-
Notifications
You must be signed in to change notification settings - Fork 1
/
ElectricCurrent.hpp
280 lines (228 loc) · 11.3 KB
/
ElectricCurrent.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_ELECTRIC_CURRENT_HPP
#define PHQ_ELECTRIC_CURRENT_HPP
#include <cstddef>
#include <functional>
#include <ostream>
#include "DimensionalScalar.hpp"
#include "ElectricCharge.hpp"
#include "Frequency.hpp"
#include "Time.hpp"
#include "Unit/ElectricCurrent.hpp"
namespace PhQ {
/// \brief Electric current, also known as amperage. Represents a flow of electric charge or a time
/// rate of change of electric charge.
template <typename NumericType = double>
class ElectricCurrent : public DimensionalScalar<Unit::ElectricCurrent, NumericType> {
public:
/// \brief Default constructor. Constructs an electric current with an uninitialized value.
ElectricCurrent() = default;
/// \brief Constructor. Constructs an electric current with a given value expressed in a given
/// electric current unit.
ElectricCurrent(const NumericType value, const Unit::ElectricCurrent unit)
: DimensionalScalar<Unit::ElectricCurrent, NumericType>(value, unit) {}
/// \brief Constructor. Constructs an electric current from a given electric charge and time using
/// the definition of electric current.
constexpr ElectricCurrent(
const ElectricCharge<NumericType>& electric_charge, const Time<NumericType>& time)
: ElectricCurrent<NumericType>(electric_charge.Value() / time.Value()) {}
/// \brief Constructor. Constructs an electric current from a given electric charge and frequency
/// using the definition of electric current.
constexpr ElectricCurrent(
const ElectricCharge<NumericType>& electric_charge, const Frequency<NumericType>& frequency)
: ElectricCurrent<NumericType>(electric_charge.Value() * frequency.Value()) {}
/// \brief Destructor. Destroys this electric current.
~ElectricCurrent() noexcept = default;
/// \brief Copy constructor. Constructs an electric current by copying another one.
constexpr ElectricCurrent(const ElectricCurrent<NumericType>& other) = default;
/// \brief Copy constructor. Constructs an electric current by copying another one.
template <typename OtherNumericType>
explicit constexpr ElectricCurrent(const ElectricCurrent<OtherNumericType>& other)
: ElectricCurrent(static_cast<NumericType>(other.Value())) {}
/// \brief Move constructor. Constructs an electric current by moving another one.
constexpr ElectricCurrent(ElectricCurrent<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this electric current by copying another one.
constexpr ElectricCurrent<NumericType>& operator=(
const ElectricCurrent<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this electric current by copying another one.
template <typename OtherNumericType>
constexpr ElectricCurrent<NumericType>& operator=(
const ElectricCurrent<OtherNumericType>& other) {
this->value = static_cast<NumericType>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this electric current by moving another one.
constexpr ElectricCurrent<NumericType>& operator=(
ElectricCurrent<NumericType>&& other) noexcept = default;
/// \brief Statically creates an electric current of zero.
[[nodiscard]] static constexpr ElectricCurrent<NumericType> Zero() {
return ElectricCurrent<NumericType>{static_cast<NumericType>(0)};
}
/// \brief Statically creates an electric current with a given value expressed in a given electric
/// current unit.
template <Unit::ElectricCurrent Unit>
[[nodiscard]] static constexpr ElectricCurrent<NumericType> Create(const NumericType value) {
return ElectricCurrent<NumericType>{
ConvertStatically<Unit::ElectricCurrent, Unit, Standard<Unit::ElectricCurrent>>(value)};
}
constexpr ElectricCurrent<NumericType> operator+(
const ElectricCurrent<NumericType>& electric_current) const {
return ElectricCurrent<NumericType>{this->value + electric_current.value};
}
constexpr ElectricCurrent<NumericType> operator-(
const ElectricCurrent<NumericType>& electric_current) const {
return ElectricCurrent<NumericType>{this->value - electric_current.value};
}
constexpr ElectricCurrent<NumericType> operator*(const NumericType number) const {
return ElectricCurrent<NumericType>{this->value * number};
}
constexpr ElectricCharge<NumericType> operator*(const Time<NumericType>& time) const {
return ElectricCharge<NumericType>{*this, time};
}
constexpr ElectricCurrent<NumericType> operator/(const NumericType number) const {
return ElectricCurrent<NumericType>{this->value / number};
}
constexpr NumericType operator/(
const ElectricCurrent<NumericType>& electric_current) const noexcept {
return this->value / electric_current.value;
}
constexpr ElectricCharge<NumericType> operator/(const Frequency<NumericType>& frequency) const {
return ElectricCharge<NumericType>{*this, frequency};
}
constexpr Frequency<NumericType> operator/(
const ElectricCharge<NumericType>& electric_charge) const {
return Frequency<NumericType>{*this, electric_charge};
}
constexpr void operator+=(const ElectricCurrent<NumericType>& electric_current) noexcept {
this->value += electric_current.value;
}
constexpr void operator-=(const ElectricCurrent<NumericType>& electric_current) noexcept {
this->value -= electric_current.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs an electric current with a given value expressed in the
/// standard electric current unit.
explicit constexpr ElectricCurrent(const NumericType value)
: DimensionalScalar<Unit::ElectricCurrent, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(
const ElectricCurrent<NumericType>& left, const ElectricCurrent<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(
std::ostream& stream, const ElectricCurrent<NumericType>& electric_current) {
stream << electric_current.Print();
return stream;
}
template <typename NumericType>
inline constexpr ElectricCurrent<NumericType> operator*(
const NumericType number, const ElectricCurrent<NumericType>& electric_current) {
return electric_current * number;
}
template <typename NumericType>
inline constexpr Time<NumericType>::Time(const ElectricCharge<NumericType>& electric_charge,
const ElectricCurrent<NumericType>& electric_current)
: Time<NumericType>(electric_charge.Value() / electric_current.Value()) {}
template <typename NumericType>
inline constexpr Frequency<NumericType>::Frequency(
const ElectricCurrent<NumericType>& electric_current,
const ElectricCharge<NumericType>& electric_charge)
: Frequency<NumericType>(electric_current.Value() / electric_charge.Value()) {}
template <typename NumericType>
inline constexpr ElectricCharge<NumericType>::ElectricCharge(
const ElectricCurrent<NumericType>& electric_current, const Time<NumericType>& time)
: ElectricCharge<NumericType>(electric_current.Value() * time.Value()) {}
template <typename NumericType>
inline constexpr ElectricCharge<NumericType>::ElectricCharge(
const ElectricCurrent<NumericType>& electric_current, const Frequency<NumericType>& frequency)
: ElectricCharge<NumericType>(electric_current.Value() / frequency.Value()) {}
template <typename NumericType>
inline constexpr ElectricCharge<NumericType> Time<NumericType>::operator*(
const ElectricCurrent<NumericType>& electric_current) const {
return ElectricCharge<NumericType>{electric_current, *this};
}
template <typename NumericType>
inline constexpr ElectricCurrent<NumericType> Frequency<NumericType>::operator*(
const ElectricCharge<NumericType>& electric_charge) const {
return ElectricCurrent<NumericType>{electric_charge, *this};
}
template <typename NumericType>
inline constexpr ElectricCurrent<NumericType> ElectricCharge<NumericType>::operator*(
const Frequency<NumericType>& frequency) const {
return ElectricCurrent<NumericType>{*this, frequency};
}
template <typename NumericType>
inline constexpr ElectricCurrent<NumericType> ElectricCharge<NumericType>::operator/(
const Time<NumericType>& time) const {
return ElectricCurrent<NumericType>{*this, time};
}
template <typename NumericType>
inline constexpr Time<NumericType> ElectricCharge<NumericType>::operator/(
const ElectricCurrent<NumericType>& electric_current) const {
return Time<NumericType>{*this, electric_current};
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::ElectricCurrent<NumericType>> {
inline size_t operator()(const PhQ::ElectricCurrent<NumericType>& electric_current) const {
return hash<NumericType>()(electric_current.Value());
}
};
} // namespace std
#endif // PHQ_ELECTRIC_CURRENT_HPP