tlnx96EGjNlS8XvIT2ZRCkyRsYKR0UFjtrarOSbYk5FIcVGn8mwek5dE8Y6LBcxRAJw1NTaj7fICKvn1FFeZty3x56HRZfiNnu+MsGE+HaAU3dllqxXi8dJ9PXhWb6M6ps/SPDFF+3XXmaT9YZAEIqOfBArK2eX9So5zGlZA9NPPAmiSMV11xmPF2FOBacT97kFirfxIH5zF5OZH2s99QRk1+zMqasiDYxLDGVkhPBWXsAdAAAgAElEQVQbbzD+i18SPXAw9XhEdDAXrmr6yT8gaDqDC8opGyxwjZlOxFa4HK6Cc8CVwSHkKg8iRu5UO5oYqYLq7bMrJCxPhsgs9/afGjoiEb8T78rlec8JTife81cSefNNpuPTfOX1r9AhlXPb+CS7A/t4ffB127aXF3peQBIlLu24NO8zq93VtuA0OT7ExDEf5efW4zadUcFYkxo+8UGiASczu7M9QHRdZ+hrX0OdmKLtokkQBKYefTTrNRY4zVIWWT2ys3gyJHr7UoVbAE/XeQAsHtJpK2ujzltqfmwhJIqUWcW9pAJv/upPNtHRIhG0SNQo3kppZZHU2GTMgw7YFJYzmFPLWyKlLCoBnD5/cISbfr6FN44H+OTFC6grc/LioYw8HJ9JMaei14tn+fI5K4t6Z3pp9jWnfhdJlJhfOX9O4FTXdRKaWhI4LcWPATKURRl9p9Y6/XYZBv5PinfA6ZmO6CR4a5l6/HEcVVWUX3JJ+jmX/dgJAHdXFygKsUOH8p5To5OMo2bNa6zz1BFCI1asMpwCp3NjThP9/SiDgwheL/4f3YFiyhnDooBPK30zO/XYYwheL6u/+n2APGdOwFa2BNhWh5WBAQTJYchKzCSwZ4mEK6IUl3JgVCtFTUcYdTL99DOM33VXFvA+U6HrIlG/E+9Sexc2b/ca0HWef/JHvDH4Bp+ffx3XhiO8p7Gb+w7fh58koBsJxYwXel+g0lXJmuY1eZ9XCJxGj5wi4ndRu2QaUcveDLvnNVHdGWFy0+msOVrR/QcY+9GPKL/yCqrXNlK13Etk+/Ys8KDrehG33uI9p0pfnyFZypB6Os49mwWDqiHr9dQzk5gpPkoIwFdPSHTgtYDVZC88+nF47K9mn/s7S6h+P5JLBcmNJEopwwcoYJefYk5Dqcqw0/zpSjFEeunwKDFF48nPXswdH1rJzavbGZ6OcXDIBBsZsiUAb/fa4pb5Nsm3Z6YHj+TJWj8WVi4kmAiWttkxI6HGSjJ8UEdH0RUFud3+HsgM54Js04dUT40gGG6qZzgsWa80YZzf2WW91STHi0vpsoyDRvYZjNySa3CZG/3MQpvo8ZxZt17Ik/UmTp8GTcPV2Un1hz8MgsDE/ffbvrUocxoOI/p8RaXZjhKY06x1IDqJ7q5h+skn8a27OF0csMBpgQ20p6uL2IED6Ll939FJxiTDcyA3PwZkV3HmdGbwLUl6w1sN8x3B7Wbk619PqYvCooi3RLJf13WmH3sMz+pVrLzp0xCYyD+PahyUSFZ+LDZKRhkYQK71pcCboinsXCxQtu9U8T48jOKtJ6YT6Y0x9djjBH7+8xQTeyYjPjCFpoh4V5xj+7zVd/qDDf9CIBrg32vW8uFgmPbydn6y6ydoDmcW66XrOi/2vsiFzRemnI8zo8pVxXR8Ok9CO7VrHE0RqV2en2sqLzoHV3WCsXufyyokTT34IKENL9Hwhc9T3pHEd04T0489jq6mW5ZKYk4L5MdEXzY4lRobSdZU0Dmk01Zu5MdSlEXJ8maioojP9EHg4BPw7G3w6ndnfW+xsMCn5DGKt5nMKWDfE54BTgfN0U5SwrhfipkBWfH0vmHqylxs/erlfOU9S7n87EZePeonoZq/Z25+XNtN7MBBkqEC17sdOJ3uZV5FNlBcVLloTm0vqqaio5dkGJjoM9YkZ0d70dfJbW0gy1nKIo/DLN5e/9OSj+3/r/EOOD3TEZ0iKVQQ2vASFdddh+DMkMkUYU49XWZfzZ786vB4YhodqPekZTC1boOVG1eDhStiwWFjQcxIbqWElXxbf/B99ESCsX83FrWoIOArUWqnhcPMPPdHKq65Bvdyo0oaP2Fzs+da5RfpOU0MDCI31BgkkpmA9y4QSEoioVdeKXo8XsnLJ5/XOOcxGLrtNsa+/wNGvv4N4qfmJm2cLWKn+tBUEe9ZbbbPe7q6wClz5OXfc1HrRdxaZwDOz3Z+EFVT+cWMWZwwN7TxZJyN/Ru5rP0yZBuZTrXLOHdT8Wz2InRoGNCpnB+B4ZxerbCfumUziF4Xo9/5DsmZGfw/+Ql9f/mXSHV1NH/zmwjeaio7VXA4mH7ssdRbFU0hqSdt5pzG0sypXKDn1MYEILKkhYZpaFcrqPca1/esfTWig7AkU2Yl330PG/8O7oAjxd1JMyOXNdSTSZITpmwpo6fGUVZW2C4/Q9ZruSq6LXBawpDxV46MMb/WyzktxsbqsrMbEAV4waoOZ8iWALznrzQs83NHLlhRoDLcUd6R1Y/VWdUJzM2xN5FMlGT4YLF0ctvsRmyuHNOHt5s5DSVC+GQfyVEDlBcbJQOGpb8WDtsrWszQgiY4LS+Ho38EBFh8tW2hTfR40M+kWy/kyXqtIqCzsxO5pYXyq65k6pFHbQFKRIkgIOT3kGOA7mJmSACOykqS09P2LRvkgFNdh+gk4b4E6sgIVTfckH6h5DLk6wWKt54VK9ATCWJHj2Y/EZ3Eb86pbfCkf8taT61piFTMk+GtOdlHtm7DUVVF8ze+QezAgVSRMywK+GaZOZ067N27SfT0UHXDjbg6jXsxLz/mONlD8Z5TZWAAua4ilTsSyQQ7FgsIapLQ5uLzPr2im3+7N4nj3j6Gv/pV/Hf8mKEv/+Oso4jmGpGjxu/hXb7U/ji6uwEY3Pwin+n6DMscPmTJzd+u+FuOTh7lj2Isizk9OH6QofAQV8670vbzqt3VJPVkaoQUAPEg4X5wVSXxCMfz3PGFWICmlTOo/gnG77qbRF8fQ1/+R0a++W/41q2j5i/+AjxVVK1qQB0bywLx1r4lS1lUiDnNyI/JYJDkxETWXGhBEJjubEyB01KVRRGvsSfwKeZ52vuA8e+2X8J0CbN/zcjNjylw6jZaOzJ7TiE9hi0rMgwDLebUnVIWzVLkTGq8dszP+rPq8TqNtqQrz2kkGFfZdtrcI+SAU193NySTRHfttPvIvPyo6zq9Mzbg1HTszd3DFIqEZhTNjPxY/Hul8mNr8fwoSBLO9nZ7TwbOfMvL/7R4B5ye6YhOMnNCR1cUqjIlvWDcRAWSr9zQgNzSki9dUqL4deNuzqwM13oMcBpwOAonYGvGaYkyXCsiW7Yi1ddTduml1H76r5h59llCb2wiLOh4tdKS1czzL6BHIlR94EYcZWVITU15M5uAvJ5Ti22w6zlVBgaQm0yAbibgGUlh4pyWWcEpE1Os36czsFRk4dNPsfCZpwFjzl6xCITic5I+RvYY4NJ7ln1FXnS5CC1u4awela90fwXB3Gi0V8zjA0s+wO+nj9AvSanvt3lwsyHpnZ8v6QWoMgsPucxppCeMq9mLw6XDcE6vVmgMyaVT/9H3EdmylePrLyXws//Cd/HFzPvtb4zxN7IP2RmjbP16ph5/IiWbtq0Mg+lGmM2cZsqWdE0j0d+fVRkGGJ1nJIvm3lDKZbOUBBx2SPjUuLHh3fsAdLwLahfDS/+acs4tFAlV4yuP7Wfd915hLJgugiQnJ0HTzMqwOyXrBQzTB9vkmwFOQwOIgohTyXBnLRIxJcmWU+OsPyvjvi5zsWpedVq6lCFbAma3zJe9xiY/B5zaJV+Ym+lDIhkrach4wky+zlmSL4Bz/gKSE2nWSBZlJMFBVBBs58f+qRFWwvhkH2oggODxzA6+aoz5k8X6TrWQJX/1wsB2aDwXyurTLQoZhTbR6zXmop7JyHGgjJ88AQ5Hqqep+kO3os3M2AKUiBrBI3lsXa+1ULhovykYzCmalupPzY0scJoIgaYyvWMQsbKSskszZJhFDAMhwxQpt3gbnWTMBKdWcQsM5nSCJFrRtpfhOTOnuq4T3roV79q1VLzvvfje9a6UuigCeEsEc5aqqOKaq3EuMsFprrLI6hvPmXOa6QBthRaLofr9yA1VoCchqRDX4hxpE9B8HkKvbCx6PGU7j9EegOmrm1n0wvM0//t3SE5MFJ0vq+t6tnlbCRE53IfsU5Hr7QvmnmXLUGWRVYNuPrH8EwYQlVxcs+Aazqo+i58mx1Ay8soLPS8gCRKXdVxm+3lVLuPvZBZvtUAfkYAT71nNxrkaPZj9ptAY3oYE5VdfyfgvfsHJa9/DzB//SM1f/AWtP/wPQ0kgeylfXIajro6pR9LSXkvCniWTL9BzmsmcWn4Mck5+HOrw0jIJvohGvaee8eh4HgucG2Gn8fm+RMS4xk+9Al23Ajps/E7R9wL4g3Fu+cUWPnbXmyQzlHKpMWvudH603HqhEDhNGwYOhgbN/Gg8NJsnw96BKaajCuvPSt/XF3XW4ZbFjPyYDU49K1YgyHLh/JgatWaslxOxCYJKkPmV87NeZhVvT0/nOzLbhVUwkktgTpXBQRy1tSX13DoXLMjuOU15Mrw9hoH/k+IdcHqmIzrJ1P4ZXGedhWtpTnXQWVZU9+9ZYTPPLTrFqGSffIHipg/B4TmbIem6TnjbNrwXXIAgCNR+6lM4589n9FvfIqxrBjhViwwBN2P6scdwzpuH5/zzAXB1duZXhjXNWCTsmFO7ntOBAeQWczSFYsxCjSfjTKxaSKK3l/ipwgvJ5MMPI2mw/0IZV2cnrkWLcJ97LqENhcHpH/YO0f2tDXzuwT3ZDnFFInroqJF8KwovUMfmyywYhVa9Kl0Flpx8+rxPIwsObq+rQTGLGC/0vkCFsyJrhExmWMzpZDwNTrXQNNExAd+yhVDRBkM511TYkGlX33QDvnddiO/CC1nw+GO0/fiONLMpe0CJUnXTB0gGAgQ3bjS+n11PjZaEZCIFWtySGwEhq+qo+v3osVje0OnTTQJJAcpODKev6RKkSyEBfIko9L8JEydh5Ufh8tshcBT2FZZrT4YTfOyubTzwZh/D0zG+8VRaRp9VGZbTyRcw7fLtZEvpXrnB0CCN3kaqMM7DbMln66lxYoqWlXzBqA4fHp6hfyKSl3wBXEvPLsz4C0IWWFE0Y4h7Ljit9dRS7aqeIzgtzfBBMec1Sy2zrz12pkgeUTYGjefIepMzMwx/4xuos8hsi0VICVEulxuuzLW1s/bPSyY4VYuA02QomJa/Bo5C/VlAmj3JLLQJ3rdD1pvdcxo/cQLnvHmIpmrHAql2rsMRJVLQfV0LhRDLZgGnlcZmr1DfqVtyp8F5dJJkQiC46zSV731PyvglFcWKt01NSI2NNvnRkPW6RDlL1lnnqUNFZzoRzDOLMg5YNZ2D58acKr29qCMj+C408mPTP99uqIt+/GNigp6WUhYJLRIh+OxzVFxzDaLPh9zSjOD12jCn5pqeM+cU0kxN6rjMe87ZaOZSNUYimSDpEFC7lxPauLEoC+r4/fNMlIH/onqcHR2UX3EFyDLBAvlR13W+8dQh1nxrA7/ZVNoGHiB6YgBPXSKrbSUrZJkT7RJdAxKSaBZpHS5EQeRz53+Ofj3OT010o+s6L/S+wNqWtVS6Km0/rsZt3L+ZxdvYzi3oSRHfxWbL1VBOi0TYD7KPxi99GXleB9W33sqiF1+g8ctfwmE5csteBC1G1Q3XE3r1VZRRI6da17olvwTymNOUM3JGflT6zD7Ejux1+mizAQ6j+w9Q761H1VXDOLFIhEyg5IsFYd9DoGvw7i/Cmk/CnvvAf7Tge4+MzHD9nZvY2TvJGycC3LulJ/WcGjDVJh4jP8qiTEJLIFZWIrjdsyqLBoODLKlegkvR0WUJwVF8BOArR/w4RIF1nen86HE6WLe4ng2HRtGVmLHvyCzeejwGoDtZID/mMKeWH0Oh4m2pyiJrjS+JOR0ampU1tcK1YD5Kb1/q3k2PWisy6/h/SbwDTs9wxIenifXPUHnD9fkbH1dZUTbAdp5bhmyp0ZttiASYdvkFqsNvoacmfvw4yfFxfBcYYEh0Oqm+9UMkTp9GCKlGz+kszdjJqSkiO3YYsmZrRExnJ4mTp7ITZCJoLJwl9JwmQ2GSU1NpcKrGUrNQg2uMzWDwpQ22x6MrClMPPsSRBSIjdekFsfyKy4nu24fqz2fqXj4yyucf2kNrtYc/7B3i7x/cjVICQE2c7sVVqRqLpt2x6Dob6wOIumEYlQanbuq99dze8T52etz8+MBdJJIJQ9LbYS/pBWOxcjlcTGW4s0Y3v4yuCUZfT8sKW+YUQKhqoePuu2m/86e4cwspsheUKGXr1iE1NDD1iGGMZG+VH0t9BzDcMnMHjVsmALmV4T5llKFGCXX/oZRsfTbmVNd1ImiUxUKw937jWM95Pyx9P7ScD698x3ZQe08gzA0/28TuvinuuGUF/3DFYp7ZN5yqwqYrw9mGD2AypyUk37byNuoE06BhFuZ041E/blnkgoXZxllXnmNc4y8dHrUFp3JLC9r0dPG+GjP5DgYHSerJvMowGAl4TrJeLVESc6oMDiI1NKTAUbFIOxL2pB7zONyGrDdnnZl6+GGmHniQid/eU/Ix50YoEcLn9BmuzHX5bpy5kWZOC5siaaGwwcAmIkahsM5Yj+x7Tt8mt14lktrwJ46fSElFARzVhQFkVI3a9puC0ZrhKDJGBsBRZWz2CvWdZo3NiE4y0+9BV1QqMyW9VsxavF2Rz+SZ+bHBU5+Vby1lUcFxMuExgzWbY360Wl68a4386Jw/n7L164nsMGT23kKgK/Mztm1Di0SofL9hBiWIIq5FiwrLet2zF28V0zVWbjSvaTWeyqH6RauLsqDxU6dJbtvJC+eLhCVjS+goK8O3di2hl16yVQ79aMNxfru5h/YaD9946hC/em329pjkzAzqxAyuKrUgOO0L9rGnTaVmMGhcr2oiZcC2rm0dN7vbuNsjsqF3A4fGDzEYGuTqeVcX/Jt2yqLwmzsAHe/lN4Knxj4/ltUjt7ay6OmnafraP+Ubp1nF2w98AJJJph9/HJhbz2lWfuwznezbs9uB9tSE0AWI7tubuqZny49h1cgLZZEpQ1XU1g21i2DdF0D2Geoim9h4dIwP/Gwzqqbx+N9cxPqz6vne80cZmDSOUw0EQBBwOLUsZZEgCMiNjQU8GYz1Q4lNMxIZoau+C5cCSdfsExNeOTrGqo5qKr3Ze58rlzYyNB3jSK/pqeLK7jWWW1pSxZq8yHGzLwRO28vb5+TYaxWxnZTGnMqtpa07zgUL0BUlJQV+u0et/U+Kd8DpmQwlxtRxEUSBSsuFMDOchQ2RoEDfqVkZdiCmWDJIG+GMS7Itc5ro7eX0w1Hisbk5EUa2GjbcvgsuSB+2udGpHEsYPaezyO0SPT0AuM9Jmx64Fneix+OpJGp9N2DWntOYkuS1V40E8vOj5k2ZmXwb6/CsWMHUo4/a9j4FX3wRdWyMHatlY86pGWWXXQ66TjBHErz11Dif+d0uljZX8Ozfr+Nr713Ks/tH+Nv7d6Ub8W1CV1XiPb2Gm7Bmn3xPT59mZ30QTTb7BjPAKcB1jWu4dTrIPaf/wDe3fpOQErJ16bVCEASqXFVZjoThLZtB0PGuXgPNK2D8RDZ7EPYDAthY5adC9oASQXA4qLj2WsJbtqKpKve9aWygFCUjuaQqw+mE7JW9OZVhM/nm9JwOhAYIzK8ieuAA1c4qREGcNfnGkjGS6HjVhNFvuvS6tKPtFV+HmQHYcXfe+25/8gCTEYUH/mot169s5dOXLOLspnK+9sR+ZmJKBnOaTBkiWQWQlF2+msOM5Mh6W8taqdaNzcdsboQbj45x4cJa3HJ2BXlBnY/OhjJePDxq/G424BRAGSrQP5QBTgslXzDA6cmpkyXL1uOagkunhJ7TodQxzhbOtjaQpJxxMi5D1ptx/ejJJJMPGIz41KOPFu0BLRZhJUyZXEYyMI6jBHAqpcBpYbZWCwYNp97xE4AOdYuN72HXc/p2ufUCxGYMp97+flydi9J/0+lE8HptwWlELcKchkvpOS3OnGZV+qOTTJ/y4uxowb1sWf6LixgGgpEflYGBbFdQU9Zb7802trI8GQIO0TY/zjz7B3pfqUXzFO85zo3w1m1ITU1ZYyBcnZ2o/YPIqo6vBFVRwlT4ZBYEXZ2dhhw7M4owp5nX1EQ4wdZN+wH47XET3CvRdEvCurUIXi9TDz1sezyT990HssyGFQJh0mtB+eWXkejtJZGj0vj166f4yUvHuXl1Gy99fj3vXd7Mt549zM82Fi90xc3Zu8Xy4/aR7RzsEBB03Zh3mmG0B/Dlyi6WJxS+tulr3HXgrqKSXrD3ZIjsO4a7WsHRttgo3g7lgPbwGPhmuS7M4q1z/nzcy5cT3rSJmJLkoR3Gd3SKGaqAHObUAqfhjJ76RG+fUdDzpu/FpJbklDpMqKWa2L79qeLtbMqisLk/840dBv8RWHGr8YSvDt71d3DkaRjM7smMJpJ87sE9tNd4efKzF7O8rZJ/u964R//p8QPouk4yEMBR6UUQMQyRRDmVH6WmpqLM6chML5qucW7tubhUAdVZnDUdmzFMAS/JURUBXLa0AUGALYfMnGGTHwuCUwvImvmxZ6YHSZRo8WXnK0mUWFC5oOTirXU/OrXizKmuaQZzWmp+zFEWpQwD32FO34m5hDY9xvQpD+Xnd9qOEcFVnmoOtwv30qUgScQOZvRAmJXhWlclDjF9Q8uiTLWrmoCn3LbndObpJ4hNyASen5vhT3jrVuT29izZgavT2GzVjMXx6HrWptEu4iY4zU3gkGP6YGP4kNtzemBwmjXf2sDPH94EQI/TSDa6EkktCC6Hi+qPfhSlt4+wjcPgxL2/Q+7oYHChSDjjinctWYzc1pbVd9o7HuYTv91Oe42Xez7eTblb5pPrFvIv153D8wdH+enLNn2zZiT6+0FVcVaqBX/jHaM7UCQBafk5Rl9EinU0k5nk4YsTk3RVLOKJE09Q7iznguYLbD/Lihp3TXby3bkPd42Co2mhkXzBcBG1IjQG3pri815lj8FqJxOGSYOi8O37NnH3ZkMS9MTuDACZqgynNxE+2ZcFThO9vSDLyKZ5ghX9wX6iS9rQZmZI9g1Q466Z1RDJSuplmmZci123pp9ceInRe9q7Kes9J/0hXjft6FfNMwCH7BD57gfOwx+M8+/PHUkx6Kkh4w4nmq6haqphl69p+Xb5pkQrFpsiEA3QWtaalvUWYU5PB8L0jEe49Gz7TdCV5zSy7dQEegHmFChaHdaiU7x2zM/p6R4ge4yMFZ1VnYSUEKMRm02FTSglznEzKsOlyZYEWTZMH3JMkXJ7TkOvv44yOEjVLbeQnJxk5rnnSvr83AgphiHSzNAoD58Mc+4//5ELvv0SN/98CyPT+QnfkZL1FmFOwyFjxmnAdL42Zb12hba3za0XID6d5dSbGY4q+5EvUSWa3z9uRrKknlOTOZ0qzJyCUemPHTpIdNxJ1XVX2cupi/ScQnoucl5+lGQafNngNKvtxYY5nX76BSKjLqZeO1z4y+WErmlEtm7Ft3Zt1vG7FneCptEyDl4bxUZuJHp6cNTU4KhMS1FdnZ0k/YHs38im59TanFq57+Ht/az51gY2bzqA4pA4qphqhYzirbOiiqrr/4yZZ5/Nk8QnQyGmH3+cimuvJeSFcMbPUnaZAfoypb1/PDDMvz1zmPcub+Y7N56HUxL58YdW8GcrWvjeH4/y6rHChUUL5LoqCjOnO0Z3MLWgFsHtNkaCmD2nVjhlHz8cHccpOnmx90W6m7sLSnohXcS3irdaLEb05CjeFgzg1LwC/IezlTYhP5TNBk49qX2Qc9484kNDfPTX29g9YKiSntufcZ5TOT675zRXWZTrxzAWGUPRFNSz5xPdt486d2meDJYjuS8RBYcLzs1QKaz5pPFv75as9zy1b4jpqMK/XHcuTZXGNdZW7eWLV5/Fq8f8PLFnEHXMj1ThTX2XrLaXpkb7OeDmdx0IGvdgW3kb5ZqThFy8nWKjeR1delb+71BX5mJVRzW7j5uKwdz82NqCFgySDNqoMGQ3SG4iwQl29k6mzAIz99ZWWMXbUsJSWDkBHIXny6qBAHoiUXJ+tMCp1XdayOn5f2O8A07PYMw88zTJhIPq96yzf0GqP81euiQ4ncitLSQGMpKpWRlu8ORXkGo9tQScHtvkG9lsbM5nth/PGhdSLHRVJfLmm1msKYDUUI9YUUH9mGIyp8VlvYmeHsOQI8Ot09b0oRhzai7oP3/1JKIgcNt5xrl77zWGm9+RgUAKwDodTiquuhJHfR0Tv7sv61iiBw8S3b2bmo98GJ8OmZyvIAiUX345kS1bUxLJH790nKSuc8/Hu6nxpWWJ/+eiBVx2dgMP7xjIMgnI+t6pynBhWe/2ke00eBuovuAiYocPpxdQhwVOXcjAfyz9OA2eBt638H3IRRY7MEwfrJ7TZChM9OQAvoa40U/VbILTzL6asL+0yjCAEkGtMzZ+b2w6yPtWGAny9aPTvHnaZGvtmFPJm5IXgTnDra0NQUoD4kQywWh4FGm5wbDH9u8ryZHQAqc+TTN6qhe8O/sFnuq8a/R3W3uRHQK3dGfbt3e1V/HxixZw/7Y+xvuHEL1uRElPgVPrOC27/LwELDlBlBmKGqC1tayVCs34LYv1nL5yxNjErF9i/ztcsbQRNAVBjdrIloz7qhA4VZ0VDI2O8ud3v8mG4weoclXZbuDmYoqk6zpxa45bEdmSnkyiDA+XnHzBSMCZjoRuyUtMzAankw88gFRfT9M/fRXnwoVM3v9AyZ+fGSElRO+wgis8Q217Mx/q7uDdS+o4MDTN39y3M08ZIZaXgywXNURSp6YMoBE4BoIINcZ5tQptmXMpRa8HPRqdk8narJFiA2aynHozw1FVVZg5LSTrLcWtt6pE5jQZY/Lp1xAcWrZLb9b3KM6cWsXORH+6GKtHJvFLYpYfA2S0vcjOvPyoKwqRA8Z5Gn/gqZJZ+PixYySnpvBemJ0frUJAW0DHlygNnGYWbsEEuOQWb8386E7fu9aaFFfjJDWdOzYcY1lLBTe1iPg62ulaYPTQ+qems4u3H/mI0d7ySPbc6unHHkeLRKi59WZ8mk6YdNuN3NiIe/lygi8b4DlNBZsAACAASURBVFRNanz3j0c5u6mcH92yAodoAAzJIfL9m7qo8Tl5eHvh0T3xEycRZAnZl7TNj7qus31kOyvbuvGsWEFkez5ziuSmSU3wvYu/jVN0ckNngWvJDI/kwe1wp4q30d270ZMavoXmOW1ZAZqabYoUHgNf/n4rK0xZL0Ckqo748AgHBia59rwa0AW+//wpJsLmd7TcgC3mVLZhTvv6kOfnq4oA3OctJzk5SdWE8Xml5scyXYOzrs3aX6WIgIz7TNd17t3Sy+KGMi5YWJP1WX9+4XxWdlTx7WePoAQCSCZwRXJlt700NqGMjeUr18w972BoGDDyY1lSJj6Lqnfj0TEaK1wsbS63ff6Kcxrxj5uF4jkWb1VnBS/uOsZNP9/M0fFTtqoiMIq3Q+Ghkhx7Uz2norOoAakyB7NAAKm6GkdlZWrcmrU/fgecvhNzisnfP42zQsHbvcr+Bdaw7yLVYWdbO0pfDjiVHDT4mvJeW+epY1yS8mRLWixGZN9hKudHED1uAnf+rKTjjx06hBYK4b0g23xHEAScCxfSEtDMntPZZL29yG2tWWN0HGU+pJbm7ORrVYbd9rKlsWCMPx4Y4aZVbbTHpxC8Xt673hhM/drhfqImKHI5XAhOJ9Uf+hDh119PVZl0TSNw588QvF4qb7wRn65nyZYAyi6/DD2RIPzGG5zyh3hi9yAfXTuP1qp8YPGB89sYmYmx+aS9rCZ+wpT0VAm2siVd19kxuoPVjavxda8FTTOs9UUpzWKaAK/R4eHZDzzLl9d82f4kZ0SVuyrVcxrdtROSGt4W3UhKZfVQ0ZptimT21BQNC2gqUe47bZznv19WzvtXGpu+ep8hh1WSmi1zmivrzZ3hBjAUGkJHp/qs5YheL9G9JjiNlFgZ1nXougVyq56ubAYmklB5dOcA1yxrpqE8H1h96t0LARg+NYhUbW70JSdO0bh+M+3yC0mXBmJGpby9vJ1yzQS1RarDG4/5WVjvo6PWHhisbK+iw2duFHOSr1RfhyDLqDbJdzKc4OXTcWRlhoX1PvaOHqfFZz9v1HIkLAWcqnrGHLcisiV1bAxUdY7gdD6Jnt606YPsJSqIKWYi0d9P+LXXqbr5ZuM+//CHie3bR3T//pL/hhWT0RmGThjr1/svW87t7zuH793UxfduOo9dfVN8+9lsJk0QBKTqatQisl5DIlxrgNOqealNqJ0EU/R6QdfRY2dQlpVh8hE/YTj1unLAj1QInBYwRNJ13ZhzOpshUoVxvxTrOQWIjPuZ3nyQynlRHI0F5vs5y4vmRkdtLYLXi9Kf9lgIRseJCkKWHwNAmVyGy+Fi3FOZlx+j+/ejxRSqz4qh+gMF5a65Ed5i9JvmFm+d8+ahOxy0B3S8ycSshoG24LSQsshVmbW+ZUrFXz4yxtB0jM+sX4RnfBS5tZXrVhlMy0Nbjqc3zA4XrkWL8L3rQiYfeDDlvJ6cmWHiv/8bT1cXnqWL8eoa4Rwn2PLLLyO2dx/K6BhP7hnidCDM/71iCU4pe+volETe39XCi4dGmY7Ys6LxkydwdrQYslAtX1k0EBxgLDLG6sbVeLvXED9yhGQwksWcWvfWBfVdvP6h17lmwTW2fyszqtxVqZ7T8NZtIIBnibk+WcXbYbN4m1QhMlECc+pNrU8P9yeQtCT3f6CTthoJt+QmHEvy78+Za0kOc+p2uBEFMZUfk6EwyUAgzwzJGk1We755vR06hk/2EYjOIutNFW91WPHh7CdFh3HsGb3de/qn2D84zccunJenaHCIAp9atxB/ME50ZAypPA1OrTmnAFJTI6hq/kxoU9Y7GBlBEiQavY34kg5iUuH2KCWp8frxAOuXNBQ0rLtiaSNlmPuOQuB0MD8/Hhyapj8i49VCVHslBkP9zCu3B6dW8fbU9OzqQ+s8FPIGscI6pjkXb03VgUN04HK4iCbfAafvRIkR3b+f2LHTVHdGELw19i/KcPYsFHJHO4mcvky/Q6K+LN9VsNZTS0DQDVfejMUmuns3uqJSMU+h+mMfJfj88/nz4WwibNNvaoW4aB7tfkruOc1NvmDj2GvDnGbKlh7e3o+q6XxkbQfKwCDO1lacbuMczgTDPHfQOE9WNbn65ptBlpm8/wF0XWf0298h9PLL1H/2b3CUl+PTNEI586G855+Po6qK4Msv8Z8vn8ApiXz6kkXYxeVLG6j0yDy60350T/zUSaTmZhxuyVa21DPTQyAaYHXTajwrugzL82PDadYU0olYidLjT/D47mHufuM0d2w4xnP7h20Zl2pXdTr5btsGDgHXvBp6J0xw2JxjilRqTw2gJaI8PmiAhrW+RKpi9/eXncux0RB3vXG6IHNqyZZ0XTcqwzlOvVZluK2yA/eyZUT37TMGjc+WfM3rr+zSf4Z1t+W/IKe3+8k9QwRjKn9+oX0Saqxws2peNcHhURxVZqJzuFKJJpFMZNjl25s+DCSMjX9rWSu+pEzCAZMJ+w17JKGy9dS4rWTJClEUuKjDuBd0ZzZ7JYgiUnNzXmU4EIpzyy+30BeVqZNi/OrPV6NLfqam7WVv1e5qKl2V9AWLjNswI8uNsAhzWuoMt8xw5Zg+uOUyYhmy3skHHwRRpOrmDwJQef2fIXq9TN53f8l/A+A3m06i6DFWeIwNk5zRc/q+81r4xMUL+O3mHp7ck93L66ipKWiIpGsa6sQEUm0d+I9B3ZL097Ixr7H6kOcq7dUiETQbQKvrOopsXrPxmZRTr5BjRlWMObWT9erRKGgajlmYU0GSEMvLZ2VO4089h55IUn12srCh1izMqSAIONvasphTv1kUqs9RFgmCQK27loDb6gVOR3jTZhCg/qpOvN3dBH71y5L6gCNbt+KcPz+vNUFwOlFb69P5sch83mQojOr35+VHqbkZ0evNVxZltLxAtlT8d1t7aaxwccXSRsPJvq2V+mrjXn/j8AADU4bPgLWOVX/0o6ijowRfegktGqX/rz+DMjpK/Rc+D8kEZZpGSM8GjeWXXw7AzMsv858vH+ec5gquPje7EGDFTavaSCQ1/rDPnrFKnDyFa55p+GOTH7ePGqZSq5tWG/MqdZ1IXygbnJr7A12JsacvwkPb+/jVa6e4Y8MxdvfZ36PVruoUcxrZtg13PcQqmhidiUFVh2GKZBVvIwFAL5E5jdETCLMnbhzT2UKEmBrDK3v4xLoFPLxjgB09E3nMqSAIeCVvKpdaxZbc4m1/sB+H4KDlvAsQXC5iZn4stXjrvekeWGzjV5GTH+/d2ovP6eCGlfZr9vqz6vFIwOQEUrkTEECUDLdeC5QVKt6a4HQg6qe5rBmH6MCtioSlws7Ru3onCcZULj278G+wqN5Hi8e8hmwMkSCfOd3dN8mHfrmVkODjojaZz15Zhy6ojE1kv9+KBRVGoadvZvb8mFIpZF6rNpHKjyX2nII5TiZLWeROjSz63xzvgNMzFJP33Y/gkqmcH8mWUWSGszTmVJueTlWi45EA0w4xa8apFXXuOsa1ODo6DO5KPR7evBlE8C5bRO3HPwE+Hy99+Vv8Ye9QUTlZZOtWXIsX2/bLavNbKY9BeZii4FTXNBK9vXmVewDXok4SpzIce216Ti22KqrGuH9bHxd31rGwvsxMvm0gSuiCSEeFwL3bTAmbCU6l+noqrrmG6ccew/8f/8Hk735HzV/+JTUf/zgADUmNCdQsJkOQJMrWr2fmlVd5elcfH7tgHvXl9guMW3ZwXVczzx8cYSaWn1wTJ07iWrjQ6DmwSb47RncAsKZxDaLbjaeri8jxsZzka2zcjg4EuO4/3+C2R/byr08f4o4Nx/nMfbu4/s5NbDuVXZ2sdlcTVIJ8+9kD7HxiA2qNyK6Ql0u+v5Gn9g4Z0iXLFCkeLL2nBjjcN0JvXCTp9aEMDac22pef1caV5zTy4w3HmbBYkwI9p6rfjx6JFKwMt5W34enqInbkCA1CJeOxcZJF5ummKsMLL0mrETLDlWZgdF3nv7f0cnZTOavnFbgvgWuXNeGamSTpMzfOkjN1XSmaglhZCbKc33MK4PQxqAZxOVzUeerwJh0kZBiP2bNtW06Ok1DzR8jkxppmg00fV/OvR7mlJa8yfNcbpznpD3PlyiU4kjGayxQEeYbTw16299jLUqtcVbOOJoCMyvAszKm1ISjVjRDAudBgrq2+U4/sISqKkAijxWJMP/p7yq+4IlUgcJSVUWn10E0W7gXNjDdPT/Bvzxkb0KvMGYu5br3/eO3ZrJlfzT/+fj8nxtLFPqmmpqCsd2I4AKrKj3f6SYwdY1uwNnWurUJb5tgP0WMWfeZoitT/2c/Sc/MtaOH02qvrOl98dB83/eaA8UBshsSJE3n9pjB3cJo055bO1nMK4KisLMqcCrqO8MTzeOZV4m613wgC6U1zkRwlt7dnMadjZgEoV9YLhrIo4PIaks2MnBXevBl3jYpj4Srq/+5vSfoD3PWl/ygIbsBsedmxI09VZEW8vd6Q9c6iLEr09hhfNUfCKQgCztzibWwqD5xa11T/5DSvHvNza3cHQjRCcnraNBcznq+QVF48bKyvFqAtu+QS5NZWJn57DwOf+xzRPXto/f73DSCoxmlIJhlNZh+7s7MTuaODk088S894hM9dsbggm3VuSwVnN5Xze5virRaJoAwO4lxgAjAbWe+OkR3UuGtYWLkQ93nnIbhcRHojebJegHvfOMKHf7WNL/9+P9969jB3bDjODT/bzGfv20XvePZ3qHZXMxwMcNs9mwnu3YenNsRv9sdZ//2NnAqEsx3tJ0wQUBJzGuW5AyP4zf2eOjxMVDV6uD93+WJaqzx87YkDaBaQyLjPvLI3lccsJ/vcMWsDoQGafc3ILg/uZcuI7N5jEBKzFG8jSgS3w418zvvtJaYZyqKJcIKn9w1z4/ltlLvtWT+vU+Lqdh+ilsThk4z9iiAYPaeWIZK5llrjZlJhMafxCVrLDPDrVgXColJwL/rKUT+SKHBRZ2HDOkEQWFZrwJfc4q2jthbB6cwDp9965jBlLonFHa14kyHObjf2Ms/vUZkM51+PVivMdIEic2akek7FWcDp0BCOmpos46vZwrlwgdGPbq7JHsmT5WPwvzXeAadnINTJSWaefZbKC5fgcOqFwamreM8pGMwppPtqxswqWW5lGIzkG9MUwoIAA+mhw+HNW/DWJxEXrGZbQOHRhetYeGQ7P/r5M3zw51vYN5C/SdFVlciePXjXrLE9rkSHURmrmMgf8ZAZ6tgYejRakDnVEwmUflNmFZ00WMOMSrogCLgcLo6PTTI0HeOjF8wz2AELnAoCguTm4vllBMyNmiuDeaz56EfQwmHGf30XlTfcQMOXv5RKpm2KURUeCmUvWmXr10NwhqXB4YKsqRU3rWonpmg8u28463Fd04ifPm24ZIqyrax3x8gO6jx1qR4Hb3c3sYFpklpm8jW+y71vHGFBnY8Nn7+EPf98Jcf+7Vp+8MEuxoJxbvnlVm782Sa++vh+7n7jNG+eMMD2Axt3MG+in8qWJA0t8zmvrZLbnzzAVJXpmnznWvhOu1HZrywgrbPCZE63Hh3EKYm4W1tQzOQLxibpa+9dSkxN8upB8/cs4NabdurNSb7BgTSgW70KVJV5A3E0Xcua25obKVmvVGDj7CxL3WM7eyc5PDxjK1nKjGuXN1MdCzIumvJqhzPV62vZ5TsqKkhO28xMdPoYVCO0lrUiCAJuVSAuU9DYaeNRPx7ZQfeCAgoLM1bUG3K+Qza4KNeRUNd1nt43xEWddcwzgWHf+BEAquQWbn/igO2s3gpnBTMJm++UE6nKcKnM6Rwrw5A2ffBIaXAafPFFktPTVN/6oaz3VN3yIfREguALL876+WPBGH97/y5aa4x0VxEyCh+Ouuw1VXaI3Pnh8/E4Hfzfh/ak+k8dNTW2c077JyL83X8Z/XidbV6cKDwxUMaHfrmVp/cN4RSdCAjZo2TMTclcmdP48RPEjx1j6Kv/lNrU3fnKCR7dOcBIwlgzJkaHTafeAuB0ejpv1mVMjeGRPKhJjR88f5QH3jTuVQsEi7OMkkl/dmHmdPlpHXFglOpV1YVzIxj5UVPTDuY24WxvJ9E/kDoHfnMtsCve1npqCTgEY2SM2XOfDIWI7t2LrzGK3rKShxJ17G5YzLmvPckt//kq//DQHltjrNiRo2jhcMH8GG6vpXESPEpxZZHlZF+yssidDU6tgtmLhwdxiAK3dnekx8i0taXyx3vPqeXoqLGGWvlRcDio/shHiO7ZQ/i112n6+r9QcY05hiUZp1VRGcxZCwRBwPfud+M6sIfljV6uOseeNbVee9OqNvb0T3FiLHuPYN3brgXm986R9VotL6saVyEIAqLTiWflSsIDCVvm9DevHuX9XS1s+sfL2Pf1q9j/9av43OWLefnIGFf88FX+4u43+ebTh7hvWy8nR3SO+EcYfmMbkq5R3hij+7xzkR0CX3x0H1rTCqOA8R9nw29MmfCs+dENSoTn9g/RsMT4TsrwMLFkDLfDjdcp8YWrlnBkJMiAfyK7dYdsZVGi17jn5Pbs/GiNJgPwrlpF7NAhmsXqWcFpSAkVdOAGspjTh7b3k1A1PlZAVWTF1S3GsYclwLwGnWIanFryfi3XhMjqOU3MpMCprOjEJJ2gYr8P3nh0jNXzqwuCZSs6q4w1oD+S3dYjiCJyjrJoaCrKjt5JPtzdgbu8BmLTKSf7YKiG7z2fryysMBnZmfjs+THlf1ICczqX3AiGsggyHHsd7nd6Tt+J0mLq979HTyRwrWlFFxyMxgvcVKUwp+3Goqj09xFJqIzGjU1Rbk8NZMxyq1sEAwYrp05OEjt0CG99mM3RDj5215vsWHkliCL/UjlCz3iY9/90E1//w0FiSnqjEjt6FD0SwXP++QAMTkUZmkrfANF2o4pVNim+9eSba/oQm7LdrLgcLvYPBWiqcHPF0gaSU1NokUjaYEly01omsqjBWAhkIS1h83R1UXbF5VT+2ftp/ua/ZgGSFsVYQHLB6WirAUg/XBmirqz44tLVVsmieh+/35VdHVaGhg1QvmiRLXOq6zo7RnawpnFN6pi83WtAh4g/nbROThpJu9alc+8nuulsKKPK68Qpidy0qo1XblvPl685G0EQeGbfMP/69CFeO2okuZ+fpyDqOnUNMyxY0MkPb+4ikkhy++5y9PnroG0VXPpPcOtDade+QmECzT2nhnj34npcLQY4tTbaXsnLvFof65fUs+WYeS4ye04zDJGs5Js7RmYwNEhLWYsxF3XlShAE6o8bibdYAk4ZPjgLbJxd5rxEXeferb2UuySuX1FcZtrsFihTYwypZjXX4Uqx+FZV1FFeTjJok6hcZQzqsVTydSkQl+yZU13XeeXoGBd11uGSitvpt3mNa2HPaD6LLLe0oPr9aAnj2PYNTNM/EeV95zWnehB7Jw0jtL9+11qOjAR5bHf+6JkKZ0VJyTecMJ0/0bnzjQFb5QBAYnAQR30doqv4fZQZuaYPHslDzOw5nX7qKeSWFrzd3VnvcS1ZjOD15o/fyAk1qfG39+9mJqZw+/uNJO8Nmn1SdfkKkYYKN9++YTkHBmf4yUuGM7ejpjqPOT00NMMH/mszutljdfMaA0Tc/n+uZ1VHNZ97cA/P7h/B5XDl9Jwa95U+B3CqxeMkAwHkeR0En3+e8V/+imf3D/ODF45x/YoW7vmMIb18/sXdhlPvYntwiq6TnEn/1rquE0/GcQhO/ua+Xfz0lRN89fH9vHxkFM00iJut5xRM5rSAW69bcnP1Lh21sgxXe5Kwo7zgtYPTlCcXa3tpb0OPxVD9foLRBGOakaPsire1nlrGrXM/YEhGI29uB03D1xjnBwd8fOOpQ/Ssfz/V8RBfaY3xzP5hLv3BRu7f1pfF7ER3Gcok7/nno+s6x0eDWb2V0y0V/4+9846Oqlr7/+dMT5v0hPTQkgCBAKGDCCKgAoIFC/aGXa+iYrkItmvl2r12QJGiCChNpat0CIQSWkJ675lMps/+/XFmJhlmEvD3e+/vXfdd77MWa5GZc86cfc7e+2nf5/ugADRNyi7v31pUJGedkn3rwLW9euGor29HA5h89aO75vTPggom9Y0lVq9rd04TEj3ZuYm99ahVDkBCpWjXL2HXXYs2LY2YuXPlMhi32K0k2B00Okw+BDBH9UloHDbmpKm7DPABTB+YgFIh+ehHD1lgT3kNnq8fy1vLqTRWMrRbu/MfOHQIljqBw9q+Tx4ok+fl2O7BLLwhi4SwAPQ6NSE6NU9MTGPn0+O4ZXgKtQYL3+0r5oU1x6lsUKLVmvhHihlJrSIgysaw/v1YcHU/DhU38pMlGxKGQI9xMPkfcPevED+oy3HKbPYOTpY3MGFwdxQhIdgqKr2QCFMGxBEZpOFMaa0P2sQrc1pSjDI6CuV5a83dmgzwBG97lTsviq03WN1FUEkbAhYDDqfgu33FjOgRQVqsf+IhtwwJlgN1dXZru3Pq6nMKoPDUnp+nS1Qa2lRaGpxmj6Ottjo6Dd5WNps4VWXosuTFLalBDmxCyd5i371UneAdvN14TE4mTM2K97RaK24pJkgdxB3DMllxoISCWu91q1aoCVAFXFTwtsUs70PNJoll+0o6Jc38K0z2bjm/nUyAKuB/W8n8V4gkSVdIknRakqR8SZKe/Xf/3n+HHFixnmORPdhYWEq9M4gRb2zj3iUH+fNsnTd0wZM57UL5JsrO6c+bDjD4lc3k1cmsnv5gS27ntC62j6x8haBt334QgqBuFl7O0TE+PZqlT05E1z+T1OKTbH9qHHeOSmXx7iJmfLyLM9Vy9MqUI0eWd6jjuPnzvYx+YxuXvr2dL34/h9MpaAvV0KoD7f+Lc9pTdgI9zqnJF7YEoJK0VLS0cNOwJFRKhXdkGGQnyG5ifIacecqr8N6ckj76iPg33/RihgVIcBnY5a3tRroQggV7a2nShTDc6qee8DyRo8NJHChqpKiuA9uey0jWduKclhpKqTHVMKTbEM9nAVlZSEqJtip5GTa1WblvmcwaeOewOGL0vhkqnVrJg+N68uODozjy4kQO/v1yPr5RZqvVb9mKMiKcgLBW0MfTKyaEpyalse5UK2uzPoUbl8KlT0P6FTLLbFfiyo4ZjQauzOyGKj4Oe0UFJrsJpaT0GDy3j0zFanI9fz+ZU3e9KSqVV8TQ6ZSj2a1tOorqjCj1erQZGYSckB3ZrupqPLBedSeGszYEhJPaxiY2HqvkuuxEgi7Q9NsN161xL9eOsF7Xu1SE6nH6yZwKbShl2Nsjw1YnFo1/5VtQ20pZo+mCkF4AhSv7e7DK15h3P0t7pax01x+tQK2UmNy3W7tz2iSTKNw0aBBpscF8s6fIB0p1ocypEDIj6FUfbpPvyang7c3nuPK9P9iV7xtAsJWXo4n/a8oXXKQPHTOnkty+xbhrN/opU5AU3qpKkiQ0qSkeh7aze39t40n2Fzbwj2v6E+1ClOqazSiCgztt9XNFZjdmZifyyY58DhU3oIqIxGk0elhdd+fXceNne1AqJOZfInMBqIT8LALj+rDorqEMTg7jsRWHUaD2zpy6a07/AqzXbWRFPfgg+ilTqHnvPZa+v4zByWG8cd0AMuIjcKiDCKmT55uU2t3nGv5Ydd1Bl3WHa/ktr5rnr8qgb5yex1ccobxCHs9FwXrDwrA3NfHNniJ+OFjKkdIm6lst/HK8ioWbChhUINgQH09RZQV/lDkY/tpWXlhzzKN7POIhDOwCWeTSjy999hvDXl5PjQQhCo3fTFFUQBSNlibsET2gVHZOjXv2IKkVSLFqPjkmePSyXjzzzM2gVjPFXsbWJy8lOyWc59cc44Glhzxwv7acHKTYWL4+08akd39n4ru/M+GfO9hxWtbPDXGu59SsuoB+LEYdF+d37rmDClav4K3/mlOjTUYVAR6OCnVigifLGKiw07ubDuFU0djBiVaGhtLj55+IvOtO7x93WEmw+yKLmk023i+X986sVv+1pB0lOkTLuLRoVud4s9pb8gtApUKTkur5vY7iLnkZEtuuH4NcAam2Evl55pQ08ulu+R6em9gdtdLXfI3R61hwdT82Pn4JeS9dwZ9zxzN7zACEzYhl03qCstJkNnZ9HNcMSmBi31jm7lWSf/VquOZTGPkwJI/oknEV8CCLArBwZWacnKlzBW/d0GutSsmNQ5OoaWzCcV5GrWPZi624xKfkxWC20WhuorBaoqnNKgdvFQqSzhkw2U1eTL/nS5utrXPdCB7ndMfpGsoaTdw2IrXrsQKaFjlgUmu1IFxj6UiIpAyRnVt/wduyQHkOu/WjwmLv1DndcVrW++MuwjkNV1kwSgHsK/JFWanOQxatO1pJv3g93aOCOjinRaToU3hwXC9UComle4t9rnMh/Wi2Obj/24P8/WcZFl7V7OT5Nce48bM9XvYhuPgBKir+unOalARKpTey6H8zp/9vIkmSEvgYuBLoC9wsSVLff+dv/neI5Y0PMD4zn0sSVehCInl4XC8OlzRy61f7mPLBn5S6iWnckeFOMqctZht3rjxOkyaIhrPnGJ8eQ7MkT0K92jfK7+nlFpEEbfXQcA7jnj0otCqkCAlnVDqf3TaEEJ2aoBEjMR09SqDdwoKr+7HozqHUtVqY9uGfTP3wD9Z8u5HagFAe315JRbOJJyemMT49htc2nuTOxQeoNLRQFgWqJnXXkeHCIiSdDlWsb6ZXERSEOj6+nfTB3OxFk++5hk2BQuHg5mFydNkDFfQ4p1qwW+ifKCuIDUe7jiS6JdpqRoXk5Zz+nFvBroIGSO+D89TF9by7ZlACCglWd4gOWwpkR0DTo4dfWK8/5asICECXEEBbuRyVfHl9HhVG+f/hmvZsmRCCtpzDPi2BJEkiKlhLj4gYujUIVHtzCb96IpISuY0McM+YHmSnhDP/pxPUtPyFaJtL+QYrrFzeJxZ1XDyO5masrS1yHZlLeY9NTnTx0wAAIABJREFUiyY+2GWEnJc5FQjMDjPWkmLUCfGeYEFdq4U7Fu2nuLGeygYYv3AHs785iDE9E8WJfJQOccHMqUJSeLIIPuLKqP68/zQ2h/AYcV2Ju8epTdcB1usmRPJkTvV+e6e16IJplfBEhrFYsKuVfsfQrnwv7Jy6jfTTjZIP1LAj6YPTKdhwtJKxvaMJDVS3O6eGUroFdSNQHchtI1I4Xt7CkVJv+KVe27XyfXfLWd7bcpZh3WXPLkCpYs1Do9CqFNzy5T4W/HzCCy5sK//ryhfkdWM5fRqnyYROqcMuQWNuNTgc6KdN9XuONrW7V3/U8+X9rWdZtKuIO0elcu3gRA8cXN1k9Kk3PV9enNaX+LAAnliZS4tONvQcDQ38nFvBHYv2Exem48cHRxHjQgcobZUQGAWBEQRpVSy6axiDksJoNUscLW8PUkqBf73m1FPHGx9Pt1depjIigYcO/8intwxGp5azSkpdKOltbbSqdGwz+taQ+nNOTa62J2WNNt6/aSCzx/bk01uzUSkkPtmQK593AUIkAEVoKK219bz40wmeXnWUGR/vIvvVLTyw9BB5J6pROSE8I5bkAAt9eyQzLSuOHw6VMend33n4uxxMVtdedwHCwLPVBu7bIgdjWguLmdxdS61KSYBT57d+LUoXhUDQmDBILnsRAuOe3ejilOQ6U5k5JJk5k9JRBQcRmJWFcc9ekiIC+ebuYbxwVR+2naph4ru/M3HhDgp37mG7Ko7XN50iRKdi3tS+RAZpuXPRAV5dn0dVhBK7AqzNKrB2nhXvjCwQ/DD2+tGPbscnWq9kVE/ZJrCVV6AICpLfsXsPtptJ6xYAQsWKAxcmdMFhJd7lnHbUj+/8eppTkh4Rosd8/PiFrwNcl51IdYvFK3hlOVfgIupyzc3zYL0Hqw4Spg3zMKQCct2pUtBW2ILZ5uDpH3IJcNVs66R2/Srsdgzbtvv0cFUoJBLDA4kLjmR0nsBR30DEBJf5GRKPJEm8dk0mgRolc3442mm2y6+4ArFZ3TQkRwZ6nFN3zalbZg1PRouVVoc3mq4jIdL5TPbHy5uZ9tE2BE52nzUy8vVtvLStGEWvNCJdwZCugrfuXs6digvW+80emVBrUicEVx3FHbw1qxxYhbznqBVqrE4rQggktRopMNBv8LY8QF7XicGyflRYrFjVUGf2px9riA/VkRZ74X1Hshiwq4LZV+jr5Krj43HU1eG0WChtaCO3tImpA1zBcV0oOG0UNcvOaXSIlisz41h1qIw2q/e81Gs7RxZZ7A7u//YQv+VVM6qnvE6Hdu/GP2/I4nS1gSvf/4MV+9vXnqOuDmGx/CU+BpAJ1zSJiZhz5V71/5s5/a+RYUC+EOKcEMIKrACm/5t/8/+7zBiSzF3Th5ESaCE4LJqnJqez69nLeGdmFuVNJq79126Olzd3WXNqtjm4d8lB9hTUo0hIZEqU4F+3ZmNSO1A6JZ754SwWuze8z9PLzd0WpHQ/xj17UMUpOU4qT07u4+lFFjRyBDgctB2QI8jjM2LY9PhYruofR2SQlqzmEsjMYtUDI9nx1Dgem9Cbz27L5pUZmew7V88bv+ZSGiVBsxLRBSzZWlQkKyGF/6mlTkzE5u4VaWnxYVoz2xy0miVi9QpiXZlDL9gSuDKnZhzICmrfuRafKJWPOJ0onTbiVcGeyHCzycarG04yIDGUnpcMw3runKffaVfSLVTHmN7R/JhTjtOl0CwF+SijolCFh/vNnB6pOUKoNpTuod5ZjaAkHeYaO9tzzrE6p5zZ49JBUoLdjBCC1j/+pPjW2yieNYvim2722z4jXBfOlQedOFUKwidkyR+6nFOlQuLt6wdgsNhZuu8ijBSXCJeR0z9GQ2igGnWcfD2ppsFjILmvPypFntf5Te3z060cjTajq8G47CDuO1fPVe//wf7CBiKCHVzRtzsPj+vF/qIGFlYGgsVCj6que7m5lW+nEDMXtfwvOfmM7hVJr5gLKzq38g2NdBkWSt/MqVKvx9HiC18sU8uGh1v5CpMZodP4hfVuP11DWmwwieEXQYjgck5bCfBRwG4FZ6uo4HCpXJ89NcvF6O0yaIvaKj31zdcMTiRYq+LbPd7RYb1Gj8Fq8Gvcf7j1LB9sPcsNQxJ5YqJMWqRVahiUHM6Gxy7xIDC+/LO9ddNf7XHqlrBrZuBobqZy0RKOlsprsPlYA9q0NHRpaX7P0XTvjq283G+fys92FvDelrNcn53Ii1Nlg9TtnKqaWi/onIbo1Lx740Aqmky8sE021t9auZfHlh9mUFI4P9w/iviwAOx19aBSoWw7B9HpnvODtSqW3D2MQLWO3PJanvw+F7PN0U6IZLx4WG+7c5rAlsIWlqWMIdLYSEhRe7BKaEIQBY3kpfTn2wO+8G1/zumOfPm46QNSme6CvSdFBPLhzYNprpfn+YX6nAIcbRFoTG08cVlPtj81js9vy+b5qzJYes9wVs/MBCCmZwSBjhaSExJ46/os9j43gccn9GbT8Upu/mKv3BOyi1ZrpQ1t3PrVPorVeoQk8WyWnnevTqZGqcRi1PK+C4LdUTz6MaY3GGuxnTmENb+AoIhGjomePH55+7wKHDkCc14ejqYmFAqJ+8b2YM1Do+kXr2eAxkyUqZnu40aybc6lrH5oNPeM6c5Pj4zm9pEpfPlnIVvyK6iNVGJpUXXqXAshunROVbGxoFJhq6ySGdAdVh/9WFAtG6WDU4I9+5+bj0GSpPb6TLuZQK1ArdCwdE+x33pzL7HLNafQ7pzmljaxdF8xt4/qTnD/TEwX6Zz6Y7W35he4UEWu4N95+jG3NpeBMQNRSO12g0KrJSDKjrGgng+2nqWg1sjd413Opc2MsFpp/OEHCq68irKHHqL4ttv91oaHaUK58qATeiQTmKSW9auL8CgmRMcLV/Uht7Sp0xZx/qTJJu/5k3rL78eNLOqYOQVIDA8kWS/RYFF49VB2w3qdbW3Ya2o8fAxL9xZz7Se7abPLc+ix8QOYMiCOFftL+VUZh+5UCUqH6FI/Gm3GC8B6g3GYDR5CLX8Z6PPFXluHpNOhUTsw2OTj3WUvdhfDs1LvP3hbrpWfR0JIglzzbrVhVks+mVOr3cmfZ+sYl9F5CxkvsRhQ6PSUNZoob/IO9nUM3q538YNMHdCuH61AhbGSVH0qALePTMFgtrP2sDc6oLPMqdXu5OHvcth5ppbXr+nPpRky/D5QE8i1gxP57YmxDE4J49nVxzwEef83TPZuCb32Woy7d1O8YzctzQm0Gf6ag/ufKP9u5zQB6NhkrMz12f8oya3N5fey313U7/Ik1amVXJ+dyI8PjkSjVHDjZ3v4o9Agb4znKV+bw8lD3+VwoKiBf944kMR+vREV5eCwUa9wEqEIYOfpOp790dsxCdOGoZSU1CmVoAnBmrsTW0kJwRH1VAT2YXK/dsr7gEGDZPa7vXs9n0WHaHn3xoF8eUUiQc31ZE66hCGpEZ6NQZIkbhuRwuK7htFkNlAWJYFFwtHgn/wCfCPDQgjWHi6XnXNkVjd3lkqODHsr3w1HK3E4VMSFt8MwrWVlKMPC2msy1DqwmT21XAqh4Zs9vpAML3HBT+LVIR7lu/C309S3WnhtRn8CB/QHITCfONHVVTxy3eAEyptM7HU5DdaCczJTL/h3TmuPMDB6oM+mG5igAgE/ffI9abHBPHxZL1DpcBpbKbnrbkrvuw9bRQUxzzyDMiKC0nvv8ybNAIKtCsYdE9SMTEOldDnX+vbWQz2igxnTK4rVOWUeZ/pCcqpedjQHx7kgPPHy9dS1TT7snoPjZOWzPKemfVyuzKvJZsJWWoYmKYmC2lbuWnyAYJ2KtQ+PximZiAkK46nJ6WyfM47q7hkAZFVoLgjr7VL5ujIwbYbmi4IsgRzVBOiRIs/HqjanT+ZUoQ/B2eJH+bp20QSXMew0m5F0Wh/la7TY2V/YcFGQJQAsBgQSSm0Q+wq9jS51bCxIErbyCtblVqJRKbi8jysC7s6cmus8yjdYq+LawQmsP1pJfWu7M6fX6HEIhw9M7Os/C1m4+QzXDkrg9WsHYBfyfNa4YIUBGiXzp/VlUt9Y3t18hsI6uUUGNttfjgwDtKb3p6xPNpX/+ow9hyqIaRTYKm0Yxkzo9BxN9+4ghIft0i2LdxXy+qZTTB0Qx5vXDUDhCtC5WxBJDc0oL+CcAgxNjWDrnEu5enw/AI4cLWRK/zi+uWeYnKEG7PV1qCIikOrOQFRvr/ODtCoSw/T0jtWy5nA5Mz7excpj8rz+K4RItooKUChQxUTz/pazVPYdAioVLb/95jnG1BCAo82OfsIEDhY3cqrK26Bqd07bgyvL9st1gCO6e7dGGdM7iqt6yAGeI/Vd9+z882wdm4rbUCB4eEgs3aOCmNSvG7PH9mRM7yg0jfJ9GEIkud+jSz9GBGl4YmIa/7o1m5OVcv1ulcm155/n3NW0mLnly32YbU4Wzx6DOq4bzooyJFMTtSol3QKjeG/LWb7b5z0PPGUvYXLQyPjbGgBCYtsI6zXMq5d10MiRcmZ1XzuxYGZCKEvuHsaLqbLxPe66y+kR3b7v6NRKXp6eyZyJaZQ3N1EVrcHSrO4U1utoaMBpMHjpR7PNwZLdRVS3mOUWUW79aHa9p/Mypz8eklt1ZMS1O0AeskBoL62wy/pRrw2gotnM5jw//Zm9bs5CpNOJTqGmvLUch1PwwtpjRAdrmTMpDV3//ljOnPHbzuh80aqUXJ0V72G1d1qtWEtL0fTs4alX7AjrbTQ3UtRSxMDogd4XEoLAaBOW8ibWbjrAzOxEBrvmqrWklIIrr6Jq3osoQ0OJmTsXW3k5pffN9rCauiXyTA09qsE84zKk1ioIjvXqHTstKx69TsXqHN+gTmdyuFJ+DuN6yPPBjSxyGI0++rF7qBKjU80vJ9rLhtyESB5IdlIS63Ir+Pva44zqFcknt/cBIC06mndmZvH9AyM5FJqMwmqjR2XnZHsg68cgTdeZU4fZgMpFqHUxYq+rQxUdTbdgBQ0WCSGEb/A2JMRv8LZcpSJAyC193P2dbX6c04PFDRitDsalXQSqCMDSgjZYXh/7zw/eejmnFWQlhZEU4QoI60IpVasQCE/wNjslnD5xep/SF3/OqRCCJ1YeYcvJGl6ZkclNw5LbCZFcdk9caACf3zaEhLAA5v54FLPN4YWA+atSdfl0DCHhHHruZfYeHESimNVl543/CfLfTogkSdJsSZIOSpJ0sLb24uCZ/52yYMECFixYAEBaWhqnT5/m5R0v8/DGhymxNHIwr4CFCxcCEB8fT6DdwFMDwdpYyZ2LD2JwqDmaI/cTDQkJoaiqnhv+uZFtp2p4dUYmK958ijPNTdgqK4nXa6lVKglzKElsPsqaw+WMu+lB1q1bh8FgIFQfSoQugl25u8kzBNJ2UIaOhsW2Ed97MAmuCM3ChQt5+vnnCcwezJFvvuXQoUOcOXOGNFdG4tsXXgAgYPAg0tLSOHPmDIcOHSI7OxuAVZ/8gwi1gVLXntFSWMmOHTsYN24cALNnz+bzzz9H2Gy0FRVBfBzr1q1j6rSr+fva4/xt5RGmf/QHKw+U8MHSpdhra1n23Xc015SBLpRp06Z5xvTYhz+gU2lprCtj9uzZAOxavQazXk9FRQXx8fGg0lFSeJbvf5SbpysqTrJiXxG5J055xnT+e8o/nQdAw6kSylvLufOpl/hmTxG3j0xl8rA+NEXLg3vvkYe9xuR+TwaDgXXr1jFt2jQAlr39LFqFYNWhMiRJwlJQQLHTyaxZs0Ch5tCBve3vKTaUwuZCrEVWz5jGjRvHjh07UEVasenhjj3LmFi6mefnPoNQaDn42mqM+/YhzZ7N9PIyIu++izVZWbRaLJTcfQ9jOrynly8ZR4AVlkca2PXLKgBS+4+koqLC856uGZRAWaOJFz9c0umYZs2axbJlcu/ISbPnAWCrPMmsWbM8G6qpoASNpCHEVWPy+eefs3XDagAW7Spi05btVFRU8NgDj7m+/0hm8IuKYtKClahw8spl0Uy/dAittlZy9uSwYMECwoM0nN3wPuXB0fQqdLJyg/xu58yZ47WeKioqKKoooqasptP3tCdHDuIkBztY8o85njG5AwPLli2T3xN45p6xvAKnEGSkyEb8HS9/5VG+Obk5VFRU8MmSJThaWlj4zjvMmTMHgMHZ2Wwrlw2/u666FoC68jIMViv15nqv9TRi+h3YHIKT21b5jMnfesJioMXiJCsxjK1Hi73e0/JVq1DFxPDF66+z8VglvQIt3H/3HQBcf9u9NCkUNDvM/Ou1f3neU/6mRVgdTibMnseOHTuoqKjgpedfAmDhxws9Yxpw2XRe3ZDH6JQg1s27EaVC4utvvgZkEgz3mHJycjjw6VNoVApmvrWGb95+B4A7n36m8zH5mXtCCCbMX8Fr8eMJsFuYvmk9Y/JkxXtfaRhf/1nI1A57hHvurT8sk9RYC4sYN24cW7dt55kV+1mwLo+JfWNJrtjOM0/LfXCzs7M5WSjD9luKS1BFRfnsEefve3PmzGHV4k+5bryc/XtjTAQzE1q4YuIEz5jO5RxGGRYK5ibMIak+68nYbCQhUk3Njy9jczh5c6eMXnh3/VGG3PsaX6z0HtPnn3/us0e05BdQbbez+WwDeZUtBDblETRyJCe/XsShgwc5c+YMJ38vRlJCTl0BCpws3VvsNaYJM2YAsOabJSxcuJAz1QYOlshrqOhsgc97GhUnG9ivbi3ip5/97xHqsG48sjwHKVB2lJwtzV57eUhICA6XTl9Z9BtmSeKdT772zL34+Hgm9+vGtOBCymubeHiVnAnOP5nr0U/5Na1Men0dFQ0GFt81lGljs7FHRtKQd5I5j9xLrVKJuq6RJLWRNzaeIr5nH8/ce/TuR+W5vXIVNklD28EDmFUKtGF2NJpgrzGtPXECRWAg79x+O+C9R6x69VWcWg3WuDi/7+mH1x5ErbZSFKbB1qrEaWhi4cL29ZSdnc2hQ4co+OMPeQ11T2XBggU8N/8VbvlyH/N/PsGV7+5g2W97OFNTg722ljdeeh4AdKGePWLj5u38sLcYkNiwaa2sc4Wg8fRpiI6W59411wHw4/fLyS/MJywgEHtzNYt3F/nd9zxzz25FAjRGiYrWCobMeprj5S08OjqO9B4pBPTPBIeDtx96yGtMHe2Ijutp+euPY7E7+WTdXq4ZPhwcDn7Ys5d3P/hYXkuvv+p5T1PumwLA5iWbvfeIpjpCU0zYVEpe2/0FdT+8yfpft2AzKTj48Gs429rInzWLF9QqIu+6k68iIzCdPEnRfbOJ6vCeSl77BIMO/vbHGhqKT2DVRcp2BLJt9MKzzzBlQDxrDhby594DnY6p43r6drsMsVz99YcsXLjQgyzS1bXSUN3gtZ7MdaUIlY4HFy737HubN2zGaDPyypNPAlCn1fPw4l0MTg5jgiafV159DoC3X3mbdevW0TNMya7jvwPQt1Tw8eKPvfYIj20E1DbXknsgt9P3tHX3ITROM1f0jeaSIQP87nvn66fas2c5VVVFXLCSNoeCv3+wxKMfG5obWLduHSdLS3G2GLz2CEml5pTVRjebk1tuuaU9uKHWUGWo8lpPz32wFLVS4tVHb/MZk7/1ZG6p48Cho4ToVHyyaovXeypzoWnmPf40JypacBYd8Izp5rsfpMiFdnr96dcBuP/++0m1FXOqykBE+lDPezrwxwFarC1eYwodOoMNxyq5opuJTR/I72np8qUohcCJyjOm75Z8TWzJVs7VGhl+93xOudZ/P9fc8Dcmf3OvwWhl6se/szRjIn0ai7l8y2t8ePMgnnrqqS7tiIrzWun8x4kQ4t/2DxgJ/Nrh7+eA5zo7Pjs7W/wnSrmhXIxaNkpc90UfYdrwlM/3RqtRvLbnTTFiySRx5KUeYv1L08WS3YXikWU5otfzG0TK3PXik+35nuMbf1wt8tIzhCVnh5jyRbqYs/ZGYbLaxbi3t4txb28XZpvdc+zMn2eKh7Y8JMTWV0X1NYnieEYf4ZynF87aMz73UfvZ5yIvPUPYamu9Pq986WVxctBg4bTZOh3jvJ1vidEf9hd56Rmi/tFL/R5jPndO5KVniMbVa4TJahf3LTkgUuauFy+vOyFu/XKvSJm7Xiz926siLz1D2A2tQrwcJcRvL3rOP1bWJFLmrhdTVt4mZm2Y5fk8f/IVovSxx9t/aMnVQnxxufjq2Fcic3Gm2H2uQqTMXS8+31nQ6f0LQ40Q8/Xi8w33iczFmSJzwU9i1OtbRbPJ6jnk7GUTxMkH7xFTV08V55rOdX4tlzz7Y67oM2+TaCopl5/L0qXyF19OFGLxNM9xO0t3iszFmWJ/5X6fa7QszBa/PDVO7B89XpwaOkyYTp4UZVMyRF56hmj4/nuf402nT4tTw4aL08NHiJqPPxa2hgZx9vKJYsOkLPH0zqeF+PlxId7s7nNeq9km+szbJOauyr3guJxOp5jw1hYh5uuF2P6G/JnNJvL69hOLHpvk9W6EEEL8Nk84Xo4WKXPXi2d/zBVOp1PsKt8lMhdnipzDv4i89AzxxbPvipS568X2U9VCCCGaLc0ic3GmWHx8sdeldj/whNg/oK8Y9+01nd7fPb/eI27ZcEun35ce+12I+Xrx8/dfX3Csbqn4+zxxetRoIba+IhzzQ8WI1zaLU3WnRebiTLGpcJMQQoi6L74QeekZwtHaKoQQwu5winlrj4mJ700Vo7/qI+Z/+YNoNlnFmbGXio33ThGjlo3y+o1nfzwq+s7bJCw2x8Xd1JqHhFjYR3yyPV+kzF0vag1mr68Lb7pZHJ15s0iZu178fKS8/QunUxx+PVZkLs4UO0t3ep1z02d7xKjXtwq7wymEEGJz0WaRuThTnKw/KYQQotlkFaPf2CpGv7FVNLW1r40txVvk4z4d4XOby/cVi5S568XGfy4SeekZwlzQxTr0I2sPl4mUuevFiv3FovyFF8SJfv3E70MzxKlL08W9rj3kmR9yhdXu/dzshlaRl54hav/1qWgyWj17zEs/nxA2u+8z/ujwR2LQl/0851ys2JubRV56hqj7epHPd+euu14Uz7pOXitnNvt8f8emO8Sdm+70/F1S0yTy0jPE5/e9IHo8J+/9Mz7+Uxwtber094tuuVUUzpolrnzvd3HpW9uEze4QDd9/L/LSM4TpxAnhdDrF2ZFZonhiXyGEEE+uPCL6ztskDOb2/dzpdIq8vv1E9T/fFULIczH95c9E5uJMsb1ku89vVr+zUJzomylSnlknfjxU6vO9xeYQV3/4h8ic/4so+Fle422HD/scV/PhRyIvPUNkfdVPzPswVYjja3yOKTeUi9m/PCrGfDVd2OfrxQdvzxNL9xaJGz7dLVLmrhfpf98o/jzbrrPKX3hBnB4zRtTt/VhkLs4USw99LM7Vtorez28Ujy3P8RxntBpF5uJM8cXRL4RYNEUUjM8UB0YPFK2vpAjhdPrcR8ns+0X+5Ct8Pi+YPkMU33WXz+cd5YqVN4q7/jZOfg7fPOP3mMZVq2S9XlIiyhrbxISFO0Tv5zeKz3cWiEve3CZ6Pb9B7LnxTlEwfYYQpQflOXVqk+f8RX+eEylz14vsb4aIdw68I4QQwlZfL+ueJUvaf+iVGCF+/bt4ZMsjYubPM8WnO+T9I6e4ofMBnFgrxHy9eGD9rWLC8uki9dn14p7F+4XT9ZysVVUiLz1D/PHPZ8XMn2cKq8Pa+bWES4cs3CGu+2SXaN64UZ6rJ0/Kz32+Xoht//Ac+96h98TAJQOFyWbyvkhboxDz9eKj+28RxwcMFAXTZwjLiX2iYFhPcSprgGg7esznd5vWrxd5GX1E/hVXisZVPwpLYaHI69NX/OOOPmL5yeVCfDRciOWzfM47UFgvUuauFz8c9J3r50tNi1nc+Nzb8jgKdgghhDAePCjy0jPEXQsGet6NR76cKMreu1ykzF0vVrmu/9Hhj0Tm4kzRsHatyEvPELfN/15kvfSrKG9sE0IIsaNkh8hcnCmO1XqPcfeYy8S3V/UVD298udP7G/zNYLHw4MJOvz+84hUh5uvF/pMXtnHckn/VFFH6yKPC/vVV4uD84eLBpQfFylMrRebiTFFtlHV6yQMPynPXJY1Gi5j56W4x7rNs8cDHvcU/fzstzCWlIi89Q7w67zLxyJZHvH7j8oU7xKwv9lz0PYn3Bwnxw13i7kX7xfi3t3t95bRaRV6fvmL94y+KlLnrPc9VCCFE6QHx1T8TRObiTNFiafF8bLTYROb8X8Sjy9r3kDf3vymGLR3m+ftYWZPo/fxGr7UhhBBv739bDP26nxB+7P8nVx4RPZ/bIE489bw4PdxXf15IXlhzVPR4boM4WdogCqZOFfmTJguntev1958iwEHRiT/4786cHgB6S5LUXZIkDXAT8PO/+Tf/v0t8cDyvj36V02olr5vaa1+EEPxW9BvT1k5j+elvaaOKn2NDCFNaePGnE+w8XcNtI1LZ8uRYHhzXTgSgSZIhOpZzZ6hRKokOiEKnVvLS1f0orDPy+c5znmMjAiJkeETSMGytShRBAoc2BCnCt19n0MgRABj37vP6vO3wYQKyBviw23aUAK0dY7AOp0bCVOm/psbN1KtISub2r/ez+WQ1L07ty7ypfVl051DuH9uDra62GJbyEhna0wHW+92+YnRqBcnhoVhcve6E0ynTbyd2QIOrAsBu8sB6hyZHMy49mrd/PU1OZ43UXceqLDLcJTSkle8fGIm+Qy8tXf/+NOUeoqiliANVBzp9Fm65PjuRNquDXVvljLWbjRilxovw4UjNEZSSkn6R/bzOP1ttoLG5BV2Enj7fLUYREEDRzBtoyYfoy5MJnznT5zd1aWmkfPMNAVlZ1H3wIWfHXoqttJRD4+JpNDeCoQpCfGEjQVoVV2R2Y8PRSq8WQk3mJq9WFwBnqlvJrzfjkNTgYhSUVCoHn6g2AAAgAElEQVRUsTEE1hsJUJ5HuGIzo1DreHh8T5bvL+WbPcUEqmR4i6VOzir+Wmnj4fE9PZBWg6vuWq/xhnX3mTyWYIuTgJJq1hz2beYOMhthV7Den/JkGM6lqb7EMJ2Jva5OrkO0WxAKDZUtFvYXytfxsPW66fJbWjBZHTyw9BDf7CkmIBzi7Q7yzpUw/aNd2NtMqAODabG2eM4VQrDzdI0MdVRd5LZraQFtiKcf6v7zob3x8bSVlBGoUTKhTweosCRRHSBHb+OC4rzOuX1kCuVNJg+1vvv5t1haEELIrReazbx/0yBCA9rXhge25IeE6sahSYzsEcme3cc893Wx0ma18/rGU2Qm6Lk+O4noRx9FKBVEtYDU08bnt2Xz2GW9WHmwlDsX7afZ1IF5NDgIVUwM5w6fZOpHf7D3XD1vXTeAF6f1ReWnjqrV2kqcRZ6X/trIdCaKkBBQq3E0+ELp7PX17V0ion1rY3VKndf6SooOBbWa6ekR7H1uAn+f0oeqZjM3fLaHLZ1AL20VFdQFRZBX2cKjl/VGpVQQcvnloFTS8ttvWPPzsTVYCEmU39GtI5IxWh2s6dA6SJIkV8uXJhqMVlbnlDE2XUYJdOwT7Ran0YgqJJgBSWG89ctpTBZvopA3fzlFblkzb18/gLgkGU7uaPaF9NlralBGRnJ39ytZExLM2pb2foI2h40vj33J9LXT2V/9B03KAjYHBWJta+GFNcepaDYx94oM/px7GaN7tcOwNYlJOGrrqKmXK4ZiQpPpHhXEA5f24KcjFZ7awUB1IIGqQOpN9TgShmBvtBAa3IYmOdsvG2vgyBFYi4raORGQ+6JazpwhYNBgv+/GLUE6B7UxMsTQUuyf9d1aVARqNdUBYVz7yS6qm80suXsY943twc+PjGZkzyh2NUFLeSVY3LBeeX0KIVi6r4SsxFAC1DoPIYoPkz24OBksWBwWNEoNNw1LJi5UxyPLDntB+r3ELs8dszGYqrYKxqfH8NGswR60iTo2FmV0FGf3/sLJhpOUtHTNX+DueXqwuJHqY6fk9jmpqfJzV6i8CAOP1BwhIyLDq1YT4JfcIgBShqaT8vFHWAoKOHfjvVgMKhIfv1rO5p4noVOmkPjJx0haLZUvvEDBtKtBkvg1WyH3zjZUePgYOkp2SjjJEYFeJIcANW01PvDJX09U0SZc8GSbXOvozpzqm6w+48BmIi4qnFE9I3lu9TFySho9+tFcI8+VgwaJf96QRbwLau6Gkoa4STRdknTpKDLKBDvPnuV0lW+Jic1hw+q0dqofhRD8USLPnSFxXfcR7SgyrDcKpcNKhD6YX09U0+aaSh7GXr0ep6tVVVljG9d/uocjJU20au0k2618sPU0zy2X7SptUKgXJ0NZYxtna1ovqoWMRywGj348V2f0InyU1GpUMTFUny1iaGq457kCoAulWqkiRKn1er6BGhXXZyey6XglJfWy3aPX6Gmzt2Fz2miz2nlsxWHCg9S8dX2WV4mWxWFBI4QXKaRb5k3tQ1igmtO5Z1D9xXrTk5UtLNtXwq3Dk8lIDCf6ySexFhfT+MMPf+k6/4nyb3VOhRB24BHgV+Ak8L0Q4uKK+v7DZGxkf+5ramZ1awGv73udp3c+zYQfJjBn5xzCteF8e+W3XNPrGtZqHfRMVLH6oVHsf+FyXpzWl14x3huQ2sXcZiwqwKRQEBMk11mMTYtmSv84Ptqe72EAjtJFUWeqY6shEWurkqBgM6pEmXb8fNH17YtCr8e4d4/nM0erEcvp0wReQPkabUbCAvTY9CqM1f6ZJq1Fcs3PyiqJ/YUNvHN9FnePkQmAVEoFz13Vh6sn9Adgxbpd8knuRsdmG2sPVzA9K4EgTbtBZ6+tRdhsaLyUr8zWa3VYUSlUqJQq3rtxIN1CdTzw7SG/rLTC5ezuypPv/ZmpMV41RwA1ySGE1psJaRMUNnfOAuqWwcnhdI8K4tQ+GULjcU4VKq+amtzaXNIj0r3aHbSYbdz/7SE0kp2hvboRnJJM8ldfooyMJGKwlsjRnRvPuvQ0kj77lO4//YT+yisIGj2a2uzuNFmaXMq3m9/zrhuciMFi99QfCSG4cf2NfHLkE6/jNh2vRJJA0gR6lC/IdTXBjWafmhrsJlAFMGdiOpf3ieXl9XmcqZSNj9/+kJd7QvcEnuhAQOJ2Ts9XvoFD5D53fSsNPLf6KCcqfA3erpqMn6ttZeVROUChV1w8o527pgaHDYVaS0JYAD8dlmGPHZUvgKWpmTsW7WfLyWpeurofgSESEQ4Hr05OxGixYzMasbvuz62AT1cbqGg2/18p3/4JoQSolew75+0ctYZFEdDcwG3DEwnUeAeWGrXy74frvPskTuwbS984Pc+sOsqh4sb2RuPWFlYcKGVdbgVPXN6b7BTv89pranwdGUmSeOO6/kQY6jEFh3baosWffLqjgKoWM/On9UOpkFDHxmKceTkmDTgSW5GAJyel887MLPYXNnDtJ7tY+Ntpvj9QyvqjFZxWh1N29BSBahUrZo/ghqFJnf5Wq62VWLN8/xdTc9pxfKrwcB+yFSEEjro6lBqLzG6tT/Q5V6vUYnZ4z0NFYCBOk4noEC33XtKDnx4ZTe/YYGZ/e5DFu7z3HeFwYKuuZkeTktTIQKYPlB1/VXg4gUOHYvj1NwxbtwIQHNMMQjAwKYzMBD3f7S32MqyVYWE4mppYvr8Ei93J5f3koIePMQ04ja0ogoN5fZiVT81P0freUOwuQr7NedV89Wchd4xM4YrMOL9kS26x19Sgionh4dgxDDeZeS3/ez46/BEPbHmAsSvH8n7O+4xOGM36a9fTI7Q7n4XpeXBUDD8/MpqdT43nwXE9fXpPa5Lld9xQLjun0S6W7IfG9yIpIoB5a497yGeiAqKoN9Wzujwah0lJWHAr6qRsn/sEV90pYNzTzstgOpILTicBg7vue2mytxGangAKQU1Bpd9jrEVFaJKTmL/+FAaznZX3j2Ski3E3LFDDojuHEpsSj9rQwqGTrnngWp97zzWQX9PKrSNS0Cg1Hv3oQxYIHsJAi8OCVqklNEDNZ7dlU9tq4ZFlh7H5IUeyWeV9/nixAklp4u0b0jxM0G6pTg4hsUyey+eaz/lc43xxs9qXHD6BOimpfV9QqD360ea0cbzuOANjvOtNT1a28NYGGTp7xcBUgseMJuHtt1EEBpAwopGg9M4ZZkPGj6f7mtUkffE5QUOHEnHnHdiiQmlqq5NrefW+zqkkSVw7OIE95+o9/d1LDaVMXjVZ5hPpIL8cryIq3NXixxW8VcXEgEJBVLPwox/NKNQBfDxrMN1Cddz/7SHsdtkxXLfjCFaFitsm9OWyjPYxdaYfQ4YNJcgiSG2p5/5vD3oF6+DCbdbWHa3kTKOLObyLlkcdxWm14mxudulHK93C9TiF4GChfI/tnAx6HC0tVDWbufaT3dS0mPn6rkGYcRDhdPDW1FROFco6VROg96o53f4XWsh4xKUfh/eQ19D5vAzN+iiCmuq4f+x5iRpdKI1KBeEK333v7tHdCVAruWPRfmoNFk/wttncwos/naCwzsi7Nw4kIsi7FZ/NYUUrnF7t9NwSFqhh3tS+BDbUUBsUcdHDE0Lw8ro89AFyD1+A4HHjCBw6lMZvvkU4L0By9h8u//aaUyHERiFEmhCipxDitX/37/23iamRhxubGR6cyrJTyzhcc5gh3YbwyuhXWDF1BQNjBnJP/3twSLDEUcPg5HCfzd8tquhoJI2GltIiAGJC2hXPvKl9USkkHl9xmPyaVrnRuKmev/1UjLlVgzrYAfH+HU1JqSRw2FDaOirf3CMu5du1c9pmbyNUG4wqJhhHk4PTVX4YzIqKQB/Kwn1VTOoby3XZvsbalWPlaGde7in5A10otQYLr6zLw2RzcOuIFC+DzqeNDPgoX5A3gM9vz8ZgtvPA0kNezMaHiht4bKmcLU4OlBWA0eld3+wUTlZIcgZ0jCGOgqaCLp8HyArtusEJOIoKIUTfbvB2IESyO+0cqzvmRfbgdArmfJ9LSUMbkVpBYICsSLS9etFr+zZix4UjOTqJcHcQXXoaCW+9RfJXXxIaFCFnTlsq/SpfgBE9IokL1XkyKmWtZVQYKyhqLvI6btOxKoamRqDQBHqUL8jRYX2DxU9k2AxqHQqFxHs3DaRndBCv/CyTNtWWyobai7df4pXN6kz5qhPisUSG0KfMTmigk/u/be816JbOCJEcTsEzq45iV7kUcxf9Es8XT+bUYUFSapg1PJmDRTJCwD0X3c7p99vy2F/YwMKZWdwxKhWj00agEKTpHfw4exhqp4NDLue83lxPWWMbjy47jEalYHzGX1e+GpWCsWlR/HCojOL6doNiR5MStXBwTx+9z6mNLicyVOtNqKJSKlhy9zBi9VruXnyA2mb5nXy1+wTPrT7GqJ6RPDiul8/13AaI5vysuUtSIoPIUrVRrA71useupLShjc9+P8fVWfEMTW1X2pY7ZvDQQ0qsOie4gkrXZyey5O5hOAV8vD2fZ348yiPLDlMSFE1vawMbHhtDdkrXir/J0kS8Rb5/VdRFkm64RBkZiaPBG5XhNBgQNhsqhQEie/oNCGqVWg8KxC2KgAAvQqSYEB0rZo9gQp9YFqzL4/5vD3oawuceyQeHg2pdGB/ePNhrDYVMmoi1sJDG75ah6x6NWmcBu9lDZHeqysBPR9rrjpRhYVgaGvhmTxGX9I4iKkThucfzxdHciMLRRL+N19JfUUS06RyTX/mee5cc4KkfcslM0PP8FJm0RREa6jrHf+ZUFRON0tzMGzV16DUhfHb0M6paq7iy+5V8NvEz3hv/HgnBCcwecD/5Gg27jPkMSAzzEFmdL+ok2TltrZQN3VjXnq5TK3n56kwKao28sOYYDUYrkQGRnK6r4Jv9sj7QdKEftb17o4yIoK1D8NaUkwMKBQFZA/2e4xajzUivbjEoQ8BQ0uDTkgJk/dgUEce2UzU8cXkafeO9161SITF5bD8UCDbtkPsmotNzptrA27+eIjRAzbSseHRKnWdPsrr0o8YLWaQFuxmrw+qpCxyQGMbr1/Rnz7l6/rGxvWWa0ylYc7iMd3+RmXiz42VDvs7snf2tM9WxM7ichAYItHBR+jFWr+OS3tE4iwrR9OzgICjV4JCfz5mGM5gdZrJisjxfN7fJgdtInexEqVztZ/RXTKb3n7+jTzbL5FpdiCRJBF9yCclff0Xs008TrgunsdUVNPCTOQW4dlAiQsDaI/IzPVxzGLuwU9RS5Dmm0Whlz7l6RqS77BFX8FZSqVDERBPVgm+LM5sZ1AGEB2n48o4hmKwOPtnm4gltrEeER/DMFX28TvHoR/V5wVtXXeiIRgNljSaeXHnEi+TQaO/cOa01WJj/03Fi3HbKRepHN1mgMioKHFYCAgIYlxbN7nzZBnRn8ZV6Pc7WVp5cnoPBbOf7B0aSmSg/iyCnYGbfYOa5WN9PNMi6UQjBnoJ63vrlFL1igukZfeG+yvJN2eSguFZPv3g90SFaPtqW70GF2RxOjjsCSLQ2e6OKALR6GpUKwhS+vd6TIgJZdNdQqprN3PH1ftSSfD93f/M7qw6V8cj4Xozq6RvYtNrNqAV+M6cAU/vHEWdqZG+bxm9wyJ/8eqKKPefqmTMxjbBA+V4lSSLutVdJWb6s044Y/1Pkf/bo/n+KqREl8HHmQ2y+fjObr9/MW2PfYkavGagUclYjKSSJqYpwflC0ddnHUVIoUCclYXYp35jQ9j6N3UJ1vHpNJqeqDEx6dyd/nGrFLuyEOAxgBU2wHRI6dzSDRozEVl6OtVTeHE05h2XlOzCr03OgvbFzdM9osEq8+tV2n0VmLSqiIjgKhSQx/+p+fq/jduCyA+QN7fP9dYx5cxurcsq4ZXgy/RND0al0nkyNrUJWKF5QQbXOkzntaFhldNOz8IYsckqaGPGPrYx+Yxtj3tzGdf/aQ7NBNvaenzwUrVJLucGbmW9T4SZ2BJUgJImB9cEXFRkGuUVHaksVjdEJ7TAPhdoD6z3TeAaT3eSJDNscTp5alcvmvGqev6oPamH12tDkdgA6j1F+sRKuDafR3Igw1vqF9YJs/MwYlMDOM7XUGiwcq5VhmB3nYkFtK6erDVyV2U2OAnplTuMIbbETeH7E0ZU5BZkV9svbhxIRKBtek11sv2EJ3pHuzmBLkiRhyexJnxLBS9ekUNNi4bEVh71o+I02o1/lu3h3EQeLG3lqmmv+d9HyqKMIITywJexWUGm5aWgSGkkep7sfnSJEHtNvB/KZmZ3ItYNdLKAOC0FOJ5ibiA+QA06tQn4euwoLueaT3VS1mFl811BPe6SLEpdzCngyi0+sPILd4SS/ppUtDfJ8C27yhZs2qtToheRhHO4o0SFavr1nODq1gieWyyQ0OWUVPDy+J1/fOdTTfqqjuNejthPlCxBvaaIuKIL3tvi29fAnb2w6hSTBs1dmeH2uUWkxBkhYJcmL+XRUzyi2PzWO069eye9Pj2fVAyO5bsZoVEYDNHfOIO6WJnMT0WZZyauiLz5zCrgyp97P2V4n/61StkKo/4ytVuUncxoQgNPkzdYbqFHx6a3ZPD05nT/P1jHp3d95dPlhXvpSzoref8No+id6BxpCLr8cJAl7bS0hQ1xtbMzyurp2cCJDU8N5bvUxzlbLRqgiLIzSoirqW608PqG3J/vmr1+ws+QoCnsDjHwYx43LAbi9RzP5Na0oJPjo5sFoVa4eq3o9SJLfzKmttgZ1TAyYGolyOll91TL+uPEP1s5Yy4sjX2RU/CjPsVekXkGq3cmnhpM4RecGnMblnFpr5bG6W8aA3CLtnjHdWZVTxti3tlPdJFFQX0e/QPleNSF2iPefBZUUCoJGDMe4e48n49x2OAdteno7U3wn0mZvI1gdhDZKhabBzBsbvXtmC4cDS3EJO9sCyOgWwp2jU/1eR9dN3ieTHPLe9eiac0x693dOVhp47soMdGolWpXWsx7tlZUoQ0NRBHW4P3WAHLx1Wrz043XZidw1OpVFu4oY/o8tjH5jGyNe38oTK3MJ08jjffRSufSnrNUb3vpp7qec7SaQBAxtjuRc08Xpx+uyYoltrqY+soNO6gDrPVIrO+Hu4G1dq4Vbv9pHZbOJl65yBclU7WOQVBpAuqBzer6EacNodDPAd+KcJkcGMjQ1nNU55QghOForZ247MsdvzqvG4RRc0tfFctsheCt1iyaqxV/m1OTR8WmxIXxw80CUyMeMjJAITejms+carAYCVAGold77tzohAWNkIKlFLcyb2petp2p4d0t7S6lWF9P1+cFbIQTz1h7HaHVw12Uyeu1inVN3mzV32QsqLbePTKW5Tb7ndudU1lVHz5Tz0tX9yOimb3eWXfqxf5T8Lsta5ez/ykNnuf3rfXTT61h819CLayHT8d61IaiVCt66bgCnqw2886tcNrDmcDmFSj3hbU1wfoZRraNRqSIC/8mh7JQIPr0tm7M1Bj7YLNuJhY21LJyZxZMT/bc1s9hNaDuB9QKIxgbUDhsFUgjfHyz1e0xHMdscvLrhJBndQnwYlTXJyXLLwv/h8r/O6X+VmOSoujYohm5B3TpdZPcFdMcGLD6+uMvLaRITcdbIkejoDs4pwDWDEvnjmfHcPbo7eRWykpo/RN7s1CFA4tBOrxs0SoYulT32OBV//zstGzeiTUu7YLN1o81IoDqQ0D6yYaA9fph/7fCOnracLSBPGcbfLu/tA5l1izIsDEmtZqwLtbqtyMyMgQlsffJSXrtG3jS1Sq1nw7PXyA66KraDc6NqbyXjjgy75ar+cbx7YxaT+3VjZM9IhqZG8PTkdD6fJV9bpdERHxxPhbE9o2B1WPkg5wNS4vqg7d6dlDIr1W3Vno2+K4kP0ZDWUsFeZVR7ry1lO2zpSE278jVZHTzw7SFW55QzZ2Iad41OlZWs6rzMhVr315WvLgyr04pJotPMKcC1gxJwOGWW4WN1vs7pL8fliPkVmXEyVLHDfajj41A5INR4HoW53SLfs0uSIwPZ/LeJAAQYDChCQ1FovN9TZ5lTAIYPJNwI8acO8PL0fvxxto7bvtpHo9GKUzj9OqeFdUbe/vUUEzJiuGZwMqiDOu03eL44m5vBZnNlTq2gVBMZrOWqzCSEkGg2ywaI0RXBT9U4WNAh+NJmNxHkFGBqQpjlOTBpkKzE3tp8EI1SwY8PjvIbce1SOjin8WEBvDojk5ySJv61o4APt52lWS9fz+aHla9RqSCiC6b5pIhAlt4zHIdDA0LBDcMieXpyRqdoDrcxrO4ETi2cTkRVFTFpqaw9Us6Z6q4Nn0PFjWw4VsnssT2964HAs6atkgQ23yysWqkgOTKQIakRBPWSI/HWwgvD8JssTUS2yeNTRVw8vApAGRHhkzl11LsyCopWCPR/Pa2y3ZFwiyIwENHmWxqhVEg8PL4XO58Zz20jUvjleCX9lPLcS+rTw+d4dUyMB/ESMtKV2XO1IFErFXw0azBBWiUPLD1Eq8XOkWaB0tDCa9dkMiQ1wrPHnr+HAjhbW1GERcHk19D0GA1I3JHawo6nx5MzbyKpUe3rT1IqZUhfk3fmVNhsOOrqUcXEyvpRoSY0OI4wXZjfZ6VUKJltUXDG0cr20u1+j/k/7L15lBx3ee7/qaX37pnp2SWNdmu1NJYsW7bB+wK24wAOxOAEuAlhczbCBcPlkhuSe7NctgSDwRC4QFgC8c+YAInDasAGE7CNF8mStdgaaaQZabbumd67a/n98a2q3qqqq8fi3HMues7hmKOu6a7qrvq+3/d9nvd5QTC1ciqFOV+i35TbNvD/45btfOfPruSKTYMcn9WR5ApvPs8aibV6LaS8JaHxyy5Dm51l8g/eyOn/+b8oPfU08d3+kl7d0ClpJRKhBKl1CdSSzve+/0t+erS+rtamT0O1yqFQmr+5dYfnbEl7/u71owqGKfHw8TJvu24Tj/y3a3mNtUltZE5rMzPNsRGa2l5af9v/fvM23nHDZq7ePMylGwZ48XmD/P1tF/DGywTzuqp3HYAzCxzg2OIx7jt8HzsuFyPqd80lAhdvr1KXCBk6X8sl6gVGJdwUH0cTo4wmRjmZKXLbJ3/GkZkc//i6i9g+ZMXFxg2/JDnJdzdIR9Ki7QWgx7sn/tbdYxydyfP48Qz75wSbPFeu/44P7J9mdX+MrastNq7hPMzhAQaXcElOK01yz2u3jnD37aIIIGUyqAPtLTy5Wq6NNbWRGV/LjkMVbt8Q5VV7xvjYg0d53zf2o+mGI+ttbXv5933TfPuZ07z9+s2MjVjnHjA+1pNT0faCEuaqzUOMJMX5FawC9klNkDC/uTHFb19kFW7t8zEMKGUxSuL72rNpHQDv+eYj7Fmb5r47XhRs9reNhuQURFHqtZeu4TM/OcZDh2e5+8GjhFauRNJ1Zw/ZiIyikja9E+GrNg/xkVfv5nRGHPN3rzqPV+4Z89zXV7Wy6DkNuSendoxOrlvNx35wtMn3ww1f+NkEJzMl/vw33P0Tfh3w63nVvwpYySkx98BrY21skJvLNe49fC8L5faB0TZCa9agzpfBNJ2e00YMJCP8+S3b+fObRODcpIvPD7/1Xt/FN7x+Pf1veANyNEr+Rz+meuwYySuv7HR1FLQCcTVOZO0KlIjOLfopPvqDI+w/tYimG/zoiQnUhTkqo2P8/ovXe76PJEkoQ4NIGXHtn/yDa3j/q8ab5sdFlEi953RmBikeb64MW7KlRllvI27dPcb/fuU4H/rtC/iHV+/ij645j6hkyayUCCuTKzmZq1eGHzj2AFOFKd5+4duJ7dxB77E5MIP1nVaPHSNcq3C0fw1v+8oTYth5g6z3ydknGY4PE6Gf13/25zx4SIwM+pPrNiGZhmBYW6ttVvLdDdIRUUnLKLIncwqwaSTFFZsG+fTDz/PkjFUZLs06TMED+6a5cE0fo71RizmtV4ZVy/ShL9siWavVmVMbITmEKqko2Zx78PUwRAKI3/QSTvcB//gVXn3RGP/w6gt4YjLLyz/+U/ZPiUDTWBk+dDrHn37lCcKKzN/+1k4RQCLJrivDiiXrxbqn/suL1oEZ4tM/eZYbP/IQb/66qMq+dscAiYgIxKZpUtSKxOUQlLOOVf6O9WIjuXklfP0PX8TmEfeNhi8qS9Agy335rlW87IKV3PWDI3zzqSluuMZi492SUwn6dP8AuGkkxU/ffS190R4iEf95lvbzGG7deFnQZucwazUu2ns+ybDKh797yPU4EN/Z3z5wkKFUhLdc2Z502cPdW5lTN4TXi7UmaHLaVzCdAlk3UAf60Vt6TrV5izmVshB37xFvNUSCdllvKwaTEf7yZefzs/dcxx9vF+uebbjSioE3vZG+226ryyYr9XaLkZ4oH719N8fmCrzsYz/hyUWTtF7i1ReLe9NhTlvXH9PEKNdQrM0nkZSQLU+L3nq3DZrS19sm69Xm58E0RT+ePQO8AzNyk5RiDWE+9dSnPOf4SZJEePVqwlmNIRdpHgiG6p7X7uGm89fRlzCIz55GTiRQ/ui7rsfb6LnhBnpuuQUtm2Hxm9/ELBZJXHmF79/Yyop4KE5io4j/15dP8K77niZXrpGvaHz3O2J+6taLt/vKz1VrpFm8mIdIkkf++/W8/YbNpBt63MJK2JGKazOz4vttepMo1Equ8TGkyPzJdZt4/6vG+fBtIj7+1oVjyJZsvzc2RFyNO7PAAT7/zOcJK2HecPmfERobY8OUwbHFY+iG//oCYDwrGOTvGQN8yF4TGmS99vzvZ08v8ap7fsZcvsKX/uAS0f5gJ36txRMr+e4G6WiaBXtepQdzCvDyXSsZSIT5++8f4FBGnO9cUcSHxVKNnx6d4+YdK5Ds5K9BWaQNpxlYgpjUsiepldpivG2IJC0supqz5ao598ItMP+qq5ANOH3P3bz/leO86Yr1/NPPjvN7n3uUmby4RulSNd0AACAASURBVDs+mqbJjw7N8BffeIYLxnp50xXrRWyEwMoibdZKTofs+BhGliVu2SFIk7d8+RF+6xM/5Z5HRWz+r5escNaIorV/SJgmlOvF25sv3A7ATRck+ac37G0y3wsEe52L1PcP7715OxuGErzxnx7jxEKRq68UhERrfDRNk4ws0dehZ/M3xlfw9TuuB0BW/PdjVb1kGSK5x0e7Pe3lN17E6aUyX/rP467HgZCO3/3gUa7eMsTlm7osaP8/hHPJ6dmCk5x2oNvDSV6XzVLSSvz01E+9D1s9hlI1WFFor4I1YmWPCIblE+JmD2/1r/JKksTIu+5k3Vf+mc0/eZgtTz7B0Nv/zP+cqct6pWiS+HCVbdOHSMdDvOWLj3Pp3z3Ihz4uTJhfctOlnlVhG+rgENqc+L760u0PX0SJoJs6NaOGNjNDaGioeUOkxkB3rwx7wt4gqhFWJVY1MaffP/59ViZWctnKy4ju2ImysER/Dp5b7NxXU9ovqqu/edu1PHY8w10/ONIk631q5ilWRbdx410P8+Rklo/dvpvXXmox4XaAVVuDb/fMqW18k5EVT0MkG+94yRYWCiUOzh8kpsaoGTWWqkucmC/yzNQSN++0gneLrFdZId63J9uyMdDKbRVDSZKIh+Io2bzDBjTCTk7d5Lnp5BD/cqVM6PmT5L79bW7dPcZX33wpxarO7Z/5MQBPT5Z55Ogcf/KVJ7jxroc4NlfgA68ar8tmw8nglWFrFqM6OGTJesXvsXtNmp5InPNXRVnRG2XWEAF0RKonciWthGEaJJSoYE5L4vuKJFIkQgmu2hZjuBsprw1dE+cfbU7e/9fLdzCUihALKfzBDdtR+vqoTbUPj89gkK7V2v69FfGwKgaNV9p7yBtR1asoponqMdy9enwCgN6N63jjFRv4zjNnPJ2zv73/NI8fz/COGzY7SX4jbCasClD1TuJAyP2lcJhKh+RUN3QWK4uk8nrXkl4AJd2PUShgVOr3viPrDVc8k9OIKlQgjYmWFI9hlNxN5RoxmIxgnj6Nkk4jx91jQOrqq1nxP/8KyS6KlpsTxBdtHOSdL93C83MFVq0ZRalVnc+2k9O2Al8pg141kXsaZMSj4zD9tOe5Kr19bbJeR/UyPFRPTjtADaf4HTPBwYWDTWt0K0KrV5PIGAwr/mzLWG+asl6kOnmC0Jo1SAl/l2alr49VH/ogG+6/n82P/oItTz5Bypob6IVGtio8mkZNSNymnGF6scQr73mEi//6+zz8b2LG4etuu8r/8621UptfRI72thmdQXPBwzacaoLq3vbiC60CkoykhliZXOkkp5qh8eCJB7l2zbUMxAaI7tzB4PEsVaPaxK56obx/P0pvLy+5djf/+NDz/PDQjCPrPV04zenCaUq5MV52908xTJN733oZF9n95058bC3eNselIOiL9pHVy5ihhMO2uSERUbnj6o3858l9aIZGTI05yqIfHDxDTTe5aecKUFQR5xuKt9WhXlQDYrmG+GjoQsLcYpSTCCWQDBNpMedqzrZUXfJMThPrNvDgBRKF+/4V/dRJ3vsb2/nAK8f5+bF5/vybwg33kcN5vn/gDK/65M/4vc89Sjys8OHbdgkWzn7fbuNjf78j6wV4zcWiIHbZxh5URaYUFc9ivOE7cQyaWpjTvl7B9r9iT4/THtAVrPaFxvgYCyt85NW7MEyT8bFeLrpEJMCtyWmhVqAmQb/W3hfeitGkWLPsNiQvVPWqL3NaPS725xddcj5XbBrkEz96rs3MysbHHjxKvqLxnpu2ub7+64JzyenZQikDSBDt9T8ukmRLuURcjTs9DW4IjQn57Oas/09kb+61yZMog4PNDGMAyNFoIJ1/sVYUSXIoTmKkgjE7y4cvS7NUqrFnbR9/kZxGikbZ8fIbOr6XOjSElm1fXGzYlfyqXhXBd6jFvMRaHCu1EhE5aPC1EgolzKrUKhYri+SreQq1Ao9MPcJ1a69DkiRi46Latm1aCSRdKu/bjxyPc+ONl3DbRWPc/cOjnFisUauW+d6hQ0wVpvjZgRR98RD/+kcv5pbxBlbTTkDdmNNl9NSAxZwm/U13dq3u47JtVXRqXDQi5EVzpTn+Y7/o733p+VZyG2o2RNKHxUKdWmhJTmtl14phPBQnnC14VoYToYTTj92IdDTNI9slimsGmf3oxzA1jQvXpMW4hU3i/v7mE/P8zmd+zg8OnuGOqzby8LuuEVJkG5FkF5VhK/haboSNlfqeSIKtK2N87vf38vB/vwE5kUDP1QNVUbMqw2oMShln4y/FYgxEB5ocCbuCnSy2rCe98RD3vuUyvvrmS+lPhAmtXOnOnJo1+vVaIIahJ9wTPPh69NRUDom+p8jmzbzh8nVidMWXf8lMrvk+rmoG7//2s2weSfLbF3n0aVobai9ZbyMkRSG8dg3VYxO+x+WqOUxM4ktVlIFlJKf94t5vZE+1+TmQZZSw4cucmpjUGkZnyPFEoOQUxMYq0Ggem0Eot5sSvfXKjXzlTZfysitFb6+dRHr2nGZPYGiSkPXaWHEBLJ6Aorvax5U5dZLT4cDJKZEku2uC0fCLj+HVY/QuwYjiH+/ioThlvUx1ctLpVQ0KSZICOU87fXVqAimcIL5KIrLvCf70mo3M5irceuEqXl85QmzXLgZXe7N2AHI4bI38aS9M2bCVRaZhoM3OiuS/EQ2GgV0Vb63nbiw55iSnvzzzS7KVLNevEQxSbOc4oZksfXkzcPE2umMH771lO1tHU7zj3qcomQrZfIF794mE/YHHoly5aYgH3nYFW0cbrlmrF5Sbr28ZzGkkTRWDUnKwI3v/2kvX0pcWsfCyFZcxWxLx4YF9p1nZG+UCu/c71OxmXxkQSV9sviHu2K+7MKc9JZAME9VlPfJjTvsifXztxTKmIjN398cBuO3i1XzlTZcyYtWo3v8fE7zxC48xlS3xN7fu4MF3XM15wxZj6jCnAZVFs7Mo6TRSOOzIegESFmly0/gA977lMj55x9UA6Iv1WFKX9ZpN8bG/TzwHjeNkuoK9zrXEx/GxPv7lLZfxqdftIWytm7VTzfExUxZF03St8z3UGxbv3zE+ahWr59SdOS0fOkRobAwlmeDdN24lV67xx//8S6G0a8Dx+QJf/M8JXn3xaraMLkNt9f8QziWnZwuljHhQ5A5VoHAKBdiR3sLTcz7B17LLX5f1nj0KDfKNU9NdB99u4PT5WckpwM6ZI+z7q5fyydt30ffowySvvjpQcqwODaJlC4BUr+I1wN6clrUytVmPyjCWlKJb5lQJszIpFq1T+VM8fPJhakbNCb7R7duR4nH2TscDmT6U9+8Xf6Mo/OXLzmfDYIIfHc2SK5a4476vA/CyrS/im398OeevbClceAXfZfSc2sxpVpFd7cxbsXerCKBmXlQXHzxylE8/fIzxsV5W91tsRAtzWokqFCIQb3Vj1UquFcOEmiC6VHZNBvwqw3E1TkiJcPCVu6lOTLD4jW8Aou/ybTcI1vkDv3Ux//i6PTz0rmt4141bm2RvgLivAlaGq/Y4hpUrrOS0/ntElagj2wOQe3swXIJvIpwQsl6rMixHY8JJe7nB10W2ZGN1f5zxMbELCa1qT05N0ySjV4Sst+wfVAF6IkGSU2uOm8e9VTl8CKWvD3V4iFQ0xKdffxGZYo03f+Hxpv6azz9yjIn5Iu+5eZur8RLUZb21ALJegPC69R1lvZmK5QmQLbky+Z1gS9O1+Xpyps/No/QkkWQ8k1N7fWo0Reok621E4OTUTmRcGHBZlrhs4wCRAcFI2clpWSsjS3Jbgcicn8DUZOR0Qy/jinHx39PuMcuNOa1ZyWmom+Q0nGRTuURUifomp/KKYUI6rCr7eyUkQ0kkw6R28pQTU882StYaKeJjjMQKHX1hgbeulXniL17C+8bjyM8fpefmmwO9nzo8hLZU8ix0R1SRnOoLC6Dr7sVbOzn1kD23QasX5VYmVzKVn8I0Tb5/4vtElahjXBW/2Br1dcLsWLw1ymUqR44Q3bGDaEjh7t/ZTamqM7FQ5RdHz/Dxn/0A0wjxNze/hE+/fk/byCDP4m1IzDnvBk7xNtw5NkZDCuetXsCo9RBnLUvVJT79k8P86NAMN+6oS1Zb215KA5YEf7bhGbSvoWXdjIfi9FpLm5eyyCs+9kf7yaQkii+7isVvfYvKUeGMf9G6fm7bK/ZKX3vrNXzm9Rfxw3deze9esrZ5trYaBUkJHB9rJ08SsudzWrJeqJMIdny03ewbi7dOfJTUJllvf+8osiS/8OKtS3zcszbNit4YciyG0t/fFh/tWJCudr6HQkqImBrrrCwyqoR8mNPKocNEtgrTuh2revmbV+zk4SNz/M9/O+Acoxsmf/fAs4QUuWns3q8rziWnZwtdVIYBxvvOEzbqHkmIPTpl1ZJ/smtLfuWpmWUF38fPPN7UX+KGmiEGO8fVOIRihJI66siQMw+u+ItfoM/P03PzTYE+Ux0cQs9XMNUez/ELIDZPrj011gJQ0bqoDNvMqRphLCm+21P5U3z/xPfpj/ZzwZBwK5ZCIeIXXsjW41rH4GvWapSffZboDjEeJx5Wufctl/HiLaOkQnDL3iohOcz/vuVGd6MZP+a0257TRlmvj6OqjfnaUUKkeGifuH/e/71HScdDfOBV4/WDWirDJa3EXA9E51uCmgdz2mNGCZf1roOvJEn0Rfs4dH4P0fFxZu/+OHpefGa+Jv67Nj3AS84fbd/Q2Oii57Q2eRJ1eFiwJFqlSWYdVZuTUyXVg56rv29d0pdsMkSSY1FnxuKy4CJbckNo5Upqp6aaZKP5Wh4Ng7RuuDJprQjEnGolX+a0fOgwkS1bnI3bjlW9/MOrd/HkZJY773ua7z5zmlfd8wh/+8CzXLl5iKs3e49ycWS9QZPT9eupTk5i+si0bDMUNZtbVnKqpK3ELtPInM6j9lnJkQ9zCjSNkxGGSJ2TU9M0u0hOrUTGpxihtswjtXsSW5Uzxhmx2ZUHGli+UcvN3UPaq/R6MKeKgtLfD6Vs4PgYqhbYPrDdt3hb7BNxY2XBXzmTCCXozwG1GqHVa3yPdcN3J77b9Py7ocmEJhQnMSTWbnskzdID/wGSROrGlwb6THVoCG2p4rrxhrphYBMz3YhQDF0roRlacFmvXl/3ViVXUagVyFay/ODED3jxqhc7+4zotq3IySQXnYp2HCdTOXQINI3YThEfzxtO8a0/eTEr+lNcOJZky5oFxod2cPve9e7qrbPInPZHxfObUYP1NuZ5nrC+jp8eEvuGv/32L7hy8xB/cm3DmK2W4m2+3zKlnG0o0vgwp7axYLc9p7ah2NQrLkGOxZj58N87My/te3HXqhGu3z7ivu9wPBmCFm8nCa0eE663hub8Hrbxk72Htd3sjSUXZVE4VZf1hkKokSh9kb4XwJy6K4taIeJj8/7WYU7LwUaepcKpjvGxYhdvXfZBRrlMdWKC6OYtzr/ddvFq3nzlBr7ws+N85uHn+eLPJrj2wz/i28+c5o6rNi6vFej/MZxLTs8WuqgMA4wn16CZGgcXDroelpMqLCRhZYfkNBlKomomytyiIwXuBn/2wz/j7x/7e99jnKZ2qzIsSZDYtY3iz3+OaRgsPvAAciIRyFgJ6qYPmum++DrJ6dICZqnkzZxq5e6CLzQxp8cWj/HQyYe4ds21KA2Md3zvXtJTeZZOT3oWDwAqzz2HWak4ySkIo6qNI2lCaCwZE2xJb25zk3TgG3y7S05ToRQKEhlFaTeQcMG+uX1cMDROqSyqvZdtCvGtP7m8WValRpsrw1qJuR6J8GzLQu3BnA6WBCPjGXw93AjBqg5Xsozc+U602VmOv/Z11M7MdBwy7qCLntPa5CQhu7DTIuuNqbGme0Dp6UFfqm/CnfOJ9DYxp1I0Rn+0/1fCnDYitHYtZqnU5EhoB99+Q6/3wvugJ9zDYsU/iRXJKa7MqanrgiHZuqXp32/cMcq7btzCt56a4s1ffJzpxTJ/cct2PvnaC31bCZrcegMxp+tA06idPOl5TLacJVI1kcpV1/uxE1QPWa+asu57n55TaGFOA/ac6pkMZrlMaFWA5DScBEn2LUYoHslpK4wzE+L4dEMBITEAPWPezGlfn5j72lAg0GZmUQcHkRSli/iYgkqe8aFxDs4fbHM6tnE8Kq5zLO/PhCVCCUazIgkIr26fu+2H5xef5x0/fgf3H7nf97jm5DRKKFIktHYNhf/8OaZpsvTAA8T37hUMcgAog4NoBa2jrLeJmW6EGqGq2XOJu2FOxb2wKilYsu9MfIeZ4gzXrbnOOUxSVeJ79rD9RGfDQNuPoTE+njecoi+ZoC8KU6Xn2TWyw+vPG4q3rfExuqyeUxAurZ2QLWeZzE1y5Zo9nJoXsfuPbxjm//yXi5oVOi3F22JE/E+ZaZC+ezCnISXEoOUcrrQYBpqmSa6aczULhLr54WykwuAf3kH+hz9k6p13YlSr5Gt54mocWeqwtQ+oLDI1jdqpKcKr1zgOy1j7mZAcQpGU+qi1RBwUBX2pvXibiPZZhoElRyr/goq3drzqEB/Da9dSnZho+jfbiDRdXmwfM+OCQPHR0IiYuO6DKkefA8MgsqU5Pr77xq1cv22Ev/73g/yPbzxDOh7mnt+9kD+6pn3O+K8jziWnZwtdMqc742LD4SVdOrxwmOl+SGd85kEggu/QIkim2TVzmq/myVayPDnzpKczItCcEFiLbGJ8E/riIuV9+8h993ukrr8uUH8ONCSnmnuCYW/oqmfEWJP25NTqOe2mp6YhEUxH0sTUGPcfuZ+SVnIkvTYSl+wFYOukwfElb1e10j4xisWuDDtQQhh6jYPzB9k+sN3nnLyY05gwUQjghmhDkiT65DAZNdyxpyZXzXFs8RiXrNrFx19zGWE5wgXrlPYqa0tluKyVmesBdbYl4amVXRm1gZJYXlqDr30OXsEXrLl05Qzxiy9m9T33UDtxgonXvIbaUcFmd0xOI6ngleHJScJj7slpK3Mq9/RgNARf+7VEtE9UhhuY04HoANlKFs3obLzQBo+emlZEXNxq7eDbpxtQaLfRb0VPpEf0ZPqsAZWazZy2JzO1yUnMUonI5i1tr91x1Ube95vbues1u/jxnVfzhsvXu5q8NKLJrbfWmWEMr18nztFH2putZOmzbgc3A5JOULxkvQnrWjxGydjMaWOSJcVimNWqL9ML9V6pQMypJFn3vHeF305OtYx4fssexT1jVszhk1vHi60Ydxx72967V9ynegNr4pj1aFWxEQ4aH6t5xgd3UjNqPLvwrOthB9XTaDL0Z/2Lt4lQghFruQqt6Y45tR3dn5h5wve4xp5TQnHQKyT2XkLx0Ucp799P9dixwJJesJjToonpwZzZhkiezKkapWqtS8tiTlMiOf3igS+iSipXrW42cYpfcgn9MyXmTx71XTPK+/ajDA62j7pRQjxnCDdh//joZYi0vDngANkA5jv750VS/ZrxF3HH5cIRfdd6pb2g1irrtZRFnGmYYe/BnAIMlkSS1yrLLmkldFP3ZE5jaoyIEiFTztD/hjcw/M53sPTAA0z+wRupLWbbZpy6IpIKpCyqnT4DmiaYU6fAL+4pSZKa4qMkSSipVFPxtlgrosoq4VjaMgwsO/vEF1S8LS+KfVKrmWQLwuvXU5uaclz0oa6iSdeqUO48HzuQssioEsZdWVQ5JFyfo1uapbqKLHHXa3bxp9dt4t63XMbX//BF3LRzBbJHu8uvG84lp2cL3VSGgUFTZlVyFU/Nugf7w/PPMN0vEZ7zX4RjaoxRO/h2KVuy3RBnSjO+zog2c2rLlgDiO8SmeOZDH8ZYWuoy+FqOhFX3ZNbZ0J05I453M3wAKkYXboR63RBJkiRWJVdxIneCVCjF3tG9zZ+/fTvEo+w4bvpKl8r7n0FOpdo3PXKISUUiX8v7B1/nnFyYU+i+71QKkVU7V4YPzB/AxGTn4E5u2rmSofigY/rQBNsQydqAlLQSc70S8lKh3jNnmhZz2s5g9FlDutXBdgmnn2wJhEzZ7g1JXnE5a7/0RUytxtidn2DnMaNzAA4o6zUqFbQzZ0TwhSY3QvBiTl16aqL9oFcwC+IzpWjUkVp3qrq6IqCs122Uih18+3UD8mc6flRPuAfd1J1rcUNV9zZ8KNtmSFvak1NJkvj9F6/n5btWBZ7XZhecahKBqvv1BH3C85hMJUOf0+PlLSn2gpxMovT3Uz4olC6maQpZb1wS/VsRj/5AxY05FWtoJ/a0Nt1FcgqikOEj63USSIs5rerV9jEygD4vPldOtDxjo+Mwd8SVzW5lZaEhObU3gB3GrAGWsshkvFewB/Ys5lYcyk8w1wfM+G8ak6EkI1kTU1EIjfq7mLdiOi9McZ6YecI3CWtVFgEk9l6Ikc8z84EPgqqSeklno0Ab6uAQpi5hmO6ssN1z6iSnrcUWNULFGmXWVfHWuldtZdGJ3AkuWXFJWxExvlfEy/XPFThT9F5fys/sJ3b++e1JnaxywBT3vn989FIWvUA3+w7YN7cPCYmdQzt4/V5hkGiPk2lCS/G2pAtlkTHd8J04zKlb8VZBC8ltPh12IuTX9mLHR0mSGHjjG1n5wQ9SfPJJrvmb77E6F0C6HDA+1k6KQlV49eqm1igbjTN3wfJkaGFOE6EEOMxpGSkm7ut0NL282AhinesQG8EqXJom1eMnnH/LlDOEJYW4aQaLj0E8GQyNsOGRnB4+hBSLEXLxhElEVP7rDZvZu74/kDHprxPOJadnC10yp1RzjA+OezOncwdY7DUx85W2Xp5GSJLEmpwIQN0yp3bwBTEM2wt2ZTiuxp2HL9QTJrxhA8VHH0Xp7SVx2WWBP9dhTqvugdMOqLrlotouW6qzEV0np2qzdOmq1Ve1yW6lUIjYhXvYfgLfvtPy/v1Ed7gEXyXEgYi4hmDMaashkrUp6bY6LClC1tsB9oZvx6BgfIdiQ+7yGuc8xHmWtTILVrysWYUD9BqYhuui3JtbXk8NiEq3LU8FUTBY95WvUhlI8t5/Mah9+Wu+G0bCKZE0653YKdGP4piJNbgRgkhOm3pOe1JNPTWOpM+SdRpLglmT43FHSuYMf+8GjqzXnzlVR0aQ4vEm1tDpqTEMyAVLTsHfkdBvyHjl0CGQZSLnbez4WUEgSzKqpFKVlY6jZEAkRkp/P9Vj3s9qtpJlsCSejeWMkpEkieQVl1N4+GFMXccoFDHLZdSo5dTr0jsPdRVIU89pzEpOix2S06kuk9NIr6+sVwqHhdu0bYikuzCnpomxIO6ZNnO7FRcAJpx5pu29lT478a1/vkhOh4KPWQMnPo6oCYbjw97F2/xJSr0G1SmXpKEB8VCc0QxoI2mkAIW7RjjF2+IMpwunPY9rKt5axZv4rvPFa48+SuJFl6GmA1y7BTUt1kWt7H6+ESWCYRpUZ2ZQBgbaZ/aqMSqGx5ggL+g1h4XqCfc4a/N1a69rOzS6bStmIiZMkTxMA41CgcpzzxPdubP9RSXMASrE1TjretZ5n5PWzNQ5WIZhYDKURDUhE2DHu292Hxv7NpIMJ+mP9iMhMVd2S07jbcxptkdparGoM6fthYZ0QaKUCrftH+wxa93Ex97fvIU1n/5HYotl/vTuk+R/6j2mEAjc9lKdFMlpaGx1m6wXXOJjqrl4W9SKQlEQs5RFpaLDnLZeQ1eoLHWU9IK3sigd7kECyHk/1zaCMaeaYE5divTlQ4eJbNok2hvOITDOJadnA9YMp256Tu2+mjPFM5wptG8gD2WPoPQIWac9I8kLKxdlahHFVT7pBzv4qpLqK11qlvXWh08nLr0EgNRLXypsxgNC7RcSOK3k/rDazKnuDH/2Yk5r3RsitVSHWyW9NpKXXMLqOZOpSfeeYKNapXz4MLEdLj0zSogD4TAhOcR5fT79A56yJSsYd9tXY8pkAkhC9s3uY23PWnqtxGcoPuTNnDacR0krOcmpNmMdbwcml0U5VRD3r/172zBMg3wt35E5zdfy1PT6CI7w2Coeed9v8thmmfkPfpipd78bo+DB9jlFIP8AXLODr5OcVpplva2V4Z4ejGIR05oh6jwbcXGPGnmx8ZcjEUdKZstsu4Ij6/UPwJIkEV63tok1dGS94b7AlWHokJz6GD6UDx8ivG5dYFl/EISUEFUlHKjnFCCycaPo7fFAtpxlRUWcu9rlOmkjceWV6NkspaefRp8Xa5MSqXn2m4IXcyrOwyj6X1ttago5Hkfu7TCezEa0x1fWCyKRb+w5bRsjU8pglMS6JCdbk1PLLM1F2muzd3axx6hW0bPZulMveEqfm9Awg/GCoQtci7clrcSJ8jxKj0b11LRjBuOGZCjJcNakMho8ObQxnZ9GlUSC6BsfreJtTI0566CaihDZLGR8vb/xG119rtor1l2t6L6WO6OWzpxul/SC6DmVmo/tiIZRMiCKtxIS16y+pu1QSVGI7NnN+T6OveVnnwXDILrj/PYXlRAHqLG1f6t/b6RWFjNRW/tEl8GcSpJEn2mSwb9NyjRN9s/tdwq3qqySjqaZLbrFx/a2l6XeEPrCAma1Wr8GcC3q9RZM8ql2ljNQchpNtxU9E5deyufevo18X4TJN72Z+f/zWUzdozUooCFS7cQkqCqhFaNtsl4QbS+tyqLW4m08FHeYU7NURraY075oH0vVpaYxW4FRXgzGnK4V7v7ViWZlUdpybyYfoO0lyBxwU3c1DDRNk8qzz7ZJes+hM84lp2cD5SxgBqwM14Pv+JAI9q3SJc3QOJo7Tm9CLHCtDd2tGMnC0mC8a1nAdH6akBxiz8gezwo1uMuWqJVIXHEFIKp23UAKh1EiJlrJPVDYbIM5O4+cSLRX8G3m1Kh1F3xl1WE49ozsYW3PWl606kWuhycuEYm3/KR7z1Pl0CGo1Yie75KcyiEORsJs7t3obYYE/oYPja8HRNqUyAZIThuDL8BACrqRBQAAIABJREFUdMAZNN4E57cWv39JK7GQFO+vzVhJT82jbxZI5GrkoqCrzctMvpbHxOxYGYa67buNJbXGZ1/dz9Db/pSlb36Lo9dex9w99zQ56AL1IlCH5LQ6KfrKHObURdbbWhkGHPdghzVJiE2imV+CUAgpFHLGFyyLOS0viuKA3/1jIdIySiVbyRJVosSTI4FlvYBvAK6PknFjTg8TOcvBN6yEqSihjnNOneM3bqDy/POebHqmkmGoFBJzSbtgsRqRvPxyUBTyDz2ENi+UBqpa8k1Ovdx6AcxOst6pKUKrVgZf1zvIeqE5OS1rZWetdZCZwNDE5ymtPac9qyDW75qcRjZvRuntpfATMbvSLl6pjclpoOKttdZXhLLoVP5Um6rjaOYoBiapRA2zWkObnnZ5I4FEKMFIForD3c8MnCpMccHwBcTUGE/O+iiLaoW6CY2zZpZJXnkFUjxO8rp29tEPao/4TbSie9Jt31MOM932BlEq1j3TVfG24V7YO7qX69dez2DMXWXQd9nlrFyAUxP7XV93/BjOb09ONUnhsKz7q4qgSWrcBDXStZs9iB78rORvgHMqf4pMJcPOwTrj660sanezL/Zav52l+vJjTlN5g6Vk+xbcTk47eTK4FT1P9mp8812Xkbr+emY++EGev+U3yf7rvzrFVAcBDZGqJyfFGqQoDbJeb8NA2aXtJRGymNPyIkapVJf1Rl5g20sHPwYQ6g91ZKQpPmbKGdL2fR2weFvUip5JtGZo6Jiuo9a02Vn0bNbVj+Ec/HEuOT0b6Cr41pnTrf1bCcmhturwidwJKkaNsVgVJInqhD9zOrSgkxkIzlzamCpMsSKxgt0juzmcOezZc2bbgYue03pymrz6ajY88O/O7LPAME3UqIZW8A++zGXcK8OhKCaWlGIZPTUAL133Uv7t1n9z7NDbzmH7drRoiOFnz7guSmUXJ0IbpqxyIBxme9+mzucE7oYPja8HRNqALCa6j5FSrppjpjTD1vRW59+G4kMsVZeo6C2f58KcZqzb15Eu+TCnscUKiwnaRjEECb5Oj1CL7CdfyxOLJBi84w7W/ctXie3ezexdH+Xotdcx+4lP1HthI/XnzA+1yRNIsVhdddAi67Urw3bSo/RadvmW1L5QKxBTYygxwQoZhVxdtuRxDYEQULYElunDqVMYVrV+obwgPjvVZXLqx5waNVfmVM8XqE1OEnXpN30hCMthaooaSNYLENl4HsbiIvqcu8xzsbLIYF5GGehftrxK6e0ltnsX+R//GM36HFXJ+zKCdvGs8dlyek69WH8Ltakp1KCSXhD3S4fRQSI5XXTOqW39zJ7AqIltQZshkiQJaa9LciopComrriT/44cwdd0pXnWdnDYoHryKt4czosd5Rdwq3vooiyKFGsky5AY7z99uxXR+mrHkGOOD475tL8VasW7Q1lDQG/zjP2bjt77ZnuR3gJoQ96eWc98M2wUFfXbO3QE4FBVmYnTLnNbvhTsvvpO/v9rbxd/uO+WX7j3B5f3PoI6OtquegGOyRlnq0PICojjrYsCGGus6NgL06zoZ07/Nw/aY2NJfX88GY16eDM2GSGWtTLlP/P41Jz56M6eJXI1Fl9uyU88pCDMht6JnoVogkupl1V0fYdVHPoIUiTD9397DczfdzOK3vlVXGQTtOZ082WwWCB3aXppHrTnPhtXiYhYLTnx02l4CmBK1ocv4WGkgeBbKC6TjQ2J/00V8tPctrbDN7iKm1FZMrjh+DOeY025xLjk9GyjZhg8Bgq8aFg93NUdYCbOtf1sba3l4QdzQm/UqodEhX+bUNAzSC1Vm+7vfcE3np1mRXMHuod0YpuHZ/+rm1kutiCRJRDZs6PpzqRVRozpazn1MgL1hkuezHrKlKBpgYHbXc9rB2a0RkqpS2bGBbcd1JnOTba+X9u9HSaddxzyc1IvkFJntvR2+Gyc5bTkvJzntTtabNgxMCRar3htUmyEditc3DXZ1vK063MKclvUy5YiElEjUe059mNPIUplsQnLYRRtBZUvQzpwWagXHDCl2wQWs/uQ9rL//a8Qv2cvcRz/GczfeRPZr92MqVtQPwJyGx8bq7FSrrFeNYmI6yYU9y80OwAVNsCa22YtZzNeDbwDmdLGyyHX/33Xc+eM7mVicqL8Q0PABLFMk06RmbdIz5Yz47ORIINmSLe/2l/VWXZnTyhEr+J7lynBYCVs9p0FlveJZqzznLjPMlDMMzdWIrF33gs4reeVVVA4cdIyRFLL+sl63UTL2sPolf5ZTO32G0OgK32OaEO2pj1jwQEdZb/YEek08C3YS3YQV4zBzsM6iNCB1zTVC9vzUU81Osl0Vb601oZJn28A2FElpi0uHMoeISwqr+oTcs+IXH08JVjU7GDBOWKjpNWZLs6xMrmTX8C4OZw63rWM23JNTMTIjtGpVV58LIMtVJMVAy7mzgxElgmyYmAsZ1CH3+Fh9gcxpJ0S3bqUaC9F3wH1Genn//nYXewsHTHHvnD/gIvltOqeK+1zlZYxawzTp0zQWTH8JqR0fh2P173UwNuitLGphTsv94j7Qzljrrgdzauo60XyVjEtyGiQ+9kX6KNQKbaOWCppgKiVJoufGl7L+6/cz9olPIPekmLrzXUy86rcp/OfP6z2nfr4NWGPWbLNAFwPHtjngPSmMxUWnmNvEnAJGqYAUq/ecQnuMb8Rjpx/jyq9eyT88/g/NDGtX8XEd1WMTzjllK1mxv0gOB0pOnfjooSyyyYuw3N4jXjlsO/WeY067xbnk9Gygm+AL1sIgNl3jQ+McmD/QNG7iUOYQKjIbqjXCa8Z8K8Pa7CxqzWCmr3unr6nCFCsTK9k5tBMJyVO65Ji+NBgidR0cGlFeQo0ZaEvu72FvmNSFJZ+emi4rw14SIR/ELr6YsXmYONb8vZiGQemxx4m6ORECz1REINvuZ/YA3qNkQstjTvut/hI/ps4Oso1yLfv/t1WHGyRqUGdAQ8PDgXpOw4tFFhP1niwbQQ0foL2q6gS7BkS3b2f13Xez9stfQl0xyvR738v0PfeJFztUh8WMU8ttuWXIOLQPGreZU31xqfl8rGdfz+UcGXpYCZMIJXx/j2OLx5gpzvCdie/wim+8gvc98j7x/ZQXg1eG160Tl2pJl7KVrBg6b8t6O2xAgsh6K0ZNzHFruVe9bPJfKEJyiKqsBholAxDeKHq7K88ddX09W87QP10g/AJNm5JXibEai9/4BgCquRBI1tu4iVR6mu8hN5i6jp7JoA4E6NN0PqxX3O8+PZityWnb+pk9gWHGkGIxdwOhoW1izFX2RNtLiRe/GFSV/A9/1J6cSkqw+7mBOY2pMTanN/P0XEtyunCIzXKCUF8KKR73Ld5WT4jznOsP4GDagNOF05iYrEisYNfwLnRT93QOLmiFugLH/m+XhcVGSNUl1KiBlnW/9yNKhN4CYBgdZb3LZU47nqOiUDx/Hecdq7QVNWszM1QnJoi6SHoBDhhFYqbJ2p61/h/S0mLhIBQT5xtgRqUDvUa/oZMx/GOqHR8HYvVneiguZL2G2fJ5tqzXWl/LWplqv7h/tQ7MqZ7JIJswH2tncp346DMH3E2VY5omhWqhyclekiRS117D+vvuY+UH3o+WyXDi936P7KOnRKzz2WPoS0voi4tixim4FtPbPRl6MWs1zIo4tl68Fedr5PNOfAxSvH1q9ikylQyf2/85bvzajXxm32dEktlFfIysX4+xtIS+sEBVF7Ng05G0iI8BDZHAu3hrF67dktPys4dQV6xwnNLPITjOJadnA8tJTi254fjQOGW9zJHMEeflQwuHWBfuIwyE162nOjHh2UtVs4Lvqd7gMzFBPFBzpTlWJFeQCqfYlN7kKV0q1oookiICnSSJABxw0+j+4UuoMR0tW3S9rogaAdMktJDzCL4xyt1WhrtkTgFGrxBmSaUfPdz070vf+hbV48fpffnLXf/uQHkG1TTZlOhQNW+YvdoEOwHo0hCp35qb6GfAY28kGpPToZj4jtvs8h1Zr8WcamViagx1ZKQefH2YUyWTI5uAUst1BJEt2ZKf1mvJV/OeM07je/aw7qtfJf2617H4vUcoZ1Vf5tQ0TaonBXMKeLoRQj0xl1PinI2cuAaHNYn0AhL6Yg6lwQCqL9LnG3ztUQyfuuFT3L71du4/cj/3HrpXyJYC9NRAPTm1TZEcWW9yRFxTyV9WnAglUCTFlzmt2W6ELb9z+dAh5GSyO/lpAESUCFVZDtQXBWLclJxMUnVhTnVDR84sES5WiZzXQWrf6bw2b0IdHUWbmkbp60WS9GDMaYtpCNA0D7DtnJeWwDRR+rroj430COdsn+9M6evDWFrC1DQqWqV9lEz2BIaUbDdDstFvqUEW2r9npaeH+J495H8kklMpFBIjZkoZwZwE6Z112l7EBn18aJz9c/udVgXTNDmSOcJmwkjRFOG1a32Lt7bh2UyXbca2WeDK5ErGh8aRkDxNkZoKZg3M6bJhF2+z7r9jVImStl7yUhZ1nZx6JYI+UC/axcoMnHzm503/Pnf3x0FV6bnpJte/O2Dk2VYzUDqNddHc52c759nahuL7XiX6dZ1Fo+prwDNXmqMn3NO0rxiMDaKZWvs6HooCphPHS1oJelMQCqHN+jOndlvAbKz9XHLVHDE15utX4aYsqugVNFMT7VctkGSZ3pe9jI3/8QCxXbuY/cYvMTR81wrHqbeNOfV3sweX4m20T0ydW8yhpvubr8GneDtTnCERSvC1l32NXcO7uOuXd/Hk6cdE8ScaYDQVzePWHCd7Oz4GNEQC7+TULjyG5fbfq3LoENHN5yS9y8G55PRsoNvkNFK38d41JIY8/3Dyh87LhzOH2RISD0R44yaMQgF93n1YsW3ocqLHXSLrBdsaf2VipXMeT88+7dqveKZ4hsHYYJ0lbJGzdI3yohjBoOtNc/FsRJQIiTLINd29p0aNULGMf9pkaV5YBnPav+tinl+psOpLP3SCiVEuM/ORu4ju2EHPb7jPdj1QOsOmao1QB8bKkzl15px2x5wOWFI7V/MGC05lOFrfUNuJapt0qWWjVdJKRJUo6vAQmi3r9WBOjVIJuVRhMSG19TIHlS1Be1W1qBV9Z5xKksTgH96BHIsytz/l23Oqz89jlkrNTr3QLFuy7q+SLq7TmRXZEHxjakwYbUV70HMlZ+YjWHb5PrKlmaIIjtv6t/Huve8mrsZFQt6FbElJJlCHhx3Th7qs13p2OkiXJEkiFU75JqcVe45by+8szJC2nPUZbWElTE2WA/ecSpIkHHufa3fszVVzrJoR69oLHXcjSZLDntrjUwIZIjX2nKZSIElNrpat0DPinlH6u2FOrfvFhwF35pEuLbmPkskexyCO0jrj1IZPcgqQvOZqKkeOUHziSdThYXFfBB2zBm0u27uHd1OoFXj0zKMATBemydVybNGBaI9wqvZjTicnyaVUluTu4uNU3kpOEyvpCfewsW+jp7JopjjjFPha+/SXhcqSaHtZcC9qRdQI6bw1pstD1lvumjmtdsWcAqRuvol8FIy/vdtxha0cOUL2vvtI/87tjlNq08cYOoe0PNuq/r2fgJUwu5zTcoq3tTIDumA+/ZKh+fJ8E2sKfvGxuXhb0ktE1RihoaF624tWBqS2xF+bEzF6Lqa3Jcu5Ws6XNYUGSWzDtdhx1i8+ytEoQ29/O1q2QOa5hK+yqNZqFugh63UrvBm5JUzTpFgrimQ51ieM1jTdWYOCMKczxRmG48NsSm/ibRe+DYCFnCUl76btBaEssj+rnpx24Wbvsa46PactyalZrVJ5/nnX+d/n0BnnktOzASc5DVbJEcypWBRWJFdwzepr+NKBL7FUXWKxssiZ4hm2yHEIxQmvF5sBrwBcnZjAUGQm4yX/uY8tcIKvNVJl1/Au8rU8R7PtsrjJ3CSrUw0zVEPxZbnlOSgL5hQaXO0aIEsywwUhkfCqDC8r+HZZGZZkmX99zWqUco3pv3gfpmmy8IUvok1PM/yuO5FcZhuapsnB4jTbK1Uhf/OD1xy3ZUrD+qvi/ebL/smpKqvOggvCXEGWZBdZb0vw1Uqiomsxp6ZpejKntptpNlk31LIRxBBJlVV6wj3uzGnY39xETafpf+1ryJ2MUTrkLvMEqJ6wB4xblWGXIeNtsl6LOdVzLZVhgGgfeqGMkq6vA33RPl/Dh5niDGE57PS1JMNJ8f10YfgAIgBXjx2jolcoakUh602NihcDmj74uvWa7cypaZqiMvwrMHsIySGqkhy45xQgvHEjlefbk9NMJcOYta+MnOcz2ikgklddCYDaZ/3uPslpSA4hITVJ3yRZRk6l0Je8N4b6grjvG++ljrCZdh/HXic5zWbbe05NU/ScGuF2h3QbiUHRF+qRnKauvhqA0uOP19fubpLTBsNAgOvXXs9wfJh7nrwH0zQ5tCBk5JtrOkQEc1o7eardjdRCdeI4i4NR8rVgDLyN6cI0EhKjCfEM7RrexdMzT7dJO2tGjan8FGMpaw0JLU/10gSbOZ1zX8cjSoR+69bxansp28VbN+bRDctgTles3c7nbpCJHjjGwuf/CYAzH/oQckIY1rnh2OIxSuhsrwYoFngyp8toe9FKDFgJtJ+yaK401+ZQ7CSnbcqiluJtrUQsZCuLGtx61WibasAeRbWYwNWTwa9wC+6sY5M3iA8Sl+wlPn4e8weSGFkXoycLtZMtY9ZcZL1xNd7s1puq99NX9Aq6qTvMqV4R+yXbLT1I24udnEI96V6yCrpB42NoxQqkcJjqsQnnt3dkveVsx71sR+bUEPdyqGUfVzl2DDTtnBnSMnEuOT0bKGVEwA4w9gFoYk4B/nDXH5Kr5fjSgS/Vg6+pQqSnLtnzSE7LzzxDcfUgNdls2gB1wnRBGEWsSAjDjV3DgsF1GynTnpxGX6Cs12JOwdNdc6Qovks3tz8UlbL1XXcVfLusDAMo69fy4I0j5B98kIXPfZ75T32K5LXXkrDdCltwMn+SJb0kgq/eoTqsV0AOOeNtHCyTOe2rlZDpzJwORAea5sspskI6kg7GnKpR1KFhzFpNsN4ezKlddFiMuwdf6BxE3RwJnaHeHdD/e7+PHDaYu+9hz2PqwdfqqXGR9dr3ly1dkmIxCIUc1quo1c1QzGgveqGG2jCqJB1pn0fXiDOFM4wkRhzmsSfcIzbSAee42QivX0dlYoKFkhV87cowBJ/l5meIZM9xa/ida6emMAqFX4lNflgJi77ygKNkQMw61Wfn0Beb5bKLlUXG5kyMVKLrWdBuSFx6KVI4jJqynlMft15JkogokaZRMmC5WvrIejWLOW2dEewLe7Pm49hrJ6daJtPu1luch1oRQ1PanXptSBL0r/dMTsPr1jlMhZM4FReCJ6eyIopiVnyMKBHeuPON/HLml/z89M85lBHxcVO5WI+Puk715Mm2tzJ1nfLBgyys6fM0M/LCVH6KodiQI63cPbybXC3nuLnaOJ0/jW7q9fh4NpjT8iJqUqwxRqU9BkQUwZyasuTekxyKObLewMoivdq1sqgn3MNjF8SZ3rOG2bvuYuFLX6bw44cYfOtbmtbARhxYOADA9nKAvYpXQXk5vhe1spOc+sXH+dI8g9Hm5NRpeyl7Mafity7rZUtZNNygLCq7OvXaSqysi5v9UnUpeHJa6T45BRh6/SvQKwoL933T85jqiUmUdLruNu0i642qoufULto4ngxLS81eJbE+9KqVnDYoi4K0vYzERRyzv5O8/fsFjI+Sogj5f4OsVxRvrfhY8I+PvWF/w0BbFRNp2V/W/RjOMafLwbnk9Gygm8owNPWcAmzt38p1a67jiwe+yGNnHgMQsqVIitCKFRAKufbVmKZJef9+KptE1dZrFIwbpvJTyJLMSEI8oGPJMQaiA219NcVakbnSXEty+kJlvUsoUW/mFGCgKPpRXCvDQMUKWsGDb/eVYYDRxCj/ukcntmcPMx/4AEa5zPA73+F5/IF5EXzPr1Tri7kXvNwI7QSgS9MpuVYmLUf8e07L866z64biQz6yJSv42j2n1m+izcx4Mqe2DD2bkFwNkRKhBKqLgUAj+iJ9TVVVzdAoaaWOzCmAkh5kYFuR/L5Jik+494pVJydBkuqOyy6y3lbmVJIklAbWq5E5NZVeTN1sDr7RPt/K8JniGacyDKI6vFRZFL99wJ5TsEwfFhfJnhbrhFMZBszMKRa+8AXXDbyNnoh3curMcUMWyYOF8kFxr/8qKsMiOaVL5tTdsTdTzrB6zkTasOasyI/leJyVH3g//TdeKP7BhzkFIcNsLRwqPT0YPoZI+oIl6+1mJqt9vwSQ9ZYXxLrbVNzLinvHqLqMkWnEwEbP5BQgabGny2JOoUlZBPDKTa9kJD7Cx5/4OIczh1mdWk2ikneYU3Av3laPHcMsFsluGFwWc7oiWXdKtttvWuOj7eReT06bHc6XhcoSaq81y3S2vXhr95zqfUl30yo1UlcWBY15XhJaH0iSxGhyBT949XnIiQRn/vqvCa1cSfq1r/X8mwPzB4hJCusrpY5GbZ7MaWgZyalWpt+S9XZSFnnJemeLXoaBzcoidXi4wZOh5DrjVJubx4iEKIfb921BmNPecC8SUlNsse9xP1mvjfiuC0isKDN/73+0zwi3UDs5WWdNwTM5hXp8rHsy5JyCkD3lQa+Je7FRDeLX9qIbOnOlOSc5ta8rZ19zF/HRVhbZn9UX7XPiozZ5hPnPfR497x5rQkqImBrrKOsNtxR3ygcOIoXDDsF0Dt3hXHJ6NmAbPgRFpH0A8h0X3EG+luez+z9Lf7SfwUoJoj1Iqkp49WrX4Fs7dQp9cRF9yzqgu+R0ujAtKsOWTl6SJM4fPJ9nF55tOu5kXmxo22S9L8CNUBgiiUDhmZwWRHB1ZU6BsirOO3jw7b6nBmAkMcJcdYGhv/4r5GSS9O/+ju/4nAPzB1AlhU3VILJerzlu1r91I502TSFdUmK+wXe+5J6cDsQGfJjTevCNqlHUESs5PXPGmzmda5D1tmzUglSGQVSH3SrDQYIvkkT/DhklGWbuE/e4HlKbPIk6MoIcsZlq9yHj0G5oY7NehVrBMaDQDJGkKi3MaVErts+QtdAoWwJRHc7ZleRId8EXYOmoqNamo2mxzqgxln7yBGf+9u849opbWfz3f3f9ez/mtG740LwRLj32GFIk4unK+UIQlsPUMMWGqJMCwYIt2W117M2Whaw3vPGF9Zs2oufGG4mNWAx7p+RUibSNfJB7e3xHyTg9p8tJTv1kvdbGsLow75ybA8uB16hoyAmXMTI2+jeIRNbjd6knp9baXcoGNi8RJ9WsLAorYd608008OfskD518iC3pLVZPdm9dWeRSvC1Zs6iLG1d2FRtBFG9tPwYQ8S8VTjnKJhttyam6vMJiE8pLqL3WSJLZdlZH9JxCrd9jDVWjVCxlTKC2F8MQsapL5hRgND7KMSXD6F/9JSgKw3e+s76euuDA/AG2hPtRQLjF+sFLarwc5lSrM6e2uqQVxVqRolZsi4/xUJy4GvdVFpmm6RRvQyPDwickX/BmTufnMNM9ILmPWusUHxVZoTfS28Q6OsxpgOIt4SRDO3MY+SKZL3/Z9RB7zFr9pNsNHJ34qNtu9nVPBrsobRdvdUPE7UZW3a/tZaG8gG7qTnxUZIVEKEHOHinTTdvLunVUT54km59DQhJsqJWczv6fLzPz/vcz8cpXUtr/jOvf+3kyOPGx5V4tPvYYsfFx9wLSOXTEueT0bGD1xbD5pcGPb2FOQQx9vmHtDVT0igi+lZzz8IXXraM60R58y/uEtb28TTAX3VSHp/JTTr+pjY19G5lYmmgaazO5ZAXfnobkVI2+YNmSEpaR4jHXyjBAfw4qcRU51l51BChbieavnDmNi56jhcEw5/3oh4y85z2+xx/JHGF9fJQwgB6g59S1p2YZGxxrgexXYh17alorwyCkS209py3GE07wDcCc2rKlJQ9Zb+DktKEy3FSJDQA5mSJ9yQoKP/kJtenptterJyebg69PZbixb1bu6cFYymGYhmBy7eCri9+tlTkF90HjpmkyU5xxKsMggmDeZo26kvXapg9CdpiOpoUEMzlM9uFDhFatInLeeUy9451Mvfe9GC2yOr+eU9uwIyI1B9nCLx4ltns3crj7ok8nhJQQVSxmJWBiEVq5EikabXPsLZw5RbIMyc3bzu5JFufFhr7DZrB13AKA0tPbITldQI7HfTf6bXBkvd4yOdv9t5pxSU4zFnNaqtSlfG7o3yASi8X2cTIA8T0X0v+GN9Bzww0ijlUWoaeLea0u8fHWTbcymhilolfYnN4k7olID2o6jdLb61q8Le9/Bikex1gz2lVyapgGp4unm5hTSZLY2LuR5xabZb0ncieIKtH63GhZFvfEC2VO02J91FzaXmxZb6XP476zmNOwpDS1b3hCby/KBcVoYpTThdP0vOQlbP7Pn3k69ELdaXlLxIo/HeNj2T1hduJSN7LeEnHTJCKHPIu3ttzXLT66zjpt8GSoGTV0U3dRFrkzp/rcHPSLZ9FNWRQkPvZF+ppivZOcBmh7IZIk1l8jfv5aMRe8hcU2NY3a1FQLc2r9Xo3xUWlue1Ea3OwdWa/1PelGe3z0a3uxnezbirfVZcZHTaM6eZK+SJ9wik6OYNQkln70OPGLLsKoVJi4/XbmP//5tr8PVLxt2IvquRzlAweIX3JJ4HM8h2acS07PBq68E6798+DHR5JQzbXJWt56wVsB2Dqw1TJEEQ+6bZdvtsz1Ku3fjxQKEdkkxiN001czXZh2+k1tnNd3HpqhcSJX33S0VYbBMkR6AcG3LK5NHRzyZE77cgb5Hu+NWcUKpMF7TpfHnNqGGKcLp1GSyY6ywOcXn+e8pG29/gKZ0656akRwGAglPXtqdENnobzQ5NRrYyg2xEJpodnwQ5atQkSLbMlis2s8iPM5AAAgAElEQVQzM97M6fwcSm8voXDM1RCpkxshWIGrnHUCp118CZqcEk7SuyMFpsniN7/V9nLthJdsybsyDDZzulRPlq3NgK5ZsqWW4AvujoSLlUWqRrU9+NpFpi4qw6GVK5HCYfTjk02fW6kMUJxYIv07t7P2S19k4I63svi1+8l8+Z+b/t6W9bqZqtmsb6jBjVDPZqk8+yzxvRcHPsduEJbD9eQ0oLRXkmXCG9a3Ofbqz08AkNy89WyeouiljA90HJESUd16TlMde067cuqFQG69ciIOoRC1jNjUNst6T0AsjVEoInu59UJHx15JVRl5152C1cxMiH9Mrwt2DeCqLLLZU4BtqTX144DQurXuxdv9+4lu30YikqKiV3xHiDRitjiLZmhNzCmI4u1z2eeanpHJ3CRjqbHmJPAstL2o/VZvsEt8jCgR0jkop90Lt/aotagUkLFxaWcIitHEKHOlOWp6zUlMvDBbmiVfy7PR7ulcbtvLMplTCRhwMdmzYfeUuimL3JPTOnNqJ2dRNYo6bMlFZ2Z8ek7nkQfEGt24bzNNk1w152sWaKPVk8FRFoUDKIusY/petIna5CSlxx9verk2PQ26XjcLhIb7xFtZJIVCSPG4YE5bemA1LQKSKO7a8Gt7sZPTxuJtMpQkV+0+PkbWrxPnNznlFIxJDLF4IoZRrjL0jv/K+q/fT/KKK5j53++n9FSz94pfclqxZuc2JqfFxx4DwyDu4U1yDp1xLjn9v4FwUsyjawlgm9Ob+exLP8vvn//7TaMkwuvWYVaraC3sT3n/M0S2biWREFKKfMCZgLqhc6ZwxpU5BZpMHyZzk/RGepsXy1Dshbn1VsS1qUNDrpVhgN6cTr7XO7jahki/qiHjNhqT004oaSWm8lOst5PTIG69bsFXksRGocvgC9AfSnoG32wli27qnrJe91lu9Y1WWRfMqRQOo/T3o52xmFNJaTMD0+fmUYYGiYfirsxpkOCbjqbRTI1cTVRKbRMvt+TaFZEk4USN+EUXsfj1rzdtKo1yGW1mhvCahuTUbch4S08NiMTCWHKpDFdFP6aSrG8abbt8t74az8qwVhRpWRc9NcL0YQ3y5GkUSXHcmDMHDCQZem+9FUlVGX7b2wiNjVHav6/p73vCPeim3lZIAHer/OJjj4FpkvgVVYbDSpiqaY21CjhOBiCyYSPVluRUmRDO5NFNL2zGaRuK8x0lvQAROdIm65Y79Zxmst1JekGsJUrYV9YrSRJKXy9aVtyPrbJeI7kas1bz7zl1ktNjnc/JPia9vvOxNlp6Tm28ctMr+eg1H+WK9HbxD1Z8jKxb1ybrNWs1ygcPEjt/h7M5Dlq8dcwCk+3F22wl28S82clpE87CqDWlvx9k2dUwMGzI9BWh1OtRmLVGrUWlDnNEbWjtipGgGE2MYmIyU+psumbvKzZErPjTUdbbqXjbhWGg9Xv0R/o8i7duM8BtdGJO7eS0mTk9I+KjW8/p/DyhQfE5jWtuSSuhm3pg5rQxsZsuTKNKaqDYaienqR0jyPE42a9/venl2mSLWSD4y3ob42MqhZ5zKd5WVZSo1DTlwK/txR6z1hgfe8I95O3vq0s3e4DIqTmncGvKCpnne4msSBLbtQs1nWb0fe8DoLRvf9Pf90R8lEUWCRFpKNAXf/EoUjhMbNcFgc/xHJpxLjn9vwGr4us2APni0YuFJK9F1gvNfTWmYVB+5hliO3c4D3+rPMQLs6VZNFNrY0439G5AQmoaJzOZm2R1cnXzG5yFyjDRXkKjo9Q8TFpSSxqLKe/ktGIZs3TFnC7TEAnqiYQfJhYnMDHZmLLmuwWS9XpsCELRZQXfgUgvJa3kuhGzg6urIZLlSNhu+hBvm3MKWHb5dmXYzfBhDnVgkLgaX7ZsyXYktCWxT88+jSzJbB/Y3vFvARGAq3l6b30F1YkJyg3V0NopMSstNOZv+BBTxLU1OirKFnPa1lNjW+XH6kxaf7S/6RoaYQff1sqwZurC0KQL2RJAeN16oqfm6Y30IksyRqnE4tMLpNZqTa6vka1bqBxs7i137PJdAnBdtlRPTgs//wVSNEp0586uzjEompPT4O0KkfM2UpsSLsL/P3tvHiXJXd8JfuLKiMisPOvsq7r6rtYBEi0kDgMSkgweYMB+xjzDLmCvvW/27ez4wbCLjY8dGM+Mx7OeHcN78Ob52PF4MPZ6vfa83bUxCAGyAUkIhNDR3ZL6rL7ryMo7IuPaP37xi4zIOPIXkVld3aY+/7SUlZWVV8Q3vt/P8aVQVlbRzQsQZsLf+7HQXU9M6vWeU2QgUhlOvx+SV1NYGxvp1sgAZKgllxLTegFArFRgb5L7BJrT5mXYCqkJsatkAOLVkvKJoUgeMjGnU5GfucALeGjxIQh0WEGVRUtLMK9ehd0bHKP6mTNwdB3K3Xd7HnVWaa9/x6kfw8Nbx3FwqXUpqCoCxq+PegNcvgJxfj4yxIyGzbXLMfVMVNDjOMiszakVHsqxgtpeWIa3Zxvk+3JIdZuNkfWxPyIwMMV77DZP00otnjlNqo/5CNuLjzmlzRlhTn2yXrMXYk4d04S1sQFphpz3/bWasnNZbC8/XP0hjtWOBRO44yCIgKiC5zQU3/lOtL78t4Hjp+/tOPUzp+7nxYfT7P0NtlAqBYa3/vooyEFlznCN9+NG9wYETvBqKOAOb60eqe0Cu5dTKJch1GooXG14j6e98AL0dQ6VeyueIk6cm4VQrUI7dTLw+4nMKVUW+YYQ3aeegnrPPelsGTsIYKc53Q54u9xi9tzZFpH9es0paXZ0n6+mf/4C7HYbyp13eTKODqP87XKbXJgPM6eqqGLP1J4Ac3qxdTGm+I4j620AchnykcMwrlwJpaQ5to1Cs49GMf7rqbknplSe0wyTYVVUUZbLTMWX+pEOlV2WgGkyHDf9TunrpcxpjlzQRhVgOvGPmwwDETH7vs+aynoBchI3r18f7HEbfjrr6xCnp2OZU9bJsP+1PLf6HI5Wj3pM5UjIRUBvo/iOd4JTVWz+1V95P+qvDO04BSJlvZIgQeTEIea0DKvVQrc/VHx7NgAHgjj43KmEKIo5jZoMe3H5PJdqMgyQ6fDUjTb29cljNP/my7B7JqoHNgODDmX5OPoXLsDuDj4Xb9F4RAGme9z8aYTdp59G/nVb4zcFXFmv7TanKc41OTesTD933rutdLmBjYX8RJJ6A2BkThVBCct66cqFGPbUqtchVlPKegEy0EiQ9ZK/HdOcdtZg84St56cSmlOOI+wpa3OqVtMFBkZ4TgOgr4/WR5rYe3FgR9HcMCT1rju945M1k+FKJ7gDnOJwhQRu0eHtam8VmqVF1Md89ubUcbzBtHz4MPRXw3uaaRJsuxSzuk6QoHM8FBa/KRC/b5sBaZRFZzfPopQrYdo9r48dGJhqz6lbH5VaLHO61lsDz/Ees+bHjDqDjtEJ1jJfmr2fORWmCuALBRhUWTScZF+vA44DZS7cnFI/JWtzuqlvwnZsmLaJ59eex2tmXzPy9zy49bH8vvfC7nTQeuwx70fGpRVAkiDODwanUavvopRFJOytFVYWaYCQs4KvIcH2cqN7AzPqDPGHupjKTaFl91PXRoDUx/lLHdQE8t7W//RPwUkcygcG8nKO46AcX4Z+Khh8xuI5lenrbDahnTy5I+kdEzvN6XZAdpvTOEbA09STg0icmwOnqjB8zKn2Iim+yl0D2RIrcxo3GQZIAabNqWEbuNa5FgxDAkjDMk4aoSvrpV7Z/quvBH5sbW5CsBxsJCjLNIGcsNJF5WebYi3kF5iLr8AJWKQyLyZPTfz0O0vxnXYnkVGhD0myJY85jZoO+9IIaTGS5uZhrMYzp9baGsTZGRSkQqD42o6NttFmKr4e66hvwrItPL/2PF47m0Im43rXhKkCio8+guZf/w1sXYdj2+g8QfafBjynEbJegBRgP3MqlIqAaaLTIk2z56npmhByNjhjMHQq5UrgwCUyp/S9p/cHgBbPp2ZOp97yYwAc/M//2zmsfeELqH/pS8jtnoY62wfaA+ZfWT4GOA70l18O/d2oAkwnw3Qib9br0E+f3tLiKwkS+o5J5M0p1snQxN6+m9jrOA6mr3XR2pOShWRBdx0ojGZjZSF6lQwA2DG+U7NeTy/rBYgUPEHWC7iJvW5T7ClPHAforsPmyEk3MRAJSNx1GkD9XDrWFIj0nAZAh7rDyiKf77T3wgvgi0VIi4upZb1X2ldQlsuhIdiMOoNirujVR5rHsFhcDD6AqGRPs++3ieXHrY/9V8/AMYNDTsNtTpulGOaI46ALAhQwDmPGDEQC2JrTM40zRJ1Fh8RJzKltkeY1KTAwzQDAtSFNq7PY0DYivfVrPSL59DdDFJHDW1+aPT2+qdJmoCzqReQxkMdQ54hKwX/dlqo5lauwHAutPtm/2zN7KesjUSjk77sP0t69aLjSXrvTQffp7yK3ezc4wfdeRKjP6LA6UB+LMcqinglB6pPP1kXS8Na/45SiKBXRso3UtREACg++DYtXTbzrU19G/c//HM2//huU71mAYATl2vKxZegvvxw47kpyCR2jEwgLpei71w05ep7xLC87zek42GlOtwMecxpTgOnFhXsAchyH3NIStBdfGtzlhRfAKQrkQwehCAp4jmf2nFJPDS0sftDEXsM2cLV9NbhgnEJ02bRRe8rioDXJZPgoSRnWXgk2p3QyXJ+Kf3ydEyA4wZCWRFjZApGAQSLhKJxtnMViaRESvahhCkRKYE7TXOAYA9kSEB2XT2VLUWmE9LZIX41BPCEOHB9zOgdrbR2O1gkVLLvTgd3tQnBlvX7JT9tow4GTijmta3WcbZxFx+ikmwznpjyWpfK+98FuNrH5p3+KlV/4BdT/5E9Qes97gqEzEbJeINyc0kCHXp28V95kuGsQ2VJvUGhFXkRJLsUW35pSg+STy1IVRJPnU0+H869/Pf79x5Zw+fgsVn/3s9Cefx7Vf/RWktfTHnjC5GWSWqv5psMssl7ZVSl0v/td8vfu37okQsromUC6Xaf79gGiCP1V0kBYa2vI92zoi9H7kjPDMkkqLovnVIxYJVNyVy5E7Bi0ez04vV76QCSASdYrVCpAk9QKjznVNgHHgg1yfCd6TgHCnNbPBy40I1E/n85vCpDj1ujGP/ZQfaTMqfaSvz6+COXOO8HxfCbmNGpwy3FcYHgbGRYIjCfr1QassHz0CJx+H/2LK4G70PrYKCUoi3gessPYnI7BnOalPIq5IlN9PNc4R6TRVI6ZVB9jBoXktizMqes5zc/CdMzIIdx6bz2yNgKDASINTSLPwxeI5H7eqjSoj0RZFGZ/aciVNDsLVVQjmVPWTAaA1MfnVollJX19bIHjeZTf+150vvMkmn/7FZz9yZ9C7/nnUf3wfxu8v9UPZUvQZnw4MNB2AwNlQfb2mVsdA4JsB85PHnMaM7z1q4oAN80eFpwMzWnuwz+Dz/wsD6eYx7Vf/w04vR4qD95JBre+a1nl+DI57nxKRW9o3A+fr/vu9U3OTW3vPvU0WbH22h2/6TjYaU63A6NSFb3J8OACvvQTP4HuM8+g9fjXAQC9F16Ecvw4OFEEx3GEoYoIM4nClfYVVOVqpDzyUOUQTNvESnMlufgC2dlTvQEoJUh79oDL56G/PNScuifv1Xz8hU+P55CqlFrZPKeA25x2GSbDm2Qy7Hkysu5xA8jtGYrvtFtEo5jTtd4aVFFFXgx/7nkpj4JUiE4kNLVAGiFAii8cB2ajHQp88CSze/eEZL1pii9lTut6HT9c/SEApJ8M623AcZB/4AGIu3bh+r/5LXSf/QEW/uVnsPu3/21Q6hnTnKqiGiq+AKBvkvfYC3xo9Ujx7QULLU0dHsbwGhnAJ+vNFYCICf4ovFLs4Hu/9DD2f/G/oPbRj6L8vneTH/iYU2nPbvDFYsBXkyTrpYEPVNbbfeppcKoK9a7J7zelyPHkM+hzXKrmlJMkqHffjfqXvoTec8+h57LD1tKeyT5BOoBglPWGmFNP1htuJAc7TjOwvUp5tKy3UgHf7BBpIbVFdMkwy7LJ/yd6TgGgdogcL43ozADyYCZJAE7LnI6sj7SBK3rPdeptb8PGH/8xjKtXYff70E6f9r6fnrKI0XN6tR1Osqc4VCHrZBzHwUprBQInhIKTxkqzpxfuPmWRX+EAkPpo8UAjJqwXADROYK+PtEncwvq4oW1gQ9vAgfIBX31Mak6jV5QFbkuVZu8ObwvkfBtXH6NURcCAOQ1kMtC1QWYPPcutjzSTYW52wJwO10dXfi7t2Ru6bkvrOQWIsui51edQU2rYO7V3xG/54Mp6AaD8vvcCjoPLv/RLcEwD+//zH6H2oQ8F72/poQFGpKyXZjIYHe/YcxwHVluDKNuB4e0o20tUc2oB6DG8P8PY0DbwwhKPq5/7OHb/u9/G7Mc/DvXOO8j30Pec5GMk1V3z5TIkKYv6Rhec40B0r6s6Tz+9ZSvWfpSw05xuB1RXrtWLjtAe9tQAwPRHP4Lc4UO49pv/0tuhpNx1l/fzglRIxZyGCqoLGvrw6uar3kqZSE8NkG06bNuk+VbK4Hie+GpimNMbhfjmTud4KKzMrW2TRjHDZBgggTUNvRFgz4ZhWAZWWiukOaXTxVGy3oiTvYe003e3+FbzpIhGeU7XemuYVqZjvXez6mwsc0qLD21sxXk39KHeDgU+0Ilj7sCBUCBSGtmSKqqQBRl1rY4frv0QFbkSltAlITcFOBZZIyAImPkn/wSFN70JB/7iL1B9//vD70NEGiHgMqeGX9ZLjsv+Jmk4PdlSqwtBtkJ7JityJZVsCQBaMuO6HB8s28KmvomqUkX+xAnM//InIcy5rFVrcPHIcRyUY8cCvhomWa87lCJ+09eB28LiS9nkPselvtDf87//ewi1Gi7+d7+A9b/8CwCAeGBpsk+w617csgQiCeG03oGsN/x+m25zKmZhTpXSaFlvpQLOtKD0fbYI9/XYFvlME1fJACPXyQAAmpfJeTdtc5qhPs7/+q8Bto1rv/mvyLDTMLz6mCYQyXEcXO1cDflNKQ5XDqOhN7CurWOluYKFwkJYvSMp2dPs6WtTypAPHQJ4Ptyc3lhFuyhBs+OHlzrPQWUVNkWsCEmD+fw8rneSAwPPbrphSJVDg7+TVB89qXHCntNUafYkG6HmMqNRvtN1bX1kcxo5vB3ynAKAND8PY3UVTj+8SqZ//gL4fB7i3Cypj0ZGWa/bnG5oG/jh6g/xmtnXpPPV59yVhiCKk8oHPoDyT/0UDv7VXyF/333h+5v9EJMdKestlWC32+jobe96wel24ZgWhJwdqI9xtpeO0UHH6GC+ED28bcqMuRM+0PComjqD8nveg5n//heBKbf59Q1v5YMHwEkS9NOD5rQsE6VLpLLI7EF2HHA5dctXrP0oYac53Q7QPUu9MJsCYMCc+lZJcLkcdn360zCvXMXlT3wCTq8H9e5BczolTaVKI4ySLQHAgfIBcOBwZvMMVlorZMG4zxMHYHCyzdKcUk+Ne2EhHzkcKr7aqdOwciKu5eOLl86BvTkdI40QYPPVXGhegOVYbvGlzSlLWu9kmVNZLqMoFaOLby+++AKEqQw1tUPFd+A5JSd1YzMciNQ/R9ZH5PbvD3lO0xRfjuO8uPznbjyXvvhS5YE7Ha5+4Gew+Id/APlgjMwwYsk4EGZO+SL57prNoea00YSQc0LHdUWpxAY+RE2GAaAVsRtvFJr9Jhw43kULeXIzALiArBcA5OVlaC+/7O1OLkgF8ByPhh5m8vyBSObGBvRXXtny5eLU35qWOQUAaWEB+//zH0Go1dD7f/8GbQUoLEyYOfWaUwZZrxDec0ql4cOBSI9deAz1a+cBIJvnVC6zyXoBFHs+WW+HXHTbFmHrEwORALbmlCb11lLKelnqIy8GvHy5vXsx+0//R7S/9jWsfu6z5GHuIknSVCHEMrzd1DfRM3uJzClAhrcrrZXw4BYYLxDJk/WWwSsKcouLoeGtfuoUNmeVyPUb3sNwHGTW+hgzlGMFi+3FS+ot+2W9CcqiJOaU58k5OlVzSta20TVkw3XOcRwyvI2R9VbkCjhwEfUxOLz1lEWzc4BhwOroYeb03DnklpY8xZt/8OnVR8Y94AC59jjfPJ9OVQQMlEUudn36X2D3v/5X3uAshAhrFH29oUwGx4HVag7yGOrkWB5WFsXZXqLWrAED20s7Q32kfyNQH6fc5tfXnHKShNyRwymY0x4kB4CobPmKtR8l7DSn2wGlDICLnwzTiws5eILKnziByvvfj843nyAP42NO81KeeTJ8rXMtljlVRRV7i3u94ru3uDfcEIzDnOpBv5By9CisjQ0vJAAAuk8+icbybuicBSvGd6RxHGQ7ZfHNyJyyNKc0qTco6x3Hc5oydIpO6iUFNTU6Lj9JtgQQaWeoOaHNqRWcDNMUP7MRDnzQz52DuLAAPp/3ZL00gCKNbAkgDfNKawVnGmfwmpkUfhpg4O2O8IlEIoZBUAU1mNZLJZnNBjhwUEWVyJbqdQgFKcScVuVqaNG4bunY1Ddji29LSv9dpX8jkDYpSKSBage/u8rxZTjdLgxXYsZzPIq5YnTxpZ5TMY/u08RvWtjiyfBA1ovUzSkwaFCdPfN4dReHqpqBhUxCmubUXSXjD2ERiuT7b/mY07XeGj72jY/hOye/Qu5TyRiIZHQSL/xpczrlb04pc2q665BGeU6Lu8i5K7E5pTtOl5ieuodRzKnWJLVxqC7VPvIRyEePovPNJyBUKpD2kAFsmsDAuKReCprYe2bzDFbacc3pGGn2Q/VRPno0MLy1NjehnTyJy0drI5rTNMPb7HtOARIYWNfrgXPkMM42zkIVVVJLmWS9IxpmMeWudYPUKWoVGR7eNvtNGLaBGSW6Pgq8gGKuGF8fzZj62OPDzOm5c97eTVVUQ8oiVVQDOQRxoE3WNy99E0BKywvgrVpjhtUPXUOJvAiJl4ZkvdRPP2hOPauCbEfWx2HmNGrNGgCUJNf7maU51aKaUzd3pRVk/pXl49BOMyqLXOYUooLO01u7Yu1HCTvN6XaAF8hFRArZEsXcP/84hOlp8Pm8l1IIsDOnbaMNzdIwp8YHhByqHMKZzTPRO9yAbHvGKLTgaxv21Zhra9BfeQXtu8nJO64Aa3CguKzPSIyRRgiw7XI7u3kWHDgslZcmyJymmQzTSbOKaWU6Oq1Xiw98AMh0uNEfLr5kMkynu3RSKlSrgCTBbIZ30fXPnUfuwBIAIgM2HROGeyGShjmlz4mGPbx2LsNkGEheS+FHkqzXH4jkNhZ2s428RFaUOL0enH4f4pQSy5z6m5OoNTIA8SyJDtASGYO+fKADiUDxBYDiQpg5pb6aU8HpcFJzKuVUdL//PVJ879w6vykwYE4NqZD5Ql9aWMD1L/wKfuenotdDjIUUzSn1oVEGGgA4UQRfKMDypfW+tE4CfXpr5EJJrGVpTkf4NeFnTv2eU/J6rL4D8Dw4NcHQCBD2qnoA2DgXf5/6edKIlFKy1iyy3ojayEkSFj79LwCOI2FIdHchL0IRFKZVa7Rpmc3PRv58WplGKVfCszeeRUNvRNsM0g4W/fAG04P62L940duH2/nudwHHwbXjs4nNqQ6w18cJMKdA8i5wmsfAcRybrJe+f3ED5Sz1UVRQkSvgOT40vKWfe7b6ONhz6l+1BgBmTwgwp7amwbhyxWtOQ5kMRouJNaV/SxEU/ODGD8BzPO6cTnlO9nlOmRCzlz0yzR6A02wNwgI3o5lTINr2Elcfp9yhZUti33FKEd2chmW9AEm0t9bWvPwTL5MhMjBQQ85xAElF73vfh/ra1+74TSeAneZ0u6BWQhMkDxGBSBRCpYK9n/1dLPzLz4Dz7ZsqSAWm5pRefFINfRQOVw7jQvNCvGwpS5Q7RcRkGIAnXeo+/TT597VEPhVXgHXOgeJYo9MigbGZU+p7SAp9ONs4i91Tu0lx4jgiOxs7rTdLcyoTee5QWq9hGdjUNxOLbzlXjp0Me1H57mfP8TzE2RmYLSPAnDqOg/7585B9xRcYrHFIE4gEkEJiORY4cLhr+q7Rv+CHx5wyFuCIJeMAec3BqHz3uGy1B2FIdDJczEdOhnVLDzxG3GSY4ziUHKCdYsE4BZUO+5eWAyAFeKj4ykcOA4IQaE7LuXJk8dXd75YsFtD7wXNQ77oLnJS+eU4DjznNKemm+0PY5LrQc1zi+S4TaHPKwMhSdnKYWeLLJdg+We+pDfJZGBvrgCB40t9UoE1bgrSXNqcljfOSNNFdA0QFdq8PvlBgk8+P2nW6cQ6oLKYP9qI7UZPqY0ySdf7ee7H73/4WZv+nfxq4vSAVmJhTev4r56K/LzSx91uXvwUgIo8BGDCnWdLso+qj43jp090nnwKXz6NxcDaRqdQ4B3La4e0WKovONs4SVRHgG94myXppw5xUH1PYXtx93AIvoCJXQsNb6iVNUhaV5Yjzo/tZ98weBE7w/MeSy5waPSHAnPYvXgQcxxveDgcise4Ap6D1MdX+b4rcFFFZpPmeRLDrqhAdGIh2d8Ccbrr1MRdmTqNsL3HNadE9pFp8huZUryMv5oO7neUiuZ4dro/LdHhL2FN6Poiy5/RN0pzaJk+C2O65J/Vz20EYO83pdkGtJsuWOB7IRft+8idOoPyudwVuK0gFpqh8enJNag4OVQ7BdEzolp7MnGZpTr00QnIBIkxPQ6hWobnMaefJp8AXi7CPkPUAscyp4xApBUuBSgpXYEBOyKGm1BJDH840znh+JACkwUmSLVkm8d7GFd+0oRr0s5BUTKth5pT+/6ji2zN7wbUXUp6k9fZJAfWYFgDS7BzMdvA1WOvrsFstj9WngQj0wpA2p7RojQKdch6uHvYkr8ygF7Cs0+GIJeMAmQz7iy9lvbh217sg8Dw15WLkZBgIJhLGFV8AmLJtNPkU3hoIg6wAACAASURBVFoX9PFDjdjUQki2xMsy5IMHoPt8NXFycMMdeklcDtrJk1Dv3fri6wUiSSrQzyiRxOBiIsQmj4vuBrm4Y5CXUbXB8DoZoVQOyHpPrpP0ZGezSUKL+AzlmeYUMDCnVV0cNKHdDSA/A7vTGb1GhqJ2gEh34y5u6+fT+00Bn+c0oT4mrJIo/+N/HLpALEgFJuaUDm9LCWucDlUOebV2bzEiHVVSybl91HAyClrD9dOS84qnLHKHt52nnkT+xAlIshpbGy3bggFAYRncAslrWxgwqjlt9Vu40b2BgxW3OaWNxTiyXinlqjVzEEw0rU6HZL0s9bEkl8LNiU/Wq4jKgK2fIY9j9vgAc9o/dx4AAvXRTyo0+81UdY7WltSSXmBAfjAPb2OaU0mNXLUmtHphWW8hF5lmP1x3rneuo5gresNwiqI78GllODduapve++WB44DifJg5PXYMALxEe0mQUJSKkcGGfauPnONAO38NME2o9+yskJkEdprT7YJaTQ58iPDUJGE4eCYOVJaSVHyprwZImAwDGZvToKyX4zjiq/EX39e/HrKbxhbLnMKGYjts7KIZ7SVMg6TQB9M2caFxgYQ9UAi5EXvcKNMZ85wyMadEMlVTatjUNwMLo2kxjvPUAIOmJsCeup+15l60+dfQiHNzMDpOgDn1wpBc5pQWJz9zWpAKA8ZmBKgcM7XfFBjIelk9pxFLxgHSkA8nNQvlMsSWfzK86d0+fFHtRf77JsZec1oYak4dB0XLRDtN8JOLWFaaMqdDTI485KupKbVIObjufnb25R5gGDdlMkxlvbqoZPKcUtT1OiReilyfNBa660xJvYCPOR1eJ+OuXKA4uUEuhIRGx2sgU0NhYE7L5DivaD5G0309drsNvsD4XtUOkvNO60r0z+vn0/tNAdJESPmE+tiMVBUlgZU5ZR3eUiTXxwxDFXcHOK39uf2L4HI56C+/DHN1Ff1Xz6DwhgegCPGBSPR2edQqMwprTGWRq/6Iq4/nGqQmePWRSdY7ijlNGRhoaF6TGBX8x8ScRiqL8h5z6m+kuFwOQqVEZL1+5tStj7LbnEYFIqVhTqlKJtV+Uwo5pbIoxoY0XB/p+UVq97zzrrW5CfA8hGK4PlaUCja1sO1lWFUEAEWTfKfbGTqXVr8Vfd07FW5OhXIZ0u7dgUT7mhpWpAHkeMvBQe/UeQDYYU4nhJ3mdLugVEZ4atLJ0GjxdUZIiViK71JpCTxHvhoTL7705O6bfMtHjqD/yqswLl+GceGiV3yBsBSOQnMsEvjA0sBZ43lqAOI7jSu+l9uX0bf7ZIcbhTBC1rsVsiWJSIppIqE/hIdVtgQMN6ekuPTc743ie77i/DzMbvA16L41MsBA1kunw81+M7VsCcg4GaYTaJ01ECm8ZBwgk+Hh76G0uIjS9U54MjwzT9a2+I7DKOb0evc6VFEN+4tMDVO2jRYYpVY+tPttCJwQmjZjaj60yw0gvhrz2jVvdQm9aBs+h/RNssetf458h9SbsFycynoNSSHSs4xo6A2StJmh2U9Ed53JbwoMmtPhxF6hXILtek4begOX25cxn5/HVNeCU0m/x4/8MdqcxjOnnCiir0ooar73pLMG5Kdht9sQRq2RoZh3PW5Xfxj+Wa9O5HvVDMwp4NbHpOY0neSZddVas98cOTyjw9tpZTpaSjnO8FYPssKcICB3+BD0V15B5ylieck/8AbIYng9EQUdgihJslk/zPEyGRRRQVWuxtpezmy6YYGVNLLegU0lEmLKVWt+5lQJM6drvTWSHJtwXRTtOR3YXvyqIgAQZ6ohz2n//HmI8/PeHmEaiETPuWmbU7on9ObURyNywK+ISqA+irOz4GQZtdW+L623DqFcBleaC6w1A8gAum/3Q7aXKFWRbPaQsx00nQz10WhHK7am5kPKIsBNtPfZXiK3GQAwXOa0e/IspP2LELOkrO8ghJ3mdLuQJOvVW4mypSgUpAJsx07cxQkMmNMkD5YiKtg7tTd6wTjgC0TKEPowxJwCpDm1u11s/t9/CYAUX485iZX1Wq6sl4U5HS+NEEheNE6LbypZ78ji68qWmNcBDPyr1FfqP5HS5jTRc0qb036YOe25rJy/8RFnZ2AbPGx7cCHXP3ceXC4HaRf53tDJKfXVpC2+hyqHkONzeP1ChnTYtIFIMXtnVYFI6GxfQZQPHULteg959/3wmNM9hwlT6zu2aYPtHxbQ4htqmrQGSraNNhgleT7QpeehxyyG4/KBga9Gd9nTmlKDaZtoGcGLlb7RI7KlM9ch7d3rSda2Et4qGTE3HnOq1b0LuIkiS3M6dC7jSyVvlQz1mz607yGUukC/mD6NEgCTrBcAtIKEUs/3PemuA4WUst5d95Dz3MpT4Z/RNTJZmFNg4vVxSpoKePvi0NAbsX5TCnqeXyzF7Fym58isgYFDjbdy5Aj0l19G96knwZdKUI4vR64noqC3K6yy4jGZUyBZWXS2cRY5Poc9U24wFpOsd1R9TLtqbcCcTqvTkcxp0g5wgNTHVr8V3CDgBiL1jB7UodR6sVqCMZTWS9fIUOSlPGzH9s4NrX6LOY8BIIOSfcV96fZ/UwytWhsJS4+W9YrB4S0nCBAPLGHPmhNQFgmVCjkfbF4I/H7c8DaqOYXWwJSTrT62jXZ02FQEcwoAyvIy+ufOeWFkscoiu4+c7aD34mnkd1jTiWGnOd0uqFUyWY7y62iN1LIl1kXjLMwpACzXlrFYWgwvGAd8q2SyMKfN0I46+Sjx1dT/7M8g1GqQjxz2ppCx0iXHJMwpiy9zEsxpYQEdo+NJJ/2gO9yCzGku+x43YFDQkqRPw4/nPlZUXD49qY4KRAKGTP90j5n7uv3MqTRDmi6zPfgO98+dI1I0gUgGo2S9rGmEAHBi/gS+/cFvR3u7RiFtIFLEknFg0JD7C7B8+BAU3cZsm7xOq14HOA7CHuJV8dZoYFB8/e9r3GQYWpN4Tm3Gz92HttH2zgMBROxyA0jxBeDtc6Pfm2HpUsdoIe846L1y6aZJluh5py/KY3lO13vr4YCoSaC7xhSGBJBVMkCUrLcMq0WOK+o3fWjxIRR7QLeQPvADwKA5HbHrtFcQMdXzDb66G0B+Glanzd6cSgqw67XAytPhn9EU38zNaUxgoOMMVsmkQF7KMzOnSZYXgDBvM+rMIOBnGGMzp8HmWD56FOaNG2g9/nXk7389OEGALMgwHTNg3aCga79kk7E5NcfLZABIaGBSc7q/vH/ARnuy3nE8p2lXrfW8x6opNXTNbmCQP2oHODAY3gYSzd1AJM3SoArB5lSqFWF2B8yp4zjQzw+S7AHfmiODsKdph7c/f9fP47++979mU4akXbUWJ+sVw7YX/sA+7F33Naf1TZLwX10C6hcC173DthfTNrGurcfWx5Jlo5WlPvbbKETluEzNk3PN0LBDXj4G2LZnOYtjTjuWjvmGA2ujviPpnSB2mtPtglohoQlRJ4aENMI4DMsn49DoNyDxUlj6N4Rfvv+X8bm3fy76h7RByRqIpJQDfloa+mCtrSH/wP3geN67oItlTm2DXdZrjpdGCCSHPpzdPIu5/FywqAhicmM5KqQp7XtsBAMfAASmfGu9NRRzxWBS3RC84utnXdzvlWZ0IPFSQO4mLxHJd/fMmncbmQwPmnQ/c9rQGzjfPB8OJRiBpOecCF4gzz+VrDdatgQEF43nDhL2ZOEGucCyNusQSiVwM+5rp8wRyNocgRMimdMQ9CaKto1WwpqIOMQW37IrzV9/NXCzOD0NcXYWuitdiltQv9rbwKG6BXOjedOKL/3M+0JuLFnvtc417CpE73QeC906M3PqDdqGZb2loreC6KWNl7BQWMBy5RiKPaCpZkh6BQZNW4KsFwB6eWHQnFoGsVvkp2G3O57kkAn7HgCufH9wjqXYKubU1AnjlrI+TpI55TgOf/Djf4B/9rp/Fn2HcfaA0/rog1cf19dReOANAHzriSJqjMecDn8mcbB0gBPSpyr7sJBfiA0MPLN5ZiiPgcp6k+oji+c0ZSaDOzSIOs+ta6ObUzrQD2UyuIFIw9dU8r5ZWLoA/Sr5O1a9DrvR8JLsgWB9fGnjJViOlao+8hzPtBM1EqmVRUa07WUorRcArMXdmGsABYtcL1j1utuc7iefrW/v9jBzutZbg+3YkZ7Tcepjx+hED28rtD6eCdysHD8OYLBujWZ5WENBY2tGG4cvk//eaU4nh53mdLvg7XKLmA5nCHxIw5yWcqWRk7bZ/Cz2l/ZH/9CbDGeU9Q5dWAhTU5B2uwvTh4pvlHTJcRxotgnZZk3rHS+NEEhuTl9cfxFHqkeCN7LKepP2uAHs0iWfbMljwIZkvayT4ahApJ7RCbCmACAf2gupYKL5DDmpO4aB/qVLIdkSQBjTTz7xSWzqm/joXR9le02TQJpF4xFLxoHo5lQ+TC62Zq6T26xNdzJccY+Z+kC6xHM8ynLZY05tx8b17vXo4qs1ULRt9Ox+JCuShFjZUmWRJPZe+E7oR35fTU0Nf28AYFXfwF2XyKT7ZvhNAd+eU1HMLOs1LAOrvVXv2J0YzD4ZKrIGIsUM2miqpdVs4tTGKRyvHUdJ48E7wIaS7rP3IEiAVBgp623neeS77kWWb2er3W6Dn0rTnN5Pzj3Xng/eXj8HFGYHF8BpocZ4Tr0d4OkDkSbFnALEPxnLyEvjDG/D9ZGuWwOAwhseILfFsPHA4HumWH02W0jSvm1GLBQW0DJaoeuPulbH5fZlHK0OXsNA1suySibJ9pKWOR0a3vaCw1vm+tgfymQwNWhuWq8fxfvIa2793fcAEL8pgEB9pMzipdYlfOzrH8N8fh7vPvhu9tc1DlKvWouxvUhqINQJAPqLZPBaukIGw0TWWx4Mq3z1cdj2ErdmDQBRFjkOWikl847joGW0opvTfeSYwsVvB26W9uwBXyh4ifY1pQbbsQOff9/qY9PWsfcqwKmqN0jawfjYaU63C0mLxkdE5UfBLw9JQrPfHH/nnyCR5iurrDfitdGDOv/A/QAGF6dRxdewDThwUjCnE/DU5N3mdMh3utZbw9nGWdy/cH/wFwSJcY9bQuADwO5bMnreRdGUNIUcnwswpyyypbyYh8iL4eILQDO6ockwZ+ooLfbQeeECzHod/UuXANP0wpCAQXP6h8//Ib515Vv41Qd+FffO3cv2miYBeYp9MhyzZDxK1utUSmiqQPkqeWyzXieeGnmKXJT7mFOAhD7Q5rSu1WHaZqynpuhKnlgupv2IDXzgOGD/G4EL3w5drCrLy9DPnoXT70cONQBgVd/EgSsAJ+egLB9L9ZyywvOcClJmWe+N3g04cLxjd2KgclOVLfgizqIglMh5uLN+Hecb53G8dtzzLl/PZRj8eX+wFL8j1EVH5aB23POT25w6ag12pwOBVdYLDC7shn2n9fPZw5CA+MBAyggr6WpYQSqgb/dhjPBhNvRGKs9fJMZhTiPqozg/D75YhDA9jdxhEsYUF7IFDGpmqlVrY+QxAPHD22euPwMAwcwAjzll8ZwmBAamGY6beixzatkWNrSNRMsLMGD4ooe34foolSSoMzqaXydNz3CSPTBgTn/t738NG9oGfvftvzvyeUwMnud0Amn2VvC73ttLrjUKl0nAnlWvk6CgyhK5g68+DttektasQWugCD6UizAKfXfYG7mmp7oEFHeFhrccz5PhLc1kUMO2F5rlUbsuQL37bnBiRjvGDkLYaU63C0m73OgqmRSgF6Wjdp1S5nRsSCnT8igiJsMAMPX2tyP/wAPeVDHJcxosviyeUyrrzSh/AWGSBU7ASnMlcPvTV4nfKro5TYrKH1V8szOnHMehptbCk+GENTL090Jx+bT4RsiWYPZQ3KcBto3217422OF2YMm7iyIo4DkeN3o38IFjH8BPH/1pttczKaRmThOaU9+gpGt2cWkGKF4hBdXz1ACEPR1qTitKhW0yrDdRtN3kxpQFOFa2BAD730xWfgyFUcjLxwDDgH7mjLe2xz/UsB0b60YLu65yUI4dAidlP4bSwPOc8mK6RfE+XG1fBYDJy3q77sUJY3MaN2gTyuQ8eO7yC3Dg4Pj0cVh18tjXxOxSZsilkbLepgrImgXHMAbNKT8FOA541rReACjtAsqLMc3pUrrn7YdaJYO54QZkDOYUSB7eOo7DzJwmImuavW1HWno4jkPxHT+Oyk++z1M8xa0nAgZDNLJqjaFGm9FBN2lAj7GLzYuB25+6+hRUUcWdM3cObkyzSiZWWZSCOXXc9yEmk6Gu12E79njKogjmFKaG0j4N+plz0M+eQ//cOXCSBGnPHu8udHh7o3cDn37Tp3Hn9J24aUjNnEan2Q+n9QJAe24KJg8oK6twul04/T4Z3lb2AeASbS/Xu0QeHmt74aT0g1v3/vHD2zdFD2+PHYN+6hQc246Ug9/o3oBkOFDW+B1J74Sx05xuF+iFzfCE29SJfCJDVD7AxpyOXXwBN5BgMoEPAFD9wM9g/x/9p0HxTfCcesU3LXM6hnRJ5EWcmD+BJy49Ebj96WtPoygVsVxbDv7CSFnvCE9N2kRkH3MKkOnwsKyXZSLrl5+S5+GukrG0cHNqaFCqBqSFaTS//LeebMnvqeE4DjPKDE7Mn8An7/8k22uZJORSCk9NjOdUCMt6u0YXl6c55FfWyWR409ecRiQSUubUcRz83vO/B57jA/uEPbiBSAAiw7eS0Oq34he4L76R/Ds0HR74ak5DEiSUcqXAZLiu1QHDQmmNR/7uO1I9n3HgMafUB5fhXENVDhOX9dL3h1HWG+85JefhS1eIbOx47bi3kuiCkMx8Jv/B8khZb0Mh3zGr0SBrZABYIMd6Ks8pQKS9K08NLuzMPtC4BNTGYE7j6qPXnGasjwm7TjVLg2Eb4w9v6Tk9bZp9vwXAiVQW7f7N38TcJz7h/X+S59RbJZOGOR1T1nvnzJ3Ii3k8cTlYH7977bs4MX8iGKxI/ztR1quR+/Exl6hSilVrlkHyPdz6OGxfoE0qbT7iQL3IzMNbo4fiPnLeav3tl6GfPw/JFxYIDCTGP3fnz+FdB9/F9nomBUklXmOW+ug48bJeUYVhGwEbSsfRcLUGCBevDpLsq1XyPSvtCdRHv+2l1W/hS6e+hLn8nCf3DUBroijIqWsjJW1ih7eLb4we3h5fht3pwLh8OdYudfAawDncTnM6Yew0p9uFOFkvlVhsUXPKEvjAhKzMKSMrnOQ59QIf0hRfYCxZLwA8vPgwzjTOeOm8AGlOTyycCO/FGynrZYjKB9ilS6YeaHRryoA57RpddM0uc3MaDESixTe8xw1mDxwHlN76enS+8x30fvADCJUKmZD68MV3fRH/8dH/GJ38vNXI5cdeMk4vOvzNacfo4NIMB6Hdg7W+TgIf6OuuLgGbK4HPnzKnf/jCH+KrF76Kj5/4OJbKS+Hn4GdOUxbgROZ07g7StFz4VuDm3P794BQF+imSFjucSLjaW8WBawBvc1Bec3eq5zMO6J5TrznN4DulEsOJN6ceczpeWi/vynqvXz+LmlLDXH4O5gZ57It8PbLxYIJSGpnW21TId8za3PSYU9sm7zlzWi/FvgeA1lXSkALAD/4LaQb23p/8e0lQY5RFXn3MqCxKOBfQpmNs20vWNPsUry3Rc+rWRNmx2Ye3YzKnsiDjLXvfgscvPu4Fxqx2V6MtLzwPcPzotN64wS2QbtUaPW+7jycLMqakKU8hQuvkKOa0mCuCAxdte7H0SOZUyttQ770Xzb/5Mvrnzgf8pgDZI//XP/nX+NiJj41+HZMGxwG5Atu5lX5WjLYXWh9x/hLMuq85BUgoUoTtZUPbwKf+7lO43LqM337rb4PnItoTvYmioJBBEuuqJDA0p/vfRP69EPSdDhLtTw4Yd5+y6Eb3Bo5eJt9B9bWvYX4+OxiNneZ0uxBXfOlFRYY9bsBNZE5FNbvnlKH4JnlOPVmvbbM1yB5LOV4Bfvvi2wEAj198HACRDa60VsLFF2CQ9dK03gRPDcA+fffJloDgLrcX118EMLr4AuTCLGrPqWb1I5lTACg+9GbAstD66lcDfhqKhcJC9sTdcZFG/pWwZBwYKr5mB5fct7P3wgtwdB1ClTan+wHHApqXvPvT4vvZZz+Ldyy9Ax++48PRz0FroOS+z2mkS4ZlQLf0eOaU58l0+OKQr0YQIB85Au3UYNdpoDntruLoFVJ88/e+jvn5jAuBFyBwAowxm9NSruRJ5yaGrMzpsOfUlfVu3LiI47Xj4DgOlnsh11QH8rbUYJD11t3AJdKcktdjm2TAlioQCSDMKUDYU70FfP3fkO/a4YfTPY4fccNbz3OarT4mJfbSFSHje04zrpJJ05wmeU79yiKmVWvjM6cA8MjiI9jQNvCD1R8AIINbALh/V1R9zI2W9SY9J1EmAxCW0Dj6HgzXR/c4fmH9BQCj66PACyjmiiHm1ALQt41I5hS8iNJPvBP6yy+jf/ZsQFVEsa+0L9sqmEmANvmj4A3445VFAduL0cWlacC+dAXmDXIeCwxvI2wv31z5Jr5x6Rv4xOs/gRPzJ6Kfh7aJKdenm8b2QmtpbH2cPU6sdkPNqXzkCMDz0E+dRlkug+f4EHN67LIDqcxBnL5JXuEfEew0p9sFSSUnhuFEwozMqSzIEDghsTk1bRNtoz1B5jSlbMlxiISEofiKvAiREycj653AknGANFl3z9yNr134GgBf8Y1qTlnTeuMaZjGtrFcLyHppk7HSXMEnvvkJ7Jnag7ftfdvIhwl7Tl1Zrx0xGXZP+Modd0Datw9wnMjmdFuRhuGPWTIeldbbMTq4PE0uKHrfI2mMol/WCwQSCStyBQ4cHCwfxGfe9Jn4ixGtiSk3cTewT28E6GQ40lNDsfhGsk6mfSNws+Im9jqOE1pQv9pbxR0XHfBTJsSF3czPZxLICTn06fScNbTDhy1bI0MbJkbPqcRL4MCFfFlU1turr+H4NJFXWxsbcBQZhsTF7o0cCQZZb10m5yazXic7W5UK7B55fqkCkQBg/i5ynlh5Gvj254DODeDHfzOwLiw1vEyGydRHOqC4Ocxp1ubUfW4Mry3RcxrIZLg5nlMAeMvet0DiJXztIqmP3732XRRzRSxXl8N35qXRab2JzGmK95i+B77d6jWlhnVtHU9cegKf/8Hn8WN7fgz7ivtGPlRZDmcyaO73fHjPKfodIFdA8R3vIP/vOIE1a7cEJMZgqQT1meqFQvnqo9nB5RkOsG30nn2W/GrFVx9bVwN/typXYTom3n3w3fjg8gfjn4fWRNGtcWmURSOZ05jhLa8oyB04AO3UKfAc7w2ZKW60r+OOFQf53eMfPzsIYqc53U5EJRJmDHzgOI7E5ScEItGDeTKe03z64mv0CKPE+NpkUU4MREq/53T8E8jDiw/jhfUXcLV9FU9fexpVuRpeIwOkkPWOCkRKw5wOiuO0Mg3DNvCLX/1FWI6FLzzyhWgPxxBCnlNRBsBBi5oMu34wTq2i9M53AkBItrTtSLOsfYSs199cdI0uNooA8iq6z5DmNDAZBgLT4btn78bhymH8h4f+QzKTpzdRdJmbUeFmfowsvgAJRQLC0+HlY7AbDZjXroWZ09Z13HnRwdS8Hvh+3QxIvARdcEvUiPTZKFztXJ28pBcgTCMvDQJFRoDjOCiiEpLpcpIEqArUnoUjFXeX5WYdfJU0R9mb02RZr+M4WM/R/byurDc/DatNvkOpPaeCCOw5AbzyFdKc3vmTwN77sj13iljbS7b6yKIsmhhzKuSIbDV1c8r+2rw9wFF7Tt2aqaZZtTYB5rQgFfDG3W/E1y58DY7j4KmrT+G++fsgRO1PFcTRab1JSqc0gYER+Q7TyjReqb+CT3zzEzhaPYrfedvvMLGXUcPbHu82p1H1UalAmp+H+jqiOvGHBd4SkPLsAwwg8jPxMhms4PB2bZ7c7tVHqiyi69Y2B+FZ9y3chwd2PYDfeONvJH8O/vqYQllEj/vk+vgmMrxtBRUrNBQJIH5lfyYD9+p5TPWAwtKE1Tk72GlOtxVqNSLwwZ0GpZQtAaQ43JTiC7gTt63z1ACkAEd6Ti3qqUkhW0oKV0iBhxeJVO3xlcfx9LWncd/CfdHeiJGy3hEhTV4gEmPowzBz6vrhVrur+NzbP4cDZbaJbVkuo2f2Bhc9HEcKcGRzSiXoZZTe/W5AFKHeRF8iE8QUDH/ckvGItN6O0QE4DvzB/ei9QGRhnqemtIfs8vOFK9w7dy/+8r1/Gb87mEJrouAe+2kmw17xTWqYdr2WvB9D02EvFOnkKW/ROA23sF46jbwOFHdZEzl+0iAn5GDQYytq5+UIXOtc25rmtLdBJL0pmEFZkCNZLrugoqAPkinNeh1SjcgLr3auZnt+comce2K+97qlo+0eyv7m1O6Q71BqzylAfKf1c+QYevh/zfa8/UgKRJLyqZPXWTIZqNd+bObUPWdupazXsxrEpPXy4CACjMqiaDtDFjyy+AiudK7g8ZXHcal9CQ/seiD6jiNlvVoyc+rVR4b32IhmTut6HTWlhs8/8nlm6X8Uc9pzzwMhZZHW8MIfy+97L9mDeegQ09+5aWBdyZMg640b3jbniwDPk/rIcZ5SxBve+urjh45/CL//478fvsbww3EIc+q+p2mURbSWJtZH6jsdqo/y8WUYV67AajRCw9vqi8S6kz80ATXiDgLYaU63E2o1fNGlZZsMA6Ob04nJloB0jBRFSklW3AWdF4jEieyrZCYwGQaApfISDlcO44snv4hrnWt4YCGm+DLLekcwpywXOJRB9j3W4cphqKKK33rrb6XaK0p3jgVO/JIKzbGim1NeAiQVyrGjOPqtv0fhDW9g/ls3BWmGKDFphHQy7Per0eMsd+ggYJDP2WtOeQEo7wv5apigNSDIZUxJU6maU6/4Jk2GxRyw7/WhUCT5KNldqp8+5YU+sguqhgAAIABJREFUUPa88NwZ2ADye2/+/rYcn0OfNoApmdOu0UWz39w65pQxDIkiJ+QiVSBGQUZBI6uqAMDaqEOqTaOm1LI3pzQNPUbaq1s6dAmwJYE0px23OW2P2ZwCwP2/OF5KL4VcAsBFe06z1Mbc6FVrEx3esnr5/JiU59TSIAs5cABb4zHK35kCD+57EDzH43ee+R0AQ/tN/WCS9SZ5TpXB/UYhInzwWO0YppVpfP6RzzNlMVCEMxny6LkDtMj66B6Llfe/H0e+8XUI5VusiZEYs0MSZL1xthc5P4Xcvn2AYUAolwcpxVV3QJu2PvY7gGOh6K48S6MsovU60fay67VkqBQXinT6dKg5XTxVR2Oag1S7xT7XfwDYaU63E2qSrDf9l/3mMqf5DMxpusZbFqJlvVQ+ovDyTUsj9OPhxYex0iL7TiPDHoDRst6ESSSAdMXX6gNwAs3pcm0Z3/7Zb+PR/Y+O/n0fqOQ7JF1yrOjJsFrxGKRbrvAChCm0DcBNkExEzJJxgReQ43PBybDbqKqHjg7u508pjgh9YILeAJQSpnLpmlMm2RIALL4JuPZCQPYpTBUgLS5CO3U6tANw7qVrWFsQINZuftgD8ZzS5jQ5fXYYW5bUC5CBImMYEoUiKNGNRF5EQXMwq7rNab0OsVbFQmFh/OY05j3TLR3gOFjF/IA5LUzDzirrBYBDDwHv/C3gwV/J9pyHwfPx9TGDLSXvhqh0E2pWQ2+A5/jkC1hWbDFzmuQ51U0dKm0iWMNuJhRYV1WqODF/AiutFdSUWvS6LGC0rNca5TlNYXuhn4OvefyZYz+Dx97/GA6WD47+fR8iPad8AnPqBl9yHHeL1kfGwMAEWW9cWm9ezCPnMsWB2jg1T/5u2vroXj8W3cFgWs9pjs95QZuRECRg7+uBi9HNqX7qdGBFX7/XweELBlp7HSC/E4Y0aew0p9uJKOY0o6cGIBemLMzpZNJ6lS0tvgA52Uc1px5zKkjsgUgTmgwDwCP7HwEAzKqzWCotRd9ppKxXIxcEcdJArznNJlsCEF5vwwAaluX3nRqSAhNO4mT4lkWacJKYJeNAeNF4x+hA4AQUjhDWMSBbAty4/AtIDY3sAS7mitkCH0b5IPe/CYADXHwqcLNy7Bi0UycDu9zsbhd7z7exul/cluKbE3LoOw7x76WU9dLmdGsCkTaYw5AoZDFaBdJVOBQ13pMVmvU6hEoVuwq7cK2d0XNKz+8xib30/GmXCkOy3jY4SQKfyzDIEyTgDf9DJjtKLCLrI9sqsmGIvAhVVEcyp6VcKdqmkRasjJQftD7mxvOcEuY0pSdzzCR7P6j15b75GMsLMIG0XnpeZ2ms3PtIweYxU32Uy2j1W966HMKcxnlOb4f6mJ+YrHfYc1qQCp6M2VMVAeSaJ8vw1j2fFQtkkJeqPvbbo2sjQHIZrr0QOO+Is7MQpqehnSLKorbRhm7puPbUE5BNwJ7XgcJOczpp7DSn2wm1Gi1bEpVMxSIv5W8yc5pR1ssYJBLnOfXSCFn9EmZ/oszpseoxHK4cxtv2vS3evD9S1suwx43ebxRGSYRTgEq+/dPhnlvUQ3tOb4viy5h6nLBkHCAFeFi2lJfykI8QZkAolcCJvoud6hJJQU2TMus4HjNUlIrpApH6DGm9AJkMCzng3DcDN8vHl2FcXEHVJp/xhraBzveegWgB2j4ABXbp26SQ43PoO33yHUsp66Ws49bJetM1p4oQPWhrKw6KOjmHGFevwul2Ic7NYldhF652rsJh2eMY+mNU1hvNnNLzp1OagrWxTr73ruc0k6R3qxAVGKg1MzfAeXFEfdSbk6mNAHsKqh+en3Z005SY1mv6mlOmoVz8eS8LHl58GIqg4MF9D8bfaaSsV0t+TmmYU68+jh/oVs6V4cAZNEb+tN7I5rSCWxrSBFbJUFmv77vWNbukOT0c0ZwCJBQp7fDWVYLk1Vlw4FIPb0eqigBg6c0AnJD1RVlehn5qYHupa3U0v/N3sDggP9vdYU63ADvN6XZCqQBGZ5AmC2SeDAOEOU2cDNPAh4mtkrkJgUhRzCkNRBJYT6yTZU45jsMX/9EX8an7PxV/J5a03qTnJIgkVIfl4iKGOc0C6jn1N6ea+7jq8OPfDs0pbdhHvY8JS8YBcuExzJwWpAKk3bvBKUpQtgRErpMZiV6d7O7LT2dnTkcV4FyeROa/+ljgZmV5GXAclFZIM7ChbWDj774BQwD4GX3bmFPDMtwmJSVz2r0GDpwXNDQxOM4gECkF4s5lmzkTeY00oPU/+ROA51F8xzuxUFhA1+ym2uXngTZvSbJeACgXYdXpztYZWO32rdWcRg1vx6mPuRHKon5jMnkMQEbbS4t5cCvwAkRejA0M9CSmrGn2E2ROFwoLeOz9j+HdB98df6eRab0jajbr0BEYDAmkCQ5vqe9UVNDjIzynlkFWrd3y9ZExMDAhwDFqzykd3uYORsh6gQFzmmb41l0DAPCFmUy2Fya5/t77yTH4ylcDN8vLx6C/8gpqIvk817V1WE8/izO7gBnBBPI3f3j7Dx07zel2wvUjBFiBjJ4agLAmiZ6afgOqqEJKmXQYCcn18iU1YMOYUCCSt+dUlBmZxcl5aijyUj75feTF8ZhTwPWDbA9z6g9E6rkXLiHmtLd56xdfVlnvCA+wIioB2VLX6KIgFsDxPOSDByHUhpoVLy4/RXPavEz+Le1O3Zx2jA5EXhwwJkk48iiwegrYXPFuor4a/swKRE7EhraB7neexOk9HGbM1rY0p5IgEdmiWknPnLavYladhcRP4FznR79DvispA5FkMVoFsiHpkHUbVquF+v/55yg+8ghye/d4cuSr7Qy+0xGyXnr+5MolWJvuRbYbiJTJb7pViPrc9WamPAbgZjOnKfYrU6RsvOPYeM3SoLgeW2bby4TrY1kuJ68EYQkMnJTn1Ax7TrMipCziOPTc5xLwnNJj75avj4yBgXSQwJjW68l6Dx4AOA5ibYg5rS4B/VZ4+JSE5hXyb2kPSrlSamVRkUEuDzEHHHyQDG99jbOyfByOYWB6lbzGjdVLkE5fwPNLHGYta4c53QLsNKfbiahdbnors2yJBiLFScGaenOCk+EUUe4U/fSe0zhPTY7PgWcNnbAm66lhwrieGiBFWMHkmtO8mIfIiQHPqea+dzRUZPCD24A5Zf2eJqQRAtGyXjqJXfiNX8f8J/+X4C9E7DodCV/xnZKmUrFmrX4LU9IU064+HHZDsl4dTIfFXbvAl0rofvvbmJYq6Ny4ArxyDs8vcZgz9O2T9dqurDcDc7o1YUjuuTqt55SPHrStiuQ7tfHHfwy70UDtox8BMJAjZ9p1ypDWCwBCpQyr1SbXYHkSiMRP3UrNaQxzmrE+sjCnE8ljAEgjlDbNvt9O1ZzGKotMHXIqT+bk0uyZIeRGMKcjnhN9fSzDW/oeTOA10usnf32kw9sAc0qHKrdDfWQdYADJsl4zPLzlCwXs+ezvovrBDwZ/yUvsPcf+XJuXydC/MIspaSrVKpm20WYPOjv8CNBYAVZPezcpyyRbovDMacBxoD/zPXC2gxcPCKha9rbUx3/o2GlOtxOUOfVfeGWMygdIc+rACZwk/Gj0G5OdDAPppsN6i0xMGYuELMiBaZz3MKYOWZTTJc1NeDI8EoLrqYmTrTAzpzdXtsRxHEpyKeg5FQn7lLTH7ZaFJ+sd8T4mpBEChKUITIbNjhdio95zD9R77gn+glolDE+m5pQwp+1+m9lzyCxbAoDZY2TVzSsDaS/HcSi/5z1oP/Y1/MYXNnDor54FALywxGFmmybDOSFHhlNKeuZ0S3ecAullvWK4kegaXdRFMhTZ+E9/BOWuu6DeS9Y+ecxplsTe3BQAbqSsV6hUAcuGbXBAYRrmxjqEwi0m69UagG2T/7ftsWS9BXF0mv1kmdMMst40zGlMYCBhThVS81htLxPMZGDCSFkvI3PKcv1hTs72Qi1RAduLq6AKKIt8O8BvaYguwz+qziTIenmOD1yrmbYJzdK8elR69FFIu3cHfynr8La4m1gf0tpe+oyeU4Aoi4DA8DZ34ACUO+9E/3O/j0/9mQ31K9+BmROwsViAAKSuBzsYjZ3mdDsRyZyOJ+sF4lPMJsqcepPZFAWYFl/G5fVxk2HN0qAKKnvzZk3WU8MEKieMC30wtdHPScwxynonJ1sCiO800Jy6AR2BybChkYuaWz7wIS1zGu85DU2Gk5pBjgOqi+k8p80rJJl2ah7FXBGWY8UOmobBLFuiz+3wIyQUyed3n/+1X8XeL3weoiPgNd9YganmcGYXXNnS9jCnhm248k72VTKO42xdc9p1m9OUst6oVTJrvTV03OtZu9lE7SMf8ZjvaXUaIi9mY055ntSQuLRe95wqVUj9sfo8uqdX0H/1DApvfnP6v7dVUCrEg00Z4H4LgJO9PuYKsVJA27EnryzKJOtlf205IRc5vNVMtzllsYXYNqlRN5s5ZQoMZAhEirg+iHwsYCLKoqg94JHDW685vdXrowLASVZ5AYmyXoDUR7pejf5Lh7eRoLaXtPWxRJrcqdyUFwLIgrbBmNYLAOW9wOzxgO+UE0Us/emXMP+pX8GRqw5qT7+KS4dKqMrua9zxnE4cO83pdiJO1pux+NITp19y4sfEJ8NAukTClJPhJM+pLMrsiYjbxZwC8Sf9W5Q5BcKLxntCUvG91SfDrIFIybLe4VUym/rm6GYwbVx+8wrZASeI3mOzSpdSyZYAMh3ut4GL3/Fu4jgOxYcewv/3mUfxf72nhmf/mxOYkvKQXdnnzYbnOaWBSIws8qa+Cd3St26NDJApEGn4XLbWW0NHJc2oODeH0jvf4f2M53jMqrNY7a1me55KOVbWS7/Hkru71jJyWPs//gRCtYrK+38629/bCgzXx5SBesOoyJXY2tg22nDgbLPnNJ1qKs5zqls68Z5LDOveEuSaW4qRtpcRgYGe55RF1tsjdYBxKJ4Eel4OMKe8CAVccG3ObVMfGUmGEd8Tf31suK898ViSp0hDl7Y+lnZ5j83KnDqOg47RYWdOAeDII6Q26oMGmJMk1D78Yfzrf74Xz717GX/7UBmzEMh7kvGctIN47DSn2wklIhBpjKh8/47CKEw28MGdGKVmTtn/vizKkZ5Tr/iKKWLQb7rnlDanMdPhUcUXID8fNdEEJs6clnPBRePUc6ryvud7uxRfVvn5CFmvP613rbeGtd5a/IJ5iuoSCUSiO/FGoXnZmwzTiyDW6XDq4nvgrYS9ePWroR9Vpmbw/9xj4PuvK2FOdBvebdjjlhNy5OJbrRCWhfFcs6VrZDzPaUrmNEKCudpbxab79lY/9CFwUjC8qapUUddSBIYE/mBppKxXrpLPtLNRRueJJ1D7yIfBq5M5h0wEtDml9dELmcleHztGJ5Jt9HaA30aBSLHKIlMjElOWwMAEueaWQhDjwxQtE3Csya5amwBrCpCU5GKuOOQ5laA6Q43vbeM5TWt7iRneCoo3fDtdJ15Npvq4cZbteTqO25zuAYBUmQw9swfLsdINbw8/Sq69zj0R+pFSm8U33jGPZ+e7mHU4MridwOBjB0HsNKfbCaUMgBtc8BgamZ5mPKHV1BHNaX+SsiVGRsqPjGmEw747zaLFlzXNdhuY05GyXgbmVJDTMacTusAIeU7pKhl/AbttZEuMKwdSyHpPbZwCANwxfUfyY87fRf7u2stsz9UnWypK5DhhLcCtfotdtgSQ43D/GwO+U4qaUkPP7OFi6yJmePf92A7PKe9bJQMwhyJRKeyWMKfdjIFIbiPhP5et9dZwvcqh+nufxfTP/1zod6ryGM0pg6xXrpFl9uvPCeALhXBoyXbDy2Rw3wN3lUTW+jitkO9w1HtKFQoTXSVj6eyDKcdJ35xG+JgBUh9JJoM6tp1hy5Ak6zUZ6hl9vmmY0wlheHjbE2Uojh28020zvKWpzoyr1mI2FPjr40vrL0HgBBypHkl+zPk7gWs/ZFPE9OrkOfqGt+1+G/bw+x4B6jNntr0AZN1abipyeFtTarjevY4NbWPbLC8/CthpTrcTvBBMorz8DAAH2HVP4q/FgRbfqOZUt3RoljZ55jRNWq/eJHIORuTcAjRcgD1PjcS4o8vqb4NsaYSsl2X3KvOqHCrrnRBzKg8xp+4gQtV9YSK3S/EVGZnTFKtkaHN6rHYs+TH33Ef+vfQM01NF66o3GaaFlFW6lJo5Bch0ePUk0LgUuJkqMM5tnsMcBDIkSdP4Tgg5wU3rjVq5lQDKnM4X5if/pHob5L1IqcSgK3769uB8sNpdhciJmPuxh0OsKeAyp3pW5rQM6NHMKWUO89NkB6zdd1D94M9CKE2oNkwKnqzX/dxXniL/ZqyPScoiugN8YvUxzZ5Rej/bTG97GXp8x3HInlNBYbO9mLegrJfentRQchz78NbUJmZ5AaJtL6o1NITQGgAnALlbKP06CqyBgZ6sNz7Nnn4XT22cwoHygXCA4jD23kfep/Uzo5+nLywQIPXRgZMYcEZBfeapmFMxBxx4GxneDjXPNaWG843zAIBZXdsJQ9oi7DSn2w21MpgMn/8WAI4wGhlQypW8HYXDoMV34qtktpg5BcLN6SCtlzGN0NyOVTIMst5RbG7a5nRC0+GKXEHX7BLWCj7Pqd/DdtvJllhlvfGyJdM2YdgGXlp/CXun9o6+kK0dJO/P5e+Nfp5akwxvfIEPAHtz2jZSpBFS0FTCoYXj0yoZcpmOiRkb2yZbknjiOXWoFYCROb3euQ6Jl7xmZKLobqSW9AKD5tTfTKz11lBTa0Gvmg9JHsmRGCHr5TkeuQp5HZzIofbhD2f7O1sJZYg5Pf8tYO7OzBeDVFm0rq2HfkabjYkypwB7fczgp42S9Rq2AduxfYFIjIqRW0nWy8Kc0p+z2F6M3sQsLwA5Lpu+WqgJAhTbDNZqmmR/q8s9mW0vyd8Tf3N6cuPkaFURAOw5Qf5lqY8tN7V8aHjLYnuh90nFnALEd9q4GFI+1ZQaTId8d2f1zs4amS3CTnO63fDvcrvw90QKmFIyRsFxHGpKLbI5nbinJs0eNYoMsiUggjn1ZL0qKU72CGnHFiwZHwkmWe+EmlNaWCbFnNK4fPeCrSeI4B0Hua6PxbldmlORNa13dBohQJqLUxuncHz6+Oi/zfPA7teNVXxZmlPd0mHYRjpZLwDMLpMApotPBm72N3VzRn9b/KYAufh24MCk54wUzOlCYSG26RsLvQ0gn/78rLrHpj99ea23hll1NvZ3qEcyync/Eko5UdYrCzJ4UUSubKP65iWIs/HPY9vgl/VaBrDyNLCUPU34pjKnaW0vXnPK/vejApGo72+QyXCLMqcssl6m4S1jIOIEmdOQ7YXjoNoO0Fkb3Ol2WLMG+Bh+BmURxxO1XwQUUUHX7GK1u4q13hqWa8uj//bsMiAV2Opj8zL5dyiTgSUwMBNzCgAHHyT/Xvh24GZ/fZztbm6L5eVHATvN6XaD7vAz+8DKd8cqvgCZDm/0IoqvexBPbMm4lGWVTLol4x5zOtSgBdIIAYYCvJ2BSHFpvQwhDaLCGJWvAeAmdoFB2QNagK8YTVRsG1zXxzjcLrJeQSLyKmbZUrysFyAhNiutFRyvMTSnAJEuXX8R6I84TmjxLRKfpDcZjll94QedDKcuvhwHzN1BpL0++IvvTF/bNk8NlfUbsvu6GNfJbNkaGYA0ShmGh0ulJQDAmc2BhG21t5rYnFZc5jCT71QuESY+ws/lyT7NPg7++DXMfeCt6R//ZkBSyXBJ2wSu/AAwOsD+N2V+uCTby5Z4ToEMzSn7gCnKc0prJZH1MoQyWcmKkS1DkqyXNaRJVAKrsGJhahNlTsu5sqdocBwHV80OKrY98EQD5Fyl3uJ5DIDve8pQHxOGBTSt9+QGqSVM9ZEXgN33una2EWheAcCRYSrgqYSY6qN7n9TKosoSeX9WTwVurvmUM7O9xo7ndIuw05xuNyhzeuX7ZHq1f8zmNIY59YpvbptkvZZBXl/KPW4AQisYNFMjTBarr2c7mNORsl4G5lRIwZxK6sQkRHSA0dAbMCwD37z6JN7S1cLFV1QmOpHeEnAceW9YGYQE2RIAPHfjOQBgmwwDRLrkWCT4IQlDnhpZkJHjc0yTYeq7SV18AWDuOLD6ckB9UFUGzddcr7Vtk2F6/PfpBRSjrHe1t4q5/NzWPKmMsl7qT6YXbwBhTqmEOgpVmXwOmXynSonsCI2QvXmruDo3wAkAV96iRn4SoLaXC39P/n+M+qiKKhRBiR7e6k3k+Nxonxwr0g5vs8p6zWjmlMh6WdJ6k1dobRkEiUHWOyowMMcYGNibuOe01W/Bsi2c2jiFy/063trtAR3f2qfe5q0/uAV8A34GWW/CgF8VVWiW5uUxsNfH1wHXnh/9PW1edteskesqqnBgURbR4W1qZRHPA7PHgBvRw1sePGqWveM53SLsNKfbDdqcnh+/+ALkwIn01GxFVD7AHoiUofjGeU41SxvIloDkAmWZ5CJtO5aMA9HSJcdh3HOaIvBhgq+P7stt6A08efVJtIwWHrWkYPG9XWRLAHmfRzIIbLLe79/4PgCwyXoBdl9N05X1FgcJs1O5KabiSxN9MzWns8vkGN48792kiiryImkIZ7qb2+apkdxjqE8voBhlvXWt7jV2E0dvI9PFSClXwr7iPry0/hIAwLRN1LU6ZvPxzCkdEmRiTumxGSHt9ZQnrevkhqlbuTmtkgv9898CZo4CU9mHDom2l35jcqoiIH0gUsbmNGpwCyBFWm/yCq0tAy8myHoZfbCse8AnuEoGIPXRgYO20cZXL3wVAsfjoW7vNpX1MtqzRoRKKoKCntnDyfWTWCwusjeCe+8jj339heT7+ZLsgXSZDGMNb2ePh5hTqsCYlssQgB3P6RZhpzndbqjugvnzf08OhDH9XaOY04kVYC/lbQsDH2I8p14gEgt7u11R+YLo/v2I6bBlAHAYPafbIFuSB57Tr174KgpSAW+Uardn8QXSydtGyHqfvfEsZtVZzKiMBWlqDigvjk7sbV4m8iDfhL+YKzKlEXb6bvHNkqg75zbZN4akS+50mMiWtpk5dSxALjMxp32rj67Z9QYsE4VtkeeQgTkFiNTt5DqZwq/31uHASZT1esxpVlkvECmF9oZ7bbJyB8UtSDWeFNQqOe9cfHLswS2QUB/15uRURUD6PeAZPac0AMl7GMsv62VYtWZtJ3NqRK8RYWVOxQRpsB+TXiXj1sdNfRNfufAVvH7udaja9u05vPW80SO+p1Y/8TtCA5FObpxkZ02BwfD20qjh7VBz6jaaLPWRDm/z9JhMg7lloH2dKGZceLXRXfe2I+vdGuw0p9sNtUpkfxe+NbbfFBjsKOwOnWwaegMcuPSJZXHgOFKAt1C2FOU5tWwLfbsPVVAHzV1SAd5OTw0QXTzTpBGy7jmdpGzJvUhb763j8ZXH8eC+B5ErzN6exRdwJ+zjpfVS5vRC8wI7a0qxhyEUaaj4AsRDypRGmNVTAxDZEhD2nao1FKUpKI6zfc2pu2O1b/fdgJ/RzSn1gm1Jc6o1ADiZZVzHp4/jUvsSGnoDaxoZ9CTKepUxZL30M+uGVTR9q0/OrS23Ob2VmVOlQiwv/Raw9GNjP1xNjR/eTpQ5TWt7oemvYw5vKXPqpfWOXCVDWcptWCUDJ3oPbCrPKWsg0uSHt89cewYXmhfw6IGfIK/ndqyPXmAgg+1lhKzXcixcbl9OVx9Le4hcl0VZ5IYFAoNBLIvntNPvQBVVT4mTCrPua/GxpzQLYNa9Pt0JRNoa7DSn2w0armH1JzYZBsKhD81+E8VccbIJlizFjyJDcxrlOfUWyFPZEpDceJjbxJwmyXq94ssQiGQbo9OIJ8ycFqQCRE7EYxceQ0Nv4NH9jwLDzent4qkB2Pbhjlgy7veipZoMA2Q6vHkhyDwPo3klUHwB0mym2eOWqTlVykBpb4g53VXYhb2KOxHeZubUsAxAZWNOveZU2YLmlKaqZ0xTv6NG1iuc3jiNNde/ncSclnIlcOCyrZMp/v/tvXmUZXd13/v93XmouburJ3V1t2a1WlIjtZCwhCywkQQGgR8JUwI2mIXN4CQEx8t23sp7KzEky1m2sxw/+xkeGMwLYIyfbZxlg8FW4gACJMuaWxIau9VSq4cabw13qvP++J3fudOZz7lnuPf7WavXrbq3htNVp84+e+/v/m494VQJaBfGzGntFQBC/m0nlfJsp8AXUny0GnsJt3PqNTn1J+sFeou3xsxptuSuKOewv3JoZHRlkWl89FK8dWMYGG7nVI1Gfe2pryEjMnj9wuv1+Khf31t1+T3TEB/dnqdOst6un69rs0BANjn2H7dPTutrcmdzV/G2kCkgl8m5Lt56NgtUGMqiTvE2n8ljvjyP/Rn9Z0dZ71Bgcho33TdRIQRfVYnvT05X6ivhzZsq8hXvwddD59Zs5tRITrPFTvCySzxi65wqQyQTWa/b4Gt0Xx0CcMiGD0IITBWn8OiFR1HOlXHLvlt6gy+QnsowoBsiBbtJK2c7yb9KMlxz0XH5aBeAV08DU3t7nqrmq97cev0ufJ+/cqBz+ss3/jJ+8wp992VMwdeQ9bYbHVdzB9Rs/Ux+Si53f/IbA4m3b5S0y6es98odsqhxYvEEzm3KQo9dcprNZDFTnPEn6zWS05cHXurMnJ6Rf9dqBCGJKMfTuYsH/j78oGS9Wp+cNP7O6ZpM2DwkUcbu3O7ibas7PpacV625ne8MGzvDQLfFW9eGgVuhdk6VKuPRC4/iht03yBGP6s5O8VbNeQ+jQBY2rk0l3Sen3ou31wMXftQp/vWj/Bi6klMhBCbyE67den0VbgFg+iJ5z9o3d/qZOz6DD1cvk+/4LFYSe5icxo06sXdcFsrsj13nNDSbfEW+7EHWG45sqXemxoUkJU43QsBc1mssPnfROQXJdO8tAAAgAElEQVRcSG7CNXwAOtKlH7/ox2Xgqe6Qv0NVCNhaSUfwBdwZIrlYMq5QSYZr9l4nd8RZJafNLWm00yfrdds5DWT4AEhTpPM/6pHYzVfmcUDTw0NMnVMlw6q36zJJcbFKRiVyM198O/Bfrwe+/E7gD+8CVk4HPyDl8upT1jtXmsOe6h48fuFxnN90lvUCsgPse+Y0X9G7o70Yq2RqrxirGRKLSk5DKNwC8nfQ2m4Zc2iK0Iu3flbJFCc9Oa6r5LR7D66x5zTnctWaw6z90DAKrybJqduCspvOqabpndPw4n/3fdQbDr5BvtFdvDV2gKcgPmYy8t7I6T7OYbuAio/zlXnHa9oAqnj70j+av96341RRzVddK4t8x0YhTB17L565GDP1mvwdW6itSDCYnMaNSk5DmDcF7JPT8DunLmc+gNBkS2qJvTFTA7gLvpG7EdrJet3KlvRjdjJFGkZyqkvceoIvINfJaFr6OqduZEsOS8YBKenaV91n+jGWFKpyn6iVKdKaWiPTJ+stuKsMrzXXUMgUjE6jZ+avkufQ0vO9z6/r8seY95zKmdMZd7LejbMAgJm9x4C7fxd491fkDfCfftB6dYVbjM6p/0r5VXNX4cTiCZzfPI/p4rTj72y2OOtv5lQI2T016Zxutbbk9107k2wzJKArPgafNwW6lEVd62Sa201stDaG5NbrMTn1gLommY29SE8GN8XbmJRFrmS9LtzsnVRF7abu1h9e51T5dggI/MTCT8gne5LTlOwAV+RdjGe1m7YFDKUs8qwqAuSuU8DaFKlvzZpisjDpWlnkW1UE6MoiE/XN+nnOmw4RJqdxM32RXB9x5K2hfDllojGQnNaH0Tn1YIikZgN8JKdmwdeYqQHsE49WTDM1bmS9TsfktnMasmwJkNXhUraEW/frN4UqOV0/J3/e280UBV8Xe05dLBkHZHIh/OyT3X+D7JyauVNaBN+J/ATWG+sDEsR+1hvr/px6FbsG52oAdMx0YpItKUMkOXPqUtZ79jEAwMzNHwOufy9wxRuBn/ot4OT3gL//jWAHFHDmFJCmSM+vPI8XVl+wlfQqZkuz/jqngIwrJjOn9XZdns+1s8k2QwKA3dfIY7z4daF8ObPi7Wo95B3ggHdZb6PmyakXsC/eSk8GZRhoV7yNy83ehazX6Zhc7XHVf/4hjr3kMjlM5ifxqvlXdfYpK1mvpnV1TtMSHyvuxl5cyHo9q4oA+XPaebm1skjFx0l/ndP15rr/zikg4+P6uU6xVrFxgfOmQ4TJadyUpoBPPAFc8vpQvpzaUXhhs/cPaTidUxcdKYUxc+r+ImE2c9qzx82QLdm59cblRmgj6/XiRmj1NXq+XriGDwDw3iPvxb97zb/r2K8byen59FWGcy4MkRyWjJeyJZSyJRzdedTfMVx0XN60nHty8LVV885pNV9FS2sNrFLqZ625FjD4mjv2YuO8TMRimkkc6Jy2thx/j8uLT6O8vY1itwz0uncC170H+J+/ATz39/4PaHNRdtcDyPWOzB2BBg0PvPKAq3VEvmdOAcvOab1dRzFTANbPJr9zunAT8EtPhnacakdhT3Ia9po1QCow3MglFfVVz51Tx+KtmwQ5rs6pKzd7F2Mvblxm3Xwtj3zi+Cfw8Rs+3nmislPG4cZ6CuOjG1dne1mvmsO9Zuc1/o7hohuBUz8wd29ee0l2KPsKDBP5CdeGSIHi47yecA/ExwtcIzNEmJyOIP273DRNkzM1YQZfQL/p95CcFibljIPbL5/JISMyvclpjxuhG7feuNwIbWS96mfm1O1UAdxV5zTc4HvT3pvwlkve0nlCVQjXz6Uv+OZLLve4WSenQgh84Y1fwAev+aC/Y1DFpx/9zeBrRmW41/BFBVQn6dJ6c92/GyEAFCfkLtZ+46D187EG315DJP1cc+ieLq+dwjSyg+fmm/4zsOMS4Gs/Byw+5++ANhZlYurhGtaPWrPQ2G64Sk7nSnNYri87ds9NmdgjO6d9n1tv1+WKoO1W8junIWPWOVUmWkMZe/HiZu9R/WA2czpgiAS47JzGJes1URY1twAIF4aBLvaAu421Hnn75W/HsfljnSe6lUWpi48uvEPaTdvZyiM7juBzd34Or93/Wn/HcMnrZfHv9AODr5msWQM8zJw2asNRFq2f9+0/QJxhcjqC9O9y22htoK21w5UtAR47p94rw0IIFLPFHtmSelvOnLpx602gG6EKBE5LoXMuOsOA3jkNN/gO0NM5TZlsKedG1mu/ZByQAdh3kJu+CNh9FHjqm4Ovrb4EFKdlktiFmpNxCsCBgy9gPlezcSHWmZqe5FRJae3mTttNLG8uYdbMEbw4AbzrS7JY9MWflpJWr2wuBr4Z2VXeZXTv3Mh6Z4ozaGvtAQMfV0zukdcaZUYHWaist+soqutS0junIaNWDHWvk1Gd01jHXkKaOd1sbyKfySObybpLTlt1mSgGKLj4wik+5ivO5lBu9oC77cIGJdXKIhcdaIexFyEEbtxzo7+RFwC49CcAkQWe+sbga6unByS9AFy59W5r28GLt1P7pOS+Oz5qGmW9QybQFUkI8Z+FEE8IIR4WQvyZEGKm67VfFUI8LYR4UghxZ/BDJW7p75waleGwO6deV8l4DL6ArAB3B1/DjTBbdOnWG5cboV3wVdVcp+RUdU6dVslsDT/5LkzIINZTGU6BGyGgdzCc3Hrtl4yHwmV3ACfvHUywVk+bVobddk4Dy5YA3bH3qd4Z6ZiDrzFzut3snGt2ndOXH8Ky0DBt1ZHcdQXwnq9Kl9r/9+2dlQ9u2VzyvUZGIYQwuqduOqfKQ8DfOhm9E7/Wcew1VnE19WtK0t16QyafyWO6ON1jiDS8zqlHZZHH+KiKN/3FWzUOY6hpnIq3UXdNAXtZb3PDXaczV3TeA65+/kNPTruURZvLUjkVcrd2aLjZA95qDPceozwLHLgJ+JFF8dasc1pw7pxutjahQcNk3vu9p4EQMj52K4vqq/LcoyHS0AhaLvsWgKOapl0L4CkAvwoAQogjAN4F4GoAdwH4PSGEuQ0mCZ0dpR09yenzK88DAPZP7Lf4DJ/kXSz5VgRITi1XyWQLAIRLt94kyXpV59QheLmpfGuafH3YgVCIjiOhSk7LaUlOy4DWNi8UKBxkvaFw+V3yOJ75u97nbWRLgDQ8siOw4QMgHXvbDWDx2c5zGxdilS31dk5VcmqzTubkvVjOZjAzvWD9MQdeDbzjj4CzjwN//M/NDaqs2FgMxRxKLakffnI6uOtUzeyX1DVlzJJTQBZvuzunz68+j4zIYE81ZImzG8WGwk/n1GIPuFrB5tqtN2o/BqArPprJejedC7dAJ6bbzeSr/3vIYy8D9Mt6yzOe1gLFiqs94I3hr0y5/E7gzCOdMRdAJs0bFwb8GABZvK2369Iwz4K1hlScBHLrBaSy6OzjnXixEa+T/TgQKDnVNO1vNE1TV5fvA7hIf/utAL6iaVpd07TnADwN4NVBvhdxz1xpDktbS9jWZEXx8cXHAXTmnULDc2XY+w10KVcyNUQq5Ury4u8kSTH2nCaoc9rQk9OCU+dUBV+buZp2A4A2/MowIKuEaZypybkwBokiOb3ouOy89c+dWiSnnjqnQWW9u/pMH5RsKcbgq/acGoZIgL2s94V7sZzNY8YpybjsDcCd/xF47n8Cz97j/oA2l0JJ1q/eeTUAuEqGwumcdhx71bk00dCvmZMhJ2QpoF9ZdOLCCVw8fXHPLuNQcLsHvN2SH+fXrbfPk8HonLpy67WXaw4NZbJmGh/XnWMj4FK2rGS9wx570a+TG+fTtWYNcGeIFMV5crkusOyOj8aaNZvirU33VL0WqHMKyLnTzUV5/wN0rVlj53RYhDlo8AEAf62/vR/Aqa7XXtSfIxGwo7wDba1tWOSfuHAC+yf2D0G2pM/UuOk+BOmctgaTU6M67GQ6EdeScdvKsMuZ06yLm4shGT6YUt2lJ6d6ghC2THxYGPI2B+OsYXfXM1ng0p+UwVe5ErabUmZqURkG7IOvpmly5jSwrFd37FXSpa0Vee4mZubUQda7vY32yXuxlunMFdpyw8/IxPsHn3Z/QBuLgWW9AHD7Rbfjd173O3jV/KscP3a2KJPT5brzGp0B1DxpV+dUnUsTjXU555wW6WGIDCSniyeMbnaouC3eNrzvAAc6M6f9xVv1vDu33giKcmY4GQa6OS8Nw0Cb4m0zos5pviwNH9dTmJy6KaI4uNmHwq4rpTFfty/Dqn7t8lm8Va8FmjkFOo69yhRJdU6rTE6HhWNyKoT4thDiUZN/b+36mH8LoAXgv3k9ACHEh4QQ9wsh7j937pzXTycm9DsSPrH4BI7s8LEc2Qm3hj2Anpx6T2ZsZb2ALp1yCL5ADLLejBzwt5qpEVl3e9wA+59vVIYPQK+sN1+JRw7mBzeuzg5LxkPj8jtlYFOuhKd+AECznKkBOtIkM7baW2hr7eDBt1AFZg8BLz8k3zeCb3ydU+XW3ePWa9U5Pf8UVuvL0NBZa2D/xYvA8fdLAw437r1bq0BzHZhwNjFyIpvJ4nULr3NlHmK1t9oVxUl5w9zVOVXJaWVzbezMkBTdyem5jXM4v3k+fFUR4D45rftLTlXxZqureLnV3jI6qq7iczsmWa8xc2pliOTieuaqc6pmTqMo3u7sKIvSlJy6MkSKoIghBHD5HcCz/6NTVHjhe/LRpnhrm5zqq2aCGwbq989GfDwvHynrHRqOyammaT+padpRk39/AQBCiJ8F8GYA/0zr+N2fBnCg68tcpD9n9vU/rWnacU3Tju/aFTzwk05yemHrAtYaazi5dnJIlWG98+dGulSvhWaIlBEZQ/LnuIg7rs4pIKW9VoZIbt0IAfv/X1SGD0An+G4upyv4Gh0EJ3lbBOfIJa+XuzJ/9E3gzKPAV94DzB4GrnzzwIe66ZwasiUzh1qvXPlmPVl7VhYhgNhlS4VMQRoiZfPyhtWqc3rye1jKynDmKjkFgOMfkN3s+/4f549dfEY+zl3i7muHRDlXRilb8tc5BWQCWjOR9W6ujOW8KSA9GVbqK2huN3FiUXZCYu2c1vWba4/xMZ/JIyuyvcXbVr3TOTWSN6fOacJkvV4MkQD7sRd1zY+iOG0oi1KWnDoZW263pVdCFOfJZXfK3/8L3wEe+mPgnk9Kr4adlw18qCre2u06Na53QZVFE7uB/TcA931GnrMJiY+jTFC33rsA/DKAuzVN685Qvg7gXUKIohDiMIDLAPwwyPci7ulOTp9YlDK9K+euDP8buZENAVL262OVDCDlu9173LZasjJsdB2cbgDiWjIOSOmSlazXVfB1UfmOyvABkMG3XQdWXkxZ8HW5DzeKc6QyBxy4GXjka8AX3yYTrvf9hak8qJAtIJ/J21aGDcOHoJ1TAPixX5RrJb7z212GD/EG33w237n5Ls9Yd05fuBcrepfXdXI6tQ+46m7gH78o59zsuKAnpzsudfe1Q2SmNONv5hSQc6cmndOJjQtjOW8KyLEXAFjeWsaJCzI5HU58dOlm77NzCgwqi7ZaWx7deuM2RAog63UzU9uKeuxFX7WWqvjo5Nuh7qEiOE8Ov1Z2ue/5FPDnHwYO3Qr808+bFvLdFG+NzmnQ5FQI4LZ/AyyfBB75ExkfcyWpOCJDIejM6e8CmATwLSHEg0KI/xsANE17DMBXATwO4BsAPqppWjvg9yIuMWS9m4tGcjo02RLgLAlprAPQfAXfUrbU0zmtt7us8gHnXWftmAyRAL1zalLVbWy4NHzw4EYYiWxJVzZceCZdwTfnYubUYcl4qFx+B7D0nCzavO8vgNmDlh86kZ9w1TkNHHwBmaxc/z7gwS8DLz8on0tA59QoTpVmbDqn38fybplguE5OAeCmn5edjof/2P7jVHI6d9j91w6J2eIslup+k9M9PTOnxgxW7fzYdk67x16eWHwCC5MLwWV/ZuRcutkbyan3sZcBw0BTWa9D4hHrKhkLw0A3N/2uirf13o8dJtUdcn9y2jqnylXaaiVPlPdQ+TJw8Y8Dp/8B2HcMePeXLQsLqiDrauY0jCTy8ruA3dcA/+s35e+5siM9jswpJKhb76Waph3QNO2Y/u8Xul77pKZpl2iadoWmaX9t93VIuMwUZyAgsLi1iBMXTmC+PO9qbYFnjM6pg6w3QGW4kC0MGCIVuztcubJzcMoW4rmIWMp6N9xZ5bsyRIq4cwoAK6fSs+MUcNfhj9K18tp3Ale8CXjvnwG7Lrf90Gq+6ir4hnZzfcu/lI/f+139AOKdqSlkdVkvIDunZqtkameBlZNYnpGTJK4MkRQHbgL2XieNkeyM3S48DUwfiMVAaLY0i2W7/a52TO6RnVP9/6bWElUbG2OfnF7YuiDNkIZRuAU8dE71fbs+3OwL2ULPzGnPKhlXq9YiMLoxIwxZr2GI5GLsJUrDwHYjZfHRoYgRdYH/NR8DjrwN+Gdfs71n9DL2Us2FkJwKAdz2SzIWnPjL2Au3o06Ybr0kIWQzWcyWZmVyungCV+4YgmQJ6CRYTpK4IJXhvs5pj1U+oLv1OnXEYqgMAw6yXjfJaR7y5sIu+Y7Y8AEAoKWrMuymwz/sJePdTO2TFeG91zp+6ERhwnbPaWiyJcXMAeDYu6X5T67k7jwdIoVsX+fUTNb78sMAgOWqTDo8dU6FAG78oFyhc+YR649bfAbYEe28qUJdy30xuVee93pyu97SDZE0bWxlvSo5fW7lOZyunR6OpBeQ6pjGurObfYDibSlbGpg5NVbiCKHvsHRITuOIj057wF3tOfWySiaq4q3+u05VfNR/1lY/x6hHow6/FnjHFxzXdrnpnK411lDJVZDNZMM5tqvuBnZeIeMjk9OhwuR0RJkrzeGl2kt4duXZ4Zg9AJ1ks27tJtrzeggzNT2GD4Cz01xcMzWAtazX7UyNEM6GT5F2Tru6aGkKvq73nEYk6/XARH4iGqv8bm79uHSTruyMXbbUk5yWLWS9Z6SD4nKxglwmh0rOY0J96U/Kx+f/l/nrmiar5RGbISlmi7MBDJH0BFSfO601aqhmSzLwj2vnVF8HdO9L9wIAjswNwcke0OOdBtgYtgAIHB+7i7eb7c2OrBeQ8cNu5jTKolw3hqy3Lz5qmofk1OJrdNPclPcIUVzHql2GnqmKjw5jL3GORtlQzpWRFVlbQ6T15np4hVtAbmG47Zfk2zGrikYdJqcjylxpDg+cfQDb2vbwZEsllZyu2n+cet2H9LCUK/UaInXP1ADOyWlcMzVAcFkv4JycGp3TCJLTSkqTUyfZEhDfMnoH3M6chuLWq5i7GLjpF6QZRcwUMgU0tp06pw8Bs4ew0t6SIw1eb0Sn9snE8/nvmL++sSjlxDGYIQGyc1pr1nqug66Z6E1O15vrqKqu1Zh2Tifzk8hlcvjhGenRODRlkdfirY/42G8YWG/1ezI4rFqLyqW8H1UIbPcpiwyDPy+GgQ6d06iS757ibZpkvQ7KooQmp0IIVPNVe0OkZi38efKr/zdg4cfkSAgZGrm4D4AMh7nSHDb1oDS8zql+Q7zllJwGmzndam1B0zQIIQYNkfJlBzfCmGZqAGtZr1tDJEAGYDtDpGaEsqV8Sd5w1VfTlZy66ZxGsWTcB9VCFbUVZ7feStjy27s+Fe7X80khW0BTFXhK01JO1W9e9fLDwN7rsLS15E3S282hW4HH/lyuTeiXgF14Wj7GlJyq/9NyfRnzlXlvn9zfOW3WMCH0/9+Ydk6FEJgrzeHsxlnsruw2ZL6h0x0fTfYYG9TXZGLqQ3pYzBaNmdNtbRuN7UavJ0O+5FDcjKlzmtFvPftlvQ3dv8KVIZLLVWtRjLwAI9A5tfAOiXPjgQOOyqJGLdzOKSDnpT9AG51hw87piKIC7nRxGnure4fzTSKQ9ZayJWjQDFOUrdZWn6zXwa039s6plazXZTKRdeqceqg0h4GqDqcp+OYdZEtANEvGfeDUOV1rrKGcK3f2/o4YPZ3Tsp54dndPt1ak8/Gea7FcX/afnB6+DaivAGceHnzNSE7jkfWqa7mvdTJGciodezeaG6hqkDekafobDpkdJTkvNjRVEdD5+TrGR39r1oDesReVpPZ2Tp08GeLqnFpIclWC5MoQyUVy2qpHM/ICpDc5ddoDroqDCYyP1UIMnVMSCUxORxR1Q3PV3FXeZW5uKVQBCOfgq2YCfBgiKQmvmqsZlPW6MHyIdebUTNa7HqKsN8LOKdAJwGkKvjkH2VKUS8Y9Us1XbWdqVuormC6m6HfhkXw232uIBPTOnSoTo73HsFJf8Z+cHrxFPppJexefkZ2emQV/Xzsg6v/ka51MoQoUp3s6p9VtDZiYj32eOE5UfBzavCnQSTidxl4aNd/Jabchknr05MkQ1X7nfqxkvUZy6sUQyWHsJarOaXkOgP43lab46LQHXCm3EpicOnVOl+vLIx0fRxkmpyOKMn0YmqQXkDc3SuZpRwCrfBVo1Q3qgCGSk1tvayu6xK0fS7del4ZIgAtDpAit8oFOclpO0UxNNid/F1bnSZRLxj0ykZ9AY7thOW8YKCFLAY6d05elGRL2Xoul+pK3NTLdTO2Vst3nTEyRLjwNzB6KzTBrtjQLAAHXycjO6XpzHRPtZmcWdUxRyenQnHqBLmWRi7EXv53TXHEgOe0p3uZdrFqLRdabBSAGZb2eklPVfXUYe4mqc5rNdRxm05Sc5hw6pwmW9VbzVVs3+0BqGhIrTE5HFKNzOkzZEiBNkdzIerNFXxe3gl6tU5KlgVUyuZLsevVXYBWNdXfzK8PATNa7vS0TZk+dUyerfBFdVTONsl5An01Olxsh0HHhtZIuLdeXMV1I2e/CAz0zp+rcW3qu8wEvPwxM7oVW3YXV+mqwG5FDrwVO3jt4LbnwTGxOvUAnOfW/TmZPb+e0WQcmx3PeVBFJfDQ6py7iYxBZb6tP1ts/9mJ13dtuy25ZXLLHbMFE1uuh2OraECnC4nR1l76CK6aCuB/yDjOnhqw3eaMjdp3T1nYLa401dk5TCpPTEeX47uN426Vvwy37bxnuNypOyrkvOwIEX5WIGslpa6vX8MEIUBYBuLEBhLlmwwtmsl4VADwZIjlY5efL0Un00ijrBXR5W/qSUzUvYxWAR1221LNKZu8xYHoBeOCPOh/w8kPAnmtRa9bQ0loBk9NbZZdLX00DQBaTFp+NzQwJAKYL0xAQwdbJ1HS33sY6qo2Nse+c3nX4Lrz/6vdjd2WISboXw8AAyelmexOaphmjL4NuvRbJm5cu5TDI5gcLQV4MkTI5QGSclUVRqYoAGR/TGBsBG7deJetNaOfUonC72pB/d+ycphMmpyPKdHEa/+GW/4Cpgvc5T08UXXZOfQbfS2fkTeG3Tn5Lfql+t17Dac7iwtqoxdc5zeRNZEuqMuzWEKlgXxmOOvjOXSxveCop2/Fl5+qccNkSAMu501GX9eYz+Y6sN5MFbvgZuY/03FPyRvb8k8De6wzJa+DOKdA7d7r2sryJj8kMCQCymSymi9OBO6fa9rZcJdPcGvvO6dGdR/Gvj//r4fkxAB47p/7i9GWzl2GtsYYfnvmhUcAd2HNqFT+UHDK2+JizkfW63APuZBjoxXwwDOYOxzab7hv187Ece9GvvwmMj3adU1XMG+Xi7SjD5JQEozjpMvj6kw5dOnspbj9wO774+BexvLWMttbum6lxqPo1PaxtCZtszsTwQb8hcC3rdVgFEHXwvfadwL/4x86O27SQt9n3l+TOad66c7qtbWOlMdqGSIVswZilAwBc/z5Z9Ln/c8DZxwFtG9h7rXEjEig5ndwN7Ly8d+508Rn5GGPnFJD/L/+d071Au4HNF7+PbWxjIluSu/rIcMlkpWTWjVuvT2nt3ZfcjV3lXfiDh//A3BDJrigXd3JqpywKyzCwuRFt8fbO/wi856vRfb8wcLqHMuJj8mS91UIVm61NtEy8PVbqUtE3ysXbUYbJKQlGcdKl4YP/ZOYXrv0FrDXW8IeP/SGA/pkaByfWxnp6Z2oAafqQpOCbyUrzmLRht1IhBcmpmXRprbGGbW17pINvIdM1cwpIl9mr3gI89CXg5Pflc3uvC69K3j93GvMaGcWe6h6cWjvl75P1dTLrX34XAGDipg/H/v8ZG4pTckWRFZoWWNb7gaMfwH1n7sN3X/ouAJNVMkntnGYL4SSntoZIESuLihMdU6S0YBgiWc2cJlfWaxcfQ1HTkNhgckqC4coQyf8eNwC4eufVeO3+1+JLJ74kv2W2z/ABME88NE0G4LhmakxlvV6Dr9MqgK1og29asTNESoOs16RzalSG/TrUpoBCtsutV3Hjz8k59+/8tlwvM33ASE6VeZBvDt0qRwGe/Cv5/oVn5M3b5L5gXzcgR3YcwVNLT1m6NtsyKYtJtUwWAFDdcXmYh0bscFIWNTdk9z9AfHz75W/HjtIOfPnEl+W37PdkSOrMqams12vx1mnVWsTKojSSKwIQNmMvyZb1AubJ6UpDxsdRVhaNMkxOSTCKk0M1fFD8/HU/bxg+9ARfY0eXSYBqbgLQYqwMm8h6G14NkYoOhkgb0e1xSzN2N2kJXjKuDJHM7PJDkbImnEK2gG1tu1e2dfAWYNeVwMZ5YO91gBDh/SyueCOw5xrgzz8CvPK4TE53XAJk4g2VR3ceRWu7haeWnvL+yXuuAa55Bzbe8lsAOgUPEgFO8VElrgHiYzlXxs9e/bPmhkh2q9bUHHtsyiITWa8XQyTAuXjb3IxvlVxaEMKlYWACZb1uircjHB9HGSanJBjFaXlR6w8y3dTXAgfA63Zdh9fsfQ0AkyXjgPmFtekx0IWNrazXrSGSwyqZqGVLaSVfsa4MJ3jJuJvgO3TTsxhRq6R6OoZCAMc/IN/eey0AmahnRAaThWBFMOTLwLv/WF4zvvxO4MzD0gQsZo7uOAoAePT8o94/uVAF3v4Z1HhQJtoAACAASURBVKZl95fJaYQ4KYtCSE4B4B1XvAOzRakaGBh7sVq15rVQGjam8XFDdlTdJkLZYqez10+7Jb8+O6fO2M0mp1XWW19GTuSMjyHpgskpCYaTI6GmAZvLQDmg3A7AR459BDmRw55K1xoEO7deozKcJLder4ZINsEXiN4QKa3kbSrDCZb1lrIl5ETOMvgCo10ZLmRkctrs/zu67l3Awo8BV74ZgEzUpwpTyIgQQtr0fuDdXwJqZ4HV07GbIQFy5nSuNOcvOdVRBQ7erEWIk6x3c0k+BoyPlXwFH7zmg6jkKr0FGnVNM7v2xT1zmskB/UY2TY+r3+zciFseJcLjjJ1hYCu5nVNj1ZqJm/1yfRlTxanhOnKTocHklATDSE4tpEv1VVm5DcEk4Nj8MXzn3d/BsfljnSftnOYaCdzj5mumxq5zGrEhUlrJ2cycJnjJuBAC1UJ1bGVLpp1TQO4S/MBfAws3AwCWtpbC/TnsvwH46T+Qb+85Gt7X9YkQAlfvuBqPXXjM99dQBQ4mpxFSnLI3DDSS0+Dx8b1H3ou/e8ffodw95qFig1nx1iiUJsyt10s8sxt78Rprxxknw8BsIbpd6h6wnTmtj7aT/aiTi/sASMpRK0WsqsMb+m6+EDqngIkkzc6t16gMxzlTYyJbArwZIilZVtbkz5WyXnfYzV4lWLYEyABs1TkVEMGlrAkmn5EFgwFTpD6Gsu/16rcBFz1uGArFzdGdR/Hdl76LjeYGKj4Kbqq74OdziU+c9oAb8TH4uSuEMImPdsXbJLj1moy9eE1OrX6+cRs+pQlbWW8jsbHRbuxlub480oXbUYedUxIM1Tm1Mn3YVMF3SPbqhmzJpjIc10yNkvVqWuc5P4ZIgLVdPmW97siXbeRfyV0lA8gAbCdbyuourKOI6pzW7dZFYIg3ItP7YzdDUhzdeRTb2jYev/C4r8/faMlrz0RcxbpxpDgpx0u22+avq/g4rPUjtslpEtx6TQwDvSTLtm7E+vMs3jpjK+utJ1JVBHQZBloUb9k5TS/JiLokvTjNnG7osqVhBV872VLclWHj2Lou+n4MkQBru3x2Tt2hZL3dhQJF3EUMB6w6p0PpFiYMJVHcspO2Q09OR3ilDiDXyQDwLe2tNWrIZXLGHC+JADfKIpGRxoLDwHbspSbjUFzFl3ylE6MVXmW92YK1JwM7p+7Jlaw7p02PBYMIKefKEBCWYy+jHh9HGSanJBgqqFoF3xBnakyxNXxQwSmmC6uSaunLoAHIRChbBNx2u3I2yel2W3ZUmZw6ky8B0Mx/jvWYVyo4UM2bz5yOQ2VYSVA3rBbE64yDhGtneSf2VPf4NkWqNWuYyE/QICRKnIq3m0ty5GVYCaKdYWBzI97ErTzTGxsB78dk2zlVhWCuknEkX+4k8/2EsG1hWGRExlJZxOQ03TA5JcEwgu+K+etDly3Z7DmN261XdXI2u5NTHzM1gIVsmYYPrjHOE7MiRrKT03HunFZyenLask5OG+0G6u36SM/eKo7uOOq7c7reXOcamagpqs6pzdhLSH4MptitWmusx9sRK80Am333DZ6TU5O5VeNreVQpjTN2SX6jBhSTGRsBWbztj4+brU3U2/WRL96OMkxOSTDcGiINS3KXzcnZFTOzm2bMe9xMO6deg69N55TB1z15mw5CfU0mr2aGUwmgWqhirTH497VcX8Z0YbSDr0pON63moQDjZzMOyenVO6/GqbVThlPzI+cewZ8+9aeuPpfJaQw4jr0sDk9VBHQKl6bF25iT0/KMLGp3z+N6Lt7adU6VcorFW0fyNm729VrgPbzDZCI/MaAsGgcn+1EnmXdjJD3kSjI5tDNEKk4P98bfKkA1YrbKN+ucNja8Jcuq8m1mCMPg6x6VwFt1ThMefMfVKt+NrHec9nce3SnX2jx2/jEUsgV85G8/gs3WJm7ccyMWphZsP3e9uT4WP6NEoTqndvFxav/wvr8qbloVb+MsbKr4uLXSUVZ5jo9Fez8GgMVbN9gZBjZqwNS+aI/HA9XCoKx3HHaAjzrsnJJgCGG/aHxzCagMUbYE2Cen2WJ8HTHTzqnHyrCdIRJlve4xZq9MbtLqyZctbbW30Nzu7ARstpvYaG2MfPB1I+tVNybj0DlVpkhfefIr+MjffgTzlXkICHz9ma87fm6tWWPnNGpKTrLe5eF2Tp1WrcXdOQWCKYuydskpi7eusdsDnoLOaX/xViWno168HWWYnJLg2O1yG7ZsCbDe0dVYj9eB1XTmdN1bJ9dO1ttiZdg1dq7OCTZ8ADodwe7u4bhUhlXn1E7Wu9qQN/7j0BWcKkzh0NQh3HPqHuyu7Mbn7/o8bt57M/77s/8d29q27eeycxoDrmS9Qyze2rr1xuzCahoffRgiqT3g/bS4SsY1dnvAEx4fzQwDmZymHyanJDjFqfgMHwBd2mMhW4rzolrSL4xBOqduZk5zdCN0xNYYJNmVYbNF40bwLY128M1n8siJnCtZ7zh0TgHgdQuvw5VzV+Kzd34WO8s7cfeld+N07TQeeOUB28+rNWpGsk8iws4QqVWXxcphKovs3HobtWR1TtstaW7k1RAJsDAM1K8ZOSanjuTKcid7/z5eTQMaa4lWFpnNnK7qf2+jXrwdZZickuCUbDqnm0vDc+pV5MrWbr1x3oxlsnLedsCt148hkk3w5Q2nM+pnlMbOqX5s3XM149I5FUKgnC9T1tvFx6//OP7kLX+C+co8AOD1B16PSq6Cv3z2L20/b6O1wc5p1BSqco+pWXwc9po1wL4ol5SZUxUfWz7GVAxPBhPH3uYmANGJocQas53s6n1tO9Hx0cytd1zi4yjD5JQEpzhp3TndWIpA1mshSYlbtgQA5enezqlXqbGtIRJnTl2Td+qcJjv4AugJwOPkRljJVWw7p4asN8E3UGHSv6e0kq/gDQffgG8+/01L+XNru4XN1iaqcV8Pxw07T4aNIa9ZA7qSUyu33hj/Zvo7pw0f7vpOq9byFfk7IPbkLWaTVUE0wcqiiYKcOe0ea1iuL6OcK6OQLcR4ZCQITE5JcIqT5m6E7Za0ih9659TGECnum7HybLA9p+riylUywchZVIYBafiQ4MRGdbtMZb0jvkoGkMmXbee0WYOAGOuu4N2X3I315jruOXmP6euqsDHOP6PYKE6Zx0e1A3yYYy9Wq9Y0LX5PBvX/VvHRjxLI1jBwg4Vbtxjy777rrCqqJDk5NfFkGIcd4KMOk1MSHCtDJEO2FJNbbzMByWlppvNzAPSA6cUQyabyTTdC9+Rt3HoTPnOqOoLdndNxMnwo58r2M6cN6UKbEeMbzo7vOY691b34+rPmrr3q3KFbbwxYKYtU53TYyiKzsZfmJgAt3viYL8vkUsVHP8mpkycDC7fusDIMVJ3TFBZvmZymm/GN5iQ8rIJvFDM1gC7rteicxh2cyjMmVvlhGSLRjdA1xp7TvvNkuy1/J0lOTk2C70p9BYVMAeUxMPuo5Ow7p2uNtbGR9FqRERm8+eI3496X7jVkzt0wOY0RK8NAFR+HrSzKlwbHGYxEMG5lUVd89KMEcpT1jv71MRQMWW/feVJXst7kXl/VqEJ/8XYcCrejDJNTEpzSlDQk6E+glGwptj2nCZg5Lc10ZEvtJrDdoiFSHFjtOVUd/wQnNyo5XW/0zpzOFGcG5g9HkUrefuZ0rbFGuSqAa3Zeg21tG8+vPD/wGmW9MWI1c7oZVefUpHhrdMQSFB/9KIFUfLQyRGJy6g4rV2cjPqaveMvOabphckqCY9jl9wXgyGRLSZ451SvDasYH8Dbnk3UIvnQjdIdVctpIfmW4nCtDQAzIlkZ9jYyikqvY7jmtNWuYKkxFeETJ5ODUQQDAC6svDLymzh12TmPAys1+Y1Fe34edQJnFRz/mQ8Ogu3PqyxDJZo8rZ07dY8h6+4qAKYiPZsVbdk7TD5NTEhwlidxa6X1+MwI3QkCvDJsYPiRl5rTdkMfnx103mwNE1j74jkH3LDCZjLwRtJItJbhzKoQ0++l36x2XyrCrzmmCf39RsX9yPwQETq6dHHhNJafsnMaAlWHg5qKMjcO+fpsmp6pQGvP5YNo59WOIxM5pIKyS/BQoi/r3gG9r21itrzI5TTlMTklwrDqnURki5UuDkuJ2w7uEdhh02+X7nfPJmfz/AAZfr5jNJqfAKh+QczVrjc7f1zgZPjjNnNaaNSZdAIrZIvZW9+Lk6mByqroK7JzGgKWsd3n4qiLAfNWaKnQlIT5uBUhO3aySIc5Y7TlNQXzsl/WuNdagQRub+DiqMDklwVEXrn7Th41FaWNfHLLkLleWHTFN6zyXpMowIG9E/Lrr5gp0IwyDfMWkc5r8yjCAgc7pOMmWyrkyNlob0Lr/vrtYa6xhMsEzUVGyMLVgnpwqQ6S4lSTjSHFaXnfazd7nNxaHryoCzIubRnxMgLJoU1dchW6IRFmva6z2nKZAWaSuaTU9kVZO9kxO0w2TUxKcklXndFF2TYcuWzJxtPUz3zkMejqnPveSWq7KYfD1hJ0xSIIrwwAwW5rF6dppAICmaVK2NAY7TgEp693WtlFvDxZoNE1DrVFjcqpzcOogXlh7YSCRN5LTHJPTyDGKt2bxMYIb6JyJW68x35kAT4b6Ssc1HaAhUhxY7QFv1KTSK5PcVKGaq6KQKRjxcZzWrI0yyT3jSHqwCr4bixHJlkyqfs2EBN/uzqnfhDlXNA++rS0GXy/kyzZLxpNbGQaA2/bfhhOLJ3Bq9RRqzRpaWmtsKsOVnPx7MZP2brW30NJalPXqLEwuYK2xZtygKWrNGsq5MrKZbExHNsYYxVsTZVFUst6BzmmC3HoB6VfR8CPrtTFEalFZ5BqrPeD11cTHxmwmi1v234Jvn/w2trVtrNRlJ35c4uOowuSUBEfJdvtNHzaXhj9vCpgHKBV8456xMu2cekwos0XrzukY7LkMDbMOtCFbSnbn7Y5DdwAAvvnCN8euMlzRbzDNTJHUHC47p5KFqQUAg4696811zpvGhWEY2BUfNU3Gx0hkvWWTmdOErCHr92TIlbx16bIF+WhliKTuDYg9OZs9pwmW9CruPHQnzm6cxYNnH6Ssd0RgckqCYzVzGlnwNan6JUW2ZDpz6tUQqUg3wjDIV0xkvenonO6b2Idrd12Lbz7/Tazqf2fjEnztOqdqzojJqUQlp6fWTvU8v95cZ3c5LsyURY0asN2MpnOaMyluJmnmFOjERz8jL8Dg/6/dkmqjuJPvtJDNy60AZmMvCY+NAHD7gdtRzBbxjee/geWt8SrejipMTklwckXZ3YtTtgQkc+a0NA1A9Ln1ejVEsuqcUrbkibzJ7FW9JoNyCirsdx68E08sPoGHzj0EAJgpjUlyatc5bcobfiZekgMTB5ARmYHOaa1ZY+c0Loomsl5jB3gEyqJ82Tw5zRZkUhIn6v+vlEWek1MTvwmgc51n8dYdQpifJ/Va4lVFgHQhf+3+1+JbL3wLS/UlZESGBcuUw+SUhIOZXf7mIlCJQtZrIklpJsStN5OVM0ebQQ2RzNx6aYjkCbN9uKoynIJdsUra+9UnvwpgfCrD7Jy6J5/Nm66TYec0RsxWrUW1AxywMIJLwA5woCPrNTqnHuNZJis3AvSbpfkdoRlncqVBT4bGWuLNAhV3Hr4T5zfP456T92C6MI2MYHqTZvjbI+FQmuoNvs1NWYWLZOZUr552B+BGQva4AVK6tBXUEIl7TgOTN5m9SkllGAD2VPfg+vnr8czKMwDGSNar/w1v9v/u0Jk5ZeLVQTn2dsPOaYyYGSIZO8CjWiXTt2qtuRG/HwPQZYi0LEdx/CidzIq3SZmpTRP58mARo54OWS8gTQPLuTKeWXlmbAq3owyTUxIOxclewwdDthSTW29SZk4BWR3eXNITI+FdQpotcs9pGJi59aaoMgx0uqcAMFUY8v7ghGDXOVWyXnZOOyxMLuDU6qmedTLrDRoixYaZIVKksl493nQ7vieuc7rkb+YUkPLkgeRUvxdg8dY9+XJHcaZopMMQCZBFzNsuug3A+KiKRhkmpyQcilMxypZMFnEnxSof0BeNdxk+eJWQ5uySUwZf11R2yJvC7g5CfS01lWEAuOPgHRAQmMxPIpfJxX04kWA3c0pZ7yALUwtYa65hqb5kPLfeYnIaG7mSlJ72xEf9dxObYeB6/H4MgIxf2aJ/QyTA3IWdnVPvqPjYTcri412H7gIwPqqiUYbJKQmH4pSF4UNEVvnA4J7TTK5jNR8n5ZmOIZKfZNIsOd1uS6kvk1P3VOelQ+Zm56Y9LVb5il2VXTi+5zh2lHfEfSiRYds5bawhK7Ioc6WSwcGpgwBgzJ1qmob1xjomUnSejxRC2MTHmFatNTeSc90z4qPPYmvOrHOqZk6Tb3SXGKq7gNrZzvvtljxnUlT4u3X/rajmq9hZ3hn3oZCAjEfpnQyf4qTFTE2EsqX+mdN8NRlGN6pz2vBbGTaZOaXhg3equ+Tj+vlOx6JRA6b2xndMPvjkLZ/EamPV+QNHhJJ+c22VnE4UJiCS8HeeEBYmO7tOj80fQ71dR0trsXMaJ/2GgZtLMmGNwi3XdOylBkzsGf73doMRH9f9d04t4yM7p66p7gKe/07n/ZSsWeumlCvhc3d+DjtK41O8HVWYnJJw6DdEitqNEOh1603KTA3QVRn2KaUylS0x+HpmQiWnZ4Fdl8u3U2SIpNg7sRd7ka6EOggZkUE5VzaX9TZrNEPqY//kfmRF1lgnU2tK6TOT0xgxi4/liKSHpoaBGwmMj5s+46OJssjv2rZxZmJenpftpiya1PXRqBR5MgDAkR1H4j4EEgKU9ZJwUIZIap4vUlmvxZ7TJMzUALIy3G4AG0v+gqWp4QODr2eq8/KxW7rUSNdMzbhSyVUsV8lw3rSXfCaPfRP7cGrtFIDOXC6T+BgpTg0aIkURGwHzsZekxcdNn3tOAXPDQBZvvdOtLAK6fDt43SDRw+SUhENxCtDanaCwuSQDQxQzHypB6zZ8aCasMgwAay/5s+9XVvk9qwAo6/XMhJ6crp+Tj5qWupnTcaWSr5h2Tlcbq0y6TFiYXMALqy9go7mBf//9f4+MyODSmUvjPqzxZWDsZTEaVRHQicE9M6frybnudSuL/I69sHgbHCM+6sXblHZOyWjA5JSEg7qAqQC8uRRdZThr5ta7now9bkBnl9vqS/4NH6BJuY2ixcqwZ8pzgMh2OqetLVlQYec08Vh2TpvsnJqxMLWAk2sn8Yt/94v4h1f+AZ+69VO4asdVcR/W+NJviBRlfLRy601K7CjNyGuyth3AMLBv7KXFVTKeMZRFevFWzZwmpYhBxgompyQcimrRuH5B21iMxgwJADIZmaAOWOUnJDlVndPWls/gq/bUdVWH1f/V687UcSaTAao7O51Tda4Wx2NfaJqp5CvY7P771qGs15yDUwex3lzH/a/cj0/e+kn81MU/FfchjTf9hkhRxsd+t95WA9huJSs+GsmkX0OkRu9zqnNKF2/3VHWH24H4yOSURA+TUxIOJZWcqs7pIlCJKPgCwMRuYO3lzvtJmqnpvgnxc0NgNlPLPW7+qO4aDL6sDCceq87pWnONsl4Tju48inwmj1+/5dfx5ovfHPfhkG5DpO02sLUSnax3Yrd8XH1JPiZpBzjQFx/9ynrNDANFxwyKOGMl62V8JDFAt14SDkrWq0wfNhaB3VdH9/3nDgGLz3XeT9Iet1KXK6NfQySgb2aIM6e+6N7lpm7SWBlOPJV8BWfWz/Q8t61to9aocX+nCdftug4/eM8PkI9iVQlxpjgpu3vNLVk4hRadrHdyr1QWLenxURU2k5Kc9sRHv4ZI/Z1T3VyJK6bcU5iQneaB+EhlCokedk5JOCint+/+F+DcU3KmJqrKMADMHu4EX0BeWJPSVSwHDL6mnVPOnPpiYp6V4RRSzpWx2eqV9W40N6BBw1SBsmwzmJgmCBUf/+Z/BxafkW9HFR8zGWD2UKd421iXj0mJHYHjo1nndIOFW68IIdetDch6mZyS6GFySsJh52XAnZ8CTj8A/N7NwMb56GZqAGDuMLBxodO5TdIet+I0AL2C6yv4qs6pmayXAdgT1V3S8EHTWBlOEWayXrW/k7JekniO/hPghvcD938W+MM3yeeijo9Lz8u3VXKalKJcUGWRqVuvz7U04051vrdzmslTGk1igckpCY/XfBT4F/8IHH+/dEXdeUV033v2sHxceh5ot6R5UFKS00ymM5MbtiESk1NvTMxLp+NGjTOnKcJslcya7iZJWS9JPIUK8Jb/Anz4e8DFt8v4OHdxdN9/9rDsnGpaV3KakOQtjM5p22SVDGOjd3o8GWoceSGxwZlTEi7VncBP/SZwx69H6yQ7p5LT54DZg/LtpCSngKwOb634NERSq3Io6w2MsWj8HGdOU0Q5V0Zju4HmdhP5jJSrquSUbr0kNcxfBfzzr+nKngiv3XOH5R7R9XPJnjn1ZYhU0teCaZ0Z06ZPZ/xxZ2IX8NID8u1GDeC1lcQEO6dkOOTL0ZoRzB6Sj4vPJW+mBuhUh30ZIpnscaUboT+6d7lxpiY1VHLyb7l77lTJeifz/P2RlBF117InPupFuaTsAQ/aOVWGgd17wNk59Ud1Hlg/D2xvy/jIwi2JCSanZDQoTUv3w6XnZFUaSJZcU1WHAxkidTkSquBLN0JvTKjO6VkaIqWIiv530y3tpayXEJd0j700EtY5zZc7BdhA8bGveMvk1DsT84DWlqsA62uMjSQ2mJyS0WHucG9lOCkzNUBX5zSIIRKDb2CMzunZjqNzJhvvMRFHVOe02xSJsl5CXDJ7EIDQi7dq5jQhySkQTFlkNfaSJOVUWqjulI8qPlJVRGKCySkZHdQ6GcPJNkHBqRQk+CpDpO7OKYOvL1TwXT/HynCKUJ3TzaaJrJfJKSH25IrA1H5ZvG0mcOwlkLJIT07bfW72LN56RxVvlbKIsl4SE0xOyegwdxhYeRHYXJbvJynxUJXhQIZI3Z1TBl9fZPNS/q0MkRh8U4FV5zSfyaOY5dw1IY7MHe50TkU2WX4F5RlAZPwdk9UecMZH70yo5PQ8DZFIrDA5JaPD7GFA2wbOPSHfT5KsN0jn1MwQqUU3Qt9Ud0nZUr2WrAIGscRs5rTWqLFrSohbZg/pYy/6DvAk+RWUZmTX1M8xZU32gLeoLPKFcrOvsXNK4oWrZMjooNbJvPKYfEzSTE1lTj4G6pz2GSLlmJz6YmJedk5FhjM1KcGqczqR580TIa6YOyzlmutnkxUbARkf/R6TlSFSlKvsRoXyLJDJAbVXgAbHXkh8MDklo8NsX3KaFKt8ALjqbhkw1TF6wVTWu8nA4ZfqLuDlh2RnfWp/3EdDXGDq1ttcY+eUELcY8fHx5HUVX/NR4Io3+fvcXF/ntN2S/gxJ+z+mASFkfFw+KVVo7JySmKCsl4wOE7tltfT8U/L9JFWHK3PAzR/2KVtShg80RAoF1TmlrDc1lHWVQHfntNaocY0MIW5Ru07PP5Ws2AgAe64Bjtzt73MNw0A9OVW7kDn24o/qLmDxWfk2lUUkJpicktEhk5EBWGsDEKMTnDIZOVdDQ6RwqO4C6qvAxgVWhlOCIevt23M6mefNEyGuUGMvWjt5yWkQ+lfJNJmcBmJiXs4mAzREIrHB5JSMFkq6lDTDh6Bki3QjDAvlSFhfZec0JeSzeeQz+d6ZU8p6CXFPebZjzDdKyWm/YWASV8mlieo8UF+Rb7N4S2KCySkZLVR1eNQCU64/Od0Yvf9jVChHQoCypRRRyVcG3Hop6yXEA6MYHw1DJH3shZ3TYEx0xUdeX0lMMDklo0V353SUGEhOuUrGN2rROMDgmyIquYrROW1tt7DR2qCslxAvGPFxhK57hiGS6pyq5HSEEvAo6SnejtB5QlIFk1MyWsyNcHKqDB+22/JtJqf+mGDwTSOVXAWbutnJenMdANg5JcQLRnwcocSt3xDJSE65SsYXPcVbFv9IPDA5JaPFyHZOSyaVYSanvugOvpT1poZuWe/Ty08DAPZPcBUQIa4ZxfhoaYg0Qgl4lLB4SxIAk1MyWswsQDr1jlhgyhYYfMMiXwKKU/JtVoZTQ7es974z90FA4IbdN8R8VISkCGPmdISSU0tDJBZvfcHiLUkATE7JaJErADMHRu+iWqgCW7qDHoNvcKo75SMrw6mhnC8bndP7z9yPK+auwHRxOuajIiRFzF0sH0cpPuaKgMh2xUcWbwMx0ZWcjlIRg6QKJqdk9Hjb7wO3/0rcRxEue64FXn4YaDcp6w0DVR3mzGJqUJ3TRruBB889iOO7j8d9SISki6l9wNs/C1z7zriPJDyEAPZcA5x+QL7P4m0wynMAhIyNGaYIJB545pHR49CtwO6r4z6KcFm4CWhtygS1xcpwYNRcDTunqUHNnD5y/hHU23XcuOfGuA+JkPRxzT8BqjviPopwWbgZePF+WbxV8l4mp/7I5oDKDhZuSayEkpwKIT4hhNCEEDv194UQ4neEEE8LIR4WQlwfxvchZGw5cLN8PPX9Tuc0RzdC3xid0xGSt404qnN6/5n7OW9KCOlwQC/ennm40znNMTn1zcQ8C7ckVgInp0KIAwDuAHCy6+k3ArhM//chAL8f9PsQMtZM7QVmDgInv98lW2Ln1DdT+4BMbrRmr0acSl6ukvnhmR9y3pQQ0mFBL96e/IFevBUdF1/inal9uryXkHgIo3P62wB+GYDW9dxbAfyRJvk+gBkhxN4Qvhch48vCzcCpHwANztQE5sYPAu/7OnfhpYhKThZjHnjlAc6bEkI6TO2TTv1KWZSvyFlU4o83/gZw93+N+yjIGBMoORVCvBXAaU3THup7aT+AU13vv6g/Rwjxy4GbgNorwNkT8n12Tv1TngEO3RL3URAPqOS0pbVwfA+TU0JIFwdulsqixjoLt0HZcQkwf2XcR0HGmJzTUqP1fgAAB01JREFUBwghvg1gj8lL/xbAr0FKen0jhPgQpPQXCwsLQb4UIaONki49e498ZAAmY0RFL8YICHZOCSG9LNwEPPJV4NwTLNwSknIck1NN037S7HkhxDUADgN4SEj5xEUAHhBCvBrAaQAHuj78Iv05s6//aQCfBoDjx49rZh9DCAGw6yqgOA28eJ98n8kpGSNU5/Ty2cs5b0oI6UWZBr54HzB3SbzHQggJhG9Zr6Zpj2iaNq9p2iFN0w5BSnev1zTtDICvA3if7tp7M4AVTdNeDueQCRlTMhngwKuB7ZZ8n9VhMkaU9WIMV8gQQgaY14u32y0WbglJOcPac/pXAJ4F8DSAzwD4yJC+DyHjxcJN+ht0IyTjxY6S3M34mn2viflICCGJI5MFDuiFKyanhKQaR1mvW/TuqXpbA/DRsL42IURHSZfyZboRkrHiirkr8LW3fA2Xz14e96EQQpLIgZuBp7/N5JSQlBNackoIiYD9N8j9nAy+ZAy5Yu6KuA+BEJJUlLKIIy+EpJphyXoJIcOgUAH2XMvgSwghhHSz/wZAZFm8JSTlsHNKSNr4sY8Bi8/GfRSEEEJIcihUgdt+CdhzTdxHQggJAJNTQtLG0bfHfQSEEEJI8njdr8V9BISQgFDWSwghhBBCCCEkdpicEkIIIYQQQgiJHSanhBBCCCGEEEJih8kpIYQQQgghhJDYYXJKCCGEEEIIISR2mJwSQgghhBBCCIkdJqeEEEIIIYQQQmKHySkhhBBCCCGEkNhhckoIIYQQQgghJHaYnBJCCCGEEEIIiR0mp4QQQgghhBBCYofJKSGEEEIIIYSQ2GFySgghhBBCCCEkdpicEkIIIYQQQgiJHSanhBBCCCGEEEJih8kpIYQQQgghhJDYYXJKCCGEEEIIISR2mJwSQgghhBBCCIkdoWla3MdgIIQ4B+CFuI/DJzsBnI/7IMjYwPONRAnPNxIlPN9IlPB8I1HC801yUNO0XWYvJCo5TTNCiPs1TTse93GQ8YDnG4kSnm8kSni+kSjh+UaihOebM5T1EkIIIYQQQgiJHSanhBBCCCGEEEJih8lpeHw67gMgYwXPNxIlPN9IlPB8I1HC841ECc83BzhzSgghhBBCCCEkdtg5JYQQQgghhBASO0xOQ0AIcZcQ4kkhxNNCiF+J+3jI6CGEeF4I8YgQ4kEhxP36c3NCiG8JIX6kP87GfZwknQghPieEOCuEeLTrOdPzS0h+R7/ePSyEuD6+IydpxOJ8+z+FEKf1a9yDQog3db32q/r59qQQ4s54jpqkFSHEASHEPUKIx4UQjwkh/qX+PK9xJHRszjde41zC5DQgQogsgP8LwBsBHAHwbiHEkXiPiowor9M07ViXBfmvAPhbTdMuA/C3+vuE+OHzAO7qe87q/HojgMv0fx8C8PsRHSMZHT6PwfMNAH5bv8Yd0zTtrwBAj6fvAnC1/jm/p8ddQtzSAvAJTdOOALgZwEf184rXODIMrM43gNc4VzA5Dc6rATytadqzmqY1AHwFwFtjPiYyHrwVwBf0t78A4G0xHgtJMZqm/T2Axb6nrc6vtwL4I03yfQAzQoi90RwpGQUszjcr3grgK5qm1TVNew7A05BxlxBXaJr2sqZpD+hvrwE4AWA/eI0jQ8DmfLOC17g+mJwGZz+AU13vvwj7k5AQP2gA/kYI8Q9CiA/pz+3WNO1l/e0zAHbHc2hkRLE6v3jNI8PiY7qM8nNdYwo830hoCCEOAXgVgB+A1zgyZPrON4DXOFcwOSUkHdyqadr1kHKjjwohbut+UZO227TeJkOB5xeJgN8HcAmAYwBeBvCb8R4OGTWEEBMA/hTAv9I0bbX7NV7jSNiYnG+8xrmEyWlwTgM40PX+RfpzhISGpmmn9cezAP4MUvLxipIa6Y9n4ztCMoJYnV+85pHQ0TTtFU3T2pqmbQP4DDqyNp5vJDBCiDxkovDfNE37//SneY0jQ8HsfOM1zj1MToNzH4DLhBCHhRAFyKHmr8d8TGSEEEJUhRCT6m0AdwB4FPI8+xn9w34GwF/Ec4RkRLE6v74O4H26o+XNAFa6pHGE+KJvpu+nIa9xgDzf3iWEKAohDkOa1Pww6uMj6UUIIQB8FsAJTdN+q+slXuNI6Fidb7zGuScX9wGkHU3TWkKIjwH4JoAsgM9pmvZYzIdFRovdAP5MXu+QA/AlTdO+IYS4D8BXhRA/B+AFAO+I8RhJihFCfBnA7QB2CiFeBPB/APhPMD+//grAmyBNGzYAvD/yAyapxuJ8u10IcQxSWvk8gJ8HAE3THhNCfBXA45AumB/VNK0dx3GT1HILgPcCeEQI8aD+3K+B1zgyHKzOt3fzGucOIWX2hBBCCCGEEEJIfFDWSwghhBBCCCEkdpicEkIIIYQQQgiJHSanhBBCCCGEEEJih8kpIYQQQgghhJDYYXJKCCGEEEIIISR2mJwSQgghhBBCCIkdJqeEEEIIIYQQQmKHySkhhBBCCCGEkNj5/wEOLP7vF7EBvQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "