-
Notifications
You must be signed in to change notification settings - Fork 1
/
Strain.hpp
283 lines (225 loc) · 11.1 KB
/
Strain.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_STRAIN_HPP
#define PHQ_STRAIN_HPP
#include <array>
#include <cstddef>
#include <functional>
#include <ostream>
#include "DimensionlessSymmetricDyad.hpp"
#include "ScalarStrain.hpp"
#include "SymmetricDyad.hpp"
namespace PhQ {
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class DisplacementGradient;
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class Time;
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class Frequency;
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class StrainRate;
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class TemperatureDifference;
// Forward declaration for class PhQ::Strain.
template <typename NumericType>
class VolumetricThermalExpansionCoefficient;
/// \brief Three-dimensional Euclidean strain symmetric dyadic tensor. Contains six components in
/// Cartesian coordinates: xx, xy = yx, xz = zx, yy, yz = zy, and zz. For the scalar components or
/// resultants of a strain tensor, see PhQ::ScalarStrain. For the time rate of change of strain, see
/// PhQ::StrainRate, PhQ::Time, and PhQ::Frequency.
template <typename NumericType = double>
class Strain : public DimensionlessSymmetricDyad<NumericType> {
public:
/// \brief Default constructor. Constructs a strain tensor with an uninitialized value.
Strain() = default;
/// \brief Constructor. Constructs a strain tensor whose value has the given xx, xy, xz, yy, yz,
/// and zz Cartesian components.
constexpr Strain(const NumericType xx, const NumericType xy, const NumericType xz,
const NumericType yy, const NumericType yz, const NumericType zz)
: DimensionlessSymmetricDyad<NumericType>(xx, xy, xz, yy, yz, zz) {}
/// \brief Constructor. Constructs a strain tensor from a given array representing its value's xx,
/// xy, xz, yy, yz, and zz Cartesian components.
explicit constexpr Strain(const std::array<NumericType, 6>& xx_xy_xz_yy_yz_zz)
: DimensionlessSymmetricDyad<NumericType>(xx_xy_xz_yy_yz_zz) {}
/// \brief Constructor. Constructs a strain tensor with a given value.
explicit constexpr Strain(const SymmetricDyad<NumericType>& value)
: DimensionlessSymmetricDyad<NumericType>(value) {}
/// \brief Constructor. Constructs a strain tensor from a given strain rate tensor and time using
/// the definition of the strain rate tensor.
constexpr Strain(const StrainRate<NumericType>& strain_rate, const Time<NumericType>& time);
/// \brief Constructor. Constructs a strain tensor from a given strain rate tensor and frequency
/// using the definition of the strain rate tensor.
constexpr Strain(
const StrainRate<NumericType>& strain_rate, const Frequency<NumericType>& frequency);
/// \brief Constructor. Constructs a strain tensor from a given displacement gradient using the
/// definition of the strain tensor.
explicit constexpr Strain(const DisplacementGradient<NumericType>& displacement_gradient);
/// \brief Constructor. Constructs a strain tensor from a given volumetric thermal expansion
/// coefficient and temperature difference using the definition of the volumetric thermal
/// expansion coefficient.
constexpr Strain(const VolumetricThermalExpansionCoefficient<NumericType>&
volumetric_thermal_expansion_coefficient,
const TemperatureDifference<NumericType>& temperature_difference);
/// \brief Destructor. Destroys this strain tensor.
~Strain() noexcept = default;
/// \brief Copy constructor. Constructs a strain tensor by copying another one.
constexpr Strain(const Strain<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a strain tensor by copying another one.
template <typename OtherNumericType>
explicit constexpr Strain(const Strain<OtherNumericType>& other)
: Strain(static_cast<SymmetricDyad<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs a strain tensor by moving another one.
constexpr Strain(Strain<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this strain tensor by copying another one.
constexpr Strain<NumericType>& operator=(const Strain<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this strain tensor by copying another one.
template <typename OtherNumericType>
constexpr Strain<NumericType>& operator=(const Strain<OtherNumericType>& other) {
this->value = static_cast<SymmetricDyad<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this strain tensor by moving another one.
constexpr Strain<NumericType>& operator=(Strain<NumericType>&& other) noexcept = default;
/// \brief Statically creates a strain tensor of zero.
[[nodiscard]] static constexpr Strain<NumericType> Zero() {
return Strain<NumericType>{SymmetricDyad<NumericType>::Zero()};
}
/// \brief Returns the xx Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> xx() const noexcept {
return ScalarStrain<NumericType>{this->value.xx()};
}
/// \brief Returns the xy = yx Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> xy() const noexcept {
return ScalarStrain<NumericType>{this->value.xy()};
}
/// \brief Returns the xz = zx Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> xz() const noexcept {
return ScalarStrain<NumericType>{this->value.xz()};
}
/// \brief Returns the yx = xy Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> yx() const noexcept {
return ScalarStrain<NumericType>{this->value.yx()};
}
/// \brief Returns the yy Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> yy() const noexcept {
return ScalarStrain<NumericType>{this->value.yy()};
}
/// \brief Returns the yz = zy Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> yz() const noexcept {
return ScalarStrain<NumericType>{this->value.yz()};
}
/// \brief Returns the zx = xz Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> zx() const noexcept {
return ScalarStrain<NumericType>{this->value.zx()};
}
/// \brief Returns the zy = yz Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> zy() const noexcept {
return ScalarStrain<NumericType>{this->value.zy()};
}
/// \brief Returns the zz Cartesian component of this strain tensor.
[[nodiscard]] constexpr ScalarStrain<NumericType> zz() const noexcept {
return ScalarStrain<NumericType>{this->value.zz()};
}
constexpr Strain<NumericType> operator+(const Strain<NumericType>& strain) const {
return Strain<NumericType>{this->value + strain.value};
}
constexpr Strain<NumericType> operator-(const Strain<NumericType>& strain) const {
return Strain<NumericType>{this->value - strain.value};
}
constexpr Strain<NumericType> operator*(const NumericType number) const {
return Strain<NumericType>{this->value * number};
}
constexpr StrainRate<NumericType> operator*(const Frequency<NumericType>& frequency) const;
constexpr Strain<NumericType> operator/(const NumericType number) const {
return Strain<NumericType>{this->value / number};
}
constexpr StrainRate<NumericType> operator/(const Time<NumericType>& time) const;
constexpr void operator+=(const Strain<NumericType>& strain) noexcept {
this->value += strain.value;
}
constexpr void operator-=(const Strain<NumericType>& strain) noexcept {
this->value -= strain.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
};
template <typename NumericType>
inline constexpr bool operator==(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const Strain<NumericType>& left, const Strain<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(std::ostream& stream, const Strain<NumericType>& strain) {
stream << strain.Print();
return stream;
}
template <typename NumericType>
inline constexpr Strain<NumericType> operator*(
const NumericType number, const Strain<NumericType>& strain) {
return strain * number;
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::Strain<NumericType>> {
inline size_t operator()(const PhQ::Strain<NumericType>& strain) const {
return hash<PhQ::SymmetricDyad<NumericType>>()(strain.Value());
}
};
} // namespace std
#endif // PHQ_STRAIN_HPP