-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanvasDev.py
69 lines (57 loc) · 1.98 KB
/
canvasDev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import math
from copy import deepcopy
from general import version
if version() >= 3.8:
from statistics import multimode
else:
def multimode(data):
data.sort()
counts = dict()
for i in data:
counts[i] = counts.get(i, 0) + 1
return([max(counts, key = counts.get)])
def euDist(x1, y1, x2, y2):
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def mhDist(x1, y1, x2, y2):
return abs(x2 - x1) + abs(y2 - y1)
def colorInitPoints(canvasSet, pointSet):
for point in pointSet:
canvasSet[point[0][1]][point[0][0]] = point[1]
def nthMinIndex(n, distances):
temp = deepcopy(distances)
for i in range(n):
temp = [dist for dist in temp if not (dist == min(temp))]
indices = []
try:
for i in range(len(distances)):
if (distances[i] == min(temp)):
indices.append(i)
except Exception:
return []
return indices
def minK(k, distances, pointSet):
closestK = []
for i in range(2*k-1):
for index in nthMinIndex(i, distances):
closestK.append(pointSet[index][1])
try:
return multimode(closestK)[0]
except Exception:
return 0
def distDeter(k, distType, pointX, pointY, pointSet = []):
distances = []
for chosenPoint in pointSet:
if distType == 1:
distances.append(euDist(pointX, pointY, chosenPoint[0][0], chosenPoint[0][1]))
else:
distances.append(mhDist(pointX, pointY, chosenPoint[0][0], chosenPoint[0][1]))
return minK(k, distances, pointSet)
def canvasDetermine(k, distType, canvasWidth, canvasHeight, pointSet = []):
canvasSet = [[0 for x in range(canvasWidth)] for y in range(canvasHeight)]
if distType not in [1, 2]:
return (canvasSet, 1)
for y in range(0, canvasHeight):
for x in range(0, canvasWidth):
canvasSet[y][x] = distDeter(k, distType, x, y, pointSet)
colorInitPoints(canvasSet, pointSet)
return (canvasSet, 0)