forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cholesky_matrix_decomposition.py
51 lines (44 loc) · 1.41 KB
/
cholesky_matrix_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Cholesky matrix decomposition is used to find the decomposition of a
Hermitian positive-definite matrix A
into matrix V, so that V * V* = A, where V* denotes the conjugate
transpose of L.
The dimensions of the matrix A must match.
This method is mainly used for numeric solution of linear equations Ax = b.
example:
Input matrix A:
[[ 4, 12, -16],
[ 12, 37, -43],
[-16, -43, 98]]
Result:
[[2.0, 0.0, 0.0],
[6.0, 1.0, 0.0],
[-8.0, 5.0, 3.0]]
Time complexity of this algorithm is O(n^3), specifically about (n^3)/3
"""
import math
def cholesky_decomposition(A):
"""
:param A: Hermitian positive-definite matrix of type List[List[float]]
:return: matrix of type List[List[float]] if A can be decomposed,
otherwise None
"""
n = len(A)
for ai in A:
if len(ai) != n:
return None
V = [[0.0] * n for _ in range(n)]
for j in range(n):
sum_diagonal_element = 0
for k in range(j):
sum_diagonal_element = sum_diagonal_element + math.pow(V[j][k], 2)
sum_diagonal_element = A[j][j] - sum_diagonal_element
if sum_diagonal_element <= 0:
return None
V[j][j] = math.pow(sum_diagonal_element, 0.5)
for i in range(j+1, n):
sum_other_element = 0
for k in range(j):
sum_other_element += V[i][k]*V[j][k]
V[i][j] = (A[i][j] - sum_other_element)/V[j][j]
return V