-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecompress.cpp
1101 lines (959 loc) · 29.3 KB
/
decompress.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <cassert>
#include <chrono>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <span>
#include <functional>
#include <tuple>
#include <vector>
#include <list>
#include <unordered_map>
class InvalidFormat :public std::runtime_error {
public:
explicit InvalidFormat(const std::string &s) :runtime_error(s) { }
};
int get_byte(std::istream &is) {
auto c = is.get();
if (c == EOF) {
throw std::out_of_range("stream EOF");
}
return c;
}
void assert_byte(std::istream &is, uint8_t expected) {
auto c = get_byte(is);
if (c != expected) {
throw InvalidFormat("byte should be " + std::to_string((int)expected) + " but '" + std::to_string((int)c));
}
}
void skip(std::istream &is, size_t n) {
is.seekg(n, std::ios::cur);
if (!is) {
throw std::out_of_range("stream EOF");
}
}
uint32_t read_uint32(std::istream &is) {
uint32_t result = 0;
result |= (uint32_t)is.get();
result |= (uint32_t)is.get() << 8u;
result |= (uint32_t)is.get() << 16u;
result |= (uint32_t)is.get() << 24u;
if (!is) {
throw std::out_of_range("stream EOF");
}
return result;
}
void write_uint32(std::ostream &os, uint32_t value) {
os.put(value & 0xffu); value >>= 8u;
os.put(value & 0xffu); value >>= 8u;
os.put(value & 0xffu); value >>= 8u;
os.put(value & 0xffu);
}
constexpr int MinMatchLength = 3;
constexpr int MaxMatchLength = 258;
constexpr size_t length_table[][2] = {
{0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8}, {0, 9}, {0, 10}, {1, 11}, {1, 13}, {1, 15}, {1, 17}, {2, 19}, {2, 23}, {2, 27}, {2, 31}, {3, 35}, {3, 43}, {3, 51}, {3, 59}, {4, 67}, {4, 83}, {4, 99}, {4, 115}, {5, 131}, {5, 163}, {5, 195}, {5, 227}, {0, 258}, {std::numeric_limits<size_t>::max(), 259/* sentry object */}
};
// code -> (extra_bits, start_offset)
constexpr size_t distance_table[][2] = {
{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 5}, {1, 7}, {2, 9}, {2, 13}, {3, 17}, {3, 25}, {4, 33}, {4, 49}, {5, 65}, {5, 97}, {6, 129}, {6, 193}, {7, 257}, {7, 385}, {8, 513}, {8, 769}, {9, 1025}, {9, 1537}, {10, 2049}, {10, 3073}, {11, 4097}, {11, 6145}, {12, 8193}, {12, 12289}, {13, 16385}, {13, 24577},{std::numeric_limits<size_t>::max(),32769}, {0,0}
};
class BitStreamReader {
public:
explicit BitStreamReader(std::istream &is) :is_(is) { }
void ensure_cached_byte() {
if (cached_byte_size == 0) {
cached_byte_size = 8;
auto c = is_.get();
offset_++;
if (c == EOF) {
throw InvalidFormat("stream EOF");
}
cached_byte = c;
}
}
void discard_remaining_bits() {
cached_byte_size = 0;
}
// n < 32
// 11000101 -> 10100011
uint32_t read_bit(size_t n) {
assert(n <= 32);
uint32_t result = 0;
for (size_t i = 0; i < n; i++) {
ensure_cached_byte();
result <<= 1u;
result |= ((uint32_t)cached_byte >> (8-cached_byte_size)) & 1u;
cached_byte_size--;
}
return result;
}
uint32_t read_bit_le(size_t n) {
assert(n <= 32);
uint32_t result = 0;
for (size_t i = 0; i < n; i++) {
ensure_cached_byte();
auto target_bit = ((uint32_t)cached_byte >> (8-cached_byte_size)) & 1u;
result |= (target_bit << i);
cached_byte_size--;
}
return result;
}
void copy(std::ostream &os, size_t size) {
for (size_t i = 0; i < size; i++) {
os.put(is_.get());
offset_++;
if (!is_) {
throw InvalidFormat("Unexpected EOF when copying non-compressed data");
}
}
}
template <typename T>
T read_le() {
T value;
for (int i = 0; i < sizeof(T); i++) {
reinterpret_cast<uint8_t*>(&value)[i] = is_.get();
offset_++;
assert(is_);
}
return value;
}
std::string offset_string() const {
std::stringstream ss;
if (cached_byte_size == 0) {
ss << (offset_ + 1) << "+0b";
} else {
ss << offset_ << "+" << (8 - cached_byte_size) << "b";
}
return ss.str();
}
private:
uint8_t cached_byte = 0;
size_t cached_byte_size = 0;
std::istream& is_;
size_t offset_ = std::numeric_limits<size_t>::max();
};
class BitStreamWriter {
public:
explicit BitStreamWriter(std::ostream &os) :os(os) { }
void flush_all() {
if (cached_byte_size != 0) {
os.put(byte);
cached_byte_size = 0;
byte = 0;
}
}
void write_le(uint32_t bits, size_t n) {
assert(n <= 32);
uint32_t result = 0;
for (size_t i = 0; i < n; i++) {
auto target_bit = bits & 1u;
bits >>= 1u;
byte |= target_bit << cached_byte_size;
cached_byte_size++;
if (cached_byte_size == 8) {
os.put(byte);
cached_byte_size = 0;
byte = 0;
}
}
}
void write_be(uint32_t bits, size_t n) {
assert(n <= 32);
uint32_t result = 0;
for (size_t i = 0; i < n; i++) {
auto target_bit = (bits >> (n-i-1)) & 1u;
byte |= target_bit << cached_byte_size;
cached_byte_size++;
if (cached_byte_size == 8) {
os.put(byte);
cached_byte_size = 0;
byte = 0;
}
}
}
private:
size_t cached_byte_size = 0;
uint8_t byte = 0;
std::ostream &os;
};
struct HuffmanTree {
HuffmanTree() = default;
explicit HuffmanTree(const std::vector<size_t> &code_lengths)
:counts(65, 0), lengths(code_lengths), bits(code_lengths.size()) {
std::vector<std::vector<int>> n_codes(code_lengths.size(), std::vector<int>(0));
for (int code = 0; code < code_lengths.size(); code++) {
counts[code_lengths[code]]++;
n_codes[code_lengths[code]].push_back(code);
}
while (!counts.empty() && counts.back() == 0) {
if (counts.back() == 0) {
counts.pop_back();
}
}
offsets.resize(counts.size() + 1);
skip.resize(offsets.size());
if (!counts.empty()) {
counts[0] = 0;
for (int i = 1; i <= counts.size(); i++) {
offsets[i] = counts[i-1] + offsets[i-1];
}
uint64_t last_skip = 0;
for (int i = 1; i < counts.size(); i++) {
last_skip = (last_skip + counts[i-1]) << 1u;
skip[i] = last_skip;
}
size_t prev = 0;
for (int i = 1; i < n_codes.size(); i++) {
for (auto code : n_codes[i]) {
bits[code] = prev;
prev++;
symbols.push_back(code);
}
prev <<= 1;
}
}
}
size_t size() const {
return lengths.size();
}
std::tuple<size_t, size_t> at(size_t value) const {
return std::make_tuple(bits[value], lengths[value]);
}
// Read a value from stream decoded by 'tree'
uint32_t read_value(BitStreamReader &reader) const {
uint64_t value = 0;
size_t bit_length = 0;
while (true) {
value |= reader.read_bit_le(1);
bit_length++;
if (bit_length > offsets.size()) {
throw InvalidFormat("bit_length overflows to tree.offset.size() = '" + std::to_string(bit_length) + "'");
}
auto off = value - skip[bit_length];
if (off < counts[bit_length]) {
auto index = offsets[bit_length] + off;
return symbols[index];
}
value <<= 1u;
}
}
// void print(std::ostream &os) {
// for (int i = 0; i < symbols.size(); i++) {
// os << "symbols[" << i << "] = " << symbols[i] << std::endl;
// }
// for (auto offset : offsets) {
// os << offset << " ";
// }
// std::cout << std::endl;
// for (auto count : counts) {
// os << count << " ";
// }
// os << std::endl;
// }
void write_value(BitStreamWriter &writer, size_t code) const {
assert(lengths[code] > 0);
writer.write_be(bits[code], lengths[code]);
}
std::vector<size_t> offsets;
std::vector<size_t> counts;
std::vector<size_t> symbols;
std::vector<uint64_t> skip;
std::vector<size_t> bits, lengths;
};
template <typename T>
class RingBuffer {
public:
// When the buffer is full, start_ = end_ + 1
explicit RingBuffer(size_t max_size) :data_(max_size + 1) {
assert(max_size > 1);
}
T pop_front() {
// TODO
assert(0);
}
T at(size_t offset) const {
if (start_ + offset < data_.size()) {
return data_[start_ + offset];
} else {
auto offset_from0 = offset - (data_.size() - start_);
return data_[offset_from0];
}
}
// Iterate each item in the ring buffer, cb(value, offset)
void iterate(std::function<bool (T, size_t)> cb) {
if (start_ <= end_) {
for (size_t i = start_; i < end_; i++) {
cb(data_[i], i - start_);
}
} else {
for (size_t i = start_; i < data_.size(); i++) {
cb(data_[i], i - start_);
}
for (size_t i = 0; i < end_; i++) {
cb(data_[i], i + (data_.size() - start_));
}
}
}
size_t size() const {
if (start_ <= end_) {
return end_ - start_;
} else {
return end_ + data_.size() - start_;
}
}
// push one element into end_, if the buffer is full, delete the first element.
std::optional<T> push_back(T data) {
if (next(end_) == start_) {
// buffer is full
auto ret = data_[start_];
data_[end_] = data;
start_ = next(start_);
end_ = next(end_);
return ret;
} else {
data_[end_] = data;
end_ = next(end_);
return {};
}
}
// duplicate from previous distance'th position, with the size of "size", into end_
std::vector<std::span<const T>> dup(size_t distance, size_t size) {
auto start_offset = prev(end_, distance);
auto j = start_offset;
for (size_t i = 0; i < size; i++, j = next(j)) {
push_back(data_[j]);
}
if (start_offset + size <= data_.size()) {
return {{&data_[start_offset], size}};
} else {
auto remaining_size = size - (data_.size() - start_offset);
return {{data_.begin()+start_offset, data_.end()}, {data_.begin(), data_.begin()+remaining_size}};
}
}
// return the next index of offset
size_t next(size_t offset, size_t distance = 1) {
return (offset + distance) % data_.size();
}
// return the previous distance'th index of offset
size_t prev(size_t offset, size_t distance = 1) {
assert(distance <= data_.size());
return (offset + data_.size() - distance) % data_.size();
}
private:
std::vector<T> data_;
// start_: the first valid data index.
// end_: the first empty slot to insert new data.
// When start == end, the buffer is empty rather than full.
// The maximum size of the buffer is data_.size()-1.
size_t start_ = 0;
size_t end_ = 0;
};
class Inflate {
public:
explicit Inflate(std::istream& is) :reader_(is), ring_buffer_(65*1024) { }
size_t decompress(std::ostream &os) {
size_t total_size = 0;
while (true) {
// std::cerr << "start to decompress output_off=" << total_size
// << ", input_off=" << reader_.offset_string() << std::endl;
auto t0 = std::chrono::high_resolution_clock::now();
auto [size, eof] = decompress_block(os);
auto t1 = std::chrono::high_resolution_clock::now();
// std::cerr << "Block decode time " << std::chrono::duration<double, std::milli>(t1 - t0).count() << "ms" << std::endl;
total_size += size;
if (eof) {
break;
}
}
return total_size;
}
std::tuple<size_t, bool> decompress_block(std::ostream &os) {
auto bfinal = reader_.read_bit_le(1);
auto btype = reader_.read_bit_le(2);
size_t block_size = 0;
if (btype == 0b01) {
// fixed Huffman tree
block_size = decompress_block_data(os, true, HuffmanTree(), HuffmanTree());
} else if (btype == 0b10) {
// dynamic Huffman tree
auto [lit_tree, dist_tree] = read_dynamic_huffman_tree_header();
block_size = decompress_block_data(os, false, lit_tree, dist_tree);
} else if (btype == 0) {
// non-compressed data
reader_.discard_remaining_bits();
auto len = reader_.read_le<uint16_t>();
auto nlen = reader_.read_le<uint16_t>();
if ((len ^ nlen) != (uint16_t)0xffff) {
throw InvalidFormat("Data corruption: len(" + std::to_string(len) + ") != ~nlen(" + std::to_string(nlen) + ")");
}
reader_.copy(os, len);
block_size = len;
} else {
throw InvalidFormat("Unexpected block type 0b11");
}
return {block_size, bfinal};
}
private:
// Read dynamic huffman code length table decoded from 'huffman_tree'
std::vector<size_t> generate_huffman_table(HuffmanTree &huffman_tree, const size_t lit_count) {
std::vector<size_t> huffman_table;
huffman_table.reserve(lit_count);
int prev = -1;
for (size_t lit = 0; lit < lit_count; ) {
auto value = huffman_tree.read_value(reader_);
/**
0 - 15: Represent code lengths of 0 - 15
16: Copy the previous code length 3 - 6 times.
The next 2 bits indicate repeat length
(0 = 3, ... , 3 = 6)
Example: Codes 8, 16 (+2 bits 11),
16 (+2 bits 10) will expand to
12 code lengths of 8 (1 + 6 + 5)
17: Repeat a code length of 0 for 3 - 10 times.
(3 bits of length)
18: Repeat a code length of 0 for 11 - 138 times
(7 bits of length)
*/
if (value == 16) {
if (prev == -1) {
throw InvalidFormat("Should not use 'copy' code at the beginning");
}
auto copy_previous_count = reader_.read_bit_le(2) + 3;
for (int i = 0; i < copy_previous_count; i++) {
huffman_table.push_back(prev);
}
lit += copy_previous_count;
} else if (17 <= value && value <= 18) {
size_t zero_count = 0;
if (value == 17) {
zero_count = reader_.read_bit_le(3) + 3;
} else {
zero_count = reader_.read_bit_le(7) + 11;
}
for (int i = 0; i < zero_count; i++) {
huffman_table.push_back(0);
}
prev = 0;
lit += zero_count;
} else if (value < 16) {
huffman_table.push_back(value);
prev = value;
lit++;
} else {
throw std::runtime_error("decode invalid value, should be [0, 18], but '" + std::to_string(value) + "'");
}
}
// for (int i = 0; i < huffman_table.size(); i++) {
// if (huffman_table[i] != 0) {
// std::cout << std::hex << std::setw(2) << std::setfill('0') << i << "(" << (char)i << ") --> " << huffman_table[i] << std::endl;
// }
// }
return huffman_table;
}
// Read dynamic Huffman tree from block header
std::tuple<HuffmanTree, HuffmanTree> read_dynamic_huffman_tree_header() {
const auto hlit = reader_.read_bit_le(5) + 257;
const auto hdist = reader_.read_bit_le(5) + 1;
const auto hclen = reader_.read_bit_le(4) + 4;
std::vector<size_t> code_lengths(19, 0);
int index[] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
for (int i = 0; i < hclen; i++) {
auto code_length = reader_.read_bit_le(3);
code_lengths[index[i]] = code_length;
}
HuffmanTree code_length_huffman_tree(code_lengths);
auto lit_table = generate_huffman_table(code_length_huffman_tree, hlit);
auto dist_table = generate_huffman_table(code_length_huffman_tree, hdist);
return std::make_tuple(HuffmanTree(lit_table), HuffmanTree(dist_table));
}
private:
size_t decompress_block_data(
std::ostream &os,
bool fixed,
const HuffmanTree &lit_tree,
const HuffmanTree &dist_tree) {
size_t block_offset = 0;
while (true) {
uint32_t code;
if (fixed) {
code = read_fixed_lit();
} else {
code = lit_tree.read_value(reader_);
}
if (code >= 286) {
throw InvalidFormat("Invalid code length code " + std::to_string(code));
} else if (code == 256) {
// end of block
break;
} else if (code < 256) {
// literal code
os.put(code);
ring_buffer_.push_back(code);
block_offset++;
} else {
// length/distance code
// first read length
size_t length = 0, distance = 0;
auto length_code = code - 257;
{
auto [extra_bits, start_off] = length_table[length_code];
length = reader_.read_bit_le(extra_bits) + start_off;
}
// then distance
uint32_t dist_code = 0;
if (fixed) {
dist_code = reader_.read_bit(5);
} else {
dist_code = dist_tree.read_value(reader_);
}
{
auto [extra_bits, start_off] = distance_table[dist_code];
distance = reader_.read_bit_le(extra_bits) + start_off;
}
if (distance == 0) {
throw InvalidFormat("distance should not be 0");
}
auto buffers = ring_buffer_.dup(distance, length);
for (auto buffer : buffers) {
os.write(reinterpret_cast<const char*>(buffer.data()), buffer.size());
}
block_offset += length;
}
}
auto block_size = block_offset;
return block_size;
}
uint32_t read_fixed_lit() {
auto prefix4 = reader_.read_bit(4);
if (prefix4 < 0b0011) {
// 256 - 279
auto part3 = reader_.read_bit(3);
if (prefix4 & 1u) {
part3 += 8;
}
return part3 + 256;
} else if (prefix4 >= 0b0011 && prefix4 < 0b1100) {
auto prefix5 = (prefix4 << 1u) | reader_.read_bit(1);
if (prefix5 >= 0b00110 && prefix5 < 0b11000) {
// 0 - 143
return ((prefix5 << 3u) | reader_.read_bit(3)) - 0x30;
} else if (prefix5 >= 0b11000 && prefix5 < 0b11001) {
// 280 - 287
return reader_.read_bit(3) + 280;
} else {
// 144 - 255, code starts from 0b110010000
return ((prefix5 << 4u) | reader_.read_bit(4)) - 0b110010000 + 144;
}
} else {
assert(0);
return 0;
}
}
private:
BitStreamReader reader_;
RingBuffer<uint8_t> ring_buffer_;
};
// RFC1952
void decompress_stream(std::istream &is, std::ostream &os) {
// ID1
assert_byte(is, 0x1f);
// ID2
assert_byte(is, 0x8b);
// CM: compression method
assert_byte(is, 0x08);
/**
bit 0 FTEXT
bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAME
bit 4 FCOMMENT
bit 5 reserved
bit 6 reserved
bit 7 reserved
*/
auto flags = get_byte(is);
if (flags != 0) {
throw InvalidFormat("Non-zero flag not implemented");
}
// mtime
uint32_t mtime = read_uint32(is);
{
std::time_t temp = mtime;
std::tm* t = std::gmtime(&temp);
std::stringstream ss; // or if you're going to print, just input directly into the output stream
ss << std::put_time(t, "%Y-%m-%d %I:%M:%S %p");
std::string mtime_string = ss.str();
}
// extra flag
skip(is, 1);
// OS
skip(is, 1);
Inflate inflate(is);
size_t decompressed_size = inflate.decompress(os);
auto crc32 = read_uint32(is);
(void)crc32;
// TODO: verify CRC32
// std::cout << "crc32: " << crc32 << std::endl;
auto original_size = read_uint32(is);
if (decompressed_size != original_size) {
throw InvalidFormat("data corruption, original_size != decompressed_size");
}
}
struct Node {
Node(Node *left, Node *right) :left(left), right(right), freq(left->freq + right->freq) { }
Node(size_t code, size_t freq) :code(code), freq(freq) { }
bool operator<(const Node &rhs) const {
if (freq == rhs.freq) {
return code < rhs.code;
} else {
return freq > rhs.freq;
}
}
bool is_leaf() const {
return left == nullptr && right == nullptr;
}
void dfs(std::vector<size_t> &result, size_t depth = 0) const {
if (is_leaf()) {
result[code] = depth;
} else {
left->dfs(result, depth+1);
right->dfs(result, depth+1);
}
}
size_t freq = 0;
size_t code = std::numeric_limits<size_t>::max();
Node *left = nullptr;
Node *right = nullptr;
};
// <bits, nbits>
HuffmanTree create_huffman_tree(const std::vector<size_t> &freqs) {
std::vector<Node> nodes_owner;
std::vector<Node*> nodes;
// reserve memory to prevent invalidating pointer
nodes_owner.reserve(2*freqs.size());
nodes.reserve(2*freqs.size());
for (size_t i = 0; i < freqs.size(); i++) {
if (freqs[i] > 0) {
nodes_owner.emplace_back(i, freqs[i]);
nodes.emplace_back(&nodes_owner.back());
}
}
std::vector<size_t> lengths(freqs.size(), 0);
if (nodes.empty()) {
assert(freqs.size() >= 2);
// These are just placeholders to make a valid huffman tree
lengths[0] = 1;
lengths[1] = 1;
} else if (nodes.size() == 1) {
// DEFLATE format does not support zero length tree
assert(freqs.size() >= 2);
lengths[nodes.front()->code] = 1;
if (nodes.front()->code == 0) {
lengths[1] = 1;
} else {
lengths[0] = 1;
}
} else {
auto compare = [](Node* lhs, Node *rhs) { return *lhs < *rhs; };
std::make_heap(nodes.begin(), nodes.end(), compare);
while (nodes.size() > 1) {
std::pop_heap(nodes.begin(), nodes.end(), compare);
auto node1 = nodes.back();
nodes.pop_back();
std::pop_heap(nodes.begin(), nodes.end(), compare);
auto node2 = nodes.back();
nodes.pop_back();
nodes_owner.emplace_back(node1, node2);
auto new_node = &nodes_owner.back();
std::push_heap(nodes.begin(), nodes.end(), compare);
nodes.push_back(new_node);
}
nodes.front()->dfs(lengths);
}
return HuffmanTree(lengths);
}
std::tuple<size_t,size_t, size_t> calculate_length_code(size_t length) {
for (int i = 0; i < sizeof(length_table)/sizeof(length_table[0]); i++) {
if (length_table[i][1] <= length && length < length_table[i+1][1]) {
return {i + 257, length_table[i][0], length - length_table[i][1]};
}
}
assert(0);
return {};
}
// dist_code, length of extra bits, content of extra bits
std::tuple<size_t, size_t, size_t> calculate_dist_code(size_t dist) {
for (int i = 0; i < sizeof(distance_table)/sizeof(distance_table[0]); i++) {
if (distance_table[i][1] <= dist && dist < distance_table[i+1][1]) {
return {i, distance_table[i][0], dist - distance_table[i][1]};
}
}
assert(0);
return {};
}
class Deflate {
public:
explicit Deflate(std::istream &is, size_t window_size) : is_(is), window_(window_size) { }
void write_dynamic_huffman_header(
HuffmanTree &lit_tree,
HuffmanTree &dist_tree,
BitStreamWriter &writer) {
// HLIT
writer.write_le(lit_tree.size()-257, 5);
// HDIST
writer.write_le(dist_tree.size()-1, 5);
// HCLEN
writer.write_le(19-4, 4);
// TODO:
// No compression: we just hard code the bits, we dont use 16-18 currently
writer.write_le(2, 3);
writer.write_le(3, 3);
writer.write_le(3, 3);
for (int i = 0; i < 16; i++) {
writer.write_le(5, 3);
}
for (int i = 0; i < lit_tree.size(); i++) {
auto [bits, nbits] = lit_tree.at(i);
writer.write_be(nbits | 0b10000u, 5);
}
for (int i = 0; i < dist_tree.size(); i++) {
auto [bits, nbits] = dist_tree.at(i);
writer.write_be(nbits | 0b10000u, 5);
}
}
// returns original size
size_t deflate(std::ostream &os) {
BitStreamWriter writer(os);
size_t total_size = 0;
while (is_.peek() != EOF) {
lz77_encoded.clear();
auto block_size = lz77_encode_block(65536);
total_size += block_size;
std::cerr << "lz77 block " << total_size << std::endl;
/*
* Calculate count of lit/length and distance
*/
std::vector<size_t> lit_counts(286, 0), dist_counts(30, 0);
for (auto [c, distance, length] : lz77_encoded) {
if (length != 0) {
auto [lit_code, _1, _2] = calculate_length_code(length);
auto [dist_code, _3, _4] = calculate_dist_code(distance);
lit_counts[lit_code]++;
dist_counts[dist_code]++;
}
if (c != EOF) {
lit_counts[c]++;
} else {
lit_counts[256]++;
}
}
// Create two Huffman trees
auto lit_tree = create_huffman_tree(lit_counts);
auto dist_tree = create_huffman_tree(dist_counts);
// bfinal = false
writer.write_le(0, 1);
// 0b10: dynamic Huffman tree
writer.write_le(0b10, 2);
write_dynamic_huffman_header(lit_tree, dist_tree, writer);
// the actual data
for (auto [c, distance, length] : lz77_encoded) {
if (length != 0) {
{
auto [len_code, nbits, bits] = calculate_length_code(length);
lit_tree.write_value(writer, len_code);
writer.write_le(bits, nbits);
}
{
auto [dist_code, nbits, bits] = calculate_dist_code(distance);
dist_tree.write_value(writer, dist_code);
writer.write_le(bits, nbits);
}
}
if (c == EOF) {
lit_tree.write_value(writer, 256);
} else {
lit_tree.write_value(writer, c);
}
// std::cerr << "Huffman " << c << " " << distance << " " << length << std::endl;
}
}
// This is the final block.
// We use a non-compression empty block to indicate EOF
// bfinal = true
writer.write_le(1, 1);
// no compression
writer.write_le(0, 2);
writer.flush_all();
// empty data
writer.write_le(0, 16);
writer.write_le(0xffff, 16);
return total_size;
}
// longest substring in the sliding window that matches current prefix
// This function also manipulates the sliding window.
// returns offset and length
std::tuple<int, size_t, size_t> longest_prefix() {
std::vector<size_t> matches, new_matches;
bool first = true;
size_t length = 0;
while (true) {
auto c = is_.get();
if (first) {
if (c == EOF) {
return {c, 0, 0};
}
// offset in new_matches is the next offset to check
window_.iterate([&new_matches, c = (uint8_t)c](uint8_t prev_c, size_t offset) {
if (c == prev_c) {
new_matches.push_back(offset);
}
return true;
});
first = false;
if (new_matches.empty()) {
window_.push_back(c);
return std::make_tuple(c, 0, 0);
}
} else {
if (c != EOF) {
for (auto offset : matches) {
if (window_.at(offset) == c) {
new_matches.push_back(offset);
}
}
}
// including c == EOF
if (new_matches.empty()) {
assert(!matches.empty());
// always use nearest match
auto offset = matches.back();
auto distance = window_.size() - offset;
window_.push_back(c);
return std::make_tuple(c, distance, length);
}
}
auto popped = window_.push_back(c);
if (!popped.has_value()) {
// when no value is popped while pushing the value 'c', the new match index should increase 1
for (auto &m : new_matches) {
m++;
}
}
std::swap(new_matches, matches);
new_matches.clear();
length++;
}
}
// lz77 encode
// yields lit, length, distance
// reads from is_ and write to writer_
size_t lz77_encode_block(size_t max_size) {
size_t size = 0;
// std::cerr << "lz77 encode block" << std::endl;
while (true) {
// get longest prefix
auto [c, distance, length] = longest_prefix();
if (MinMatchLength <= length && length <= MaxMatchLength) {
// discard length from input
lz77_encoded.emplace_back(c, distance, length);
// std::cerr << "match(" << distance << "," << length << ")";
// std::cout << (char)c;
} else {
// discard length from input
if (length > 0) {
for (size_t i = 0; i < length; i++) {
auto ch = window_.at(window_.size()-1 - length + i);
lz77_encoded.emplace_back(ch, 0, 0);
// std::cout << (char)ch;
}
}
// std::cout << (char)c;
lz77_encoded.emplace_back(c, 0, 0);
}
size += length;