-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflux11_test.jl
executable file
·42 lines (29 loc) · 1.02 KB
/
flux11_test.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# testing with Flux 11
flush(stdout)
println("starting!")
using Distributed
addprocs(parse(Int, ENV["SLURM_NTASKS"])-1)
@everywhere include("train_fcn_flux11.jl")
using DataFrames
#nums_pts = [20000, 20000, 20000]
nums_pts = [120, 120, 120]
nums_conv = [2]
atom_fea_lens = [80]
pool_types = ["mean"]
crys_fea_lens = [40]
nums_hidden_layers = [1]
lrs = [0.002]
features = [["Group", "Row", "X", "Atomic radius", "Block"]]
nums_bins = [[18, 9, 10, 10, 4]]
logspaceds = [[false, false, false, true, false]]
param_sets = [p for p in Iterators.product(nums_pts, nums_conv, atom_fea_lens, pool_types, crys_fea_lens, nums_hidden_layers, lrs, features, nums_bins, logspaceds)]
println("parameter sets built")
results = pmap(cgcnn_train, param_sets)
output = DataFrame(num_pts=Int[], start_err=Float32[], end_err=Float32[], mae=Float32[], train_time=Float32[])
for i in 1:prod(size(param_sets))
params = param_sets[i]
result = results[i]
row = (params[1], result...)
push!(output, row)
end
CSV.write("flux11.csv", output)