forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
binary_heap.py
122 lines (98 loc) · 3.62 KB
/
binary_heap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
r"""
Binary Heap. A min heap is a complete binary tree where each node is smaller than
its children. The root, therefore, is the minimum element in the tree. The min
heap uses an array to represent the data and operation. For example a min heap:
4
/ \
50 7
/ \ /
55 90 87
Heap [0, 4, 50, 7, 55, 90, 87]
Method in class: insert, remove_min
For example insert(2) in a min heap:
4 4 2
/ \ / \ / \
50 7 --> 50 2 --> 50 4
/ \ / \ / \ / \ / \ / \
55 90 87 2 55 90 87 7 55 90 87 7
For example remove_min() in a min heap:
4 87 7
/ \ / \ / \
50 7 --> 50 7 --> 50 87
/ \ / / \ / \
55 90 87 55 90 55 90
"""
from abc import ABCMeta, abstractmethod
class AbstractHeap(metaclass=ABCMeta):
"""Abstract Class for Binary Heap."""
def __init__(self):
"""Pass."""
@abstractmethod
def perc_up(self, i):
"""Pass."""
@abstractmethod
def insert(self, val):
"""Pass."""
@abstractmethod
def perc_down(self, i):
"""Pass."""
@abstractmethod
def min_child(self, i):
"""Pass."""
@abstractmethod
def remove_min(self):
"""Pass."""
class BinaryHeap(AbstractHeap):
"""Binary Heap Class"""
def __init__(self):
self.current_size = 0
self.heap = [(0)]
def perc_up(self, i):
while i // 2 > 0:
if self.heap[i] < self.heap[i // 2]:
# Swap value of child with value of its parent
self.heap[i], self.heap[i//2] = self.heap[i//2], self.heap[i]
i = i // 2
def insert(self, val):
"""
Method insert always start by inserting the element at the bottom.
It inserts rightmost spot so as to maintain the complete tree property.
Then, it fixes the tree by swapping the new element with its parent,
until it finds an appropriate spot for the element. It essentially
perc_up the minimum element
Complexity: O(logN)
"""
self.heap.append(val)
self.current_size = self.current_size + 1
self.perc_up(self.current_size)
"""
Method min_child returns the index of smaller of 2 children of parent at index i
"""
def min_child(self, i):
if 2 * i + 1 > self.current_size: # No right child
return 2 * i
if self.heap[2 * i] > self.heap[2 * i + 1]:
return 2 * i + 1
return 2 * i
def perc_down(self, i):
while 2 * i < self.current_size:
min_child = self.min_child(i)
if self.heap[min_child] < self.heap[i]:
# Swap min child with parent
self.heap[min_child], self.heap[i] = self.heap[i], self.heap[min_child]
i = min_child
"""
Remove Min method removes the minimum element and swap it with the last
element in the heap( the bottommost, rightmost element). Then, it
perc_down this element, swapping it with one of its children until the
min heap property is restored
Complexity: O(logN)
"""
def remove_min(self):
ret = self.heap[1] # the smallest value at beginning
# Replace it by the last value
self.heap[1] = self.heap[self.current_size]
self.current_size = self.current_size - 1
self.heap.pop()
self.perc_down(1)
return ret