-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweighted_inspection_v0.py
433 lines (357 loc) · 18.6 KB
/
weighted_inspection_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
"""Module for the V0 version of the Weighted Inspection environment"""
import typing
import gymnasium as gym
import numpy as np
import copy
import safe_autonomy_simulation.sims.inspection as sim
from gymnasium.core import RenderFrame
import safe_autonomy_sims.gym.inspection.reward as r
from safe_autonomy_sims.gym.inspection.utils import closest_fft_distance, polar_to_cartesian, rel_dist
class WeightedInspectionEnv(gym.Env):
# pylint:disable=C0301
r"""
In this weighted inspection environment, the goal is for a single deputy spacecraft
to navigate around and inspect the entire surface of a chief spacecraft.
The chief is covered in 100 inspection points that the agent must observe
while they are illuminated by the moving sun. The points are weighted by
priority, such that it is more important to inspect some points than others.
A unit vector is used to indicate the direction of highest importance, where
points are weighted based on their angular distance to this vector. All
point weights add up to a value of one. The optimal policy will inspect
points whose cumulative weight exceeds 0.95 within 2 revolutions of the sun
while using as little fuel as possible.
In this weighted inspection environment, the agent only controls its
translational motion and is always assumed to be pointing at the chief spacecraft.
__Note: the policy selects a new action every 10 seconds__
## Action Space
Actions are thruster force values for each of the 3 bi-directional thrusters
on the x-, y-, and z-axis of the deputy spacecraft's body frame.
The action space is a `Box(-1, 1, shape=(3,))` where each value in the array
represents the force applied to the x-, y-, and z-axis of the deputy spacecraft.
| Index | Action | Control Min | Control Max | Type (units) |
|-------|---------------|-------------|-------------|--------------|
| 0 | x-axis thrust | -1 | 1 | Force (N) |
| 1 | y-axis thrust | -1 | 1 | Force (N) |
| 2 | z-axis thrust | -1 | 1 | Force (N) |
## Observation Space
At each timestep, the agent receives the observation,
$o = [x, y, z, v_x, v_y, v_z, \theta_{sun}, n, x_{ups}, y_{ups}, z_{ups}, x_{pv}, y_{pv}, z_{pv}, w_{points}]$, where:
* $x, y,$ and $z$ represent the deputy's position in the Hill's frame,
* $v_x, v_y,$ and $v_z$ represent the deputy's directional velocity in the Hill's frame,
* $\theta_{sun}$ is the angle of the sun,
* $n$ is the number of points that have been inspected so far
* $x_{ups}, y_{ups},$ and $z_{ups}$ are the unit vector elements pointing to the nearest large cluster of unispected points
* $x_{pv}, y_{pv},$ and $z_{pv}$ are the unit vector elements pointing to the priority vector indicating point priority
* $w_{points}$ is the cumulative weight of inpsected points
The observation space is a `Box` with the following bounds:
| Index | Observation | Min | Max | Type (units) |
|-------|--------------------------------------------------------|------|--------|----------------|
| 0 | x position of the deputy in Hill's frame | -inf | inf | position (m) |
| 1 | y position of the deputy in Hill's frame | -inf | inf | position (m) |
| 2 | z position of the deputy in Hill's frame | -inf | inf | position (m) |
| 3 | x velocity of the deputy in Hill's frame | -inf | inf | velocity (m/s) |
| 4 | y velocity of the deputy in Hill's frame | -inf | inf | velocity (m/s) |
| 5 | z velocity of the deputy in Hill's frame | -inf | inf | velocity (m/s) |
| 6 | angle of the sun | 0 | $2\pi$ | angle (rad) |
| 7 | number of points inspected | 0 | 100 | count |
| 8 | x component of unit vector pointing to nearest cluster | -1 | 1 | scalar |
| 9 | y component of unit vector pointing to nearest cluster | -1 | 1 | scalar |
| 10 | z component of unit vector pointing to nearest cluster | -1 | 1 | scalar |
| 11 | x component of unit vector pointing to priority vector | -1 | 1 | scalar |
| 12 | y component of unit vector pointing to priority vector | -1 | 1 | scalar |
| 13 | z component of unit vector pointing to priority vector | -1 | 1 | scalar |
| 14 | cumulative weight of inspected points | 0 | 1 | scalar |
## State Transition Dynamics
The relative motion between the deputy and chief is represented by
linearized Clohessy-Wiltshire equations [[1]](#1), given by
$$
\dot{\boldsymbol{x}} = A {\boldsymbol{x}} + B\boldsymbol{u},
$$
where:
* state $\boldsymbol{x}=[x,y,z,\dot{x},\dot{y},\dot{z}]^T \in \mathcal{X}=\mathbb{R}^6$
* control $\boldsymbol{u}= [F_x,F_y,F_z]^T \in \mathcal{U} = [-1N, 1N]^3$
* $$
A =
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
3n^2 & 0 & 0 & 0 & 2n & 0 \\
0 & 0 & 0 & -2n & 0 & 0 \\
0 & 0 & -n^2 & 0 & 0 & 0 \\
\end{bmatrix},
B =
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{1}{m} & 0 & 0 \\
0 & \frac{1}{m} & 0 \\
0 & 0 & \frac{1}{m} \\
\end{bmatrix},
$$
* mean motion constant $n = 0.001027 rad/s$
## Rewards
The reward $r_t$ at each time step is the sum of the following terms:
* $r_t += 1.0(weight\_inspected\_points_t - weight\_inspected\_points_{t-1})$
* a dense reward for observing inspection points
* $r += 1$ if $weight\_inspected\_points_i \geq 0.95$ and $FFT_radius \geq crash\_region\_radius$, $r = -1$ if $weight\_inspected\_points_i \geq 0.95$ and $FFT_radius < crash\_region\_radius$, else 0
* a sparse reward for successfully inspecting the chief spacecraft
* positive reward if the agent inspects 95% of the points and is on a safe trajectory
* negative reward if the agent inspects 95% of the points and is on a collision course with the chief spacecraft
* $r += -1$ if $radius < crash\_region\_radius$, else 0
* a sparse reward punishing the agent for crashing with the chief spacecraft
* $r += -0.1||\boldsymbol{u}||$
* a dense reward for minimizing fuel usage
* fuel use is represented by the norm of the control input (action)
## Starting State
At the start of an episode, the state is randomly initialized with the following conditions:
* chief $(x,y,z)$ = $(0, 0, 0)$
* chief radius = $10 m$
* chief # of points = $100$
* priority unit vector orientation for point weighting is randomly sampled from a uniform distribution using polar notation $(\phi, \psi)$
* $\psi \in [0, 2\pi] rad$
* $\phi \in [-\pi/2, \pi/2] rad$
* deputy position $(x, y, z)$ is converted after randomly selecting the position in polar notation $(r, \phi, \psi)$ using a uniform distribution with
* $r \in [50, 100] m$
* $\psi \in [0, 2\pi] rad$
* $\phi \in [-\pi/2, \pi/2] rad$
* $x = r \cos{\psi} \cos{\phi}$
* $y = r \sin{\psi} \cos{\phi}$
* $z = r \sin{\phi}$
* deputy $(v_x, v_y, v_z)$ is converted after randomly selecting the velocity in polar notation $(r, \phi, \psi)$ using a Gaussian distribution with
* $v \in [0, 0.3]$ m/s
* $\psi \in [0, 2\pi] rad$
* $\phi \in [-\pi/2, \pi/2] rad$
* $v_x = v \cos{\psi} \cos{\phi}$
* $v_y = v \sin{\psi} \cos{\phi}$
* $v_z = v \sin{\phi}$
* deputy camera parameters:
* field of view = $\pi$ rad
* focal length = $1 m$
* Initial sun angle is randomly selected using a uniform distribution
* $\theta_{sun} \in [0, 2\pi] rad$
* Simulator frame rate = $0.1 Hz$
## Episode End
An episode will end if any of the following conditions are met:
* Terminated: the agent moves within a `crash_region_radius = 10` meter radius around the chief
* Terminated: the cumulative weight of inspected points exceeds 0.95
* Truncated: the maximum number of timesteps, `max_timesteps = 12236`
* Truncated: the agent exceeds a `max_distance = 800` meter radius away from the chief
The episode is considered done and successful if and only if the cumulative weight of inspected points exceeds 0.95.
## Information
`step()` and `reset()` return a dict with the following keys:
* reward_components - a dict of reward component string names to their last computed float values.
* status - a string descirbing the status of the current episode.
Statuses for the episode are either "Running" or describe a unique terminal state. Terminal
states can be one of the following: "Success", "Crash", "Out of Bounds", "Timeout".
## References
<a id="1">[1]</a>
Clohessy, W., and Wiltshire, R., “Terminal Guidance System for Satellite Rendezvous,” *Journal of the Aerospace Sciences*, Vol. 27, No. 9, 1960, pp. 653–658.
<a id="2">[2]</a>
Dunlap, K., Mote, M., Delsing, K., and Hobbs, K. L., “Run Time Assured Reinforcement Learning for Safe Satellite
Docking,” *Journal of Aerospace Information Systems*, Vol. 20, No. 1, 2023, pp. 25–36. [https://doi.org/10.2514/1.I011126](https://doi.org/10.2514/1.I011126).
<a id="3">[3]</a>
Gaudet, B., Linares, R., and Furfaro, R., “Adaptive Guidance and Integrated Navigation with Reinforcement Meta-Learning,”
*CoRR*, Vol. abs/1904.09865, 2019. URL [http://arxiv.org/abs/1904.09865](http://arxiv.org/abs/1904.09865).
<a id="4">[4]</a>
Battin, R. H., “An introduction to the mathematics and methods of astrodynamics,” 1987.
<a id="5">[5]</a>
Campbell, T., Furfaro, R., Linares, R., and Gaylor, D., “A Deep Learning Approach For Optical Autonomous Planetary Relative
Terrain Navigation,” 2017.
<a id="6">[6]</a>
Furfaro, R., Bloise, I., Orlandelli, M., Di Lizia, P., Topputo, F., and Linares, R., “Deep Learning for Autonomous Lunar
Landing,” 2018.
<a id="7">[7]</a>
Lei, H. H., Shubert, M., Damron, N., Lang, K., and Phillips, S., “Deep reinforcement Learning for Multi-agent Autonomous
Satellite Inspection,” *AAS Guidance Navigation and Control Conference*, 2022.
<a id="8">[8]</a>
Aurand, J., Lei, H., Cutlip, S., Lang, K., and Phillips, S., “Exposure-Based Multi-Agent Inspection of a Tumbling Target Using
Deep Reinforcement Learning,” *AAS Guidance Navigation and Control Conference*, 2023.
<a id="9">[9]</a>
Brandonisio, A., Lavagna, M., and Guzzetti, D., “Reinforcement Learning for Uncooperative Space Objects Smart Imaging
Path-Planning,” The *Journal of the Astronautical Sciences*, Vol. 68, No. 4, 2021, pp. 1145–1169. [https://doi.org/10.1007/s40295-021-00288-7](https://doi.org/10.1007/s40295-021-00288-7).
""" # noqa:E501
# pylint:enable=C0301
def __init__(
self,
success_threshold: float = 0.95,
crash_radius: float = 15,
max_distance: float = 800,
max_time: float = 12236,
) -> None:
self.observation_space = gym.spaces.Box(
np.concatenate(
(
[-np.inf] * 3, # position
[-np.inf] * 3, # velocity
[0], # sun angle
[0], # num inspected
[-1] * 3, # nearest cluster unit vector
[-1] * 3, # priority vector unit vector
[0], # weight inspected
)
),
np.concatenate(
(
[np.inf] * 3, # position
[np.inf] * 3, # velocity
[2 * np.pi], # sun angle
[100], # num inspected
[1] * 3, # nearest cluster unit vector
[1] * 3, # priority vector unit vector
[1], # weight inspected
)
),
shape=(15, ),
)
self.action_space = gym.spaces.Box(-1, 1, shape=(3, ))
# Environment parameters
self.crash_radius = crash_radius
self.max_distance = max_distance
self.max_time = max_time
self.success_threshold = success_threshold
# Episode level information
self.prev_state: dict[typing.Any, typing.Any] | None = None
self.prev_num_inspected = 0
self.prev_weight_inspected = 0.0
self.reward_components = {}
self.status = "Running"
# Lazy initialized
self.chief: sim.Target
self.deputy: sim.Inspector
self.sun: sim.Sun
self.simulator: sim.InspectionSimulator
def reset(self, *, seed: int | None = None, options: dict[str, typing.Any] | None = None) -> tuple[typing.Any, dict[str, typing.Any]]:
super().reset(seed=seed, options=options)
self._init_sim() # sim is light enough we just reconstruct it
self.simulator.reset()
self.reward_components = {}
self.status = "Running"
obs, info = self._get_obs(), self._get_info()
self.prev_state = None
self.prev_num_inspected = 0
self.prev_weight_inspected = 0.0
return obs, info
def _init_sim(self):
# Initialize spacecraft, sun, and simulator
priority_vector = self.np_random.uniform(-1, 1, size=3)
priority_vector /= np.linalg.norm(priority_vector) # convert to unit vector
self.chief = sim.Target(
name="chief",
num_points=100,
radius=10,
priority_vector=priority_vector,
)
self.deputy = sim.Inspector(
name="deputy",
position=polar_to_cartesian(
r=self.np_random.uniform(50, 100),
theta=self.np_random.uniform(0, 2 * np.pi),
phi=self.np_random.uniform(-np.pi / 2, np.pi / 2),
),
velocity=polar_to_cartesian(
r=self.np_random.uniform(0, 0.3),
theta=self.np_random.uniform(0, 2 * np.pi),
phi=self.np_random.uniform(-np.pi / 2, np.pi / 2),
),
fov=np.pi,
focal_length=1,
)
self.sun = sim.Sun(theta=self.np_random.uniform(0, 2 * np.pi))
self.simulator = sim.InspectionSimulator(
frame_rate=0.1,
inspectors=[self.deputy],
targets=[self.chief],
sun=self.sun,
)
def step(self, action: typing.Any) -> tuple[typing.Any, typing.SupportsFloat, bool, bool, dict[str, typing.Any]]:
assert self.action_space.contains(
action
), f"given action {action} is not contained in action space {self.action_space}"
# Store previous simulator state
self.prev_state = self.sim_state.copy()
if self.simulator.sim_time > 0:
self.prev_num_inspected = (self.chief.inspection_points.get_num_points_inspected())
self.prev_weight_inspected = (self.chief.inspection_points.get_total_weight_inspected())
# Update simulator state
self.deputy.add_control(action)
self.simulator.step()
# Get info from simulator
observation = self._get_obs()
reward = self._get_reward()
terminated = self._get_terminated()
truncated = self._get_truncated()
info = self._get_info()
return observation, reward, terminated, truncated, info
def _get_obs(self):
obs = self.observation_space.sample()
obs[:3] = self.deputy.position
obs[3:6] = self.deputy.velocity
obs[6] = self.sun.theta
obs[7] = self.chief.inspection_points.get_num_points_inspected()
obs[8:11] = self.chief.inspection_points.kmeans_find_nearest_cluster(camera=self.deputy.camera, sun=self.sun)
obs[11:14] = self.chief.inspection_points.priority_vector
obs[14] = self.chief.inspection_points.get_total_weight_inspected()
return obs
def _get_info(self):
return {
"reward_components": copy.copy(self.reward_components),
"status": copy.copy(self.status)
}
def _get_reward(self):
reward = 0
# Dense rewards
points_reward = r.weighted_observed_points_reward(chief=self.chief, prev_weight_inspected=self.prev_weight_inspected)
self.reward_components["observed_points"] = points_reward
reward += points_reward
delta_v_reward = r.delta_v_reward(control=self.deputy.last_control)
self.reward_components["delta_v"] = delta_v_reward
reward += delta_v_reward
# Sparse rewards
success_reward = r.weighted_inspection_success_reward(chief=self.chief, total_weight=self.success_threshold)
if (success_reward > 0 and closest_fft_distance(chief=self.chief, deputy=self.deputy) < self.crash_radius):
success_reward = -1.0
self.reward_components["success"] = success_reward
reward += success_reward
crash_reward = r.crash_reward(chief=self.chief, deputy=self.deputy, crash_radius=self.crash_radius)
self.reward_components["crash"] = crash_reward
reward += crash_reward
return reward
def _get_terminated(self):
# Get state info
d = rel_dist(pos1=self.chief.position, pos2=self.deputy.position)
# Determine if in terminal state
crash = d < self.crash_radius
all_inspected = self.chief.inspection_points.get_total_weight_inspected() >= self.success_threshold
# Update Status
if crash:
self.status = "Crash"
elif all_inspected:
self.status = "Success"
return crash or all_inspected
def _get_truncated(self):
d = rel_dist(pos1=self.chief.position, pos2=self.deputy.position)
oob = d > self.max_distance
timeout = self.simulator.sim_time > self.max_time
# Update Status
if oob:
self.status = "Out of Bounds"
elif timeout:
self.status = "Timeout"
return oob or timeout
@property
def sim_state(self) -> dict:
"""Provides the state of the simulator
Returns
-------
dict
A dictionary containing the state of the deputy and the state of the chief
"""
state = {
"deputy": self.deputy.state,
"chief": self.chief.state,
}
return state
def render(self) -> RenderFrame | list[RenderFrame] | None:
raise NotImplementedError